

HANDWRITING RECOGNITION ON LIBRARY BOOK LABEL

By

Leow Ee Wen

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONS)

Faculty of Information and Communication Technology

(Perak Campus)

MAY 2013

ii

Table of Content

DECLARATION OF ORIGINALITY ... iv

Acknowledgement ...v

Abstracts.. vi

CHAPTER 1: INTRODUCTION ... 1

1.1 Project Overview .. 1

1.2 Project Scope and Objectives ... 4

1.3 Methods/Technologies Involved .. 5

CHAPTER 2: LITERATURE REVIEW .. 6

2.1 Common Methods Used in Character Recognition.. 6

2.1.1 Artificial Neural Network ... 6

2.1.2 Freeman Chain Code... 8

2.1.3 Edit Distance ... 10

CHAPTER 3: METHODOLOGY .. 11

CHAPTER 4 ALGORITHM IMPLEMENTATION.. 14

4.1 Main Handwriting Recognizer Algorithm .. 14

4.2 Detailed Description of Main Procedure... 18

4.2.1 Image pre-processing - Crop and Scale Image ... 18

4.2.2 Feature Extraction... 21

4.2.3 Classification with Artificial Neural Network.. 22

4.2.4 Image Preprocessing - Filtering Freeman Chain Code Database 24

iii

4.2.5 Image Pre-processing – Obtain Outline of Character 27

4.2.6 Feature Extraction – Freeman Chain Code... 29

4.2.7 Classification – Edit Distance... 36

4.2.8 Classification – Chain Code Composition Analysis....................................... 38

4.2.9 Overall Results Obtained .. 41

4.2 Sample Preparation ... 43

4.3 Training and Testing Engine... 44

4.3.1 Artificial Neural Network ... 44

4.3.2 Freeman Chain Code Recognizer ... 47

CHAPTER 5: DISCUSSION.. 48

5.1 Achievement, Future Improvement and Conclusion.. 48

BIBLIOGRAPHY ... 49

APPENDIX – A COMPLETE CODING OF THE WHOLE PROGRAM- 1 -

Appendix A - Program Used for Crop and Scale Image...- 1 -

Appendix B - Program Used to Train Neural Network ..- 4 -

Appendix C - Program Used to Run Neural Network Character Classification- 4 -

Appendix D - Program Used for Edit Distance Classification and Chain Code

Composition Analysis ...- 5 -

iv

DECLARATION OF ORIGINALITY

I declare that this report entitled “Handwriting Recognition on Library Book Label” is

my own work except as cited in the references. The report has not been accepted for any

degree and is not being submitted concurrently in candidature for any degree or other

award.

Signature : _________________________

Name : _________________________

Date : _________________________

v

Acknowledgement

First of all, I would like to express my special thanks to my supervisor, Dr. Ng Yen Kaow

for giving me the opportunity to complete this project. Besides, I would like to give a

grateful thank to Dr. Cheng Wai Khuen for being my project moderator. This was the

first time I have myself involved in pattern recognition field and it is able to helps me in

expanding my knowledge and experience.

Secondly, I would also like to thanks my friends who helping me so that I can finish the

project within time. I would like to thank to Dr. Ng once again for providing me a lot of

advices and guidelines. Lastly I would thank to my family which gives me the support

during the development process.

Thanks again to all who helped me.

vi

Abstracts

This project aims to design a character recognizer for use in a smart phone application to

identify misplaced books on a library shelf. The application works as follows: The user

first takes a photo of books on a library shelf. The application then extracts the library

labels and performs character recognition on the label texts to obtain the call numbers. If

a book is misplaced, then its call number will be out of sequence with the others, and the

application can alert the user to such a situation. Such an application will be useful for

librarians to perform inventory checks. There are two important technical difficulties to

overcome, namely, image segmentation and handwriting recognition. This project studies

the latter. Two important aspects are required of the handwriting recognizer for the

mobile application to be usable: (1) The recognizer should be able to analyze each photo

in the fraction of a second; (2) The recognizer should achieve near-perfect accuracy. In

this study, a variety of handwriting recognition techniques are surveyed. Then, a few

suitable techniques are chosen, modified, and combined to result in a highly accurate and

efficient system. The resultant system, when tested using our database of handwritten

characters from library labels, showed near-perfect accuracy.

vii

List of Figures

Figure 1.1.1: Books on the bookshelf and call numbers written on book label.................. 2

Figure 2.1.1.1: Implementation of Artificial Neural Network for handwriting recognition7

Figure 2.1.2.1: Direction representation by Freeman Chain Code 8

Figure 2.1.2.2: Freeman Chain Code travels for character „C‟... 8

Figure 2.1.2.3: Example of chain code pattern shown for character „V‟ and „Y‟ 9

Figure 4.1.1: Overall system process .. 16

Figure 4.1.2: Main procedure of the program ... 17

Figure 4.2.1.1: Image to be cropped ... 18

Figure 4.2.1.2: Pseudocode for getting 4 side‟s boundary.. 19

Figure 4.2.1.3: After crop and scale image ... 19

Figure 4.2.1.4: Pseudocode for crop and scale image... 20

Figure 4.2.2.1: Image breaking into 3x3 partitions... 21

Figure 4.2.4.1: Comparing total number of pixel weight in partition 1 and 2 25

Figure 4.2.4.2: Filtering character „J‟ and „L‟... 26

Figure 4.2.5.1: Pseudocode for obtaining the character outline 27

Figure 4.2.5.2: Image after obtaining the character‟s outline ... 28

Figure 4.2.6.1: Example of chain code direction moving on character „C‟ 29

Figure 4.2.6.2: Detect starting point horizontally for character „W‟ 30

Figure 4.2.6.3: Detect starting point vertically for character „W‟..................................... 31

Figure 4.2.6.4: Detect starting point in diagonal direction ... 31

Figure 4.2.6.5: Pseudocode use to detect starting point in diagonal direction.................. 32

Figure 4.2.6.6: Image character „O‟ .. 33

Figure 4.2.6.7: Chain code obtained for character „O‟ ... 33

viii

Figure 4.2.6.8: Chain code gained before and after reducing noise 35

Figure 4.2.6.9: Pseudocode used to reduce noise of chain code 35

Figure 4.2.7.1: Example of matching different codes to „0‟ ... 36

Figure 4.2.7.2: Pseudocode use for calculate edit distance... 37

Figure 4.2.8.1: Example of calculating difference between the input chain code with three

chain codes from the database .. 38

Figure 4.2.8.2: Pseudocode use for calculate total difference .. 39

Figure 4.2.8.3: Pseudocode for chain code composition with KNN 40

Figure 4.2.9.1: Results obtained ... 42

Figure 4.3.1.1: Pseudocode use for training neural network .. 44

Figure 4.3.1.2: Sample output of neural network ... 45

Figure 4.3.1.3: Pseudocode used for testing stage .. 46

ix

List of Abbreviations

ANN Artificial Neural Network

KNN K-Nearest Neighbours

Matlab MATrix LABoratory

OCR Optical Character Recognition

OpenCV Open Source Computer Vision Library

SDLC System Development Life Cycle

UTAR University Tunku Abdul Rahman

CHAPTER 1: INTRODUCTION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 1

CHAPTER 1: INTRODUCTION

1.1 Project Overview

Optical character, or handwritten text recognition has been a popular field of research for

many years. One reason for this popularity is in its usefulness in many tasks such as

converting scanned documents into digital form, or in interpreting written input from an

electronic device (e.g. electronic dictionary, smart phones).

It is often the case for a new task to either require significant modification of available

optical character recognition techniques, or the development of entirely new methods, to

accomplish. For example, in identifying handwritten text from a touch pad, information

such as the order of pen strokes is available to the recognizer. On the other hand, in the

task of determining words from papers or other source material, no such information is

available. The former type of recognition is known as online recognition, while the latter

is known as offline recognition in the literature.

In this project II consider an offline recognition problem which arises out of the task of

identifying misplaced books on library shelves. In this task, one is given a picture of a

library shelf with books. Each book is tagged with a label printed with a code called call

number. Books on the library shelf are to be ordered by these call numbers.

CHAPTER 1: INTRODUCTION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 2

Figure 1.1.1: Books on the bookshelf and call numbers written on book label

If a book is misplaced, then its call number will be out-of-sequence with the call numbers

of its neighbouring books. It is a routine for librarians to scan through the books the

library shelves to look for misplaced literature. Due to the number of shelves found in a

typical library, this is often a formidable task dreaded by the librarians. The task can,

however, be assisted with a camera-equipped device which requires the librarian to

simply take pictures of the books, the device will then automatically identify the

misplaced books from the call numbers in the pictures taken. Such a device can be

realized cheaply through a software application that can be installed on commodity smart

phones which are ubiquitous nowadays. The software application can be naturally split

into the following components:

1. A component to facilitate the picture-taking and picture-displaying.

2. A component to locate the labels in the books found within the pictures taken

(segmentation),

CHAPTER 1: INTRODUCTION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 3

3. A component for recognizing the call numbers printed on the labels (character

recognition), and

4. A component for checking if the identified call numbers are in sequential order.

5. A component to highlight the locations of the misplaced books within the displayed

pictures.

In this project, we are interested in the third of these components, that is, the problem of

offline handwritten text recognition.

CHAPTER 1: INTRODUCTION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 4

1.2 Project Scope and Objectives

As discussed in Section I, we plan to develop a mobile application which will enable

librarians to search for misplaced books more efficiently. This mobile application is

divided into several components, including image segmentation and handwriting

recognition. The scope of my project is to produce the latter, that is, a handwriting

recognizer for the mobile application.

The recognizer is to be able to identify the call numbers contained in images of book

labels. Since call numbers consists of 26 capital letters and 10 digits from 0 to 9, the

recognizer is expected to accept as input, images of any one of these 36 symbols. The

recognizer produces as output a prediction of the character contained in each image.

The project will produce an implementation of the recognizer. This implementation is

then tested against a dataset of test samples for performance and accuracy evaluation.

CHAPTER 1: INTRODUCTION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 5

1.3 Methods/Technologies Involved

Programming Language

I choose to use the C programming language due to its flexibility and speed, which are

often unmatched by higher level languages. Due to its low-level nature and small

memory footprint, C codes often compiles into faster executable programs, compared to

other higher- level languages.

Besides that, a very powerful library for image processing, Open Source Computer

Vision Library (OpenCV), provides an easy-to-use programming interface in C, making

C a natural choice for developing image processing applications.

Development Environment

Microsoft Visual Studio and MATrix LABoratory (Matlab) are used in this project. They

are well-suited to my project as they respectively support development in C. Matlab is

being used as it provides a large set of powerful predefined toolboxes such as Neural

Pattern Recognition Tools, which can assist in my project when I want to test with

different techniques.

Hardware used

A desktop computer is used in developing the handwriting recognizer, as well as in

testing the recognizer‟s speed and accuracy.

CHAPTER 2: LITERATURE REVIEW

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 6

CHAPTER 2: LITERATURE REVIEW

As far as I have searched, no known study has been performed on the problem of

identifying library call numbers. On the other hand, many effective techniques have been

developed for offline handwriting recognition. These techniques are based on several

well-known methods in artificial intelligence, such as Artificial Neural Network (ANN).

It is conceivable for these methods to be adapted for use in the present problem.

2.1 Common Methods Used in Character Recognition

2.1.1 Artificial Neural Network

An ANN consists of nodes which are placed on three regions: an input layer, a set of

hidden layers, and an output layer. The nodes between subsequent layers are connected

with weighted edges. Each node will calculate a value based on its input; the calculated

value is then passed as input to subsequent nodes, after being adjusted with the weights

on the edges which connects them.

In order to construct an ANN, a user needs only to specify the number of nodes and

layers, how they are connected, and provide the ANN with sample sets of data with

known output to train it. The training process adjusts the weights between the nodes in

the ANN until a sufficiently close approximation of the output is achieved.

ANNs are widely used in handwriting recognition. (Nawrin & Hassan 2012) has reaches

99.95% in recognition Bangla Character by integrating the usage of freeman chain code

and ANN. One advantage of using an ANN is that it is relatively simple to construct and

hence saves time in their development. Matlab also provides a Neural Pattern

Recognition Toolbox which allows user to use ANN easily.

CHAPTER 2: LITERATURE REVIEW

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 7

Figure 2.1.1.1: Implementation of Artificial Neural Network for handwriting recognition

Input
image

Hidden layer

1

Hidden layer

2 Output
Result

x1

x2

x3

w11

w13

w12

w21

w23

w31
w32

w33

w22

y1

y2

y3

y4

y5

y6

A

B

CHAPTER 2: LITERATURE REVIEW

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 8

2.1.2 Freeman Chain Code

As mentioned above, Nawrin & Hassan (Nawrin & Hassan 2012) reported that by using

Freeman Chain Code as features, near 100% accuracy was achieved in classifying Bangla

characters. Likewise, Gaurav & Jayashree (Gaurav & Jayashree 2013) mentioned the use

of Freeman Chain Code as a feature for character recognition.

A Freeman Chain Code is an alternative representation (that is, a feature) of the image to

be identified. It encodes the image as a sequence of numbers by travelling through the

connection points of an image. Each move in a different direction is recorded with a

number which ranges from 0 to 7. Each different character is expected to roughly

translate into a specific chain code. Hence, the character of a chain code can be estimated

by examining how well it matches chain codes of known characters.

Figure 2.1.2.1: Direction representation by Freeman Chain Code

Example of chain code travels for character „C‟: 3 4 4 4 4 5 5 6 6 6 6 6 6 6 7 7 0 0 0 0 1 1

2 3 5 5 4 4 2 2 2 2 1 0 0 7 0 1 3

Figure 2.1.2.2: Freeman Chain Code travels for character „C‟

CHAPTER 2: LITERATURE REVIEW

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 9

Figure 2.1.2.3: Example of chain code pattern shown for character „V‟ and „Y‟

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120 140 160

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120 140

CHAPTER 2: LITERATURE REVIEW

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 10

2.1.3 Edit Distance

One possible method to compare between two chain codes is through so-called Edit

distance (or Levenshtein Distance), which measures the difference between two given

sequences of characters. The edit distance between two sequences of character is, roughly

speaking, the number of changes required to transform one sequence into the other. The

distance obtained is zero if both sequences computed are exactly the same. The smaller

the number of differences between two sequences, the higher is the possibility that they

are alike.

Edit distances can be efficient computed through a dynamic programming algorithm.

The use of edit distance in recognizing shapes was proposed in by Wu and Lai (Wu &

Lai 2007). It is suited to this program as chain code can consider as a sequence of a

characters.

In its most basic definition of the edit distance, the operations involved in the

transformation of one sequence into the other are addition, deletion and substitution. The

application of each operation in the transformation introduces a distance of 1 between the

two sequences. This results in the following dynamic programming

CHAPTER 3: METHODOLOGY

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 11

CHAPTER 3: METHODOLOGY

In this project, I follow the development process stated in System Development Life

Cycle (SDLC). SDLC divided into 5 phases which are Planning, Analysis, Design,

Implementation, and Deliver.

1. Planning Phase

In this phase, the main objectives are defined and the reasons for building the system are

clearly stated. The feasibility of the system was examined, and the following questions

were answered.

Technical feasibility

 Can the system being build use current technology?

o For our literature review, no.

 Can the recognizer be sufficiently accurate?

o To be researched.

Organization feasibility

 Will the library staff be willing to use the system after it is complete?

o Since no existing tools exist, this is very likely.

 Possible solutions if user resistances do happen.

o We can provide the application for free.

Financial feasibility

 What is the price to obtain hardware, software tools required?

o All the components required are free.

CHAPTER 3: METHODOLOGY

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 12

2. Analysis Phase

The requirements of the system were defined in this phase. A literature review was also

performed, during which papers and journal publications are surveyed to identify possible

solutions to the problem. Approaches that are most suited to the problem are identified.

3. Design Phase

There are some preparations required prior to the classification process. Sample images

of character were extracted out and saved in a consistent naming format. A consistent

naming format was essential in the testing stage, where a huge number of images are to

be processed semi-automatically.

After summarizing the findings at previous phase, possible algorithms are then designed

to solve the problem. Preliminary algorithms are then implemented. These algorithms are

tested against the test samples, in order for me to examine the algorithms‟ strength and

weaknesses, and to come up with solutions to overcome possible pitfalls. The insights

gained are then used to design the final algorithm.

4. Implementation Phase

At this stage, the algorithm is implemented and its accuracy tested. This is the most

critical part among the whole process as it affects the final results produced.

CHAPTER 3: METHODOLOGY

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 13

Several set of testing sample will be used to ensure the results gained are not biased. Also,

testing is used to evaluate whether it is able to achieve the defined objectives and

expected values during the Planning phase. Debugging will be performed to reduce the

chances of possible errors.

5. Deliver Phase

At this stage, the final report is finalized with all details included before submission.

CHAPTER 4 ALGORITHM IMPLEMENTATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 14

CHAPTER 4 ALGORITHM IMPLEMENTATION

4.1 Main Handwriting Recognizer Algorithm

Input of the program:

 Image of characters (.bmp)

Output of the program:

 Character determined

The recognizer algorithm involves a three-stage identification process. In the first stage,

the image of the character to be recognized is given to a neural network for identification.

If the neural network is able to identify the character confidently, the identification stops.

Otherwise, the image is sent for a second stage identification through an analysis of its

Freeman chain code. If the character cannot be confidently identified through the chain

code analysis, it is sent for a third stage identification which analyzes its chain code

composition.

The entire procedure of the handwriting recognizer is summarized in Figure 4.1.2, where

the details of each stage of the algorithm are given in Section 4.2.

Figure 4.1.1 gives a visual overview of the algorithm.

CHAPTER 4 ALGORITHM IMPLEMENTATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 15

Image
preprocessing

 Input image

Feature
Extraction

Neural Network

Classification

CHAPTER 4 ALGORITHM IMPLEMENTATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 16

Figure 4.1.1: Overall system process

The character is „3‟
Chain code composition

analysis

Compare edit distance between input image

and the chain codes in the filtered database

The character is „3‟

Chain code
database

Filtered chain code
database with only
hopeful candidates

Preprocessed
Image

Obtain outline
of character

for conversion
to chain code

Feature Extraction

(freeman chain code)

CHAPTER 4 ALGORITHM IMPLEMENTATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 17

Figure 4.1.2: Main procedure of the program

1. Read input image (.bmp).

2. Crop image.

3. Scale Image.

4. Break image into 3x3=9 partitions; get the total number of pixels in each

partition.

5. Run data obtained in 4 into neural network trained.

a. If neural network is able to identify the image with an output higher

than 0.8, the character is determined and whole process is ended.

b. Otherwise, the character is then passed to sample matching.

6. Filter the training sample by matching total number of pixels weight in each

partition.

7. Find the outline of character.

8. Use freeman chain code to encode the image character.

9. Smooth chain code to reduce noise.

10. Identify character by matching with training sample using Edit Distance.

11. If character obtained is classified as 1, B, D, K or M, use chain code

composition analysis and KNN to identify characters.

CHAPTER 4 ALGORITHM IMPLEMENTATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 18

4.2 Detailed Description of Main Procedure

4.2.1 Image pre-processing - Crop and Scale Image

Before the exact classification process takes place, pre-processing of image needs to be

carried out. It will later help the data to be represented in a consistent form, as well as

reduces the chances of inaccurate result.

This main purpose of this pre-processing is to standardize the size of the character. The

size of handwritten characters often varies even when the same person is writing the same

character. The resolution of the photo also results in different sizes of image. So, we need

to crop the characters and scale it into similar sizes so that data representation does not

show huge variant in length. For all the sample sets collected, I have cropped and scaled

the image into a 30x50 pixels of size. Open Source Computer Vision (OpenCV) has been

used to achieve this target.

OpenCV is an open source library which includes many image processing functions. It

supports C/C++ language which can be integrated under Microsoft Visual Studio.

OpenCV provides cvSetImageROI() and cvResize(), which can be used to crop and scale

image. To crop an image, first we need to determine the margin of the four sides (top,

bottom, left and right) of a single character.

Figure 4.2.1.1: Image to be cropped

Top

Bottom

Left Right

CHAPTER 4 ALGORITHM IMPLEMENTATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 19

Figure 4.2.1.2: Pseudocode for getting 4 side‟s boundary

After getting these margins, the image can be cropped and scaled by using

cvSetImageROI() and cvResize().

Figure 4.2.1.3: After crop and scale image

Crop 4 sides

Top

Bottom

Left Right

1. Read pixels line by line, from the top until the bottom of image.

a. The first pixel read of the character will be the top margin.

2. Read pixels line by line, from the bottom until the top of image.

a. The first pixel reads of the character will be the bottom margin.

3. Read pixels column by column, from left towards right of the image.

a. The first pixel reads of the character will be the left margin.

4. Read pixels column by column, from right towards left of the image.

a. The first pixel reads of the character will be the right margin.

Scale to 30 x 50

30

50

CHAPTER 4 ALGORITHM IMPLEMENTATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 20

Figure 4.2.1.4: Pseudocode for crop and scale image

1. Calculate the new height and new weight of image by subtracting top,

bottom, left, right margin space with the original image.

2. Use new height, new weight, left margin and top margin to crop the image by

using cvSetImageROI().

3. Scale the image into 30x50 pixels by using cvResize().

CHAPTER 4 ALGORITHM IMPLEMENTATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 21

4.2.2 Feature Extraction

For the classification through the neural network, I use the following as features. First,

the image is broken into 3x3=9 partitions. For a greyscale image, each pixel assumes a

value between 0 and 255. The summation of the pixel values in a partition is the weight

of the partition. The vector which consists of the nine weights, each from a partition, is

taken as the feature vector of an image.

Figure 4.2.2.1: Image breaking into 3x3 partitions

CHAPTER 4 ALGORITHM IMPLEMENTATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 22

4.2.3 Classification with Artificial Neural Network

The process next proceeds to character classification stage. A neural network is trained

and will be used to recognize character (see Section 4.3.1 for details on the training of the

neural network). The output of the neural network is an array with 36 elements that

indicates the similarity respectively of the input image to the 36 symbols. Each element

of the array ranges from 0.0 to 1.0. The first element of the array corresponds to the

symbol „0‟ while the last element corresponds to the symbol „Z‟. The value of each array

element indicates the similarity of the input image to its corresponding character. As an

example, if the first element of the array (which corresponds to the symbol „0‟) gives a

value of 0.2 and the second element of the array (which corresponds to the symbol „1‟)

gives a value of 0.42, then the current input is more similar to „1‟ than „0‟. Thus, by

examining the values of the output array, an estimate of which character the input image

corresponds to can be obtained.

Example of an output for an input image of the letter „Z‟ (36 elements):

 1st 2nd 3rd 4th 5th 6th … 32nd 33rd 34th 35th 36th

Character „0‟ „1‟ „2‟ „3‟ „4‟ „5‟ … „V‟ „W‟ „X‟ „Y‟ „Z‟

Output 0.00 0.01 0.51 0.02 0.07 0.00 0.31 0.14 0.02 0.32 0.89

In the case above, the maximum value obtained the 36th element in the array, which has

the value 0.89. Thus the character would be classified as „Z‟. However, not all inputs

allow us to make decisions easily. For example consider the following:

 1st 2nd 3rd 4th 5th 6th … 32nd 33rd 34th 35th 36th

Character „0‟ „1‟ „2‟ „3‟ „4‟ „5‟ … „V‟ „W‟ „X‟ „Y‟ „Z‟

Output 0.00 0.01 0.41 0.02 0.07 0.00 0.38 0.24 0.02 0.32 0.29

CHAPTER 4 ALGORITHM IMPLEMENTATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 23

 1st 2nd 3rd 4th 5th 6th … 32nd 33rd 34th 35th 36th

Character „0‟ „1‟ „2‟ „3‟ „4‟ „5‟ … „V‟ „W‟ „X‟ „Y‟ „Z‟

Output 0.00 0.01 0.00 0.02 0.07 0.00 0.08 0.01 0.00 0.10 0.00

In both of the cases above, the image matches several characters with similarly high

scores, making it difficult to predict with confidence which character is it more likely to

be. Furthermore, in these cases, the highest similarity score remains low, raising doubt on

whether it could be case that the correct match (which should give a high similarity score)

has been assigned a much lower value instead, due to some unforeseen reasons.

In order to avoid selecting a wrong character when the correct character has an

unexpectedly low score, the character with the highest score from the neural network is

selected only if its similarity value is at least 0.8. That is, whenever the maximum value

of the neural network‟s output is equal or larger than 0.8, the character with the highest

value is considered correct and the recognizer outputs this character. This threshold of 0.8

is chosen because it gives the highest classification accuracy on the training examples.

When the neural network gives no score of at least 0.8, an algorithm based on Freeman

chain codes and edit distance will be invoked.

CHAPTER 4 ALGORITHM IMPLEMENTATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 24

4.2.4 Image Preprocessing - Filtering Freeman Chain Code Database

In the second identification process, a database of Freeman chain codes is used to match

the chain code of the input image (more details in Section 4.2.6-7). The database consists

of seven sets of chain codes; each set consists of 36 chain codes for the 36 symbols.

Initial tests show a comparison of all the chain codes (7x36=252 chain codes) in real-time

is not feasible.

To overcome this problem, the chain code database is first filtered to remove the chain

codes that are unlikely to match the chain code of the image. To do so, I compare the

image of each chain code with the image of the input character. In order to facilitate this

comparison,

I use the same features as that for the neural network (see Section 4.2.2). Each image

gives a feature vector of 9 values, each indicating the total number of pixel values in a

partition of the image. A simple method is used to compare between two feature vectors :

the ith element of a vector is compared to the ith element of the other vector. Two vectors

are considered unmatchable if:

 The value of any element in a vector is less than .2 of its corresponding element in

the other vector.

 The value of any element in a vector is zero, but its corresponding element in the

other vector has a value above 8000.

CHAPTER 4 ALGORITHM IMPLEMENTATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 25

Figure 4.2.4.1: Comparing total number of pixel weight in partition 1 and 2

If the image for a chain code is deemed unmatchable to the input image, the chain code is

removed from the database, and will not be used in the identification.

This method turned out to be very effective in filtering out the images of characters with

dissimilar shape, since these shapes often differ greatly in at least one partition. For

example, using this method, the characters „J‟ and „L‟ can be differentiated as they carry

different pixel values in different partitions. The character „L‟ has no black pixel in the

partitions 3, 5 and 6, while the character „J‟ has many black pixels in partitions 3 and 5.

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

CHAPTER 4 ALGORITHM IMPLEMENTATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 26

Figure 4.2.4.2: Filtering character „J‟ and „L‟

Typically, this filtering results in the removal of 130~150 chain codes from the database.

Partition 3,

5, 6 has a

value zero

Partition 3,

5, 6 are not

value zero

CHAPTER 4 ALGORITHM IMPLEMENTATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 27

4.2.5 Image Pre-processing – Obtain Outline of Character

The next step after filtering the chain code database is to transform the input image into a

Freeman chain code. However, handwritten characters on library labels are typically

written with marker pen, which produces very thick lines. Such lines cannot be easily

converted into chain codes. To overcome this, I use the outline of the handwritten

character to produce the chain code. This outline is obtained as follows: The image is

scanned pixel-by-pixel, whenever a non-white pixel is encountered, its neighbouring 4

pixels are examined, if there exist any neighbouring pixel that is white, this pixel would

be marked as an outline pixel. The pseudocode for this subroutine is in Figure 4.2.5.1.

Figure 4.2.5.1: Pseudocode for obtaining the character outline

1. Access image pixel-by-pixel

a. If pixel is non-white (RGB value <= 128)

i. Check its neightboring top, left, right, bottom pixels

I. If any of the pixels is white (RGB > 128), the current

pixel is marked as an outline pixel

II. Otherwise, label the pixel as a non-output pixel

2. Color all non-outline pixels white.

CHAPTER 4 ALGORITHM IMPLEMENTATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 28

Figure 4.2.5.2: Image after obtaining the character‟s outline

Obtain character

outline

CHAPTER 4 ALGORITHM IMPLEMENTATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 29

4.2.6 Feature Extraction – Freeman Chain Code

The outline of the character obtained is to be converted into a Freeman chain code, in

order to facilitate its comparison with the Freeman chain codes in the filtered database.

This conversion is performed as follows: First, the algorithm first points at a start pixel

chosen from the outline of the character. Then, a neighbouring pixel of the start pixel in

the outline is chosen. The algorithm moves to this neighbouring pixel, x say, and register

the corresponding chain code of the movement. After this, the algorithm proceeds to

move to a neighbouring pixel of x, and register the corresponding movement (see Figure

2.1.2.1). Figure 4.2.6.1 demonstrates this procedure for the character „C‟; the movements

registered for the three initial moves demonstrated is 3-4-4.

This traversal procedure repeats until the start pixel is encountered again, in which case,

the entire outline has been traversed, and the sequence of movements registered is the

chain code of the outline. (Some characters, such as „O‟, produces two outlines. For such

characters, only the outermost outline is used.)

Figure 4.2.6.1: Example of chain code direction moving on character „C‟

Starting point Produces „3‟ Produces „4‟ Produces „4‟

CHAPTER 4 ALGORITHM IMPLEMENTATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 30

This algorithm for converting an outline to a chain code, however, suffers a drawback:

The choice of the starting point severely affects the chain code, and may result in vastly

different chain codes even for the same character outline. To ensure that the same outline

always result in the same chain code, a method which will deterministically choose the

same pixel as the start pixel is required.

Some care is required when designing this method for choosing starting pixels. For

example, consider the two possible outlines for the character „W‟ below. If the topmost

pixel is chosen as the starting pixel, then the two outlines will have different starting

points, which will lead to very different chain codes. More precisely, the left-hand side

outline which starts at the upper left corner will start with the codes 0 -> 7 -> 2 -> 0,

while the right-hand side outline which starts at the upper right corner will start with the

codes 7 -> 6 -> 3.

This example shows that the determination of the starting pixel based on examining the

outline horizontally or vertically might not be useful as some characters will lead to

different starting region depends on handwriting style.

Figure 4.2.6.2: Detect starting point horizontally for character „W‟

Starting pixel

CHAPTER 4 ALGORITHM IMPLEMENTATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 31

Figure 4.2.6.3: Detect starting point vertically for character „W‟

To solve this problem, the program read the points in a diagonal direction instead of

horizontal or vertical direction; the first pixel detected would be the starting point of

chain code. This can ensure that the chain code will start at the upper left region of every

character.

Figure 4.2.6.4: Detect starting point in diagonal direction

Starting point

CHAPTER 4 ALGORITHM IMPLEMENTATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 32

Figure 4.2.6.5: Pseudocode use to detect starting point in diagonal direction

In order to generate the freeman chain code deterministically, the algorithm also needs to

fix a method to generate the next move. This can be easily implemented by letting the

algorithm try for possible movements in the following sequence: 0, 1, 2, 3, …, 7.

1. Initialize row to zero

2. Repeat the steps until points are detected

a. Initialize i = 0, j = row

b. Repeat the steps while i <= total number of rows and j > 0

i. If the pixel at (i, j) is non-white, use it as the starting pixel

ii. Otherwise, increase i by 1 and decrease j by 1

c. Increase row by 1

CHAPTER 4 ALGORITHM IMPLEMENTATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 33

Finally, I show an example of a chain code obtained for the character „X‟.

Figure 4.2.6.6: Image character „O‟

Figure 4.2.6.7: Chain code obtained for character „O‟

5 5 6 5 5 5 6 5 6 5 5 5 7 6 5 5 5 7 5 6 6 6 6 5 5 6 5 6 5 6 6 7 5 7 6 6 7 6 6 7

6 7 6 7 6 7 7 7 0 7 0 0 0 0 0 1 0 1 1 1 1 1 1 1 2 2 2 1 2 1 1 2 1 2 2 2 2 2 1 2

2 2 2 2 2 2 2 2 2 2 3 3 2 2 3 3 2 2 3 2 2 3 5 2 3 3 4 3 4 4 4

Starting point

CHAPTER 4 ALGORITHM IMPLEMENTATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 34

One problem with the chain codes generated this way is that they often contain noises.

This is because character outlines are often not smooth due to limitations in image

resolution. Such noises are immediately apparent when the chain code is examined

carefully; it is likely to appear as an anomaly between a series of the same numbers. For

example the first 5 codes for the character „0‟ in Figure 4.2.6.8 are 5-5-6-5-5. However,

for a perfectly smooth outline of „0‟, a series of 5-5-5-5-5 should be expected. In this case,

the character „6‟ is clearly a noise code which should be corrected to 5. By reducing

noises a chain code can be smoothed. A chain code with less noise shows a clearer

moving direction compared to chain code with noise.

To do this, I use an algorithm which examines all consecutive 5 elements of a chain code.

The algorithm begins with the first 5 numbers of a chain code (i.e., the 1st, 2nd, 3rd, 4th,

and 5th). The 3rd element is then compared with the 1st, 2nd, 4th, and 5th elements to

determine if it is a noise, through the conditions stated in Figure 4.2.6.9, and altered

accordingly if so. After this, the algorithm proceeds to examine the next 5 elements (2nd,

3rd, 4th, 5th, and 6th), comparing the 4th element with the 2nd, 3rd, 5th, and 6th. The process

is repeated until the (n2)-th element, where n is the total length of the chain code.

Original chain
code obtained

5 5 6 5 5 5 6 5 6 5 5 5 7 6 5 5 5 7 5 6 6 6 6 5 5 6 5 6 5 6 6 7 5 7 6 6 7

6 6 7

6 7 6 7 6 7 7 7 0 7 0 0 0 0 0 1 0 1 1 1 1 1 1 1 2 2 2 1 2 1 1 2 1 2 2 2 2

2 1 2

2 2 2 2 2 2 2 2 2 2 3 3 2 2 3 3 2 2 3 2 2 3 5 2 3 3 4 3 4 4 4

Chain code

obtained after
reducing noise

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

6 6 6

6 6 6 6 6 7 7 7 7 7 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2

CHAPTER 4 ALGORITHM IMPLEMENTATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 35

2 2 2

2 3 3 3 3 4 4 4

Figure 4.2.6.8: Chain code gained before and after reducing noise

Figure 4.2.6.9: Pseudocode used to reduce noise of chain code

1. Copy original chain code into a new array

2. Repeat the step throughout the sequence of chain code by

a. Copy ith to i+5th elements of chain code

b. If any three of the 1st, 2nd, 4th and 5th elements are the same (c say)

i. Set the 3rd element to c

c. Else if 4th element is equal to 5th element

i. If 1st element OR 2nd element is equal to 5th element

I. Then 3rd element = 5th element

d. Else if 1st element is equal to 5th element

i. If 2nd element equal to 1st element + 1 OR 1st element – 1

I. Then 2nd and 3rd element is equal to 1st element

ii. If 4th element equal to 1st element + 1 OR 1st element – 1

I. Then 4th and 3rd element is equal to 1st element

e. Increase value of i by 1

CHAPTER 4 ALGORITHM IMPLEMENTATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 36

4.2.7 Classification – Edit Distance

Finally, the converted chain code of the input character is compared to the chain codes in

the filtered database. As mentioned, this comparison is performed using the edit distance.

The original edit distance gives a flat penalty of 1 to each insertion or deletion. I use a

modified edit distance which penalizes less on the character changes that are considered

less severe. For example, a move to the left is not very different from a move to the upper

left, compared to the difference between an upward move and a downward move. The

modified edit distance divides the level of similarities into 5 and uses a range of 0.0–2.4

as penalties. A difference which is considered less severe introduces less into the edit

distance, while a difference which is more severe introduces more distance. For example,

the distance introduced when matching different codes to „0‟ () is listed below.

Chain code of input Chain code of
sample in database

Difference

(0) (0) 0.0

(0) (1) 0.2

(0) (2) 1.5

(0) (3) 2.0

(0) (4) 2.4

(0) (5) 2.0

(0) (6) 1.5

(0) (7) 0.2

Figure 4.2.7.1: Example of matching different codes to „0‟

CHAPTER 4 ALGORITHM IMPLEMENTATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 37

The dynamic programming for computing this modified edit distance is given in Figure

4.2.7.2.

Figure 4.2.7.2: Pseudocode use for calculate edit distance

Character recognition with solely chain codes achieves fairly high accuracy. When tested

against 3 set of test samples (i.e. 3x36=108 characters), 105 of the characters were

correctly identified. The characters which the chain code comparison failed to ide ntify

are for the characters „1‟, „B‟, „D‟, „K‟ and „M‟.

1. Store chain code of training sample in arrayT

2. Store chain code of testing sample in arrayS

3. Initialize first row of 2D matrix as 0.0

4. Initialize first column of 2D matrix as 0.0

5. For each element of arrayS,

a. For each element of arrayT

i. If element of arrayT – arrayS = 0

I. Then difference = 0.0

ii. If element of arrayT – arrayS = 1 OR 7

I. Then difference = 0.2

iii. If element of arrayT – arrayS = 2 OR 6

I. Then difference = 1.5

iv. If element of arrayT – arrayS = 3 OR 5

I. Then difference = 2.0

v. If element of arrayT – arrayS = 4

I. Then difference = 2.4

vi. Compute the minimal value by comparing matrix[x-1][y] + 1 (deletion),

matrix[x][y-1] + 1 (insertion), matrix[x-1][y-1] + num (substitution).

CHAPTER 4 ALGORITHM IMPLEMENTATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 38

4.2.8 Classification – Chain Code Composition Analysis

As mentioned, chain codes comparison failed to identify the characters „1‟, „B‟, „D‟, „K‟

and „M‟. A better method to analyze these characters is by examining the composition of

their chain codes. The composition of a chain code is the percentage of „0‟. „1‟, …, „7‟ it

contains. From my analysis, I found the letters „1‟, „B‟, „D‟, „K‟ and „M‟ to be

particularly different in their chain code compositions. Hence, the differences in their

chain code composition can be used effectively to distinguish them from the other

characters. To compute the difference between two chain code compositions, the „0‟,

„1‟, …, „7‟ composition of the chain codes respectively are first computed. Then, the

difference between their individual „0‟, „1‟, …, „7‟ composition is computed. Finally, the

difference between the two chain code compositions is the sum of all the differences

between the individual „0‟, „1‟, …, „7‟ compositions. This is shown in Figure 4.2.8.2.

Code Composition of Differences against

Chain

Code 1

Chain

Code 2

Chain

Code 3

Input Chain

Code

Chain

Code 1

Chain

Code 2

Chain

Code 3

0 10 12 3 8 2 4 5

1 32 10 23 12 20 2 11

2 33 32 35 30 3 2 5

3 52 17 27 24 28 7 3

4 22 21 29 15 7 6 14

5 11 33 17 33 22 0 16

6 2 8 6 7 5 1 1

7 30 2 4 28 2 2 24

∑ = 89 24 79

Figure 4.2.8.1: Example of calculating difference between the input chain code with three

chain codes from the database

CHAPTER 4 ALGORITHM IMPLEMENTATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 39

Figure 4.2.8.2: Pseudocode use for calculate total difference

While the chain code composition effectively distinguishes the chain codes that are

different, it is not consistent in giving the highest similarity scores to the correct chain

code. To overcome this, a KNN strategy is adopted. That is, K chain codes in the

database with the closest compositions to the input chain code are obtained. Then, the

character with the most chain codes among the K ones are given as the output character.

In my test, I found that letting K=3 achieves the highest accuracy possible. That is, if any

two chain codes in the nearest 3 found are for the same character, then the classifying

process is completed and the character is given as output. A problem, however, arises

when all 3 nearest characters are difference.

In such a situation, I use the KNN results with the output values of the ANN (explained

in 4.1.4) to modify the difference score from the chain code composition. This new

difference is computed as (0.1 * original difference for character)*(1ANN score for

character). Then, the character with the smallest difference is selected as the output.

1. Sequence of chain code of training sample is separated into groups according to

its number (0-7), for each group, the number of members are counted and store

in an arrayT.

2. Same as testing sample, the summation of chain code is stored in arrayS.

3. Substract each element of arrayS and arrayT. The value of substraction would be

accumulated and the total difference calculated.

CHAPTER 4 ALGORITHM IMPLEMENTATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 40

When tested, this new score produces favourable accuracy in identifying the characters

„1‟, „B‟, „D‟, „K‟ and „M‟.

Figure 4.2.8.3: Pseudocode for chain code composition with KNN

1. Find 3 chain codes with the closest chain code composition with the input chain

code

2. For each value, calculate its new difference by using equation stated above.

3. The character with the smallest new difference is given as the output.

CHAPTER 4 ALGORITHM IMPLEMENTATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 41

4.2.9 Overall Results Obtained

The overall three-stage system (ANN, Chain code-edit distance analysis, Chain code

composition with KNN) is tested against three sets of test samples. That is, a total of

3*36=108 characters. The following shows the result:

Character Set 1 Set 2 Set 3 Correctness

0 0 0 0 3/3

1 1 1 1 3/3

2 2 2 2 3/3

3 3 3 3 3/3

4 4 4 4 3/3

5 5 5 5 3/3

6 6 6 6 3/3

7 7 7 7 3/3

8 8 8 8 3/3

9 9 9 9 3/3

A A A A 3/3

B B B B 3/3

C C C C 3/3

D D D D 3/3

E E E E 3/3

F F F F 3/3

G G G G 3/3

H H H H 3/3

I I I I 3/3

J J J J 3/3

K K K K 3/3

L L L L 3/3

M M M M 3/3

N N N N 3/3

O O O O 3/3

P P P P 3/3

CHAPTER 4 ALGORITHM IMPLEMENTATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 42

Q Q Q Q 3/3

R R R R 3/3

S S S S 3/3

T T T T 3/3

U U U U 3/3

V V V V 3/3

W W W W 3/3

X X X X 3/3

Y Y Y Y 3/3

Z Z Z Z 3/3

Figure 4.2.9.1: Results obtained

Testing Sample Set = 3

Number of character tested = 3 x 36 = 108

Number of character failed = 0

Number of character mismatched = 0

Accuracy = 108/108 = 100%

Performance-wise, the three-stage recognizer is able to analyze each input character

nearly instantaneously.

CHAPTER 4 ALGORITHM IMPLEMENTATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 43

4.2 Sample Preparation

The test data and training comes from a pool of 60 sets of characters, cropped out mostly

from the labels on the books of 50~60 photos taken from the UTAR library.

50 sets (50*36=1800 characters) of the data are used to train the ANN. 7 sets (7*36=252)

of the data are used to generate the Freeman chain code database used in the chain code

edit distance analysis as well as the chain code composition analysis. The remaining 3

sets of characters are used as test samples to determine the accuracy of the final system,

as well as for preliminary tests.

CHAPTER 4 ALGORITHM IMPLEMENTATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 44

4.3 Training and Testing Engine

4.3.1 Artificial Neural Network

Training Stage

For the artificial neural network, the Matlab library is used, since it provides a

comprehensive pattern recognition tool set that makes the use of its neural network

convenient. As mentioned, 50 sets of training samples are used in training the neural

network. The feature extraction method discussed in 4.1.2 was implemented; the resultant

data was stored in a text file. The text file is then loaded together with the training target

in order to train the network. Results produced from neural network varies each time the

training is completed, thus there is a need to save the network each time the training

completes. The neural network with the highest accuracy tested against the test samples is

selected for my system.

Figure 4.3.1.1: Pseudocode use for training neural network

1. Read training input

2. Read training target

3. Define layer of network as 7

4. Create the neural network by using patternnet()

5. Setup division of data,

a. Training = 100%

b. validation = 0%

c. testing = 0%

6. Train and save the network

CHAPTER 4 ALGORITHM IMPLEMENTATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 45

Testing Stage

After a network completed its training stage, testing is carried out to determine its

accuracy. Test samples are loaded into the network and the results obtained. The output

of the neural network is stored in an array which holds 36 rows. Each row holds a score

which is indicative of the input‟s similarity to the character represented by the row. For

example, the score in the first row indicates the similarity of the test sample to the

character „0‟, the score in the second indicates the similarity of the test sample to the

character „1‟, etc.

Figure 4.3.1.2: Sample output of neural network

Input = Testing

sample of

character „0‟

Score for the

character „0‟

Score for the

character „1‟

CHAPTER 4 ALGORITHM IMPLEMENTATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 46

Figure 4.3.1.3: Pseudocode used for testing stage

While carrying out training I noticed that whenever the score is 0.8 or above, the

character identified would always be correct. Hence 0.8 is taken as a threshold in my

algorithm. The ideal trained network will be the one with more result produced with

probability 0.8 and above. Thus, training and testing is carried out numerous times and I

chose the neural network with an output that is nearest to the ideal condition.

1. Load trained network

2. Load testing sample

3. Input testing sample into neural network and gained results

CHAPTER 4 ALGORITHM IMPLEMENTATION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 47

4.3.2 Freeman Chain Code Recognizer

For the Freeman chain code analysis, no training to fit parameters is required, other than

the pre-processing required to prepare the chain code database.

CHAPTER 5: DISCUSSION

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 48

CHAPTER 5: DISCUSSION

5.1 Achievement, Future Improvement and Conclusion

The project succeeded in its main objective, which is to achieve near-perfect accuracy in

recognizing handwritten text on library labels. Tests conducted on 3 test sets of 3*36=108

characters showed 100% accuracy. Performance-wise, the recognizer is able to analyze

each image instantaneously. This implies that the resultant system is a suitable candidate

for use in our target mobile application for detecting misplaced books on library shelfs.

As the neural network used in the project is from Matlab, a more efficient

implementation in C is required.

In conclusion, the project has achieved its objectives. The problems encountered have

been solved by taking the suggestion by my advisor. I learned a lot from working on this

project, and I am satisfied with seeing an algorithm that I designed works.

BIBLIOGRAPHY

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 49

BIBLIOGRAPHY

Nawrin Binte Nawab, M. N. Hassan, 2012, „Optical Bangla Character Recognition using

Chain Code‟, IEEE/OSA/IAPR International Conference on Informatics, Electronics &

Vision 2012.

Gaurav Y.Tawde, Mrs. Jayashree M.Kundargi, 2013, „an Overview of Feature Extraction

Techniques in OCR for Indian Scripts Focused on Offline Handwriting‟, International

Journal of Engineering Research and Applications (IJERA), Vol.3, Issue 1, January –

February 2013, pp.919-926.

W-Y Wu, C-S Lai, 2007, „Shape Recognition using fuzzy string- matching technique‟,

The Imaging Science Journal, Vol. 5, pp.223-231.

BIBLIOGRAPHY

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. 50

APPENDIX

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. - 1 -

APPENDIX – A COMPLETE CODING OF THE WHOLE PROGRAM

Appendix A - Program Used for Crop and Scale Image

#include "opencv2\core\core.hpp"
#include "opencv2\highgui\highgui.hpp"
#include "opencv\cv.h"
#include "opencv\highgui.h"
#include <iostream>
#include <string.h>
using namespace std;
using namespace cv;

int main(int argc, char *argv[])
{
 char character[36] =
{'0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F','G','H','I'
,'J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z'};
 char setK[10] = {'0','1','2','3','4','5','6','7','8','9'};
 char setL[6] = {'1','2','3','4','5','6'};
 int imgResult;
 char imgName[10] = {};
 char inputName[11] = {};
 int bottom, top, left, right;
 IplImage* img = 0;
 int height,width,step,channels, depth, newHeight, newWidth;
 uchar *data;
 int i,j;

 for(int l = 0; l < 5; l++){
 for(int k = 0; k < 10; k++){
 for(int sample = 0; sample < 36; sample++){
 top = 0;
 bottom =0;
 left = 0;
 right = 0;
 imgName[0] = character[sample];
 imgName[1] = ' ';
 imgName[2] = '(';
 imgName[3] = setL[l];

APPENDIX

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. - 2 -

 imgName[4] = setK[k];
 imgName[5] = ')';

 imgName[6] = '.';
 imgName[7] = 'b';
 imgName[8] = 'm';
 imgName[9] = 'p';
 imgResult = sprintf(inputName,
"%c%c%c%c%c%c%c%c%c%c", imgName[0], imgName[1], imgName[2], imgName[3],
imgName[4], imgName[5], imgName[6], imgName[7], imgName[8], imgName[9]);

img=cvLoadImage(inputName,
CV_LOAD_IMAGE_GRAYSCALE);

 if(!img) {
 printf("Could not load image file: %s\n",
inputName);
 system("PAUSE");
 return -1;
 }
 depth = img->depth;
 height = img->height;
 width = img->width;
 step = img->widthStep;
 channels = img->nChannels;
 data = (uchar *)img->imageData;

 //get top margin
 i = 0;
 while(top == 0 && i < height){
 j = 0;
 while(top == 0 && j<width){
 if(data[i*step+j] <= 128)
 top = i*step+j;
 j++;
 }
 i++;
 }
 //get bottom margin
 i = (height*step)-(step-width+1);
 while(bottom == 0 && i > 0){
 if(data[i] <= 128)
 bottom = i;
 i--;
 }

APPENDIX

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. - 3 -

//get left side margin
 j = 0;
 while(left == 0 && j < width){
 i = 0;
 while(left == 0 && i < height){
 if(data[i*step+j] <= 128)

left = i*step+j;
 i++;
 }
 j++;
 }

//get right side margin
 j = width - (step - width + 1);
 while(right == 0 && j < width){
 i = 0;
 while(right == 0 && i < height){
 if(data[i*step+j] <= 128)
 right = i*step+j;
 i++;
 }
 j--;
 }

 //crop image
 //new height and width after cropped
 newHeight = (height - (((top - step)/step) +
height - (((bottom + step)/step)))) + 4;
 newWidth = (width - (((left - 1)%step) + width -
(((right + 1)%step)))) + 4;
 cvSetImageROI(img, cvRect(((left - 1)%step)-2,
((top - step)/step)-2, newWidth, newHeight));

 //resize image
 CvSize size = cvSize(30,50);
 IplImage* tmpsize=cvCreateImage(size,8,0);
 cvResize(img,tmpsize,CV_INTER_LINEAR);

 cvSaveImage(inputName,tmpsize);
 cvShowImage("mainWin", tmpsize);
 }
 }
 }
 return 0;
}

APPENDIX

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. - 4 -

Appendix B - Program Used to Train Neural Network

Appendix C - Program Used to Run Neural Network Character Classification

% read input
inputs = train_input';
targets = train_target';

% Create a Pattern Recognition Network
hiddenLayerSize = 7;
net = patternnet(hiddenLayerSize);

% Setup Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 100/100;
net.divideParam.valRatio = 0/100;
net.divideParam.testRatio = 0/100;

% Train and save the Network
[net,tr] = train(net,inputs,targets);
save('D:\\net.mat', 'net')

% read input - feature extraction data
testingInput8 = test8';
testingInput9 = test9';
testingInput10 = test10';

% load network trained
load('net.mat');

% Test input with Network trained/load
testingOutput8 = net(testingInput8);
testingOutput9 = net(testingInput9);
testingOutput10 = net(testingInput10);

% Output results to txt file
fid = fopen('D:\\result58.txt','w');
fprintf(fid,'%.4f \n',testingOutput8);
fclose(fid);
fid2 = fopen('D:\\result59.txt','w');
fprintf(fid2,'%.4f \n',testingOutput9);
fclose(fid2);
fid3 = fopen('D:\\result60.txt','w');
fprintf(fid3,'%.4f \n',testingOutput10);
fclose(fid3);

APPENDIX

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. - 5 -

Appendix D - Program Used for Edit Distance Classification and Chain Code

Composition Analysis

#include "opencv2\imgproc\imgproc.hpp"
#include "opencv2\core\core.hpp"
#include "opencv2\highgui\highgui.hpp"
#include "opencv\cv.h"
#include "opencv\highgui.h"
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#define MIN3(a, b, c) ((a) < (b) ? ((a) < (c) ? (a) : (c)) : ((b) < (c) ?
(b) : (c)))
using namespace std;
using namespace cv;

int main(int argc, char *argv[])
{
 char target;
 int c_sample=99;
 while(c_sample!=100)
 {
 printf("==================================\n");
 printf("Enter target = "); //read testing sample. E.g. A
 scanf("%c", &target);
 fflush(stdin);
 printf("Enter sample = "); //read its position. E.g. Position
for 'A' is 10
 scanf("%d", &c_sample);
 fflush(stdin);

 char character[36] =
{'0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F','G','H','I',
'J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z'};
 char set[7] = {'1','2','3','4','5','6','7'};
 int library[8][288] = {0};
 int library2[300][250];
 int imgResult;
 char imgName[10] = {};
 char inputName[11] = {};

APPENDIX

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. - 6 -

IplImage* img = 0;
 IplImage* img2 = 0;
 IplImage* img3 = 0;
 IplImage* img4 = 0;
 uchar *data;
 uchar *data2;
 uchar *data3;
 uchar *data4;

int height,width,step,channels, depth;
 int i,j;
 int startI, startJ, partition;
 int filter;
 int filterCha[250] = {};
 int numChaMatch = 0;
 int partitionT[9] = {};

 double ANN[36][36];

//read testing sample image
 imgName[0] = target;
 imgName[1] = ' ';
 imgName[2] = '(';
 imgName[3] = '5';
 imgName[4] = '8';
 imgName[5] = ')';
 imgName[6] = '.';
 imgName[7] = 'b';
 imgName[8] = 'm';
 imgName[9] = 'p';
 imgResult = sprintf(inputName, "%c%c%c%c%c%c%c%c%c%c",
imgName[0], imgName[1], imgName[2], imgName[3], imgName[4], imgName[5],
imgName[6], imgName[7], imgName[8], imgName[9]);

 img3=cvLoadImage(inputName, CV_LOAD_IMAGE_GRAYSCALE);
 if(!img3) {
 printf("Could not load image file: %s\n", inputName);
 system("PAUSE");
 return -1;
 }
 depth = img3->depth;
 height = img3->height;
 width = img3->width;
 step = img3->widthStep;

APPENDIX

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. - 7 -

channels = img3->nChannels;
 data3 = (uchar *)img3->imageData;
 printf("Testing image: %c%c%c%c%c%c%c%c%c%c\n", imgName[0],
imgName[1], imgName[2], imgName[3], imgName[4], imgName[5], imgName[6],
imgName[7], imgName[8], imgName[9]);

//read ANN results
 FILE *ptr;
 if(imgName[4] == '8')
 ptr = fopen("result58.txt", "r");
 else if(imgName[4] == '9')
 ptr = fopen("result59.txt", "r");
 else
 ptr = fopen("result60.txt", "r");

 for(int i = 0; i < 36; i++){
 for(int j = 0;j < 36; j++){
 fscanf(ptr, "%lf ",&ANN[i][j]);
 }
 fscanf(ptr,"\n");
 }
 fclose(ptr);

//find maximum value
 double maxANN = 0;
 int ch;
 for(int i = 0; i < 36; i++){
 if(ANN[c_sample][i] > maxANN){
 maxANN = ANN[c_sample][i];
 ch = i;
 }
 }

if(maxANN >= 0.8){
 printf("ANN: The character is predicted to be %c\n",
character[c_sample]);
 }
 else{
 //filtering - break testing img into 3x3 partition
 partition = 1;
 while(partition < 10){
 startI = 0;
 startJ = 0;

APPENDIX

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. - 8 -

if(partition == 1 || partition == 4 || partition == 7)
 startJ = 0;
 if(partition == 2 || partition == 5 || partition == 8)
 startJ = 10;
 if(partition == 3 || partition == 6 || partition == 9)
 startJ = 20;
 if(partition == 1 || partition == 2 || partition == 3)
 startI = 0;
 if(partition == 4 || partition == 5 || partition == 6)
 startI = 17;
 if(partition == 7 || partition == 8 || partition == 9)
 startI = 34;

for(i=startI;i<startI+17;i++)

 for(j=startJ;j<startJ+10;j++)
 if(data3[i*step+j] != 255)
 partitionT[partition - 1] += (255-
data3[i*step+j]);
 partition++;

 }

//read training sample
 for(int k = 0; k < 7; k++){
 for(int sample = 0; sample < 36; sample++){
 int partitionS[9] = {};
 imgName[0] = character[sample];
 imgName[1] = ' ';
 imgName[2] = '(';
 imgName[3] = '5';
 imgName[4] = set[k];
 imgName[5] = ')';
 imgName[6] = '.';
 imgName[7] = 'b';
 imgName[8] = 'm';
 imgName[9] = 'p';
 imgResult = sprintf(inputName,
"%c%c%c%c%c%c%c%c%c%c", imgName[0], imgName[1], imgName[2], imgName[3],
imgName[4], imgName[5], imgName[6], imgName[7], imgName[8], imgName[9]);

 img4=cvLoadImage(inputName,
CV_LOAD_IMAGE_GRAYSCALE);

APPENDIX

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. - 9 -

partition = 1;
 filter = 0;
 while(partition < 10){
 startI = 0;
 startJ = 0;
 if(partition == 1 || partition == 4 ||
partition == 7)
 startJ = 0;
 if(partition == 2 || partition == 5 ||
partition == 8)
 startJ = 10;
 if(partition == 3 || partition == 6 ||
partition == 9)
 startJ = 20;
 if(partition == 1 || partition == 2 ||
partition == 3)
 startI = 0;
 if(partition == 4 || partition == 5 ||
partition == 6)
 startI = 17;
 if(partition == 7 || partition == 8 ||
partition == 9)
 startI = 34;

 for(i=startI;i<startI+17;i++)
 for(j=startJ;j<startJ+10;j++)
 if(data4[i*step+j] != 255)

 partitionS[partition - 1] += (255-data4[i*step+j]);

 if(partitionS[partition - 1] <
(partitionT[partition - 1]*0.2))
 filter++;
 else if(partitionT[partition - 1] == 0)
 if(partitionS[partition - 1] >
8000)
 filter++;
 else if(partitionS[partition - 1] == 0)
 if(partitionT[partition - 1] >
8000)
 filter++;

 partition++;
 }

APPENDIX

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. - 10 -

if(filter < 2){
 filterCha[numChaMatch] =
(36*k)+sample;
 numChaMatch++;
 }
 }

 }

for(int k = 0; k < numChaMatch+1; k++){

 char imgName[7] = {};
 char inputName[8] = {};
 int chainCode[30000] = { };
 int sequence = 0;
 int startWidth = 0;
 int startHeight = 0;
 int start = 1;

 imgName[0] = character[filterCha[k]%36];
 imgName[1] = ' ';
 imgName[2] = '(';
 imgName[3] = '5';
 imgName[4] = set[filterCha[k]/36];
 if(k == numChaMatch){
 imgName[0] = target;
 //imgName[3] = '6'; // 60
 imgName[4] = '8'; // 58 //59 //60
 }
 imgName[5] = ')';
 imgName[6] = '.';
 imgName[7] = 'b';
 imgName[8] = 'm';
 imgName[9] = 'p';
 imgResult = sprintf(inputName,
"%c%c%c%c%c%c%c%c%c%c", imgName[0], imgName[1], imgName[2], imgName[3],
imgName[4], imgName[5], imgName[6], imgName[7], imgName[8], imgName[9]);

 img=cvLoadImage(inputName,
CV_LOAD_IMAGE_GRAYSCALE);

APPENDIX

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. - 11 -

if(!img) {
 printf("Could not load image file: %s\n",
inputName);
 system("PAUSE");
 return -1;
 }
 depth = img->depth;
 height = img->height;
 width = img->width;
 step = img->widthStep;
 channels = img->nChannels;

 data = (uchar *)img->imageData;

//binarization

 for(int i=0;i<height;i++)
 for(int j=0;j<width;j++)
 if(data[i*step+j] <= 128)
 data[i*step+j] = 0;
 else

 data[i*step+j] = 255;

//find out boundary
 for (int i=0; i < height; i++)
 for (int j=0; j < width; j++)
 if(data[i*step+j] == 0)
 if(data[(i-1)*step+j] == 255)
 data[(i-1)*step+j] = 100;
 if(data[(i+1)*step+j] == 255)
 data[(i+1)*step+j] = 100;
 if(data[i*step+j-1] == 255)
 data[i*step+j-1] = 100;
 if(data[i*step+j+1] == 255)
 data[i*step+j+1] = 100;

 for (int i=0; i < height; i++)
 for (int j=0; j < width; j++)
 if(data[i*step+j] == 0)
 data[i*step+j] = 255;

 imgResult = sprintf(inputName, "%c%c%c%c%c%c%c",
character[filterCha[k]%36], '_', 'X', '.', 'b', 'm', 'p');
 cvSaveImage(inputName,img);

APPENDIX

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. - 12 -

//find startWidth and startHeight
 int first2 = 0;
 int line = 0;
 while(first2 == 0){
 int i = 0;
 int j = line;
 while((i <= line && j >= 0) && first2 == 0){
 if(data[i*step+j] == 100){
 startWidth = i;
 startHeight = j;
 first2++;
 }
 i++;
 j--;
 }
 line++;
 }

//freeman chain code
 img2=cvLoadImage(inputName,
CV_LOAD_IMAGE_GRAYSCALE);
 if(!img2){
 printf("Could not load image file: %s\n",
inputName);
 system("PAUSE");
 return -1;
 }
 data2 = (uchar *)img2->imageData;
 int min;
 int min2[50][3]={};
 int min2Count = 0;
 width = startWidth;
 height = startHeight;
 for(int i = 0; i < 300; i++)
 for(int j = 0; j < 250; j++)
 library2[i][j] = 8;
 while(start){
 min = 256;
 if((data[(width-1)*step+height+1] == 100)
&& (data2[(width-1)*step+height+1] <= min)){
 if(min == 256)
 min = data2[(width-
1)*step+height+1];
 else if(sequence > 5){
 min2[min2Count][0] = width-1;
 min2[min2Count][1] = height+1;
 min2Count++;
 }
 }

APPENDIX

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. - 13 -

if((data[(width-1)*step+height-1] == 100) &&
(data2[(width-1)*step+height-1] <= min)){

 if(min == 256)
 min = data2[(width-1)*step+height-
1] ;
 else if(sequence > 5){
 min2[min2Count][0] = width-1;
 min2[min2Count][1] = height-1;
 min2Count++;
 }
 }

if((data[(width+1)*step+height-1] == 100) &&
(data2[(width+1)*step+height-1] <= min)){

 if(min == 256)
 min = data2[(width+1)*step+height-
1];
 else if(sequence > 5){
 min2[min2Count][0] = width+1;
 min2[min2Count][1] = height-1;
 min2Count++;
 }
 }
 if((data[(width+1)*step+height+1] == 100) &&
(data2[(width+1)*step+height+1] <= min)){
 if(min == 256)
 min =
data2[(width+1)*step+height+1];
 else if(sequence > 5){
 min2[min2Count][0] = width+1;
 min2[min2Count][1] = height+1;
 min2Count++;
 }
 }
 if((data[width*step+height+1] == 100) &&
(data2[width*step+height+1] <= min)){
 if(min == 256)
 min = data2[width*step+height+1];
 else if(sequence > 5){
 min2[min2Count][0] = width;
 min2[min2Count][1] = height+1;
 min2Count++;
 }

 }

APPENDIX

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. - 14 -

if((data[(width-1)*step+height] == 100) &&

(data2[(width-1)*step+height] <= min)){
 if(min == 256)
 min = data2[(width-
1)*step+height];
 else if(sequence > 5){
 min2[min2Count][0] = width-1;
 min2[min2Count][1] = height;
 min2Count++;
 }
 }

if((data[(width)*step+height-1] == 100) &&
(data2[(width)*step+height-1] <= min)){

 if(min == 256)
 min = data2[(width)*step+height-
1];
 else if(sequence > 5){
 min2[min2Count][0] = width;
 min2[min2Count][1] = height-1;
 min2Count++;
 }
 }
 if((data[(width+1)*step+height] == 100) &&
(data2[(width+1)*step+height] <= min)){
 if(min == 256)
 min =
data2[(width+1)*step+height];
 else if(sequence > 5){
 min2[min2Count][0] = width+1;
 min2[min2Count][1] = height;
 min2Count++;
 }
 }

 if((data[(width-1)*step+height+1] == 100 ||
data[(width-1)*step+height+1] == 200) && (data2[(width-1)*step+height+1] ==
min) && !((sequence == 1 || sequence == 2) && startHeight == height+1 &&
startWidth == width-1)){
 for(int minC = 0; minC < 20; minC++)

APPENDIX

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. - 15 -

if(min2[minC][0] == width-1 && min2[minC][1]
== height+1)

 min2[minC][2] = 1;
 data2[(width-1)*step+height+1]++;
 data[(width-1)*step+height+1] = 200;
 chainCode[sequence] = 1;
 library[1][k]++;
 width -= 1;
 height += 1;
 }

else if((data[(width-1)*step+height-1] ==
100 || data[(width-1)*step+height-1] == 200) &&
(data2[(width-1)*step+height-1] == min)
&& !((sequence == 1 || sequence == 2) &&
startHeight == height-1 && startWidth == width-
1)){

 for(int minC = 0; minC < 20; minC++)
 if(min2[minC][0] == width-1 &&
min2[minC][1] == height-1)
 min2[minC][2] = 1;
 data2[(width-1)*step+height-1]++;
 data[(width-1)*step+height-1] = 200;
 chainCode[sequence] = 3;
 library[3][k]++;
 width -= 1;
 height -= 1;
 }

else if((data[(width+1)*step+height-1] ==
100 || data[(width+1)*step+height-1] == 200) &&
(data2[(width+1)*step+height-1] == min)
&& !((sequence == 1 || sequence == 2) &&
startHeight == height-1 && startWidth ==
width+1)){

 for(int minC = 0; minC < 20; minC++)
 if(min2[minC][0] == width+1 &&
min2[minC][1] == height-1)
 min2[minC][2] = 1;
 data2[(width+1)*step+height-1]++;
 data[(width+1)*step+height-1] = 200;
 chainCode[sequence] = 5;
 library[5][k]++;
 width += 1;
 height -= 1;
 }

APPENDIX

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. - 16 -

else if((data[(width+1)*step+height+1] == 100
|| data[(width+1)*step+height+1] == 200) &&
(data2[(width+1)*step+height+1] == min)
&& !((sequence == 1 || sequence == 2) && startHeight
== height+1 && startWidth == width+1)){

 for(int minC = 0; minC < 20; minC++)
 if(min2[minC][0] == width+1 &&
min2[minC][1] == height+1)
 min2[minC][2] = 1;
 data2[(width+1)*step+height+1]++;
 data[(width+1)*step+height+1] = 200;
 chainCode[sequence] = 7;
 library[7][k]++;
 width += 1;
 height += 1;
 }
 else if((data[(width)*step+height+1] == 100 ||
data[(width)*step+height+1] == 200) && (data2[(width)*step+height+1] == min)
&& !((sequence == 1 || sequence == 2) && startHeight == height+1 && startWidth
== width)){
 for(int minC = 0; minC < 20; minC++)
 if(min2[minC][0] == width &&
min2[minC][1] == height+1)
 min2[minC][2] = 1;
 data2[(width)*step+height+1]++;
 data[(width)*step+height+1] = 200;
 chainCode[sequence] = 0;
 library[0][k]++;
 height += 1;
 }

else if((data[(width-1)*step+height] == 100 ||
data[(width-1)*step+height] == 200) && (data2[(width-
1)*step+height] == min)&& !((sequence == 1 ||
sequence == 2) && startHeight == height && startWidth
== (width-1))){

 for(int minC = 0; minC < 20; minC++)
 if(min2[minC][0] == width-1 &&
min2[minC][1] == height)
 min2[minC][2] = 1;
 data2[(width-1)*step+height]++;
 data[(width-1)*step+height] = 200;
 chainCode[sequence] = 2;
 library[2][k]++;
 width -= 1;
 }

APPENDIX

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. - 17 -

 else if((data[(width)*step+height-1] == 100
|| data[(width)*step+height-1] == 200) && (data2[(width)*step+height-1] ==
min) && !((sequence == 1 || sequence == 2) && startHeight == height-1 &&
startWidth == width)){
 for(int minC = 0; minC < 20; minC++)
 if(min2[minC][0] == width &&
min2[minC][1] == height-1)
 min2[minC][2] = 1;
 data2[(width)*step+height-1]++;
 data[(width)*step+height-1] = 200;
 chainCode[sequence] = 4;
 library[4][k]++;
 height -= 1;
 }
 else if((data[(width+1)*step+height] == 100
|| data[(width+1)*step+height] == 200) && (data2[(width+1)*step+height] ==
min) && !((sequence == 1 || sequence == 2) && startHeight == height &&
startWidth == width+1)){
 for(int minC = 0; minC < 20; minC++)
 if(min2[minC][0] == width+1 &&
min2[minC][1] == height)
 min2[minC][2] = 1;
 data2[(width+1)*step+height]++;
 data[(width+1)*step+height] = 200;
 chainCode[sequence] = 6;
 library[6][k]++;
 width += 1;
 }

else{
 int minC = 0;
 int check = 0;
 while(minC < min2Count && check ==
0){
 if(min2[minC][2] != 1){
 width = min2[minC][0];
 height = min2[minC][1];
 min2[minC][2] = 1;
 check = 1;
 }
 minC++;
 }
 }

APPENDIX

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. - 18 -

 sequence++;
 if((width == startWidth && height ==
startHeight && sequence > 10)|| sequence >= 1500)
 start = 0;
 }
 cvSaveImage(inputName,img);

 //smoothing the chain code
 int chain[8] = {0,1,2,3,4,5,6,7};
 int chainCode2[500];
 for(int i = 0; i < sequence; i++)
 chainCode2[i] = chainCode[i];

 for(int i = 0; i < sequence-2; i++){
 int set[5];
 set[0] = chainCode2[i];
 set[1] = chainCode2[i+1];
 set[2] = chainCode2[i+2];
 set[3] = chainCode2[i+3];
 set[4] = chainCode2[i+4];
 if(set[0] == set[1]){
 if(set[3] == set[0] || set[4] == set[0])
 set[2] = set[0];
 }
 else if(set[3] == set[4]){
 if(set[0] == set[3] || set[1] == set[3])
 set[2] = set[3];
 }

APPENDIX

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. - 19 -

 else if(set[0] == set[4]){
 if(set[0] == 0)
 {
 if(set[1] == chain[set[0]+1] ||
set[1] == 0)
 set[1] = set[0];set[2] =
set[0];
 if(set[3] == chain[set[0]+1] ||
set[3] == 0)
 set[3] = set[0];set[2] =
set[0];
 }
 else{
 if(set[1] == chain[set[0]+1] ||
set[1] == chain[set[0]-1])
 set[1] = set[0];set[2] =
set[0];
 if(set[3] == chain[set[0]+1] ||
set[3] == chain[set[0]-1])
 set[3] = set[0];set[2] =
set[0];
 }
 }

 chainCode2[i] = set[0];
 chainCode2[i+1] = set[1];
 chainCode2[i+2] = set[2];
 chainCode2[i+3] = set[3];
 chainCode2[i+4] = set[4];
 }
 for(int i = 0; i < sequence; i++)
 library2[i][k] = chainCode2[i];
 }

//Edit Distance
 //get the chain code length of target
 int lenTarget = 0;
 int minED = 1000;
 int pos;
 for(int i = 0; i < 300; i++){
 if(library2[i][numChaMatch] != 8)
 lenTarget++;
 }

APPENDIX

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. - 20 -

 for(int p = 0; p < numChaMatch; p++){
 float matrix[300][300];
 int lenInput = 0;

 //get chain code length of inputs
 for(int i = 0; i < 300; i++){
 if(library2[i][p] != 8)
 lenInput++;
 }

 int x, y, s1len, s2len;
 s1len = lenTarget;
 s2len = lenInput;
 matrix[0][0] = 0.0;
 for (x = 1; x <= s2len; x++)
 matrix[x][0] = matrix[x-1][0] + 0.0;
 for (y = 1; y <= s1len; y++)
 matrix[0][y] = matrix[0][y-1] + 0.0;
 for (x = 1; x <= s2len; x++){
 for (y = 1; y <= s1len; y++){
 double num = 1.0;
 if(abs(library2[y-1][numChaMatch] -
library2[x-1][p]) == 0)
 num = 0;
 else if(abs(library2[y-
1][numChaMatch] - library2[x-1][p]) == 1 || abs(library2[y-1][numChaMatch] -
library2[x-1][p]) == 7)
 num = 0.2;
 else if(abs(library2[y-
1][numChaMatch] - library2[x-1][p]) == 2 || abs(library2[y-1][numChaMatch] -
library2[x-1][p]) == 6)
 num = 1.5;
 else if(abs(library2[y-
1][numChaMatch] - library2[x-1][p]) == 3 || abs(library2[y-1][numChaMatch] -
library2[x-1][p]) == 5)
 num = 2.0;
 else if(abs(library2[y-
1][numChaMatch] - library2[x-1][p]) == 4)
 num = 2.4;

APPENDIX

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. - 21 -

 matrix[x][y] = MIN3(matrix[x-1][y] +
1, matrix[x][y-1] + 1, matrix[x-1][y-1] +
num);

 }

 }

if(matrix[lenInput][lenTarget] < minED){
 minED = matrix[lenInput][lenTarget];
 pos = p;
 }
 }

 if(character[filterCha[pos]%36] != '1' ||
character[filterCha[pos]%36] != 'B' || character[filterCha[pos]%36] != 'D'
|| character[filterCha[pos]%36] != 'K' || character[filterCha[pos]%36] !=
'M'){
 printf("\nThe character is predicted to
be: %c\n",character[filterCha[pos]%36]);
 }
 else{
 //Summation of Chain Code
 //result comparing
 int difference[9][250] = {0};

 for(int i = 0; i < 8; i++)
 for(int j = 0; j < numChaMatch; j++)
 difference[i][j] = abs(library[i][j]
- library[i][numChaMatch]);

 //sum up all differences
 for(int j = 0; j < numChaMatch; j++)
 for(int i = 0; i < 8; i++)
 difference[8][j] = difference[8][j] +
difference[i][j];

//KNN, find minimum three differences
 double min1 = 1000, min2 = 1000, min3 = 1000;
 int one, two, three;
 for(int i = 0; i < numChaMatch; i++){
 if(difference[8][i] < min1){
 min1 = difference[8][i];
 one = i;
 }
 }

APPENDIX

BCS (Hons) Computer Science

Faculty of Information and Communication Technology (Perak Campus), UTAR. - 22 -

for(int i = 0; i < numChaMatch; i++){
 if(difference[8][i] < min2 &&
(difference[8][i] >= min1 && i != one)){
 min2 = difference[8][i];
 two = i;
 }
 }
 for(int i = 0; i < numChaMatch; i++){
 if(difference[8][i] <= min3 &&
(difference[8][i] >= min2 && i != two && i != one)){
 min3 = difference[8][i];
 three = i;
 }
 }

double one2,two2,three2;
 one2 = (0.1*min1) * (1.0-
ANN[c_sample][filterCha[one]%36]);
 two2 = (0.1*min2) * (1.0-
ANN[c_sample][filterCha[two]%36]);
 three2 = (0.1*min3) * (1.0-
ANN[c_sample][filterCha[three]%36]);

 if((character[filterCha[one]%36] ==
character[filterCha[two]%36]) && (character[filterCha[one]%36] ==
character[filterCha[three]%36]))
 printf("\nThe character is predicted to
be: %c\n",character[filterCha[one]%36]);
 else if(one2 <= two2 && one2 <= three2)
 printf("\nThe character is predicted to
be: %c\n",character[filterCha[one]%36]);
 else if(two2 <= one2 && two2 <= three2)
 printf("\nThe character is predicted to
be: %c\n",character[filterCha[two]%36]);
 else if(three2 <= one2 && three2 <= two2)
 printf("\nThe character is predicted to
be: %c\n",character[filterCha[three]%36]);
 }
 }
 }
 system("pause");
 return 0;
}

11 %
SIMILARITY INDEX

9 %
INTERNET SOURCES

7 %
PUBLICATIONS

%
STUDENT PAPERS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

fyp2_report
ORIGINALITY REPORT

PRIMARY SOURCES

bart.aero.psu.edu
Internet Source

www.zhciq.gov.cn
Internet Source

modely.jika.eu
Internet Source

en.wikibooks.org
Internet Source

www.utar.edu.my
Internet Source

www.opencv.org.cn
Internet Source

www.117766.cn
Internet Source

www.campsoftware.com
Internet Source

Ferreira da Conceicao, Thiago. "Corrosion protection of magnesium AZ31 allo…
Publication

www.sfitengg.org
Internet Source

Kautz, Stefanie(and Lumbsch, Thorsten). "Acacia-inhabiting Pseudomyrmex a…
Publication

www.mathworks.de
Internet Source

shop.illy.com
Internet Source

files.2-stars.net
Internet Source

blog.csdn.net

1%
1%
1%
1%
1%

< 1%
< 1%
< 1%
< 1%
< 1%
< 1%
< 1%
< 1%
< 1%
< 1%

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Internet Source

robotix.in
Internet Source

www.cv.nrao.edu
Internet Source

www.sk.rs
Internet Source

Weisz, Gabriel, and James C. Hoe. "C-to-CoRAM : compiling perfect loop nes…
Publication

bbs.diyrobot.org.cn
Internet Source

Steeb, . "Bitwise Operations", Problems And Solutions In Scientific Computing…
Publication

Kazuo Tai. "The kinetics of hydrolytic polymerization of ɛ-caprolactam. II. Dete…
Publication

www.infinitecode.com
Internet Source

Y., Krishna.. "Acoustic Characteristics of Vowels in Telugu", Language in Indi…
Publication

International Journal of Pattern Recognition and Artificial Intelligence, 1989.
Publication

www.sachverstaendigenrat-wirtschaft.de
Internet Source

www.finance.hq.navy.mil
Internet Source

www.greystone.ca
Internet Source

M. T. Afzal. "Recognizing features from orthographic images using neural netw…
Publication

Behrawan, Houshang(Flügel, Wolfgang-Albert and Hochschild, Volker). "Hydr…
Publication

waterplanning.files.wordpress.com
Internet Source

teacher.buet.ac.bd
Internet Source

Moisidi, Margarita. "Geological geophysical and seismological investigations fo…
Publication

< 1%
< 1%
< 1%
< 1%
< 1%
< 1%
< 1%
< 1%
< 1%
< 1%
< 1%
< 1%
< 1%
< 1%
< 1%
< 1%
< 1%
< 1%
< 1%

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

www.askrprojects.net
Internet Source

webapplicationsec.g.hatena.ne.jp
Internet Source

kubus.rulez.pl
Internet Source

Edwin Naroska. "A combined hardware and software architecture for secure c…
Publication

Ivits-Wasser, Eva. "Potential of remote sensing and GIS as landscape structu…
Publication

homes.esat.kuleuven.ac.be
Internet Source

Boldrini, Claudia <1978>(Viola, Erasmo). "Mixed Mode Fracture Behaviour of …
Publication

Röth, Ernst-Peter. "Description of the anisotropic radiation transfer model ART…
Publication

www.soapandmore.com
Internet Source

qtc.jp
Internet Source

Stiefelhagen, Rainer. "Tracking and modeling focus of attention in meetings [on…
Publication

BALLARD, GREY; DEMMEL, JAMES; HOLTZ, OLGA and SCHWARTZ, ODE…
Publication

W-Y Wu. "Shape recognition using fuzzy string-matching technique", Imaging …
Publication

Siala, Haytham(O'Keefe, B). "Cultural influences on consumer interactions in t…
Publication

Wynands, David (Prof. Dr. Christoph Brabec, Prof. Dr. Karl Leo and Technisc…
Publication

ro.uow.edu.au
Internet Source

SAIF ZAHIR. Journal of Circuits Systems and Computers, 2002
Publication

Liu, Guojun(Fan, Z). "A study on twin-screw rheo-diecasting of AZ91D Mg-allo…
Publication

< 1%
< 1%
< 1%
< 1%
< 1%
< 1%
< 1%
< 1%
< 1%
< 1%
< 1%
< 1%
< 1%
< 1%
< 1%
< 1%
< 1%
< 1%
< 1%

52

53

EXCLUDE QUOTES OFF
EXCLUDE BIBLIOGRAPHY OFF

EXCLUDE MATCHES OFF

Kouba, Josef. "Investigation of silicon nitride based two-dimensional photonic …
Publication

Neumann, Volkmar. "Numerical modeling and phase prediction in deep overp…
Publication

< 1%
< 1%

