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ABSTRACT

Development of Kernel for RISC Architecture System

With the  blooming on smart  phone and tablet  devices,  the  study on RISC

become important.  As many has predicted that post pc era is  coming near,

RISC architecture based processor is expected to be widely used. However

there  is  lack  of  a  simple  model  and  system to  understand  how  does  the

hardware and software work together. Therefore in this project, the aim is to

be able to come out with a working kernel that enabled further experiment of

different  kernel  architecture  or  other  development  (for  example  driver

development or filesystem design).

Another problem with operating system study is that the is lack of material in

understanding the design of a kernel.  Most of the material  discussed about

certain specific function and the design decision such as which memory model

to used is often not disclose. Thus part of the project is to review the available

design methodology and provide a simpler explanation in various aspect.
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CHAPTER 1

1.0 INTRODUCTION

1.1 Introduction

RISC architecture has and will continue to become prominence in the post pc

era especially in the area of pervasive computing and wearable computing.

They  are  more  favorable  in  those  areas  because  of  the  cost  and  power

consumption.  As hardware  continue  to  grow in both  processing  speed and

memory capacities, single application system has becoming more irrelevant

that ever. For example smart watches are installed with operating system and

able to run different user applications. Therefore the study on operating system

is  important  to  create  hardware  and software that  can  work together  more

effectively.  Due  to  the  complexity  of  matured  operating  system  such  as

Android and Linux,  it  is  difficult  to  introduce and experiment  with kernel

concept  to  beginner.   Therefore  in  this  project,  the  aim  is  to  develop  a

methodology  to  create  a  simple  kernel  targeted  for  ARM  processor.  The

outcome of the project will also be used in other project to verify the design of

a RISC architecture system.

1.2 Problem Statement

In general, the design of a processor involves verification at several levels of

abstraction.  Specifically  for  front-end  processor  design,  verification  is

typically conducted at Register Transfer Level (RTL) and full-chip level. RTL
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verification involves cycle-accurate functional verification, that is, observation

of the required signal events occurring at the correct clock cycle. The work is

typically  hardware  in  nature  since  observation  is  done at  signal  level  and

verifying the logic functionality of smaller modules. On the other hand, we

have full-chip level functional verification which involves verifying the full-

chip at transaction level. It also indirectly verify the integration of modules

which  forms  the  full-chip  or  processor.  We  can  use  single  standalone

programme  as  in  embedded  application  programme  but  this  type  of

programme is not as extendable and complete as in a kernel function which

test the processor at full-chip level more thoroughly. With the availability of a

kernel, the processor design cycle can be reduced since both hardware and

software  can  be  developed  in  parallel.  After  completed  the  full-chip

verification, the kernel can further be extended into a more complete software

with  customizable  features  that  supports  the  processor.  Available  kernel  in

open source is overly complicated for extension and reuse to be adapted into

different  embedded  processor  during  the  design  process.  Another  problem

with open source kernel programmes is the lack of documentation and hence,

lack of reusability. 

1.3 Project Scope

The project scope consist of the development of a generic and portable kernel

that can be adapted to verify the functionality of a RISC processor. Along with

the kernel,  the methodology and tools to develop the kernel components is

also presented as part of the project outcome. 
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1.4 Project Objective

The objectives of the project are:

• Comparison between the differences of RISC and CISC architeture,

which include the instruction set  and basic components of a kernel

(interrupt handling, operating mode, and memory protection).

• Develop kernel requirement – Identified and define the integration for

the  needed components  that  provide  I/O management  and memory

management.

• Design  and  development  of  a  kernel  components  using  Agile

methodology,  demonstrate  Scrum  processes  such  as  incremental

product development with sprint cycle. 

• Test  case  development  to  verify  the  functionality  of  the  kernel  in

emulator. Which cover the Interrupt Service Routine, Supervisor Call,

different operating mode and memory protection. 
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CHAPTER 2

2.0 LITERATURE REVIEW

2.1 Computer Architecture and Operating System

The Instruction Set  Architecture (ISA) is  an abstract  interface between the

hardware and the software of a computing system. There are  two types  of

instruction architecture sets which are the Reduced Instruction Set Computing

(RISC) and the Complex Instruction Set Computing (CISC). In recent years,

the RISC family of  processors  are  widely being used (including Microsoft

Windows 8) and therefore the study on its architecture and system is becoming

important.

The  number  of  instructions  in  the  RISC  processor  is  smaller,  but  the

instructions complete faster. Due to this characteristic, despite bigger program

size in the RISC architecture, the performance is not sacrificed. Some of the

reasons why RISC is more favourable are lower power consumption, lower

cost  of  development,  and  the  advancement  of  other  technologies  such  as

higher  memory  density.  For  example,  a  modern  compiler  is  capable  of

handling additional code in RISC automatically so that the programmer does

not have to manually write them. 

In recent years, both CISC and RISC apply different techniques to overcome

their shortcomings. For example, improved power saving during system idle in

the recent Intel processor. On the other hand, the ARM processor added 16bit
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thumb instruction that helps in memory requirement. Thumb instructions are a

compact version of the ARM 32 bit instruction, resulting in smaller memory

size  but  with its  memory tradeoffs.  Such approach is  identical  to  complex

instructions.

The  operating  system  is  a  complex  system  which  is  difficult  to  fully

understand from all aspects. Zhou et. al. [1] in their paper used Fiasco Kernel

to explain about the technologies behind a micro kernel. They discussed about

various  kernel  mechanisms  in  the  microkernel  such  as  address  spaces,

communication  and  system  call.  Their  purpose  is  to  introduce  a  new

architecture and to further enhance the understanding of an operating system. 

With  the  same purpose,  Wang  [2]  explained  the  structure  of  an  operating

system by analyzing the components of the system. Four operating system

approaches  were  discussed in  that  paper,  which  were  monolithic,  modular,

extensible nuclues and layered. He also mentioned about new features in the

CPU such  as  virtualization  which  can  affect  the  operating  system design.

Therefore it might be worthwhile to further investigate these features.

N.Alee et.  al.[3]  performed a benchmark on different kernels on the ARM

architecture. While this paper is not directly relevent to this project, the tools

and metrics that they used to benchmark the perfomance may be used to test

the performance of the kernel. 
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A.Messer and T.Wilkinson [4] used another approach to tackle the complexity

of an operating system. In their work, they utilised the component oriented

design to decouple the operating system modules. Such approach is identical

to  the  microkernel  design,  however  their  approach  allowed  the  operating

system to be more extensible.

One of the most famous microkernels is Minix. In [5], the architecture and the

design goal of Minix 3 is discussed. They pointed out several advantages of

such  architecture  in  comparison  with  others,  such  as  being  reliable  and

lightweight. Such behavior is highly favourable for low power and low cost

devices.

2.2 Application Binary Interface

Application  Binary  Interface  (ABI)  is  a  set  of  specifications  for  binary

interface  so  that  different  binary  files  can  work  together.  ABI  is  platform

dependent,  where,  ABI for  ARM and ABI for  x86 is  different.  Embedded

Application Binary Interface (EABI) is the standard convention for an ARM

system. 

 

ABI  specifies  various  details  such  as  code  generating,  alignment,  register

usage and data size [10]. For a linker to generate a binary executable, it must

be aware of ABI. For example, when accessing the memory, the linker will use

instructions that directly modify the memory content in x86, but on the other
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hand, uses load-store method in ARM.

Files  compiled  by  different  compilers  can  work  together  as  long  as  they

comply to a single ABI. Therefore ABI is important for the linker so that it is

possible to link compiled libraries into the binary executable file.

2.3 Object File Format

Object file contains symbols and attributes that the linker will use to generate

an executable file.  The object file is generated from the source file by the

compiler and it contains different sections such as code section (.text), data

section (.data), and others that makes up a program. There are 3 types of object

files which are executable, relocatable, and shared object file. An executable

object file contains programs that can be run. A relocatable object file contains

code and data that needs to be combined with other relocatables to generate

executable, while a shared object file is for dynamic linking purpose.

Different operating system use different object file formats. The popular ones

are the Executable and Linker Format (ELF), Portable Executable (PE), and

Mach-Object (Mach-O). The choice of object file is based on the hardware and

architecture  support,  for  example,  ELF is  not  tied  to  any architecture  and

therefore it can be used in multiple types of hardware.
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As discussed in the earlier section, ELF itself is defined in System V ABI. We

can imagine ABI as the rule  that specifies  how to organize files and store

necessary information, while ELF is the actual content of these information.

2.4 Executable and Linkable Format (ELF)

ELF is the file format used in many operating systems such as Linux. ELF

specification[9] defines the content of an ELF file. An ELF file may contain 2

or 3 headers depending on its purpose. The first header in ELF describes the

ELF file itself, for example where the programs are, and section headers, what

architecture it is and etc. Section headers on the other hand describe different

sections and the section attribute inside an ELF file, for example, where the

.text section are and whether the section is executable. Finally the program

header describes how to create the process image, and only executable files

need to have the program header.  

Figure 1: Header and section of an ELF file for IA32 

8



2.5 Assembly for Arm

ARM assembly uses AT&T syntax. A few features of this syntax that will be

used are the register naming, source and destination order, and addressing. The

following table summarize the features of the AT&T syntax [11].

Register naming Register names are prefixed with %.

For example,

mov %r0 %r1

Source and Destination Order Source  operand before destination

For example,

mov %r0 (destination) %r1 

(destination)

Addressing Address syntax  is in base, index, scale

For example,

mov %r0 %r1 4
Table 1 : AT&T syntax

Due to hardware differences, assembly for ARM differs from x86 assembly.

This section discusses the few key differences between them that will be used

in development at later stage. 

Unlike the x86 family, ARM uses Load-Store architecture (LD/STR) to access

the memory. Although this is a common feature in RISC architecture, some

RISC architecture can access the  memory as well.  Load-Store architecture

requires the memory content to be loaded to the register before they are used. 

ARM  instruction  is  not  destructive  in  nature  compared  to  IA-32.  The
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following example illustrates the differences between the instructions for Add

operation.

To add 2 register,

In ARM:

add r0, r1, r2 

add r1 and r2 and store the result in r0.

In IA-32:

mov cx, ax

add cx, bx

When adding bx to cx, the initial value for cx is destroyed.

In order to access the program status register,  the instruction MSR/MRS is

used to read or write values into status registers. For example, to move the

value in register r0 to CPSR, move from register to PSR instruction (MSR) is

used. 

Syntax

MRS/MSR Rd, <PSR>

Example

MSR CPSR, r0. 

Rd Destination  register

PSR Program Status Register, can be CPSR, 

SPSR
Table 2: MSR/MRS Instruction Description
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Co-Processor  is  used  to  perform  system  control  and  provide  status  for

processor  function.  Co-processor  is  also  used  to  configure  the  memory

management unit. To access the coprocessor, the instruction to move the ARM

register  to  the  coprocessor  (MCR)  and  move  the  ARM  register  from  the

coprocessor (MRC) is used.

Syntax

MRC/MRC coproc, #opcode1, Rt, CRn, CRm{, #opcode2}

Example 

MCR p15,0,r0,c2,c2,0

coproc name of the coprocessor that the 

instruction is for. The standard name is pn,

where n is an integer in the range 0 to 15.

opcode1 3-bit coprocessor-specific opcode.

Rt ARM source registers.

CRn, CRm coprocessor registers.
Table 3: MCR/MRS Instruction Description

Software interrupt is triggered by calling supervisor call (SVC).

Syntax

SVC <imm24>
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Example 

SVC 100

imm24 Integer to determine event by ISR

Table 4: SVC Instraction Description

2.6 Operating Mode

In IA-32 there are 4 operating modes, which are real mode, protected mode,

virtual 8086 mode, and sytem management mode. These modes are mainly

used for backward compatibility support.  Depending on the processor family,

ARM can have up to 9 operating modes. However the more commonly used

modes  are  user  mode,  system mode,  FIQ mode,  IRQ mode,  About  mode,

Undef mode, and SVC mode. The purpose of the operating mode in ARM is to

allow quick processing on system event. The current operating mode is set in

the CPSR register.

When  a  system  starts,  the  CPU  operates  in  system  mode  to  perform  all

necessary initialization. When this process is done, the kernel will change to

user mode and start the execution of user program. When a program triggers a

supervisor call, the CPU will then switch to SVC mode. Identical to SVC call,

when an interrupt occurs, the CPU will switch to interrupt mode.

2.7 List of register in ARM architecture

In x86 family, general purpose registers like EAX, EBX, etc. are available for
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general usage such as calculation. ARM on the other hand has r0-r9 for the

same purpose with a large number of general registers to provide flexibility for

the programer to do coding. 

Kernel  is  the  layer  between  software  and  hardware.  Therefore  it  will

manipulate  many  registers  to  perform different  tasks.  Figure  2  shows  the

available registers and it's corresponding mode.

Figure 2: Registers in Different Operating Modes

Depending  on the  architecture  version,  different  architecture  versions  have

different numbers of registers. In general, each operating mode will have a
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total of 16 registers. Out of these 16 registers, 13 of them can be used for

general purpose.  R13 is  commonly used as a stack pointer (as specified in

ARM ABI), R14 is the link register that holds the return address for a function

call, R15 is the program counter and R16 is the CPSR.

One of the most frequently used register is PSR. Different operating modes

can access different PSR registers. CPSR holds the state of a program whereby

multiple conditional flags are updated during instruction execution. Figure 3

describes the registers in CPSR and its corresponding function.

Figure 3: CPSR and SPSR register

Identical to CPSR, SPSR is responsible for storing the value in CPSR when

the CPU changes mode. The Kernel is responsible for restoring the value from
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SPSR to CPSR when the system switches back from priviledge mode to non-

priviledge mode. SPSR is only available in privilege mode.

2.8 Endianess

ARM supports both endianess (little and big), where the E bit in CPSR is used

to  support  endianess.  In  general,  ARM uses  little  endian  in  its  asssembly

instructions. In most situations, the programmer does not have to care about

endianess apart from choosing the right tools and file format.

2.9 Kernel Functionality

The kernel is the core of the operating system that provides services to all

other programs. Depending on the operating system design, at minimal the

kernel  has  to  provide  I/O  control  and  memory  management.  The  main

functionalities  in  a  modern  kernel  are  I/O  control,  memory  management,

process management and file management [14]. 

2.9.1 Type of kernel

There are  4 categories of kernel  which are micorkernel,  monolithic kernel,

hybrid kernel and exokernels. Two of the most widely used kernels are the

microkernel and monolithic kernel. The memory range that the kernel runs in

is called the kernel space, likewise the user program runs in user space. By

separating  the  memory  space,  the  kernel  can  ensure  that  the  user  space

programs will not accidently break crucial kernel functions.
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2.9.1.1 Micro kernel

Microkernel  is  a  minimal  kernel  that  only runs  minimum services  such as

memory and process management that allows an operating system to function.

Other  functionalities  such  as  I/O  are  implemented  in  the  user  space.

Microkernel  has  several  advantages  over  other  kernel  design.  It  is  highly

recoverable since only a few services are run in the kernel space, thus user

space programs can be restarted when there are problems. Another advantage

is  that  it  is  portable,  whereby  if  the  kernel  needs  to  be  ported  to  other

platforms, only a few services need to change.

2.9.1.2 Monolithic kernel

Monolithic kernel runs all the operating system services in the kernel space. It

manages all I/O, memory, process and etc. The advantage of monolithic kernel

is that it is faster, since every service is running in the same space. The main

disadvantage of a monolithic kernel is that it is not possible to recover if any

kernel  service crashes.  However  operating systems such as Linux are very

stable and hardly crash due to reliable code and extensive testing.

2.10 Memory Map

Memory  map  provides  the  memory  layout  for  memory,  controller  and

peripherals. In terms of differences between ia32 and ARM, ia32 consists of

IO  instructions  that  enables  it  to  read  from IO  directly,  while  ARM  uses

memory map IO where all connected peripherals are mapped into a 4GB space
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and accessed using memory locations [7]. Table 5 lists the memory map for

relevant hardware in ARM926-EJS development board that will be used in this

project. For full memory map, refer to appendix [8].

Peripheral Address Region Size

MPMC select 0. Bottom 

of 64MB of SDRAM

0x00000000-

0x03FFFFFF

64MB

MPMC select 0. Top of 

64MB of SDRAM

0x04000000–

0x07FFFFFF

64MB

System Register 0x10000000-

0x10000FFF

4KB

Vectored Interupt 

Controller

0x1014000-0x1014FFFF 64KB

UART0 0x101F1000-

0x101F1FFF

4KB

Table 5: Memory Map

2.11 Memory Management Unit in ARM

The  memory  management  unit  is  responsible  for  memory  protection  and

virtual  address translation.  When MMU is turned on,  the system will  start

using virtual  address  and MMU needs to  translate  the virtual  address  to  a

physical  address.  ARM's  MMU  uses  special  cache  called  Translation

Lookaside  Buffer  (TLB)  to  translate  addresses.  When  a  process  requests

access  to  a  virtual  memory  address,  MMU  will  look  into  TLB  to  check

whether the physical address is available. If the information is not available,

this  is  a TLB miss,  and MMU has to look into all  page tables to find the

correct entry. 
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There are different mapping schemes and the operating system may use a few

of them together. For example many to one mapping is a scheme where the

operating system maps multiple virtual address ranges to the same physical

memory adress.  Flat  address mapping on the other hand is  the one to one

mapping where the virtual address is mapped directly to the physical address.

For the development board that is used in this project, a hardware MMU is

used  to  provide  these  functions.  It  is  controlled  by  system  control  co-

processosr 15 (CP15). The MMU supports section (1MB), large page (64KB),

small page (4KB), and tiny page(1KB) mapping. Depending on the chosen

type, the size of Page Table Entries (PTE) will be very different in size. For

example if section is used, 4GB memory space is split into 4096 entries each

with  1MB  block.  If  fine  page  is  chosen  then  more  entries  is  needed  to

represent the entire 4GB space because memory is split into 1KB block.

There  are  two  different  descriptors  for  a  page  table,  which  are  first  level

descriptor and second level descriptor. First level descriptor describes 1MB

memory block. If the system is using section, then this is the only descriptor

that is needed. Likewise if a fine or large page is being used, then a second

level descriptor is needed to provide the base address. Section table will be

used in this project. The following table lists the bit and function first level

descriptor for section table.
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Bits Description

31:20 Corresponding bit in physical address

19:12 Should Be Zero

11:10 Access permission

9 Should Be Zero

8:5 Domain control bits

4 Must be 1

3:2 Cache control

1:0 Page Size, 0b10 indicate a section descriptor
Table 6: Section Table Bit Description

Memory access control in MMU is achieved by checking against the domain

control  and  access  permission.  There  are  few  roles  that  each  domain  can

define, whether manager, client or no access. There are 16 domains available

for use, and each of the domain role is defined in the Domain Access Control

Register  (c3)  in  CP15.  The  following  figure  illustrates  the  bits  in  domain

access control register.

Figure 4 :Domain Access Control Register

Each of the page table is set with a domain and access control. When a page is

set  to a domain which belongs to the manager role, the access control and

control  registers  are  ignored,  meaning  no  access  control  is  used.   The

following table lists the access control when a page is set to a domain that

belongs to the client role. 
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AP S R Privilledge 

Permissions

User Permission

00 0 0 No access

00 1 0 Read only No access

00 0 1 Read only Read only

00 1 1 Unpredictable Unpredictable

01 x x Read/Write No Access

10 x x Read/Write Read only

11 x x Read/Write Read/write
Table 7: Memory Access Control

20



CHAPTER 3

3.0 TOOLS AND METHODOLOGY

3.1 Development methodology

This  project  is  developed  using  the  Scrum  Agile  software  development

framework.  Scrum  is  an  iterative  incremental  development  process  that

embraces change. In Scrum, there are 3 major roles, which are the product

owner, scrum master, and team member. The product owner is the receiving

end  of  the  project.  In  this  project,  the  product  owner  is  co-owned  by the

project  supervisor  and the  researcher.  The product  owner is  responsible  to

produce a list of expected outcomes and use cases (description of the system

behavior). The scrum master is the facilitator or project manager who acts as a

bridge  between  the  product  owner  and  team member.  The  scrum master's

responsibility is to remove impediments in the project and provide feedback

from both ends (the producer and receiver) of the project. The team member is

the  development  team  involved  in  the  actual  development  tasks  such  as

design, implementation, and testing. The following figure describes the scrum

process flow. 
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Figure 5: Scrum Process

The entire project is divided into smaller time block, where each individual

time block is  called a sprint.  Each sprint  lasts  for 2 weeks.  The following

describes the terminologies used in Scrum:

1. Product Backlog, is the document which lists out the requirements or tasks

from the product owner. Product backlog is reviewed from time to time,

where new items can be added into backlog at any give time and obsolete

items  can  be removed from the  backlog if  they are  no longer  deemed

appropriate. A backlog item is not limited to a function or module. It can

be  a  result  of  algorithm  review,  environment  and  tools  setup,

documentation and etc. 

2. Sprint Backlog, is a document that lists out the tasks that will be carried

out during a particular sprint. Based on the available capacities, the scrum

master will  pick items from the product backlog and put them into the

sprint backlog. Items in the sprint backlog indicates that these are the tasks

that must be completed within that particular sprint.
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3. Sprint,  is  a short  development  cycle in which the team member has to

complete  a  task.  A typical  sprint  involves  both  development  task  and

verification task (verify the outcome from the previous sprint). A sprint can

be abandoned if there is a change request, or extended if the sprint task

requires longer time than planned.

4. Incremental Product, is the outcome of the sprint. In Scrum methodology,

each sprint has to result in a product. This product is an incremental result

from the previous sprint and is also an indicator of the development progress. 

3.2 Targeted ARM platform

The  ARM9 processor  is  used  for  development  in  this  project.  The ARM9

family  is  using  ARMv5  Architecture.  The  reason  for  selecting  ARM9  is

because there are more resources available for it. However it will be discussed

in a later chapter on how to port over to other families using the information

available in this project.

3.3 Toolchain

Toolchain is the collection of tools that will turn code into binary executables.

The basic components of the toolchain are Binary Utility (binutils), compiler,

debugger  and the  C library.  Toolchain  can  be  used  in  native  environment,

meaning compiled code is run on the same platform. It can also be used in

cross platform, for example compiling in x86 and running in ARM.  

Toolchain  is  built  together  with  the  C  library,  therefore  it  is  important  to
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determine  which  version  of  the  library  is  needed,  and  select  the  proper

toolchain. There are a few C libraries available, which are glibc, eglibc, and

uClibC. The differences between these libraries are the C functionality and

size of the system. For  example,  if  full  C functionality is  needed then the

toolchain has to be built with glibc. On the other hand, if a smaller system is

desirable, then developer can choose a toolchain that uses uClibC. 

Embedded Linux Development Kit  (ELDK) is  the cross development  tools

that is used in this project. ELDK is built with a fully functional C library

(glibc) and supports multiple different architectures. In this project, ELDK that

supports ARMv5 is used. ELDK that supports older ARM family can be used

as well, since the ARM toolchain is backward compatibile. However by doing

so the toolchain will not utilise the new ARM feature that is available in newer

architecture families.

3.4 Emulator

There are a few available options to test the generated kernel binary The most

straighforward  is  to  boot  the  code  directly  from  a  development  board.

However, this option is inconvenient as the system needs to be rebooted often

in order to test the code. Also another disadvantage is that the debugging is

more difficult as it will require hooking to physical hardware such as jtag to do

debugging. 

Another  way  to  test  the  code  is  to  use  the  virtualization  tool  in  the
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develpoment board. Virtualization allows the user to run their kernel within

another operating system. Newer hardware that supports virtualization allows

the virtual environment to run in near native speed. The only problem with this

method  is  that  quite  often  when  developing  in  low  power  embedded

development  boards,  running  one  system  in  another  system  might  lack

sufficient resources such as storage and memory.

Finally, another option to test the code is to use an emulator. Emulator is a

program that emulates the targeted platform. For example an ARM emulator is

a program that runs in x86 environment that mimics the behavior of the an

actual ARM system. The advantage of this method is that the development and

debugging is easy, however, some of the hardware features might not be fully

supported.

There are many available emulators, such as bochs and qemu. In this project,

the QEMU emulator is used since it supports the targeted ARM platform that

was chosen. QEMU emulator is available in 2 different modes, which are the

user space mode and kernel mode. When a program is compiled with the ARM

toolchain,  the  user  space  mode can  be  used  to  execute  it.  However  when

developing a kernel, the kernel mode has to be used, which acts as the actual

hardware. 

When  QEMU is  run  to  mimic  the  hardware,  it  will  start  the  execution  at

address  0x10000.  Therefore,  any  startup  code  has  to  be  available  in  this
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location. It is the kernel's responsibility to then copy and move necessary code

to  different  addresses  based  on the  system design.  The user  can  terminate

QEMU (ctrl a + x) at any time and it will not affect the host system. This is the

benefit of using an emulator. 

As mentioned earlier, another benefit of using QEMU is for debugging. When

starting  the  emulator  the  option  can  be  passed  in  to  connect  the  debug

information to a tcp port and wait for a debugger to connect to it before it runs.

Emulator will pass all the hardware information such as register value to the

debugger.

3.5 Linker/ Linker Script

The Linker is a tool that is responsible for combining multiple binary files into

a single executable. Before a linker can generate an executable file, it needs

information to organize the binary.  This can be done by passing in options

when invoking the linker. This approach is inconvenient as the same step has

to be repeated many times.  Thus, a linker script can be written to tell the

linker how it should map input file to output file.

Each  executable  program  should  consist  of  code,  the  initialised  and

uninitialised data. At bare minimum, the linker script must have a SECTIONS

command. This command tells the linker how the memory layout of the output

file should be.  It gives information such as which address the code should

load  into  and  where  to  put  the  code  (.text),  initialise  data  (.data)  and
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uninitialise data (.bss).

An example of linker script:

SECTIONS

{

. = 0x10000;

}

The linker script can be very complex to include many other aspects on how to

link a file. For example, specifying which memory region the linker should

allocate from, or how to specify a program header in ELF. If the user did not

specify any of these, then the linker will use the default rule to generate the

output binary.

Table 8 summarizes the symbols that are used in this project.

Symbol Description

Location counter (.) The current location counter

Wildcard (*) Match any of the character
Table 8: linker script symbol and description

3.6 GNU Compiler Collection (GCC)

One of the main component of any toolchain is GCC. It can compile code

from supported languages and generate executable binary files. Although GCC

is used for C language most of the time, it supports multiple languages and has

been ported to many architectures. There are many kinds of usage of GCC, for
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example, if the developer is interested to see the assembly file that is generated

by GCC, they can configure the GCC to do so. 

Some useful options in this project:

-g add debugging information for gdb

3.7 GNU Project Debugger (GDB)

When developing any software, debugging is as important as compiling as the

programmer needs to figure out what went wrong with the program. GDB is

part of the ELDK toolchain that allows the programmer to debug their system.

Like all other debuggers, GDB allows the user to set break points, step in code

and  etc.  GDB also  allows  the  user  to  inspect  the  content  of  memory and

registers. 

The following are some usage of GDB relevant to this project

info registers – Displays the value of CPSR

print - 

x – Examine content of memory location

s – step through code

3.8 Bootloader

Bootloader  is  one  component  of  a  system that  is  used only during system

startup and is yet extremely important. When a system starts up, the operating

system is stored in some storage and it is the responsibility of a bootloader to
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load them into the memory .

For  PC, the BIOS is  responsible  for  loading the operating system into the

memory for execution. ARM on the other hand, starts up the bootloader from

the ROM (build by the vendor). The bootloader is in charge of setting up the

memory and intializing  hardware.  Once the  initialization  is  completed,  the

bootloader will pass the control to the kernel. If the kernel supports device

tree, the bootloader will  pass a device tree binary to the kernel so that the

kernel can initialize the driver when a system starts. A device tree is a data

structure for describing the hardware in a system. 

ARM is  a  popular  architecture  that  is  supported  by many bootloaders.  An

example of an open source bootloader is the Das U-Boot by DENX. U-Boot

provides a list of command line tools that allows the user to manage boot task.

For example, the user can choose to boot from netwok, or load file from the

filesystem.

3.9 Automating Build Process

Due  to  the  complexity  of  kernel  development,  a  lot  of  trial  and  error

experiments are required. Therefore, to speed up the process, it is necessary to

automate some build processes. Make is one of the commonly used build tool

in development including famous operating systems such as Linux and Minix.

Make  uses  a  configuration  file  to  automate  the  build  process.  This
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configuration file is usually called Makefile, and contains a list of required

steps that the user defines. For example a user that creates multiple steps that

are interdependent. When Make tries to execute one of them, it will first go

though the steps which are needed and runs them before executing the targeted

step.

3.10 Source Code Management

In this project, GIT is used as the source code management tool. Git allows the

user to create a local repository and experiment with different branches. The

branching strategy for this project is simple, a master branch is maintained,

which contain the stable functionality of the kernel. Whenever work on a new

feature is started, a new branch is created and code is started in it. Once the

feature is completed then only it is merged back to the master branch.

Figure 6: Branching example
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CHAPTER 4

4.0 DESIGN AND SPECIFICATION

4.1 System  Environment

Figure 7: Components Involved in Kernel Development

The kernel developed in this project is tested in the Versatile Baseboard (ARM

development board). There are 3 hardwares involved in this project, which are

the UART, Interrupt controller and Co-Processor. Since there are no drivers

developed for the system, UART is used as the system input/output. Interrupt

Controller  is  necessary  to  provide  interrupt  function  for  the  kernel.  Co-

Processor controls the CPU state to enable hardware functionality that is used

in this project. 
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4.2 System Flowchart

Figure 8: Kernel Flow Chart

Figure 8 shows the flow of the kernel that is developed. When the machine

starts up, the kernel will be running in privilege mode. The kernel will setup

the necessary stack for different operating modes, followed by enabling the

required interrupt.  The kernel  then sets  up the memory translate  table  and

enables  MMU after  the  interrupt  initialize  process.  Finally  the  kernel  will
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switch into user mode and wait for user input.

 

4.3 Memory Layout

Since  the  kernel  is  not  using  virtual  memory,  therefore  only the  SDRAM

section is used. Table  shows memory design of the kernel. The address from

0x0000000 to 0x0013000 is the kernel space and the address after 0x0013000

to 0x3FFFFFF will be the user space. 

Figure 9: Memory Map Specification

4.4 Product Backlog

Product backlog is the document that keeps track of the entire project work.

The work is  broken into  smaller  user  stories  that  will  be  worked on each

sprint.  The size of each story is  estimated based on the story points based

estimation. Basically, the story points based estimation is to set a point to each

story based on it's complexity and amount of effort required complete it. The

point is also used to estimate how much time is required for a particular story.

In this  project a size of “Small” has 2 story points, “Medium” has 4 story

points and “Large” has 6 story points. Each of these points are estimated to

require 6 hours to complete. Thus a story with “Medium” size is estimated to

complete within 24 hours. Table 9 lists the product backlog. 
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0x00000 Interrupt routine 
0x10000 .text

.data

.bss
0x11000 Reserved memory for driver usage 
0x12000 Supervisor Stack
0x13000 Interrupt Stack
0x14000 User space stack
0x15000 Undefined Stack



User Story Title Size

UC 1 As a developer, I want to conduct 

literature review on kernel function

Medium

UC 2 As a developer I want to identify and 

learn about tools that will be used in 

kernel development

Large

UC 3 As a developer I want to have the 

development environment that can be use 

develop the kernel

Medium

UC 4 As a developer I want to know which 

ARM Architecture that I will use

Small

UC 5 As a developer I want to be able to link 

object file into single runable image

Small

UC 6 As a developer I want to be able to load 

my program into development board and 

run it

Small

UC 7 As a developer I want to automate the 

compile and run process to speed up 

development

Small

UC 8 As a developer I want to know how 

interrupt works in my chosen platform

Medium

UC 9 As a kernel user I want to have ISR 

function working on the kernel

Medium

UC 10 As a kernel user I want the kernel to be 

able to work on different operating modes

Small

UC 11 As a kernel user I want the kernel to have 

memory translation table 

Medium

UC 12 As a user I want to be able to access 

privilege data from user program

Small

UC 13 As a user I want my kernel to be able to 

take input for my program

Small

Table 9: User Story
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4.4.1 Functional Requirement Specification 

User Story 1: As a developer, I want to conduct literature review on kernel

function

Brief Description

The  study  on  different  types  of  kernel,  how  kernel  works  in  different

environment and kernel functionality 

Acceptance Criteria

1. Understand and document the differences between kernel

2. Define and create the specification for kernel development

User Story 2: As a developer I want to identify and learn about tools that will

be used in kernel development

Brief Description

Research on the available tools to develop the kernel and learn how to use

them

Acceptance Criteria

1. Identify the toolchain that will be used this project

2. Identify the emulator/simulator that will be use in this project

3. Identify the suitable development environment

User  Story  3:  As  a  developer  I  want  to  have  a  suitable  development

environment that can be used develop the kernel

Brief Description

Setting up a development environment that can be used to develop ARM code
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Acceptance Criteria

1. Able to compile and link a program for ARM

2. Able to debug a program and register state

User Story 4: As a developer I want to know which ARM Architecture that I

will use

Brief Description

Identify the architecture that will be used in this project

Acceptance Criteria

1. Understand and document ARM processor family

2. The targeted development board is chosen

User Story 5: As a developer I want to be able to link multiple object files into

a single runnable image

Brief Description

Use linker to link multiple object file into a single image and develop a linker

script

Diagram
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Figure 10: Linking flow using linker script

Acceptance Criteria

1. Able to utilise linker to link object file

2. Create a working linker script

User Story 6: As a developer I want to be able to load my program into the

development board and run it

Brief Description

Determine  a  way to  load  an  image to  the  development  board  either  using

bootloader or direct memory

Acceptance Criteria

1. Create a startup script that allows the linker to know the start location of the

kernel image

2. Load and run the kernel image in the development board
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User Story 7: As a developer I want to automate the compile and run process

to speed up development

Brief Description

Utilise makefile to simplify compile and run process

Acceptance Criteria

1. Develop a working makefile that is able to compile, link, run and clean up

project file

Story Size

User Story 8:  As a  developer  I  want  to know how interrupt  works on my

chosen platform

Brief Description

Study the interrupt controller on the targeted platform

Acceptance Criteria

1. How the interrupt controller works in the targeted platform is identified &

documented

User Story 9: As a kernel user I want to have ISR function working on the

kernel

Brief Description

Develop an Interrupt service routine for the kernel

Diagram
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Figure 11: Interrupt process flow

Acceptance Criteria

1. Working ISR to handle interrupt from I/O

User  Story 10:  As  a  kernel  user  I  want  the  kernel  to  be  able  to  work  in

different operating modes

Brief Description

Implement operating mode switching in the kernel

Acceptance Criteria

1. Kernel is able to switch mode between privilege and non-privilege mode

2. Program is able to make supervisor call
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User Story 11: As a kernel user I want the kernel to have memory translation

table 

Brief Description

Implement memory translation table and enable basic memory management

Diagram

Figure 12: Memory Management Flow

Acceptance Criteria

1. Memory translation table is setup

2. Memory management unit is turned on

User Story 12: As a user I want to be able to access privilege data from user

40



program

Brief Descriptiom

Program in user mode is able to access privilege function such as I/O

Diagram

Figure 13: Operating Mode Flow

Acceptence Criteria

1. Kernel exposes hardware capability via function call

 

User Story 13: As a user I want my kernel to be able to take input for my

program

Brief Description

Develop a simple driver that allows user program to take input from UART

Diagram
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Figure 14: Driver Flow

Acceptance Criteria

1. User program is able to get input from UART
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CHAPTER 5 

5.0 IMPLEMENTATION

Unlike other  software development  methods,  in  Scrum, each sprint  has it's

own working deliverable. The deliverable is not neccessay a working piece of

code, for example a document is the deliverable of a research story. In this

project,  UC  1  ,UC  2,  UC  4  and  UC  8  are  the  research  stories  and  it's

deliverables are part of this report, thus there are no testing involved.

5.1 Development environment (User Story 3)

The kernel is developed in Ubuntu environment, Ubuntu is an open source

Debian based Linux distribution that is free to use. The reason why Ubuntu is

chosen is  mainly because it  is  supported by the chosen toolchain (ELDK).

Apart from that, it has a package management system that allows the user to

conveniently get packages or software libraries that work together.  It also has

more applications and commands that are helpful in development. 

5.1.1 Setting up toolchain

ELDK  supports  many  different  architectures,  therefore  it  is  important  to

download  the  proper  tool.  The  targeted  architecture  should  be  ARMv5TE

since  the  ARM9  processor  is  used.  The  following  steps  summarize  the

installation process:

1.  Download  iso  image  for  ARMv5TE  architecture  from
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ftp://ftp.denx.de/pub/eldk/5.5/iso/ and mount it to operating system.

2. Verify the downloaded image has correct checksum

3.  Run installation script  and setup environment  script  when installation is

completed.

5.2 Linking option and script (User Story 5)

Accordingly to the system requirement, the kernel will be put to the address

0x10000 and the entry function is to initialize the kernel. Thus, the linker is set

to  start  the  program at  address  0x10000  and  entry  function  reset_handler.

reset_handler is the function that is invoked during startup to setup interrupt

and etc. 

In order for the kernel  to work, it is necessary to link all functions into a

single binary. The following command is used to link all the function binary to

kernel image.

arm-linux-gnueabi-ld -e main -Ttext 0x10000 -o kernelImage

out/*.o

It is impractical to enter all the function, so, to simplify the process, a linker

script is created to pass in the same information to the linker. The following

code  provides  the  same  information  as  the  command  line  option  that  is

specified during linking.

ENTRY(RESET_HANDLER)

SECTIONS

{

 . = 0x10000;

 .text : {

 out/startup.o

44

ftp://ftp.denx.de/pub/eldk/5.5/iso/


 *(.text)

 }

 .data : { *(.data) }

 .bss : { *(.bss) }

 . = ALIGN(8);

stack_top = 0x12000;

 ...

}

5.3 System Startup Script (User Story 6)

Although the goal of the project is to use C language in coding, there are some

functions  that  are easier to implement  using assembly.  In this  project,  the

startup script is coded in assembly language. It is responsible for initializing

the system, for example, setting up stack and enabling interrupt. 

The kernel memory map requirement specifies the address for program stack

in different modes. These stack will be setup during the execution of the start

up script, the system will need to switch to different mode and set the register

SP to its designated location. 

One of the main reasons to set up stack in all the operating modes that will be

used is to allow function call. When a function call is made, the assembler has

to generate necessary code to prepare the register and stack. The code that is

appended to the beginning of the function is the function prologue and code

that is  appended to the end of the function is  the function epilogue.  ARM

Procedure Call Standard [12] is a document that describes the procedure call

as specified in EABI. EABI also specifies the function prologue and epilogue

that will be added to the function. Table 10 shows the registers convention that

is used in APCS. 
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 Table 10: Core register APCS

It is possible to have stack limit check capability to prevent the stack from

overflowing. Toolchain that complies to ARM EABI can allow the linker to

generate code that performs software stack limit check. 

5.4 Automated Build Process (User Story 7)

This project uses a mixture of C file and assembly file. Each of these files

have to be compiled, assembled and linked before they can be used. Each of

the compile,  assemble and link process requires certain parameters that are

specific to the project. A makefile is created to automate the build process. The

target that is defined in this makefile is shown in table below.

Target Description

Compile Compile all the project C file and generate binary

Link Link the necessary binary file to kernel image

Run Invoke emulator and load kernel image
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debug_run Invoke emulator with debugging option

all Execute target “compile”, “link” and “run”

debug_all Identical to target “all', but uses “debug_run”

clean Remove all files that generate in the build process
Table 11: Make Target

5.5 Interrupt Service Routine (User Story 9)

 In the actual hardware configuration, the peripheral will generate interrupt to

the  interrupt  controller.  Depending  on  the  configuration,  the  interrupt

controller will then mask the signal before passing them to the CPU. Therefore

for an ISR to work, both the interrupt source and interrupt controller has to be

enabled.

As specified in the project requirement, this project is using UART as input

and output.  Therefore the interrupt  for  UART must  be enabled so that  the

interrupt  controller  can  process  it.  Some  other  interrupts  that  need  to  be

enabled are SVC, and all  other  hardware feature that will  be used in  later

development. Table12 shows the interrupt bit assignment in primary interrupt

controller  that  is  relevant  to  this  project.  For  the  full  interrupt  bit  and  its

corresponding source, refer to [8] page 4-47 to 4-48.

Bit Interrupt 

Source

Function

[12] UART0 UART0 in development chip

[1] Software 

interrupt

Software interrupt for the system

Table 12: Interrupt bit assignment in primary interrupt controller
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Interrupt controller in the targeted development used in this project supports

both vectored and non vectored interrupt. The difference between them is that

vectored interrupt stored the address of ISR in the interrupt controller, so the

kernel can read from VICVECTADD register in interrupt control to detemine

the ISR address. While non vectored interrupt on the other hand requires the

kernel  to  read  from VICIRQSTATUS register  in  the interrupt  controller  to

detemine the source of the interrupt.

Since UART0 is used to receive input, the receive interrupt must be enabled in

UART controller as well. Interrupt mask set/clear register (IMSC) in UART

controller  is  responsible  to  mask the signal,  and to  turn on interrupt  when

UART receive data, bit 4 of UARTIMSC must be enabled [13]. The following

code is the implementation of the interrupt logic.

void __attribute__((interrupt)) irq_handler() {

    if (VIC_IRQSTATUS == 4096){

        display("interrupt from UART0 ");

        UART1_DR=UART0_DR;

    }

    else{

        display("interrupt is generate from other source");

    }        

}
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5.6 System Operating Mode (User Story 10)

ARM processor stores its current operating mode into bit 0-4 in CPSR. When

writing these bits with new value, the processor mode is changed. The kernel

needs to keep track of the value in CPSR and restore them when the mode is

swithcing. However much of this work is handled by the compiler so unless

code is written in assembly, the developer is not required to write code to store

and restore CPSR value. 

5.7 Memory Management Unit (User Story 11)

There are a few steps required to enable the MMU. First, the page descriptor

has to be created and copied into the memory. Then, C1, C2 and C3 in CP15

must be configured to enable the MMU.The page table will be stored in the

top 64 MB of SDRAM. Therefore the table will be copied into address from

0x4000000. The following code creates a table entry in the register and then

copies the register value into the designated memory location. 

"LDR r0,=0x04000000\

"LDR r1, =0xFFF"

"MOV r2, #0b110000000000"

"ORR r2,r2,#0b000000010010"

"loop:\n"

"ORR r3,r2,r1,LSL#20\n"

"STR r3,[r0,r1,LSL#2]\n"

"SUBS r1,r1,#0b1\n"

"BPL loop\n"

After the table is copied into the memory, the kernel has to configure CP15 in
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order to turn on the  MMU. The memory location of the translation tables are

set in translation table base register C2. The default value of all domain is 00

(no access),  so the  domains  that  will  be used have  to  be configured.  Two

domains are defined in this project, which are the manager in domain 0 and

client in domain 1. C1 in CP15 is the control register that the user can set to

configure  the  MMU.  Bit  0  of  C1  is  the  bit  to  enable/disable  MMU.  The

following code illustrates the steps described in this section.

LDR r0,=0x04000000

 MCR p15,0,r0,c2,c0,0

 MOV r0, #0xB

 MCR p15, 0, r0, c3, c0, 0

 MRC p15, 0, r0, c1, c0, 0

 ORR r0, r0, #0x1

 MCR p15, 0, r0, c1, c0, 0

5.8 Supervisor Call (User Story 12)

Part of the kernel function is to protect the kernel space and hardware from

direct access in user space program. In order for user space to access some of

the privilledge operation, kernel has to expose a list of system library that user

program can use. For example a printf c library is actually using few of the

system libraries to perform the printing function. 

When a system call is made, the system will triggered a SVC interrupt, the

kernel will then branch into supervisor call routine and perform the necessary

operation. Unlike interrupt call where interrupt controller will put the source

into IRQSTATUS register, to identify which supervisor call is made, the kernel

has to read from the instruction itself. LR register stores the location where the
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function call should return to, reading the instuction before the return address.

In ARM instruction, the last 24 bit of a SVC call store the value that SVC call

passed in. Figure 19 shows the instruction of a SVC call. The kernel can then

determine  the  intended  SVC  call  by  masking  off  the  irrelevant  bits.  The

following code is implemented to detemine the intended SVC call. 

int code;

asm( 

"LDR r0,[lr,#-4]\n"

"BIC %0,r0,#0xff000000\n"

:"=r"(code)

);

Figure 15: SVC instruction

5.9 Device Driver (User Story 13)

Before a driver can be developed, the kernel will need to have the information

of what hardware is available. For kernels that support device tree, the kernel

will generate the list of available devices during bootup time. In this project,

since  it  is  not  utilizing  device  tree,  all  the  supported  device  needs  to  be

hardcode in a table. The following table is developed in the kernel to keep

track of the devices.

Table 13: Device List in Memory
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A driver  is  responsible  provide  a  software  interface  for  other  programs  to

utilize hardware function. In this project, since UART0 is taken as input and

UART1 as the output, the driver for these device needs to provide functions

like read from UART0 and write to UART1. If a new device is added to the

hardware, for example a display device connected to GPIO, the programmer

will have to write the driver to send or read data in corect format to use the

device. 

When an interrupt for UART0 occurred, the ISR will branch to the UART0

interrupt  handler  function.  The  driver  will  write  the  UART0  input  to  the

temporary memory storage (refer to the device list table). The driver provides

two basic functions which are put_word and get_word. Both these function

will write or return 32 bit integer. As for UART1 driver, it provides multiple

print functions such as printc (print character), or display (to print out a list of

character).

5.10 Porting Guide

Part of the project goal is to understand the kernel design and development,

therefore it is necessary for this work to be extendable and to support other

platforms for future studies.  The following steps summarizes the neccesary

work in order to port the kernel over to other platforms such as the ARMv6

processor. 

1. Understand the hardware functionalities, particularly the processor, memory
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and interrupt feature.

2. Understand operating modes in the targeted platform

3.  Comparison  between  the  supported  instruction  set  between  the  targeted

system and ARMv5

4. Setup a test environment with at least 1 input and 1 output

5. Pick the correct toolchain based on functionality, memory and performance

requirements  

6. Replace incompatible assembly and C code
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CHAPTER 6

6.0 Testing and Result

The traceability matrix is used in this project to keep track of use cases and

test cases. 

6.1 Development environment test result

objdump is a binary utiliy in the toolchain that can display information about a

binary  file.  It   provides  various  information  of  a  binary  file.  Among  the

available options, disassemble is an option that can help to debug a binary file

that was linked.

A simply C program to display the string “hello world!” is used to test the tool

chain. The program is compiled with debug information turned on. 

The  following  figure  displays  the  result  of  running  the  program  in  the

emulator

Figure 16: Toolchain Testing Result

To  verify  that  the  program is  compiled  and  linked  for  ARM architecture,

objdump with disassemble option is used to display the binary information.
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The  following  figure  shows  the  result  of  the  “hello”  program binary  that

compiled with ELDK toolchain

Figure 17: Binary Information of Hello program

6.2 Linker Script Test Result

A simple kernel that only prints out the the string “Hello World” is used to test

the linked image.  Once the kernel image is generated, readelf utility is used to

verify that  the image is  linked correctly according to  ELF ABI. Figure 18

shows result of readelf and Figure 19 shows the actual execution. 
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Figure 18: Readelf result 

Figure 19: Simple executable image load to system

6.3 Interrupt Service Routine Test Result

In the testing of ISR, the system uses UART0 as the input and UART1 as the

output. When a character is received in UART0, the interrupt controller will

trigger an interrupt signal and set IRQSTATUS to indicate that the source of

the interrupt is from UART0. The system will then execute ISR and print out

the result via UART1. The following figure shows the output of the system.
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Figure 20: ISR test result

6.3.1 Comparison On Interrupt Handling

The kernel in this project only manage devices which are already available in

the system. Due to  this reason, whenever there is a new device added to the

system the kernel needs to be recompile. A extensible kernel need to provide

capability to dynamically added new device into it. For example  Linux  kernel

allows the device to register itself to interrupt handling using device driver

[15]. 

6.4 Operating Mode Test Result

When the kernel  completes  the initialization and stack setup,  it  will  call  a

function  to  switch  to  user  mode.  The  CPSR is  checked  to  verify  that  the

switching is successful. The following GDB output shows the status CPSR

before and after the switch.
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Figure 21: GDB output before mode switching

Figure 22: GDB output after mode switching

Once the system is running on user mode, the user program can no longer

access the special registers such as CPSR and other hardware memory. When a
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program tries to access those functions, the system will trigger an undefined

exception and move to undefined mode.

Another function that can be tested is when the system changes its operating

mode, the value of the register will be replaced as well. Therefore it is the

kernel's  responsibility to  copy over  the necessary value from one mode to

another.  An  example  of  these  values  is  the  lr  value  -  when  the  kernel

completes its initialization work and calls a switch user mode function, the

kernel will have to manually copy the lr value or else the system will not be

able to continue its execution.  

6.5 Memory Management Unit Test Result

MMU in this kernel is used only for access permission. To test this function,

the kernel will run some user programs in the memory region that is accessible

by privilege mode only. There are two types of abort that can happen once the

MMU is enabled, which are prefetch abort and data abort. When the system is

operating in user mode, it will trigger a prefetch abort exception when it tries

to fetch instruction from protected memory. Figure 23 shows the result of the

user program trying to execute a function in protected memory, and figure 24

shows the result of a program accessing data in protected memory.
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Figure 23: MMU Test 1 Result

Figure:24 MMU Test 2 Result

6.5.1 Memory Manaagement Unit Usage In Other Kernel

Apart from memory protection, another purpose of MMU is to allowed the

kernel to implement virtual memory. Virtual memory allowed the system to

utilise more memory than it has. When virtual memory is enabled, kernel and

user  program will  run  their  own  virtual  memory  space  [15].  This  feature

provide further protection since the other process will never acccess each other

memory.  

6.6 Supervisor Call Test Result

To test a supervisor call, a function call to SVC 1 is made in the kernel main

right after the kernel switches to user mode. In the supervisor call handler,

SVC 1 is programmed to print out a line. Figure 25 shows the output of the
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kernel.

Figure 25: SVC screen output

6.6.1 System Call For Device Input Output

System calls are set of functions that kernel provide for userspace application

to utilise system resources. However the provided system calls are not able

cover all possible operations for all supported devices. In order to solve this

issue, the kernel provide input/output control (ioctl) system call to allow the

communication between user application and device driver [17]. When a user

application make a ioctl call with specific control code, the driver that run in

kernel space will perform the operation on the driver. In this project, ioctl call

is not implemented. 

6.7 Device Driver Testing

In this user story, two simple drivers are developed to provide the function to

get input and print output. A simple user program is written and run in the

kernel main to test this function. The following code is the user program that is
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used to test the driver function.

void user_program1() {

display("enter your character: ");

int user_input = 0;

while (user_input == 0)

user_input = get_word();

display("You entered: ");

printc(user_input);

}

Program output can be observed from telnet to qemu port. When the program

runs,  it  will  wait  for  a  user  input  from UART0.  When  the  user  enters  a

character, the program will echo the charcter to the output from UART1. The

following figure shows the result of the program.

Figure 26: Device Driver Test Result

6.7.1 Device Management in Linux Kernel

Memory-mapped devices in ARM is access by directly read or write to the

memory location. In this project they are accessed via memory pointer, this

approach  is  straight  forward  and  mainly  to  demonstrate  how  to  utilise  a

device. In Linux kernel, each of the device is mapped to a file called device

node [15].  Device node is a mechanism to pass data to to device via a driver.

When data is write into the device node, the device driver will process these

data and send to the device.
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6.8 Project Time line

Figure 27 and table 14 illustrates the plan versus actual time spent for different

sprints  and actual time spent on each story.  In general,  the implementation

required less time than the estimated hours.

Figure 27: Feature Burn Down Chart

Table 14 : Planned vs Actual hours for user story
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UC7 12 4
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CHAPTER 7

7.0 CONCLUSION AND FUTURE WORK

The  goal  of  this  project  is  to  understand  and  develop  a  kernel  for  RISC

architecture.  In  this  project,  the  various  aspect  of  kernel  and  kernel

development is discussed. Along with this documentation, a simple kernel was

developed to  demonstrate  the  intergration  between  software  and hardware.

Although  this  kernel  lacks  certain  features,  it  is  sufficiently  simple  to

understand and easy to experiment with.

Currently,  the  developed  kernel  lacks  the  complete  virtual  memory

implementation,  process  management  and file  system -  these  areas  can  be

futher developed as new projects. The kernel can also be futher developed into

a monolithic or micro kernel to further understand their differences.
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