EMPIRICAL STUDY ON THE RELATIONSHIPS BETWEEN GREEN SUPPLY CHAIN MANAGEMENT PRACTICES AND ORGANIZATIONAL PERFORMANCE

BY

CHIN SI MEI LING SING YAE TOO JIA WEN TOONG SIEW KUAN VIVIAN LAI JIA YIN

A research project submitted in partial fulfillment of the requirement for the degree of

BACHELOR OF COMMERCE (HONS) ACCOUNTING

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF BUSINESS AND FINANCE

DEPARTMENT OF COMMERCE AND ACCOUNTANCY

MAY 2013

Copyright @ 2013

ALL RIGHTS RESERVED. No part of this paper may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, graphic, electronic, mechanical, photocopying, recording, scanning, or otherwise, without prior consent of the authors.

DECLARATION

We hereby declare that:

- (1) This undergraduate research project is the end result of our own work and that due acknowledgement has been given in the references to ALL sources of information be they printed, electronic, or personal.
- (2) No portion of this research project has been submitted in support of any application for any other degree or qualification of this or any other university, or other institutes of learning.
- (3) Equal contribution has been made by each group member in completing the research project.
- (4) The word count of this research report is 10,567.

Name of Student:	Student ID:	Signature:
1. Chin Si Mei	09ABB03836	
2. Ling Sing Yae	09ABB03108	
3. Too Jia Wen	09ABB03016	
4. Toong Siew Kuan	09ABB03266	
5. Vivian Lai Jia Yin	09ABB03080	

Date: 18th March 2013

ACKNOWLEDGEMENT

First of all, we would like to thank our university, University Tunku Abdul Rahman (UTAR) for giving us the opportunity to conduct this research.

Besides, we would like to express our very great appreciation to our research supervisor, Miss Lee VoonHsien for her patient guidance and useful critiques of this research work. Her willingness to give her time generously has been very much appreciated.Without her advice and support, we will be facing a lot of difficulties to complete this research.

We would also like to extend our thanks to the staff of all the participating organizations for filling up the survey questionnaires for us. We wish to thank our parents for their encouragement and support throughout the study too.

Furthermore, our sincere indebtedness and gratitude goes to our beloved family members. Without their encouragement and understanding, it would have been impossible for us to complete and pursue our bachelor degree with the accomplishment of this research project.

Finally, we would like to thank all of our group members for their cooperation, inspirations and support and their willingness to sacrifice valuable time to complete this research project.

Table of Content

Page

Copyright Pag	e	ii
Declaration		iii
Acknowledge	nent	iv
Table of Cont	ents	V
List of Tables		xi
List of Figures	·····	xii
List of Abbrev	iations	xiii
List of Append	lices	xiv
Preface		XV
Abstract		xvi
CHAPTER 1	INTRODUCTION	1
1.0	Introduction	1
1.1	Research Background	1
1.2	Problem Statement	2
	1.2.1 Research Problems	2
	1.2.2 Past Studies	3
	1.2.3 Deficiency in Past Studies	3
1.3	Research Objectives & Questions	4
1.4	Significance of the Studies	5
	1.4.1 Practical Contribution	5
	1.4.2 Theoretical Contribution	6
1.5	Outline of the Study	6
1.6	Conclusion	7
CHAPTER 2	LITERATURE REVIEW	8
2.0	Introduction	8
2.1	Review of the Literature	8
	2.1.1 Organizational Performance (Dependent Variable)	8
	2.1.2 Relationship between Internal Environmental Management	
	(IEM) and Organizational Performance	9

	2.1.3	Relationship between Eco-Design (ED) and Organizational	
		Performance	11
	2.1.4	Relationship between Investment Recovery (IR) and	
		Organizational Performance	12
	2.1.5	Relationship between Green Purchasing (GP) and	
		Organizational Performance	13
	2.1.6	Relationship between Reverse Logistics (RL) and	
		Organizational Performance	14
2.2	Theore	etical Foundation	16
	2.2.1	Introduction to N-RBV	16
	2.2.2	Three Dimensions of N-RBV	16
	2.2.3	The Relationship between Three Dimensions of N-RBV	17
	2.2.4	The Relationship between Three Dimensions of N-RBV, IV and	
		DV	17
		2.2.4.1 Pollution Prevention	17
		2.2.4.2 Product Stewardship	18
		2.2.4.3 Sustainable Development	18
2.3	Propos	sed Conceptual Framework / Research Model	20
2.4	Hypot	heses Development	20
2.5	Conclu	usion	21
CHAPTER 3	RESE	ARCH METHODOLOGY	22
3.0	Introd	uction	22
3.1	Resear	rch Design	22
3.2	Data C	Collection Method	22
	3.2.1	Primary Data	23
	3.2.2	Secondary Data	23
3.3	Sampl	ing Design	23
3.4	Resear	rch Instrument	24
	3.4.1	Instruments and Procedures Used	25
	3.4.2	Pilot Studies	25
3.5	Constr	ructs Measurement	26

3.6	Data Processing	27
	3.6.1 Data Checking	27
	3.6.2 Data Editing	27
	3.6.3 Data Coding	28
	3.6.4 Data Transcribing	28
	3.6.5 Data Cleaning	28
3.7	Data Analysis	28
	3.7.1 Descriptive Statistics	29
	3.7.2 Scale Measurement	29
	3.7.2.1 Normality Test	29
	3.7.2.2 Reliability Test	29
	3.7.3 Inferential Statistic	30
	3.7.3.1 Pearson Correlation Analysis	30
	3.7.3.2 Multiple Linear Regressions (MLR)	30
3.8	Conclusion	31
CHAPTER 4	DATA ANAYSIS	32
4.0	Introduction	32
4.1	Pilot Test	32
4.2	Descriptive Analysis	35
	4.2.1 Demographic Profile of the Respondents	35
	4.2.2 Central Tendencies Measurement of Constructs	37
4.3	Scale Measurement	38
	4.3.1 Normality Test	39
	4.3.2 Reliability Test	41
4.4	Inferential Analysis	42
	4.4. 1 Pearson Correlation Coefficient Analysis	42
	4.4.2 Multiple Linear Regressions (MLR)	44
4.5	Conclusion	46
CHAPTER 5	DISCUSSION, CONCLUSION AND IMPLICATION	47
5.0	Introduction	47
5.1	Summary of Statistical Analysis	47

	5.1.1	Descriptive Analysis	47
	5.1.2	Scale Measurement	48
	5.1.3	Inferential Analysis	49
5.2	Discus	sions of Major Findings	51
	5.2.1	Internal Environment Management (IEM)	51
	5.2.2	Eco-Design	52
	5.2.3	Investment Recovery (IR)	53
	5.2.4	Green Purchasing (GP)	54
	5.2.5	Reverse Logistic (RL)	55
5.3	Implic	ation	57
	5.3.1	Theoretical Implications	57
	5.3.2	Managerial Implications	57
5.4	Limita	tions and Recommendations for future research	59
5.5	Conclu	ision	60
Reference			61
Appendices			72

LIST OF TABLES

		Page
Table 1.1:	Research Questions and Objectives	4
Table 4.1:	Normality Test on Pilot Test	32
Table 4.2:	Reliability Test on Pilot Test	34
Table 4.3:	Demographic Profile of the Respondents	35
Table 4.4:	Descriptive Statistics	37
Table 4.5:	Normality Test	39
Table 4.6:	Reliability Test	41
Table 4.7:	Correlation Matrix for Organizational Performance	42
Table 4.8:	Model Summary	44
Table 4.9:	Analysis of Variance	44
Table 4.10:	Coefficients	44
Table 5.1:	Reliability Test	48
Table 5.2:	Pearson Correlation Coefficient Analysis	49
Table 5.3:	Multiple Linear Regression	50

LIST OF FIGURES

Page

Figure 2.1: Antecedents Affecting	Organizational Performance	20
	o Buillion of the second second	

LIST OF ABBREVIATIONS

CFA	Confirmatory Factor Analysis
DV	Dependent Variable
EPI	Environmental Performance Index
GP	Green Purchasing
GSCM	Green Supply Chain Management
IEM	Internal Environmental Management
IR	Investment Recovery
IV	Independent Variable
MLR	Multiple Linear Regressions
N-RBV	Natural-resource Based View
OP	Organizational Performance
OP PES	Organizational Performance Proactive Environmental Strategy
	C C
PES	Proactive Environmental Strategy
PES RBV	Proactive Environmental Strategy Resource-based View of The Firm
PES RBV RL	Proactive Environmental Strategy Resource-based View of The Firm Reverse Logistics
PES RBV RL SAS	Proactive Environmental Strategy Resource-based View of The Firm Reverse Logistics Statistical Analysis System
PES RBV RL SAS SC	Proactive Environmental Strategy Resource-based View of The Firm Reverse Logistics Statistical Analysis System Supply Chain
PES RBV RL SAS SC SCM	Proactive Environmental Strategy Resource-based View of The Firm Reverse Logistics Statistical Analysis System Supply Chain Supply Chain Management

LIST OF APPENDICES

		Page
Appendix A:	Summary of Past Empirical Studies	72
Appendix B:	Operationalization of Model Variables	76
Appendix C:	Survey Questionnaires	79
Appendix D:	Permission Letter to Conduct Survey	87

PREFACE

Manufacturing firms started to explore green initiatives by implementing green supply chain management (GSCM) in line with the concern regarding environmental issues in the New Economic Model declared by Dato' Seri Najib Tun Abdul Razak, Prime Minister of Malaysia in the budget speech for 2010.

It is expected that the implementation of GSCM can benefit manufacturing firms in many ways, including improved environmental performance, economic performance as well as operational performance.

Therefore this research is to investigate the relationship between the five GSCM practices, namely Internal Environmental Performance, Eco-design, Investment Recovery, Green Purchasing and Reverse Logistics, and Organizational Performance to find out which practices have higher significance.

We hope that the results of this research combined with further clarification of the results will provide a solid foundation on which GSCM practices to be focused, encouraging greater adoption of GSCM in manufacturing firms.

ABSTRACT

Over the past several decades, the concept of supply chain (SC), an integrated supply base of the upstream and downstream portions has gained a momentum as new forms of organization. With the 'green' component adding into the supply chain management (SCM), it addresses the influence and relationship between SCM and natural environment. Our government has placed a great concern on environmental issues, hence green supply chain management (GSCM) is expected to become a norm among the Malaysian manufacturing firms soon. Hence, this paper attempts to examine the linkages between practices and performances within the field of GSCM practices in Malaysia, namely internal environmental management (IEM), eco-design (ED), green purchasing (GP), investment recovery (IR) and reverse logistics (RL). This study is able to provide insights for the management with a list of GSCM practices that can be adopted as directions to set up appropriate policies as a way to enhance the quality of products and competitiveness in the business. For this purpose, a theoretical model is built from literature sources and natural-resource based view (N-RBV) of the firm is adopted as theoretical foundation since the three strategic capabilities from the N-RBV perspective are congruent with the GSCM concept. Data is collected using a structured questionnaire mailed to a population of 329 of International Organization for Standardization 14001 certified manufacturing firms in Malaysia in which the source is provided by The Federation of Malaysian Manufacturers Directory 2009. Data analysis techniques that will be used in this study are descriptive statistics and inferential analysis, namely Pearson Correlation Analysis, correlation coefficient and Multiple Linear Regressions.

CHAPTER 1: INTRODUCTION

1.0 Introduction

This research aimed to identify the antecedents that lead to improvements in Malaysian manufacturing firm organizational performance. This chapter started with a brief background which consisted of the importance of addressing environmental concern in an organization and how green concepts can be applied into a supply chain. Subsequently, research problems, research objectives and contributions of the research were identified.

1.1 Research Background

Over the past several decades, the concept of supply chain (SC), an integrated supply base of the upstream and downstream portions (Melnyk, Lummus, Vokurka, Burns, & Sandor, 2008) had gained a dominant position as new forms of organization such as virtual industries, global manufacturing and logistic evolution (Arzu & Erman, 2010).

However towards the inception of 21st century, issues of natural environment had substantially grabbed the public's attention. Realizing that long-term sustainability goals depends not only on profitability (Tan & Zailani, 2010), manufacturing firms started to explore green initiatives by implementing green supply chain management (GSCM) as their strategic weapons (Emmett & Sood, 2010; Min & Kim, 2012; Srivastava, 2007).

Based on the statistics from Yale Center for Environmental Law & Policy (YCELP), Malaysia had been placed 25th out of 132 countries in Environmental Performance Index (EPI) 2012 (Yale Center for Environmental Law & Policy, 2012). Hence, in line with the concern regarding environmental issues in the New Economic Model declared by Dato' Seri Najib Tun Abdul Razak, Prime Minister of Malaysia in the budget speech for 2010, together with the adoption of the ISO 14001, it was expected that the implementation of GSCM, with the 'green' components adding into the SC (Srivastava, 2007), will soon become a norm among the Malaysian manufacturing firms (Tan & Zailani, 2010) in which the benefits included improved environmental performance and stakeholder satisfaction, increased capacity to go beyond waste reduction as well as gaining competitive advantage (Curkovic & Sroufe, 2011; Melnyk et al., 2008; Srivastava, 2007).

1.2 Problem Statement

1.2.1 Research Problems

Researchers had questioned whether the traditional SCM was well suited to the company's operation today as the environmental sustainability had been an important issue to business practice (Van Hoek, 1999; Kumar & Chandrakar, 2012). Bhagwat and Sharma (2007) had evaluated SCM as a source of increasing operating cost and Halldorsson, Kotzab, and Skjott-Larsen (2009) had been argued that SCM had a material influence as a facilitator of globalization and can be seen as among the causes of the problem rather than a feasible solution. As cited in Lee and Klassen (2008), managers of companies had realized that a substantial environmental risk can be found in their company's SCM (Handfield et al., 2005).

1.2.2 Past studies

As cited in Zhu, Geng, Fujita, and Hashimoto (2010), few researchers found that GSCM practices had significant improvement on environmental performance (Hanna, Newman, & Johnson, 2000; Russo & Fouts, 1997), operational performance (Szwilski, 2000; Tooru, 2001), economic performance (Bowen, Cousins, Lamming, & Faruk, 2001) in Japanese manufacturing firms. Different firms had different key drivers to motivate them to adopt GSCM. Some empirical studies showed that senior managers' support and commitment (Zhu, Sarkis, & Lai, 2008b), and environmental compliance or auditing program (Vachon & Klassen, 2006) were important for successful implementation of GSCM. Besides, Green Jr, Zelbst, Meacham, and Bhadauria (2012) asserted that green purchasing could improve environmental performance; eco-design could minimize the product's environmental impact (Eltayeb & Zailani, 2009); while investment recovery and reverse logistic could turn surplus assets into revenue (Hernandez, Poler, Mula, & Lario, 2010; Kumar & Chandrakar, 2012; Zhu, Sarkis, Cordeiro, & Lai, 2008a).

1.2.3 Deficiency in Past Studies

From the review of past studies, there was a lack of research addressing GSCM issues using quantitative approach in Malaysian context. Most of the past studies were tested in Asian countries, such as Japan and China

(Zhu & Sarkis, 2004; Zhu et al., 2010). Due to the wide range of green initiatives under green SC, other less adopted GSCM practices such as Reverse Logistic (RL) and internal environmental management (IEM) should be included together in a study to uncover the importance for overall improvement activities. For example, RL had well procedures and the related action would be to keep at that implementation level, while in IEM, extra procedures may need to be enforced to make sure the level of implementation of RL can be maintained (Zhu et al., 2008b).

1.3 Research Objectives & Questions

General Research Objective	General Research Question	
The general research objective is to	Will the implementation of GSCM	
examine whether the implementation of	practices in Malaysian manufacturing	
GSCM practices can improve	firms improve organizational	
Malaysian manufacturing firm	performance?	
organizational performance.		
Specific Research Objectives	Specific Research Questions	
The specific research objective is to	What is the relationship between	
analyze the relationship between	Internal Environmental Management	
Internal Environmental Management	(IEM) and organizational performance?	
(IEM) and organizational performance.		
The specific research objective is to	What is the relationship between Eco-	
analyze the relationship between Eco-	Design (ED) and organizational	
Design (ED) and organizational	performance?	
performance.		

Table 1.1: Research Questions and Objectives

The specific research objective is to	What is the relationship between Green
analyze the relationship between Green	Purchasing (GP) and organizational
	C O
Purchasing (GP) and organizational	performance?
nonformance	
performance.	
The specific research objective is to	What is the relationship between
The specific rescuren objective is to	what is the relationship between
analyze the relationship between	Investment Recovery (IR) and
	• • •
Investment Recovery (IR) and	organizational performance?
organizational performance.	
The exactly records objective is to	What is the relationship between
The specific research objective is to	What is the relationship between
analyze the relationship between	Reverse Logistic (RL) and
analyze the relationship between	Reverse Ebgistic (RE) and
Reverse Logistic (RL) and	organizational performance?
	6
organizational performance.	
<u> </u>	

Source: Developed for the research

1.4 Significance of the studies

1.4.1 Practical contribution

This research paper will be a significant endeavor in increasing environmental awareness on importance of recycling or go green philosophy among supply chain partners. The firms can gain from the development of effectual scales to assess the implementation of GSCM practices which can be used in benchmarking and continuous improvement. It was important to management because they will know what aspects to look at in order to enhance products' quality and the firm's competitiveness in the business as well as the pros and cons of each GSCM practices implemented.

1.4.2 Theoretical contribution

The proposed study can be a useful source to future researchers as it had laid a good foundation in advancing the theory related to green concept. Also, this paper provided several areas which researchers could focus on, such as employing and assessing multi-item potential constructs via fieldbased testing (Malhotra & Grover, 1998; Zhu et al., 2008b). In addition, this research was an extended model of past researchers (Zhu, Sarkis, & Geng, 2005; Zhu et al., 2010), this was because past studies mentioned above did not examine all the independent variables (green purchasing, investment recovery, eco design, internal environmental management and reverse logistics) in one research and tended to stress on one or few prospects only.

1.5 Outline of the study

Chapter 1 introduced what GSCM was all about, described the problems, identified the research purpose and questions and provided the importance of the proposed study. Next in chapter 2, introduced the concepts of the theory and its relevance to the research paper, reviewed the prior empirical studies, formed a conceptual framework and developed hypothesis. Lastly, in chapter 3, described how the research was carried out by explaining research design, methods of data collection, sampling design, operational definitions of constructs, measurement scales and methods of data analysis. Lastly, chapter 4 presented data analysis and

chapter 5 demonstrated the discussion, implications and conclusion of the research.

1.6 Conclusion

This chapter allowed researchers to have a brief understanding about the relationship between the IVs and dependent variable (DV) in this study. Also, an overview of research objectives, research questions as well as hypotheses to be tested. The next chapter provided a summary of significant findings from past studies and developed a theoretical conceptual and hypothesis testing.

CHAPTER 2: LITERATURE REVIEW

2.0 Introduction

In this chapter, a summary of past empirical studies explaining the relationship between each IV and DVs were included as well as the theory and its dimensions were discussed. Besides, a conceptual framework that provided the theoretical foundation was developed. Lastly, hypotheses were formulated and tested scientifically in later chapter.

2.1 Review of the Literature

2.1.1 Organizational Performance (Dependent Variable)

The DV in this study was organizational performance which included economic performance, environmental performance and operational performance. According to Green Jr et al. (2012), a good indicator of environmental performance should lead to cost saving which in turn improving economic performance. Together, environmental performance and economic performance should improve operational efficiency. Besides, environmental, economic, and operational performances that yielded cost savings facilitated organizational performance as a whole.

Economic performance was defined as ability of manufacturing firms to minimize costs when purchasing materials, consuming energy and discharging waste (Zhu et al., 2008a). However, economic performance cannot be observed in short-term sales performance and profitability. Thus, proactive GSCM practices able to prepare the firms for long-term performance through the improvement of environmental risks (Zhu et al., 2010). Environmental performance was the manufacturing firms' ability to reduce wastes and decrease release of pollutants (Zhu et al., 2008a). It was able to evaluate the activities, processes, hardware and services of GSCM practices (Hervani, Helms, & Sarkis, 2005). Therefore, with GSCM practices, environmental and economic performance can be realized by modifying the current policies and launching effective recovery system (Li, 2011). Operational performance linked to the organization's ability to efficiently produce and send products to customers (Zhu et al., 2008a). Operational performance acted as an internal business process which determined the critical manufacturing processes in order to fulfill customer's value and improve economic performance (Shi, Koh, Baldwin, & Cucchiella, 2012).

2.1.2 Relationship between Internal Environmental Management (IEM) and Organizational Performance

As cited in Zhu et al. (2005), Zhu and Sarkis (2004) had pointed out that IEM constituted one of the main internal and external activities within SCM, was a way of developing GSCM as a strategic organizational weapon through support from managers (Ruiz-Tagle, 2008; Zhu et al., 2005).

Lopez-Gamero, Molina-Azorin, and Claver-Cortes (2011), had examined hotel managers' environmental behaviors to examine whether external and

internal elements lead to acceptance of an environmental management. Managers who were accountable for their decisions substantially regulate the environmental commitment of their organization. The method carried out was postal survey sending to environmental manager of three-to-five star Spanish hotels while the analysis techniques used were structural equation modeling, reliability test, chi-square test and descriptive statistics. In short, proactive environmental management was positively related to the improvement of environmental performance, competitive advantage as well as financial performance.

Besides, the interactive effect of elements on a proactive environmental strategy (PES) and organizational performance was investigated in Menguc, Auh, and Ozanne (2010). The top management support in PES was significant because gaining the support of top management was essential for a proactive environmental strategy's success. The population consisted of 325 firms of New Zealand's major manufacturing firms operating in different industries. The analysis techniques used included post-hoc analysis, descriptive statistics and inter-correlations and confirmatory factor analysis (CFA). This study had found out that entrepreneurial orientation (innovativeness, risk-taking) has influence on PES because an organization was probably not pursuing PES unless superiors encouraged it which in turn benefited sales and profit growth.

Since IEM included environmental auditing programs (Zhu et al., 2010), Shih, Chen, and Chen (2006) studied the divergences of internal auditors' behaviors toward environmental protection, environmental inspection and environmental knowledge. The population of this study was made up of internal auditors in Top 1000 and Top 500 public listed and organizations in manufacturing and service industry respectively. The analysis techniques used were descriptive statistics and Mann-Whitney U-Test and T-test for equality of means. All in all, internal auditors in manufacturing sector had better environmental knowledge than those in service sector to improve the sustainable development of the organization.

2.1.3 Relationship between Eco-Design (ED) and Organizational Performance

ED was defined in this study as ecological design which processed the environmental factors into the development and product design (Yung, Chan, So, Wong, Choi, & Yue, 2011). ED had reduced material application, improved energy saving and made the business more environmental-friendly (Boonkanit & Kengpol, 2010).

Based on Eltayeb, Zailani, and Ramayah (2011), the purpose of the research was to study the result of actual environmental, economic and intangible outcome by adopting GSCM practices which included ED. This study conducted by mailing questionnaire to 551 ISO 14001 certified Malaysian manufacturing organizations. The analysis techniques used were descriptive statistics, validity & reliability test and One-way ANOVA. It is found that GSCM practices had influence on organizational performance outcome in which ED had a direct link to the firm's internal performance.

Furthermore, in Zhu et al. (2010), GSCM practices (including ED) were being introduced to the large Japanese manufacturers. 12 large Japanese manufacturers were contacted and 9 agreed to be involved in this research. Descriptive statistics was used as analysis technique in this study. In short, it shown that GSCM practices had significant effect in the environmental and financial performance improvement of manufacturing firms.

In Zhu et al. (2008a), it examined the correlation of organizational learning and management support by implementing GSCM practices, including ED in the Chinese manufacturing firms. Researchers used mails and telephone calls to 1000 manufacturers of Dalian and at the end 314 responded to the survey. The analysis techniques used were descriptive statistics, ordinary least squares estimation. The finding revealed that the implementation of GSCM practices (including ED) had significant effect on the environmental, economic and organizational performance of a firm.

2.1.4 Relationship between Investment Recovery (IR) and Organizational Performance

In Zhu et al. (2008a), IR associated to the use of recycling, redisposition and resell to gain better value from end products by selling idle assets scraps (waste materials, excess capital equipment and excess inventories and materials).

In Rogers, Rogers, and Lembke (2010), the purpose of the research was to study the importance of secondary market in US economy and company. The method used was Dephi technique, involving the experts interviewed the independent and anonymous interviewees to develop a consensus. The result showed that secondary market outlets had a large percentage of shopping options in US market. It was clearly proved that secondary market can improve company's environmental and economic performance by recapturing value of unwanted items and reducing landfill costs. In Jacobs and Subramanian (2012), the purpose of the research was to examine the environmental and economic performance of IR within supply chain. The research method used was two-echelon model which consisted of a supplier and a producer to determine the influence in integrated and decentralized supply chains. The finding of this research showed that IR can improve profit and reduce environmental impacts.

In Zhu, Sarkis, and Lai (2008c), the purpose of this research was to evaluate company perceived of GSCM practices (including IR), capabilities of company on adoption of GSCM practices and the contribution of IR towards company's performance. 314 surveys were collected from respondents who were working in chemical & petroleum, electrical & electronic and automobile sectors. The analysis techniques used included chi-square test, reliability test, descriptive statistics, CFA, one-way analysis of variances. The result showed that Chinese manufacturers were deficient in knowledge, experience and equipment to improve their environmental performance by adopting GSCM practices. Besides, it showed that IR had significant environmental and economic benefits to company.

2.1.5 Relationship between Green Purchasing (GP) and Organizational Performance

According to Ho, Dickinson, and Chan (2010), GP involved acquiring of products or services that were able to minimize environmental impact, fulfill the social responsibility and ethics. As cited in Sarkis (2003), environmental purchasing was defined as a series of procurement activities which involved reducing, reusing and recycling of materials (Salam, 2011).

Salam (2011) analyzed the determinants of adoption of green procurement of ISO 14001 certified electronic industry in Thailand. However, it had proved that adopting green purchasing with firm's supplier can improve the organizational performance as well as the overall performance of the supply chain. 150 questionnaires are randomly sent to ISO 14001 certified targeted companies listed in Benchmarks Electronics (Thailand) supplier and customer directory. The analysis techniques used were descriptive analysis, reliability test, Pearson Correlation and multiple regression test. It showed the importance of green procurement to gain competitive advantage over competitors.

Another study from Rao and Holt (2005) identified the relationship between the adoption of GSCM (including GP) and improvement in economic performance and competitiveness. Survey was sent to ISO 14001 certified companies in South East Asia, including Philippines, Indonesia, Malaysia, Thailand and Singapore. The analysis techniques used were chi-square test and normality test. The result concluded greening the supply chain was significant to competitiveness and economic performance.

The study conducted by Carter, Kale, and Grimm (2000) studied the relationship between green purchasing and organizational performance. In this research, survey was sent to 1083 managers from consumer product manufacturing industries. The analysis techniques used were multiple linear regression. Result showed there was a positive relationship between green purchasing and organizational performance.

2.1.6 Relationship between Reverse Logistics (RL) and Organizational Performance

Daugherty, Autry, and Ellinger (2001) defined RL as a procedure of planning, enforcing and operating the efficient, cost-effective run of materials, work-in-process, finished goods and information from usage point back to beginning point to recapture value and for proper disposal.

Daugherty et al. (2001) studied the relationship of RL which was tested on effectiveness of RL programs and their impact on business operation. 212 questionnaires are sent to the retailers of selling electronics products by using self-administered mail survey. The analysis techniques used were analysis of non-response bias, descriptive analysis and Pearson Correlation. The result showed that RL program had both direct benefits (effective utilization of inventory) and indirect benefits (better corporate image and improved level of customer satisfaction) to the firm.

Chan and Chan (2008) had focused on the proper implementation of RL system which resulted in customer loyalty and minimization of operational cost. The survey had conducted by mailing to 100 Hong Kong mobile phone organizations and together with follow-up interview of 34 managers in that industry. The analysis technique used was descriptive analysis. Result proved that implementation of reverse logistics system can achieve greater customer loyalty and lower operational cost.

Tan and Kumar (2006) introduced decision-making framework for manufacturers in RL operations to maximize profits. This research used data collected from a computer producer with handling returns of volumes transacted over 2 years. The analysis techniques used were behavior reproduction tests, repeatability, transparency, dimensionality, process reliability, time step and descriptive statistics. Transportation lag and supplier delay in processing returns had an essential influence on the viability of reverse logistics irrespective of return volumes which in turn affect the profitability of the company.

2.2 Theoretical Foundation

2.2.1 Introduction to N-RBV

The natural-resource based view (N-RBV) of the firm was adopted as theoretical foundation for this study (Hart, 1995), an adaptation of the resource-based view of the firm (RBV). However, RBV ignored the constraints imposed by environment (Brown, Kane, & Roodman, 1994; Meadows, Meadows, & Randers, 1992). Therefore, Hart (1995) developed N-RBV to fill in the gap by stressing organization's relationship to environment. Hart (1995) proposed a three-part framework for N-RBV, namely pollution prevention, product stewardship, and sustainable development.

2.2.2 Three Dimensions of N-RBV

Pollution prevention focused on firm's pressure to reduce or eliminate waste from organization's operation (Hart, 1995). Smart (1992) emphasized that pollution prevention may increase productivity, reduce organization's conformity costs and also enhance profitability of organizations.

Product Stewardship implied that the "voice of environment" and stakeholder perspective were taken into account of eco-design and development processes (Allenby, 1991; Fiksel, 1993), from assessing raw material, production processes, to disposition of used products (Hart, 1995).

Sustainable development required firm to have a solid sense of socialenvironmental responsibility (Strikker, 1992; Welford, 1995) to develop low-impact technologies for market development (Jansen & Vergragt, 1992). Sustainable development involved a clear future vision and focused on modern technology development (Hart, 1995).

2.2.3 The Relationship between Three Dimensions of N-RBV

According to Hart (1995), if there was no pollution-prevention, product stewardship will not be successfully adopted. The first demonstrated competence in product stewardship need to be dependent to have a successful sustainable development. Sustainability development strategy can be added step by step in which the foundation will be provided by pollution prevention and product stewardship (Hart & Ahuja, 1994).

2.2.4 The Relationship between Three Dimensions of N-RBV, IV and DV

2.2.4.1 Pollution Prevention

Managers had to know the extent of organizations' consequence on environment and understand that contamination came from inefficient use of resources (Hart, 1995). It depended on the commitment from managers to ensure the effectiveness of pollution prevention system (Cole, 1991). Besides, it needed employee involvement and continuous improvement of emissions minimization which in turn can improve the firm's environmental performance (Hart, 1995).

2.2.4.2 Product Stewardship

Eco-design (ED) was necessary in order to achieve an effective product stewardship (Hart, 1995). Zhu et al. (2008b) defined ED as dealing with the product functionality to reduce the life-cycle environmental impact. Consequently, this will affect the company's environmental performance.

Min and Galle (2001) found that Green Purchasing (GP) can minimize the wasted sources and recycling of purchasing materials that adversely affect performance requirements. Thus, GP can significantly influence the performance of environmental and improve the company's economic position. A remanufacturing process allowed used products to be collected and resold in market was one of the concepts embedded in product stewardship. Thus, according to Tibben-Lembke (2002), Reverse Logistics (RL) in terms of the product life extension can directly affect organizational performance (Murphy & Poist, 2003).

2.2.4.3 Sustainable Development

The relationship between the firm and their stakeholders will be translated into material investments and long-run commitment to the economic development (Markley & Davis, 2007). Therefore, sustainable development related to Investment Recovery (IR). With sustainable development strategy, it might achieve a firm's expectation for future performance that may reflect on the price earnings or market-to-book ratio (Hart, 1995) where it may affect the IR of a firm.

2.3 Proposed Conceptual Framework/ Research Model

Figure 2.1: Antecedents Affecting Organizational Performance

Adapted from: Rao & Holt, 2005; Zhu et al., 2005.

2.4 Hypotheses Development

Based on Kumar and Chandrakar (2012), 5 hypotheses were formulated in this study to explain the relationship between GSCM practices and organizational performance.

H1: There is a positive relationship between IEM and manufacturing organizational performance.

- H2: There is a positive relationship between ED and manufacturing organizational performance.
- H3: There is a positive relationship between IR and manufacturing organizational performance.
- H4: There is a positive relationship between GP and manufacturing organizational performance.
- H5: There is a positive relationship between RL and manufacturing organizational performance.

2.5 Conclusion

This chapter focused on reviewing past empirical studies to explain the relationship between GSCM practices and organizational performance. Subsequently, related theoretical model was examined to serve as foundation to develop a conceptual framework. Lastly, 5 hypotheses had been developed to provide directions of the relationships among variables. Chapter 2 served as a guideline to have better understanding towards the methodology of this study that will be further discussed in chapter 3.

CHAPTER 3: RESEARCH METHODOLOGY

3.0 Introduction

In chapter 3, an overview of the research methodology was explained through eight sections which included research design, data collection method, sampling design, research instrument, construct measurement, data processing and data analysis techniques. Subsequently, a summary of this chapter was provided.

3.1 Research Design

The aim of this study was to study the relationship between GSCM practices and performance of manufacturing organizations in Malaysia. This was a cross-sectional study because this study examined the relationship between GSCM practices that lead to improvement in Malaysian manufacturing firm's performance.

Mail questionnaire was used in data collection because it can cover broad geographical field in lesser time and lower cost (Sekaran, 2003; Eltayeb et al., 2011). Prior to this, the survey was pilot tested by 20 ISO14001 certified manufacturing firms before mailing the survey to validate and refine the measurement instrument and make some modifications on it (Zhu et al., 2008a). Data analysis techniques used were descriptive statistics and inferential analysis, namely Pearson Correlation Analysis, correlation coefficient, Multiple Linear Regressions (MLR).
3.2 Data Collection Method

3.2.1 Primary Data

In this research, primary data was collected. The method of data collection used was self-administered questionnaires because data was standardized and easy to make comparison (Saunders, Lewis, & Thornhill, 2009). 329 survey forms were sent to the purchasing managers in certified manufacturing firms by using mail questionnaire in this study. The modified Dillman's Total Design Method (TDM) was a procedure that included a personalized cover letter, a questionnaire and a follow-up mailing to send to the targeted respondents. By using this Dillman's TDM, it was able to produce a higher response rate (Anema & Brown, 1995; De Leeuw & Hox, 1988).

3.2.2 Secondary Data

Besides, secondary data is useful to compare with primary data to evaluate how representative these data were of the population (Saunders et al., 2009). In this study, secondary data was collected from external databases such as ScienceDirect, Emerald, SpringerLink, EBSCOhost, ProQuest and other databases which can be found in UTAR library website – libezp.utar.edu.my. Besides, internet search engine such as Google Scholar was used to gather related material and literature as well.

3.3 Sampling Design

The unit of analysis was ISO 14001 certified manufacturing organizations as they were most probably to have initiative on adoption of GSCM practices (Darnall, Jolley, & Handfield, 2006; Eltayeb & Zailani, 2009; Sroufe, 2003; Zhu et al., 2008a). The population consisted of all ISO 14001 certified manufacturing firms in Malaysia. Federation of Malaysia Manufacturers (FMM) was the largest private sector economic organization in Malaysia, consisting of 2500 manufacturing and service companies of different sizes (FMM, 2009). The sampling frame was obtained from 40th FMM Directory 2009 of Malaysian Industries. There were 329 ISO 14001 certified manufacturing firms in Malaysia (FMM, 2009). Census method was used to collect data due to the small sampling frame available and possibility of low responses received when collecting feedback (Eltayeb et al., 2010).

Questionnaires were addressed to purchasing manager of targeted firms. The reason why purchasing managers were chosen was due to the fact that this research was about SCM and they were in an important place to determine the environmental footprint of a company (Walton, Handfield & Melnyk, 1998).

The surveys for this study were mailed to 329 of ISO 14001 certified manufacturing firms. Out of these 329 questionnaires, 131 questionnaires were rejected because of no response/partial response/missing data, hence giving a total response rate of 60.18%. Sample size should be an item-to-response ratio from 1:4 to 1:10 for each set scales to be examined. There were 44 items to be measured in this study, thus the sample size from 176 to 440 respondents would be sufficient for research analysis (Hinkin, 1995).

3.4 Research Instrument

Questionnaire was used in this study as a means to collect data. According to Saunders et al. (2009), questionnaire was a pre-determined same set of questions that each person was asked to respond.

3.4.1 Instruments and Procedures Used

To increase the feedback and respond rate from target respondent, modified Dillman's Total Design Method (TDM) was applied while designing the survey questionnaire. There were few steps to be carried out in the TDM. First, it was required to include the cover letter of survey questionnaire to explain the purpose of the survey and the categories of respondent. Besides, confidentiality was included in the cover letter to safeguard the respondent's interest. Second, return envelopes were provided for the convenient of respondents in returning the surveys. Third, follow-up telephone call was a necessary step to remind those companies that have not response for a week. Other than TDM, five-point Likert scale was used in constructing the questionnaire because it assisted respondents to complete the survey in lesser time.

3.4.2 Pilot Studies

As cited in Thabene, L., Ma, J., Chu, R., Cheng, J., Ismaila, A., Rios, L. P., Robson, R., Thabene, M., Giangregorio, L., and Goldsmith, C. H. (2010), the Concise Oxford Thesaurus defined a pilot study as an experimental, exploratory, pre-test, preliminary, trial or try out investigation. The main purpose of conducting pilot test in this study was to test the normality and reliability of data, identify design flaws of the questionnaires and prevent issues such as duplicate item being asked in questionnaires (Beebe, 2007). 20 sets of questionnaires were sent and addressed to purchasing manager of the firm. The 20 respondents were randomly chosen from FMM which consisted of 329 ISO 14001 certified manufacturing firms in Malaysia (FMM, 2009). After collecting back the questionnaires, normality test and reliability test were carried out to check the normality, validity and reliability of the data.

3.5 Constructs Measurement

GSCM practices were examined based on 5 dimensions of GSCM initiatives which included IEM, ED, IR, GP and RL (Eltayeb & Zailani, 2009; Menzel, Smagin, & David, 2010; Zhu & Sarkis, 2004; Zhu et al., 2005). The linkages of each dimension of GSCM practices and organizational performance were being examined based on economic, environmental and operational performance. An empirical, survey-based research approach was adopted, comprising of a total of 44 items regarding to GSCM practices (IVs) and organizational performance (DV) as described in Appendix B.

The questionnaire contained 25 items to test on GSCM practices (IVs) based on previous studies (Eltayeb & Zailani, 2009; Lin, 2011; Zhu & Sarkis, 2004). The study used a five-point Likert scale for all dimensions of green supply chain practices ranging from 1= not considering it to 5= implementing successfully.

19 questions to examine organizational performance (DV) on implementation of GSCM practices were adapted from Rao and Holt (2005), and Zhu and Sarkis (2004). Questions about organizational performance such as environmental, economic and operational performance by implementing GSCM practices were answered using a five-point Likert scale ranging from 1= not at all to 5= significant.

3.6 Data Processing

Before analyzing the data collected, some procedures need to be performed to ensure the data collected were reliable and valid. Data processing included data checking, data editing, data coding and data transcribing.

3.6.1 Data Checking

Data checking was a process of ensuring the data collected were complete and usable for our analysis by making sure the respondent of questionnaires was our target respondent and all questions were answered in a questionnaire (Saunder et al., 2009).

3.6.2 Data Editing

Data editing was to exclude all incomplete or fault questionnaire that cannot be used in analysis. The incomplete questionnaires were either disregarded or allocated with the missing values (Saunder et al., 2009). In this research, out of 209 questionnaires collected back (excluding nonresponse), there were 11 incomplete questionnaires and are extracted out, so left with 198 useable questionnaires.

3.6.3 Data Coding

Data coding was a systematic process of condensing a large data sets into smaller units via the formation of categories and concepts deduced from the data (Saunder et al., 2009). In this research, the data were coded accordingly before the descriptive data are entered into SAS for further analysis. For example, the independent variable 'Internal Environmental Management' had been decoded into 'IEM' before transcribing the collected data into SAS.

3.6.4 Data Transcribing

Data transcription was a process of data entry where the collected data was keyed. It involved transferring the coded data from survey into the computer by punching the keys on keyboard (Saunder et al., 2009).

3.6.5 Data Cleaning

A process to check the correctness of data input (Saunder et al., 2009).

3.7 Data Analysis

According to Scarisbrick-Hauser (2007), the objective of data analysis was to analyze data, interpret and integrate the result into the context of business decision-making. The compiled data analyzed using Statistical Analysis System (SAS).

3.7.1 Descriptive Statistics

Descriptive statistics was basic descriptive measures that summarizing data by displaying some numeral measures of where the center of the data set were and how the other values vary from that center (Janes, 1999). Descriptive statistics that were used in this study consisted of mean, standard deviation, frequency, percentage (Eltayeb et al., 2011).

3.7.2 Scale Measurement

3.7.2.1 Normality Test

It is important that normality assumption was satisfied when conducting parametric tests (Drezner, Turel, & Zerom, 2010). Skewness and kurtosis were used in this study to test the normality of results. The rule of thumb said that a variable was normally distributed if its skewness and kurtosis had values between -2.0 and +2.0 (Gujarati & Porter, 2009).

3.7.2.2 Reliability Test

Cronbach's Alpha was used to test the data reliability. Cronbach's alpha ranged from 0 to 1.00, with values close to 1.00 indicated a high reliability. It was recommended to have a reliability coefficient of 0.70 or higher (Saunders et al., 2009).

3.7.3 Inferential Statistic

Pearson Correlation Analysis and Multiple Linear Regressions were utilized in this study since the DV consisted of interval data, so a parametric test was conducted.

3.7.3.1 Pearson Correlation Analysis

Pearson Correlation Analysis was utilized in this research to measure the strength of a linear relationship between two variables (Saunders et al., 2009). Multicollinearity problem was tested through correlation matrix. When correlation coefficient between two variables exceeded 0.8, multicollinearity problem appeared (Field, 2005).

3.7.3.2 Multiple Linear Regressions (MLR)

MLR was used to calculate multiple regression coefficients and regression equation using at least two IVs to show the strength of

the association of the GSCM practices and organizational performance (Saunders et al., 2009). As the research consisted of five independent variables such as IEM, ED, IR, GP and RL, MLR was used to determine which independent variable influenced the organizational performance (Eltayeb et al., 2010). The equation of MLR which showed the relationship of the antecedents with GSCM practices was as below:

The equation for the research will be as below:

 $Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 c X_5$ W/b surplus

Whereby,

Y = Dependent variable

- X = Independent variables
- α = Constant Coefficient
- β_1 β_5 = Regression Coefficient for X_1 X_5

For this study, the equation was as below:

Organizational Performance = $\alpha + \beta_1$ (Internal Environmental Management) + β_2 (Eco-design) + β_3 (Investment Recovery) + β_4 (Green Purchasing) + β_5 (Reverse Logistics)

3.8 Conclusion

This chapter highlighted the methodologies conducted in this study. It also explained the research design, data collection method which consisted of primary and secondary data, sampling design, constructs measurement, data processing description and the techniques used in data analysis. The following chapter will illustrate the results by presenting them in tables form for better understanding.

CHAPTER 4: DATA ANALYSIS

4.0 Introduction

This chapter presented results from questionnaires that had been distributed by using Statistical Analysis System (SAS). SAS was being used to conduct descriptive analysis of the demographic profile of the respondents as well as the central tendencies measurement of constructs, reliability test, normality test, Pearson correlation and Multi Linear Regression (MLR).

4.1 Pilot Test

Measures for each variable were tested for reliability and normality through the pre-testing of questionnaire among 20 Purchasing Managers in selected ISO 14001 certified manufacturing firms. Table 4.01 illustrated the reliability test of 20 questionnaires for pilot testing.

Variables	Item	Skewness	Kurtosis
Internal	IEM 1	-1.0187	0.1044
Environmental	IEM 2	-0.6465	1.3213
Management	IEM 3	-0.8159	1.6817
	IEM 4	-0.4146	1.4464
	IEM 5	-1.1176	0.7059
	IEM 6	-0.5025	-0.1966

Table 4.1: Normality Test on Pilot Test

Eco-Design	ED 1	-0.2487	-0.9993
	ED 2	-0.0967	0.1892
	ED 3	-0.6808	0.9840
Investment	IR 1	-0.3155	-1.6675
Recovery	IR 2	0.2500	-0.3371
	IR 3	0.5305	0.4902
Green	GP 1	-0.7629	0.1396
Purchasing	GP 2	0.0000	-0.6706
	GP 3	0.3192	-0.6974
	GP 4	0.1167	-0.2123
Reverse	RL1	-0.7709	0.3545
Logistics	RL2	-0.2916	-0.7342
	RL3	0.2565	-1.0428
	RL4	0.7218	0.5342
	RL5	-0.7126	0.1540
	RL6	-0.5586	0.1765
	RL7	0.7365	0.5737
	RL8	-0.3945	-0.4663
	RL9	-1.2398	0.5229
Organizational	EP1	-0.9494	1.1837
Performance	EP2	-0.3766	1.2084
	EP3	-0.0872	1.5217
	EP4	-0.7972	1.7324
	EP5	-0.7283	0.6354
	EP6	-1.2438	1.4464
	PE1	-0.3055	-0.8902
	PE2	-0.1768	-0.9314
1	I	I	I

PE3	-0.0800	-0.8928
PE4	-0.3997	-0.6960
PE5	0.1265	-1.0267
NE1	-0.1013	-0.7983
NE2	0.0355	0.4119
NE3	-0.2255	-0.0182
NE4	0.1939	-0.3566
CP1	-0.4236	-0.1049
CP2	-0.1939	-0.3566
CP3	0.5492	-0.5481
CP4	-0.1516	-0.8798

Source: Developed for the research

Statistically the rule of thumb said that a variable was normally distributed if its skewness and kurtosis had values between -2.0 and +2.0 (Gujarati & Porter, 2009). Based on the table above, it appeared that the values of skewness and kurtosis were between -2.0 and +2.0. Thus, it was assumed that the pilot test result was normally distributed.

	Number of	
Variables	Items	Cronbach's Alpha
Internal Environmental Management	6	0.8642
Eco-Design	3	0.7247
Investment Recovery	3	0.7765
Green Purchasing	4	0.8625
Reverse Logistics	9	0.8615
Organizational Performance	19	0.7317

Table 4.2: Reliability Test on Pilot Test

Source: Developed for the research

It appeared from the table above that the reliability coefficients of all IVs and DV ranged between 0.70 and 0.90, well exceeded the limit of 0.70. Hence, it can be summarized that the constructs met the acceptable level of reliability (Nunnally, 1978) to check the constructs' internal consistency and validity.

4.2 Descriptive Analysis

4.2.1 Demographic Profile of the Respondents

Table 4.03 showed the statistic results on age of the organization, organization's main activity, number of employees, ownership, duration of establishment of GSCM in organization and the job position of the respondents.

Variables	Frequency	Percentage
Age of the firm:		
≤ 10 years old	104	52.53
\geq 10 years old	94	47.47
Company's main activity		
Food product and beverages	49	24.75
Computer and electric products	38	19.19
Electric products	47	23.74
Chemical, rubber and plastic products	30	15.15
Machinery	23	11.62
Construction	11	5.56

Table 4.3: Demographic Profile of the Respondents

	I	
Number of employees		
≤50	87	43.94
51 - 200	80	40.4
201 or above	31	15.66
Ownership		
State-owned	26	13.13
Foreign direct investment or joint		
venture	53	26.77
Private	107	54.04
Other	12	6.06
Duration of establishment of GSCM in		
organization		
1 year	90	45.45
2 year	46	23.23
3 Years	34	17.17
More than 3 years	28	14.14
Job position of respondents		
Executive	29	14.65
Manager/Head of Department	135	68.18
General Manager/CEO/Director	34	17.17

Source: Developed for the research

Among all the respondents, majority of the respondents' age of firms were less than 10 years, which comprised of 104 (53%) respondents. The remaining 94 (47%) were more than 10 years. Majority of the respondents' main activity of firms were food products and beverages, which comprised of 49 (25%) respondents. Most of the firms' number of employees were less than 50 (44%), followed by 51 - 200 (40%) and 201 or above (16%). Majority of the ownership of firms were private, which comprised of 107 (54%).

Most of the firms' duration of establishment of GSCM was 1 year only, which comprised of 90 (45%) respondents. Majority of the job position of respondents were Manager/Head of Department (68%), followed by General Manager/CEO/Director (17%) and Executive (15%).

4.2.2 Central Tendencies Measurement of Constructs

			Std.
Variables	Item	Mean	Deviation
Internal	IEM 1	3.5606	1.0682
Environmental	IEM 2	3.4546	0.9535
Management	IEM 3	3.4697	0.9271
	IEM 4	3.4950	0.9598
	IEM 5	3.4849	0.9858
	IEM 6	3.3434	0.9786
Eco-Design	ED 1	3.5000	0.9330
	ED 2	3.4697	0.9325
	ED 3	3.4950	0.9385
Investment	IR 1	3.2980	1.0211
Recovery	IR 2	3.2929	1.0300
	IR 3	3.2172	0.9812
Green	GP 1	3.4192	0.8905
Purchasing	GP 2	3.2727	0.9432
	GP 3	3.3838	0.9474
	GP 4	3.3333	0.9290
Reverse	RL1	3.2525	0.8708
Logistics	RL2	3.3434	0.8569

Table 4.4: Descriptive Statistics (n=198)

	RL3	3.2424	0.9462
	RL4	3.2576	0.9869
	RL5	3.2626	1.0085
	RL6	3.2778	0.9391
	RL7	3.4343	0.8745
	RL8	3.4748	0.9051
	RL9	3.4596	0.9851
Organizational	EP1	3.4141	0.8551
Performance	EP2	3.4495	0.9532
	EP3	3.4748	0.9595
	EP4	3.4293	0.9572
	EP5	3.5455	0.9154
	EP6	3.5556	1.0098
	PE1	3.3939	1.0158
	PE2	3.3939	0.9593
	PE3	3.4242	0.9778
	PE4	3.3838	1.0540
	PE5	3.4444	0.9529
	NE1	3.0303	1.1528
	NE2	2.9697	1.1306
	NE3	3.0960	1.1470
	NE4	2.9849	1.1196
	CP1	3.5202	0.9328
	CP2	3.5808	0.8615
	CP3	3.5707	0.9027
	CP4	3.6010	0.9384
L	1	l	1

Source: Developed for the research

The table revealed that the highest mean among the six variables was CP4 by getting 3.6010 where majority agree or neutral regarding the item. The lowest mean was NE2 with 2.9697 which explained the opinion given to the item is neutral. Besides, NE1 had the highest standard deviation among all the items which indicated different range of opinion. However, EP1 had the lowest standard deviation among the variables.

4.3 Scale Measurement

4.3.1 Normality Test

Variables	Item	Skewness	Kurtosis
Internal	IEM 1	-0.2353	-0.9038
Environmental	IEM 2	-0.0640	-0.6325
Management	IEM 3	-0.1809	-0.3540
	IEM 4	-0.2986	-0.3500
	IEM 5	-0.2625	-0.4968
	IEM 6	-0.3414	-0.2074
Eco-Design	ED 1	-0.2083	-0.3576
	ED 2	-0.3852	-0.2434
	ED 3	-0.3575	-0.0695
Investment	IR 1	-0.2209	-0.3959
Recovery	IR 2	-0.3034	-0.4210
	IR 3	-0.2855	-0.4120

Table 4.5: Normality Test

Green	GP 1	-0.1019	-0.3852
Purchasing	GP 2	-0.0209	-0.3065
	GP 3	-0.1858	-0.4176
	GP 4	-0.2900	-0.1463
Reverse	RL1	-0.2357	-0.2910
Logistics	RL2	-0.2368	-0.4177
	RL3	-0.3214	-0.0910
	RL4	-0.2809	-0.3209
	RL5	-0.3972	0.0383
	RL6	-0.3221	-0.2388
	RL7	-0.0500	-0.2742
	RL8	-0.2976	-0.0561
	RL9	-0.3208	-0.2688
Organizational	EP1	-0.2216	0.4455
Performance	EP2	-0.3692	0.0601
	EP3	-0.4499	0.0520
	EP4	-0.3575	-0.0067
	EP5	-0.3361	-0.2037
	EP6	-0.3026	-0.1769
	PE1	-0.3539	-0.2252
	PE2	-0.3389	0.0587
	PE3	-0.3776	0.1078
	PE4	-0.3468	-0.4853
	PE5	-0.2128	-0.6722
	NE1	0.0408	-0.8210
	NE2	0.0387	-0.5868
	NE3	-0.0876	-0.7830
	NE4	-0.0138	-0.7071
I	I	I	I

CP1	-0.4194	0.1768
CP2	-0.3252	0.1531
CP3	-0.2553	0.0590
CP4	-0.3895	-0.0898

Source: Developed for the research

Based on Table 4.05, result from 198 respondents showed value between - 2.0 and +2.0. Thus, normality of the standardized residual was assumed.

4.3.2 Reliability Test

Cronbach's Alpha was used for reliability test on 44 items in measuring six constructs. According to the rule of thumb, the Cronbach's Alpha which had exceeded 0.7 considered reliable and good.

	Number of	Cronbach's
Variables	Items	Alpha
Internal Environmental Management (IEM)	6	0.8610
Eco-Design (ED)	3	0.7091
Investment Recovery (IR)	3	0.8350
Green Purchasing (GP)	4	0.7052
Reverse Logistics (RL)	9	0.8990
Organizational Performance (OP)	19	0.9046

Table 4.6: Reliability Test

Source: Developed for the research

Table 4.06 showed OP had the highest reliability with Cronbach's Alpha value of 0.9046, followed by RL, IEM, IR, ED and GP with Cronbach's Alpha value of 0.8990, 0.8610, 0.8350, 0.7091 and 0.7052 respectively. In comparison, there was a moderate range of 0.1994 between the highest and the lowest Cronbach's Alpha value. Generally, all variables were considered reliable as the Cronbach's Alpha of each variable had exceeded 0.7.

4.4 Inferential Analysis

4.4.1 Pearson Correlation Coefficient Analysis

		IEM	ED	IR	GP	RL	OP
IEM	Pearson						
	Correlation						
	Sig.						
ED	Pearson	0.6946					
	Correlation	,					
	Sig.	<.0001					
IR	Pearson	0.6205	0.6100				
	Correlation	0.0205	0.0100				
	Sig.	<.0001	<.0001				
GP	Pearson	0.6614	0.5738	0.5594			
	Correlation	0.0014	0.5750	0.5574			
	Sig.	<.0001	<.0001	<.0001			

Table 4.7: Correlation Matrix for Organizational Performance (OP)

RL	Pearson Correlation	0.6586	0.5970	0.5734	0.6218		
	Sig.	<.0001	<.0001	<.0001	<.0001		
OP	Pearson Correlation	0.6055	0.5557	0.5475	0.5583	0.5789	
	Sig.	<.0001	<.0001	<.0001	<.0001	<.0001	

Source: Developed for the research

Note: IEM=Internal Environmental Management, ED=Eco-Design, IR=Investment Recovery, GP=Green Purchasing, RL=Reverse Logistics, OP=Organizational Performance

According to Toh, Marthandan, Yee, Ooi, and Arumugam (2009), correlation coefficient should not be more than 0.80 to avoid multicollinearity problem (Field, 2005). Since the highest correlation coefficient was 0.6946, which was less than 0.8, there was no multicollinearity problem in this study.

Based on the above table, all the associated pairs of variables were found to be statistically significance at the level of p<.0001. The analysis result implied that IEM (r=0.6055, p=<.0001), ED (r=0.5557, p=<.0001), IR (r=0.5475, p=<.0001), GP (r=0.5583, p=<.0001) and RL (r=0.5789, p=<.0001) were correlated to organizational performance. The correlation between IEM and ED is the strongest (r=0.6946, p=<.0001), followed by the relationship between IEM and GP (r=0.6614, p=<.0001).

In conclusion, this study supported all the hypothesized assumptions indicating there was a significant relationship between OP and IEM, ED, IR, GP and RL.

H1: There is a significant relationship between Internal EnvironmentalManagementandOrganizationalPerformance.H2: There is a significant relationship between Eco-Design andOrganizationalPerformance.H3: There is a significant relationship between Investment Recovery andOrganizational Performance.

H₄: There is a significant relationship between Green Purchasing and Organizational Performance.

H₅: There is a significant relationship between Reverse Logistics and Organizational Performance.

4.4.2 Multiple Linear Regressions (MLR)

		Adjusted	R
Model	R Square (R ²)	Square	
1	0.4684	0.4545	

Table 4.8: Model Summary

Source: Developed for the research

The coefficient of determination R^2 is 45.45%. Thus, the GSCM practices can significantly account for 45.45% in the organizational performance.

Table 4.9: Analysis of Variance

Source	Analysis of variance			
Source	F Value	Pr > F		
Model	33.83	<.0001		

Source: Developed for the research

The F-statistics produced (F value = 33.83) was significant at 1% level (Sig. F = <.0001), thus confirming the fitness for the model. Therefore, there was a statistically significant relationship between the GSCM practices and the organizational performance.

Parameter Estimates						
Variable	Paramet er Estimat	Pr > t	Tolerance	Variance Inflation		
Intercept	e 1.1298	<.0001		0.0000		
Intercept Internal Environmental Management (IEM)	0.1582	0.0240	0.3671	2.7238		
Eco-Design (ED)	0.0988	0.1241	0.4451	2.2467		
Investment Recovery (IR)	0.1069	0.0350	0.5159	1.9384		
Green Purchasing (GP)	0.1342	0.0486	0.4809	2.0794		
Reverse Logistics (RL)	0.1680	0.0126	0.4702	2.1268		

Table 4.10: Coefficients

Source: Developed for the research

Based on the Table 4.10, the least square prediction will be as below:- OP = 1.1298 + 0.1582 (IEM) + 0.0988 (ED) + 0.1069 (IR) + 0.1342 (GP)+ 0.1680 (RL)

In order to test for multicollinearity problem among variables, variance inflation factor (VIF) and tolerance were applied. The multicollinearity statistics showed that the tolerance indicator for IEM, ED, IR, GP and RL were greater than 0.1, and their VIF values were less than 10. The result

indicated that no multicollinearity problem had occurred (Ott & Longnecker, 2001).

The results showed that IEM (p=0.0240), IR (p=0.0350), GP (p=0.0486) and RL (p=0.0126) significantly affected the organizational performance of the firms. Based on Table 4.10, it indicated that the most important GSCM practices that affected the organizational performance were RL and IEM, followed by IR and GP. However, ED was found to be not significantly related to organizational performance.

4.5 Conclusion

This chapter summarized and interpreted the output of SAS data collected from the survey. The major results, findings and interpretations will be used in next chapter for discussion, implications and conclusion of the overall research. Recommendations for future research on the limitation would also be included in Chapter 5.

CHAPTER 5: DISCUSSION, CONCLUSION AND <u>IMPLICATION</u>

5.0 Introduction

In chapter 5, it provided a summary of statistical analyses that had been presented in previous chapter. Subsequently, major findings of study, implications and limitations were discussed. Recommendations for future researchers and conclusion were drawn at the end of this chapter.

5.1 Summary of Statistical Analysis

198 sets of questionnaires were analyzed for further study and summarized based on the statistical results in chapter 4. The analysis used included descriptive analysis, reliability test, normality test, Pearson Correlation Coefficient Analysis and Multiple Linear Regressions (MLR).

5.1.1 Descriptive Analysis

Based on the result, 104 of the respondents' age of firms were less than 10 years and 94 were more than 10 years. Majority of respondents' were from foods and beverage industry, which consists of 49 respondents, following by 47 electric industry, 38 computer and electric industry, 30 chemical, rubber and plastic industry, 23 machinery industry and 11 construction industry. Besides, 87 firms having equal or less than 50 employees, 80

firms having 51-200 employees and 31 firms having 201 or more employees. Furthermore, majority of the ownership of the firms were private, which comprised of 107 firms, following by 53 foreign direct investment or joint venture, 26 state-owned, and 12 other ownership. Moreover, 90 of the firms established GSCM practices for one year, 46 firms established it for 2 years, 34 firms established it for 3 years and 28 established it for more than 3 years. Most of the job position of the respondents was Manager/Head of Department, following by 34 General Manager/CEO/Director and 29 executive.

5.1.2 Scale Measurement

Skewness and kurtosis had values between -2.0 and +2.0, the result was normally distributed (Gujarati & Porter, 2009).

	Number of	Cronbach's
Variables	Items	Alpha
Internal Environmental Management (IEM)	6	0.8610
Eco-Design (ED)	3	0.7091
Investment Recovery (IR)	3	0.8350
Green Purchasing (GP)	4	0.7052
Reverse Logistics (RL)	9	0.8990
Organizational Performance (OP)	19	0.9046

Table 5.1: Reliability Test (n=198)

Source: Developed for the research

The above table showed OP had the highest reliability with Cronbach's Alpha value of 0.9046, following by RL, IEM, IR, ED and GP with

Cronbach's Alpha value of 0.8990, 0.8610, 0.8350, 0.7091 and 0.7052 respectively. Generally, all variables were deemed to be reliable as the Cronbach's Alpha of each variable had exceeded 0.70 (Nunnally, 1978).

5.1.3 Inferential Analysis

		IEM	ED	IR	GP	RL	OP
IEM	Pearson						
	Correlation						
	Sig.						
ED	Pearson	0.6946					
	Correlation	0.0940					
	Sig.	<.0001					
IR	Pearson	0.6205	0.6100				
	Correlation	0.0203	0.0100				
	Sig.	<.0001	<.0001				
GP	Pearson	0.6614	0.5738	0.5594			
	Correlation	0.0014	0.5750	0.5574			
	Sig.	<.0001	<.0001	<.0001			
RL	Pearson	0.6586	0.5970	0.5734	0.6218		
	Correlation	0.0500	0.5770	0.5754	0.0210		
	Sig.	<.0001	<.0001	<.0001	<.0001		
OP	Pearson	0.6055	0.5557	0.5475	0.5583	0.5789	
	Correlation	0.0055	0.3337	0.5475	0.5565	0.5769	
	Sig.	<.0001	<.0001	<.0001	<.0001	<.0001	

Table 5.2: Pearson Correlation Coefficient Analysis (n=198)

Source: Developed for the research

Table 5.02 showed that p-value of all the associated pairs of variables were <.0001, which indicated that all the IVs were moderately and positively correlated to Organizational Performance. Besides, all the correlation coefficients were below 0.80, which indicated that there was no multicollinearity problem. Therefore, all the hypotheses were supported.

	Parameter Estimate	$Pr > \left t \right $
Intercept	1.1298	<.0001
Internal Environmental Management (IEM)	0.1582	0.0240
Eco-Design (ED)	0.0988	0.1241
Investment Recovery (IR)	0.1069	0.0350
Green Purchasing (GP)	0.1342	0.0486
Reverse Logistics (RL)	0.1680	0.0126
\mathbb{R}^2		0.4684
Adjusted R ²		0.4545
F		33.83
Sig.		<.0001

Table 5.3: Multiple Linear Regression

The result showed that the IVs had significant relationship with Organizational Performance since the coefficient of IEM, IR, GP and RL were 0.0240, 0.0350, 0.0486 and 0.0126 respectively, except ED (p=0.1241) which had coefficient of less than 0.05, had no significant relationship with Organizational Performance.

The formula of MLR is as below:

$$OP = 1.1298 + 0.1582 \text{ (IEM)} + 0.0988 \text{ (ED)} + 0.1069 \text{ (IR)} + 0.1342 \text{ (GP)} + 0.1680 \text{ (RL)}$$

RL had the greatest influence on OP as it had the greatest predicting power (Parameter Estimate=0.1680). Overall, 45.45% of the variation of Organizational Performance can be explained by all the IVs.

5.2 Discussions of Major Findings

5.2.1 Internal Environment Management (IEM)

Based on the Multiple Linear Regression (MLR) results, IEM exhibited a significant relationship with organizational performance (p-value = 0.0240 which is <0.05). Hence, the hypothesis in this research was supported. There was a positive relationship between IEM and organizational performance

Our result was consistent with prior researchers that found out proactive environmental management can improve environmental performance, competitive advantage and economic performance (Lopez-Gamero, Molina-Azorin, & Claver-Cortes, 2011), and with the encouragement from superiors, a firm was more likely to pursue Proactive Environmental Strategy which in turn boast sales and profit growth (Menguc, Auh, & Ozanne, 2010). Besides, since environmental auditing program was part of IEM (Zhu et al., 2010), it was found that internal auditors in manufacturing sector had better environmental knowledge than those in

51 of Page 87

service sector to improve sustainable development of organization (Shih, Chen, & Chen, 2006).

It can be inferred that top management's commitment was important to help ensure the progress of implementation of GSCM. This was because based on the mean result, it can be seen that commitment from senior managers (IEM1: mean=3.5606) was more important than commitment from mid-level managers (IEM2: mean=3.4546). Besides, cross-functional cooperation for environmental improvements (IEM3: mean=3.4697) indicated that it was important to have communication across departments to encourage teamwork in an organization. Furthermore, total quality environment management (IEM4: mean=3.4950), environmental compliance and auditing programs (IEM5: mean=3.4849) and environmental management system exist (IEM6: mean=3.3434) suggested that good communication between environmental professionals that came with management support and managers was crucial for environmental management.

5.2.2 Eco-Design (ED)

The result of p-value for ED was 0.1241 based on the MLR results (p-value = 0.1241 which is >0.05). The hypothesis in this study was not supported. There was a negative relationship between ED and organizational performance.

Our result was contradicted with prior researchers that found out ED had direct influence on the firm's internal performance (Elthayeb, Zailani, & Ramayah, 2011). However, it was consistent with Zhu, Sarkis, & Laim

(2013), which stated that ED had no direct relationship with organizational performance. Based on this research, the finding showed that ED might affect organizational performance through GP and customer with corporation (CC), but CC had not been included in our research model.

It was surprising that ED was found to be not significant in improving organizational performance even though the mean value for each item tested for ED was on average of 3.46. It was possible that many tools for ED failed to improve organizational performance because they sought retrospective analysis based on existing products instead of focusing on design (Lofthouse, 2006). ED as a process must be incorporated into the design and management processes of organization (Pochat et al., 2007).

5.2.3 Investment Recovery (IR)

The MLR's result showed a positive relationship between IR and organizational performance with the p-value 0.0350, which was <0.05. In other words, H3 was supported and there was a significant relationship between IR and organizational performance.

Our result was in line with past studies of Rogers, Rogers, and Lembke (2010), which proved that IR could improve company's environmental and economic performance by recapturing value of unwanted items and reducing landfill costs. Besides, Jacobs and Subramanian (2012) also revealed that IR could improve total supply chain profit and reduce environmental impacts. Moreover, Zhu, Sarkis, and Lai (2008c) stated that IR had significant environmental and economic benefits to organizations.

The result showed that the mean value on Investment recovery (sale) or excess inventories/materials (IR1: mean=3.2980) is slightly higher than sale of scrap and used materials (IR2: mean=3.2929) and sale of excess capital equipment (IR3: mean=3.2172). This may be due to the sale of excess inventories or materials can help to improve company's profit as well as reducing negative environmental impacts. Most of the companies prefer to sell excess inventories or materials because all the unused inventories or materials will be wasted and if dispose them in an inappropriate way would create environmental risks, such as penalty from the regulators. Sale of scrap and used materials was also important to improve organizational performance as disposal of hazardous waste would result in contamination of soil and waters. However, sale of excess capital equipment had the least mean value because machinery can become obsolete easily as technology changed rapidly.

5.2.4 Green Purchasing (GP)

According to the Multiple Linear Regression (MLR) result, it showed that the p-value for GP was 0.0486 which was less than the value of 0.05. This indicated that the H4 was supported. In other words, there was a significant relationship between GP and firm's organizational performance.

Result showed there was a positive relationship between environmental purchasing and firm's financial performance, this was consistent with the past empirical study of Carter et al. (2000). Since supplier was playing important role in procurement process of GSCM, suppliers were required to understand the GP and environmental regulations in order to achieve successful environmental performance, and thus building competitive advantages (Salam, 2001). Furthermore, Rao and Holt (2005) emphasized

about greening the supply chain (including GP) had positive influences on competitiveness and economic performance.

Cooperation with suppliers for environmental objectives have higher mean value (GP1: mean=3.4192) compared to the other three element in GP, this showed that most manager believed supplier played an important roles in supply chain. As cited in Hu and Hsu (2009), supply selection was critical to purchasing management because misappropriate supplier may lead to a disrupted supply chain (Hsu & Hu, 2010). Next, Suppliers' ISO 14000 certification also indicated a relatively large mean value (GP3: mean=3.3838). In other words, managers would choose suppliers that are capable to meet with the environmental standards to prevent from exposing firm to issue of environmental sustainability. Furthermore, audit suppliers environmental for internal management (GP2: mean=32727) and Second-tier supplier environmental friendly practice evaluation (GP4: mean=3.3333) showed that organizations that collaborated with suppliers on solving environmental problems may benefit from improved communications, system integration and less pollution control cost.

5.2.5 Reverse Logistic (RL)

There was a significant relationship between IR and organizational performance (p-value = 0.0126, which is <0.05) based on the MLR result. Therefore, null hypothesis was rejected while the hypothesis was supported and there was a positive relationship between IR and manufacturing organizational performance.

The result was consistent with the past researchers which indicated that the reverse logistics program was positively correlated with program effectiveness which included service-oriented items and financial-oriented items (Daugherty, Autry, & Ellinger, 2001). Besides, with the implication of reverse logistics system it resulted in better customer loyalty and minimization of operational cost (Chan & Chan, 2008). Furthermore, transportation lag and supplier delay in processing returns had an important influence on viability of RL irrespective of return volumes which in turn affect the profitability of organizations (Tan & Kumar, 2006).

Based on the finding, manufacturing firms of the target respondents prefer to collect back the used packaging (RL2: mean=3.3434) and used products (RL1: mean=3.2525) from their customers than required the suppliers to collect back packaging materials (RL3: mean=3.2424) because it was more difficult to request suppliers to collaborate with us to collect back packaging materials when the suppliers did not adopt GSCM in their organizations. Besides, manufacturing firms encouraged their customers for safe refill (RL6: mean=3.2778) because if returning the used products (RL4: mean=3.2576) or packaging (RL5: mean=3.2626) to the suppliers to recycle, retain of materials and remanufacture, the process will be more complicated and it may incur more costs. Besides, positively launching recycle system (RL7: mean=3.4343), setting internal material recycling system (RL9: mean=3.4596) and implementing recycle system and increasing profit (RL8: mean=3.4748) because it may create profitable business opportunities through recapturing otherwise lost value.

5.3 Implication

Recently, environmental issues became a major global issue. Organizations should take proactive steps through green supply chain to make sustainable development a reality (Eltayeb & Zailani, 2009). Hence, by using the derived results in analysis, the firm may focus on GSCM practices that have positive influence on organizational performance.

5.3.1 Theoretical Implications

This study provided several implications for scholars. First of all, this research was an extended model of past researchers (Hazen, Cegielski & Hanna, 2011). This research had incorporated RL and IEM, which was an essential part of green supply chain that yet to receive research attention in most of the past studies. Chinese manufacturer were at the initial stage of adoption of GSCM practices, however they put less concern on IR because of their waste management policy and insufficiency of recycling systems (Zhu & Sarkis, 2004).

Besides, it can be a useful source for foreign researchers that plan to conduct research on GSCM practices in Asian countries because this research is focused in Malaysia, thus it can assist them for multi-country comparison type of research.

5.3.2 Managerial Implications

Since RL was the most significant attributes among all IVs, manufacturing firms should start implementing recovery programs into the organization operation. It involved activities such as reformation, remanufacturing, recycling and reuse.

In addition, the result showed that IEM had positive influence on organizational performance. Commitment from top management was essential in carrying out the GSCM practices (Hu & Hsu, 2010). Thus, management can organize and conduct workshop and seminars in the field of GSCM to improve the skills and knowledge of employees.

Besides, the findings also reflected the importance of GP in improving organizational performance. As cited in Walton, Handfield and Melnyk (1998), purchasing managers were important in influencing supplier process (Hu & Hsu, 2010). Moreover, past studies of Hu and Hsu (2010) proposed that suppliers played a significant role in environmental performance and sustainability of a company. So, it was important to establish good relationship with organization's suppliers.

Furthermore, the positive relationship between IR suggested that sales of scrap and used materials had higher implementation levels. For instance, organization can gain revenue by selling excess assets. Besides, Zhu et al. (2008c) stated that more than 70% of every sales dollar generated by IR can be organization's profit.

However, ED was found to be insufficient to have positive influence on organizational performance. Even though ED had no direct relationship with economic performance but did played important role in emerging GSCM practice (Zhu, Sarkis & Lai, 2013). Hence, manufacturing firms
should conduct a series of training to increase their employees' knowledge on eco-design practices and management.

5.4 Limitations and Recommendations for future research

The main limitation in this research was the focus on small sample of organizations in Malaysia. The focus on ISO14001 certified manufacturing firm in Malaysia excluded those organizations without formal environmental management certification but may have well developed environmental programs. Hence, the findings cannot be generalized to all organizations in Malaysia. As cited in (Zhu et al., 2007a, b), large sample size assist comparison of the result between sectors (Eltayeb et al., 2010). Thus, future research should include a larger sample and this would allow detailed cross-sectorial comparisons too.

Another limitation was that this study was conducted in Malaysia and the consistency of the results with foreign countries had to be verified in future research. Thus, future research can focus on carrying out a multi-country comparison to test the relationship between GSCM practices and organizational performance as well as the influence of moderating factors such as countries' culture (Hu & Hsu, 2010; Rao & Holt, 2005).

Besides, the mail questionnaires method that used in the data collection may be bias due to variety factors such as questionnaires may pass to different target respondents and they had limited understandings about GSCM. It would therefore be useful to include interviews, site visits and documents research to increase the research validity (Lee, 2009). Furthermore, this study was a cross-sectional study, which measured the intention at a single point in times, future study can adopt a longer term of longitudinal study to promote a better understanding of sustainability trends (Wu, Dunn, & Forman, 2012).

5.5 Conclusion

Along with the rapid economic growth and business expansion, many countries were facing serious problem of deterioration of natural resources. Due to this, GSCM became increasingly important to implant into organization to change their operation models in all dimension. This paper explored the current status and relationship of GSCM practices and OP of ISO 14001 certified manufacturing firms in Malaysia.

Among the 5 antecedents sorted in this study, the empirical results showed that RL (p=0.0126) have a significant relationship with OP. Besides, IEM proved to have some significant relationship with OP (Salam, 2011; Rao & Holt, 2005; Carter et al., 2000; Zhu et al., 2008b; Jacobs & Subramanian, 2012; Rogers et al., 2010). On the other hand, the empirical results showed that ED (p=0.1241) had no direct relationship on organizational performance. However, ED was still encouraged to be included as part of GSCM. The initial stage on ED adoption may require high start-up investment which may lead to negative economic performance, but long term benefits are seen to be optimistic (Zhu et al., 2013).

Overall, this research was one of the few researchers to study GSCM practices in Malaysia. Hence, future researchers should put more attention in doing such research in developing countries such as Malaysia in order to provide more useful insight from both a practical and research perspective. And still, GSCM had plentiful space to be investigated in terms of research and practice.

REFERENCES

- Allenby, B. (1991). Design for environment: A tool whose time has come. SSA *Journal*, 6-9.
- Anema, M. G. & Brown, B. E. (1995). Increasing survey responses using the total design method. *Journal of Continuing Education in Nursing*, 26(3), 109-114.
- Anna, D., Kajsa, H., Ann-Charlott, P. (2004). Supply chains and interdependence: A theoretical analysis. *Journal of Purchasing & Supply Management*, 10, 3-9.
- Arzu, A. G., & Erman, E. T. (2010). Supply chain performance measurement: A literature review. *International Journal of Production Research*, 48(17), 5137-5155.
- Beebe, L. H. (2007). What can we learn from pilot studies? *Perspectives in Psychiatric Care*, 43(4), 213-218.
- Bhagwat, R., & Sharma, M. K. (2007). Performance measurement of supply chain management: A balanced scorecard approach. *Computers & Industrial Engineering*, 53, 43-62.
- Bowen, F. E., Cousins, P. D., Lamming, R. C., & Faruk, A. C. (2001). Horse for courses: Explaining the gap between the theory and practice of green supply. *Greener Management International*, 9(3), 41-60.

Brown, L., Kane, H., & Roodman, D. (1994). Vital signs. New York: Norton.

Carter, C. R., Ellram, L. M., & Ready, K. J. (1998). Environmental purchasing: Benchmarking our German counterparts. *International Journal of Purchasing and Materials Management*, 34(4), 28-38.

- Carter, C. R., Kale, R., & Grimm, C. M. (2000). Environmental purchasing and firm performance: An empirical investigation. *Transportation Research Part E*, *36*, 219-228.
- Chan, F. T., & Chan, H. K. (2008). A survey on reverse logistics system of mobile phone industry in Hong Kong. *Management Decision*, 46(5), 702-708.
- Curkovic, S., & Sroufe, R. (2011). Using ISO 14001 to promote a sustainable supply chain strategy. *Business Strategy & the Environment*, 20(2), 71-93.
- Darnall, N., Jolley, G. J., & Handfield, R. (2006). Environmental management systems and green supply chain management: Complements for sustainability? *Business Strategy and the Environment*, 17(1), 30-45.
- Daugherty, P. J., Autry, C. W., & Ellinger, A. E. (2001). Reverse Logistics: The Relationship Between Resource Commitment and Program Performance. *Journal of Business Logsitics, 122*(1), 107-123.
- De Leeuw, E. D., & Hox, J. J. (1988). The effects of responde-stimulating factors in response rates and data quality in mail surveys: A test of Dillman's total design method. *Journal of Official Statistics*, 4(3), 241-249.
- Drezner, Z., Turel, O., & Zerom, D. (2010). A modified kolmogorov–smirnov test for normality. *Communications in Statistics-Simulation and Computation*, *39*, 693-704.
- Eltayeb, T. K., & Zailani, S. (2009). Going green through green supply chain initiatives towards environmental sustainability. *Operations and Supply Chain Management*, 2(2), 93-110.
- Eltayeb, T. K., Zailaini, S., & Jayaraman, K. (2010). The examination on the drivers for green purchasing adoption among EMS 14001 certified companies in Malaysia. *Journal of Manufacturing Technology Management*, 21(2), 206-225.

- Eltayeb, T. K., Zailani, S., & Ramayah, T. (2011). Green supply chain initiatives among certified companies in Malaysia and environmental sustainability: Investigating the outcomes. *Resources, Conservation and Recycling, 55*, 495-506.
- Emmett, S., & Sood, V. (2010). *Green supply chain: An action manifesto*. USA: John Wiley & Sons, Inc.
- Field, A. (2005). *Discovering statistics using SPSS* (2nd ed.). London: Sage.
- Fiksel, J. (1993). Design for environment: The new quality imperative. *Corporate Environmental Strategy*, *1*, 49-55.
- FMM (2009). *Directory of Malaysian Industries* (40th ed.). Kuala Lumpur: Federation of Malaysian Manufacturers.
- Green Jr, K. W., Zelbst, P. J., Meacham, J., & Bhadauria, V. S. (2012). Green supply chain management practices: Impact on performance. *Supply Chain Management: An International Journal*, *17*(3), 290-305.
- Gujarati, D. N., & Porter, D. C. (2009). *Basic econometrics* (5th ed.). New York: McGraw Hill.
- Hanna, M. D., Newman, W. R., & Johnson, P. (2000). Linking operational and environmental improvement through employee involvement. *International Journal of Operations and Production Management*, 20(2), 148-165.
- Hart, S. L. (1995). A natural-resource-based view of the firm. Academic of Management Review 20(4), 986-1014.
- Hart. S., & Ahuja, 1994. *Does if pay to be green? An empirical examination of the relationship between pollution prevention and firm performance.* Working paper. University of Michigan, Ann Arbor.

- Hazen, B. T., & Cegielski, C., & Hanna, J. B. (2011). Diffusion of green supply chain management: Examining perceived quality of green reverse logistics. *The International Journal of Logistics Management*, 22(3), 373 389.
- Hernandez, J. E., Poler, R., Mula, J., & Lario, F. C. (2010). The reverse logistic process of an automobile supply chain network supported by a collaborative decision-making model, *Group Decis Negot*, 20, 79-114.
- Hervani, A. A., Helms, M. M., & Sarkis, J. (2005). Performance measurement for green supply chain management. *Benchmarking: An International Journal*, 12(4), 330-353.
- Hinkin, T. R. (1995). A review of scale development practices in the study of organizations. *Journal of Management*, 21(5), 967-988.
- Hitchens, D.M.W.N., Trainor, M., Clausen, J., Thankappan, S., & Marchi, B. (2003). Small and medium sized companies in Europe: Environmental performance, competitiveness and management. *International EU Case Studies*.
- Ho, L. W. P., Dickinson, N. M., & Chan, G. Y. S. (2010). Green procurement in the Asian public sector and the Hong Kong private sector. *Natural Resources Forum*, 34, 24-38.
- Hu, A. H., & Hsu, C. W. (2010). Critical factors for implementing green supply chain management practice: An empirical study of electrical and electronics industries in Taiwan. *Management Research Review*, 33(6), 586-608.
- Hsu, C. W., & Hu, A. H. (2009). Applying hazardous substance management to supplier selection using analytic network process. *Journal of Cleaner Production*, 17(2), 255-64.
- Jacobs, B. W., & Subramanian R. (2012). Sharing responsibility for product recovery across the supply chain. Production and Operations Management, 21(1), 85-110.

- Janes, J. (1999). Descriptive statistics: where they sit and how they fall. *Library Hi Tech*, *17*(4), 402 409.
- Jansen, I. L. A., & Vergragt, Ph. I. (1992). *Sustainable development: A challenge to technology*. The Hague: Dutch Ministry of Housing, Physical Planning, and the Environment.
- Kumar, R., & Chandrakar, R. (2012). Overview of green supply chain management: Operation and environmental impact at different stages of the supply chain. *International Journal of Engineering and Advanced Technology*, 1(3), 2249-8958.
- Lee, K. H. (2009). Why and how to adopt green management into business organizations? The case study of Korean SMEs in manufacturing industry. *Management Decision*, 47(7), 1101-1121.
- Lee, S. Y. (2008). Drivers for the participation of small and medium-sized suppliers in green supply chain initiatives. *Supply Chain Management: An International Journal*, 13(3), 185 198.
- Lee, S.Y., & Klassen, R. D. (2008). Drivers and enablers that foster environmental management capabilities in small and medium-sized suppliers in supply chains. *Production and Operations Management*, 17(6), 573-586.
- Li, Y. (2011). Research on the Performance Measurement of Green Supply Chain Management in China. *Journal of Sustainable Development*, 4(3), 101-107.
- Lin, R. (2011). Moderating effects of total quality environmental management on environmental performance. *African Journal of Business Management*, 5(20), 8088-8099.
- Lofthouse, V. (2006). Ecodesign tools for designers: defining the requirements. *Journal of Cleaner Production*, 14(15-16), 1386-1395.

- Lopez-Gamero, M. D., Molina-Azorin, J.F., & Claver-Cortes, E. (2011). The relationship between managers' environmental perceptions, environmental management and firm performance in Spanish hotels: A whole framework. *International Journal of Tourism Research*, *13*, 141-163.
- Lyons, D., Rice, M., & Wachal, R. (2009). Circuits of scrap: closed loop industrial ecosystems and the geography of US international recyclable material flows 1995-2005. *The Geographical Journal*, *175*(4), 286-300.
- Malhotra, M., & Grover, V. (1998). An assessment of survey research in POM: From constructs to theory. *Journal of Operations Management*, 16(4), 407-425.
- Markley, M. J., & Davis, L. (2007). Exploring future competitive advantage through sustainable supply chains. *International Journal of Physical Distribution & Logistics Management 37*(9), 763-774.
- Meadows, D., Meadows, D., & Randers, J. (1992). *Beyond the limits*. Post Mills, VT: Chelsea Green Publishing.
- Melnyk, S. A., Lummus, R. R., Vokurka, R. J., Burns, L. J., & Sandor, J. (2008). Mapping the future of supply chain management: A delphi study. *International Journal of Production Research*, 47(16), 4629-4653.
- Menguc, B., Auh, S., & Ozanne, L. (2010). The interactive effect of internal and external factors on a proactive environmental strategy and its influence on a firm's performance. *Journal of Business Ethics*, *94*, 279-298.
- Menguc, B., & Ozanne, L. K. (2005). Challenges of the "green imperative": a natural resource-based approach to the environmental orientation–business performance relationship. *Journal of Business Research* 58, 430-438.
- Menzel, V., Smagin, J., & David, F. (2010). Can companies profit from greener Manufacturing? *Measuring Business Excellence*, 14(2), 22-31.

- Min, H., & Galle, W. P. (2001). Green purchasing practices of US firms. International Journal of Operations & Production Management, 21(9), 1222-1238.
- Min, H., & Kim, I. (2012). Green supply chain research: Past, present, and future. *Logistics Research*, *4*, 39-47.
- Murphy, P. R., & Poist, R. F. (2003). Green perspectives and practices: A "comparative logistics" study. *Supply Chain Management: An International Journal*, 8(2), 122-131.
- Nawrocka, D., Brorson, T., & Lindhqvist, T. (2009). ISO 14001 in environmental supply chain practices. *Journal of Cleaner Production*, 17, 1435-1443.
- Nunally, J. C. (1978). Psychometric theory. New York: McGraw Hill.
- Ott, R. L., & Longnecker, M. (2001). An introduction to statistical methods and data analysis. Boston: Thomson Learning, Inc.
- Paul, S. R., Zhang, X. (2010). Testing for normality in linear regression models. Journal of Statistical Computation and Simulation, 80(10), 1101-1113.
- Pochat, S., Bertoluci, G., & Froelich, D. (2007). Integrating ecodesign by conducting changes in SMES. *Journal of Cleaner Production*, 15(7), 671 680.
- Rao, P., & Holt, D. (2005). Do green supply chains lead to competitiveness and economic performance? *International Journal of Operations & Production Management*, 25(9), 898-916.
- Rogers, D. S., & Tibben-Lembke, R. S. (2001). An Examination of Reverse Logistics Practices. *Journal of Business Logistics*, 22(2), 129–48.

- Rogers, D. S., Rogers, Z. S., & Lembke, R. (2010). Creating value through product stewardship and take-back. *Journal of Management and Policy*, *1*(2), 133-160.
- Ruiz-Tagle, M. T. (2008). Patterns of environmental management in the Chilean manufacturing industry: An empirical approach. *Management of Environmental Quality: An International Journal*, 19(2), 154-178.
- Russo, M. V., & Fouts, P. A. (1997). A resource based perspective on corporate environmental performance and profitability. *Academy of Management Journal*, 40(3), 534-559.
- Salam, M. A. (2011). Creating sustainable supply chain through green procurement. *International Journal of Business Insights & Transformation*, 3(3), 84-89.
- Sara, P., Marta, Z., Enrico, C., Guido, J. L. M. (2012), Green supply chain practices and company performance: the case of 3PLs in Italy. *International Journal of Physical Distribution & Logistics Management*, 42(7), 640-672
- Sarkis, J. (2003). A strategic decision framework for green supply chain Management. *Journal of Cleaner Production*. 11(4), 397-409.
- Saunders, M., Lewis, P., & Thornhill, A. (2009). *Research methods for business students* (5th ed.). Harlow, UK: Pearson Education.
- Scarisbrick-Hauser, A. (2007). Data analysis and profiling. *Direct Marketing: An International Journal*, 1(2), 114 – 116.
- Sekaran, U. (2003). Research Methods for Business: A Skill Building Approach (4th ed.). New York: John Wiley & Sons, Inc.

- Shi, V. G., Koh, S. C. L., Baldwin, J., & Cucchiella, F. (2012). Natural resource based green supply chain management. Supply Chain Management: An International Journal, 17(1), 54-67.
- Shih, K. H., Chen, H. J., & Chen, J. C. H. (2006). Assessment of sustainable development and knowledge of environmental management: Internal auditors' perspectives. *Industrial Management and Data Systems*, 106(6), 896–909.
- Smart, B. (1992). *Beyond compliance: A new industry view of the environment*. Washington, DC: World Resources Institute.
- Srivastava, S. K. (2007). Green supply-chain management: A state-of-the-art literature review. *International Journal of Management Reviews*, 9 (1), 53-80.
- Sroufe, R. (2006). A framework for strategic environmental sourcing. *Greening The Supply Chain*, 3 23.
- Strikker. A. (1992). Sustainability and business management. *Business Strategy* and the Environment, 3, 1-8.
- Szwilski, T. B. (2000). Using environmental management systems to systematically improve operational performance and environmental protection. *International Journal of Surface Mining, Reclamation and Environment*, 14(3), 183-191.
- Tan, A. W., & Kumar, A. (2006). A decision-making model for reverse logistics in the computer Industry. *The International Journal of Logistics Management*, 17 (3), 331 – 354.
- Tan, J., & Zailani, S. (2010). Green value chain in the context of sustainability development and sustainable competitive advantage: A conceptual framework. *International Journal of Business Insights & Transformation*, 3(1), 40-50.

- Thabene, L., Ma, J., Chu, R., Cheng, J., Ismaila, A., Rios, L. P., Robson, R., Thabene, M., Giangregorio, L., & Goldsmith, C. H. (2010). A tutorial on pilot studies: the what, why and how. *BMC Medical Research Methodology*, 10(1), 1-11.
- Tibben-Lembke, R. S. (2002). Life after death: Reverse logistics and the product life cycle. *International Journal of Physical Distribution & Logistics Management*, 32(3), 223-244.
- Toh, T. W., Marthandan, G., Yee, A. L. C, Ooi, K. B., & Arumugam, S. (2009). What drives Malaysian m-commerce adoption? an empirical analysis. *Industrial Management & Data Systems*, 109(3), 370-388
- Tooru, S. (2001). Certification and operational performance of ISO14001. *Kamipa Gikyoshi*, 55(1), 52-58.
- Vachon, S., & Klassen, R. D. (2006). Extending green practices across the supply chain. *International Journal of Operations & Production Management*, 26(7), 795-821.
- Van Hoek, R. I. (1999). From reversed logistics to green supply chains. *Supply Chain Management: An International Journal*, 4(3), 129-135.
- Walton, S. V., Handfield, R. B., & Melnyk, S. A. (1998). The green supply chain: integrating suppliers into environmental management processes. *International Journal of Purchasing and Materials Management*, 34(2), 2-11.
- Welford, R. (1995). *Environmental strategy and sustainable development*. London: Routledge.
- Wu, J., Dunn, S., & Forman, H. (2012). A study on green supply chain management practices among large global corporations. *Journal of Supply Chain and Operations Management*, 10(1), 182-194.

- Yale Center for Environmental Law & Policy 2012. Retrieved 3 July, 2012, from http://www.epi.yale.edu/dataexplorer/countryprofiles.
- Yung, W. K. C., Chan, H. K., So, J. H. T., Wong, D. W. C., Choi, A. C. K., & Yue, T. M. (2011). A life-cycle assessment for eco-redesign of a consumer electronic product. *Journal of Engineering Design*, 22(2), 69-85.
- Zhu, Q., Geng, Y., Fujita, T., & Hashimoto, S. (2010). Green supply chain management in leading manufacturers: case studies in Japanese large companies. *Management Research Review*, 33(4), 380-392.
- Zhu, Q., & Sarkis, J. (2004). Relationships between operational practices and performance among early adopters of green supply chain management practices in Chinese manufacturing enterprises. *Journal of Operations Management*, 22(3), 265-289.
- Zhu, Q., Sarkis, J., Cordeiro, J. J., & Lai, K. H. (2008a). Firm-level correlates of emergent green supply chain management practices in the Chinese context. *Omega 36*, 577-591.
- Zhu, Q., Sarkis, J., & Geng, Y. (2005). Green supply chain management in China: pressures, practices and performance. *International Journal of Operations* and Production Management, 25(5), 449-468.
- Zhu, Q., Sarkis, J., & Lai, K. (2008b). Confirmation of a measurement model for green supply chain management practices implementation. *International Journal of Production Economics*, 111(2), 261-273.
- Zhu, Q., Sarkis, J., & Lai, K. (2008c). Green supply chain management implications for "closing the loop". *Transportation Research Part E, 44*, 1-18.

Appendix A

Summary of Past Empirical Studies on Green Supply Chain Management Practices and Organizational Performance

Study	Country	Data	Major Findings
Lopez- Gamero, Molina- Azorin, & Claver- Cortes, 2011	Swedish	Mail survey of environment manager of three-to-five star Spanish individual hotels	is positively related to the improved environmental performance, competitive advantage and financial
Menguc, Auh, & Ozanne, 2010	New Zealand	Mail survey of 325 of manufacturing firms operating in variety of industries	Entrepreneurial orientation (i.e., innovativeness, proactive, risk- taking) has a positive influence on a Proactive Environment Strategy
Shih, Chen, & Chen, 2006	Taiwan	Mail survey of 240 companies in the higher- polluting manufacturing industry and 120 companies in the lower- pollution service industry	

Eltayeb, Zailani, & Ramayah, 2011	Malaysia	Mail survey to 551 EMS ISO 14001 certified manufacturing firm in Malaysia and 132 completed questionnaires were received.	GSCM practices have direct influence on the firm's performance outcome in which the influence of eco-design has a direct link to the firm's internal
Zhu, Geng, Fujita, & Hashimoto, 2010	Japan	12 large Japanese manufacturers were contacted and 9 agreed to be involved in the research.	performance.GSCMparctices(includingeco-design)have significant effect tothe environmental andfinancialperformanceimprovementof
Zhu, Sarkis, Cordeiro, & Lai, 2008	China	Mailing and follow-up phone calls to 1000 randomly selected manufacturers of Dalian and 314 responded to the survey.	manufacturing firms. The adoption of GSCM practices, including eco- design, has significant effect on the environmental, economic and organizational performance of a firm.
Rogers, Rogers, & Lembke, 2010	USA	Dephitechnique,industrytradepublicationsUSDepartmentofCommerce data in NorthAmericanIndustryClassificationSystem(NAICS)codesreports, news articles.	It is proved that secondary market could improve company's environmental and economic performance by recapturing value of unwanted items and reduce landfill costs.
Jacobs & Subramanian, 2012	USA	Two-echelon model that consist a supplier and a manufacturer to determine the impacts in integrated and decentralized supply chains.	IR could improve total supply chain profit and reduce environmental impacts.

Zhu,	China	Pilot test,	IR has significant
Sarkis, &	China	convenience surveys	environmental and economic
Lai, 2008c		and a random survey	
20000		of 314 surveys were	
		collected from the	in China.
		respondents in	
		power generating,	
		chemical/petroleum,	
		electrical/electronic	
		and automobile	
		industries.	
Salam,	Thailand	Primary data: 150	Product performance,
2011	Thunund	questionnaire are	purchase price,
2011		randomly sent to the	organizational environmental
		certified ISO 14001	commitment and trading
		targeted companies	partners have a positive
		listed in Benchmarks	relationship with the
		Electronics	adoption of green
		(Thailand) supplier	procurement for GSCM.
		and customer	
		directory. Secondary	
		data was derived	
		from existing	
		research, journals,	
		case studies, and	
		articles on the	
		internet.	
Rao &	Philippines	Survey questionnaire	Greening the supply chain
Holt, 2005	, United	of comprising 64	was significant to
11010, 2000	Arab	items to ISO 14001	competitiveness and
	Emirates	certified companies	economic performance.
	Limates	in South East Asia	economic performance.
		such as Philippines,	
		Indonesia, Malaysia,	
		Thailand and	
		Singapore.	
Carter,	United	Survey is sent to	Result showed there is a
Kale, &	States	1083 managers from	positive relationship between
Grimm,	Suites	consumer product	environmental purchasing
2000		manufacturing	and firm performance
2000		industries.	und min performance
		industries.	

Daugherty,	United	212 questionnaires	RL program has both direct
Autry, &	State	being sent out to the	benefits (effective utilization
Ellinger,		retailers of selling	of inventory) and indirect
2001		electronics products	benefits (better corporate
		by using self	image and improved level of
		administered mail	customer satisfaction) to the
		survey	firm.
Chan &	Hong Kong	The particular	Proper implementation of
Chan, 2008		survey was done by	reverse logistics system can
		mailed to 100	result in better customer
		mobile phone	loyalty and lower operational
		companies and also	cost.
		follow-up interview	
		34 managers in the	
		mobile phone	
		industry	
Tan &	Singapore	Used data collected	Transportation delay and
Kumar,		from a computer	supplier delay in
2006		company	processing returns have a
		manufacturer	significant impact on the
		handling returns	viability of reverse logistics
		with volumes	regardless of return
		transacted over a	volumes which in turn affect
		period of two years	the profitability of company.

Variable	Item	Description	References	Measurement
Internal Environmental Management	IEM1	Commitment of GSCM from senior managers	Zhu and Sarkis (2004)	5-points Likert Scale (Interval)
	IEM2	Support for GSCM from mid-level managers		
	IEM3	Cross-functional cooperation for environmental improvements		
	IEM4	Total quality environment management		
	IEM5	Environmental compliance and auditing programs		
	IEM6	Environmental management system exist		
Eco-Design	ED1	Design of products for reduced consumption of material/energy	Zhu and Sarkis (2004)	5-points Likert Scale (Interval)
	ED2	Design of products for reuse, recycle, recovery of material, component parts		
	ED3	Design of products to avoid or reduce use of hazardous of products and/or their manufacturing process.		
Investment Recovery	IR1	Investment recovery (sale) or excess inventories/materials	Zhu and Sarkis (2004)	5-points Likert Scale (Interval)
	IR2	Sale of scrap and used materials		
	IR3	Sale of excess capital equipment		
Green Purchasing	GP1	Cooperation with suppliers for environmental objectives	Zhu and Sarkis (2004)	5-points Likert Scale (Interval)
	GP2	Environmental audit for suppliers internal management		
	GP3	Suppliers' ISO 14000 certification		
	GP4	Second-tier supplier environmental friendly practice evaluation		
Reverse Logistics	RL1	Collects back used products from customers for recycling, reclamation of materials, or reuse	Carter and Ellram (1998)	5-points Likert Scale (Interval)
	RL2	Collects back used packaging from customers for reuse or recycling	Rogers and Tibben- Lembke (2001)	
	RL3	Requires suppliers to collect back their packaging materials	Carter and Ellram (1998)	
	RL4	Returns back its products to suppliers for recycling, retaining of materials, or remanufacturing	Rogers and Tibben- Lembke (2001	

Appendix B:	Operationalization	of model	variables
-------------	--------------------	----------	-----------

	RL5	Returns back its packaging to	Rogers and Tibben-	
	KLJ	suppliers for reuse or recycling	Lembke (2001	
	RL6	Returns back the products from customers for safe refill	Carter and Ellram (1998)	
	RL7	Positively launching recycle system	Lin (2011)	
	RL8	Setting internal material recycling system		
	RL9	Implementing recycle system and increasing profit		
Environmental	EP1	Environmental for air emission	Zhu and Sarkis (2004)	5-points Likert Scale (Interval)
	EP2	Reduction of solid wastes		
	EP3	Reduction of waste water		
	EP4	Decrease of consumption for hazardous/harmful/toxic materials		
	EP5	Decrease of frequency for environmental accidents.		
	EP6	Improve an enterprise's environmental accidents		
Positive Economic	PE1	Decrease of cost for materials purchasing	Zhu and Sarkis (2004)	5-points Likert Scale (Interval)
	PE2	Decrease of cost for energy consumption		
	PE3	Decrease of fee for waste treatment		
	PE4	Decrease of fee for waste discharge		
	PE5	Decrease of fine for environmental accidents		
Negative Economic	NE1	Increase of investment	Zhu and Sarkis (2004)	5-points Likert Scale (Interval)
	NE2	Increase of operational cost		
	NE3	Increase of training cost		
	NE4	Increase of cost of purchasing		
Competitiveness	CP1	Increased efficiency	Rao and Holt (2005)	5-points Likert Scale (Interval)
	CP2	Quality improvement]	
	CP3	Productivity improvement]	
	CP4	Cost saving		

Source:

- Carter, C. R., & Ellrain, L. M. (1998). Reverse logistics: a review of the literature and framework for future investigation. *Journal of Business Logistics*, 19(1), 85-102.
- Lin, R. (2011). Moderating effects of total quality environmental management on environmental performance. *African Journal of Business Management*, 5(20), 8088-8099.
- Rao, P., & Holt, D. (2005). Do green supply chains lead to competitiveness and economic performance? *International Journal of Operations & Production Management*, 25(9), 898-916.
- Rogers, D. S., & Tibben-Lembke, R. S. (2001). An Examination of Reverse Logistics Practices. *Journal of Business Logistics*, 22(2), 129–48.
- Zhu, Q., & Sarkis, J. (2004). Relationships between operational practices and performance among early adopters of green supply chain management practices in Chinese manufacturing enterprises. *Journal of Operations Management*, 22(3), 265-289.

Appendix C: Survey Questionnaires

The Relationship between Green Supply Chain Management Practices and Organizational Performance in Malaysia

Survey Questionnaire

The purpose of this survey is pertaining to your organization's Green Supply Chain Management (**GSCM**) adoption. Please answer all questions to the best of your knowledge. There are no wrong responses to any of these statements. All responses are completely confidential.

We seek respondents who have some knowledge in GSCM, not necessary must be working in the area of GSCM.

Thank you for your participation.

Instructions:

- 1) There are **THREE** (3) sections in this questionnaire. Please answer ALL questions in ALL sections.
- 2) This will only take you approximately 20 to 30 minutes.
- 3) Please feel free to share your comment in the space provided. The contents of this questionnaire will be kept **strictly confidential**.

Section A: Company's Profile

In this section, we are interested in your background in brief. Please tick your answer and your answers will be kept strictly confidential.

QA1: Age of the firm:	\leq 10 Years Old
	> 10 Years Old

QA2: What is your company's main activity?

Food product and beverages

- Computer and electric products and components
- Electric products (e.g. electric machines, fridges, and other electronic products
- Chemical, rubber and plastic products
- □ Machinery
- Construction
- Service
- Other, please specify _____

QA3: Number of employees in your organization:

 $\Box \leq 50$

51-200

 \Box 201 or above

QA4: Ownership:

State-owned Foreign direct investment or joint v
--

QA5: How long has your organization established Green Supply Chain Management?

Considering it currently	It has been 1 year
It has been 2 years	3 Years

L It has been more than 3 years

QA6: Your job position:

- **Executive**
- ☐ Manager/Head of Department
- General Manager/CEO/Director
- Other (please specify):

Section B: Green Supply Chain Management Practices (GSCM)

This section is seeking your opinion regarding the Green Supply Chain Management (GSCM) practices in your company. Please indicate [(1) = notconsidering it; (2) = planning to consider it; (3) = considering it; (4) = initiating implementation and (5) = implementing successfully] by circling the number corresponding to the statements.

No	Questions	Not considering it	Planning to consider it	Considering it	Initiating implementation	Implementing Successfully
B 1	Internal Environmental Management					
IEM1	Commitment of GSCM from senior managers	1	2	3	4	5
IEM2	Support for GSCM from mid-level managers	1	2	3	4	5
IEM3	Cross-functional cooperation for environmental improvements	1	2	3	4	5
IEM4	Total quality environment management	1	2	3	4	5
IEM5	Environmental compliance and auditing programs	1	2	3	4	5
IEM6	Environmental management system exist	1	2	3	4	5

No	Questions	Not considering it	Planning to consider it	Considering it	Initiating implementatio	Implementing Successfully
B2	Eco-Design					
ED1	Design of products for reduced consumption of material/energy	1	2	3	4	5
ED2	Design of products for reuse, recycle, recovery of material, component parts	1	2	3	4	5
ED3	Design of products to avoid or reduce use of hazardous of products and/or their manufacturing process.	1	2	3	4	5
No	Questions	Not considering it	Planning to consider it	Considering it	Initiating implementation	Implementing Successfully
B 3	Investment Recovery					
IR1	Investment recovery (sale) or excess inventories/materials	1	2	3	4	5
IR2	Sale of scrap and used materials	1	2	3	4	5
IR3	Sale of excess capital equipment	1	2	3	4	5
No	Questions	Not considering it	Planning to consider it	Considering it	Initiating implementation	Implementing Successfully
B4	Green Purchasing					

r	1		1	r		
GP1	Cooperation with suppliers for	1	2	3	4	5
	environmental objectives					
GP2	Environmental audit for suppliers	1	2	3	4	5
	internal management					
GP3	Suppliers' ISO 14000 certification	1	2	3	4	5
GP4	Second-tier supplier environmental	1	2	3	4	5
	friendly practice evaluation					
B5	Reverse logistics					
DI 1		1	2	2	4	Ē
RL1	Collects back used products from	1	2	3	4	5
	customers for recycling, reclamation of					
	materials, or reuse					
RL2	Collects back used packaging from	1	2	3	4	5
	customers for reuse or recycling					
RL3	Requires suppliers to collect back their	1	2	3	4	5
	packaging materials					
RL4	Returns back its products to suppliers for	1	2	3	4	5
	recycling, retaining of materials, or					
	remanufacturing					
RL5	Returns back its packaging to suppliers	1	2	3	4	5
	for reuse or recycling					
RL6	Returns back the products from	1	2	3	4	5
	customers for safe refill					
RL7	Positively launching recycle system	1	2	3	4	5
RL8	Setting internal material recycling system	1	2	3	4	5
RL9	Implementing recycle system and	1	2	3	4	5
	increasing profit					

Section C: Organizational Performance

This section is seeking your opinion regarding the organizational performance in your company. Please indicate [(1) not at all; (2) = a little bit; (3) = to some degree; (4) = relatively significant; (5) = significant] by circling the number corresponding to the statements.

Organizational Performance

No	Questions	Not at all	A little bit	To some degree	Relatively Significant	Significant
E1	Environmental					
EP1	Environmental for air emission	1	2	3	4	5
EP2	Reduction of solid wastes	1	2	3	4	5
EP3	Reduction of waste water	1	2	3	4	5
EP4	Decrease of consumption for hazardous/harmful/toxic materials	1	2	3	4	5
EP5	Decrease of frequency for environmental accidents.	1	2	3	4	5
EP6	Improve an enterprise's environmental accidents	1	2	3	4	5
E2	Positive Economic					
PE1	Decrease of cost for materials purchasing	1	2	3	4	5
PE2	Decrease of cost for energy consumption	1	2	3	4	5
PE3	Decrease of fee for waste treatment	1	2	3	4	5
PE4	Decrease of fee for waste discharge	1	2	3	4	5

PE5	Decrease of fine for environmental accidents	1	2	3	4	5
E3	Negative Economic					
NE1	Increase of investment	1	2	3	4	5
NE2	Increase of operational cost	1	2	3	4	5
NE3	Increase of training cost	1	2	3	4	5
NE4	Increase of cost of purchasing	1	2	3	4	5
E4	Competitiveness					
CP1	Increased efficiency	1	2	3	4	5
CP2	Quality improvement	1	2	3	4	5
CP3	Productivity improvement	1	2	3	4	5
CP4	Cost saving	1	2	3	4	5

We sincerely appreciate for your time to complete this survey

~ The End ~

Appendix D

Permission Letter to Conduct Survey

UNIVERSITI TUNKU ABDUL RAHMAN Wholly Owned by UTAR Education Foundation (Company No. 578227-M)

10 July 2012

To Whom It May Concern

Dear Sir/Madam

Permission to Conduct Survey

This is to confirm that the following students are currently pursuing their *Bachelor of Commerce* (HONS) Accounting program at the Faculty of Business and Finance, Universiti Tunku Abdul Rahman (UTAR) Perak Campus.

I would be most grateful if you could assist them by allowing them to conduct their research at your institution. All information collected will be kept confidential and used only for academic purposes.

The students are as follows:

Name of Student	Student ID
Too Jia Wen	09ABB03016
Chin Si Mei	09ABB03836
Ling Sing Yae	09ABB03108
Toong Siew Kuan	09ABB03266
Vivian Lai Jia Yin	09ABB03080

If you need further verification, please do not hesitate to contact me.

Thank you.

Yours sincerely

Mahendra Kumar a/l Chelliah Head of Department, Faculty of Business and Finance Email: <u>mahendra@utar.edu.my</u>

Lee Voon Hsien

Lee Voon Hsien Supervisor, Faculty of Business and Finance Email: <u>leevh@utar.edu.my</u>

Address: 9, Jalan Bersatu 13/4, 46200 Petaling Jaya, Selangor Darul Ehsan, Malaysia Postal Address: P O Box 11384, 50744 Kuala Lumpur, Malaysia Tel: (603)7958 2628 Fax: (603) 7956 1923 Homepage: http://www.utar.edu.my

87 of Page 87