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ABSTRACT 
 
 

UNIVERSAL PORTFOLIOS GENERATED BY PROBABILITY 
DISTRIBUTIONS 

 
 

Lim Choon Seng 
 
 
 
 
 
 

The idea of using a probability distribution to generate a universal portfolio is 

due to Cover (1991) and Cover and Ordentlich (1996). We generalize this idea 

to generate a wider class of universal portfolios different from the Dirichlet 

universal portfolios due to Cover and Ordentlich (1996). The well-known 

Dirichlet joint distribution can be derived from a transformation of a m 

random variables, each of which has the gamma(!! , 1) distribution for 

! = 1, 2,… ,!. The non-Dirichlet Cover-Ordentlich universal portfolio can be 

generated using any set of ! independent distributions different from the 

gamma distribution. For this purpose, we need to use the Monte Carlo method 

to simulate the ! random variables to generate the universal portfolio. The 

portfolio is run on some real stock data sets selected from the Kuala Lumpur 

Stock Exchange to evaluate its empirical performance. 

 

The restriction of the variates lying in the simplex of the vectors in the Cover-

Ordentlich universal portfolio can be removed to generate a general class of 

finite order and moving-order universal portfolios. The low-order universal 

portfolios contribute to the saving of computer memory and computational 

time in their implementation. The comparative performance of the universal 
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portfolios of order 1, 2, 3 generated by some common probability distributions 

is studied. These portfolios can outperform the Dirichlet Cover-Ordentlich 

universal portfolio for some data sets, thereby demonstrating the practical 

significance of the memory and time saving implementation of the such 

portfolios. 

 

An algorithm to generate the moving-order universal portfolio is proposed for 

efficient implementation of the portfolio. The moving-order universal 

portfolios are generated for a few probability distributions and run on some 

selected three-stock data sets. The ratio of the capitals achieved by the best-

constant-rebalanced portfolio to the universal portfolio as a function of the 

number of trading days is computed for the moving-order universal portfolio 

to evaluate its performance 
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CHAPTER 1 

 

INTRODUCTION 

 

 

 A portfolio is an investment strategy for more than one asset. In this 

thesis, without loss of generality, we assume that the assets are stocks. 

Generally, the investment goal is to increase capital return, reduce the risk of 

investment or both. We invest a portion of the total capital in each asset in the 

portfolio to achieve the goal. The key concern in portfolio theory is how to 

allocate the different proportions of the portfolio in everyday investment. 

 

Harry Markowitz introduced the mathematical portfolio theory in 1952. 

In Markowitz (1952), the expected returns and variances of return are 

calculated for different brackets of portfolio. It searches for the portfolio that 

shows the maximum expected return, given that the variance of return is fixed 

at certain level which is acceptable by the investor; or vise versa, minimize the 

variance of return by holding the portfolio expected return constant. The 

Markowitz portfolio theory shows that the selected portfolio can achieve the 

goal of return by ensuring that it does not exceed the tolerance risk level of the 

investor. This idea is later known as the expected return-variance rule (EV-

rule). The concept is widely used in financial sector for investment and it can 

be described by a diagram known as the Efficient Frontier curve (Figure 1.1).  
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Figure 1.1:  Efficient frontier curve 

 
 

However, there are some criteria for the EV-rule to be valid. The first 

market behavior assumption is that all investors are risk averse but somehow in 

practice it may not be applicable to all investors. The investors are solely 

making their decision based on the risk and reward of their investment based 

on the mean and variance of the returns. Therefore, another important 

assumption to be taken into account is the probability distribution of the asset 

prices in the portfolio over the holding period of the mean and variance 

calculation. In Markowitz (1959), it assumes the normal distribution for 

investment returns over a single period case.  

 

 The study is extended to the multi-period case where the mean and 

variance of the returns could be varying in time space. Mossin (1969), Fama 

(1970) and Hakansson (1974) make different assumptions in analyzing the 

problem. Independence of returns in between periods is one of the common 

assumptions. In Merton (1990), a more realistic assumption such as lognormal 

distribution for returns is considered when analyzing the portfolio problem in 

continuous time.  
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From the previous research in portfolio theory, we realise that the 

selection of proportion of assets in the portfolio is not unique which depends 

on the special characteristics of the market. The relation and movement of 

assets in the portfolio will directly affect the expected return and variance for 

analysis. Besides, the assumption in distribution and the independence 

properties may not always hold for a multi-period investment portfolio.  

 

 In 1991, Cover (1991) introduces the uniform universal portfolio in 

which, unlike the optimal portfolio theory, no assumption is made on the 

distribution of the asset prices and returns. Instead of the mean and variance of 

the returns, it focuses on determining the proportions of investment for each 

asset in the portfolio. It is based on the rebalancing the portfolios, developed in 

Kelly (1956), Mossin (1969), Thorp (1971) and etc. We allocate different 

proportions of investment in the assets contained in the portfolio to generate a 

higher wealth return, which is better than investment in a single asset 

 

The benchmark of the Cover universal portfolio is to generate a 

portfolio with the total wealth achievable approaching that of the best constant 

rebalance portfolio (BCRP). Cover (1991) showed empirically that based on 

the New York Stock Exchange data over a 22 year period, universal portfolios 

perform well on two-stock portfolios. However, in this model of the universal 

portfolio, the transaction cost is not included. Two-stock universal portfolios 

are also studied by Tan (2004b). 
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 Another study on universal portfolio is by Helmbold et al. (1998) in 

employing the multiplicative update rule in the portfolio derived from a frame 

rule in Kivinen and Warmuth (1997). The algorithm is easier to be 

implemented and requires less computer memory for implementation 

compared to Cover’s universal portfolio. A study by Cover and Ordentlich 

(1996) includes the utilization of side information to increase the universal 

wealth achievable. They focus on the universal portfolio generated by the 

Dirichlet probability distribution. It was proven that the ratio of the wealth of 

the BCRP to the universal wealth with side information is bounded under by a 

polynomial in the number of trading days of the assets.  

 

Ishijima (2001) employs a numerical method in computing the Dirichlet 

universal portfolio and shows empirically that the results obtained are 

comparable to the theoretical results. These simulation algorithms give us an 

idea to generate a wider class of universal portfolios different from the 

Dirichlet universal portfolio. In Chapter 3, we shall show how to generate 

universal portfolios using Monte Carlo simulation. 

 

In Cover and Ordentlich (1996), the focus is on the universal portfolio 

generated by Dirichlet distribution due to theoretical difficulties in considering 

other distributions. For the universal portfolio generated by a distribution 

different from the Dirichlet distribution, namely the non-Dirichlet universal 

portfolio, we propose to compute the portfolio by employing the computation 

algorithm suggested in Ishijima (2001). We are basically using Monte Carlo 

simulation to generate the random variables from different probability 
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distributions for the portfolio computation. The details will be presented in 

Chapter 3. The performance results on some data sets will be studied and 

compared with the wealth achieved by the Dirichlet universal portfolio. 

 

 In Chapter 4, we introduce the finite-order universal portfolio generated 

by some probability distributions due to Tan (2013). This type of universal 

portfolio depends only on the positive moments of the generating probability 

distributions.   

 

The finite-order universal portfolio of order ! depends on the most 

recent ! days of the stock-price data, assuming that our assets are stocks. In 

order to reduce the extensive memory and long computational time, we choose 

the low order universal portfolio, where the order ! is a small integer, say 

! = 1,2,3. The universal wealth achieved can be compared with the BCRP 

wealth and also among the wealths generated by different probability 

distributions 

 

 The finite-order universal portfolio can be generalized to a moving-

order universal portfolio, where the order ! = ! and in which n days of past 

stock-price data is required for computing the portfolio on day n+1. This 

moving-order portfolio is the same as the ! -weighted universal portfolio 

defined by Cover and Ordentlich (1996). It is more general than the Cover-

Ordentlich universal portfolio because the support of the generating probability 

distributions is not restricted to the simplex of the portfolio vectors.  
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The moving-order universal portfolio on day ! + 1 is computed as the 

normalized sum of all products of the raw moments of the generating 

distributions and the price-relatives for n days. As the number of trading days 

increases, the computation will be burdensome as the order of the moments 

increases. To overcome this problem, we use a recursive algorithm to update 

the raw moments each day. In summary, we use Tan’s (2013) algorithm to 

update the moment function and product of the price relatives recursively. This 

algorithm in calculating the moving-order portfolio has the advantage that the 

normalized sum of the product of the moments and the price-relatives can be 

calculated recursively, thereby saving the memory-implementation 

requirements and computation time. 

 

In Chapter 5, we study the ratio of wealth achieved by the BCRP to that 

of the universal wealth as a function of the number of trading days. This ratio 

seems to behave like a polynomial in the number of trading days for come 

stock-price data sets. This asymptotic behavior is useful in evaluating the 

theoretical performance of a distribution-generated universal portfolio. 
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CHAPTER 2 

 

REVIEW OF THE COVER-ORDENTLICH UNIVERSAL PORTFOLIO, 

THE NUMERICAL METHOD AND ALGORITHM FOR ITS 

IMPLEMENTATION 

 

 

2.1  Some Basic Definitions 

 

 In universal portfolio investment, no assumption is made on the 

stochastic model of the stock prices. Let !! = !!!, !!!,… , !!"  be the stock-

price-relative vector on the !!! trading day in an m-stock market, where the 

!!" is the price relative of the !!! stock which is the ratio of the closing price of 

the !!! stock to the opening price on day !, for ! = 1,2,… ,!. Clearly !! ≥ !. 

Let !!  denote the sequence of price-relative vectors !!,!!,… ,!! . Let 

!! = !!!, !!!,… , !!!  be the portfolio strategy used on day ! , where !!" is 

the proportion of the current wealth invested on stock ! on day !, 0 ≤ !!" ≤ 1 

for ! = 1,2,… ,! and !!"!
!!! = 1. The sequence of portfolios is known as a 

constant rebalanced portfolio if !!" = !! for all ! = 1,2,…, independent of !. 

We let ! = !!  denote a constant rebalanced portfolio. The wealth achieved 

after ! trading days by a constant rebalanced portfolio ! is given by 2.1  

assuming an initial wealth of 1 unit, after knowing the price-relative sequence 

!!,!!,… ,!!: 
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!! ! = !!!!

!

!!!
.  2.1  

(Remark: ! refer to the transpose of a vector) 

  

Given these ! days performance, the best-constant-rebalanced-portfolio 

(BCRP) wealth !!∗ !!  is defined as:  

 !!∗ !! = max
!
!! !   2.2  

and the portfolio !∗ achieving the maximum in 2.2  is known as the BCRP, 

namely, !!∗ !! = !! !∗ . 

 

2.2 The Cover-Ordentlich Universal Portfolio 

 

 Cover and Ordentlich 1996  shows that there exists a universal 

portfolio having the same asymptotic exponential growth rate as the BCRP for 

any stock vector sequence !! with or without side information as ! → ∞. 

 

 Let ! !  be a probability measure defined on the simplex of portfolio 

vectors !, where ! = ! ∈ !!: !! ≥ 0, !!!
!!! = 1 , with !" !! = 1. The 

portfolio vector is assumed to be: 

 !! =
1
! , 1! ,… , 1! . 2.3  

When ! !  is the Dirichlet !
! ,

!
! ,… ,

!
!  distribution, !! is given by: 

 
!" =

! !
2

! 1
2

! !!
! !
!

!

!!!
!!. 2.4  
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Then !!!!  generated by ! !  or the ! -weighted universal portfolio is 

defined as: 

 
!!!! =

!!! !! !" !
!! !! !" !

  2.5  

where !! ! = 1!and!!! ! = !!!
!!! !!  given the market sequence 

!!,!!,… ,!! . Then, the total wealth achieved after ! trading days by the 

universal portfolio can be expressed as the average of !! !  with respect to the 

measure ! ! : 

 
!! !! = !!!!!

!

!!!
 

= !!!!!! ! !" ! !!
!!!! ! !" !

!

!!!
 

= !! ! !" !
!!!! ! !" !

!

!!!
 

= !! !
!

!" ! . 

 2.6  

It was shown in Cover and Ordentlich (1996) that: 

lim
!→!

sup
!!

1
! ln !!

∗ − 1
! ln !! = 0. 

 

! Cover and Ordentlich 1996  studied the performance of the universal 

portfolio 2.5  with the availability of the side information. Side information is 

modeled as a finite-valued variable ! that is available at the starting time of 

each investment period where ! = 1,2,… , ! is known as the state. The constant 

rebalanced portfolio is extended to the state dependent rebalanced portfolio 
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since the side information is available for each period and the wealth function 

is: 

 
!! ! ∙ ,!!|!! = !! !! !!

!

!!!
  2.7  

where ! 1 ,! 2 ,… ,! ! ∈ ! and !! ∈ ! = 1,2,… , ! . The BCRP wealth is 

given by: 

 !!∗ !!|!! = max
! ∙ ∈ℬ!

!! ! ∙ ,!!|!!   2.8  

where the exponential growth rate of wealth at time ! is: 

 !∗ !!|!! = 1
! log !!

∗ !!|!! .  2.9  

 

 Again, let ! !  be a probability measure defined on the simplex ! of 

the portfolio vectors. The !-weighted universal portfolio with side information 

is defined as: 

 
!! ! =

!!!!! !|!ℬ !" !
!!!! !|!ℬ !" !

,! ∈ !,! = 2,3,…!!. 2.10  

The wealth function with side information is given by: 

 
!! !!|!! = !!! !! !!

!

!!!
. 2.11  

Due to 2.6 , the wealth function can be expressed as the following along each 

subsequence !:!! = ! : 

 
!! !!|!! = !! !|! !" !

!

!

!!!
 2.12  

where the corresponding exponential growth rate of wealth is: 
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 ! !!|!! = 1
! log !! !

!|!! . 2.13  

From 2.9  and 2.13 , for the special measure ! !  chosen to be the uniform 

(Dirichlet 1,1,… ,1)  and Dirichlet !
! ,

!
! ,… ,

!
!  distributions, Cover and 

Ordentlich shows that: 

 lim
!→!

sup
!!,!!

1
! log

!!∗ !!|!!
!! !!|!!

!

= lim
!→!

sup
!!,!!

!∗ !!|!! −! !!|!!  

= 0 

 

2.14  

The proof of 2.14  is based on the following bounds for the ratio of wealths: 

 !!∗ !!|!!
!! !!|!!

≤ ! + 1 ! !!!  2.15  

for the Dirichlet 1,1,… ,1  distribution and 

 !!∗ !!|!!
!! !!|!!

≤ 2! ! + 1
! !!!

!  2.16  

for the Dirichlet !
! ,

!
! ,… ,

!
!  distribution. 

 

 Without loss of generality, we study the Cover-Ordentlich universal 

portfolio 2.5  without side information in this thesis. The focus of our thesis 

is to study the performance of the Cover-Ordentlich universal portfolio 2.5  

generated by the general Dirichlet !!,!!,… ,!!  distribution and a non-

Dirichlet distribution defined on the simplex B. For this purpose, we use 

Ishijima 2001  numerical method. 
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2.3 The Ishijima Numerical Method 

 

Ishijima 2001  proposed to compute the Dirichlet universal portfolio 

by using a numerical method. The general Dirichlet !!,!!,… ,!!  distribution 

is defined by:  

!" ! !

= ! !! + !! +⋯+ !!
! !! ! !! …! !!

!!!!!!!!!!!!… !!!!!!!!!!!!!!!!!! 
2.17  

where 0 ≤ !! ≤ 1 for ! = 1,2,… ,! and !!!
!!! = 1. Note that the parameters 

!! > 0 for ! = 1,2,… ,!. 

 

A Monte Carlo simulation technique is used to generate the Dirichlet 

random variables. In Wilks 1962 , an efficient way to generate the Dirichlet 

variables is to start from the gamma variables. Let !! have the gamma !! , 1  

distribution with probability density function (p.d.f): 

 !! !! = 1
! !!

!!
!!!!!!!! ,!! > 0 2.18  

for ! = 1,2,… ,! where !!,!!,… ,!! are mutually independent. 

 

 The join p.d.f of !!,!!,… ,!! is given by: 

! !!,!,… ,!!

= 1
! !!!

!!!
!!!!!!!!!!!!…!!!!!!!! !!!!!!⋯!!! . 

2.19  

By the transformation of: 

!! =
!!
!!!

!!!
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 !"!!!!!!!! =
!!!
!!

, for!! = 1,2,… ,! − 1!

!"#!!! = !, 
2.20  

it is well-known that !!, !!,… , !!!!  has the Dirichlet !!,!!,… ,!!  

distribution 2.17  (see for example, Wilks 1962 ). In other words, by 

simulating !!,!!,… ,!! , we can generate the Dirichlet !!,!!,… ,!!  

distribution. 

 

 We shall focus on generating the non-Dirichlet distribution by 

simulating !  independent random variables !!,!!,… ,!!  which are not 

gamma !! , 1  variates, through the transformation !! = !!
!!!

!!!
 for ! =

1,2,… ,! − 1. 

 

 In order to generate the universal portfolio by this numerical method, it 

is necessary to write 2.5  in the form: 

 !!!! =
!! ! !!! !
!! ! !! !

 2.21  

and using sampling with Monte Carlo simulation, 

 
!!!!,! =

1
! !! ! !! ! !!!!!
1
! !! ! !!

!!!
, ! = 1,2,… ,! 2.22  

where ! is the total number of simulations. The details will be discussed in 

Chapter 3. 

 

 



! 14 

2.4 An Algorithm for Computing the Moving-Order Dirichlet 

Universal Portfolio 

 

Tan 2004!  proposed an algorithm for computing the (moving-order) 

universal portfolio 2.5  generated by the Dirichlet !!,!!,… ,!!  distribution 

2.17 . Writing ! = !! ,!! = !!"  and expanding the product in 2.1  as a 

sum, we obtain : 

 !! !,!!

= …
!

!!!!
!!!! … !!!!!!!!!!!!!!!⋯!!!!!

!

!!!!!!
!! !!,… , !!!!  

2.23  

where!!!!!!!!!!!!!!!!!!!!!!!!!!! !!,… , !!!! = !!!!
!

!!!!!∈!! !
 2.24  

for !! = 0,1,… ,!!!"#!! = 1,2,… ,! − 1.  !! !  is the set of all sequences 

!! = !!, !!,… , !! ∈ 1,2,… ,! !  with !!  1’s, !!  2’s,…,!!!! ! − 1 ’s and 

! − !! − !! −⋯− !!!! !!’s and ! = !!, !!,… , !!!! . We define the moment 

function !! ∙  by: 

 
!! !!,… , !!!! = !!!! … !!!!!!!!!!!!!!!⋯!!!!!

ℬ
!" !  2.25  

where !" !  is given by 2.17 . Therefore, from 2.23 , 2.24  and 2.25 , 

the universal wealth 2.7  can be expressed as: 

!! !! !

= !! !,!!
!

!" ! !

= …
!

!!!!
!!!! … !!!!!!!!!!!!!!!⋯!!!!! !! !!,… , !!!!

!

!!!!!!
!" !

ℬ
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= …
!

!!!!
!! !!,… , !!!! !! !!,… , !!!!

!

!!!!!!
 2.26  

 

To compute 2.26  recursively, define: 

 !! !!,… , !!!! = !! !!,… , !!!! !! !!,… , !!!! . 2.27  

From 2.26  and 2.27 , we have: 

 
!! !! = …

!

!!!!
!! !!,… , !!!!

!

!!!!!!
. 2.28  

The two quantities !! ∙  and !! ∙  in 2.27  are computed recursively. From 

2.17  and 2.25 , we have 

!! !!,… , !!!! !

= ! !! +⋯+ !!
! !! …! !!

× !!!!!!!!!… !!!!!!!!!!!!!!!!!!!!!!⋯!!!!!!!!!!
ℬ

 

= ! !! +⋯+ !!
! !! …! !!

!

!!!!!!!×! !! + !! …! !!!! + !!!! ! ! − !! −⋯− !!!! + !! !
! ! + !! +⋯+ !!!! + !!

 

2.29  

Obviously from 2.29 , we have 

!! !!,… , !! + 1,… , !!!!
!!!! !!,… , !! ,… , !!!!

!

= ! !! + 1+ !!
! !! + !!

×! ! − 1+ !! +⋯+ !!!! + !!
! ! + !! +⋯+ !!!! + !!

 

= !! + !!
! − 1+ !! +⋯+ !!

 2.30  

for ! = 1,2,… ,! − 1. Similarly, 
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!! !!,… , !!!!
!!!! !!,… , !!!!

!

= ! ! − !! −⋯− !!!! + !!
! ! + !! +⋯+ !!!! + !!

×! ! − 1+ !! +⋯+ !!!! + !!
! ! − 1− !! −⋯− !!!! + !!

 

= ! − 1− !! −⋯− !!!! + !!
! − 1+ !! +⋯+ !!

 2.31  

 

On the other hand, the recursion formula for !! is given by: 

!! !!,… !!!!  

= !!,!
!!!

!!!
!!!!

!!!! !!,… , !! − 1,… , !!!! + !!,!!!!! !!,… , !!!!  2.32  

with the end-point conditions of: 

(i) !! 0,… ,0 = !!,!!!!! 0,… ,0  for all !! = 0, ! = 1,2, . . ,! − 1, 

(ii) !! 0,… ,!,… ,0 = !!,!!!!! 0,… ,! − 1,… ,0  for !! = !, !! = 0 for 

all ! ≠ !. 

 

By multiplying 2.32  with !! and apply the recursion formula for !! 

in 2.30  and 2.31 , the quantity !! ∙  in 2.27  can be computed recursively 

as: 

!! !!,… , !!!! !

= !!,!
!!!

!!!
!!!!

!!!! !!,… , !! − 1,… , !!!! !! !!,… !! ,… , !!!! !

!!!!!!!!!!!!!!!+!!,!!!!! !!,… , !!!! !! !!,… , !!!!  
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= !!,!
!!!

!!!
!!!!

!! − 1+ !!
! − 1+ !! +⋯+ !!

!!!! !!,… , !! − 1,… , !!!! !

!!!!!!!!!!!!!!!+!!,!
! − 1− !! −⋯− !!!! + !!

! − 1+ !! +⋯+ !!
!!!! !!,… , !!!!  

2.33  

for !! + !! +⋯+ !!!! ≠ !  and remove the last term in 2.33  for 

!!, !!,… , !!!! = !. The end-point conditions of !! are given by: 

(i) !! 0,… ,0 = !!,! !!!!!!
!!!!!!!⋯!!!

!!!! 0,… ,0  

(ii) !! 0,…!,… ,0 = !!,! !!!!!!
!!!!!!!⋯!!!

!!!! 0,… ,! − 1,… ,0  for 

!! = !, !! = 0 for all ! ≠ !. 

To compute !!!!  in 2.5  recursively, we use the recursive formula for 

calculating !! !!  in 2.26  and apply a similar type of recursion formula for 

calculating !ℬ !! ! !" ! . 

 

Tan (2013) has generalized the algorithm for computing the moving-

order universal portfolio generated by the independent probability distributions. 

This algorithm will be used in Chapter 5 of the thesis. 
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CHAPTER 3 

 

PERFORMANCE OF THE DIRICHLET AND NON-DIRICHLET 

UNIVERSAL PORTFOLIOS GENERATED FROM SIMULATION 

 

 

In Section 2.3, we have mentioned the Ishijima numerical method for 

computing the Dirichlet universal portfolio by using a transformation of ! 

random variables, where each variable has the gamma !! , 1  distribution for 

! = 1,2,… ,!. We can generate a !-weighted universal portfolio which is non-

Dirichlet by choosing a set of ! non-gamma !, 1  random variables using the 

Ishijima numerical method. The performance of the non-Dirichlet Cover-

Ordentlich universal portfolios will be studied in this chapter. Furthermore, we 

will compare the performance among the best-constant-rebalanced portfolio 

(BCRP), the Dirichlet universal portfolio and the non-Dirichlet universal 

portfolio by running the Dirichlet and non-Dirichlet universal portfolios on 

selected stock-price data sets. 

 

 In Section 2.3, we observe that the Cover-Ordentlich universal portfolio 

generated by the probability measure ! !  defined on the portfolio simplex ! 

can be computed a ratio of expectations, namely, 

 !!!! =
!! ! !!! !
!! ! !! !

, 3.1  

where !! ! !!! !  and !! ! !! !  are the expectations of !!! !  and 

!! !  respectively with respect to the probability measure ! ! . We can 
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compute expected values of random variables using the law of large numbers. 

Hence the Monte Carlo Simulation technique may be used. 

  

3.1 Generation of the Dirichlet Universal Portfolio 

 

According to a theorem in Wilks 1962 , if !!, for ! = 1,2,… ,! are 

mutually independent random variables drawn from the gamma !! , 1  

distribution where the probability density function (p.d.f) of !! is: 

 ! !! = 1
! !!

!!
!!!!!!!! !!, !! > 0,       3.2  

and ! ∙  is the gamma function, then the Dirichlet !!,!!,… ,!!  distribution 

is the joint p.d.f. of !!, !!,… , !!!! through the following transformation: 

 !! =
!!
!!!

!!!
       3.3  

for ! = 1,2,… ,! − 1. It is proven in Wilks 1962  and Arnason 1972  that it 

is an efficient way to generate the Dirichlet !!,!!,… ,!!  distribution.  

 

Given m stocks in the portfolio and a vector ! = !!, !!,… , !!  is 

generated independently from the gamma !! , 1  distributions for ! = 1,2,… ,!  

where ! = !!,!!,… ,!!  is the parameter vector the Dirichlet !  distribution. 

The generated !  is then transformed into the Dirichlet variable ! ! =

!!, !!,… , !!  where ! denotes the !!! time simulation. The sampling process 

will be repeated T times and the algorithm is summarized below for one cycle: 

1. Generate the independent random variables, !! from the gamma(!! , 1) 

for ! = 1,2,… ,!. 

2. Transform the generated gamma variable into the Dirichlet variable by: 
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!! ! = !!
!!!

!!!
! , for!! = 1,2,… ,! − 1!

and!!!! = 1− !! !
!!!

!!!
 

where ! denotes the !!! sampling. 

3. Resample the Dirichlet variable, !! again for the next cycle. 

 

 After the cycle is repeated a total of ! times, the Dirichlet universal 

portfolio is computed by: 

!!!!,! =
!! ! !! ! !!

!!!
!! ! !!

!!!
!!and!

!! !! = ! ! !
!

!!!
!! !. 

(A remark on the notation !  and !  is in order here. We refer !  as the 

quantity obtained from the !!! simulation, whereas ! refers to the transpose of 

a vector.) 

The number of simulations, T will be set at 10000 in order to ensure that the 

approximation from the Monte Carlo simulation is close to the actual value.  

 

Remark. Note that in the sampling process, if the random variable !!  is 

generated from gamma 1,1  for all ! = 1,2,… ,! , then the measure ! ∙  

becomes the uniform distribution (Dirichlet 1,1,… ,1 ). 
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3.2 Generation of the non-Dirichlet Universal Portfolio 

 

 The non-Dirichlet universal portfolio is the focus of our study in this 

Chapter. We shall modify the algorithm in constructing the Dirichlet universal 

portfolio by generating the vector Z from non-gamma probability distributions.  

 

 The algorithm for a simulation is: 

1. Generate the !  independent random variables !!  from some given 

distribution which is other than the gamma !! , 1  distribution for 

! = 1,2,… ,!. 

2. Transform the generated variable !! into the pseudo portfolio variable 

by: 

!! ! = !!
!!!

!!!
! , for!! = 1,2,… ,!!

and!!!! = 1− !!!
!!!

!!!
 

where ! denotes the !!! sampling. 

3. Resample the variable !! again for the next cycle. 

 

After the cycle is repeated a total of ! times, the non-Dirichlet universal 

portfolio is computed by:  

!!!!!,! =
!! ! !! ! !!

!!!
!! ! !!

!!!
!and 

!! !! = ! ! !!!
!

!!!
. 

Again the number of simulations ! will be set at 10,000. 
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Note that the random variables zi can be drawn from same common 

probability distributions with different parameters for ! = 1,2,… ,! . The 

random variables are generated through the inverse function in Matlab and the 

inverse transform method. We shall focus our study in two-parameter 

distribution. One of the parameter will be fixed and adjust the other to achieve 

higher performance in terms of total wealth achieved. The joint p.d.f of 

!!, !!,… , !!!! for a non-Dirichlet universal portfolio may not have a closed 

form. 

  

3.3 Performance of the Dirichlet and non-Dirichlet Universal Portfolio 

 

The performance results for both Dirichlet universal portfolio and non-

Dirichlet universal portfolio are presented in this section. For our study, 3-

stock portfolios are selected form the Kuala Lumpur Stock Exchange KLSE . 

These portfolios designated as A, B and C consists of the companies listed in 

Table 3.1. The stock-price data sets cover the period of 1 January 2003 until 30 

November 2004, consisting of 500 trading days. 

 

Table 3.1: Malaysia companies in the 3-stock portfolios in A, B and C 
Data Set Company 1 Company 2 Company 3 

Set A Maybank Genting Amway 

Set B Public Bank Sunrise YTL Corp 

Set C Hong Leong Bank RHB Capital YTL Corp 

The abbreviations YTL and RHB in Table 3.1 represent Yeo Tiong Lay and 

Rashid Hussain Berhad respectively. 
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Table 3.2 lists out some common probability distributions with the 

corresponding probability density functions (p.d.f) and the methods of 

computation in generating the random variables. We shall generate !!  for 

! = 1,2,3 using the distributions selected from Table 3.2. 

 

Table 3.2:  Some common probability distributions with probability 
density functions and their computation method 

Distribution P.d.f, f(y) Computation Method 

gamma 
(!,!) 

1
!! !Γ α !!!!!!

!
! !!, 

 
Γ .  is the gamma 

function 

Built-in inverse transform function 
in Matlab 

   

lognormal 
(!,!) 

1
!" 2! !

! !"!!! !
!!!  

 

Built-in inverse transform function 
in Matlab 

   
   

Pareto 
(!,!) 

 
!!!
!!!! 

 

Inverse transform sampling by 
letting ! = !

!! !
,where!!!is the 

random variable generated from 
the uniform distribution over 

(0,1). 
 

   

Weibull 
(!, !) 

 
!
!
!
!

!!!
!!

!
!

!
 

 

Inverse transform sampling by 

letting ! = ! −!"# !!!, 
where!!!is the random variable 

generated from the uniform 
distribution over (0,1). 

 
   

 
inverse 

Gaussian 
(!, !) 

!
2!!! !!

!! !!! !
!!!!  

 

Inverse transform sampling by 
letting ! = ! + !!!!

!! !
− !

! 4!"# + !!!!,where!!!is the 
random variable generated from 

 the uniform distribution over 
(0,1). 
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 We assume throughout this thesis that the initial wealth for the 

investment is 1 unit. For each portfolio, we compute the total wealth achieved 

after 500 trading days by the BCRP for the purpose of comparing with the 

wealth achieved by the Dirichlet universal portfolio and the non-Dirichlet 

universal portfolio generated by different probability distributions. The BCRP 

wealths are summarized in Table 3.3.  

 

Table 3.3:  Total wealth achieved, !!""∗ !∗  by the BCRP after 500 
trading days  

Data !!""∗ !∗  

Set A 1.853389825 

Set B 4.297023754 

Set C 4.297023754 

 

Table 3.4 shows the wealths achieved by the Dirichlet 1,1,1  and 

Dirichlet !
! ,

!
! ,

!
!  universal portfolios. 

 

Table 3.4: The total wealths S500 achieved by the Dirichlet !,!,!  and 
Dirichlet !

! ,
!
! ,

!
!  universal portfolios generated from the 

gamma α i ,1( )  variable for data sets A, B and C 

α1 α2 α3 Set A Set B Set C 

0.5 0.5 0.5 1.5660 2.1582 1.8364 

1 1 1 1.5673 2.1579 1.8335 

 

In terms of total wealth achieved, the Dirichlet universal portfolios 

1,1,1  and !
! ,

!
! ,

!
!  perform far below that of the BCRP for the three data sets 
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in Table 3.4. The wealths achieved are less than 50% of the BCRP wealth for 

sets B and C. For the general Dirichlet !!,!!,!!  universal portfolios, the 

welaths achieved are shown in Table 3.5. The performance of the portfolios B 

and C are better than that of the Dirichlet 1,1,1  and !
! ,

!
! ,

!
!  portfolios in 

Table 3.4. 

 

Table 3.5: The total wealth S500 achieved by the Dirichlet universal 
portfolios generated from the gamma !!,!  variables 

α1 α2 α3 Set A Set B Set C 

5 7 9 1.5464 2.4104 2.0441 

0.3 0.5 0.7 1.5393 2.5235 2.1344 

0.2 0.4 0.8 1.5545 2.8120 2.4466 

0.2 0.3 0.8 1.5836 2.9345 2.6154 

0.1 1.1 2.1 1.5060 3.0402 2.5795 

1 1 50 1.6505 4.1371 4.0966 

0.01 0.01 50 1.6539 4.2953 4.2949 

2 3 4 1.5434 2.4518 2.0794 

2 6 10 1.5222 2.7815 2.3570 

1 2 30 1.6357 3.9386 3.8188 

2 4 8 1.5534 2.8107 2.4410 

0.1 0.1 30 1.6532 4.2695 4.2618 

0.1 0.1 40 1.6535 4.2760 4.2708 

10 20 30 1.5342 2.6137 2.2155 

1 1 40 1.6495 4.1001 4.0508 

0.1 0.2 0.3 1.5360 2.6060 2.2074 
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1.5 15 55 1.5628 3.4630 3.1166 

0.1 0.1 0.9 1.6365 3.5828 3.4344 

 

 Two types of non-Dirichlet universal portfolios depending on the 

distribution of the generating !!,!!!and!!!  are studied. First, !!,!!!and!!! 

come from the same family of distribution with different parameters. Second, 

each of !!,!!!and!!! may come from different families of distribution. 

 

Tables 3.6-3.9 show the wealths achieved by the first type of non-

Dirichlet universal portfolios for the lognormal, Pareto, Weibull and inverse 

Gausian distributions. The distributions referred to in the captions are the 

distributions of !! , ! = 1,2,3. 

 

Table 3.6: The total wealth S500 achieved by the non-Dirichlet universal 
portfolios generated from the lognormal !!,!.!"  variables 

µ1 µ2 µ3 Set A Set B Set C 

2 3 4 1.5610 3.0863 2.7290 

0.1 0.5 5 1.6509 4.2181 4.1941 

10 30 60 1.6539 4.2970 4.2970 

1 5 100 1.6539 4.2970 4.2970 

5 25 125 1.6539 4.2970 4.2970 

0.01 10 20 1.6539 4.2968 4.2967 

5 1 5 1.7672 2.4567 2.4474 

50 100 150 1.6539 4.2970 4.2970 
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Table 3.7: The total wealth S500 achieved by the non-Dirichlet universal 
portfolios generated from the Pareto α i ,1( )  variables 

α1 α2 α3 Set A Set B Set C 

1 2 3 1.6043 1.9484 1.6865 

1 5 10 1.6377 1.8918 1.6711 

0.1 0.1 0.9 1.5073 1.5348 1.2188 

0.1 0.6 50 1.7429 1.4654 1.3639 

25 50 100 1.5666 2.1486 1.8255 

25 2 10 1.5006 2.0874 1.6873 

5 0.5 3 1.3816 1.9189 1.4181 

50 5 1 1.5798 2.6533 2.3351 

8 88 30 1.5774 2.1349 1.8261 

0.5 10 0.01 1.6591 4.1879 4.1845 

 

Table 3.8: The total wealth S500 achieved by the non-Dirichlet universal 
portfolios generated from the Weibull !!,!"  variables 

κ1 κ2 κ3 Set A Set B Set C 

1.2 1.4 3.2 1.5697 2.2246 1.9031 

1 0.8 2.5 1.5702 2.2383 1.9152 

0.05 0.5 5 1.6096 2.2701 1.9927 

3 3.8 4.7 1.5626 2.1800 1.8502 

1.2 1.5 1.8 1.5650 2.1838 1.8546 

1.9 1.5 1 1.5669 2.1245 1.8047 

4.6 3 0.5 1.5653 2.0882 1.7706 

3 5 4 1.5585 2.1655 1.8303 

0.5 1.8 1 1.5498 2.1460 1.7992 
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4 9 5 1.5570 2.1573 1.8225 

 

Table 3.9: The total wealth S500 achieved by the non-Dirichlet universal 
portfolios generated from the inverse Gaussian !"",!!  
variables 

λ1 λ2 λ3 Set A Set B Set C 

2 3 4 1.5507 2.2852 1.9458 

0.1 0.5 5 1.5738 3.1390 2.8055 

10 30 60 1.5401 2.4364 2.0565 

1 5 100 1.5822 3.1562 2.8393 

5 25 125 1.5432 2.6926 2.3087 

0.001 10 20 1.4607 2.8449 2.3051 

5 1 5 1.6581 2.2966 2.0944 

50 100 150 1.5489 2.2836 1.9313 

6 6 10 1.5730 2.2871 1.9599 

2.5 10 15 1.5228 2.4461 2.0394 

 

The non-Dirichlet universal portfolios (in Tables 3.6-3.9) generated 

from different distributions perform better for some sets of parameter 

compared to the Dirichlet universal portfolio (in Tables 3.4,3.5). For certain 

sets of parameter, the portfolios achieve wealths close to that of the BCRP.  

 

For Set A, the portfolio performs well in the lognormal distributions 

and Pareto distributions with wealths 1.7672 (in Table 3.6) and parameter 

5,1,5 , and 1.7429 (in Table 3.7) and parameter 0.1,0.6,50  respectively. 

The performances are below the BCRP wealth but it is closer to the BCRP 

wealths compared to that of Dirichlet universal portfolio in Tables 3.4 and 3.5.  
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In sets B and C, it is worth noting that the Dirichlet universal portfolio 

with parameter 0.01,0.01,50  in Tables 3.5 and the non-Dirichlet universal 

portfolios generated from the lognormal distribution in Table 3.6 are 

performing as well as the BCRP, achieving a total wealth of 4.2970 which is 

the approximate BCRP wealth. The empirical results here show that there are 

non-Dirichlet universal portfolios that outperform the Dirichlet universal 

portfolios, thereby establishing the importance of these parametric families of 

universal portfolios. 

 

Tables 3.10-3.13 show the wealths achieved by the non-Dirichlet 

universal portfolios of the second type where the generating variables 

!!,!!!and!!! come from different families of the probability distributions. 

 

Table 3.10: The wealth S500 achieved by the non-Dirichlet universal 
portfolios generated from the gamma !!,!"  variable for 
! = ! and the lognormal !!,!  variables for ! = !,! 

α1 µ2 µ3 Set A Set B Set C 

0.5 5 10 1.5447 3.3974 2.9930 

0.2 8 6 1.3673 2.3640 1.7606 

5 20 40 1.6524 4.2840 4.2791 

0.1 5 50 1.6539 4.2970 4.2970 

0.01 10 100 1.6539 4.2970 4.2970 

2 10 20 1.6150 3.9887 3.8169 

0.1 1 5 1.5305 3.1943 2.7660 

2 25 75 1.6539 4.2970 4.2970 

5 6 8 1.5001 2.8205 2.3554 
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2 10 15 1.5400 3.4143 3.0228 

 

Table 3.11: The wealth S500 achieved by the non-Dirichlet universal 
portfolios generated from the lognormal !!,!"  variables 
for ! = !,! and the inverse Gaussian !",!!  variable 

α1 α2 !! Set A Set B Set C 

2 3 4 1.5487 1.9624 1.6313 

0.1 0.5 5 1.5497 2.0005 1.6737 

10 30 60 1.4528 1.7607 1.3516 

1 5 100 1.5381 1.9878 1.6359 

5 25 125 1.4679 1.8207 1.4097 

0.01 10 20 1.5084 1.9454 1.5833 

5 1 5 1.5682 1.9500 1.6317 

50 100 150 1.3232 1.5443 1.0701 

6 6 10 1.5467 1.9183 1.5855 

2.5 10 15 1.5194 1.9171 1.5612 

 

Table 3.12: The wealth S500 achieved by the non-Dirichlet universal 
portfolios generated from the Pareto !!,!""  variable and 
the gamma !!,!""  variables for ! = !,! 

α1 α2 !! Set A Set B Set C 

1 0.5 0.5 1.7447 1.6373 1.5393 

1 1 1 1.6843 1.8107 1.6451 

0.1 7 9 1.7660 1.6394 1.5572 

0.1 0.5 0.7 1.8313 1.4359 1.4168 

25 0.4 0.8 1.7036 2.0061 1.8664 

25 0.3 0.8 1.7252 2.0154 1.9101 
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5 1.1 2.1 1.6176 2.4146 2.1535 

50 1 50 1.6508 4.1332 4.0936 

8 0.01 50 1.6558 4.1574 4.1380 

0.5 3 4 1.6437 2.0546 1.8329 

 

Table 3.13: The wealth S500 achieved by the non-Dirichlet universal 
portfolios generated from the gamma !!,!"  variable, 
Pareto !!,!"  variable and the lognormal !!,!  variable 

α1 α2 µ3 Set A Set B Set C 

0.5 2 4 1.5088 2.8421 2.3826 

1 5 5 1.5839 3.0246 2.7019 

5 0.1 60 1.6519 4.2849 4.2759 

0.3 0.6 100 1.6539 4.2970 4.2970 

0.2 50 125 1.6539 4.2970 4.2970 

0.2 2 20 1.6538 4.2944 4.2934 

0.1 0.5 5 1.4477 2.8109 2.2629 

1 5 150 1.6539 4.2970 4.2970 

0.01 88 10 1.6192 4.0154 3.8632 

2 10 15 1.6536 4.2339 4.2216 

 

 For data sets B and C, universal portfolios generated by a mixture of 

gamma and lognormal distributions in Table 3.10 and a mixture of gamma, 

Pareto and lognormal distributions in Table 3.13 achieve the best wealth, that 

is, the BCRP wealth of 4.2970 units for certain parametric values. This again 

establishes the importance of non-Dirichlet universal portfolios generated by a 

mixture of different parametric families of distributions. Another well-

performing universal portfolio is that generated by the Pareto 0.1,100 , 
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gamma 0.5,100  and gamma 0.7,100  distributions in Table 3.12, achieving a 

wealth of 1.8313 units which is close to the BCRP wealth of 1.8534 units. 

Universal portfolios generated by certain mixtures of probability distributions 

may perform below expectations, as exemplified by Table 3.11. Some of the 

empirical results here are presented in Tan and Lim 2012b . 

 

 An inventory of available universal portfolios is important to the 

potential investor. Since the parameters of the portfolio are chosen at the 

beginning of the investment period, the problem of choosing a good parametric 

vector becomes critical. In Tan and Lim 2013 , a method for mixing different 

types of universal portfolios is proposed, whereby the investor uses the best 

current parametric vector. This method seems to work well for certain data sets 

and the mixture portfolio can even outperform the BCRP. 

 

 

3.4 Discussion on Achieving Better Performance  

 

 We summarize the best numerical results generated from different 

distributions for sets A, B and C in Table 3.14. For data set A, the closest 

performance to BCRP is 1.8313, which is generated from the Pareto 0.1,100 , 

gamma 0.5,100  and gamma 0.7,100  distributions for stock ! = 1,2,3 

respectively. Other distributions with different sets of parameter do not give 

good performance, with total wealth achieved below 1.8 after 500 trading days. 

In order to increase the portfolio performance, we try other distributions with 
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different parameter sets to search for better distributions generating higher 

wealths.  

 

Table 3.14: A summary of the generating probability distributions 
achieving the best wealths for the universal portfolios 
discussed in Chapter 3 

Data 
Set 

Probability Distributions 

Parameter for 
stock !, Wealth, 

!!"" i=1 i=2 i=3 

Set A Pareto !! , 100 !variable for ! = 1 and 

gamma !! , 100  variables for ! = 2,3. 

0.1 0.5 0.7 1.8313 

Set B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lognormal !! , 0.05  variables for 

! = 1,2,3. 

10 30 60 

4.2970 

 

 

 

 

1 5 100 

5 25 125 

50 100 150 

Gamma !! , 10  variable for ! = 1 and 

lognormal !! , 5  variables for ! = 2,3. 

 

0.1 5 50 

0.01 10 100 

2 25 75 

Gamma !!, 10  variable, 

Pareto !!, 10  variable and the 

lognormal !!, 5  variable 

0.3 0.6 100 

0.2 50 125 

1 5 150 
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Another alternative is to select different families of distributions generating the 

universal portfolios. The wealth of 1.8313 for data set A is below the BCRP 

wealth of 1.8534 where the wealth of 4.2970 for data sets B and C correspond 

to the BCRP wealth. From Table 3.14, it is the BCRP wealth of 4.2970 can be 

achieved by using different families of distributions with appropriate 

parameters selected. The key to generate good-performance universal 

portfolios for data sets B and C is to focus on the third generating distribution 

which is lognormal by putting heavier weights on the parameter !!.  

Set C Lognormal !! , 0.05  variables for 

! = 1,2,3. 

10 30 60 

4.2970 

1 5 100 

5 25 125 

50 100 150 

Gamma !! , 10  variable for ! = 1 and 

lognormal !! , 5  variables for ! = 2,3. 

 

0.1 5 50 

0.01 10 100 

2 25 75 

Gamma !!, 10  variable, 

Pareto !!, 10  variable and the 

lognormal !!, 5  variable 

0.3 0.6 100 

0.2 50 125 

1 5 150 
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CHAPTER 4 

 

PERFORMANCE OF THE LOW ORDER UNIVERSAL PORTFOLIOS 

 

 

 It is clear from Section 2.2 that the ! -weighted Cover-Ordentlich 

universal portfolio is restricted by the simplex B of portfolio vectors which is 

the support of the probability measure !. By removing the restriction on the 

support of the !, a more general type of universal portfolio generated by one or 

more probability distributions can be defined. Tan 2013  adopted this 

approach and introduced the theory of finite and moving order universal 

portfolios generated by probability distributions. We shall study the empirical 

performance of low order universal portfolios in this chapter. A significant 

amount of computational time and computer memory is saved when 

implementing the low order universal portfolio in comparison with 

implementing the Cover-Ordentlich universal portfolio. For this reason, it is a 

more practical portfolio for use in investment than the Cover-Ordentlich 

universal portfolio. 

 

4.1 The Finite Order Universal Portfolio 

  

Suppose !!,!!,… ,!! are mutually independent random variables with 

probability density functions !!! !! , !!! !! ,… , !!! !!  respectively.  Then 

the joint probability density function of !!,!!,… ,!! is : 

 ! !!,!!,… ,!! = !!! !! !!! !! … !!! !!   4.1  
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for ! = !!,!!,… ,!! ∈ !, where D is defined by:  

 ! = !!,!!,… ,!! : !!! !! > 0, for!all!! = 1,2,…! .  4.2  

 

 Let ! = !!"  denote the price-relative vector on day ! (see Section 

2.1). Then the inner product !!!! = !!!
!!! !!" for ! = 1,2,… is well defined 

for an !-stock market. Let ! be a fixed positive integer. Then the order ! 

universal portfolio generated by the !! independent random variables 

!!,!!,… ,!! is the sequence !!!!  given by: 

!!!!,! =
!! !!!! … !!!!! !!! ! ! !!!

!! + !! +⋯+ !! !!!! … !!!!! !!! ! ! !!!
  4.3  

for ! = 1,2,… ,!;! = 1,2,…  . We assume that the moments ! !!!  are 

positive for ! = 1,2,… ,!; ! = 1,2,… , ! + 1. 

 

4.2 Low Order Universal Portfolio 

 

 The order ! of the universal portfolio 4.3  is the number of days of the 

past stock-price information to be taken into account in calculating the next-

day portfolio. Computer memory and computational time can be saved 

significantly for implementing the portfolio if the order !  is small, say 

! = 1,2,3. 

 

 In this chapter, orders 1,2,3 universal portfolios generated by some 

common probability distributions will be studied. The specific formula of 4.3  

for each ! = 1,2,3 will be obtained in the following sub-sections. It is clear 
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that the formula 4.3  involves the moments of the generating variables 

!!,!!,… ,!!. 

 

4.2.1 Order 1 Universal Portfolio 

 

 From 4.3 , the portfolio proportion !!!!,! for stock !!on day ! + 1 for 

the order 1universal portfolio is given by: 

!!!!,! =
!! !!!! ! ! !!!

!! + !! +⋯+ !! !!!! ! ! !!!
!

=
!!!!!!,!! !!,!!,… ,!! !!!!!!…!!!!

!!!!
!! + !! +⋯+ !! !!!!,!!

!!! ! !!,!!,… ,!! !!!!!!…!!!!
!

=
!!,! !!!!! ! !!,!!,… ,!! !!!!!!…!!!!

!!!

!!,! !! + !! +⋯+ !! !!! ! !!,!!,… ,!! !!!!!!…!!!!
!!!

!

= !!,!! !!!! + !!,!! !!!! +⋯+ !!,!! !!!!
!!,!! !!!! + !!,!! !!!! +⋯+ !!,!! !!!!!

!!!
 

 = !!,! !!,!! !!!!
!

!!!
! , for!! = 1,2,… ,!  4.4  

where the normalizing constant,  

 !!,! = !!,!! !!!!
!

!!!

!

!!!

!!

.  4.5  

 

 We note that by the independence of !!,!!,… ,!!, 

! !!!! =
! !! ! !! !, if!! ≠ !

! !!! !!!!!!!!!, if!! = !
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4.2.2 Order 2 Universal Portfolio 

 

From 4.3 , the order 2 portfolio proportion !!!!,! for stock ! on day 

! + 1 is given by: 

!!!!,! 

=
!! !!!! !!!!!! ! ! !!!

!! + !! +⋯+ !! !!!! !!!!!! ! ! !!!
!

=
!! !!!!!,!!!

!!!!! !!!!!!!,!!!
!!!! ! !!,!!,… ,!! !!!!!!…!!!

!! + !! +⋯+ !! !!!!!,!!!
!!!! !!!!!!!,!!!

!!!!!
×! !!,!!,… ,!! !!!!!!…!!!

!

=

!!,!!!!!!,!!!
!!!!

!
!!!! !!!!!!!!!
×! !!,!!,… ,!! !!!!!!…!!!
!!,!!!!!!,!!!

!!!!
!
!!!! !! + !! +⋯+ !! !!!!!!!

×! !!,!!,… ,!! !!!!!!…!!!

!

=

!!,!!!!!,!! !!!!!! + !!,!!!!!,!! !!!!!! +⋯
+!!,!!!!!,!! !!!!!!

!!,!!!!!,!! !!!!!! + !!,!!!!!,!! !!!!!! +⋯
+!!,!!!!!,!! !!!!!!

!
!!!

 

 = !!,! !!,!!!!!!,!!![!!!!!!!!]
!

!!!!

!

!!!!
! , for!! = 1,2,… ,!  4.6  

where the normalizing constant,  

 !!,! = !!,!!!!!!,!!! !!!!!!!!
!

!!!!

!

!!!!

!

!!!

!!

.  4.7  

 

  

 

 



! 39 

We not that by the independence of !!,!!,… ,!!, 

! !!!!!!!! =

! !! ! !!! ! !!! !!!, ! ≠ !! ≠ !!! !, !!, !! !distinct

! !!! ! !!! !!!!!, ! = !!, ! ≠ !!!!!!!!!!!!!!!!!!!!!!!!!!

! !! ! !!!! !!!!!, !! = !!, ! ≠ !!!!!!!!!!!!!!!!!!!!!!!!!!

! !!! !!!!!!!!!!!!, ! = !! = !!.!!!!!!!!!!!!!!!!!!!!!!!!

 

 

4.2.3 Order 3 Universal Portfolio 

 

 From 4.3 , the order 3 portfolio proportion !!!!,! for stock ! on day 

! + 1 is given by:  

!!!!,! =
!! !!!! !!!!!! !!!!!! ! ! !!!

!! + !! +⋯+ !! !!!! !!!!!! !!!!!! ! ! !!!

=

!! !!!!!,!!!
!!!!! !!!!!!!,!!!

!!!! !!!!!!!,!!!
!!!!

×! !!,!!,… ,!! !!!!!!…!!!
!! + !! +⋯+ !! !!!!!,!!!

!!!! !!!!!!!,!!!
!!!! !!!!!!!,!!!

!!!!!
×! !!,!!,… ,!! !!!!!!…!!!

!

=

!!,!!!!!!,!!!!!!,!!!
!!!!

!
!!!!

!
!!!! !!!!!!!!!!!!

×! !!,!!,… ,!! !!!!!!…!!!
!!,!!!!!!,!!!!!!,!!!

!!!!
!
!!!!

!
!!!! !! + !! +⋯+ !! !!!!!!!!!!

×! !!,!!,… ,!! !!!!!!…!!!

! 

= !!,! !!,!!!!!!,!!!!!!,!!! !!!!!!!!!!!
!

!!!!

!

!!!!

!

!!!!
! ,!

for!!! = 1,2,… ,!. 

 4.8  

where the normalizing constant, 

 !!,! = !!,!!!!!!,!!!!!!,!!! !!!!!!!!!!!
!

!!!!

!

!!!!

!

!!!!

!

!!!

!!

.  4.9  
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 We note that by the independence of !!,!!,… ,!!, 

! !!!!!!!!!!! = 

! !! ! !!! ! !!! ! !!! !!!, ! ≠ !! ≠ !! ≠ !!! !, !!, !!, !! !distinct !

! !!! ! !!! ! !!! !!!, ! = !!, ! ≠ !!, ! ≠ !!, !! ≠ !!!!!!!!!!!!

!! !! ! !!!! ! !!! !!!, !! = !!, ! ≠ !!, ! ≠ !!, !! ≠ !!!!!!!!!!!!!

! !!! ! !!!! !!!, ! = !!, !! = !!, ! ≠ !!!!!!!!!!!!!!!

! !!! ! !! !!!, ! = !! = !!, ! ≠ !!!!!!!!!!!!!!!!!!!

! !!! !!!, ! = !! = !! = !!!!!!!!!!!!!

. 

 

4.3  Wealth Function of the Order ! Universal Portfolio 

 

 The wealth function !! !!  can be calculated recursively as follows:  

 
!!!! = !!!!!

!!!

!!!
!

= !!!!! !!!! !!!!!
!

!!!
!

= !!!!! !!!! !!  4.10  

where 

 
!!!!! !!!! = !!!!,!!!!!,!

!

!!!
.   

 

From 4.3 , the wealth increase on day ! + 1, namely !!!!! !!!! can be 

evaluated as follows for the order ! universal portfolio:!

!!!!! !!!! 
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=
!!!!,!!

!!! !! !!!! !!!!!! … !!!!! !!! ! ! !!!
!! + !! +⋯+ !! !!!! !!!!!! … !!!!! !!! ! ! !!!

 

=
!!!!!! !!!! !!!!!! … !!!!! !!! ! ! !!!

!! + !! +⋯+ !! !!!! !!!!!! … !!!!! !!! ! ! !!!
  4.11  

!

From 4.4 , for the special case of the order 1 universal portfolio for 3 

stocks, the wealth increase !!!!! !!!! on day ! + 1 is given by: 

!!!!,!!!!!,!
!

!!!
!

= !!!!,!!
!!! !!,!! !!!! + !!,!! !!!! +⋯+ !!,!! !!!!

!!,!! !!!! + !!,!! !!!! +⋯+ !!,!! !!!!!
!!!

 

where ! = 3, 

= !!,! !!!!,! !!,!! !!! + !!,!! !!!! + !!,!! !!!!

+ !!!!,! !!,!! !!!! + !!,!! !!! + !!,!! !!!!

+ !!!!,! !!,!! !!!! + !!,!! !!!! + !!,!! !!!  

 4.12  

where from 4.5 , 

!!,! = !!,!! !!! + !!,!! !!!! + !!,!! !!!! + !!,!! !!!!

+ !!,!! !!! + !!,!! !!!! + !!,!! !!!!

+ !!,!! !!!! + !!,!! !!!
!!. 

 4.13  

The wealth increase !!!!! !!!!  on day ! + 1  for order 2 and 3 universal 

portfolios are given in Appendix A. 
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4.4  Performance of Order 1, 2, 3 Universal Portfolios on Three-Stock 

Data Sets A, B and C 

 

 In Section 3.3 we have introduced some selected 3-stock portfolios 

with designated stock-price data sets A, B and C. The 500-days trading period 

of A, B and C is over the period 2003 until 2004. In this chapter, we introduce 

some more recent 5-stock data sets selected from the Kuala Lumpur Stock 

Exchange (KLSE). There are 3 selected stock-price data sets designated as 1, 2 

and 3 where each data set are consists of a 5-stock portfolio. The five 

Malaysian companies in each data set are listed in Table 4.1. The trading 

period is from 1st May 2005 until 31th December 2011, consisting of a total of 

1728 trading days. Note that the abbreviations BAT, CIMB, IOI, YTL, PBB in 

 

Table 4.1:  Malaysian companies in the 5-stock portfolio in Sets 1, 2, 3 

Data Set 
Companies 

1 2 3 4 5 

Set 1 BAT CIMB Genting IOI AirAsia 

Set 2 CIMB Digi IOI BAT Nestle 

Set 3 Berjaya Corp. HupSeng YTL Nestle PBB 

 

Table 4.1  represent the companies British American Tobacco, Commerce 

Industrial Malaysian Bank, Industrial Oxygen Industries, Yeo Tiong Lay and 

Public Bank Berhad respectively. The performance of the order 1,2 and 3 

universal portfolios on data sets 1,2 and 3 will be discussed in Section 4.4. 
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 First, we discuss the performance of the order 1,2 and 3 universal 

portfolios on data sets A, B, C. We select some common probability 

distributions listed in Table 3.2 as the generating distributions !!,!! and !!. 

For this purpose, we need the first four moments of the generating distributions 

which are listed in Table 4.2. 

 

 Table 4.3− 4.7 show the total wealth !!"" achieved by the low order 

universal portfolios generated by the same probability distribution with 

different parameters for the data sets. The computation time for one set of 

parameters is just less than second and it is very useful in computing the 

wealths of large portfolios or for large number of trading days. 

 

 Recall from Table 3.3 that the BCRP wealths achieved by Sets A, B 

and C are 1.8534, 4.2970 and 4.2970 units respectively and the highest wealths 

from the Monte Carlo simulation are 1.8313, 4.2970 and 4.2970 units 

respectively. The common probability distributions generating the low order 

universal portfolios in Tables 4.3− 4.7 are the lognormal distribution, gamma 

distribution, Pareto distribution, Weibull distribution and the inverse Gaussian 

distribution. The highest wealths achieved are close to the BCRP wealth, 

namely, (i) 1.8524 for order 1 universal portfolio generated by the inverse 

Gaussian 100,0.01 , 100,10 , 100,20  distributions for Set A (Table 4.7), (ii) 

4.1959 for the order 1 universal portfolio generated by the lognormal 

5,5 , 25,5 , 125,5  distributions for the two Sets B and C (Table 4.3). 

Another high wealth of 1.7668 is achieved for set A in Table 4.3 by the order 1 

universal portfolio generated by the lognormal (5,5), (1,5), (5,5) distributions. 
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Table 4.2: First four moments of some common probability distributions where the corresponding probability density function are 
given in Table 3.2

Distribution ! !  ! !!  ! !!  ! !!  

gamma 
!,! ! 

!" ! ! + 1 !! ! ! + 1 ! + 2 !! ! ! + 1 ! + 2  
×(! + 3)!! 

lognormal 
!,! ! !!!(

!!
! ) !!!!(!!!) !!!!(

!!!!
! ) !!!!(!!!) 

Pareto 
!,! ! 

!!
! − 1 

!!!
! − 2 

!!!
! − 3 

!!!!
! − 4 

Weibull 
!,!  !Г(1 + 1!) !!Г(1 + 2!) !!Г(1 + 3!) !!Г(1 + 4!) 

inverse Gaussian 
!,!  

µ !!(! + µ)
!  

!!(!! + 3!µ + 3!!)
!!  

5!!! !!
! + !!! !!  
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Table 4.3: Total wealth achieved by the low order universal portfolios generated from the lognormal distribution with different 
parameter sets for 3-stock portfolios in Sets A, B and C 

! = ! Set A Set B Set C 

!! !! !! Order 1 Order 2 Order 3 Order 1 Order 2 Order 3 Order 1 Order 2 Order 3 

2 3 4 1.5977 1.6225 1.6473 3.7283 3.9490 3.9869 3.5005 3.8476 3.9471 

0.1 0.5 5 1.6417 1.6417 1.6539 4.1952 4.1120 4.0451 4.1950 4.1120 4.0451 

10 30 60 1.6417 1.6417 1.6539 4.1959 4.1120 4.0451 4.1959 4.1120 4.0451 

5 25 125 1.6417 1.6417 1.6539 4.1959 4.1120 4.0451 4.1959 4.1120 4.0451 

0.01) 10) 20) 1.6417 1.6417 1.6539 4.1959 4.1120 4.0451 4.1959 4.1120 4.0451 

5) 1) 5) 1.7668 1.7332 1.7285 2.4436 2.3977 2.3653 2.4239 2.4122 2.3713 

6) 6) 10) 1.6417 1.6417 1.6539 4.1933 4.1120 4.0451 4.1925 4.1119 4.0451 

2.5) 10) 15) 1.6417 1.6417 1.6539 4.1958 4.1120 4.0451 4.1957 4.1120 4.0451 

45 



!

! !

Table 4.4:  Total wealth achieved by the low order universal portfolios generated from the gamma distribution with different 
parameter sets for 3-stock portfolios in Sets A, B and C 

! = !" Set A Set B Set C 

!! !! !! Order 1 Order 2 Order 3 Order 1 Order 2 Order 3 Order 1 Order 2 Order 3 

0.5 0.5 0.5 1.5652 1.5481 1.5687 2.1477 2.1369 2.1219 1.8018 1.7986 1.7670 

1 1 1 1.5647 1.5484 1.5701 2.1461 2.1348 2.1204 1.8016 1.7980 1.7659 

5 7 9 1.5455 1.5354 1.5609 2.3844 2.3699 2.3541 2.0050 1.9949 1.9587 

0.3 0.5 0.7 1.5391 1.5292 1.5531 2.4919 2.4778 2.4591 2.0928 2.0816 2.0455 

0.2) 0.3) 0.8) 1.5788 1.5704 1.5900 2.8917 2.8631 2.8333 2.5594 2.5361 2.4932 

0.1) 1.1) 2.1) 1.5019 1.5019 1.5311 2.9980 2.9777 2.9544 2.5219 2.4956 2.4520 

1) 1) 50) 1.6390 1.6380 1.6510 4.0433 3.9657 3.9035 4.0021 3.9261 3.8618 

0.01) 0.01) 50) 1.6417 1.6417 1.6539 4.1943 4.1105 4.0436 4.1939 4.1100 4.0432 
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Table 4.5:  Total wealth achieved by the low order universal portfolios generated from the Pareto distribution with different 
parameter sets for 3-stock portfolios in Sets A, B and C 

! = !"" Set A Set B Set C 

!! !! !! Order 1 Order 2 Order 3 Order 1 Order 2 Order 3 Order 1 Order 2 Order 3 

5 5 5 1.5640 1.5488 1.5720 2.1436 2.1318 2.1183 1.8015 1.7973 1.7644 

10 10 90 1.5604 1.5447 1.5683 2.0953 2.0825 2.0675 1.7514 1.7460 1.7113 

25 50 100 1.5656 1.5503 1.5736 2.1319 2.1198 2.1061 1.7928 1.7887 1.7557 

100 50 5 1.5714 1.5590 1.5838 2.2682 2.2722 2.2874 1.9311 1.9442 1.9431 

5000) 500) 5) 1.5728 1.5604 1.5851 2.2758 2.2799 2.2956 1.9405 1.9539 1.9535 

10000) 1000) 10) 1.5678 1.5535 1.5768 2.1999 2.1890 2.1770 1.8605 1.8575 1.8265 

100) 66) 5) 1.5720 1.5596 1.5843 2.2693 2.2734 2.2887 1.9331 1.9463 1.9454 
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Table 4.6:  Total wealth achieved by the low order universal portfolios generated from the Weibull distribution with different 
parameter sets for 3-stock portfolios in Sets A, B and C 

! = !" Set A Set B Set C 

!! !! !! Order 1 Order 2 Order 3 Order 1 Order 2 Order 3 Order 1 Order 2 Order 3 

1.2 1.4 3.2 1.5684 1.5527 1.5767 2.0525 1.9794 1.9139 1.7195 1.6627 1.5889 

1 0.8 2.5 1.5062 1.4520 1.4460 1.9365 1.8438 1.7799 1.5383 1.4117 1.2870 

3 3.8 4.7 1.5643 1.5499 1.5738 2.1447 2.1248 2.1037 1.8029 1.7925 1.7541 

1.2) 1.5) 1.8) 1.5742 1.5624 1.5883 2.0835 2.0322 1.9806 1.7561 1.7254 1.6691 

19) 15) 0.1) 1.6417 1.6417 1.6539 4.1959 4.1120 4.0451 4.1959 4.1120 4.0451 

4.6) 3) 0.5) 1.6256 1.6347 1.6513 3.4440 3.8394 3.9168 3.2631 3.7677 3.8793 

3) 5) 4) 1.5635 1.5507 1.5756 2.1422 2.1270 2.1098 1.7995 1.7957 1.7631 
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Table 4.7:  Total wealth achieved by the low order universal portfolios generated from the inverse Gaussian distribution with 
different parameter sets for 3-stock portfolios in Sets A, B and C 

! = !"" Set A Set B Set C 

!! !! !! Order 1 Order 2 Order 3 Order 1 Order 2 Order 3 Order 1 Order 2 Order 3 

2 3 4 1.6003 1.6109 1.6520 1.9275 1.7322 1.5834 1.6307 1.5093 1.4086 

0.1 0.5 5 1.7357 1.7675 1.7717 1.4585 1.3735 1.3422 1.3213 1.3529 1.3395 

10 30 60 1.6388 1.6895 1.7341 1.8166 1.5542 1.4254 1.5735 1.4404 1.3707 

1 5 100 1.7256 1.7637 1.7702 1.4821 1.3811 1.3462 1.3355 1.3562 1.3414 

5) 25) 125) 1.6919 1.7461 1.7632 1.6375 1.4268 1.3658 1.4566 1.3824 1.3516 

0.01) 10) 20) 1.8524 1.7916 1.7762 1.3791 1.3581 1.3386 1.3551 1.3666 1.3422 

5) 1) 5) 1.3511 1.2236 1.2440 1.8266 1.6509 1.6124 1.2827 1.0316 0.9452 

50) 100) 150) 1.5850 1.5918 1.6360 2.0375 1.8963 1.7505 1.7244 1.6406 1.5371 
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A low wealth of 1.2236 is achieved for set A in Table 4.7 by the order 2 

universal portfolio generated by the inverse Gaussian (100,5), (100,1), (100,5) 

distributions.  

 

 High wealths of 4.19 and above for sets B and C are achieved by order 

1 universal portfolios generated by the lognormal, gamma and Weibull 

distributions in Table 4.3, 4.4 and 4.6 respectively. In these tables, most of the 

order 1 portfolios perform better than the order 2 and order 3 portfolios. An 

example of an order 3 portfolio performing better than order 1 and 2 portfolio 

is given in Table 4.5 for the portfolio generated by the Pareto (5000,100), 

(500,100) and (5,100) distributions, for sets A and B. In the same table with the 

same generating distributions, the order 2 portfolio is better than the orders 1 

and 3 portfolios for set C. 

 

 In Table 4.3, the variation of the lognormal parameters does not lead to 

a big variation in the wealth achieved. In other words, the wealth achieved by 

the lognormal universal portfolio is more stable with respect to a variation in 

parameters. Although most of the wealths achieved by the lognormal universal 

portfolio in Table 4.3 are close to the BCRP, there is a case of poor 

performance by the lognormal order 3 portfolios with parameters (5,5), (1,5), 

(5,5) achieving wealths of 2.3653 and 2.3713 for sets B and C respectively. 

 

 The Pareto universal portfolio in Table 4.5 performs poorly, achieving 

wealths below 1.6 for set A, below 2.3 for set B and below 2 for set C. One 

way of improving performance is to use mixtures of different distribution 
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families to generate the universal portfolio. Table 4.8− 4.10 show the wealths 

achieved by low order universal portfolios generated from mixture of different 

distribution families. 

 

 An improved performance of the Pareto universal portfolio is observed 

in Table 4.9, where the wealths achieved for sets B and C are above 3.3 when 

the generating Pareto (100,1) and (66,1) distributions are mixed with the 

Weibull (1,10) distribution. In Table 4.8, the mixture gamma-lognormal 

universal portfolio achieves wealths close to the BCRP wealths for the three 

data sets A, B and C. The inverse-Gaussian-lognormal misture universal 

portfolios in Table 4.10 provide significant improvements in the wealth 

achieved compared to the non-mixture inverse Gaussian universal portfolio in 

Table 4.7. 

 

 A local search in the parameter space may result in a better parametric 

vector generating a higher achieved wealth. Figure 4.1 shows the total wealth 

achieved from the inverse Gaussian !, !! , !, !! , !, !!  order 1 universal 

portfolio with ! = 100, !! = 0.1 and different combinations of !! and !!. The 

parameter vector !!, !!, !! = 0.1,70,29.9  of the inverse Gaussian universal 

portfolio gives a better wealth return of 1.8495 after a search in the region 

!!, !! : 0 < !! < 100, 0 < !! < 100 . 
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Table 4.8:  Total wealth achieved by the low order universal portfolios generated from the gamma (0.2,10), lognormal (10,2) and 
lognormal (20,2) distributions for 3-stock portfolios in Sets A, B and C 

! = !", ! = ! Set A Set B Set C 

!! !! !! Order 1 Order 2 Order 3 Order 1 Order 2 Order 3 Order 1 Order 2 Order 3 

0.2! 10! 20! 1.6417! 1.6417! 1.6539! 4.1959! 4.1120! 4.0451! 4.1959! 4.1120! 4.0451!

 

Table 4.9:  Total wealth achieved by the low order universal portfolios generated from the Pareto (100,1), Pareto (66,1) and Weibull 
(1,10) distributions for 3-stock portfolios in Sets A, B and C 

! = !,!! = !" Set A Set B Set C 

!! !! !! Order 1 Order 2 Order 3 Order 1 Order 2 Order 3 Order 1 Order 2 Order 3 

100! 66! 1! 1.6282! 1.6236! 1.6395! 3.5684! 3.4935! 3.4646! 3.4140! 3.3408! 3.3083!

!
!

!
!
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Table 4.10:  Total wealth achieved by the low order universal portfolios generated from inverse Gaussian (50,100), inverse Gaussian 
(50,66) and lognormal (1,2) distributions for 3-stock portfolios in Sets A, B and C 

! = !", ! = ! Set A Set B Set C 

!! !! !! Order 1 Order 2 Order 3 Order 1 Order 2 Order 3 Order 1 Order 2 Order 3 

100! 66! 1! 1.6282! 1.6236! 1.6395! 3.5684! 3.4935! 3.4646! 3.4140! 3.3408! 3.3083!

!

53 
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Figure 4.1:  3D-graph of total wealth achieved after 500 trading days in 
Set A under the inverse Gaussian distribution with the 
parameters ! = !"",!! = !.!  and different combination 
sets of !!!!"#!!! 

 

For set B, we search for a higher wealth for the lognormal 

!!,! , !!,! , !!,!  order 1 universal portfolio where ! = 5, !! = 0.1 . 

Figure 4.2 shows the total wealth achieved by the lognormal universal portfolio 

for 0 < !! < 10, 0 < !! < 10. A higher wealth of 4.196 is obtained for the 

 

Figure 4.2:  3D-graph of total wealth achieved after 500 trading days in 
Set B under the lognormal distribution with the parameters 
! = !,!! = !.! and different combination sets of !!!!"#!!! 
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lognormal universal portfolio after a search in the region !!, !! : 0 < !! <

10, 0 < !! < 10 . The situation is more or less the same for set C, displayed in 

Figure 4.3 for the lognormal universal portfolio. A search in the same 

parametric region !!, !! : 0 < !! < 10, 0 < !! < 10  produces a higher 

wealth of 4.196 for set C. 

 

Figure 4.3:  3D-graph of total wealth achieved after 500 trading days in 
Set C under the lognormal distribution with the parameters 
! = !,!! = !.! and different combination sets of !!!!"#!!! 

 

 

4.5 Performance of Orders 1, 2, 3 Universal Portfolios on Five-Stock 

Data Sets 1,2 and 3 

 

 We refer to the five-stock data sets 1,2 and 3 introduced in Section 4.3. 

The low order universal portfolios are run on the sets 1,2 and 3 and the 

performance is analyzed in this section. 
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 The BCRP wealths are 2.6281, 3.6798 and 14.7707 for sets 1,2 and 3 

respectively. Tables 4.11− 4.13 display the wealths achieved over a 1728-day 

trading period by the distribution-generated low order universal portfolios on 

data sets 1,2, and 3 respectively. One of the parameters of the distribution is 

fixed and the second parameter is varied to obtain a higher wealth return. For 

set 1, the highest wealth achieved is 2.5552 by the order 1 lognormal and 

Weibull universal portfolios in Table 4.11 which is close to the BCRP wealth 

of 2.6281. For set 2, the highest wealth achieved is 3.6817 by the orders 2 and 

3 lognormal, Weibull and inverse Gaussian universal portfolios in Table 4.12 

which exceeds the BCRP wealth of 3.6798 slightly. This is a very good result. 

Finally, for set 3, the highest wealth achieved is 13.8103 by the order 3 inverse 

Gaussian universal portfolios in Table 4.13 which is close to the BCRP wealth 

of 14.7707.  

 

 The order ! universal portfolio for a fixed ! is no longer a Cover-

Ordentlich universal portfolio. Hence it is possible for a order ! universal 

portfolio to achieve a wealth higher that the BCRP wealth. This is an 

advantage over the Cover-Ordentlich universal portfolio where it is well-

known than it cannot achieve a wealth higher than the BCRP wealth. 

 

 There is not enough evidence to say that order 1 universal portfolios 

can perform well in most data sets. However, it is clear that it is convenient to 

use in terms of the time and memory saved. Some of the empirical results in 

Sections 4.3 are presented in Tan and Lim (2012a). The finite-order universal 



!
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Table 4.11:   Total wealth achieved by the low order universal portfolios generated from different distributions with good parameter 
sets for 5-stock portfolio in Data Set 1 

Probability Distribution 

Parameters Order 

Fixed 
(One parameter) 

Second Parameters  

! ! ! ! ! 1 2 3 

lognormal !,!  ! = 5 5 1 5 100 5 2.5552 2.5261 2.5166 

gamma !,!  ! = 10 50 30 1 100 1 2.4612 2.4361 2.4318 

Pareto !,!  ! = 1 5 5 10 50 100 1.5918 1.5792 1.5799 

Weibull !, !  ! = 10 1 0.8 2.5 0.1 5 2.5552 2.5262 2.5166 

inverse Gaussian !, !  ! = 100 5 1 5 1 5 2.0574 2.3167 2.3850 

 



!
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Table 4.12:   Total wealth achieved by the low order universal portfolios generated from different distributions with good parameter 
sets for 5-stock portfolio in Data Set 2 

Probability Distribution 

Parameters Order 

Fixed 
(One parameter) 

Second Parameters    

! ! ! ! ! 1 ! ! 

lognormal !,!  ! = 5 0.1 0.5 5 10 50 3.6492 3.6817 3.6817 

gamma !,!  ! = 10 0.1 0.1 0.1 0.1 50 3.6443 3.6764 3.6764 

Pareto !,!  ! = 1 100 50 5 80 9 2.8859 2.8767 2.8757 

Weibull !, !  ! = 10 0.5 5 50 3 0.1 3.6492 3.6817 3.6817 

inverse Gaussian !, !  ! = 100 50 1 5 2 0.01 3.6412 3.6817 3.6817 



!

!

 

 

 

Table 4.13:   Total wealth achieved by the low order universal portfolios generated from different distributions with good parameter 
sets for 5-stock portfolio in Data Set 3 

 

Probability Distribution 

Parameter Order 

Fixed 
(One parameter) 

Second Parameters  

! ! ! ! ! 1 ! ! 

lognormal !,!  ! = 5 100 5 1 20 0.1 11.5000 11.6806 11.6806 

gamma !,!  ! = 10 50 30 1 100 1 12.9514 13.1066 13.0247 

Pareto !,!  ! = 1 5 5 10 50 100 9.1311 9.2387 9.1959 

Weibull !, !  ! = 10 0.4 9 0.4 1 2 12.0723 12.9440 13.3551 

inverse Gaussian !, !  ! = 100 2 3 4 5 6 10.4903 12.6943 13.8103 
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portfolio generated by dependent variables from the Dirichlet distribution has 

been studied by Tan, Chu and Lim(2012). 

 

4.6 Further Discussion on the Poor Performance of the Pareto 

Universal Portfolio 

 

 From Tables 4.11, 4.12 and 4.13, it is observed that the low 

performance portfolios are generated from the Pareto distribution for orders 1,2 

and 3. The comparison of the difference in wealths achieved by the Pareto and 

other distributions generating the universal portfolios is shown in Table 4.14  

 

 For set 1, the total wealth achieved by the universal portfolio generated 

by the Pareto distribution for all orders is at least 29.25% lower than that of the 

universal portfolios generated from the inverse Gaussian distribution. For set 2, 

the wealth difference is 26.17% for the inverse Gaussian generating 

distribution of order 1, the wealth difference is 27.80% for the gamma 

distribution of orders 2 and 3. For set 3, the wealth difference is 14.88% for the 

inverse Gaussian generating distribution of order 1, the wealth differences are 

26.43% and 27.02% for the lognormal distributions of orders 2 and 3 

respectively. The inverse Gaussian, gamma and lognormal universal portfolios 

can achieve higher wealths than that of the Pareto universal portfolios. Using 

different probability distributions to generate the universal portfolios can 

improve the performance of the universal portfolio. 
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Table 4.14 : Comparison of the difference in wealths achieved by the Pareto and other distributions generating the universal     
   portfolios 

Data Set 

Generating 

Probability 

Distribution 

Order 1 

Difference 

in Wealths 

(Percentage) 

Generating 

Probability 

Distribution 

Order 2 

Difference 

in Wealths 

(Percentage) 

Generating 

Probability 

Distribution 

Order 3 

Difference 

in Wealths 

(Percentage) 

1 

Pareto 1.5918 
0.4656 

(29.25%) 

Pareto 1.5792 
0.7375 

(46.70%) 

Pareto 1.5799 
0.8051 

(50.96%) 
Inverse 

Gaussian 
2.0574 

Inverse 

Gaussian 
2.3167 

Inverse 

Gaussian 
2.3850 

2 Pareto 2.8859 
0.7553 

(26.17%) 

Pareto 2.8767 
0.7997 

(27.80%) 

Pareto 2.8757 
0.8007 

(27.80%) 
Inverse 

Gaussian 
3.6412 gamma 3.6764 gamma 3.6764 

3 

Pareto 9.1311 
1.3592 

(14.88%) 

Pareto 9.2387 
2.4419 

(26.43%) 

Pareto 9.1959 
2.4847 

(27.02%) 
Inverse 

Gaussian 
10.4903 lognormal 11.6806 lognormal 11.6806 
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CHAPTER 5 

 

EMPIRICAL STUDY OF THE RATIO OF WEALTHS FOR SOME 

MOVING-ORDER UNIVERSAL PORTFOLIOS 

 

 

 When the order ! of a universal portfolio equals to the number of 

trading days,!! it is known as a moving-order universal portfolio. The Cover-

Ordentlich (1996) universal portfolio is a moving-order universal portfolio 

generated by the Dirichlet distribution of dependent random variables. We 

have seen in the last chapter that the finite order universal portfolio requires 

very much less memory and computational time for its implementation. 

 

In this chapter, we study the ratio of wealths of the BCRP to that of the 

universal portfolio as a function of the number of trading days. For the Cover-

Ordentlich Dirichlet universal portfolio, it is well-known that this ratio of 

wealths is bounded above by a polynomial in the number of trading days with 

degree depending on !, the number of stocks in the portfolio (see Cover and 

Ordentlich (1996) and Tan (2002)). In this chapter, we shall consider a 

moving-order universal portfolio generated by !  independent random 

variables. Empirically, we shall run the moving-order universal portfolios 

generated by three independent gamma variables on three-stock data sets 

selected from the Kuala Lumpur Stock Exchange (KLSE). 
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5.1 An Algorithm for Computing the Moving-Order Universal 

Portfolio 

 

 In this section, we describe an algorithm for computing the moving-

order universal portfolio generated by ! independent random variables. This 

algorithm is due to Tan (2013). Consider a !-stock market. Let !!,!!,… ,!! be 

!!independent random variables where !! has the probability density function 

!! !!|!!  for ! = 1,2,… ,! . Then the moving order universal portfolio 

generated by !!,!!,… ,!! is the sequence !!!!  of the portfolios where the 

portfolio component for stock ! on day ! + 1 is given by: 

b!!!,!

=
y!! !!!! !!!!!! … !!!! f!!!

!!! y! θ! dy!dy!… dy!
y! + y! +⋯+ y!! !!!! !!!!!! … !!!!

× f!!!
!!! y! θ! dy!dy!… dy!

!

=
y!( !!!!)( f!!(y!|θ!))d!!

!!!
!
!!!!

y! + y! +⋯+ y! ( !!!!)( f!!(y!|θ!))d!!
!!!

!
!!!!

 

  

 

 

 

5.1  

for ! = 1,2,… ,! ,  where ! = !!,!!,… ,!! , !! = !!,!, !!,!,… , !!,! ,  

!! = !!!!!!…!!!; integration in (5.1) is over ! = !: !!!(!!!
!!! !! >

0}.  

 

 We note that (5.1) can be simplified by interchanging integration and 

summation: 
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b!!!,!

=

y! y!x!,! + y!x!,! +⋯+ y!x!,! y!x!,! + y!x!,! +⋯+ y!x!,! …!
×(y!x!,! + y!x!,! +⋯+ y!x!,!)( f!!(y!|θ!))d!!

!!!

y! + y! +⋯+ y! y!x!,! + y!x!,! +⋯+ y!x!,!!
× y!!!,! + !!!!,! +⋯+ !!!!,! … y!x!,! + y!x!,! +⋯+ y!x!,!

×( f!!(y!|θ!))d!!
!!!

 

= !!!! …
!

!!!!

!

!!!!
!!,!!!!,!! … !!,!! ! !!

!! !;!
!

!!!

!

!!!!
  5.2  

for ! = 1,2,… ,!!, where the normalizing constant, 

!! = …
!

!!!!

!

!!!!
!!,!!!!,!! … !!,!! ! !!

!! !;!
!

!!!

!

!!!!

!

!!!
  5.3  

for ! = !!, !!,… , !!  which 1 ≤ !! ≤ !  for ! = 1,2,… ,!  and the !! !; !!  is 

the number of !!’s in the product of !!!!!!!! …!!!  for ! = 1,2,… ,!. As ! 

grows larger, the products !!!!!!!! … !!!! and ! !!
!! !;!! !!

!!!  grow longer 

together with the number of terms to be summed. Therefore we need recursive 

formulae for calculating the products !!!!!!!! … !!!! and ! !!
!! !;!! !!

!!! . 

 

 We note that the numerator of !!!!,! in (5.1) can be written as 

y!( !!!!)( f!!(y!|θ!))d!
!

!!!

!

!!!!
!

= …
!

!!!!

!

!!!!
!!,!!!!,!! … !!,!! ! !!

!! !;!
!

!!!

!

!!!!
!

= …
!

!!!!

!

!!!!
!!,!!!!,!! … !!,!! ! !!!! ! !! ! !!

!! !
!

!!!,!!!

!

!!!!
  5.4  
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because !! !; ! = !! ! + 1 , !! !; ! = !! !  for ! ≠ !  and !!,!!,… ,!!  are 

mutually independent. Now (5.4) can be evaluated as: 

…
!

!!!!

!

!!!!
!!,!!!!,!! … !!,!! ! !!!! ! !! ! !!

!! !
!

!!!,!!!

!

!!!!
 

=
!! !! ! ,!! ! ,… ,!! !

!!!!!!!!!!!!!!!×! !!!! ! !! ! !!
!! !

!

!!!,!!!
!! ! !!! ! !⋯!!! ! !!

  5.5  

where !! !! ! ,!! ! ,… ,!! !  is defined as: 

!!,!!!!,!! … !!,!!
!! ! !!! ! !⋯!!! ! !!

= !! !! ! ,!! ! ,… ,!! !  5.6  

where !! !  is the number of !! ’s in the product !!!!!! …!!!  and ! =

!!, !!,… , !! . Define  

!! !! ! ,!! ! ,… ,!! ! = ! !!!! ! ! !!!! ! …! !!!! ! , 5.7  

where !! ! + !! ! +⋯+ !! ! = !. Then 

! !!!! ! !! ! !!
!! !

!

!!!,!!!
=
! !!!! ! !!

! !!
!! ! ! !!

!! !
!

!!!

=
! !!!! ! !!

! !!
!! ! !! !!,!!,…!! ,… ,!!

= !!!! !!,!!,… ,!! + 1,… ,!!   5.8  

where !! ! ≥ 1. The recursive formula for calculating the moment function 

!! !!,!!,… ,!!  in (5.7) is given by (5.8). So, the recursive algorithm in 

updating the moment from day ! to ! + 1 for portfolio ! is to multiply the 

ratio of 
! !!

!! ! !!

! !!
!! ! , which depends on the probability distribution of the random 

variable !!.  
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Therefore, (5.5), the numerator of !!!!,! can be written 

y!( !!!!)( f!!(y!|θ!))d!
!

!!!

!

!!!!

= …
!

!!!!

!

!!!!
!!,!!!!,!! … !!,!! ! !!!! ! !! ! !!

!! !
!

!!!,!!!

!

!!!!

= !! !! ! ,!! ! ,… ,!! !
×!!!!(!! ! ,… ,!! ! + 1,… ,!! ! )!! ! !!! ! !⋯!!! ! !!

. 

 

 

 

 

5.9  

The denominator of !!!!,! in (5.1) and from (5.3) is given by: 

 
y! + y! +⋯+ y! ( !!!!)( f!!(y!|θ!))d!

!

!!!

!

!!!!

= …
!

!!!!

!

!!!!
!!,!!!!,!! … !!,!! ! !!

!! !;!
!

!!!

!

!!!!

!

!!!

= !! !! ! ,!! ! ,… ,!! !
×!!!!(!! ! ,… ,!! ! + 1,… ,!! ! )!! ! !!! ! !⋯!!! ! !!

!

!!!
 

 

 

 

 

5.10  

 

Hence, in summary, from (5.9) and (5.10), 

b!!!,! 

=
y!( !!!!)( f!!(y!|θ!))d!!

!!!
!
!!!!

y! + y! +⋯+ y! ( !!!!)( f!!(y!|θ!))d!!
!!!

!
!!!!

 

= !! !!,!!,… ,!! !!!! !!,!!,…!! + 1,… ,!!!!!!!!⋯!!!!!
!! !!,!!,… ,!!

×!!!!(!!,!!,…!! + 1,… ,!!)!!!!!!⋯!!!!!
!
!!!

 5.11  

for ! = 1,2,… ,!, where for simplicity, we suppress the vector ! in !! !  for 

! = 1,2,… ,! , !! !!,!!,… ,!!  and !! !!,!!,… ,!!  are defined by (5.6) 
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and (5.7) respectively. The recursive formula for calculating !! !!,!!,… ,!!  

is given by (5.8). Similarly !! !!,!!,… ,!!  can be calculated recursively as: 

!! !!,!!,… ,!! = !!"!!!! !!, . . ,!! − 1,… ,!!
!

!!!
. 5.12  

 

5.2 Recursive Calculation of the Moment Function !! !!,!!,… ,!!  

for the Gamma, Lognormal and the Pareto Distributions 

 

 In (5.8), the ratio of 
! !!

!!!!

! !!
!!  for updating the moment function 

!! !!,!!,… ,!!  depends on the parameters of the probability distribution of 

the random variable !!. In general, we have the recurrence relationship given 

that !! + !! +⋯+ !! = ! and ! is any positive integer, 

!!!! !!,!!,… ,!! + !,… ,!!  

= ! !!!!!!
! !!

!! !!! !!,!!,… ,!! ,… ,!!  5.13  
 

is the more general recursive relationship. 

 

 For some probability distributions, the ratio 
! !!

!!!!

! !!
!!  may also depend 

on !!  and ! besides the distribution parameters. For example, consider the 

following Laplace probability density function of !!: 

! !! = 1
2!!

!!
!!
!! , for!!−� < !! <�,!! > 0. 
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Then the moment is given by: 

! !!!! = 0,!!!!!!!!!!!!!!!!!!!!!!"#!!! = !""!!
!!!!!!! , !"#!!! = !"!#  

For !! an even integer, 
! !!

!!!!

! !!
!! = !! + 2 !! + 1 !!!. 

 

 Next, we compute the updating ratio 
! !!

!!!!

! !!
!!  for 3 common 

probability distributions, namely, the gamma, lognormal and Pareto 

distributions. 

 

(a) Gamma !!,!!  distribution 

The probability density function of the gamma !! ,!!  distribution is: 

! !! = 1
! !! !!

!! !
!!!!! !!!!!!! 

where !! > 0,!! > 0,!! > 0, for  ! = 1,2,… ,!. The !!!! moment is: 

! !!!! = 1
! !! !!

!! !
!!!!! !!!!!!!!!

!

!
!!!! !

= ! !! + !! !!!!!!!
! !! !!

!! !

= ! !! + !!
! !!

!!!! . 

Then, 

! !!!!!!
! !!

!! = ! !! + !! + 1
! !!

!!!!!! ∙
! !!

! !! + !! !!
!! !

= !! + !! !! .!

�
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(b) Lognormal !!,!!  distribution 

The probability density function of the lognormal !! ,!!  distribution 

is: 

! !! = 1
!!!! 2! !

! !"!!!!! !
!!!! ! 

where !! > 0, !! > 0,!! > 0, for  ! = 1,2,… ,!. The !!!! moment is: 

! !!!! = 1
!! 2! !

! !"!!!!! !
!!!!

!

!
!!!!!!!!!! !

= !!!!!!
!!!!!!
! !

Then,!

! !!!!!!
! !!

!! = ! !!!! !!!
!!!! !!!!

!

!!!!!!
!!!!!!
!

!

!= ! !!!! !!!!!!! ∙ !
!!!!!!!!! !!!!!!!!!!!

! !

!= !!!!
!!!!! !!!

! .!

 

(c) Pareto !!,!!  distribution 

The probability density function of the Pareto !! ,!! !distribution is: 

! !! = !!!!!!
!!
!!!! ! 

where !! > !! ,!! > 0,!! > 0, for  ! = 1,2,… ,!. The !!!!  moment for the 

Pareto distribution only exists for !! > !! !and is denoted by: 
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! !!!! = !!!!!!
!!
!!!!!!!

!

!
!!!! !

= !!!!!!
!! − !!

. 

Then, 

! !!!!!!
! !!

!! = !!!!!!!!
!! − !! + 1

×!! − !!!!!!
!! !

= !! !! − !!
!! − !! − 1

. 

 

The summary of the recurrence relationships in the moment functions 

for the three probability distributions (a), (b) and (c) are listed in Table 5.1. 

 

Table 5.1: Summary of the recursive formulae for !!!! !!,!!,… ,!! +
!,… ,!!  for the gamma, lognormal and Pareto 
distributions 

Probability Distribution !!!! !!,!!,… ,!! + !,… ,!!  

gamma !! ,!!  !! + !! !!!! !!,!!,… ,!! ,… ,!!  

lognormal !! ,!!  !!!!
!!!!! !!!

! !! !!,!!,… ,!! ,… ,!!  

Pareto !! ,!!  
!! !! − !!
!! − !! − 1

!! !!,!!,… ,!! ,… ,!! ,!! < !! 

 

5.3 Recursive Calculation of the Wealth Function 

 

 The wealth !! !!  at the end of the !!! trading day can be calculated 

recursively as� 
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!!!! = !!!

!!!

!!!
!! = !!!!! !!!! !!  5.14  

where !! = !!!!
!!! !!. We now derive a formula based on !! !!,… ,!!  and 

!! !!,… ,!!  for update !!!!! !!!!. 

 

First, note that the recurrence for !! !!,… ,!!  in (5.12) can also be 

written in another form. Given !! + !! +⋯+⋯ !! +⋯+ !! = ! and the 

knowledge of !!!!, then  

!!!! !!,!!,… ,!! + 1,… ,!!  

= !!!!,!!!(
!

!!!,!!!
!!,!!,… ,!! − 1,… ,!!)

+ !!!!,!!!(!!,!!,… ,!! ,… ,!!). 

  5.15  

 

From (5.1) and (5.11), we obtain 

!!!!,!!!!!,! 

=
!!!!!!,! !!!

!!! !!! ! ! !!
!! + !! +⋯+ !! !!!

!!! !!! ! ! !!!
!

= !!!!,!!! !!,!!,… ,!! !!!! !!,!!,…!! + 1,… ,!!!!!!!!⋯!!!!!
!! !!,!!,… ,!! !!!! !!,!!,…!! + 1,… ,!!!!!!!!⋯!!!!!

!
!!!

 

and hence, 

!!!!!!!! 

= !!!! !!,!!,… ,!! !!!! !!,!!,… ,!!!!!!!!⋯!!!!!!!
!! !!,!!,… ,!!

×!!!!(!!,!!,…!! + 1,… ,!!)!!!!!!⋯!!!!!
!
!!!

 5.16  

The wealth function !!!! !!!!  is calculated recursively using (5.14) and 

(5.16).  
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5.4 Empirical Study of the Ratio of Wealths for the Moving-Order 

Universal Portfolios Generated by Three Independent Gamma 

Variables 

 

 Let !!∗ !!  be the BCRP wealth given the market information !! . 

Cover and Ordentlich (1996) showed that if !! !!  is the universal wealth 

achieved by the Dirichlet !
! ,

!
! ,… ,

!
!  universal portfolio, then the ratio of 

wealths !!
∗ !!
!! !!  satisfies the following upper bound, independent of !!, where ! 

is the number of stocks: : 

!!∗ !!
!! !!

≤ 2 ! + 1
!!!
!  ! 5.17  

 

 In this section, we study the ratio of wealths !!
∗ !!
!! !!  where !! !!  is the 

wealth of a moving-order universal portfolio generated by three independent 

gamma random variables with parameters !!,! , !!,! , !!,! . We fix ! at 

a certain value and hence for simplicity, we refer to the parameter vector as 

!!,!!,!! . 

 

Our data sets for this empirical study are chosen from the subsets of the 

data sets 1,2 and 3 introduced in Table 4.1 (see section 4.3). We reduce the 5-

stock portfolios in Table 4.1 to 3-stock portfolios in Table 5.2. Data sets D and 

F are subsets of sets 1 and 3 respectively. Set E consists of subsets of sets 2 and 

3. The stocks cover an 800-day trading period starting from 1st May 2005. 
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Table 5.2: Malaysian companies in the 3-stock portfolios in sets D, E, F 
which are subsets of 1, 2 and 3 in Table 4.1 

Set 
Company 

! ! ! 

D BAT CIMB IOI 

E DIGI NESTLE PBB 

F BERJAYA CORP HUPSENG YTL 

 

 Using the algorithm described in Section 5.1, we run the moving-order 

universal portfolios generated by three independent gamma random variables 

on the data sets D, E and F. For simplicity, we refer to the generating 

distributions as gamma !!,!!,!!  with ! fixed at a certain value. 

 

 Figures 5.2, 5.4 and 5.6 display the ratio of the BCRP wealth to the 

universal portfolio wealth as a function of the number of trading days for the 

universal portfolios generated by the gamma !!,!!,!!  distribution for four 

different sets of !!,!!,!!  with ! fixed at 2, 2, 2 respectively for sets D, E 

and F respectively. The 3-dimensional views of the four functions shown in 

Figures 5.2, 5.4 and 5.6 are shown in Figures 5.1, 5.3 and 5.5 respectively. 

 

 The maximum ratio of !!
∗ !!
!! !!  over the 800 trading days are 3.3734 for 

Set D at ! = 0.1,100,3  in Figure 5.2, 11.3292 for Set E at ! = 2,4,50  in 

Figure 5.4 and 11.2542 for Set F at ! = 3,100,3  in Figure 5.6. 



! 74!

Figure 5.1: The 3-dimensional view of four functions of the ratio 
wealths against the number of trading days given in Figure 
5.2 for set D 

!
!

Figure 5.2: Ratio of BCRP wealth to universal portfolio wealth for the 
universal portfolios generated by the gamma !!,!!,!!  
distribution for four sets of !!,!!,!!  with ! fixed at 2 for 
set D 
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Figure 5.3:  The 3-dimensional view of four functions of the ratio 
wealths against the number of trading days given in Figure 
5.4 for set E 

 

!
Figure 5.4: Ratio of BCRP wealth to universal portfolio wealth for the 

universal portfolios generated by the gamma !!,!!,!!  
distribution for four sets of !!,!!,!!  with ! fixed at 2 for 
set E 
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Figure 5.5:  The 3-dimensional view of four functions of the ratio wealths 
against the number of trading days given in Figure 5.6 for 
set F 

!
!

Figure 5.6: Ratio of BCRP wealth to universal portfolio wealth for the 
universal portfolios generated by the gamma !!,!!,!!  
distribution for four sets of !!,!!,!!  with ! fixed at 2 for 
set F 

!
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The trend of the functions displayed in Figures 5.2, 5.4 and 5.6 is 

upward. The comparison of the ratio of wealths with the Cover-Ordentlich 

bound (5.17) for the Dirichlet universal portfolio is shown in Figures 5.7, 

where ! = 3  stocks. It is clear that the gamma-distribution-generated 

universal portfolios all have ratio of wealths far below the Cover-Ordentlich 

bound 2 ! + 1 . A better bound for the ratio of wealths under empirical study 

maybe ! ln! where ! is some constant independent of ! because the ratio of 

wealths grows slowly, close to logarithmic growth. 

 

Figure 5.7: Comparison of the ratio of the BCRP wealth to the universal 
wealth for sets D, E and F with the Cover-Ordentlich bound 
! !+ !  

 
!

5.5 Concluding Remarks 

 

Future work in this direction may be to developing theoretic bounds for 

the ratio of the BCRP wealth to the universal portfolio wealth for any finite or 

moving order universal portfolio. Polynomial bounds in the number of trading 
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days are well-known for the Dirichlet moving-order universal portfolios (Cover 

and Ordentlich (1996), Tan (2002)). 

 

We have seen in Chapter 4 that low order universal portfolios are 

practical to use, in terms of substantial savings in computer memory and 

computational time in their implementation. On the whole, the order 1 portfolio 

can perform as well as the orders 2 and 3 portfolios for most data sets. The 

choice of parameters to use at the beginning of investment is a difficult 

problem. An attempt to solve this problem by mixing universal portfolios is 

given in Tan and Lim (2013). 


