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ABSTRACT

NEW SIFT-BASED CALIBRATION METHODS

FOR HYBRID-CAMERA SYSTEM

LOW YI QIAN

Camera system is an important system in order to observe and capture daily
activities, human and environmental behavior and etc. Traditionally, camera
system mainly employs the usage of static cameras. Static cameras usually
provide low resolution and poor image quality in modeling. With the
enhancement of technology, the functions of camera system have been
gradually increasing. For example, Pan-Tilt-Zoom (PTZ) camera is able to
obtain multi-angles of views and multi-resolution information; it provides
more functionality as compared to static camera. In a camera network, two or
more various types of camera are employed in order to obtain different

perspective and view of a scene (e.g. in a shop).

On the other hand, camera calibration is one of the challenging stages in
camera network to enable different cameras to connect and communicate to
each other together. This is because information of the positions of the
cameras, focal length, different scaling factors for pixels and lens distortion

are needed in order for the connection to be established. One of the main



challenges in camera calibration is to obtain an accurate and fast estimation of
disparities between two different views in a scene. Besides disparities,
differences between the two views might be due to occlusion of the object,
specular reflection, sensor noise and various other causes. The traditional
approach of calibration takes longer time because it needs manual input or
reference objects to find match between correspond images. Therefore, the
recent works by some researchers have brought remarkable increase of

automation to these problems.

In this project, a new hybrid camera system has been designed and constructed.
Instead of using two static cameras, our hybrid camera system consists of a
static wide angle camera and a PTZ camera. Both cameras obtain different
optical elements and resolutions. We proposed a master-slave concept to
represent both cameras. The static camera will be used as a master camera
with wide angle view. It is used to monitor the environment from a distance.
On the other hand, the PTZ camera will be used as a slave camera. It is used to
perform panning, tilting and zooming. The PTZ camera will point towards the
region of interest (ROI) in high resolution as well as providing different
parameters of PTZ values. We also proposed a new calibration method for our
hybrid camera system. In particular, we employed the Scale Invariant Features
Transform (SIFT) algorithm in our work. SIFT is a popular feature extraction
algorithm used to detect and describe keypoints. However, before performing
the calibration between static camera and PTZ camera, PTZ camera needs to

acquire the images from different values of parameters. Therefore, we adopted



image stitching approach to create a panorama image before proceed to image

calibration between the static camera images with panorama images.

Another major contribution of this project is the increase of the determination
and detection rate in image calibration. The affine transformation such as
Hough transformation and RANSAC were adopted to identify the positive and
negative keypoints. This helps to calibrate both static master camera and PTZ
camera images without the use of any objects as reference. By eliminating the
use of reference objects, it enables higher performance and efficiency in
handling the estimation of disparities between different views in a scene from
different angle and scale. Therefore, the obtained empirical results will be of

higher accuracy.
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CHAPTER 1

INTRODUCTION

1.1 Background and Introduction

Camera system plays an important role in video surveillance systems. Video
surveillance is an application that requires embedded image capture
capabilities that allows video images or extracted information to be
compressed, stored or transmitted over communication networks. In
surveillance scenarios, it is hard to monitor environment entirely using single

camera type 1.e. static camera or pan-tilt-zoom (PTZ) camera.

Generally, various types of cameras are used to form a camera network.
Camera networks can be designed for indoor and outdoor purposes. In fact,
different angles of viewpoint captured by a camera can result in large
differences in term of the appearance of the moving objects due to
illumination, casted shadows, occlusion, etc. These significantly affect the
performance of object detection and tracking as well as of object recognition.
To solve these problems, camera systems are employed in order to acquire
multiple views of an environment from different angles and zooming levels.
More information could be collected as compared to using a single camera
capturing single view direction. For example, in a shop, we need to install a
number of good quality cameras in order to capture the situation inside the

shop, staffs and customers as a whole from all views. Thus, using PTZ



cameras in the design of camera system will be very advantageous as they
allow pan-tilt and high resolution zooming. Pan-tilt function allows the camera
to capture a wider range of views in the shop. This is beneficial as it helps to
reduce the number of camera usage inside a shop. Furthermore, it reduces the
cost of camera installation. On the other hand, high resolution zooming allows
better detection of thefts. It also enables better face recognition of intruders

should there be any incidents happened in the shop.

Camera network obtains two or more perspectives of slight relative
displacement of objects in the multiple monocular views of scene. By
comparing the information of the image from vantage points, we can
implement 3D reconstruction, scene analysis and other depth related
applications (Dingrui Wan & Jie Zhou, 2008; D. Forsyth & J. Ponce, 2003).
Conventionally, camera network research uses static cameras to achieve lower
cost and relative simplicity in modeling (Dingrui Wan & Jie Zhou, 2008).
Although a fixed static camera network has been applied successfully in real
application scenarios, it suffers from the inherent problem of sensor
quantization. The fixed optics and fixed sensor resolution share most of the
information. Nonetheless, there are differences that are caused by occlusions
of objects, specular reflections, which move independently of the surfaces of

objects, sensor noise, etc. (R.D. Henkel, 1997).

For instance, the employment of more cameras can help to increase the
monitoring coverage area. However, these may also increase the camera cost,

processing power and architectural complexity of the application. Recently,



high resolution camera such as PTZ camera offered an alternative way to
obtain the understanding of the dynamic scenes to fixed static camera. It
enables the attainment of different angles of view and resolution information
at any time. Theoretically, PTZ camera is capable of monitoring a wide area
with the acquisition of images of fine quality. However, we can only be focus
on one area at a time just like any other static camera when it is without
human supervision. Incidents might have happened outside the instantaneous
views of a PTZ camera even though it happened within its coverage area as

shown in Figure 1.1.



Environment

Figure 1.1: Sample images acquired by PTZ camera in limited angle of

view.




1.2 Motivation

In this project, a hybrid camera system which consists of a static camera and
pan-tilt-zoom (PTZ) camera was designed as shown in Figure 1.2. Both
cameras obtain different types of optics and sensor resolutions. The static
camera plays the important role of monitoring a wide area at a distance. On
the other hand, the PTZ camera captures multi-scale view images, moving
from a region of interest (ROI) to another with different intrinsic and external
parameters. Hybrid camera system is more challenging as the intrinsic and
external parameters of each camera can be changed during operation
compared to the dual-static-camera system. A hybrid-camera system is
particularly useful in object detection, recognition and tracking. The static
camera is set to have an overall view of the scene such that several entities can
be tracked simultaneously. The PTZ camera is used to follow the target

trajectory and generate close-up imagery of the entities.

Figure 1.2: Hybrid camera system which is combined by PTZ camera and
static camera.



The approach taken on hybrid camera calibration also differs from
conventional methods where matching is perceived as an operation on
multiple images which are acquired from PTZ camera to create a panoramic
image and not just an image pair. The associated problems and conditions are

stated as follows:

Problems and Conditions:

1. Field of view (FOV) is a measure of how large an area a camera is
capable of viewing. The FOV is based on the camera optical lens.
For example, in a 15’ x 15° room as shown in the Figure 1.3 below
is a static wide angle camera using 4mm lens (green arrows) allows
better wide-angle viewing coverage than a PTZ camera. In a hybrid
camera system where a close-up view is needed, a PTZ camera is
able to perform dynamic-view-angle and dynamic-scales from
4mm to 12mm (from blue arrows to red arrows) FOV. The images
acquired with different focal-length lenses may cause different

distortion and FOV compared to the wide angle camera.



15 ft.

15 ft.

Figure 1.3: Field of view with different focal-length lenses.

ii. As shown in Figure 1.4, hybrid camera geometry imposes
constraint on the finding out of the positions of the PTZ camera’s
views. PTZ camera enables flexibility for pan, tilt and zooms while
wide angle camera allows static image capturing. The challenge is

to identify the relationship of both cameras in the camera network.

91-07-2011 15:092:56 CH-81

Static Camera : Pan-Tilt-Zoom Camer

Figure 1.4: Relationship of camera network in hybrid-camera system.



iii.  Figure 1.5(a) shows the current view of wide angle camera and
PTZ camera in certain angles and focal-length. Figure 1.5(b) show
the matching of regions of interest in the image from PTZ camera
to the static image of the wide angle camera by using Scale
Invariant Features Transform (SIFT) (Lowe D.G., 1999) feature
matching method. It is apparent that the method resulted in

significant mismatched pairs.

B o — —
ﬁ-w-ﬂall 16:35745 CH-91 01-87-2811 18:83:17 CH-82
T S

|

Static Camera PTZ Camera

(b) Result of image matching process in hybrid-camera system based on SIFT algorithm.

Figure 1.5: Significant mismatched pairs was detected in calibration
process.



1.3 Objective

The main goal of the study is to design the implementation of semi-active
stereo vision system and examine its effects on image calibration accuraccy
and performance. This development is combination of a static wide angle
camera and a Pan-Tilt-Zoom camera. From our study we believe that the
conduction of the study might provide wvaluable information to the
development of multiple camera calibration system as an alternative system.
Multiple camera calibration is crucially important to semi-active stereo vision
because images are obtained from two different types of optics and sensor
resolutions, and there is a need to correct the distortion especially on the wide-
angle images which are acquired by the static camera. The background
appearance also changes dynamically as the PTZ camera pans, tilts and zooms.
(X. Zhou, R. Collins, T. Kanade & P. Metes, 2003). Besides, we also hopes
that the research of implementation of hybrid camera system will contribute to

set up a camera calibration method for more complex camera networks.

In hybrid camera system, there are at least three concerns to be addressed in

semi-active stereo vision calibration:

1. Image stitching process based on SIFT algorithm: PTZ camera
performs dynamic-view-angle and dynamic-scales where each
orientations and zoom levels may have differences caused by
occlusions of objects, specular reflections which move
independently of the surfaces of objects and sensor noise from

different perspectives.



1.  Hybrid-camera calibration process: each camera has different type
of optics and sensor resolution and although they may capture
similar information, but all obtain images with different distortions.

1.  Automated calibration process: instead of calibrating the hybrid-
camera manually, we have developed a test bed system with
algorithm and mechanism that automatically perform calibration
under different environments and conditions. The challenge is how
we can improve the accuracy of stitching process in the automated

system.

1.4 Contribution

The main contribution of this thesis is the development and evaluation of a
hybrid camera system capable of recognizing and stitching a panoramic image
automatically. We evaluate a fully automated 2D panoramic stitching method.
This method has the following advantages over previous cameras calibration

approaches:

1. Enhanced robustness to image zoom, rotation and exposure changes in
images especially those from PTZ camera, due to the use of invariant
features.

il.  Automatic detection of matching images, using a sequence model for
image matching.
iii.  Rendering of panoramic images based on the mean values of the

pixels.

10



A popular filtering technique, Random Sample Consensus (RANSac) has also
been studied. It was incorporated into the system to process data associated to
inliers and outliers to improve the accuracy of correspondence process that

estimates the position of Field of View (FoV)

Finally, we implemented and evaluated the calibration method on hybrid

camera system based on SIFT features on our test bed.

1.5 Outline of Thesis

The remainder of the thesis is organized as follows. Chapter 2 reviews the
literature on image information and background study of multi-view geometry.
Scale Invariant Features Transform (SIFT) and analysis capable of features
detection and matching among correspondence is introduced. In Chapter 3, a
detailed analysis of PTZ camera controls and panoramic image stitching
methods is presented. This chapter extends the image calibration of hybrid
camera system to estimating the position of current view in panoramic image.
A test bed for data collection was set up to perform automatic panoramic
image stitching in Chapter 4. In chapter 5, conclusion and suggestions for

future work are presented.

11



CHAPTER 2

LITERATURE & BACKGROUND STUDIES

2.1 Introduction

In recent technology development, computer vision concepts, theories and
models have been widely applied in many commercial and industrial systems
e.g. modeling of objects or environment, process control, object detection,
object recognition, etc. One of the important tool to reduce the crime rate is to
apply the computer vision into the monitoring system. Thus, camera networks

have been implemented to monitor the behaviour and activities of human.

In this chapter, the fundamentals of basic image information and perspective
image formation model of Aghajan, H. et al. (2009) which accurately reflect
the phenomena observed in image taken by real cameras will be presented. On
pictures taken by cameras it is possible that the rectangular or circular shapes
look like ellipses. Such situation happens due to two perpendicular radii of a
circle being stretched by different amounts by perspective projection. Angles,
distances, ratios of distances are the key features that need to be preserved in
projective geometry. Throughout the chapter, we represent object points by

X = (x,y,z) and image plane by u = (x,y).

12



Computer vision is a field that involves the processing, analysis and
understanding of images, which are the extracted properties of the 3-
dimensional (3-D) world in order to achieve results and effects similar to
human vision. Human vision is 3-D but the objects captured by camera are
converted from 3-D to 2-D image. Conversion from 3-D to 2-D involves
information loss due to the perspective views which is illustrated in Figure 2.1.
In digital world, we need to understand an image in digital perception. An
image may be defined as a 2-dimensional function, f{x,y), where x and y are
spatial coordinates, and the amplitude of f at any pair of coordinates (x,y) is
called intensity of the image at that point (Gonzalez, R.C. and Woods, R.E.,
2007). On the other hand, human vision possesses the ability to perceive depth.
Since human eyes are separated in space, each receives a slightly different
image, and the different positions of corresponding points in these images
which can be used to judge and perceive depth. The process to obtain accurate
and fast estimate between the disparities of two different views of scene is
known as stereo vision. Stereo vision is also defined as two different
perspectives of human eyes that lead to slight relative displacement of objects

1n the two monocular views of scene.

Vision
3D Model - -
Graphics =
][] ]
SmsesS
2D Images

Figure 2.1: Differences between 2D Modeling and 3D Modeling.
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The basic principle in stereo vision is to find out the correspondence of the
images among the coordinates and intensity values by comparing the
information of the images from two vantage points and it can be used in 3-D
reconstruction, scene analysis and other depth related usage (Forsyth, D. et al.,
2003; Wan, D. et al, 2008). Several approaches to find image
correspondences have been proposed, for example, contours-based object

detection (Shotton, J. et al., 2005; Yokoyama, M. et al., 2005).

In this work, a feature-based approach in Liu, J. and Hubbold, R. (2006) has
been studied and adopted for image stitching and matching. Features detection
in computer vision has been widely studied. Object detection based on low-
level feature such as Canny Edge by Canny, J. (1986) and Harry Corner by
Harris, C. and Stephens, M.J. (1988) were widely used in machine learning
and image processing. In the past 10 years, extensive research has been carried
out on edges and corners. Based on the research on edges and corners, Lowe
D.G (1999) has developed a more complex and distinctive image features

algorithm called Scale Invariant Feature Transform (SIFT).

2.2 Image Information with Geometry Perspective

We consider an ideal situation in which an imaging device, “pinhole”
cameracan capture accurately the geometry of perspective projection as shown

in Figure 2.2. We represent the coordinate of an object point X in the system

14



as X, = (x,,Y0,Z,)- Lights enter the camera thru an extremely small aperture.
The intersection of the lights with the image plane will form the image of the

object, this is called perspective projection.

3D View

: N Perspective projection
“Pinhole : pro]

Figure 2.2: The basic geometry of a pinhole camera.

Generally, each camera coordinate has an associated image plane located in
the camera coordinate system which is not aligned with the surrounding world.

The image plane inherits a natural orientation with two-dimensional projection.

For real cameras, the relationship between the information of image points and
the information of the object points is more complicated. To simplify the
derivation of the perspective projection equations, a few assumptions as

follows have been made:

a. The camera axis (optical axis) is aligned with the world’s z-axis
b. No image inversion assuming that the image plane is in front of the

center of projection.

15



c. Object points have the same information regardless of the viewing
angle and information of an image point is the same as the information
of a single corresponding object point. However the information of

each point is different because of factors in a real imaging system.

Image coordinates

/ u= ':'t: ’ .".: <'

X, =(x,v,.2,) T\\\* X

Camera coordinates

Figure 2.3: A modern camera projects 3-D world into 2-D image plane
through perspective projection.

An object point X, = (x,,¥,, Z,) is projected onto the image plane P at the
point u = (x;,y;) in Figure 2.3. The model consists of a plane (image plane)
and a 3-D pointO (center of projection). Focal Ilength is
the distance f/ between the image plane and the center of the projection O, for
example the distance between the lens and the CCD array. Optical axis is
the line through O and perpendicular to the image plane. The intersection of
the optical axis with the image planeis called the principal point or image

center.

16



The equation of perspectives projection is given below

X Xo
X=\Y =R<yo —C) [Eq. 2.1]
Z. Z

where C is the image center projection, R is the orientation matrix and fis the

focal length.

A scene point X = (X,,Y,, Z.) is projected onto the image plane P at the point

u = (x;,y;) by the perspective projection equations

Xi=J], Yi=], [Eq. 2.2]

2.3 Stereo Camera Network Calibration

In camera networks, stereo vision is one of the most challenging parts of
computer vision. The focus is on geometric models of perspectives cameras.
Generally, we analyse the image relationships from the same static scene by

two cameras C and C’, as shown in Figure 2.4.

17



~__Optical Axis Optical Axis

/ \

Object
P

sl D D

Left Image Plane Right Image Plane

(a) Side view of stereo vision image plane.

Optical Axis Object Optical Axis

Distances

Focal f{/ . L \ f Focal
Length ¢ Disparity C Length

(b) Top view of stereo image plane

Figure 2.4: Concept of stereo vision image plane (Lee, C.W. et al., 2009)

In camera calibration we acquire images from two or more cameras from
different perspective views. One of the most popular camera setup is stereo
vision which has always been an important issue of interest in computer vision.
“Stereo vision is the two different perspectives of our two eyes that lead to
slight relative displacement of objects in the two monocular views of scene.
Among the advantages of stereo vision is 3D modeling of scene and depth
estimation (Lee, C.W. et al., 2009)”. “Stereo cameras calibration allows
transferring 3D object locations onto the camera image plane and therefore

using this information to steer the pan tilt and zoom into the appropriate
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direction (Bimbo, A.D., et al., 2010)”. In recent years, many methods have
been proposed in stereo vision calibration (Baker P. et al., 2000; Krumm J. et
al., 2000; Senior, A.W., et al., 2005; Liu J. et al., 2006; Xing Y .J. et al., 2007,
Gonzalez, R.C. et al., 2007; Wan, D. et al., 2008; Liu R. et al., 2009; Memont,

Q. etal., 2011).

In video surveillance system, it is mainly about identifying the location and
identity of people in the room. Krumm J. et al. (2000) and his research group
have developed an intelligent system called EasyLiving. In EasyLiving room,
multiple people can be tracked using stereo cameras rather than single static
camera and this makes it easier to segment the overlapping people in the
room.Two method of making measurement was proposed. First method is an
interactive program which allowed user to establish correspondences and
ground plane points by click on points in images from two cameras. Another
method records, from each camera, the 2D ground plane locations of a
person's path when the person moves around in the room, the translation and
rotation will be calculated by a calibration program to give the best overlap
between the two paths.By knowing the cameras’ relative positions and
orientations in the ground plane, it creates a platform to integrate more vision-
based tracking for example to find the point by walking from place to place

with whole-body tracking.

Camera calibration is challenging because handling nonlinearity requires good

initial estimates on stereo vision application. Neural networks can be applied
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in many scientific disciplines to solve variety of problems in pattern
recognition, prediction, and optimization. In the work of Xing, Y.J. et al.
(2011), the researchers proposed multilayer artificial neural networks (ANNs)
model for the training needed to correspond a variety of stereo-pair images
and 3-D world coordinates. This approach is taken because camera calibration
is a nonlinear problem and cannot be solved with a single layer neural network.
They evaluated the experiment with no fixed rules for an ideal network model.
The approach requires the training of the neural network for a set of matched
image points of which the correspondences are known. This approach is
different from conventional camera calibration techniques in the notice that no
extrinsic or intrinsic parameters are required. Instead, the system is trained
such that it learns to directly find the correspondences of the objects. The
advantage of this approach lies mainly in its simplicity and generality. It
works for any type of camera modeling. The results from Memont Q. et al.
(2011) as shown in Figure 2.5 and 2.6 claimed that error became less than 5%
after 40 000 epochs of training. After 100 000 epochs of training, the mean

error of a point became 4.33%.
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Figure 2.5: Mean percentage error in computing 3D coordinates as a
function of the number of epochs (Memont Q. et al., 2011)
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Figure 2.6: Percentage error in the computation of the Z coordinate
beyond the training range (results taken after training the network for 50
000 epochs). (Memont Q. et al., 2011)

Besides that, several methods have been published in the literature to perform

calibration of PTZ cameras. Calibration was carried out by estimating the
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homography among cameras in a home position taking into account the effects
of pan and tilts controls in Senior, A.W. et al (2005). Firstly, they applied
manual registration at each stage and set up a corresponding look-up table.
Based on the initial system setup, they implemented an auto-learning
mechanism of homography between the cameras in a home position. The
system generally supports arbitrary combinations of multi-camera. However,
the method lacks noise filtering to increase the accuracy on homography

between two views.

In Chen, [.H et al. (2007) a method for the calibration of multiple cameras by
estimating the tilt angle and the altitude of the each PTZ camera based on
observation of some clues revealed in the captured images was proposed. The
technique can simply place a few simple patterns on horizontal plane for
example A4 paper, books, boxes, etc. on the table to calibrate multiple PTZ
cameras. A specific calibration patterns is not required in the system setup.
The advantage of the method is the comprehensible sense of camera pose. The
tilt, altitude, and orientation of the camera offer a more direct physical sense
about the camera pose in the 3D space, especially when the PTZ cameras are

under panning, tilting and zooming operations from time to time.

Among others, the solutions proposed in Liu, J. et al. (2006), Wan. D. et al.
(2008), Liu. R. et al. (2009), and Bimbo, A.D. et al. (2010) do not require any
calibration patterns. An algorithm, “Scale Invariant Features Transform (SIFT)

(Lowe D.G., 1999) can address the matching problems with translation,
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rotation and affine transformation among different images”. SIFT is a good
method to extract feature point with representative feature descriptor and more
stable features matching ability for images which are captured from random
different angles. In Bimbo, A. D. et al. (2010) images from non-calibrated
PTZ camera at different values of pan, tilt and zoom are acquired to build a
panoramic image by using SIFT. Finding the right correspondence between
the images helps to evaluate homography and localize the camera with respect
to the scene. SIFT enables us to transform image data into scale-invariant

coordinates relative to local features and store them in database.
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Figure 2.7: Stereo vision calibration by using two PTZ cameras with
different pan, tilt and zoom parameter. (Bimbo, A. D. et al., 2010)
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In figure 2.7, three sets of experiment have been tested by using two PTZ
cameras with random pan, tilt and zoom parameter. SIFT algorithm behaves as
a local image operator which transforms an image into a collection of local
features (Lowe, D.G., 2009). To find corresponding features between the two
images, different feature matching approaches can be used. According to the
nearest neighbor algorithm, an image feature, F! searches for the
corresponding feature in model image feature, F{. The corresponding key
points consist of the smallest Euclidean distance (Gower, J.C., 1982) between
featureF;} and F} or match M (F{,F}). It can perform rapidly to find out the
correct match of the keypoints descriptors with good proximity in large
database of features. However, in a cluttered image, many features may affect
the accuracy of matching and give rise to false matches of key points. The
determination of these consistent clusters can be accomplish by using an
effective hash table feat of the generalized Hough transform (P.V.C., 1962).
Consistent interpretation using each feature from clusters of features
determined through the Hough transform, to vote for entire objects poses the
feature consistency. Theinterpretation probability for being correct is much
more higher compare to the single feature during clusters of features vote for

the same pose of an object.

In P. Baker et al. (2000) a calibration procedure was proposed for a multi-
camera rig. The technique forms a multi-frame structure from motion
algorithm based on point correspondences constructed with accuracy to within

a pixel. It is not necessary for all the cameras to focus on same common field
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of view. As long as every camera is connected to each other a large set of
correspondences can be constructed even in low light environment. A large,
non-linear eigenvalue minimization routine will require the correspondences
based on the epipolar constraint. All points’ correspondences between every
pair of cameras will be encapsulate by the eigenvalue matrix in a way that
minimizes the smallest eigenvalue results in the projection matrices within
single perspective transformation. It was claimed that the method was
extremely accurate with the accuracy of the re-projection of the reconstructed
points within a pixel uncertainty, which was the measurement error of the

location of the LED.

2.4 Scale Invariant Features Transform (SIFT)

Scale Invariant Features Transform (SIFT) (Lowe D.G., 1999) is an approach
to transform an image into a large collection of local feature vectors, each of
which is invariant to image translation, scaling, and rotation, and partially
invariant to illumination changes and affine or 3D projection. The scale-
invariant features are efficiently identified by using a staged filtering approach.

The following are the major steps that used to determine the image features:

a) Scale-space extrema detection: The first step is to search the over all
scales and image locations. In this step, Difference-of-Gaussian is
being used to identify potential interest points that are invariant to

scale and orientation.
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b) Key point localization: At each potential interest point, a detailed
model is fitted to determine the scale and location. Meanwhilte, key

points are selected based on their stabilities measurement.

c) Orientation assignment: Each key point location will be assigned
with orientations to the local image gradient direction. By having
invariance to the image transformations, operations on image data
performed relative transformation to the assigned orientation, location

for each feature and scales.

d) Key-point descriptor: At the vicinity of key point, the local image
gradients at selected scale are measured and transformed into
permissible local shape distortion and illumination change

representational format.

An significant aspect of this approach is that it creates large numbers of
features that densely cover the figure over the total range of scales and
locations. SIFT features are first extracted from a set of reference images and
stored in a database. A typical image of size 480x360 pixels will detect at least
1500 or more stable features depending on the parameters that have been set.
The quality of features is particularly important for object recognition, where
the ability to detect small objects in cluttered backgrounds requires at least

three features be correctly matched from an object for reliable identification.
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In image matching and recognition, comparison is performed between the
current and previous image in term of image features based on the database of
feature vectors of previous images. Nearest neighbor algorithm is a features
search technique. This technique match features of current image to those of
previous images by defining the key points with minimum Euclidean distance
(Gower J.C., 1982) from the given descriptor vector. An accurate probability
is defined by the ratio of distance between the targeted neighbour with another
second closest target. It can operate rapidly to determine the correct match of
the key point descriptors with good proximity in large database of features.
However, in a cluttered image, many features may affect the accuracy of

correct matches and rise false matches of the key points.

2.4.1 Scale-space extrema detection

In SIFT, the first stage of the key point detection is to identify candidate
locations and scales that are being assigned repeatedly under different views
of the same object. Detecting locations that are invariant to scale change of the
image can be accomplished by searching for stable features across all possible

scales, using a continuous function of scale known as Gaussian scale space of

Lindeberg, T. (1994).

Therefore, the scale space of an image is defined as a function, L(x, y, g), that
is produced from the convolution of a variable-scale Gaussian, G (x,y, o), with

an input image, I(x, y):
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L(x,y,0) =G(x,y,0) *1(x,y), [Eq. 2.3]

where * is the convolution operation in x and y, and

1 _(+2 2 2
5 e (x +y )/20 [Eq 24]

21O

G(x,y,0) =

The scale-space extrema in the difference-of-Gaussian function, D(x,y, g), is
then convolved with the image to detect the stable keypoint locations in scale

space efficiently:

D(x,y'g) = (G(x'yrko-) - G(X'Y:U)) *I(X,Y)

= L(x,y, ko) — L(x,y,0) [Eq. 2.5]
where the two nearby scales are separated by a constant multiplicative factor £.

The reasons to apply this function is to get a smoothed image L, which needs
to be performed for scale space feature description, and D can therefore be

performed by simple image subtraction.

Additionly, the difference-of-Gaussian function provides a precise
approximation to the scale-normalized Laplacian of Gaussian, 62V2G. It
produces the most stable image features compared to a range of other possible

image functions, such as gradient, Hessian, or Harris corner function.

The relationship between D and 62V2G can be understood from the heat

diffusion equation:

9G

-~ = a?V2G [Eq. 2.6]
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From this, V2G can be computed from the finite difference approximation to

0G/ da, using the difference of nearby sales at ko and o

G G(x,y,ko)-G(x,y,0
O'ZVZG =9¢ . (x,y,ka)—G(x,y,0)
do ko-o

[Eq. 2.7]

and therefore,
G(x,y,ko) — G(x,y,0) = (k — 1)a?V?G [Eq. 2.8]

The factor (k-1) in the equation is a constant over all scales. Therefore, it does

not influence the extrema location. Besides, the approximation error will reach

to zero while k comes to 1. According to Lowe, D.G. (2004) k = v/2 has the
less impact on the stability of extrema detection or localization for even
signification differences in scale. An efficient approach to the construction of

D(x,y, o) is shown in Figure 2.8.
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(b) Examples of DoG to find out edges of the image.

Figure 2.8: Image is convolved with DoG. For each octave, the Gaussian
image is down-sampled by a factor of 2, and the process repeated. (Lowe,
D.G., 2004)

In order to detect the minima and maxima of D(x, y, g), each sample point is
compared to its eight neighbors in the current image and nine neighbors in the
scale above and below as shown in Figure 2.9. It is selected if it is larger than
all of these neighbors or smaller than all of them. The cost of this check is low
due to the fact that most sample points will be eliminated following the first

few checks.
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Figure 2.9: Detection of maxima and minima by comparing the pixel (x)
to its 26 neighbors in 3x3 regions (0). (D.G. Lowe, 2004)

One of the significant issue is to determine the frequency of sampling in the
image and scale domains that are required to dependablydiscover the extrema.
Unfortunately, it turns out that there is no minimum spacing of samples that
will detect all extrema, as the extrema can be arbitrarily close together. This
can be seen by considering a white circle on a black background, which will
have a single scale space maximum where the circular positive central region
of the difference-of-Gaussian function matches the size and location of the
circle. For a very elongated ellipse, there will be two maxima near each end of
the ellipse. As the locations of maxima are a continuous function of the image,
for some ellipse with intermediate elongation there will be a transition from a
single maximum to two, with the maxima arbitrarily close to each other near

the transition.
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Figure 2.10: Experimental determination of sampling frequency that
maximizes extrema stability. (Lowe D.G., 2004)

In Figure 2.10(a), the top line of the first graph shows the percentage of key
points that are repeatedly detected at the same location and scale in a

transformed image as a function of the number of scales sampled per octave.
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The lower line shows the percentage of key points that have their descriptors
correctly matched to a large database. Figure 2.10 (b) shows the total number
of key points detected in a typical image as a function of the number of scale

samples.

2.4.2 Key Point Localization

The candidates of maxima and minima are defined as key points. The next
step is to perform a detailed fit to the nearby data for location, scale and ratio
of principal curvatures. This information allows points that have low contrast
or are poorly localized along an edge to be rejected. In the implementation of
M. Brown and Lowe, D.G. (2002), Taylor expansion of the scale-space

function, D (x, y, o) shifted such that the origin is at the sample point:

T 2
D(x) =D + aaixx+1 rd0

X
2 ax?

[Eq. 2.9]

where D and its derivatives are evaluated at the sample point and x =
(x,y,0)T is the offset from this point. The location of the extremas, X is
determined by taking the derivative of this function with respect to x and

setting it to zero,

621)_16_1)

X =
dx2 ox

[Eq. 2.10]

The derivative of D is approximated by the differences of neighboring sample

points.

) =p4 2927 5
D(xX)=D+ S X [Eq. 2.11]
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Figure 2.11: Process of keypoints localization.

Figure 2.11(a) shows the original image while Figure 2.11(b) shows the
potential interest points after scale-space extrema detection. Figure 2.11(c)
shows the result after low contrast filtering. Figure 2.11(d) shows the final

result after removing edge points using principal curvature filtering.

In order to reject unstable extrema, difference-of-Gaussian function will have
to generate strong response along edges addressing noise along the edge. A
poorly defined peak in the difference-of-Gaussian function will have a large
principal curvature across the edge but a small one in the perpendicular
direction. The principle curvatures can be computed from a Hessian matrix by
Harris and Stephens (1988), computed at the location and scale of the key

points. The derivatives are estimated by taking differences of neighboring
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sample points. The transition from Figure 2.11(c) to (d) shows the effects of

this operation.

2.4.3 Orientation Assignment

Based on local image properties, each key point may be assigned a consistent
orientation so that the key point descriptor can be defined relative to the
orientation and is invariant to image rotation. Each image property is based on
rotationally invariant measure. One of the known disadvantages of this
approach is that it limits the descriptors that can be used to discard image
information by not requiring all measures to be based on a consistent rotation.
According to Lowe, D.G. (2004), the scale of the key point is used to select
the Gaussian smoothed image, L, with the closest scale, so that all
computations are performed in a scale-invariant manner. For each image
sample, L = (x,y) at this scale, the magnitude, m(x,y), and orientation,

6(x,y) is pre-computed using pixel differences:

m@x,y) =L +1,y) —Lx—1,y)%+ L&,y +1) = L(x,y — 1))2 [Eq. 2.12]

O0(x,y) =tan ' ((L(x,y + 1) = L(x,y — 1))/(L(x + 1,¥) = L(x — 1,y))) [Eq. 2.13]

Gradient orientations of sample points within a region around the key point
forms an orientation histogram. The orientation histogram consists of 36 bins
to cover the 360-degree range of orientations. Samples added to the histogram
will be weighted by its gradient magnitude and a Gaussian-weighted circular

window with an ¢ which is 1.5 times of the scale of the key point.
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Peaks in the histogram will be matched to determine directions of local
gradients. a key point with that orientation will be created by detecting the
highest peak in the histogram, and any other local peak that is within 80% of
the highest peak. For that reason, locations with multiple peaks of similar
magnitude, multiple key points will be created at the same location and scale,
but with different orientations. Therefore, for locations with multiple peaks of
similar magnitude, there will be multiple key points created at the same
location and scale but different orientations. Only about 15% of points are
assigned multiple orientations, but these contribute significantly to the stability
of matching. Finally, a parabola is fitted to the 3 histogram values closest to
each peak to interpolate the peak position for better accuracy. Figure 2.12
shows the experimental stability of location, scale, and orientation assignment

under differrent amounts of image noise.
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Figure 2.12: Stability of location under differing amounts of image noise.

(Lowe, D.G., 2004)

2.4.4 Key Point Descriptor

The previous operations have assigned an image location, scale, and

orientation to each key point. These parameters impose a repeatable local 2D

coordinate system in which to describe the local image region, and therefore

provide invariance to these parameters. The next step is to compute a

descriptor for the local image region that is highly distinctive yet is as

invariant as possible to remaining variations, such as change in illumination or

3D viewpoint. The local image intensities around the key point will match

using a normalize correlation measure. However, the simple correlation of

image is highly sensitive to changes that cause mis-registration of samples,

such as affine or 3D viewpoint change or non-rigid deformations. Figure 2.13

illustrates the computation of the key point descriptor.
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Figure 2.13: Gradient magnitude and orientation at each image sample
point in a region around the keypoint location. (Lowe D.G., 2004)

In Figure 2.13 the image gradient magnitudes and orientations are sampled in
a region around the key point location, as shown on the left. These are
weighed by using the scales of the key point to select the level of Gaussian
blur for the image in the overlaid circle. In order to achieve orientation
invariance, the coordinates of the descriptor and the gradient orientations are
rotated relative to the key point orientation. Each sample location is marked
with small arrows. The descriptors are formed from a vector containing the
values of all the orientation histogram entries, corresponding to the lengths of
the arrows on the right side of Figure 2.13. The figure shows a 2x2 array of
orientation histograms, but a 4x4 array of histograms with 8 orientation bins in
each can achieve the best result. Therefore, experiments in this project utilised

a 128 element feature vector (4x4x8) for each key point in the dataset.
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Lastly, to reduce the effects of illumination change, the feature vector
is normalised to unit length. Vector normalisation will cancel the change in
image contrast in which each pixel value is multiplied by a constant will

multiply gradients by the same constant..

2.5 Hough Transformation

A typical image contains thousands or more features which may come from
foreground and background clutter. To improve the performance of object
matching, many well-known robust fitting methods, such as RANSAC or
Least median of Squares, perform poorly when the percentage of inliers is
below 50%. However, “Hough transform (Hough, 1962) achieves better

performance by clustering features in pose space”.

Hough Transform uses a consistent interpretation of each feature in voting for
all object poses that are consistent with the feature to define the feature
clustering. The corrected probability of interpretation will be higher than for
any single feature if any of the clusters of features were found to vote the same
object's pose. Each key point specifies 4 parameters: 2D location, scale and
orientation and each matched key point in the database has a record of the key
point’s parameters relative to the training image in which it was found.
Therefore, Hough transform creates prediction on the model location,
orientation and scale from the match hypothesis. In the implementation of the
Hough transform, a multi-dimensional array is used to represent the bins.
However, many of the potential bins remain empty, and it is difficult to
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compute the range of possible bin values due to their mutual dependence.
These problems can be avoided by using a pseudo-random hash function of
the bin values to insert votes into a one-dimensional hash table, in which

collisions are easily detected.

The Hough transform is used to identify all clusters with at least three entries
in a bin. Each cluster is then subjected to a geometric verification procedure in
which a least-squares solution is performed for the best affine projection
parameters relating the training image to the new image (Lowe, D.G., 2004).
When high number of votes fall in the right bin, the Hough transform will be
efficient, the bin can easily detected among the background noise. The bin
must not be too small to be detected, or it will reduce the visibility of the main
bin when some votes fall in the neighbouring bin. The Hough transform must
be used with attention to detect anything other than lines or circles, when
number of parameters is large, the average number of votes cast in a single bin
will be low, and those bins matching to a real figure in the image might not

appear to have a higher number of votes than their neighbours.

In a nutshell, the quality of the input data heavily influences the efficiency of
the Hough Transform. In order for the Hough Transform to be efficient, edges
of the images must be detected well. Using noisy image on Hough Transform
needs a great deal of attention, and normally, image must go thru a de-noising

stage before used in Hough Transform.
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2.6 Robust Homography Estimation using RANSAC

RANSAC (Random Sample Consenses) is a general parameter estimation
approach and also a resampling techniquethat generates candidate solutions
which designed to deal with a large scale of outliers in the input data. It
required mininum number of data points to estimate the underlying model
parameters. Meanwhile, the common rubust estimation techniquesrequired
much of the data as possible to obtain an initial solution to prune outliers. For
instance, techniquesM-estimators and least-median squares. RANSAC uses a
minimal set of randomly sampled correspondences to estimate image
transformation parameters, and finds a solution that has the best consensus

with the data.

For each pair of potentially matching images, there is a set of feature matches
that are geometrically consistent (RANSAC inliers) and a set of features that
are inside the area of overlap but not consistent (RANSAC outliers). The idea
of this verification is to compare the probabilities of inliers and outliers was

generated correctly.

The number of iterations, &, is chosen high enough to ensure that the
probability p (usually set to 0.99) that at least one of the sets of random
samples does not include an outlier. Let u represent the probability that any

selected data point is an inlier and v = 1 — u the probability of observing an
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outlier. N iterations of the minimum number of point’s denoted m are required,

where
1—-p=QQ—-umV [Eq. 2.14]
And thus with some manipulation,

_ _logl-p)
N= log(1-(1-v)™) [Eq. 2.15]

An advantage of RANSAC is to perform robust estimation of the model
parameter.For example, when a remarkable outliers are detected in the data set,
it has high accuracy to estimate the parameters. In the other hand, the
disadvantage of RANSAC is that there is no limit on the time it takes to
compute these parameters. The results may not be optimum when the number
of iterations computed is limited, and it may not even be the one that fits the
data in a good way. Another disadvantage is that it requires the setting of
problem-specific thresholds which is a common disadvantage in most of the
current image processing solutions. Only one model for a particular data set
can be estimated by RANSAC. So, it may fail to find the model when there
are two ore more model instances exist. However, the Hough Transform is an
alternative robust estimation technique which is useful when more than one

model instance is present in the data set.

2.7 Affine Transformation

Hough transform had been selected to perform robust estimation in dataset.
Before proceeding to image stitching process, affine transformation is an

important class of linear 2-D geometric transformation which maps variables,
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for example “pixel intensity values located at position (x,)) in an input image
into new variables in an output image by applying a linear combination of
translation, rotation, scaling and/or shearing operations (R.Fisher et al., 2000)”.
Perspective irregularities introduces geometric distortion that subjects for
image acquisition where in the PTZ camera position with respect to the scene
that alters the apparent dimensions of the scene geometry. An uniformly
distorted image can be corrected by applying an affine transformation for a
range of perspective distortion with the measurements transformation from the

outstanding coordinates to those which in used actually.

An affine transformation is any transformation that preserves collinearity and
ratios of distances. In this sense, affine indicates a special class of projective
transformations that do not move any objects from the affine space to the
plane at infinity or conversely. An affine transformation is also called an
affinity. The problem of perspective can be overcome if we construct a shape
description which is invariant to perspective projection. Many interesting tasks
within model based computer vision can be accomplished without recourse to
Euclidean shape descriptions and, employ descriptions involving relative
measurements. For instance, those which rely only upon the configuration's
intrinsic geometric relations. From the images, these relative measurements
can be determined directly. Figure 2.14 shows a hierarchy of planar

transformations which are important to computer vision.
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Figure 2.14: Hierarchy of plane to plane transformation from Euclidean
to Projective.

Under orthographic projection,an affine transformation correctly accounts for
3D rotation of a planar surface, but the approximation for 3D rotation of non-
planar objects is well as planar objects. However, a fundamental matrix
solution requires at least 7 points matches as compared to only 3 for the affine
solution and in practice requires even more match for good stability. A more
general approach in Brown, M. and Lowe, D.G. (2002), initial solution is
based on a similarity transform, which then progress to solution for the
fundamental matrix in those cases in which a sufficient number of matches are

found.
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The affine transformation of a model point [x ¥]7to an image point [u v]T can

be written as

b= [ns el 1+ [2) [Eq. 2.16]

. T )
where the model translation is [txty] . Then, the affine rotation, stretch, and

scale are represented by the m; parameters. As a result, the equation above can

be rewritten to gather the unknowns into a column vector:
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Any number of further matches can be added although this equation shows a
single match. Each match is contributing two more to the first and last matrix.

Yet, at least three matches are needed to provide a solution.

2.8 Geometry Transformation based on ImTrans (MATLAB)

ImTran (Appendix A) applies a geometric transform to an image with 3x3
homogeneous transformation matrixes which is affine transformation values.
The region of interest in panoramic may invert a perspective transformation of
a plane and vanishing line of the plane lies within the image. Attempts to
transform any part of vanishing line will position at infinity. Therefore, we

should specify a region that excludes any part of vanishing line.
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CHAPTER 3

HYBRID CAMERA SYSTEM CONCEPT AND DESIGN

3.1 Introduction

This chapter will cover how the hybrid camera system is being set up in this
project. A testbed was being setup to collect the dataset by using both cameras,
wide angle camera and PTZ camera, an aluminum rack was constructed with
two mounting brackets. Both cameras were mounted side by side with a
distance x, where 0.1 < x < 1.0 meter. Greater value distance, x between both
cameras may increase the disparity of the images. The purpose of this rack is
to allow us to run experiment in different environment (e.g. indoors and

outdoors) with ease of mobility.

3.2 Equipment Setup

The camera rack is made of aluminum as shown in Figure 3.1 with 3.0 meters
height and 2.0 meters width. PTZ camera and wide angle camera are mounted
at around 2.5 meters height. With this setup, it creates a good position to
acquire information of the environment for object detection and object

recognition process for features enhancement.
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Figure 3.1: Layout of camera rack design.
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3.3 Pan-Tilt-Zoom Camera

Pan-tilt-zoom camera is a typical and the simplest active camera which can be
fully controlled by specifying pan, tilt and zoom parameters. Additionally,
PTZ cameras can rotate 360 degrees spinelessly and view an object directly
below the camera. It minimizes the area of blind spots and fully covered the
view of environment. “PTZ cameras are able to obtain multi-view-angle and
multi-resolution information (Wan D. and Zhou, J., 2008)”. Typically, a
camera’s motion is remotely controlled with a keyboard and joystick. Users
are allowed to pan, tilt and zoom into a specific area with a push of a button.
Recent years, they have been recognized and received more and more
attention in the research and development of surveillance system. They are
more than one camera to monitor the environment. Supervised and

unsupervised calibrations of camera networks are needed.

In computer vision research, PTZ cameras create more possibilities for
improvement in technology compared with static camera. One instinct
advantage PTZ cameras have is the ability to zoom. It can zoom in on any
objects. Most common research topics are automation monitoring based on

motion tracking, behavioral analysis, human detection and recognition and etc.

At the same time, these cameras have become cheaper and already deployed in
many real applications with features integrated, for instance: PTZ cameras are

integrated with devices such as magnetic door contacts, and alarms systems.
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When a certain device is triggered, the camera can move to view the
predetermined specified location. The PTZ camera system used in this project
has 10X optical zoom and 360 degrees spineless camera as shown in Figure

3.2

Figure 3.2: PTZ Camera consists 10x optical zoom and 360° of pan and
90° of tilt.

3.4 Pelco-D Protocol

Pelco-D is the standard protocol that is widely used in CCTV industry. In this
project, PTZ camera was remotely controlled by sending/receiving the Pelco-
D messages. Pelco-D consists of 7 hexadecimal bytes. In this session, all byte

data are in hexadecimal format. Table 3.1 shows the format of the message.
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Table 3.1: Format protocol for message the PTZ camera.

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
Sync byte Camera Command Command Data 1 Data 2 Checksum
Address 1 2

* Byte 1 (Sync) — The synchronization byte is always $FF.

* Byte 2 (Camera address) — The address is the logical address of the

receiver/driver being controlled.

* Byte 3 & 4 (Command 1 & 2) — The command to send are shown in

Table 3.2.

* Byte 5 (Data 1) — Pan Speed.

* Byte 6 (Data 2) — Tilt Speed.

* Byte 7 (Checksum) — The checksum.

Command 1 and 2 are as follows:

Table 3.2: 8 bits format in Command 1 and Command 2.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit2 | Bitl Bit 0
Command | Sense | Reserved | Reserved | Auto/ | Camera | Iris Iris Focus
1 Manual On/ Close | Open Near
Scan Off
Command | Focus Zoom Zoom Down Up Left Right | (Always
2 Far Wide Tele 0)

The sense bit acts as an indicator to determine the value in bits 4 and 3

(Protocol Manual, 2011). When the sense bit is on, and bit 4 and 3 are on, the

command will enable auto-scan and turn on the camera. However, bit 4 and 3

are on the command will enable manual scan and turn off the camera when the

sense bit is off. If either bit 4 or 3 are off then no action will be taken for any

features.

Bit 6 and 5 are reserved bit. They will always set to 0.
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Furthermore, byte 5 controls the pan speed. The pan speed is in the range 00
(Stop) to 3F (Medium Speed) while FF is maximum speed. In this system,
maximum setting is not recommended because it might be not a smooth step

from an angle to another.

Byte 6 controls the tilt speed. The tilt speed is in the range from 00 (Stop) to

3F (Maximum Speed).

Byte 7 is the check sum for the command. It is the 8bit sum of the payload

bytes in the message.

In addition, there are more control commands shown in appendix B. Users are
allow to access more advanced features by customize the command. But, the
device being queried can only be used in a point to point architecture. Else it
will respond to any address. Therefore, you need multiple devices transmitting

if there are more than one device listens to this command at the same time.

The response to one of these commands is seven bytes long, for an example:

Set Preset command message.

Table 3.3: Check sum is the summation of byte 2,3,4,5, and 6 in format
hexadecimal.

Byte 1 Byte2 | Byte3 | Byte4 | Byte5 | Byte6 | Byte7
FF 01 00 03 00 01 05
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3.5 RS 485 Transmitter

In hybrid-camera system, controller and PTZ camera has to run on the same
protocol and interface before they can “talk to each other”. Pelco-D protocol
with RS485 interface on a single twisted pair cable is the most common way

to interface with and control a PTZ camera.

Command protocol has to be transmitted from the system via an interface
cable to the PTZ camera. RS 485 is a one way interface on a single twisted
pair. The difference between RS 485 and RS 422 is that RS422 has two way
interface on a double twisted pair. Another alternative is to use RS232 for very
short distance. RS485 interface able to transmit the data over a few kilometers
and is common used by most PTZ cameras. In this project development, PC
based DVR had been used to communicate with PTZ camera through “com-
port”, or serial port. In fact, an interface converter is needed to convert the
serial RS232 port to RS 485 port. For short distance, the passive converter can
be use since that it does not require external power source which shown in
Figure 3.3(a). For long distance, up to a few kilometers, the converter should

be powered up to maintain the signals, Figure 3.3(b).
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(a) Without external power source needed.

(b) Require external power to maximum the safe distance for data transmission

Figure 3.3: Both devices ability to convert serial RS232 port to RS485
ports.

Computer sends command to the PTZ camera through RS485 cable pairs.
Therefore, Tx+ and Tx- (Transmit + and -) are being used on the computer
side. Then, the twisted pair to Rx+ and Rx- (Receive + and -) is connecting on

the PTZ side.
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Procedure to connecting a PTZ camera and static camera on hybrid-camera

system:

11.

111

Firstly, the PC is installed with a DVR card. Then, a coaxial cable is
used to connect the PC to cameras for video acquisition. Also, a
twisted pair 1s used for the RS485 command interface.

Appropriate protocol need to be set for PTZ camera command
interface, for examples baud rate is 2400bps for pelco ‘D’ and camera
ID, eg. 1 for static camera, 2 for PTZ camera,etc.

Matched up the setting with the setting those are configured in the
camera. At this point, the hybrid-camera system is able to control the

PTZ camera and also to acquire the images.
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CHAPTER 4

PANORAMIC IMAGE STITCHING BASED ON SIFT

4.1 Introduction

In this chapter, the objective is to implement the SIFT algorithm to perform
panoramic image stitching. The SIFT has several advantages over several
other approaches such as PCA-SIFT by Ke, Y. and Sukthankar, R. (2004) and
SURF by H. Bay et al. (2006). In the previous work, such features matching
method based on Harris corner is lack of invariant properties to increase the
reliability of image matching and stitching. Firstly, SIFT performs well while
matching panoramic image sequence despite rotation, zoom and illumination
change in the input images. Secondly, the matching relationships between
images may be discovered and recognized from datasets. Thirdly, all the
connected sets of images can be stitched to form a panoramic image. However,
the main objective to match images is to identify overlapping portions of

images in order to get a good solution for the image geometry.

In hybrid-camera system, all cameras have overlapping fields of view and thus
share geometric information. In this case, static camera’s views are defined as

model images while PTZ camera can serve to capture high resolution images
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from the viewpoints. Figure 4.1 shows the basic geometry of the hybrid-
camera system and the relationship of the cameras. Instead of capturing an
image from static camera, PTZ camera will capture the image of the scene
with different values of pan, tilt, and zoom to produce more details of the

environment.

Static Camera

PTZ Camera

Wall

Human Object
Detection

Figure 4.1: Geometry relationship of Hybrid cameras system in testbed.

Based on Figure 4.1, the relationship between the static camera and PTZ

camera are defined as

* Image PTZ camera, Ipry,

* Image static camera, [¢q¢ic

IPTZ = Istatic [EQ- 4-1]
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Figure 4.2: Sample image to show that Ipy; is subset of image, I ;4ic.

Image, Ipry is subset of image, Ig;4tic. In hybrid camera system, there are
more than one images, Ipr; Will be acquired by PTZ camera to be compared

with static camera. Each Iprzy), n=1,2,3..., has intersections with others.
IPTZ(TL) n IPTZ(TL+1) ,n= ], 2, 3.... [Eq 42]
The union of images, Iprz ) become image panoramic, Lyanoramic-

[Zn IPTZ(n) U IPTZ(n+1)] = Ipanoramic [Eq. 4.3]

Ipanoramic » provides wider of view and more information of the environment.

The following assumption is made

Istatic c Ipanoramic [Eq- 4-4]
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4.2 PTZ camera Geometry

PTZ Camera

Global Map /\
Keep geometric ipformation Static Wide Angle Camera

into databjase
Camera Network
- Calibrate both cameras < Capturing and Monitoring

<~ wide field of view

|Mu.ltip1e Images Stimchingl

| Output: Panorama Image |

Figure 4.3: Architectural and concept overviews of hybrid camera system.

When cameras are used in large and wide environment, the deviation of the
image nodal point is negligible compared to narrow environment. Based on
this, we fixed the PTZ camera routine and assume that the camera rotates
within the coverage of static camera image. In this process, un-calibrated
images are acquired; geometric information of each image is kept in a
database. In order to have an overview of those images, we propose the similar
approach as Gonzalez R.C. and Woods, R.E. (2007), which is to build a
panoramic image of the scene from PTZ camera views before we performing
image calibration between both cameras. The scene is decoupled from frame-
to-frame positioning of camera and focal length so that panoramic images are

created at different set of zooms.

In order to estimate the intensity mapping between images, we adopted the
method Scale Invariant Feature Transform (SIFT) features as the first layer to

extract the key points from each PTZ’s image. We implemented the image
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stitching method as proposed by Chen I.H and Wang S.J. (2007) to stitch them
to become a panorama image. Since a panorama image has a much wider field
of view, we proceed to a SIFT-matching process to estimate the master camera
pose of the images composing the panoramas. The work flows and

architecture are shown in Figure 4.4.

Start

\Z

Acquire current image N Image stitching process
from PTZ camera

V2 2

SIFT feature extraction Update image

\Z

Find nearest-nighbour

v

Hough Transform |

Finish

Figure 4.4: Work flow of multiple images stitching

In the stitching process, we know there are overlapping regions between an
image with another. So, one of the images will be selected as the reference
image. Then, the images acquired from the PTZ camera can be mapped to this
image according to the homorgraphy or corresponding key points between the
reference image and other images. Therefore, the panorama can be treated as a
very large single image. Then images information is stored in a database. Due
to the ability limitation of the matching technique, panoramas are generated at
different zoom parameters to cover a large range of scale change. For example
figure 4.5 and figure 4.6 shows the data collection of images of different zoom
parameters. We set a limit and do not create panoramas for very large zoom
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although PTZ camera can achieve ten times optical zooms. This procedure is
because the number of images needed to cover the whole homology is too
large and thus making the process slow. The robustness of the image will
cause failure in matching while calibrating the master and slave cameras
because of the texture and scale of the object might have a large different
index. To ensure the calibration process smoothly, the image was acquired

according to a fixed direction lookup table.

Figure 4.5: Data collection under different light illumination.
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Figure 4.6: Data collection under constant light illumination.

4.3 Images Matching

As explained earlier in Section 2.4,SIFT algorithmcan identify and generate
large numbers of keypoints in an image. However, many features of an image
will not have any correct match in the database of training images due to the
cluttered background. Therefore, the best matching candidate for each
keypoint is found by identifying its nearest neighbor in the database. The
nearest neighbor is determined as the keypoint with the minimum Euclidean
distance for the invariant descriptor vector. A global threshold on the distance
has to be set to discard the keypoints which do not have good match to the
database. By comparing the distance of the closest neighbor to that of the
second-closest neighbor, it able to obtain more effective measurement results.
This measure performs well because correct matches need to achieve reliable
matching. For a false match, there are likely a number of other false matches

withquite similar distancesdue to the high dimensionalityof the feature space.
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According to Lowe D.G. (2004), at least three nearest features identified as
reliable key points. A typical image contains thousands of features which may
come from different objects as well as background clutter. The nearest-
neighbor process discards false matches arising from background clutter but
does not identify matches from other valid objects and thus further matching
process is needed to identify correct subsets of matches. In this project, well-
known robust fitting methods such as RANSAC and Hough transform have

been implemented in panoramic image stitching process.

For image matching and recognition, a new image is compared with the
database based on their feature vectors. In the Nearest Neighbour process, a
search on the database for a feature in model image, F{ which corresponds to
an image feature, F/ is carried out. The correspondences are termed as key
points and each key point consists of the smallest Euclidean distance between
feature F} and F. or match M (F},F}). This can be performed rapidly to
identify the correct match key point descriptors with good proximity in the
database of features. However, in a cluttered image, many features may affect

the accuracy of correct matches and results in false matches of the key points.
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4.4 Experiments and Results

The experiment was conducted to show how the different effects, such as
illumination or texture on an image affect the image stitching process. The
experiment has been evaluated on the testbed setup in two different kinds of
environment. The first location was in the hallway while the second location is
in the laboratory. The testbed was placed in proximity 2.5 meters height in

both environment.

4.4.1 Experiment I — SIFT algorithm detection

In this experiment, three different kinds of images was selected to test through

the capability of SIFT detection. These images are classified in three catories.

a. High texture with high contrast as shown in figure 4.7.
b. Low texture with high contrast as shown in figure 4.8.

c. Medium texture with consistent illumination as shown in figure 4.9.
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Figure 4.7: High texture with high contrast.

Figure 4.8: Low texture with high contrast.
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Figure 4.9: Medium texture with consistent contrast.

These images were subjected to SIFT algorithm to identify the correspondence
key points among them. The original resolution of the images are 704x576
each. The resolution of the images shrinked 10 percent in each experiment

while the smallest resolution is 70x58. These images are shown in appendix C.

When the dataset followed through the SIFT algorithm, the key points in were
identified in each images. Figure 4.10 shows the example of SIFT algorithm
process, the total number of key points are detected by going through the

process below:

a. detecting and locating raw key points,
b. eliminating low contrast key points,
c. eliminating edge key points,

d. optimizing the number of key points.
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Figure 4.10: Example of SIFT algorithm process.

4.4.2 Results Experiment I(a)(b)(c)

In this experiment, the red colour lines shows the output of each key points
detected in each image. As below, figure 4.11 is the SIFT experiment results

of figure 4.7, 4.8 and 4.9.
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Figure 4.11 (a) — Results of high texture with high contrast
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Figure 4.11 (b) - Results of low texture with high contrast
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(c) Results of medium texture with consistent contrast

Figure 4.11: The output of the keypoints detected.
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Table 4.1: Number of key points detected through the SIFT algorithm of

Figure 4.11
Resolution | Pixels | Image(a) | Image(b) | Image(c)
0 0 0 0 0
70 x 58 4060 45 7 36
141 x 115 | 16215 152 29 108
211 x 173 | 36503 299 41 208
282 x 230 | 64860 552 89 335
352 x288 | 101376 794 162 470
422 x 346 | 146012 1144 237 665
493 x 403 | 198679 1531 355 817
563 x461 | 259543 1850 474 1030
634 x 518 | 328412 2074 595 1244
704 x 576 | 405504 |  ~113 622 1241

2500
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°
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=]
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_é esd=mimage(a)
o
<

image (c)

0 100000 200000 300000 400000 500000
Resolutions

Figure 4.12: Key points found in the images with different resolutions

For comparison, the graph Figure 4.12 according to the observation in Table
4.1. From the graph above, we determined that the number of key points
initially increases with image resolution. As we know, to perform reliable
SIFT algorithm, features extracted from the sample image is important. It can
be detectable under changes in noise, image scale and illumination. Most of

the points normallyrely on high-contrast part of image, such as object edges.In
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figure 4.11, these images had shown that output key points are concent rat ed
at high contrast edges.From figure 4.12, it also proved significantly that
image (a) which is high texture and high contrast, found the most number of
key points. In the other had, image (b) which is the low texture and high
contrast, found the less key points.The number of key points in image (a), (b)
and (c) will be nearly constant after an optimum resolution is,for example data
image (c). It is because the higher resolution of the image, the more noise will
be detected. These noises in the image will form low contrast key points. SIFT

algorithm will rejects the low contrast key points.

Table 4.2: Time elapsed through the SIFT algorithm of Figure 4.11

Resolution | Pixels | Image(a) | Image(b) | Image(c)

0 0 0 0 0
70 x 58 4060 2.59 2.96 1.92
141 x 115 | 16215 6.69 3.09 5.58
211x 173 | 36503 12.98 5.73 11.13
282 x230 | 64860 | 2298 10.26 17.27
352x 288 | 101376 | 3524 15.5 24.77

422 x 346 | 146012 | 5027 23.66 36.52
493 x403 | 198679 | 7330 33.77 47.94
563 x461 | 259543 | 90.03 46.52 64.55
634 x 518 | 328412 | 104.64 64.45 79.38
704 x 576 | 405504 | 11766 | 71.94 93.62
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Figure 4.13: Time elapsed in SIFT algorithm process against resolutions.

Figure 4.13 was plotted according to results of Table 4.2. It had shown that

when image resolutions increased, the processing time increased linearly.

As a conclusion, we can determine that the processing times in Table 4.2 and
plotted in Figure 4.13 for different resolutions as listed in Table 4.1 and
plotted in Figure 4.12. The number of output key points is affected by size of
resolution and also texture of the image. But the number of output keypoints
are nearly constant when it hits around 328 412 pixels or 0.3 megapixel. This
shows that larger resolution image does not increase the key point detection,
but increase detection of false key points and also processing time. So, we
decided to optimise the image resolution to 50% of the original image or

which is 352 x 288 as our resolution parameter in following experiment.
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4.4.3 Experiment II - Image stitching based on Hough Transformation

In this section, the performance evaluation of the proposed improvement of
the Lowe’s SIFT feature matching algorithm is presented. The goal is to
increase the number of correct matches and minimize the number of false
matches for an image pair from the wide-angle camera and PTZ camera. As
mentioned in Sub-section 4.3, two SIFT features F} and F} are matched when
SIFT descriptor of the feature Fi has the smallest distance to the descriptor of
feature F} as compared to all other extracted features. If the ratio between the
Euclidian distances to the nearest neighbour and to the second nearest
neighbour is below a threshold, t then the match is labeled as positive,
otherwise it will be labeled as negative. Among positive and negative labeled

matches, correct matches as well as false matches can be found.

In experiment I, the SIFT algorithm was conducted in hallway and laboratory.
Both location consisted a set of database each, which contained the nine most
distinct images was acquired by the testbed as shown in Figure 4.14 below.
The quality of the clarity under the laboratory on images showed the good
consistency of illumination. However, the image quality in the hallway is over
contrast and shows inconsistcy of illumination. These images were subjected
to SIFT algorithm to identify the correspondence key points among them. The

process results show in appendix D.
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Figure 4.14: Dataset which acquired by the testbed.

75



Firstly, we proceed with the laboratory dataset which had better image quality
compare to hallway. Table 4.3 shows the number of key points detected in
laboratory dataset. Then, hough transformation identified the key points
positions of the arbitrary shapes, and classified them in to inliers and outliers
as shown in figure 4.15. The yellow and blue “+” symbol are the nearest-
neighbour key points. The green “o” symbols are inliers, which are positive,
and red “o0” symbols are outliers that are negative or false key point. The
results reflexed in Table 4.4. For example figure 4.16, images set (a) has
been processed by SIFT algorithm. in image 1, it detected 625 key points and
377 key points in image 2. Then, the hough transformation performed robust
affine alignment on image 1 based on nearest-neighbor found in image 2.
Next, we performed image stitching process according to 189 inliers and 25

outliers that have been recognised. Finally, figure 4.18 as below shows the

decent final output of overall stitched image.

Table 4.3: Key points found in laboratory dataset

Image 1 2 3 4 5 6 7 8 9

Key points 625 | 377 | 270 | 878 | 506 | 408 | 693 | 371 284

Table 4.4: Numbers of inliers and outliers found in Figure 4.14

Set Inliers (0) Outliers (o)
a 189 25

b 203 89

c 287 66

d 160 90

e 90 14

f 56 8
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Figure 4.15: Inliers and outliers detection in laboratory dataset.
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Figure 4.16: Image stitching process and robust estimation based on
hough transformation between image 1 and image 2.
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Figure 4.17: Stitch the images portion by portion.
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Figure 4.18: Output of image stitching.
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Secondly, hallway dataset which had poor illumination and poor texture
shown in figure 4.14(b). As we know, hough transformation identified the key
points positions of the arbitrary shapes, the robust affine alignment was
effected by poor texture information and over exposed image quality. The
images were aligned with the timestamp printed on the image because of the
high intensity key points and high similarity shape detected. Figure 4.19

shows the reason results that it failed to continue the stitching process.

Robust Affine Alignment Nearest Neighbour

P O | [

Figure 4.19: Robust affline alignment affected by timestamp in the image.
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4.4.4 Robust estimation based on RANSAC and ImTrans

B1-87-2811 15:18°08 “!'!'}’2!!1 15

T Pty

(b)

Figure 4.20: Fast matching process and applied geometric transform on
laboratory dataset.

In figure 4.20, the image on the left is image acquired by a wide angle camera
in laboratory while images on the right are the panoramic images after matrix
affine transformation. In Figure 4.20 (a) fast matching between the wide angle
image and panoramic images was performed and in Figure 4.20 (b) the result
after geometry transformation using Imtrans algorithm in MATLAB is shown.

Next, the panoramic image was transformed and calibrated with wide angle
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camera image. This procedure will enabled both images to have similar

perspective ratio as shown in figure 4.21 below.

” . e )
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Figure 4.21: Similar perspective ratio between wide angle camera and
PTZ camera.

4.4.5 Limitations and Solutions

SIFT transforms an image into a large collection of feature vectors, each of
which is invariant to image translation, scaling, and rotation, partially
invariant to illumination changes and robust to local geometric distortion. It

requires features matching method, for example RANSAC to identify the
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matching keys from image A to image B. This technique relied on threshold of
distance ration to identified the best candidate match for each keypoint found.
The weakness of using this technique is, when threshold increases, the rate of

the false key points increase as well. The detection rate of the image will be

affected by the objects with high similarity which shown in figure 4.22 below.

Figure 4.22: Mismatch pairs detected by SIFT algorithm.

In this experiment, we applied filtering method to minimize the false detection
by using theorem trigonometry filter. By calculating the gradient of the pairs,
we successfully rejected most of the unsed key points as in figure 4.23. The
red lines show as positive pairs and blue lines show as floating pairs that are

unable to confirm.

Figure 4.23: Reject the false key points.
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Table 4.5: The accuracy(%) by using different threshold values

. Positive Negative Without . .
Matching Matching Matching Filter With Filter
threshold X Pairs (%)

Pairs (%)
04 39 31 55.71 94 .87
0.5 55 46 54.46 90.90
0.6 75 67 52.81 90.67

In table 4.5, different matching threshold value applied to a sample image.
Through the process, the threshold value 0.4 computed 39 pairs of positive and
31 pairs of negative gradient keypoints that are found at matching locations.
With the larger vote of positive pairs, we defined positive gradient consist
more region of interest in the image. So, the calculation of matching
percentage is 55.71%. Apparently, the rate of accuracy is increase from

55.71% to 94.87% after applied the theorem trigonometry filter.

Hough transform is limited in efficiency if a higher number of votes fall in the
correct bin and the bin can be detected easily amid the background noise. The
scaling of the bin if in too small, votes will be fall into neighbouring bins and
this causes the visibility of the main bin will be decreased.This is the reason
which caused hallway dataset image stitching to fail. The bin around the
timestamp on the images get high number of votes compared to other bin
which lack of visibility.To resolve the problem, we decided to remove the
timestamp on the images. Then, we continued the whole process again by
using hallway dataset. The results show in figure 4.24, figure 4.25 and figure

4.26 below.
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Figure 4.24: Fixed image stitching process by removing the timestamp on

the images

Figure 4.25: Fast matching process on hallway dataset.
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Figure 4.26: Comparison wide angle image with panoramic image after
applied geometric transform on hallway dataset.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this project, a comprehensive technical and background study on hybrid-
camera system has been carried out. To collect the information and dataset, we
have constructed a prototype system that allowsobjects to be moved around

from indoors to outdoors.

The major contribution of this project has been the developments of a novel
image stitching algorithm, that can automatic recognize and stitch high quality
image panoramas from image datasets. With that we are able to match
panoramic image to image from wide-angle camera effectively. The prototype
system was used to evaluate various multiple image matching methods and

test the performance and tune the parameters of our stitching algorithm.

We carried out a survey and study on various relevant approaches and
techniquesrelated to the scope of the project and have proposed the application
of SIFT to identify the correspondence keypoints in image dataset. There are

several advantages to such an approach. Firstly, by organizing the features of n
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images into a feature database,the complexity of matching images can be
reduced. Secondly, the geometric constraints for multiple views are stronger
than their pairwise counterparts and this allows more incorrect matches to be
rejected. Finally, we can exploit the probabilistic nature of » images matching

problem by using known incorrect matches in a data driven classifier.

Lastly, we have also carried out the research on how to improve the accuracy
and robustness by rejecting unwanted keypoints based on trigonometry
theorem. The rate of accuracy is increase from 55.71% to 94.87%. This has
shown great improvement in terms of determination and detection rate in

camera networks of Y.Q. Low et al. (2011).

5.2 Future Work

We conclude by identifying some avenues for future explorations:

In Chapter 3 and 4 we discussed automatic image stitching from multiple
views. Illumination, sensors and optics can affect the key points found. These
problems can be thought of within the general framework of computational
photography, which refers to computational image capture, processing and
manipulation techniques that enhance or extend the capabilities of digital
photography. Typically, it is about merging multiple pictures of the same
subject matter by using different exposure parameters. This is well handled by

the illuminated images and object to focus. In the future, there may be no such
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“poor” photograph, because the shooting conditions will be completely

reconfigurable after the event has been recorded.

Currently, the images need to be sorted out manually before stitching. With
the advancement of digital photography, our ability to understand images has
not kept up in pace with our ability to generate them. In the future, algorithms
for searching and sorting in image database will become as fundamental and

available as those for searching for text on the World-Wide Web.

In this project, further increase of the clarity of the image background,
background learning process is needed to differentiate the foreground and the
background objects.This technique will be able to solve the occlusion of
objects while its moving. Flexible models to correspondence with similar

metrics linked to human perception will be required for progress in this area.
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Appendix A

IMTRANS - Homogeneous transformation of an image

function newim = imTrans(im, T, region, sze);

im = double(im)/255; % Make sure image is double

threeD = (ndims(im)==3); % A colour image

if threeD ## Transform red, green, blue components separately
r = transformImage(im(:,:,1), T, region, sze);
g = transformImage(im(:,:,2), T, region, sze);

b = transformImage(im(:,:,3), T, region, sze);

# Fix to correct the image - for some reason
# it comes out mirrored left-to right

r = fliplr(r);
g = fliplr(g);
b = fliplr(b);

newim = repmat(uint8(0),[size(r),3]);
newim(:,:,1) = uint8(round(r*255));
newim(:,:,2) = uint8(round(g*255));
newim(:,:,3) = uint8(round(b*255));

else # Assume the image is greyscale
newim = transformImage(im, T, region, sze);
# Applying Fix
newim = fliplr(newim);

end

#

# The internal function that does all the work
function newim = transformImage(im, T, region, sze);
[rows, cols] = size(im);

# Determine default parameters if needed
if nargin == 2

region = [0 rows 0 cols];

sze = max(rows,cols);
elseif nargin ==

sze = max(rows,cols);
elseif nargin ~=4

error('Incorrect arguments to imtrans');
end

# Find where corners go - this sets the bounds on the final image
B = bounds(T,region);

nrows = B(2) - B(1);

ncols = B(4) - B(3);

# Determine any rescaling needed
s = sze/max(nrows,ncols);
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S=[s00 # Scaling matrix
0s0
001];

T = S*T;
Tinv = inv(T);

# Recalculate the bounds of the new (scaled) image to be generated
B = bounds(T,region);

nrows = B(2) - B(1);

ncols = B(4) - B(3);

newim = zeros(nrows,ncols);

[x,y] = meshgrid(1:ncols,1:nrows); # All possible xy coords in the image.

# Transform these xy coords.
sxy = Trans(Tinv, [x(:)'+B(3) ; y(:)'+B(1) ; ones(1,ncols*nrows)]);

xi = reshape(sxy(1,:),nrows,ncols);
yi = reshape(sxy(2,:),nrows,ncols);

[x,y] = meshgrid(1:cols,1:rows);

newim = interp2(X,y,double(im),xi,yi); # Interpolate values from source image

7

#

# Internal function to find where the corners of a region, R

# defined by [minrow maxrow mincol maxcol] are transformed to
# by transform T and returns the bounds, B in the form

# [minrow maxrow mincol maxcol]

function B = bounds(T, R)
P=[R(3)R(4)R#)R(B3) #homogeneous coords of region corners
R(1) R(1) R(2) R(2)
I 1.1 11
PT = round(Trans(T,P));

B = [min(PT(2,:)) max(PT(2,:)) min(PT(1,:)) max(PT(1,:))];
%  minrow maxrow  mincol maxcol
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Appendix B

Sample cammads of the PTZ camera

Command Word 3 | Word 4 Word 5 Word 6
Set Preset 00 03 00 01 to 20
Clear Preset 00 05 00 01to0 20
Go To Preset 00 07 00 01 to 20
Flip (180° about) 00 07 00 21
Go To Zero Pan 00 07 00 22
Set Auxiliary 00 09 00 01 to 08
Clear Auxiliary 00 0B 00 01 to 08
Remote Reset 00 OF 00 00
Set Zone Start 00 11 00 01 to 08
Set Zone End 00 13 00 01 to 08
Write Char. To Screen 00 15 X Position 00 to 28 | ASCII Value
Clear Screen 00 17 00 00
Alarm Acknowledge 00 19 00 Alarm No.
Zone Scan On 00 1B 00 00
Zone Scan Off 00 1D 00 00
Set Pattern Start 00 1F 00 00
Set Pattern Stop 00 21 00 00
Run Pattern 00 23 00 00
Set Zoom Speed 00 25 00 00 to 03
Set Focus Speed 00 27 00 00 to 03
Reset Camera to defaults 00 29 00 00
Auto-focus auto/on/off 00 2B 00 00-02
Auto Iris auto/on/off 00 2D 00 00-02
AGC auto/on/off 00 2F 00 00-02
Backlight compensation on/off 00 31 00 01-02
Auto white balance on/off 00 33 00 01-02
Enable device phase delay mode 00 35 00 00
Set shutter speed 00 37 Any Any
Adjust line lock phase delay 00-01 39 Any Any
Adjust white balance (R-B) 00-01 3B Any Any
Adjust white balance (M-G) 00-01 3D Any Any
Adjust gain 00-01 3F Any Any
Adjust auto-iris level 00-01 41 Any Any
Adjust auto-iris peak value 00-01 43 Any Any
Queryl 00 45 Any Any
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Appendix C

Different resolutions sample dataset.
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Appendix D

SIFT algorithm results of the laboratory dataset.

Image 1
71x 141x | 212x | 282x 352x 423x 493x 564x 634x 704x

Resolution 58 116 173 231 288 346 404 461 519 576
0.5

Preprocessing 1 0.05 | 0.06 | 0.08 0.11 0.14 0.17 0.22 0.27 0.32
0.0

DoG pyramids 3 0.05 | 0.07 | 0.10 0.14 0.18 0.24 0.30 0.37 0.45
0.3 15.8

Locating Keypoints 8 1.52 | 3.56 | 6.50 10.84 2 2338 | 29.76 | 38.19 | 48.83
0.0

Gradient 2 0.02 | 0.04 | 0.06 0.10 0.13 0.18 0.23 0.29 0.35

Orientation 0.4

assignment 5 0.16 | 030 | 0.51 0.77 1.09 1.34 1.52 1.81 1.85
2.9 12.1 21.4 44.5

Features Descriptor 8 6.10 2 6 34.05 8 60.13 68.44 79.85 77.17
43 16.1 28.7 61.9 100.4 120.7 128.9

Total Processing time 7 7.90 5 1 46.01 4 85.44 7 8 7

Keypoints Found 47 113 224 396 625 809 1064 1229 1446 1383

Image 2
71x 141x | 212x | 282x 352x 423x 493x 564x 634x 704x

Resolution 58 116 173 231 288 346 404 461 519 576
0.0

Preprocessing 1 0.01 0.03 | 0.05 0.08 0.11 0.15 0.19 0.24 0.29
0.0

DoG pyramids 3 0.03 | 0.06 | 0.09 0.15 0.17 0.22 0.29 0.35 0.44
0.3 14.5

Locating Keypoints 4 1.34 | 3.19 | 5.85 9.77 2 20.71 27.41 35.58 | 45.72

Gradient - 0.01 0.03 | 0.06 0.09 0.12 0.18 0.22 0.28 0.34

Orientation 0.0

assignment 6 0.11 0.20 | 0.33 0.47 0.60 0.78 0.99 1.20 1.17
2.1 14.7 27.1

Features Descriptor 2 4.54 | 8.08 4 20.43 8 35.01 46.20 | 52.61 53.24
2.5 11.5 21.1 42.7 101.2

Total Processing time 6 6.04 9 2 30.99 0 57.05 75.30 | 90.26 0

Keypoints Found 39 84 150 267 377 493 618 832 960 957

Image 3
71x 141x | 212x | 282x 352x 423x 493x 564x 634x 704x

Resolution 58 116 173 231 288 346 404 461 519 576

Preprocessing - 0.01 0.03 | 0.05 0.08 0.11 0.14 0.18 0.23 0.29
0.2

DoG pyramids 0 0.03 | 0.06 | 0.09 0.14 0.17 0.23 0.29 0.36 0.43
0.3 14.2

Locating Keypoints 0 1.24 | 3.03 | 5.60 9.68 5 2036 | 26.92 | 3530 | 45.03

Gradient - 0.02 | 0.03 | 0.06 0.09 0.13 0.17 0.22 0.28 0.34

Orientation 0.0

assignment 3 0.08 | 0.15 | 0.20 0.31 0.43 0.60 0.77 0.88 0.90
1.2 18.4

Features Descriptor 0 3.19 | 556 | 8.52 14.64 3 26.72 | 35.80 | 41.20 | 42.67
1.7 14.5 33.5

Total Processing time 3 4.57 | 8.86 2 24.94 2 4822 | 64.18 | 78.25 | 89.66

Keypoints Found 22 59 103 157 270 337 482 644 749 769
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Image 4

71x 141x | 212x | 282x 352x 423x 493x 564x 634x 704x

Resolution 58 116 173 231 288 346 404 461 519 576

Preprocessing - 0.01 0.03 | 0.05 0.08 0.11 0.15 0.18 0.24 0.29
0.0

DoG pyramids 2 0.03 | 0.06 | 0.09 0.13 0.17 0.23 0.29 0.36 0.43
0.4 17.2

Locating Keypoints 2 1.73 | 403 | 7.18 11.58 9 23.94 | 3098 | 39.59 | 5043

Gradient - 0.02 | 0.03 | 0.06 0.09 0.13 0.19 0.22 0.28 0.36

Orientation 0.0

assignment 7 0.22 0.41 0.69 1.04 1.36 1.68 2.01 2.28 2.34
2.5 183 | 30.7 59.5 102.6 | 103.7

Features Descriptor 5 9.46 9 4 48.35 9 74.21 92.18 1 2
3.0 114 | 229 | 388 78.6 1004 | 125.8 145.3 157.5

Total Processing time 6 7 5 1 61.27 5 0 6 6 7

Keypoints Found 47 176 335 566 878 1090 1338 1655 1857 1855

Image 5
71x 141x | 212x | 282x 352x 423x 493x 564x 634x 704x

Resolution 58 116 173 231 288 346 404 461 519 576

Preprocessing - 0.01 0.03 | 0.05 0.08 0.11 0.15 0.18 0.23 0.29
0.0

DoG pyramids 2 0.03 | 0.06 | 0.09 0.13 0.18 0.24 0.29 0.35 0.44
0.3 16.1

Locating Keypoints 8 1.58 | 3.64 | 6.76 10.66 5 21.85 | 29.09 | 37.33 | 48.11

Gradient - 0.02 | 0.03 | 0.06 0.09 0.13 0.17 0.23 0.28 0.35

Orientation 0.0

assignment 5 0.15 | 030 | 044 0.61 0.85 1.07 1.28 1.51 1.48
2.3 11.7 | 205 389

Features Descriptor 6 6.47 9 8 27.52 8 47.36 59.79 72.32 67.66
2.8 158 | 279 56.4 112.0 | 1183

Total Processing time 1 8.26 5 8 39.09 0 70.84 | 90.86 2 3

Keypoints Found 44 120 219 381 506 707 853 1079 1313 1216

Image 6
71x 141x | 212x | 282x 352x 423x 493x 564x 634x 704x

Resolution 58 116 173 231 288 346 404 461 519 576

Preprocessing - 0.02 | 0.03 | 0.05 0.08 0.11 0.15 0.18 0.23 0.29
0.0

DoG pyramids 2 0.03 | 0.06 | 0.09 0.13 0.17 0.23 0.29 0.35 0.44
0.3 15.6

Locating Keypoints 5 1.48 | 349 | 6.31 10.28 5 21.45 | 28.51 37.37 | 47.93

Gradient - 0.02 | 0.03 | 0.06 0.09 0.13 0.17 0.22 0.28 0.35

Orientation 0.0

assignment 3 0.12 | 023 | 0.32 0.50 0.70 0.88 1.00 1.19 1.22
1.4 14.7 29.5

Features Descriptor 1 5.12 | 9.75 5 22.47 2 40.12 | 46.07 | 54.35 | 5534
1.8 135 | 21.5 46.2 105.5

Total Processing time 1 6.79 9 8 33.55 8 63.00 | 76.27 93.77 7
26 95 181 273 408 535 722 834 990 984

Keypoints Found
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Image 7

71x 141x | 212x | 282x 352x 423x 493x 564x 634x 704x

Resolution 58 116 173 231 288 346 404 461 519 576

Preprocessing - 0.01 0.03 | 0.05 0.08 0.11 0.14 0.19 0.23 0.29
0.0

DoG pyramids 2 0.03 | 0.06 | 0.09 0.14 0.17 0.23 0.29 0.36 0.46
0.4 16.4

Locating Keypoints 1 1.66 | 3.80 | 6.82 11.09 3 22.52 | 30.21 38.25 | 48.93

Gradient - 0.02 | 0.03 | 0.06 0.09 0.13 0.18 0.23 0.29 0.38

Orientation 0.0

assignment 5 0.16 0.30 0.53 0.82 1.20 1.49 1.75 2.12 2.25
2.0 124 | 237 53.7

Features Descriptor 6 6.79 4 2 38.96 7 68.87 79.93 95.14 90.63
2.5 16.6 | 31.2 71.8 112.6 136.3 142.9

Total Processing time 4 8.67 6 7 51.18 1 93.43 0 9 4

Keypoints Found 38 126 231 433 693 972 1244 1441 1721 1616

Image 8
71x 141x | 212x | 282x 352x 423x 493x 564x 634x 704x

Resolution 58 116 173 231 288 346 404 461 519 576

Preprocessing - 0.01 0.03 | 0.05 0.07 0.11 0.14 0.19 0.24 0.30
0.0

DoG pyramids 2 0.03 | 0.06 | 0.09 0.12 0.17 0.23 0.29 0.36 0.45
0.3 15.3

Locating Keypoints 8 1.53 3.50 6.33 10.33 2 21.19 | 28.11 36.21 46.81

Gradient - 0.01 0.03 | 0.06 0.09 0.13 0.17 0.22 0.28 0.35

Orientation 0.0

assignment 4 0.12 | 0.19 | 0.27 0.44 0.61 0.79 0.94 1.15 1.15
1.6 12.2 28.4

Features Descriptor 8 499 | 7.52 5 20.28 0 35.99 | 4496 | 52.85 | 53.74
2.1 11.3 19.0 44.7 102.8

Total Processing time 2 6.69 3 5 31.33 4 58.51 74.71 91.09 0

Keypoints Found 31 89 138 227 371 511 650 811 958 971

Image 9
71x 141x | 212x | 282x 352x 423x 493x 564x 634x 704x

Resolution 58 116 173 231 288 346 404 461 519 576

Preprocessing - 0.01 0.03 | 0.05 0.08 0.11 0.14 0.18 0.23 0.29
0.0

DoG pyramids 2 0.03 | 0.07 | 0.09 0.17 0.17 0.23 0.29 0.35 0.45
0.3 15.3

Locating Keypoints 7 1.61 3.78 | 6.30 10.23 3 21.27 | 2846 | 36.81 47.41

Gradient - 0.02 | 0.03 | 0.06 0.09 0.13 0.18 0.22 0.28 0.35

Orientation 0.0

assignment 4 0.10 | 0.16 | 0.20 0.35 0.44 0.62 0.85 0.98 1.05
1.7 19.8

Features Descriptor 4 425 | 6.78 | 9.38 15.53 9 28.66 | 38.98 | 46.12 | 46.86
2.1 10.8 16.0 36.0

Total Processing time 7 6.02 5 8 26.45 7 51.10 | 68.98 84.77 | 96.41
32 78 126 173 284 362 519 700 842 840

Keypoints Found
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