
DEVELOPMENT OF KERNEL FOR RISC

ARCHITECTURE SYSTEM

NG CHUN HONG

MASTER OF COMPUTER SCIENCE

FACULTY OF ENGINEERING AND SCIENCE

UNIVERSITI TUNKU ABDUL RAHMAN

MAY 2014

DEVELOPMENT OF KERNEL FOR RISC

ARCHITECTURE SYSTEM

By

NG CHUN HONG

A project submitted to the Department of Internet Engineering and Computer

Science,

Faculty of Engineering and Science,

Universiti Tunku Abdul Rahman,

in partial fulfillment of the requirements for the degree of

Master of Computer Science

March 2014

TABLE OF CONTENTS

ABSTRACT iii

PERMISSION SHEET iv

APPROVAL SHEET v

DECLARATION vi

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF ABBREVIATIONS ix

1.0 Introduction 1

1.1 Introduction 1

1.2 Problem Statement 1

1.3 Project Scope 2

1.4 Project Objective 3

2.0 Literature Review 4

2.1 Computer Architecture and Operating System 4

2.2 Application Binary Interface 6

2.3 Object File Format 7

2.4 Executable and Linkable Format (ELF) 8

2.5 Assembly for Arm 9

2.6 Operating Mode 12

2.7 List of register in ARM architecture 12

2.8 Endianess 15

2.9 Kernel Functionality 15

2.9.1 Type of kernel 15

2.9.1.1 Micro Kernel 16

2.9.1.2 Monolithic kernel 16

2.10 Memory Map 16

2.11 Memory Management Unit in ARM 17

3.0 TOOLS AND METHODLOGY 21

3.1 Development methodology 21

3.2 Targeted ARM platform 23

3.3 Toolchain 23

3.4 Emulator 24

3.5 Linker/ Linker Script 26

3.6 GNU Compiler Collection (GCC) 27

3.7 GNU Project Debugger (GDB) 28

3.8 Bootloader 28

3.9 Automating Build Process 29

3.10 Source Code Management 30

4.0 DESIGN AND SPECIFICATION 31

4.1 System Environment 31

4.2 System Flowchart 32

4.3 Memory Layout 33

4.4 Product Backlog 33

4.4.1 Functional Requirement Specification 35

5.0 IMPLEMENTATION 43

5.1 Development environment (User Story 3) 43

5.1.1 Setting up toolchain 43

5.2 Linking option and script (User Story 5) 44

5.3 System Startup Script (User Story 6) 45

5.4 Automated Build Process (User Story 7) 46

5.5 Interrupt Service Routine (User Story 9) 47

5.6 System Operating Mode (User Story 10) 49

5.7 Memory Management Unit (User Story 11) 49

5.8 Supervisor Call (User Story 12) 50

5.9 Device Driver (User Story 13) 51

5.10 Porting Guide 52

6.0 Testing and Result 54

6.1 Development Environment Test Result 54

6.2 Linker Script Test Result 55

6.3 Interrupt Service Routine Test Result 56

6.3.1 Comparison On Interrupt Handling 57

6.4 Operating Mode Test Result 57

6.5 Memory Management Unit Test Result 59

6.5.1 Memory Manaagement Unit Usage In Other Kernel 60

6.6 Supervisor Call Test Result 60

6.6.1 System Call For Device Input Output 61

6.7 Device Driver Testing 61

6.7.1 Device Management in Linux Kernel 62

6.8 Project Time line 63

7.0 CONCLUSION AND FUTURE WORK 64

REFERENCE 65

APPENDIXES 67

ABSTRACT

Development of Kernel for RISC Architecture System

With the blooming on smart phone and tablet devices, the study on RISC

become important. As many has predicted that post pc era is coming near,

RISC architecture based processor is expected to be widely used. However

there is lack of a simple model and system to understand how does the

hardware and software work together. Therefore in this project, the aim is to

be able to come out with a working kernel that enabled further experiment of

different kernel architecture or other development (for example driver

development or filesystem design).

Another problem with operating system study is that the is lack of material in

understanding the design of a kernel. Most of the material discussed about

certain specific function and the design decision such as which memory model

to used is often not disclose. Thus part of the project is to review the available

design methodology and provide a simpler explanation in various aspect.

FACULTY OF ENGINEERING AND SCIENCE

UNIVERSITI TUNKU ABDUL RAHMAN

Date: 21 MAY 2014

PERMISSION SHEET

It is hereby certified that Ng Chun Hong (ID No:09UEM05353) has

completed this final year project entitled “DEVELOPMENT OF KERNEL

FOR RISC ARCHITECTURE SYSTEM” under the supervision of Mr. Mok

Kai Ming (Supervisor) from the Department of Computer and Communication

Technology, Faculty of Information and Communication Technology, and

___________________________________ (Co-Supervisor)* from the

Department of ___________________________________, Faculty of

Engineering and Science.

I hereby give permission to the University to upload softcopy of my final year

project in PDF format into UTAR Institutional Repository, which may be

made accessible to UTAR community and public.

Yours truly,

NG CHUN HONG

APPROVAL SHEET

This dissertation/thesis entitled “DEVELOPMENT OF KERNEL FOR RISC

ARCHITECTURE SYSTEM” was prepared by Ng Chun Hong and submitted

as partial fulfilment of the requirements for the degree of Master of

Computer Science at Universiti Tunku Abdul Rahman.

Approved by:

(Mr. Mok Kai Ming)

Date:…………………..

Professor/Supervisor

Department of Computer and Communication Technology

Faculty of Information and Communication Technology

Universiti Tunku Abdul Rahman

DECLARATION

I Ng Chun Hong hereby declare that the dissertation is based on my

original work except for quotations and citations which havebeen duly

acknowledged. I also declare that it has not been previously or concurrently

submitted for any other degree at UTAR or other institutions.

NG CHUN HONG

 Date 21 MAY 2014

List of Figures

Figure 1 Header and section of an ELF file for IA32 8

Figure 2 Registers in Different Operating Modes 13

Figure 3 CPSR and SPSR register 14

Figure 4 Domain Access Control Register 19

Figure 5 Scrum Process 22

Figure 6 Branching Example 30

Figure 7 Component Involved in Kernel Development 31

Figure 8 Kernel Flow Chart 32

Figure 9 Memory Map Specification 33

Figure 10 Linking flow using linker script 37

Figure 11 Interrupt process flow 39

Figure 12 Memory Management Flow 40

Figure 13 Operating Mode Flow 41

Figure 14 Driver Flow 42

Figure 15 SVC instruction 51

Figure 16 Toolchain Testing Result 54

Figure 17 Binary Information of Hello program 55

Figure 18 Readelf result 56

Figure 19 Simple executable image load to system 56

Figure 20 ISR test result 57

Figure 21: GDB output before mode switching 52

Figure 22: GDB output after mode switching 52

Figure 23 MMU Test 1 Result 60

Figure 24 MMU Test 2 Result 60

Figure 25 SVC screen output 61

Figure 26 Device Driver Test Result 62

Figure 27 Feature Burn Down Chart 63

List of Tables

Table 1 AT&T syntax 9

Table 2 MSR/MRS Instruction Description 10

Table 3 MCR/MRS Instruction Description 11

Table 4 SVC Instruction Description 12

Table 5 Memory Map 17

Table 6 Section Table Bit Description 19

Table 7 Memory Access Control 20

Table 8 Linker Script Symbol and Description 27

Table 9 User Story 34

Table 10 Core register APCS 46

Table 11 Make Target 46

Table 12 Interrupt bit assignment in primary interrupt controller 47

Table 13 Device List in Memory 51

Table 14: Plan vs Actual hour for user story 63

LIST OF ABBREVIATIONS

Instruction Set Architecture (ISA)

Reduced Instruction Set Computing (RISC)

Complex Instruction Set Computing (CISC).

Application Binary Interface (ABI)

Embedded Application Binary Interface (EABI)

Executable and Linker Format (ELF)

Portable Executable (PE)

Mach-Object (Mach-O)

Load-Store architecture (LD/STR)

Intel Architecture 32 Bit (IA-32)

Program Status Register (PSR)

Current Program Status Register (CPSR)

Saved Program Status Register (SPSR)

Memory Management Unit (MMU)

Translation Lookaside Buffer (TLB)

Page Table Entries (PTE)

Binary Utility (binutils)

Embedded linux development kit (ELDK)

Gnu Compiler Collection (GCC)

GNU Project Debugger (GDB)

Interrupt Service Routine (ISR)

CHAPTER 1

1.0 INTRODUCTION

1.1 Introduction

RISC architecture has and will continue to become prominence in the post pc

era especially in the area of pervasive computing and wearable computing.

They are more favorable in those areas because of the cost and power

consumption. As hardware continue to grow in both processing speed and

memory capacities, single application system has becoming more irrelevant

that ever. For example smart watches are installed with operating system and

able to run different user applications. Therefore the study on operating system

is important to create hardware and software that can work together more

effectively. Due to the complexity of matured operating system such as

Android and Linux, it is difficult to introduce and experiment with kernel

concept to beginner. Therefore in this project, the aim is to develop a

methodology to create a simple kernel targeted for ARM processor. The

outcome of the project will also be used in other project to verify the design of

a RISC architecture system.

1.2 Problem Statement

In general, the design of a processor involves verification at several levels of

abstraction. Specifically for front-end processor design, verification is

typically conducted at Register Transfer Level (RTL) and full-chip level. RTL

1

verification involves cycle-accurate functional verification, that is, observation

of the required signal events occurring at the correct clock cycle. The work is

typically hardware in nature since observation is done at signal level and

verifying the logic functionality of smaller modules. On the other hand, we

have full-chip level functional verification which involves verifying the full-

chip at transaction level. It also indirectly verify the integration of modules

which forms the full-chip or processor. We can use single standalone

programme as in embedded application programme but this type of

programme is not as extendable and complete as in a kernel function which

test the processor at full-chip level more thoroughly. With the availability of a

kernel, the processor design cycle can be reduced since both hardware and

software can be developed in parallel. After completed the full-chip

verification, the kernel can further be extended into a more complete software

with customizable features that supports the processor. Available kernel in

open source is overly complicated for extension and reuse to be adapted into

different embedded processor during the design process. Another problem

with open source kernel programmes is the lack of documentation and hence,

lack of reusability.

1.3 Project Scope

The project scope consist of the development of a generic and portable kernel

that can be adapted to verify the functionality of a RISC processor. Along with

the kernel, the methodology and tools to develop the kernel components is

also presented as part of the project outcome.

2

1.4 Project Objective

The objectives of the project are:

• Comparison between the differences of RISC and CISC architeture,

which include the instruction set and basic components of a kernel

(interrupt handling, operating mode, and memory protection).

• Develop kernel requirement – Identified and define the integration for

the needed components that provide I/O management and memory

management.

• Design and development of a kernel components using Agile

methodology, demonstrate Scrum processes such as incremental

product development with sprint cycle.

• Test case development to verify the functionality of the kernel in

emulator. Which cover the Interrupt Service Routine, Supervisor Call,

different operating mode and memory protection.

3

CHAPTER 2

2.0 LITERATURE REVIEW

2.1 Computer Architecture and Operating System

The Instruction Set Architecture (ISA) is an abstract interface between the

hardware and the software of a computing system. There are two types of

instruction architecture sets which are the Reduced Instruction Set Computing

(RISC) and the Complex Instruction Set Computing (CISC). In recent years,

the RISC family of processors are widely being used (including Microsoft

Windows 8) and therefore the study on its architecture and system is becoming

important.

The number of instructions in the RISC processor is smaller, but the

instructions complete faster. Due to this characteristic, despite bigger program

size in the RISC architecture, the performance is not sacrificed. Some of the

reasons why RISC is more favourable are lower power consumption, lower

cost of development, and the advancement of other technologies such as

higher memory density. For example, a modern compiler is capable of

handling additional code in RISC automatically so that the programmer does

not have to manually write them.

In recent years, both CISC and RISC apply different techniques to overcome

their shortcomings. For example, improved power saving during system idle in

the recent Intel processor. On the other hand, the ARM processor added 16bit

4

thumb instruction that helps in memory requirement. Thumb instructions are a

compact version of the ARM 32 bit instruction, resulting in smaller memory

size but with its memory tradeoffs. Such approach is identical to complex

instructions.

The operating system is a complex system which is difficult to fully

understand from all aspects. Zhou et. al. [1] in their paper used Fiasco Kernel

to explain about the technologies behind a micro kernel. They discussed about

various kernel mechanisms in the microkernel such as address spaces,

communication and system call. Their purpose is to introduce a new

architecture and to further enhance the understanding of an operating system.

With the same purpose, Wang [2] explained the structure of an operating

system by analyzing the components of the system. Four operating system

approaches were discussed in that paper, which were monolithic, modular,

extensible nuclues and layered. He also mentioned about new features in the

CPU such as virtualization which can affect the operating system design.

Therefore it might be worthwhile to further investigate these features.

N.Alee et. al.[3] performed a benchmark on different kernels on the ARM

architecture. While this paper is not directly relevent to this project, the tools

and metrics that they used to benchmark the perfomance may be used to test

the performance of the kernel.

5

A.Messer and T.Wilkinson [4] used another approach to tackle the complexity

of an operating system. In their work, they utilised the component oriented

design to decouple the operating system modules. Such approach is identical

to the microkernel design, however their approach allowed the operating

system to be more extensible.

One of the most famous microkernels is Minix. In [5], the architecture and the

design goal of Minix 3 is discussed. They pointed out several advantages of

such architecture in comparison with others, such as being reliable and

lightweight. Such behavior is highly favourable for low power and low cost

devices.

2.2 Application Binary Interface

Application Binary Interface (ABI) is a set of specifications for binary

interface so that different binary files can work together. ABI is platform

dependent, where, ABI for ARM and ABI for x86 is different. Embedded

Application Binary Interface (EABI) is the standard convention for an ARM

system.

ABI specifies various details such as code generating, alignment, register

usage and data size [10]. For a linker to generate a binary executable, it must

be aware of ABI. For example, when accessing the memory, the linker will use

instructions that directly modify the memory content in x86, but on the other

6

hand, uses load-store method in ARM.

Files compiled by different compilers can work together as long as they

comply to a single ABI. Therefore ABI is important for the linker so that it is

possible to link compiled libraries into the binary executable file.

2.3 Object File Format

Object file contains symbols and attributes that the linker will use to generate

an executable file. The object file is generated from the source file by the

compiler and it contains different sections such as code section (.text), data

section (.data), and others that makes up a program. There are 3 types of object

files which are executable, relocatable, and shared object file. An executable

object file contains programs that can be run. A relocatable object file contains

code and data that needs to be combined with other relocatables to generate

executable, while a shared object file is for dynamic linking purpose.

Different operating system use different object file formats. The popular ones

are the Executable and Linker Format (ELF), Portable Executable (PE), and

Mach-Object (Mach-O). The choice of object file is based on the hardware and

architecture support, for example, ELF is not tied to any architecture and

therefore it can be used in multiple types of hardware.

7

As discussed in the earlier section, ELF itself is defined in System V ABI. We

can imagine ABI as the rule that specifies how to organize files and store

necessary information, while ELF is the actual content of these information.

2.4 Executable and Linkable Format (ELF)

ELF is the file format used in many operating systems such as Linux. ELF

specification[9] defines the content of an ELF file. An ELF file may contain 2

or 3 headers depending on its purpose. The first header in ELF describes the

ELF file itself, for example where the programs are, and section headers, what

architecture it is and etc. Section headers on the other hand describe different

sections and the section attribute inside an ELF file, for example, where the

.text section are and whether the section is executable. Finally the program

header describes how to create the process image, and only executable files

need to have the program header.

Figure 1: Header and section of an ELF file for IA32

8

2.5 Assembly for Arm

ARM assembly uses AT&T syntax. A few features of this syntax that will be

used are the register naming, source and destination order, and addressing. The

following table summarize the features of the AT&T syntax [11].

Register naming Register names are prefixed with %.

For example,

mov %r0 %r1

Source and Destination Order Source operand before destination

For example,

mov %r0 (destination) %r1

(destination)

Addressing Address syntax is in base, index, scale

For example,

mov %r0 %r1 4
Table 1 : AT&T syntax

Due to hardware differences, assembly for ARM differs from x86 assembly.

This section discusses the few key differences between them that will be used

in development at later stage.

Unlike the x86 family, ARM uses Load-Store architecture (LD/STR) to access

the memory. Although this is a common feature in RISC architecture, some

RISC architecture can access the memory as well. Load-Store architecture

requires the memory content to be loaded to the register before they are used.

ARM instruction is not destructive in nature compared to IA-32. The

9

following example illustrates the differences between the instructions for Add

operation.

To add 2 register,

In ARM:

add r0, r1, r2

add r1 and r2 and store the result in r0.

In IA-32:

mov cx, ax

add cx, bx

When adding bx to cx, the initial value for cx is destroyed.

In order to access the program status register, the instruction MSR/MRS is

used to read or write values into status registers. For example, to move the

value in register r0 to CPSR, move from register to PSR instruction (MSR) is

used.

Syntax

MRS/MSR Rd, <PSR>

Example

MSR CPSR, r0.

Rd Destination register

PSR Program Status Register, can be CPSR,

SPSR
Table 2: MSR/MRS Instruction Description

10

Co-Processor is used to perform system control and provide status for

processor function. Co-processor is also used to configure the memory

management unit. To access the coprocessor, the instruction to move the ARM

register to the coprocessor (MCR) and move the ARM register from the

coprocessor (MRC) is used.

Syntax

MRC/MRC coproc, #opcode1, Rt, CRn, CRm{, #opcode2}

Example

MCR p15,0,r0,c2,c2,0

coproc name of the coprocessor that the

instruction is for. The standard name is pn,

where n is an integer in the range 0 to 15.

opcode1 3-bit coprocessor-specific opcode.

Rt ARM source registers.

CRn, CRm coprocessor registers.
Table 3: MCR/MRS Instruction Description

Software interrupt is triggered by calling supervisor call (SVC).

Syntax

SVC <imm24>

11

Example

SVC 100

imm24 Integer to determine event by ISR

Table 4: SVC Instraction Description

2.6 Operating Mode

In IA-32 there are 4 operating modes, which are real mode, protected mode,

virtual 8086 mode, and sytem management mode. These modes are mainly

used for backward compatibility support. Depending on the processor family,

ARM can have up to 9 operating modes. However the more commonly used

modes are user mode, system mode, FIQ mode, IRQ mode, About mode,

Undef mode, and SVC mode. The purpose of the operating mode in ARM is to

allow quick processing on system event. The current operating mode is set in

the CPSR register.

When a system starts, the CPU operates in system mode to perform all

necessary initialization. When this process is done, the kernel will change to

user mode and start the execution of user program. When a program triggers a

supervisor call, the CPU will then switch to SVC mode. Identical to SVC call,

when an interrupt occurs, the CPU will switch to interrupt mode.

2.7 List of register in ARM architecture

In x86 family, general purpose registers like EAX, EBX, etc. are available for

12

general usage such as calculation. ARM on the other hand has r0-r9 for the

same purpose with a large number of general registers to provide flexibility for

the programer to do coding.

Kernel is the layer between software and hardware. Therefore it will

manipulate many registers to perform different tasks. Figure 2 shows the

available registers and it's corresponding mode.

Figure 2: Registers in Different Operating Modes

Depending on the architecture version, different architecture versions have

different numbers of registers. In general, each operating mode will have a

13

total of 16 registers. Out of these 16 registers, 13 of them can be used for

general purpose. R13 is commonly used as a stack pointer (as specified in

ARM ABI), R14 is the link register that holds the return address for a function

call, R15 is the program counter and R16 is the CPSR.

One of the most frequently used register is PSR. Different operating modes

can access different PSR registers. CPSR holds the state of a program whereby

multiple conditional flags are updated during instruction execution. Figure 3

describes the registers in CPSR and its corresponding function.

Figure 3: CPSR and SPSR register

Identical to CPSR, SPSR is responsible for storing the value in CPSR when

the CPU changes mode. The Kernel is responsible for restoring the value from

14

SPSR to CPSR when the system switches back from priviledge mode to non-

priviledge mode. SPSR is only available in privilege mode.

2.8 Endianess

ARM supports both endianess (little and big), where the E bit in CPSR is used

to support endianess. In general, ARM uses little endian in its asssembly

instructions. In most situations, the programmer does not have to care about

endianess apart from choosing the right tools and file format.

2.9 Kernel Functionality

The kernel is the core of the operating system that provides services to all

other programs. Depending on the operating system design, at minimal the

kernel has to provide I/O control and memory management. The main

functionalities in a modern kernel are I/O control, memory management,

process management and file management [14].

2.9.1 Type of kernel

There are 4 categories of kernel which are micorkernel, monolithic kernel,

hybrid kernel and exokernels. Two of the most widely used kernels are the

microkernel and monolithic kernel. The memory range that the kernel runs in

is called the kernel space, likewise the user program runs in user space. By

separating the memory space, the kernel can ensure that the user space

programs will not accidently break crucial kernel functions.

15

2.9.1.1 Micro kernel

Microkernel is a minimal kernel that only runs minimum services such as

memory and process management that allows an operating system to function.

Other functionalities such as I/O are implemented in the user space.

Microkernel has several advantages over other kernel design. It is highly

recoverable since only a few services are run in the kernel space, thus user

space programs can be restarted when there are problems. Another advantage

is that it is portable, whereby if the kernel needs to be ported to other

platforms, only a few services need to change.

2.9.1.2 Monolithic kernel

Monolithic kernel runs all the operating system services in the kernel space. It

manages all I/O, memory, process and etc. The advantage of monolithic kernel

is that it is faster, since every service is running in the same space. The main

disadvantage of a monolithic kernel is that it is not possible to recover if any

kernel service crashes. However operating systems such as Linux are very

stable and hardly crash due to reliable code and extensive testing.

2.10 Memory Map

Memory map provides the memory layout for memory, controller and

peripherals. In terms of differences between ia32 and ARM, ia32 consists of

IO instructions that enables it to read from IO directly, while ARM uses

memory map IO where all connected peripherals are mapped into a 4GB space

16

and accessed using memory locations [7]. Table 5 lists the memory map for

relevant hardware in ARM926-EJS development board that will be used in this

project. For full memory map, refer to appendix [8].

Peripheral Address Region Size

MPMC select 0. Bottom

of 64MB of SDRAM

0x00000000-

0x03FFFFFF

64MB

MPMC select 0. Top of

64MB of SDRAM

0x04000000–

0x07FFFFFF

64MB

System Register 0x10000000-

0x10000FFF

4KB

Vectored Interupt

Controller

0x1014000-0x1014FFFF 64KB

UART0 0x101F1000-

0x101F1FFF

4KB

Table 5: Memory Map

2.11 Memory Management Unit in ARM

The memory management unit is responsible for memory protection and

virtual address translation. When MMU is turned on, the system will start

using virtual address and MMU needs to translate the virtual address to a

physical address. ARM's MMU uses special cache called Translation

Lookaside Buffer (TLB) to translate addresses. When a process requests

access to a virtual memory address, MMU will look into TLB to check

whether the physical address is available. If the information is not available,

this is a TLB miss, and MMU has to look into all page tables to find the

correct entry.

17

There are different mapping schemes and the operating system may use a few

of them together. For example many to one mapping is a scheme where the

operating system maps multiple virtual address ranges to the same physical

memory adress. Flat address mapping on the other hand is the one to one

mapping where the virtual address is mapped directly to the physical address.

For the development board that is used in this project, a hardware MMU is

used to provide these functions. It is controlled by system control co-

processosr 15 (CP15). The MMU supports section (1MB), large page (64KB),

small page (4KB), and tiny page(1KB) mapping. Depending on the chosen

type, the size of Page Table Entries (PTE) will be very different in size. For

example if section is used, 4GB memory space is split into 4096 entries each

with 1MB block. If fine page is chosen then more entries is needed to

represent the entire 4GB space because memory is split into 1KB block.

There are two different descriptors for a page table, which are first level

descriptor and second level descriptor. First level descriptor describes 1MB

memory block. If the system is using section, then this is the only descriptor

that is needed. Likewise if a fine or large page is being used, then a second

level descriptor is needed to provide the base address. Section table will be

used in this project. The following table lists the bit and function first level

descriptor for section table.

18

Bits Description

31:20 Corresponding bit in physical address

19:12 Should Be Zero

11:10 Access permission

9 Should Be Zero

8:5 Domain control bits

4 Must be 1

3:2 Cache control

1:0 Page Size, 0b10 indicate a section descriptor
Table 6: Section Table Bit Description

Memory access control in MMU is achieved by checking against the domain

control and access permission. There are few roles that each domain can

define, whether manager, client or no access. There are 16 domains available

for use, and each of the domain role is defined in the Domain Access Control

Register (c3) in CP15. The following figure illustrates the bits in domain

access control register.

Figure 4 :Domain Access Control Register

Each of the page table is set with a domain and access control. When a page is

set to a domain which belongs to the manager role, the access control and

control registers are ignored, meaning no access control is used. The

following table lists the access control when a page is set to a domain that

belongs to the client role.

19

AP S R Privilledge

Permissions

User Permission

00 0 0 No access

00 1 0 Read only No access

00 0 1 Read only Read only

00 1 1 Unpredictable Unpredictable

01 x x Read/Write No Access

10 x x Read/Write Read only

11 x x Read/Write Read/write
Table 7: Memory Access Control

20

CHAPTER 3

3.0 TOOLS AND METHODOLOGY

3.1 Development methodology

This project is developed using the Scrum Agile software development

framework. Scrum is an iterative incremental development process that

embraces change. In Scrum, there are 3 major roles, which are the product

owner, scrum master, and team member. The product owner is the receiving

end of the project. In this project, the product owner is co-owned by the

project supervisor and the researcher. The product owner is responsible to

produce a list of expected outcomes and use cases (description of the system

behavior). The scrum master is the facilitator or project manager who acts as a

bridge between the product owner and team member. The scrum master's

responsibility is to remove impediments in the project and provide feedback

from both ends (the producer and receiver) of the project. The team member is

the development team involved in the actual development tasks such as

design, implementation, and testing. The following figure describes the scrum

process flow.

21

Figure 5: Scrum Process

The entire project is divided into smaller time block, where each individual

time block is called a sprint. Each sprint lasts for 2 weeks. The following

describes the terminologies used in Scrum:

1. Product Backlog, is the document which lists out the requirements or tasks

from the product owner. Product backlog is reviewed from time to time,

where new items can be added into backlog at any give time and obsolete

items can be removed from the backlog if they are no longer deemed

appropriate. A backlog item is not limited to a function or module. It can

be a result of algorithm review, environment and tools setup,

documentation and etc.

2. Sprint Backlog, is a document that lists out the tasks that will be carried

out during a particular sprint. Based on the available capacities, the scrum

master will pick items from the product backlog and put them into the

sprint backlog. Items in the sprint backlog indicates that these are the tasks

that must be completed within that particular sprint.

22

3. Sprint, is a short development cycle in which the team member has to

complete a task. A typical sprint involves both development task and

verification task (verify the outcome from the previous sprint). A sprint can

be abandoned if there is a change request, or extended if the sprint task

requires longer time than planned.

4. Incremental Product, is the outcome of the sprint. In Scrum methodology,

each sprint has to result in a product. This product is an incremental result

from the previous sprint and is also an indicator of the development progress.

3.2 Targeted ARM platform

The ARM9 processor is used for development in this project. The ARM9

family is using ARMv5 Architecture. The reason for selecting ARM9 is

because there are more resources available for it. However it will be discussed

in a later chapter on how to port over to other families using the information

available in this project.

3.3 Toolchain

Toolchain is the collection of tools that will turn code into binary executables.

The basic components of the toolchain are Binary Utility (binutils), compiler,

debugger and the C library. Toolchain can be used in native environment,

meaning compiled code is run on the same platform. It can also be used in

cross platform, for example compiling in x86 and running in ARM.

Toolchain is built together with the C library, therefore it is important to

23

determine which version of the library is needed, and select the proper

toolchain. There are a few C libraries available, which are glibc, eglibc, and

uClibC. The differences between these libraries are the C functionality and

size of the system. For example, if full C functionality is needed then the

toolchain has to be built with glibc. On the other hand, if a smaller system is

desirable, then developer can choose a toolchain that uses uClibC.

Embedded Linux Development Kit (ELDK) is the cross development tools

that is used in this project. ELDK is built with a fully functional C library

(glibc) and supports multiple different architectures. In this project, ELDK that

supports ARMv5 is used. ELDK that supports older ARM family can be used

as well, since the ARM toolchain is backward compatibile. However by doing

so the toolchain will not utilise the new ARM feature that is available in newer

architecture families.

3.4 Emulator

There are a few available options to test the generated kernel binary The most

straighforward is to boot the code directly from a development board.

However, this option is inconvenient as the system needs to be rebooted often

in order to test the code. Also another disadvantage is that the debugging is

more difficult as it will require hooking to physical hardware such as jtag to do

debugging.

Another way to test the code is to use the virtualization tool in the

24

develpoment board. Virtualization allows the user to run their kernel within

another operating system. Newer hardware that supports virtualization allows

the virtual environment to run in near native speed. The only problem with this

method is that quite often when developing in low power embedded

development boards, running one system in another system might lack

sufficient resources such as storage and memory.

Finally, another option to test the code is to use an emulator. Emulator is a

program that emulates the targeted platform. For example an ARM emulator is

a program that runs in x86 environment that mimics the behavior of the an

actual ARM system. The advantage of this method is that the development and

debugging is easy, however, some of the hardware features might not be fully

supported.

There are many available emulators, such as bochs and qemu. In this project,

the QEMU emulator is used since it supports the targeted ARM platform that

was chosen. QEMU emulator is available in 2 different modes, which are the

user space mode and kernel mode. When a program is compiled with the ARM

toolchain, the user space mode can be used to execute it. However when

developing a kernel, the kernel mode has to be used, which acts as the actual

hardware.

When QEMU is run to mimic the hardware, it will start the execution at

address 0x10000. Therefore, any startup code has to be available in this

25

location. It is the kernel's responsibility to then copy and move necessary code

to different addresses based on the system design. The user can terminate

QEMU (ctrl a + x) at any time and it will not affect the host system. This is the

benefit of using an emulator.

As mentioned earlier, another benefit of using QEMU is for debugging. When

starting the emulator the option can be passed in to connect the debug

information to a tcp port and wait for a debugger to connect to it before it runs.

Emulator will pass all the hardware information such as register value to the

debugger.

3.5 Linker/ Linker Script

The Linker is a tool that is responsible for combining multiple binary files into

a single executable. Before a linker can generate an executable file, it needs

information to organize the binary. This can be done by passing in options

when invoking the linker. This approach is inconvenient as the same step has

to be repeated many times. Thus, a linker script can be written to tell the

linker how it should map input file to output file.

Each executable program should consist of code, the initialised and

uninitialised data. At bare minimum, the linker script must have a SECTIONS

command. This command tells the linker how the memory layout of the output

file should be. It gives information such as which address the code should

load into and where to put the code (.text), initialise data (.data) and

26

uninitialise data (.bss).

An example of linker script:

SECTIONS

{

. = 0x10000;

}

The linker script can be very complex to include many other aspects on how to

link a file. For example, specifying which memory region the linker should

allocate from, or how to specify a program header in ELF. If the user did not

specify any of these, then the linker will use the default rule to generate the

output binary.

Table 8 summarizes the symbols that are used in this project.

Symbol Description

Location counter (.) The current location counter

Wildcard (*) Match any of the character
Table 8: linker script symbol and description

3.6 GNU Compiler Collection (GCC)

One of the main component of any toolchain is GCC. It can compile code

from supported languages and generate executable binary files. Although GCC

is used for C language most of the time, it supports multiple languages and has

been ported to many architectures. There are many kinds of usage of GCC, for

27

example, if the developer is interested to see the assembly file that is generated

by GCC, they can configure the GCC to do so.

Some useful options in this project:

-g add debugging information for gdb

3.7 GNU Project Debugger (GDB)

When developing any software, debugging is as important as compiling as the

programmer needs to figure out what went wrong with the program. GDB is

part of the ELDK toolchain that allows the programmer to debug their system.

Like all other debuggers, GDB allows the user to set break points, step in code

and etc. GDB also allows the user to inspect the content of memory and

registers.

The following are some usage of GDB relevant to this project

info registers – Displays the value of CPSR

print -

x – Examine content of memory location

s – step through code

3.8 Bootloader

Bootloader is one component of a system that is used only during system

startup and is yet extremely important. When a system starts up, the operating

system is stored in some storage and it is the responsibility of a bootloader to

28

load them into the memory .

For PC, the BIOS is responsible for loading the operating system into the

memory for execution. ARM on the other hand, starts up the bootloader from

the ROM (build by the vendor). The bootloader is in charge of setting up the

memory and intializing hardware. Once the initialization is completed, the

bootloader will pass the control to the kernel. If the kernel supports device

tree, the bootloader will pass a device tree binary to the kernel so that the

kernel can initialize the driver when a system starts. A device tree is a data

structure for describing the hardware in a system.

ARM is a popular architecture that is supported by many bootloaders. An

example of an open source bootloader is the Das U-Boot by DENX. U-Boot

provides a list of command line tools that allows the user to manage boot task.

For example, the user can choose to boot from netwok, or load file from the

filesystem.

3.9 Automating Build Process

Due to the complexity of kernel development, a lot of trial and error

experiments are required. Therefore, to speed up the process, it is necessary to

automate some build processes. Make is one of the commonly used build tool

in development including famous operating systems such as Linux and Minix.

Make uses a configuration file to automate the build process. This

29

configuration file is usually called Makefile, and contains a list of required

steps that the user defines. For example a user that creates multiple steps that

are interdependent. When Make tries to execute one of them, it will first go

though the steps which are needed and runs them before executing the targeted

step.

3.10 Source Code Management

In this project, GIT is used as the source code management tool. Git allows the

user to create a local repository and experiment with different branches. The

branching strategy for this project is simple, a master branch is maintained,

which contain the stable functionality of the kernel. Whenever work on a new

feature is started, a new branch is created and code is started in it. Once the

feature is completed then only it is merged back to the master branch.

Figure 6: Branching example

30

CHAPTER 4

4.0 DESIGN AND SPECIFICATION

4.1 System Environment

Figure 7: Components Involved in Kernel Development

The kernel developed in this project is tested in the Versatile Baseboard (ARM

development board). There are 3 hardwares involved in this project, which are

the UART, Interrupt controller and Co-Processor. Since there are no drivers

developed for the system, UART is used as the system input/output. Interrupt

Controller is necessary to provide interrupt function for the kernel. Co-

Processor controls the CPU state to enable hardware functionality that is used

in this project.

31

4.2 System Flowchart

Figure 8: Kernel Flow Chart

Figure 8 shows the flow of the kernel that is developed. When the machine

starts up, the kernel will be running in privilege mode. The kernel will setup

the necessary stack for different operating modes, followed by enabling the

required interrupt. The kernel then sets up the memory translate table and

enables MMU after the interrupt initialize process. Finally the kernel will

32

switch into user mode and wait for user input.

4.3 Memory Layout

Since the kernel is not using virtual memory, therefore only the SDRAM

section is used. Table shows memory design of the kernel. The address from

0x0000000 to 0x0013000 is the kernel space and the address after 0x0013000

to 0x3FFFFFF will be the user space.

Figure 9: Memory Map Specification

4.4 Product Backlog

Product backlog is the document that keeps track of the entire project work.

The work is broken into smaller user stories that will be worked on each

sprint. The size of each story is estimated based on the story points based

estimation. Basically, the story points based estimation is to set a point to each

story based on it's complexity and amount of effort required complete it. The

point is also used to estimate how much time is required for a particular story.

In this project a size of “Small” has 2 story points, “Medium” has 4 story

points and “Large” has 6 story points. Each of these points are estimated to

require 6 hours to complete. Thus a story with “Medium” size is estimated to

complete within 24 hours. Table 9 lists the product backlog.

33

0x00000 Interrupt routine
0x10000 .text

.data

.bss
0x11000 Reserved memory for driver usage
0x12000 Supervisor Stack
0x13000 Interrupt Stack
0x14000 User space stack
0x15000 Undefined Stack

User Story Title Size

UC 1 As a developer, I want to conduct

literature review on kernel function

Medium

UC 2 As a developer I want to identify and

learn about tools that will be used in

kernel development

Large

UC 3 As a developer I want to have the

development environment that can be use

develop the kernel

Medium

UC 4 As a developer I want to know which

ARM Architecture that I will use

Small

UC 5 As a developer I want to be able to link

object file into single runable image

Small

UC 6 As a developer I want to be able to load

my program into development board and

run it

Small

UC 7 As a developer I want to automate the

compile and run process to speed up

development

Small

UC 8 As a developer I want to know how

interrupt works in my chosen platform

Medium

UC 9 As a kernel user I want to have ISR

function working on the kernel

Medium

UC 10 As a kernel user I want the kernel to be

able to work on different operating modes

Small

UC 11 As a kernel user I want the kernel to have

memory translation table

Medium

UC 12 As a user I want to be able to access

privilege data from user program

Small

UC 13 As a user I want my kernel to be able to

take input for my program

Small

Table 9: User Story

34

4.4.1 Functional Requirement Specification

User Story 1: As a developer, I want to conduct literature review on kernel

function

Brief Description

The study on different types of kernel, how kernel works in different

environment and kernel functionality

Acceptance Criteria

1. Understand and document the differences between kernel

2. Define and create the specification for kernel development

User Story 2: As a developer I want to identify and learn about tools that will

be used in kernel development

Brief Description

Research on the available tools to develop the kernel and learn how to use

them

Acceptance Criteria

1. Identify the toolchain that will be used this project

2. Identify the emulator/simulator that will be use in this project

3. Identify the suitable development environment

User Story 3: As a developer I want to have a suitable development

environment that can be used develop the kernel

Brief Description

Setting up a development environment that can be used to develop ARM code

35

Acceptance Criteria

1. Able to compile and link a program for ARM

2. Able to debug a program and register state

User Story 4: As a developer I want to know which ARM Architecture that I

will use

Brief Description

Identify the architecture that will be used in this project

Acceptance Criteria

1. Understand and document ARM processor family

2. The targeted development board is chosen

User Story 5: As a developer I want to be able to link multiple object files into

a single runnable image

Brief Description

Use linker to link multiple object file into a single image and develop a linker

script

Diagram

36

Figure 10: Linking flow using linker script

Acceptance Criteria

1. Able to utilise linker to link object file

2. Create a working linker script

User Story 6: As a developer I want to be able to load my program into the

development board and run it

Brief Description

Determine a way to load an image to the development board either using

bootloader or direct memory

Acceptance Criteria

1. Create a startup script that allows the linker to know the start location of the

kernel image

2. Load and run the kernel image in the development board

37

User Story 7: As a developer I want to automate the compile and run process

to speed up development

Brief Description

Utilise makefile to simplify compile and run process

Acceptance Criteria

1. Develop a working makefile that is able to compile, link, run and clean up

project file

Story Size

User Story 8: As a developer I want to know how interrupt works on my

chosen platform

Brief Description

Study the interrupt controller on the targeted platform

Acceptance Criteria

1. How the interrupt controller works in the targeted platform is identified &

documented

User Story 9: As a kernel user I want to have ISR function working on the

kernel

Brief Description

Develop an Interrupt service routine for the kernel

Diagram

38

Figure 11: Interrupt process flow

Acceptance Criteria

1. Working ISR to handle interrupt from I/O

User Story 10: As a kernel user I want the kernel to be able to work in

different operating modes

Brief Description

Implement operating mode switching in the kernel

Acceptance Criteria

1. Kernel is able to switch mode between privilege and non-privilege mode

2. Program is able to make supervisor call

39

User Story 11: As a kernel user I want the kernel to have memory translation

table

Brief Description

Implement memory translation table and enable basic memory management

Diagram

Figure 12: Memory Management Flow

Acceptance Criteria

1. Memory translation table is setup

2. Memory management unit is turned on

User Story 12: As a user I want to be able to access privilege data from user

40

program

Brief Descriptiom

Program in user mode is able to access privilege function such as I/O

Diagram

Figure 13: Operating Mode Flow

Acceptence Criteria

1. Kernel exposes hardware capability via function call

User Story 13: As a user I want my kernel to be able to take input for my

program

Brief Description

Develop a simple driver that allows user program to take input from UART

Diagram

41

Figure 14: Driver Flow

Acceptance Criteria

1. User program is able to get input from UART

42

CHAPTER 5

5.0 IMPLEMENTATION

Unlike other software development methods, in Scrum, each sprint has it's

own working deliverable. The deliverable is not neccessay a working piece of

code, for example a document is the deliverable of a research story. In this

project, UC 1 ,UC 2, UC 4 and UC 8 are the research stories and it's

deliverables are part of this report, thus there are no testing involved.

5.1 Development environment (User Story 3)

The kernel is developed in Ubuntu environment, Ubuntu is an open source

Debian based Linux distribution that is free to use. The reason why Ubuntu is

chosen is mainly because it is supported by the chosen toolchain (ELDK).

Apart from that, it has a package management system that allows the user to

conveniently get packages or software libraries that work together. It also has

more applications and commands that are helpful in development.

5.1.1 Setting up toolchain

ELDK supports many different architectures, therefore it is important to

download the proper tool. The targeted architecture should be ARMv5TE

since the ARM9 processor is used. The following steps summarize the

installation process:

1. Download iso image for ARMv5TE architecture from

43

ftp://ftp.denx.de/pub/eldk/5.5/iso/ and mount it to operating system.

2. Verify the downloaded image has correct checksum

3. Run installation script and setup environment script when installation is

completed.

5.2 Linking option and script (User Story 5)

Accordingly to the system requirement, the kernel will be put to the address

0x10000 and the entry function is to initialize the kernel. Thus, the linker is set

to start the program at address 0x10000 and entry function reset_handler.

reset_handler is the function that is invoked during startup to setup interrupt

and etc.

In order for the kernel to work, it is necessary to link all functions into a

single binary. The following command is used to link all the function binary to

kernel image.

arm-linux-gnueabi-ld -e main -Ttext 0x10000 -o kernelImage

out/*.o

It is impractical to enter all the function, so, to simplify the process, a linker

script is created to pass in the same information to the linker. The following

code provides the same information as the command line option that is

specified during linking.

ENTRY(RESET_HANDLER)

SECTIONS

{

 . = 0x10000;

 .text : {

 out/startup.o

44

ftp://ftp.denx.de/pub/eldk/5.5/iso/

 *(.text)

 }

 .data : { *(.data) }

 .bss : { *(.bss) }

 . = ALIGN(8);

stack_top = 0x12000;

 ...

}

5.3 System Startup Script (User Story 6)

Although the goal of the project is to use C language in coding, there are some

functions that are easier to implement using assembly. In this project, the

startup script is coded in assembly language. It is responsible for initializing

the system, for example, setting up stack and enabling interrupt.

The kernel memory map requirement specifies the address for program stack

in different modes. These stack will be setup during the execution of the start

up script, the system will need to switch to different mode and set the register

SP to its designated location.

One of the main reasons to set up stack in all the operating modes that will be

used is to allow function call. When a function call is made, the assembler has

to generate necessary code to prepare the register and stack. The code that is

appended to the beginning of the function is the function prologue and code

that is appended to the end of the function is the function epilogue. ARM

Procedure Call Standard [12] is a document that describes the procedure call

as specified in EABI. EABI also specifies the function prologue and epilogue

that will be added to the function. Table 10 shows the registers convention that

is used in APCS.

45

 Table 10: Core register APCS

It is possible to have stack limit check capability to prevent the stack from

overflowing. Toolchain that complies to ARM EABI can allow the linker to

generate code that performs software stack limit check.

5.4 Automated Build Process (User Story 7)

This project uses a mixture of C file and assembly file. Each of these files

have to be compiled, assembled and linked before they can be used. Each of

the compile, assemble and link process requires certain parameters that are

specific to the project. A makefile is created to automate the build process. The

target that is defined in this makefile is shown in table below.

Target Description

Compile Compile all the project C file and generate binary

Link Link the necessary binary file to kernel image

Run Invoke emulator and load kernel image

46

debug_run Invoke emulator with debugging option

all Execute target “compile”, “link” and “run”

debug_all Identical to target “all', but uses “debug_run”

clean Remove all files that generate in the build process
Table 11: Make Target

5.5 Interrupt Service Routine (User Story 9)

 In the actual hardware configuration, the peripheral will generate interrupt to

the interrupt controller. Depending on the configuration, the interrupt

controller will then mask the signal before passing them to the CPU. Therefore

for an ISR to work, both the interrupt source and interrupt controller has to be

enabled.

As specified in the project requirement, this project is using UART as input

and output. Therefore the interrupt for UART must be enabled so that the

interrupt controller can process it. Some other interrupts that need to be

enabled are SVC, and all other hardware feature that will be used in later

development. Table12 shows the interrupt bit assignment in primary interrupt

controller that is relevant to this project. For the full interrupt bit and its

corresponding source, refer to [8] page 4-47 to 4-48.

Bit Interrupt

Source

Function

[12] UART0 UART0 in development chip

[1] Software

interrupt

Software interrupt for the system

Table 12: Interrupt bit assignment in primary interrupt controller

47

Interrupt controller in the targeted development used in this project supports

both vectored and non vectored interrupt. The difference between them is that

vectored interrupt stored the address of ISR in the interrupt controller, so the

kernel can read from VICVECTADD register in interrupt control to detemine

the ISR address. While non vectored interrupt on the other hand requires the

kernel to read from VICIRQSTATUS register in the interrupt controller to

detemine the source of the interrupt.

Since UART0 is used to receive input, the receive interrupt must be enabled in

UART controller as well. Interrupt mask set/clear register (IMSC) in UART

controller is responsible to mask the signal, and to turn on interrupt when

UART receive data, bit 4 of UARTIMSC must be enabled [13]. The following

code is the implementation of the interrupt logic.

void __attribute__((interrupt)) irq_handler() {

 if (VIC_IRQSTATUS == 4096){

 display("interrupt from UART0 ");

 UART1_DR=UART0_DR;

 }

 else{

 display("interrupt is generate from other source");

 }

}

48

5.6 System Operating Mode (User Story 10)

ARM processor stores its current operating mode into bit 0-4 in CPSR. When

writing these bits with new value, the processor mode is changed. The kernel

needs to keep track of the value in CPSR and restore them when the mode is

swithcing. However much of this work is handled by the compiler so unless

code is written in assembly, the developer is not required to write code to store

and restore CPSR value.

5.7 Memory Management Unit (User Story 11)

There are a few steps required to enable the MMU. First, the page descriptor

has to be created and copied into the memory. Then, C1, C2 and C3 in CP15

must be configured to enable the MMU.The page table will be stored in the

top 64 MB of SDRAM. Therefore the table will be copied into address from

0x4000000. The following code creates a table entry in the register and then

copies the register value into the designated memory location.

"LDR r0,=0x04000000\

"LDR r1, =0xFFF"

"MOV r2, #0b110000000000"

"ORR r2,r2,#0b000000010010"

"loop:\n"

"ORR r3,r2,r1,LSL#20\n"

"STR r3,[r0,r1,LSL#2]\n"

"SUBS r1,r1,#0b1\n"

"BPL loop\n"

After the table is copied into the memory, the kernel has to configure CP15 in

49

order to turn on the MMU. The memory location of the translation tables are

set in translation table base register C2. The default value of all domain is 00

(no access), so the domains that will be used have to be configured. Two

domains are defined in this project, which are the manager in domain 0 and

client in domain 1. C1 in CP15 is the control register that the user can set to

configure the MMU. Bit 0 of C1 is the bit to enable/disable MMU. The

following code illustrates the steps described in this section.

LDR r0,=0x04000000

 MCR p15,0,r0,c2,c0,0

 MOV r0, #0xB

 MCR p15, 0, r0, c3, c0, 0

 MRC p15, 0, r0, c1, c0, 0

 ORR r0, r0, #0x1

 MCR p15, 0, r0, c1, c0, 0

5.8 Supervisor Call (User Story 12)

Part of the kernel function is to protect the kernel space and hardware from

direct access in user space program. In order for user space to access some of

the privilledge operation, kernel has to expose a list of system library that user

program can use. For example a printf c library is actually using few of the

system libraries to perform the printing function.

When a system call is made, the system will triggered a SVC interrupt, the

kernel will then branch into supervisor call routine and perform the necessary

operation. Unlike interrupt call where interrupt controller will put the source

into IRQSTATUS register, to identify which supervisor call is made, the kernel

has to read from the instruction itself. LR register stores the location where the

50

function call should return to, reading the instuction before the return address.

In ARM instruction, the last 24 bit of a SVC call store the value that SVC call

passed in. Figure 19 shows the instruction of a SVC call. The kernel can then

determine the intended SVC call by masking off the irrelevant bits. The

following code is implemented to detemine the intended SVC call.

int code;

asm(

"LDR r0,[lr,#-4]\n"

"BIC %0,r0,#0xff000000\n"

:"=r"(code)

);

Figure 15: SVC instruction

5.9 Device Driver (User Story 13)

Before a driver can be developed, the kernel will need to have the information

of what hardware is available. For kernels that support device tree, the kernel

will generate the list of available devices during bootup time. In this project,

since it is not utilizing device tree, all the supported device needs to be

hardcode in a table. The following table is developed in the kernel to keep

track of the devices.

Table 13: Device List in Memory

51

0x11000
Address marker Number of device Device#1 id device#1 memory size Temporary Memory for Device 1# Device #2 id …

A driver is responsible provide a software interface for other programs to

utilize hardware function. In this project, since UART0 is taken as input and

UART1 as the output, the driver for these device needs to provide functions

like read from UART0 and write to UART1. If a new device is added to the

hardware, for example a display device connected to GPIO, the programmer

will have to write the driver to send or read data in corect format to use the

device.

When an interrupt for UART0 occurred, the ISR will branch to the UART0

interrupt handler function. The driver will write the UART0 input to the

temporary memory storage (refer to the device list table). The driver provides

two basic functions which are put_word and get_word. Both these function

will write or return 32 bit integer. As for UART1 driver, it provides multiple

print functions such as printc (print character), or display (to print out a list of

character).

5.10 Porting Guide

Part of the project goal is to understand the kernel design and development,

therefore it is necessary for this work to be extendable and to support other

platforms for future studies. The following steps summarizes the neccesary

work in order to port the kernel over to other platforms such as the ARMv6

processor.

1. Understand the hardware functionalities, particularly the processor, memory

52

and interrupt feature.

2. Understand operating modes in the targeted platform

3. Comparison between the supported instruction set between the targeted

system and ARMv5

4. Setup a test environment with at least 1 input and 1 output

5. Pick the correct toolchain based on functionality, memory and performance

requirements

6. Replace incompatible assembly and C code

53

CHAPTER 6

6.0 Testing and Result

The traceability matrix is used in this project to keep track of use cases and

test cases.

6.1 Development environment test result

objdump is a binary utiliy in the toolchain that can display information about a

binary file. It provides various information of a binary file. Among the

available options, disassemble is an option that can help to debug a binary file

that was linked.

A simply C program to display the string “hello world!” is used to test the tool

chain. The program is compiled with debug information turned on.

The following figure displays the result of running the program in the

emulator

Figure 16: Toolchain Testing Result

To verify that the program is compiled and linked for ARM architecture,

objdump with disassemble option is used to display the binary information.

54

The following figure shows the result of the “hello” program binary that

compiled with ELDK toolchain

Figure 17: Binary Information of Hello program

6.2 Linker Script Test Result

A simple kernel that only prints out the the string “Hello World” is used to test

the linked image. Once the kernel image is generated, readelf utility is used to

verify that the image is linked correctly according to ELF ABI. Figure 18

shows result of readelf and Figure 19 shows the actual execution.

55

Figure 18: Readelf result

Figure 19: Simple executable image load to system

6.3 Interrupt Service Routine Test Result

In the testing of ISR, the system uses UART0 as the input and UART1 as the

output. When a character is received in UART0, the interrupt controller will

trigger an interrupt signal and set IRQSTATUS to indicate that the source of

the interrupt is from UART0. The system will then execute ISR and print out

the result via UART1. The following figure shows the output of the system.

56

Figure 20: ISR test result

6.3.1 Comparison On Interrupt Handling

The kernel in this project only manage devices which are already available in

the system. Due to this reason, whenever there is a new device added to the

system the kernel needs to be recompile. A extensible kernel need to provide

capability to dynamically added new device into it. For example Linux kernel

allows the device to register itself to interrupt handling using device driver

[15].

6.4 Operating Mode Test Result

When the kernel completes the initialization and stack setup, it will call a

function to switch to user mode. The CPSR is checked to verify that the

switching is successful. The following GDB output shows the status CPSR

before and after the switch.

57

Figure 21: GDB output before mode switching

Figure 22: GDB output after mode switching

Once the system is running on user mode, the user program can no longer

access the special registers such as CPSR and other hardware memory. When a

58

program tries to access those functions, the system will trigger an undefined

exception and move to undefined mode.

Another function that can be tested is when the system changes its operating

mode, the value of the register will be replaced as well. Therefore it is the

kernel's responsibility to copy over the necessary value from one mode to

another. An example of these values is the lr value - when the kernel

completes its initialization work and calls a switch user mode function, the

kernel will have to manually copy the lr value or else the system will not be

able to continue its execution.

6.5 Memory Management Unit Test Result

MMU in this kernel is used only for access permission. To test this function,

the kernel will run some user programs in the memory region that is accessible

by privilege mode only. There are two types of abort that can happen once the

MMU is enabled, which are prefetch abort and data abort. When the system is

operating in user mode, it will trigger a prefetch abort exception when it tries

to fetch instruction from protected memory. Figure 23 shows the result of the

user program trying to execute a function in protected memory, and figure 24

shows the result of a program accessing data in protected memory.

59

Figure 23: MMU Test 1 Result

Figure:24 MMU Test 2 Result

6.5.1 Memory Manaagement Unit Usage In Other Kernel

Apart from memory protection, another purpose of MMU is to allowed the

kernel to implement virtual memory. Virtual memory allowed the system to

utilise more memory than it has. When virtual memory is enabled, kernel and

user program will run their own virtual memory space [15]. This feature

provide further protection since the other process will never acccess each other

memory.

6.6 Supervisor Call Test Result

To test a supervisor call, a function call to SVC 1 is made in the kernel main

right after the kernel switches to user mode. In the supervisor call handler,

SVC 1 is programmed to print out a line. Figure 25 shows the output of the

60

kernel.

Figure 25: SVC screen output

6.6.1 System Call For Device Input Output

System calls are set of functions that kernel provide for userspace application

to utilise system resources. However the provided system calls are not able

cover all possible operations for all supported devices. In order to solve this

issue, the kernel provide input/output control (ioctl) system call to allow the

communication between user application and device driver [17]. When a user

application make a ioctl call with specific control code, the driver that run in

kernel space will perform the operation on the driver. In this project, ioctl call

is not implemented.

6.7 Device Driver Testing

In this user story, two simple drivers are developed to provide the function to

get input and print output. A simple user program is written and run in the

kernel main to test this function. The following code is the user program that is

61

used to test the driver function.

void user_program1() {

display("enter your character: ");

int user_input = 0;

while (user_input == 0)

user_input = get_word();

display("You entered: ");

printc(user_input);

}

Program output can be observed from telnet to qemu port. When the program

runs, it will wait for a user input from UART0. When the user enters a

character, the program will echo the charcter to the output from UART1. The

following figure shows the result of the program.

Figure 26: Device Driver Test Result

6.7.1 Device Management in Linux Kernel

Memory-mapped devices in ARM is access by directly read or write to the

memory location. In this project they are accessed via memory pointer, this

approach is straight forward and mainly to demonstrate how to utilise a

device. In Linux kernel, each of the device is mapped to a file called device

node [15]. Device node is a mechanism to pass data to to device via a driver.

When data is write into the device node, the device driver will process these

data and send to the device.

62

6.8 Project Time line

Figure 27 and table 14 illustrates the plan versus actual time spent for different

sprints and actual time spent on each story. In general, the implementation

required less time than the estimated hours.

Figure 27: Feature Burn Down Chart

Table 14 : Planned vs Actual hours for user story

63

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

50

100

150

200

250

300

Feature Burn Down

Planned

Actual

Sprint No

M
a

n
 H

o
u

r

User Story Planned Hour Actual Hour
UC1 24 20
UC2 36 44
UC3 24 12
UC4 12 4
UC5 12 20
UC6 12 16
UC7 12 4
UC8 24 24
UC9 24 24
UC10 12 4
UC11 24 20
UC12 12 12
UC13 12 16
Total 240 220

CHAPTER 7

7.0 CONCLUSION AND FUTURE WORK

The goal of this project is to understand and develop a kernel for RISC

architecture. In this project, the various aspect of kernel and kernel

development is discussed. Along with this documentation, a simple kernel was

developed to demonstrate the intergration between software and hardware.

Although this kernel lacks certain features, it is sufficiently simple to

understand and easy to experiment with.

Currently, the developed kernel lacks the complete virtual memory

implementation, process management and file system - these areas can be

futher developed as new projects. The kernel can also be futher developed into

a monolithic or micro kernel to further understand their differences.

64

Reference

[1] Zhou Qingguo, Ding Ying, McGuire, N., Li Canyu, Cheng Guanghui, and

Hu Bin, “A Case Study of Microkernel for Education”, IT in Medicine &

Education, 2009. ITIME '09. IEEE International Symposium Volume 1, pp.

133-136, 2000.

[2] Wang Chengjun, “The Analyses of Operating System Structure”,

Knowledge Acquisition and Modeling. Second International Symposium,

Volume 2, pp.354-357, 2009.

[3] Naufal Alee, Mostafijur Rahman, R. B. Ahmad, “Performance

Comparison of Single Board Computer : A Case Study of Kernel on ARM

Architecture”, Computer Science & Education (ICCSE), 2011 6th

International Conference, pp. 521-524, 2011.

[4] Messer, A., Wilkinson, T., “Components for Operating System Design”,

Object-Orientation in Operating Systems, 1996., Proceedings of the Fifth

International Workshop, pp. 128-132, 1996.

[5] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, Andrew S.

Tanenbaum, “MINIX 3: a highly reliable, self-repairing operating system”,

SIGOPS Oper. Syst. Rev., Vol. 40, No. 3. (2006), pp. 80-89.

[6] ARM instruction set architecture, ARM Limited, San Jose, C.A., 2005

[7] Migrating from IA32 to ARM, ARM Limited, San Jose, C.A., 2005

[8] Versatile Application Baseboard forARM926EJ-S User Guide, ARM

Limited, San Jose, C.A., 2005

65

[9] Tool Interface Standard (TLS) Executable and Linkable Format (ELF)

Specification v1.2, TIS Committee, 2005

[10] Application Binary Interface for the ARM architecture, ARM Limited,

San Jose, C.A., 2010

[11] Dandamudi, S.P, “Guide To Assembly Language Programming In Linux”,

Ottawa, Canada, 2005.

[12] ARM Procedure Call Standard, ARM Limited, San Jose, C.A., 2012

[13] Primcacell UART techinical reference manual, ARM Limited, San Jose,

C.A., 2005

[14] The Linux Information Project. “Kernel Definition,” www.linfo,org

[Online]. Available: http://http://www.linfo.org/kernel.html [Accessed: Apr.

30, 2014].

[15] C. Hallinan, Embedded Linix Primer. NJ, Prentice Hall, 2006.

[16] B.W. Kernighan and D. M. Ritchie, The C Programming Langugage,

Second Edition. NJ, Prentice Hall, 1988.

[17] Microsoft MSDN. “Device Input and Output Control (IOCTL),”

[Online]. Available: http://msdn.microsoft.com/en-

us/library/windows/desktop/aa363219(v=vs.85).aspx [Accessed : May 20,

2014].

66

http://msdn.microsoft.com/en-us/library/windows/desktop/aa363219(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363219(v=vs.85).aspx
http://http://www.linfo.org/kernel.html

