MEMORY SYSTEM DESIGN: INTEGRATION OF CACHES, TRANSLATION LOOKASIDE BUFFERS (TLB) AND SDRAM

BY

CHING LI-LYNN

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONS)

COMPUTER ENGINEERING

Faculty of Information and Communication Technology

(Perak Campus)

AUGUST 2013

UNIVERSITI TUNKU ABDUL RAHMAN

Citle:	
<u> </u>	
Acad	emic Session:
r	
· · · · · · · · · · · · · · · · · · ·	(CAPITAL LETTER)
declare that I allow this Final Vear I	Project Report to be kent in
Universiti Tunku Abdul Rahman Li	brary subject to the regulations as follows:
 The dissertation is a property of 	î the Library.
2. The Library is allowed to make	
	copies of this dissertation for academic purposes.
2	copies of this dissertation for academic purposes.
	copies of this dissertation for academic purposes.
	copies of this dissertation for academic purposes.
	Copies of this dissertation for academic purposes.
	Copies of this dissertation for academic purposes. Verified by,
	Copies of this dissertation for academic purposes. Verified by,
	Verified by,
(Author's signature)	Verified by, (Supervisor's signature)
(Author's signature)	Verified by, (Supervisor's signature)
(Author's signature) Address:	Verified by, (Supervisor's signature)
(Author's signature) Address:	Verified by, (Supervisor's signature)
(Author's signature) Address:	Verified by, (Supervisor's signature)

DECLARATION OF ORIGINALITY

I declare that this report entitled "MEMORY SYSTEM DESIGN: INTEGRATION OF CACHES, TRANSLATION LOOKASIDE BUFFERS (TLB) AND SDRAM"

is my own work except as cited in the references. The report has not been accepted for any degree and is not being submitted concurrently in candidature for any degree or other award.

Signature	:
e	

Name :_____

Date :_____

Acknowledgement

Thank you everybody! Words just can't express my gratitude.

Abstract

This project is to enhance the current RISC32 architecture that developed in Universiti Tunku Abdul Rahman under Faculty of Information and Communication Technology. After reviewing the previous work, the RISC32 processor has a working SDRAM controller and SDRAM, but its Cache and Translation Lookaside Buffer (TLB) are not working quite well.

Hence, this project is initiated to integrate these parts together as a whole Memory System. The Cache and TLB are not behaved as expected. The Cache will send one time more address to the SDRAM, which might cause data loss. Other than that, the TLB also has some problem. All of these need to be fixed to that they can be integrated together as a Memory System. This project is modelled using Verilog HDL.

Table of Contents

Title	i
Declaration of Originality	iii
Acknowledgement	iv
Abstract	v
Table of Contents	vi
List of Figures	X
List of Tables	xii

Chapter 1: Introduction	
1.1 Background	1
1.2 Problem Statement and Motivation	2
1.3 Project Objectives	4

Chapter 2: Literature Review	
2.1 MIPS – a RISC Processor	5
2.2 Memory Hierarchy	5
2.3 DRAM	6
2.4 SDRAM	7

2.	.5 SDRAM Controller	13
2.	.6 Cache	29
2.	.7 Translation Lookaside Buffer (TLB)	39
Chapter	3: Methodology and Development Tools	49
3.	.1 Methodology	49
3.	.2 Design Tools	52
Chpater	4: Architecture of the RISC32	55
4.	.1 Design Hierachy	56
Chapter	5: Memory System Design	57
5.	.1 Memory System Specifications	57
5.	.2 Naming Convention	57
5.	.3 Memory Map	59
5.	.4 Memory System Interface	61
5.	.5 Memory System Operating Procedure	68

Chapt	Chapter 6: Micro-architecture Specification	
	6.1 Unit Partitioning of Memory System	69
	6.2 Cache Unit	70
	6.2.1 I/O Description	71
	6.2.2 Block Partitioning of Cache Unit	75
	6.2.3 Cache Controller Block	76
	6.2.4 Cache Datapath Block	82
	6.3 Translation Lookaside Buffer (TLB) Unit	88
	6.3.1 I/O Description	89
	6.3.2 Block Partitioning of TLB Unit	94
	6.3.3 Memory Management Unit (MMU) block	95
	6.3.4 TLB Datapath Block	100
	6.4 Memory Arbiter Block	104
	6.5 CP0 Multiplexer Block	109
Chapt	ter 7: Test and Verification	115
	7.1 Test Plan	115

7.2 Test Bench	116
7.3 Simulation Results	122
Chapter 8: Discussion and Conclusion	131
Chapter 8: Discussion and Conclusion 8.1 Discussion and Conclusion	131 131
Chapter 8: Discussion and Conclusion 8.1 Discussion and Conclusion 8.2 Future Works	131 131 132

References	133

List of Figures

Figure Number	Title	Page
Figure 2.2.1	The Memory Hierarchy	6
Figure 2.3.1	Structures of DRAM and SRAM	7
Figure 2.4.1	Block diagram of MT48LC4M32B2	8
Figure 2.4.2	A simplified view on how the SDRAM arrays are addressed	9
Figure 2.4.3	Mode Register definition	11
Figure 2.5.1	Block diagram of SDRAM Controller	13
Figure 2.5.2	The Microarchitecture of SDRAM Controller.	15
Figure 2.5.3	Protocol Controller Block FSM	17
Figure 2.5.4	The protocol follows the SDRAM initialisation requirement as instructed by MICRON	22
Figure 2.5.5	Keep Bank and Row Open Access Protocol to achieve fast access cycle for same row access	23
Figure 2.5.6	Load Mode Protocol	24
Figure 2.5.7	Auto Refresh Protocol	25
Figure 2.5.8	Read Protocol	26
Figure 2.5.9	Write Protocol	27
Figure 2.6.1	Cache Unit designed by Khoo Chong Siang	29
Figure 2.6.2	Read Protocol of Cache	33
Figure 2.6.3	Write Protocol of Cache	34
Figure 2.6.4	Read Hit	35
Figure 2.6.5	Read Miss	36
Figure 2.6.6	Write Miss	37
Figure 2.6.7	Write Hit	38
Figure 2.7.1	Virtual Memory Map based on 32-bits MIPS	39
Figure 2.7.2	An example of address translation	40
Figure 2.7.3	An overall picture of how virtual memory works.	41
Figure 2.7.4	An example of how an 8-block cache configures as direct mapped, two-way set associative, four- way set associative and fully associative cache.	42
Figure 2.7.5	Contents of a TLB entry	42
Figure 2.7.6	Usage of TLB in address translation by using 48 entries and fully associative TLB.	43

Figure 2.7.7	The design of physically addressed cache.	44
Figure 2.7.8	The design of virtually addressed cache.	44
Figure 2.7.9	Current design of TLB by Kim Yuh Chang	45
Figure 2.7.10	Current design of MMU by Kim Yuh Chang	46
Figure 2.7.11	Segmentation of virtual address of current design	47
Figure 2.7.12	The usage of 2-level page table in address	48
	translation	
Figure 3.1.1	General Design Flow without Synthesis and	50
	Physical Design	
Figure 4.0.1	Full RISC32's Architecture and Micro-	55
	anahita atuma Dantiti aning	
	architecture Partitioning.	
Figure 5.4.0.1	Block Diagram of u_mem_sys	61
Figure 6.1.1	Micro-architecture of the Memory System	69
Figure 6.2.0.1	Block diagram of u_cache	70
Figure 6.2.2.1	Block Partition of Cache Unit	75
Figure 6.2.3.1	Block diagram of b_cache_ctrl	76
Figure 6.2.4.1	Block diagram of b_cache_dp	82
Figure 6.3.0.1	Block digram of u_tlb	88
Figure 6.3.2.1	Block partitioning of TLB Unit	94
Figure 6.3.3.1	Block diagram of b_mmu	95
Figure 6.3.4.1	Block diagram of b_tlb_dp	100
Figure 6.4.0.1	Block diagram of b_mem_arbiter	104
Figure 6.5.0.1	Block diagram of b cp0 mux	109
Figure 7.1.1	Test plan for Memory System	115
Figure 7.3.1	Simulation results	122
Figure 7.3.2	Simulation results	123
Figure 7.3.3	Simulation results	124
Figure 7.3.4	Simulation results	125
Figure 7.3.5	Simulation results	126
Figure 7.3.6	Simulation results	127
Figure 7.3.7	Simulation results	128
Figure 7.3.8	Simulation results	129
Figure 7.3.9	SRAM's read/write transcript	130
~	1	

List of Tables

Table Number	Title	Page
Table 2.4.1	List of SDRAM commands and their respective	10
	function	
Table 2.5.1	I/O pin description of SDRAM Controller.	13
Table 2.5.2	State definition of Protocol Controller	18
Table 2.5.3	Branch conditions of Protocol Controller	18
Table 2.5.4	Outputs of the states of Protocol Controller	19
Table 3.1	Comparison between 'Big 3' Simulators	53
Table 4.1.1	Formation of a design hierarchy for Full RISC32	56
	microprocessor through top down design	
	methodology	
Table 5.1.1	Specifications of the Memory System	57
Table 5.2.1	Naming convention	58
Table 5.3.1	Virtual memory map of 32-bits MIPS	59
Table 5.4.1.1.1	Memory System's input pin description.	62
Table 5.4.1.2.1	Memory System's output pin description	64
Table 6.2.1.1.1	Cache Unit's input pin description	71
Table 6.2.1.2.1	Cache Unit's output pin description	73
Table 6.2.3.1.1.1	Cache Controller's input pin description	77
Table 6.2.3.1.2.1	Cache Controller's output pin description	79
Table 6.2.4.1.1.1	Cache Datapath's input pin description	83
Table 6.2.4.1.2.1	Cache Datapath's output pin description	86
Table 6.3.1.1.1	TLB Unit's input pin description	89
Table 6.3.1.2.1	TLB Unit's output pin description	91
Table 6.3.3.1.1.1	MMU's input pin description	96
Table 6.3.3.1.2.1	MMU's output pin description	97
Table 6.3.4.1.1.1	TLB Datapath's input pin description	101
Table 6.3.4.1.2.1	TLB Datapath's output pin description	103
Table 6.4.1.1.1	Memory Arbiter's input pin description	105
Table 6.4.1.2.1	Memory Arbiter's output pin description	106
Table 6.5.1.1.1	CP0 Multiplexer's input pin description	110
Table 6.5.1.2.1	CP0 Multiplexer's output pin description	113

Chapter 1: Introduction

1.1 Background

Modern systems are getting more and more functionalities, which is also leads to more and more complex systems. The cores of the systems are becoming more and more advanced and the performances are getting faster too. However, what truly limiting the performance of the whole system is not the processor, it is the memory. The cache memories are introduced into the memory hierarchy at early of 1960's, as high speed memory buffers used to hold the contents of recently accessed main memory locations. It was already known at that time that recently referred data or instructions are likely to be referred again in near future. Therefore, although caches are small, can only hold a small fraction of the contents of the main memory, but it greatly increase the performance of the whole system. However, caches could not solve the problem perfectly, penalties come when it misses. Due to the reason of the cache is inversely proportional to the speed of the memory, the sizes of caches are reduced to trade for performance. As their sizes are reduced, miss rate is relatively increased. When the cache is missed, it will have to go through several processes to handle the miss, this is something unavoidable. Memory system is to handle the misses and go through all these processes, communicating with the CPU and the SDRAM.

1.2 Problem Statement and Motivation

There are many microprocessor design can be found in open sources, such as <u>www.opencores.org</u>, but it is hard to find a microprocessor design that is complete and suitable for educational purpose, because many of them face the following problems:

- Microchip design companies develop microprocessors cores as IP for commercial purposes. The microprocessor IP includes information on the entire design process for the front-end (modeling and verification) and back-end (layout and physical design) IC design. These are trade secrets of a company and certainly not made available in the market at an affordable price for research purposes.
- Several freely available microprocessor cores can be found in [1]. Unfortunately, these processors do not implement the entire MIPS Instruction Set Architecture (ISA) and lack comprehensive documentation. This makes them unsuitable for reuse and customization.
- Verification is vital for proving the functionality of any digital design. The microprocessor cores mentioned above are handicapped by incomplete and poorly developed verification specifications. This hampers the verification process, slowing down the overall design process.

• The lack of well-developed verification specifications for these microprocessor cores will inevitably affect the physical design phase. A design needs to be functionally proven before the physical design phase can proceed smoothly. Otherwise, if the front-end design has to be changed, the physical design process has to be redone.

Therefore, a RISC32 project has been developed in the Faculty of Information and Communication Technology, Universiti Tunku Abdul Rahman. This project is aim to provide a solution to the above problems by creating a 32-bit RISC corebased development environment to assist research work in the area of soft-core and also application specific hardware modelling. Currently, a SDRAM Controller and SDRAM provided by MICRON Technology Inc. has been modelled at the Register Transfer Level (RTL) using Verilog HDL and both of them have been combined together and had gone through a series of simulation test. There is also a cache and a TLB modelled at RTL using Verilog HDL, but they are still not ready to be integrated together with the SDRAM controller. They need to be integrated together as a complete memory system.

1.3 Project Objectives

This project's objectives include:

- Analyse the existing Memory System organization, interfacing and the functionality of a SDRAM and SDRAM Controller.
- Review the TLB and MMU design Study and analyse the current TLB and MMU design, and fix their problems.
- Review the Cache design Study and analyse the current design of Cache, fix it so that it can be integrated.
- Integration of Caches, TLBs and SDRAM Integration of Caches, TLBs, SDRAM controller and 16MB SDRAM as a complete memory system which is able to handle read or write from CPU or SDRAM, as well as handling the cache misses.
- Verification Test cases will be developed to test the memory system.

Chapter 2: Literature Review

2.1 MIPS – a RISC Processor

The MIPS (Microprocessor without Interlocked Pipeline Stages) is built base on RISC (Reduced Instruction Set Computing) architecture. MIPS can be easily found on many embedded systems, such as Sony and Nintendo game consoles, Cisco routers and digital cameras, as well as the Silicon Graphics (SGI) supercomputers.

2.2 Memory Hierarchy

Basically, there is a tradeoff between access time, cost and capacity for memories. Fast memories, that is, with short access time, like registers or cache are low in capacity (a few MB) and high in cost. While cheap and large capacity memories, which its capacity can go up to TBs (Terabytes), like the magnetic tape or optical disk, its access time is extremely long.

Figure 2.2.1 The Memory Hierarchy

2.3 DRAM

DRAM, Dynamic Random-Access Memory, as its name implies, is a type of random access memory that stores each bit of data in a separate capacitor within an integrated circuit. It is a type a non-volatile memory, which means the data stored inside will be gone once the power supple is turned off. DRAM has a very simple structure, all it needs to store one bit of data is just a capacitor and one transistor. Charging or discharging of the capacitor indicates state 1 or state 0 for the data. One characteristic of capacitor is, it slowly discharges over time, and therefore, DRAM needs a refresh circuit that helps to re-charge its charging capacitors consistently, so that the data stored inside will be retained, as long as the power supply is on. The simplicity of the design of DRAM makes it able to be designed in high density and yet low cost, meaning it can stores more data within the same area, or stores the same amount of data with smaller area, compared to other types of memory, such as SDRAM. Just for information, SRAM (Static Random Access Memory) is another type of non-volatile memory which uses 6 or 8 transistors to store 1 bit of data. Look at the one capacitor plus one transistor design of DRAM and 6 transistors design of SRAM, it is obvious that why the DRAM is said to be a cheaper and smaller type of memory. However, when it comes to comparing the access time of these 2 types of memory, it is also obvious that turning on or off the transistors is way faster than charging or discharging a capacitor. Hence, DRAM is a type of memory which is cheap and small, but access time is long.

SRAM

Figure 2.3.1 Structures of DRAM and SRAM

2.4 SDRAM

Synchronous Dynamic Random Access Memory (SDRAM) is a type of DRAM that is synchronised with the system bus. It waits for a transition of clock to respond to the control signals and inputs, unlike the asynchronous ones which respond instantly to the changes of control signals and inputs. This project uses a SDRAM that is provided by MICRON Technology Inc. It is MT48LC4M32B2, with 16MB of storage. It has a positive edge clock pin, means it will wait for a rising edge of the clock signal before responding to the control signals or inputs.

Figure 2.4.1 Block diagram of MT48LC4M32B2

Figure 2.4.1 shows the block diagram of MT48LC4M32B2, it has 128Mb or 16MB of storage. Pin ba[1:0] is use to select its 4 internal memory banks. It has a 12-bits wide port for input of the address. 16MB of storage should need 24-bits to represent all the locations, but how does this SDRAM make it with 12-bits address port? First, each location inside its internal memory banks stores 32bits of data, which is 4 Bytes. This reduces the required address bits from 24 to 22. As mentioned earlier, it has a 2-bits port for internal bank selecting, that takes another 2-bits of address and now we left

with 20bits of address. Actually this SDRAM reads address separately, the addresses need to be separated into 12-bits of Row address and 8-bits of Column address. The row and column address are meant to be input into the SDRAM at different clock cycles, this is why a 12-bits address port is enough for the use. This address port is also used for configuring setting to the SDRAM.

Figure 2.4.2 A simplified view on how the SDRAM arrays are addressed

Pin dq[31:0] is the I/O port for the data, it is bidirectional, data that to be read from or write into the SDRAM goes or comes via this port. dqm[3:0] is used to mask the output or input of the data, since the data width is 32-bits, which is 4Bytes, each bit of the dqm is corresponds to each byte of the data for masking. The granularity of a bus is defined as the smallest transfer can be done by that bus. In this case, the granularity of this SDRAM is 8-bits. The CS pin is used to select the SDRAM chip, it is active low. Meanwhile active low command signals (we, cas and ras) are used to request operations from the SDRAM.

/CS	/RAS	/CAS	/WE	BAn	A10	An	Command
н	х	х	x	x	x	x	Command inhibit (No operation)
L	н	Н	н	x	x	x	No operation
L	Н	Н	L	x	x	x	Burst Terminate: stop a burst read or burst write in progress.
L	н	L	н	bank	L	column	Read: Read a burst of data from the currently active row.
L	н	L	н	bank	н	column	Read with auto precharge: As above, and precharge (close row) when done.
L	н	L	L	bank	L	column	Write: Write a burst of data to the currently active row.
L	н	L	L	bank	н	column	Write with auto precharge: As above, and precharge (close row) when done.
L	L	Н	н	bank		row	Active (activate): open a row for Read and Write commands.
L	L	Н	L	bank	L	x	Precharge: Deactivate current row of selected bank.
L	L	Н	L	x	н	x	Precharge all: Deactivate current row of all banks.
L	L	L	н	x	x	x	Auto refresh: Refresh one row of each bank, using an internal counter. All banks must be precharged.
L	L	L	L	0 0	n	node	Load mode register: A0 through A9 are loaded to configure the DRAM chip. The most significant settings are CAS latency (2 or 3 cycles) and burst length (1, 2, 4 or 8 cycles)

Table 2.4.1 List of SDRAM commands and their respective function

As mentioned before, the address port can be used to configure the mode of operations for the SDRAM. There is an operation mode called Burst mode. Burst is a technique used to continuous read or write data from the memory depends on the burst length. For example, if we programmed the SDRAM into burst mode with burst length of 8, then 8 words (32-bits) of data will be read out continuously when it is in READ operation, or 8 words of data will be written into 8 continuous locations continuously when it is in WRITE operation. This mode is extremely useful, it reduces a lot of access time for the cache, because the transfer of data for cache is by block, each block of the cache has 8 words of data (32 Bytes).

Figure 2.4.3 Mode Register definition

• Burst Length

Used to determine maximum number of column locations that can be accessed for a given READ or WRITE operation.

• Burst Type

Used to select either sequential or interleaved burst to be adopted by SDRAM. The ordering of accesses within a burst is determined by burst length, burst type, starting column address.

• CAS Latency

Delay in clock cycles between registration of a READ command and the availability of the first piece of output data. It can only be set to 2 or 3 clock cycles.

• Operating Mode

Used to select which operating mode should the SDRAM be. Currently there is only normal operating mode is available for use.

• Writing Burst Mode

When it is '0', the burst length is programmed via M0-M2 applies to both READ and WRITE burst.

When it is '1', the programmed burst length applies to READ bursts, but write accesses are single-location (non-burst) accesses.

2.5 SDRAM Controller

A SDRAM controller has been modelled based on industry standard WISHBONE SoC interface by Oon Zhi Kang. SDRAM Controller is to do the communication between the host and SDRAM. The SDRAM Controller receive the operation command from the host, it will interpret it and translate into a control signal which acts as an input to the SDRAM.

sdram_controller

Figure	251	Block	diagram	of SDRAM	A Controller
riguie	2.3.1	DIOCK	ulagram	U SDRAF	

Pin Name	Size (bits)	Description
ip_wb_clk	1	Clock signal to synchronize to the system.
ip_wb_rst	1	Synchronous reset to reinitialize the system.
ip_wb_cyc	1	Asserted (HIGH) to indicate valid bus cycle is in progress.
ip_wb_stb	1	Asserted (HIGH) to indicate the SDRAM controller is selected.

ip_wb_we	1	Asserted (LOW) to indicate that the current cycle is READ. Deasserted (HIGH) to indicate current cycle is WRITE.
op_wb_ack	1	Asserted (HIGH) to indicate that the current READ or WRITE operation is successful.
ip_wb_sel [3:0]	4	Used to indicate where valid data is placed on the input data line (ip_wb_dat) during WRITE cycle and where it should present on the output data line (op_wb_dat) during READ cycle.
ip_wb_addr [31:0]	32	Used to pass the memory address from the host.
ip_wb_dat [31:0]	32	Used to pass WRITE data from the host.
op_wb_dat [31:0]	32	Used to output READ data from the SDRAM.
ip_host_ld_mode	1	Asserted to load a new mode into the SDRAM.
op_sdr_cs_n	1	SDRAM chip select.
op_sdr_ras_n	1	SDRAM row address select.
op_sdr_cas_n	1	SDRAM column address select.
op_sdr_we_n	1	SDRAM write enable.
op_sdr_addr [11:0]	12	Address output to the SDRAM.
op_sdr_ba [1:0]	2	Bank Address output to SDRAM.
op_sdr_dqm [3:0]	4	Used to select which bits of the data line (io_sdr_dq) to be masked.
io_sdr_dq [31:0]	32	Bidirectional data line to receive READ data or send WRITE data.

Table 2.5.1 I/O pin description of SDRAM Controller.

Figure 2.5.2 The Microarchitecture of SDRAM Controller.

The previous figure shows the microarchitecture of the SDRAM Controller. The block *sdc_obrt_top_obrt_unit* is used to track the row status of all of the banks. Block *sdc_mc* is responsible to store the status of the SDRAM configuration and also the power up status to indicate if the SDRAM controller is executing the initialization protocol or not. The address multiplexer, *sdc_addr_mux* partitions the WISHBONE address input line into row address, bank address and column address. It also decodes the WISHBONE Select input pin and converts it to equivalent masking output.

Besides, block *sdc_dp_buf* is used to controls the flow of the data between SDRAM and Host while block *sdc_sdram_if* is the SDRAM Interface Block that synchronizes all the signals to the negative edge before sending them out the SDRAM.

Other than that, SDRAM Controller also responsible to instruct the SDRAM to initiate a precharge in order to maintain the information stored inside each cell. Otherwise, the information stored inside each cell will be lost due to the characteristic of capacitor which is the voltage will slowly leak off. The finite state machine below shows how the SDRAM Controller handles the timing and the state changes that forms the protocols of the SDRAM. It helps in decide which protocol to be executed and what commands to be sent to the SDRAM by using the *sdc_fsm* block. Note that branches without condition has the lowest priority.

Figure 2.5.3 Protocol Controller Block FSM

State Name	Definition		
INIT	Initialization		
INIT_W	Wait for power up delay. The delay needed is dependence on the		
	SDRAM manufacturer		
PRECH	Send Precharge command		
PRECH_W	Wait tRP		
AREF	Send Auto-Refresh command		
AREF_W	Wait tREF		
LMR	Send Load Mode command		
IDLE_0	Wait operation to complete		
IDLE	Wait for new operation		
ACT	Send Active command		
WRITE	Send Write command		
WRITE_LOOP	Write data		
READ	Send Read Command		
READ_W	Wait CAS Latency		
READ_LOOP	Read data		
BT	Send Burst Terminate command		

Table 2.5.2 State definition of Protocol Controller

Index	Condition
1	!w_tmr_done
2	w_ref_req ip_pu_stat
3	ip_host_ld_mode
4	ip_fsm_pu_stat & w_pu_ref
5	ip_fsm_pu_stat & !w_pu_ref
6	ip_fsm_ld_mode & !ip_ fsm_any_bank_open
7	w_ref_req & !ip_ fsm_any_bank_open
8	(ip_host_ld_mode & ip_ fsm_any_bank_open) (w_ref_req & ip_
	fsm_any_bank_open) ((w_rd_req w_wr_req) & !ip_ fsm_row_same)
9	(w_rd_req w_wr_req) & !ip_ fsm_bank_open
10	w_wr_req & ip_ fsm_row_same & ip_ fsm_bank_open
11	w_rd_req & ip_ fsm_row_same & ip_ fsm_bank_open
12	!w_brst_active
13	!w_wr_req & w_brst_active
14	!w_rd_req & w_brst_active
15	!w_rd_req

Table 2.5.3 Branch conditions of Protocol Controller

State Name	Correspondence Output Behaviors			
INIT	op_fsm_cmd<= `CMD_NOP;			
	$r_brst_cnt \le 0;$			
	r_pu_cnt<= 2;			
	r_ri_cnt<= `REF_INTERVAL;			
	r_tmr_val<= `WAIT_150us;			
	op_wb_ack<= 0;			
INIT_W	op_fsm_cmd<= `CMD_NOP;			
PRECH	op_fsm_cmd<= `CMD_PRECH;			
	op_fsm_bank_clr<= !(w_ref_req ip_fsm_pu_stat);			
	op_fsm_bank_clr_all<= (w_ref_req ip_fsm_pu_stat			
	ip_host_ld_mode);			
	op_fsm_a10_cmd <= (w_ref_req ip_fsm_pu_stat			
	ip_host_ld_mode);			
	$r_tmr_val \le TRP_DEF - 13'd1;$			
PRECH_W	op_fsm_ld_mode_req<= ip_host_ld_mode;			
	op_fsm_cmd<= `CMD_NOP;			
AREF	op_fsm_cmd<= `CMD_AREF;			
	r_pu_cnt<= ip_fsm_pu_stat? r_pu_cnt - 1: r_pu_cnt;			
	r_ri_cnt<= `REF_INTERVAL;			
	$r_tmr_val \le tRFC \text{ constant} - 1;$			
AREF_W	op_fsm_cmd<= `CMD_NOP;			
	r_ri_cnt<= `REF_INTERVAL;			
LMR	op_fsm_cmd<= CMD_LMR;			
	$op_tsm_lmr_sel \le 1;$			
	$op_fsm_pu_done <= 1p_fsm_pu_stat? 1: 0;$			
	$r_{tmr_val} = \{2, 000, 1, MK_{DEF}\} - 13, 01;$			
	op_wb_ack<= ip_wb_cyc&ip_wb_stb&ip_nost_id_mode;			
	on fem $emd < - CMD NOP$			
	$op_{1001},$			

IDLE	op_fsm_cmd<= `CMD_NOP;
ACT	op_fsm_cmd<= `CMD_ACT; op_fsm_bank_act<= 1 op_fsm_row_sel<= 1; r_tmr_val<= {1'b0,`TRCD_DEF} - 13'd1;
WRITE	<pre>op_fsm_cmd<= `CMD_WR; r_brst_cnt<= r_brst_val - 1; r_tmr_val<= {2'b00,`TWR_DEF} - 13'd1; op_fsm_woe<= 1; op_wb_ack<= ip_wb_cyc&ip_wb_stb;</pre>
WRITE_LOOP	<pre>op_fsm_cmd<= `CMD_NOP; r_brst_cnt<= r_brst_cnt - 1; r_tmr_val<= {2'b00,`TWR_DEF} - 13'd1; op_fsm_woe<= 1; op_wb_ack<= ip_wb_cyc&ip_wb_stb;</pre>
READ	op_fsm_cmd<= `CMD_RD; r_brst_cnt<= r_brst_val; r_tmr_val<= {1'b0,ip_fsm_cfg_mode[6:4]} - 13'd1;
READ_W	op_fsm_cmd<= `CMD_NOP;
READ_LOOP	<pre>op_wb_ack<= ip_wb_cyc&ip_wb_stb&r_roe; op_fsm_cmd<= `CMD_NOP; r_brst_cnt<= r_brst_cnt - 1; r_roe<= 1;</pre>
BT	<pre>op_fsm_cmd<= `CMD_BT; r_brst_cnt<= 0;</pre>

Table 2.5.4 Outputs of the states of Protocol Controller

The FSM of the Protocol Controller contains all the main states of the SDRAM controller, operations that need to be done by SDRAM are specified clearly. The SDRAM controller can issue the refresh command to SDRAM itself when necessary, without having the command from host. The FSM may seem large and complex, but we can have a better understanding if we break the whole FSM into several processes.

Initialisation Protocol:

Figure 2.5.4 The protocol follows the SDRAM initialisation requirement as instructed by MICRON.

As instructed by MICRON, the SDRAM needs to be precharged upon startup, then followed by auto-refreshing twice. Configure the Mode Register into a valid operating mode after the auto-refresh, then the SDRAM is ready for any valid command.

Keep Bank and Row Open Access Protocol:

Figure 2.5.5 Keep Bank and Row Open Access Protocol to achieve fast access cycle for same row access

Before we want to access a particular location for read or write, we have to open the particular row of the particular bank of the location. Opening a row is simply activating it, but if there is already a different row opened in the same bank, that row will need to be closed first before opening the desired row. Closing of a row is by precharging it. Different bank can have different row opened at the same time, this will not violates the read or write operations in the individual banks.

Load Mode Protocol (Post Initialisation):

Figure 2.5.6 Load Mode Protocol

Although a valid operating mode is programmed upon the initialisation of the SDRAM, it can be re-programmed to another operating mode as desired. According to the MICRON, before you can load a new mode into the mode register, all banks must be in idle state, that is, no row is opened. If the SDRAM doesn't have any row opened already, then the new mode can be programmed into the mode register right away. But if there are any opened row in any bank, then the SDRAM will need to be precharged before loading a new mode into mode register.
Auto Refresh Protocol:

Figure 2.5.7 Auto Refresh Protocol

As mentioned in the earlier section, DRAMs need to be consistently refresh due to its capacitors inside will slowly discharge and the stored data will fades away with it. It would be troublesome and inefficient if the host has to issue the refresh command every time the SDRAM needs one. But this protocol can do the auto-refresh itself without having the host to issue. According to the MICRON, all banks must be precharged before an auto-refresh, if all the banks are idle already, then the autorefresh can be performed right away. But if any of the banks are open, then will have to precharged them before the auto-refresh.

Figure 2.5.8 Read Protocol

Figure 2.5.9 Write Protocol

Actually the read protocol and write protocol are pretty much the same. As mentioned in the Keep Bank and Row Open Access Protocol, we need to activate the particular row before we want to access one of its columns for read or write. This is why we are seeing something similar with the Keep Bank and Row Open Access Protocol on the Read Protocol and Write Protocol.

Before accessing a particular location for reading or writing, its row needs to be activated. If there is already another opened row in the bank, then the opened row will need to be closed, that is, precharged, before activating the desired row. If the bank is already idle, then we can straight away activate the desired row. If the desired row has already opened, then the activation of row can be skipped.

Then we can access the desired column for reading or writing. If the SDRAM was in Single Location Access Mode, only the data in that location will be read or written. If the SDRAM was in Burst Mode, then the data in that location and the data in consecutive locations will be read or written, depends on the programmed burst length.

2.6 Cache

A 2-way set associative cache of 2MB has been modelled by Khoo Chong Siang. Caches are used as small but fast buffers for the main memory so that the CPU can have a faster access time to the data inside main memory.

Figure 2.6.1 Cache Unit designed by Khoo Chong Siang

This cache can be used as both Instruction Cache and Data Cache. It is to be connected to the CPU. It is also wishbone compatible. When it comes to design a cache, we have to consider the scenarios to have a better understanding on cache behaviours.

Slot Replacement Policy

• The current design of Cache used LRU (Least Recently Used) slot replacement policy. It picks the slot that hasn't been used in the longest time to be replaced.

Write Operation

• The current design of Cache is a write back cache. When the processor writes something into a cache block, that cache block is tagged as a dirty block, using a 1-bit tag. Before a dirty block is replaced by a new frame, the dirty block is copied into the primary memory.

Cache Associative

- The current cache is a 2-way set associative cache, which is belongs to N-Way set associative catergory.
- N-Way set associative uses N cache, data RAMs and N cache-tag RAMs (built out of N RAMs and N comparators, a cache controller, and isolation buffers. It is actually separate the memory into different set of caches and ease the replacement and searching policy.

Scenarios to Represent Cache Behaviours

Basically there are just 4 scenarios might be happened on cache, we need to decide what to do when these scenarios happen.

- 1. Read Miss
 - Receive physical address and instructions of read from the main controller of the CPU.
 - Check validity and tag for the index of the physical address points to. A miss signal is produced due to either it is invalid or the tag is different.
 - Cache controller asserts strobe, cycle, and read signals to SDRAM controller to fetch new black of data.
 - Meanwhile, the pipelines of the CPU are stalled.
 - Check LRU to determine which slot is least recently used, store the newly fetched block of data in it.
 - Set valid bit for the index pointed.
 - Update LRU.
 - Deassert the miss, strobe, cycle and read signal, the pipelines are un-stalled.
- 2. Read Hit
 - Receive physical address and instruction of read from the main controller of CPU.
 - Check validity and tag for index of the physical address points to. Miss signal is active low.
 - Load the selected instruction or data by determining the byte offset to host.
 - Update LRU.

- 3. Write Miss (For D-Cache only)
 - Receive physical address, data, and instruction of write from the main controller of CPU.
 - Check validity and tag for the index of the physical address points to. A miss signal is produced due to either it is invalid or the tag is different.
 - Stall the pieplines.
 - Check LRU to determine which is least recently used.
 - Cache controller asserts strobe, cycle, and read to SDRAM controller to access the data in SDRAM.
 - If the block of data was dirty, send the block of 8 words back to SDRAM.
 - Fetch new block of data from SDRAM.
 - After the new block is updated from SDRAM, strobe, cycle, read and miss signals are deasserted.
 - Perform the write.
 - Update LRU.
- 4. Write Hit (For D-Cache only)
 - Receive physical address, data, and instruction of write from main controller of CPU.
 - Check validity of tag for index of the physical address points to. Miss signal is active low.
 - Update the selected instruction or data.
 - Update LRU.

Cache Design Protocol

The read and write operation are separated into two different ASM. After that it will be used to design the finite state machine of the cache controller.

Figure 2.6.2 Read Protocol of Cache

Figure 2.6.3 Write Protocol of Cache

Cache Operations

Four scenarios might be happened on cache, which are read miss, read hit, write miss and write hit. In order to design the datapath of the cache, four diagrams are drawn and they all show the operations that are performed during the different scenarios.

Figure 2.6.4 Read Hit

Figure 2.6.5 Read Miss

Figure 2.6.6 Write Miss

Figure 2.6.7 Write Hit

2.7 Translation Lookaside Buffer (TLB)

A Translation Lookaside Buffer (TLB) has been modelled by Kim Yuh Chang. Before we talk about what is a TLB, let's talk about physical address and virtual address. Virtual memory and virtual address is the reason that the systems are able to run multiple programs at a time. Look that the following virtual memory map that based on 32-bits MIPS:

Figure 2.7.1 Virtual Memory Map based on 32-bits MIPS

As a programmer, when we write programs, we do not have to consider other programs that might be running on the same system with our program. The program we write will just have to follow the above memory map, for example, code segment at 0x0040_0000, data segment at 0x1000_000 and etc. If these are all physical addresses, how is it possible for a system to run a few programs at the same time? We can't have a few addresses of 0x0040_0000 and a few addresses of 0x1000_000. Furthermore, not every 32-bits system is acquired with 4GB of main memory, take this project as an example, the SDRAM we are using is just 16MB, and address of 0x1000_0000 is definitely exceeded the boundary of 16MB. So how can a program runs on different system with different memory specifications? Well the answer is obvious, virtual memory and virtual address.

These virtual memory and virtual address is a barrier to hide the memory specifications against the users or programmers. Everybody will see all the 32-bits systems are pretty much the same. When a program runs, its code and data are loaded into the main memory, the locations in the main memory where these codes and data are actually stored are the physical addresses. There will be a segment in the main memory which stores the page tables. Page tables store virtual page number and their corresponding physical page number, as well as other essential information such as the process ID. These page tables are managed by the operating system (OS).

Figure 2.7.2 An example of address translation

Figure 2.7.3 An overall picture of how virtual memory works.

Now is the time Translation Lookaside Buffer (TLB) comes in. When we want to translate a virtual address to physical address, we will have to refer to the page numbers in page tables inside the main memory. But directly accessing the main memory is so low, we need a small and fast buffer to store a fraction of the page tables. Sounds familiar? Yes, actually TLB is just a cache for the page tables in main memory. Unlike the cache that modelled by Khoo, which is 2-way set associative, the TLB that Kim modelled is fully associative and with 64 entries. Fully associative means the data can be stored in any location in the cache. In our case, we just write the page table entries into random one of the location in TLB

Figure 2.7.4 An example of how an 8-block cache configures as direct mapped, twoway set associative, four-way set associative and fully associative cache.

Although we say that the TLB is a cache, but it is a special cache. The things that a TLB entry stores are very different from what ordinary caches store.

Virtual Page Number (20 bits)	Control Bits	Physical Page Number (20 bits)
----------------------------------	--------------	-----------------------------------

Figure 2.7.5 Contents of a TLB entry

Figure 2.7.6 Usage of TLB in address translation by using 48 entries and fully associative TLB.

*Note that,

- VPN is included inside as part of the TLB entry contents which is different from the page table entry.
- VPN doesn't segment into 1st page table index and 2nd page table index. This is because when we are using TLB, it is containing the information in 2nd level page table only.
- Control bits can be any bits which used to represent the status of each entry based on the design needs.
 - Example of control bits will be
 - Valid Bit, which used to represent the location of the page whether in physical memory or disk.

Virtually addressed and Physically Address Cache

The placement of TLB can be either in series with caches or parallel with caches. Both of the design have their pros and con. When we set the TLB in front of the cache, this will mean that all of the address need to be translates into physical address before access into cache. By using this design, the processing speed will be reduced because we need to access to TLB first then only can access cache which means we need to times two the access time to a cache. Although the processing speed will be reduce, this method will be much simpler compare with a virtually addressed cache.

Figure 2.7.7 The design of physically addressed cache.

There is another design of the placement of TLB which is the TLB works parallel with the caches. This will reduce the processing time because the address translation and the data searching can be done in parallel. Although this method can enhance the efficiency of the processor, the design is more complex compare with physically address cache because the lower 12 bits, page offset is used to search the data in cache and the tag inside cache entries is output from the cache to compare with the PFN output from TLB to determine whether it is a cache hit or miss. Problem arises when we have two cache entries with the same page offset, which will cause an aliasing effect. Therefore, additional logic needs to be added to eliminate this problem.

Figure 2.7.8 The design of virtually addressed cache.

Current design of TLB

Figure 2.7.9 Current design of TLB by Kim Yuh Chang

Figure 2.7.10 Current design of MMU by Kim Yuh Chang

These are the current design of the TLB, note that the MMU is a controller for the TLB. Current design of TLB uses 2-level page table, which can greatly reduce the size of page table compared to a 1-level page table, but as a trade-off, we will need to access the main memory once more when we want to fetch new page table entry into the TLB.

Virtual Pag		
1 st Level Page Table	2 nd Level Page Table	Page Offset
Index	Index	
(10 bits)	(10 bits)	(12 bits)

*Note that,

- 1st Level Page Table Index is used to locate the address of 2nd level Page Table.
- 2nd Level Page Table Index is used to select the appropriate page table entries.

Figure 2.7.11 Segmentation of virtual address of current design

How does a 2-level page table works? Here is the way:

- 1. Given a virtual address
- 2. Use 1^{st} level page table index to allocate the address of 2^{nd} level page table.
- 3. Use 2nd level page table index to find out the PPN which is used to concatenate with the page offset to form physical address.
- 4. Use physical address to get data from physical memory.

Figure 2.7.12 The usage of 2-level page table in address translation

Chapter 3: Methodology and Development Tools

3.1 Methodology

Design methodology refers to the methods to develop a system. It is a guide on how to do design work successfully. A good design methodology needs to ensure the following:

- Correct Functionality
- Satisfaction of performance and power goals
- Catching bugs early
- Good documentation

The ideal design flow for this project would be the top-down methodology as shown in the following figure.

Figure 3.1.1 General Design Flow without Synthesis and Physical Design

3.1.1 System Level Design

System Level Design is level where chip specifications are being develop. System level design includes the following two types:

• Written specification: Is an English-written specification of function, performance, cost and time constrain of a design. This Specification should also include function specification, verification specification, packaging specification and development plan. • **Executable specification:** Using high-level programming language to describe the features and functionalities. High-level programming language referring to VERILOG, VHDL and etc. which is executable.

3.1.2 Architecture Level Design

Architecture Level Design can categorize into 2 phases:

- Architecture specification: Architecture specification describe internal of a chip and may contain design partitioning of the chip into units, basic connection or interface between units, I/O timing and delay requirements of the units and critical algorithms used.
- Architecture Level Modelling and Verification: An algorithm is developed to model the unit base on architecture specification. In this phase, each unit is verified for functional correctness.

3.1.3 Micro-architecture Level Design

In this level, RTL (Register Transfer Level) is developed. A micro-architecture specification of each unit, which used to describe the internal design of architecture block module. Micro-architecture specification may include information of:

- An overview of the functional description
- I/O pin description
- I/O timing requirements
- Function table
- Finite-state machine (FSM) and Algorithmic-state machine.
- Test Plan

After developed Micro-architecture Specification, RTL modelling with programming language can be start. Model can be simulate and verified with software. Verification includes development of test plan, timing verification and functionality verification. Hence designer can verify and modify the design to meet the chip specification.

3.2 Design Tools

3.2.1 Verilog HDL Simulator

Since this project use Verilog, this is a Hardware Description Language (HDL). Simulations tools that support Verilog HDL is required, tools that provide simulation environment to verify the functional and timing models of the design, and the HDL source code. There are a lot HDL simulator created by different company, which has their own advantages and disadvantages. In order to choose most appropriate design tools for this project, some researches had been done and the choices has been narrow into three choices, which are the best HDL simulation tools available on the market, they are also known as the 'Big 3' simulators, three major signoff-grade simulators which qualified for application-specific integrated circuit (ASIC) (validation) sign-off at nearly all semiconductor fabrications. They are:

- 1. Incisive Enterprise Simulator by Cadence Design Systems
- 2. ModelSim by Mentor Graphic
- 3. Verilog Compiled code Simulator (VCS) by Synopsys

However, to choose the most appropriate design tools for this project, some factors such as price, availability, affordability, language supported, user friendly and performance need to put in considerations. Since most of the simulators support system-level & RTL design, some minor comparisons between the 'big 3' HDL simulator are shown in the table 4.1 below:

Simulator	Incisive Enterprise Simulator	ModelSim	VCS
Company	cādence	Graphic	SYNOPSYS® Predictable Success
Language Supported	VHDL-2002 V2001 SV2005	VHDL-2002 V2001 SV2005	VHDL-2002 V2001 SV2005
Platform supported	-Sun-solaris -Linux	-Windows XP/Vista/7 -Linux	-Linux
Availability for free?	×	(SE edition only)	X

Table 3.1 Comparison between 'Big 3' Simulators

Based on the above comparison, it is clear to state that ModelSim from Mentor Graphic is the best choice as a design tools for this project as they offer a free license for Student Edition, with some limitation, but it is sufficient for this project. It support Microsoft Windows platform as well. While the other two simulators offer great features as well, but the price are too expensive (\$25,000 - \$100,000) and not affordable.

3.2.2 Mentor Graphics ModelSim SE 10.0a

ModelSim from Mentor Graphic is the industry-leading simulation and debugging environment for HDL (Hardware Description Language) based design which its license can be obtained for free. Both Verilog and VHDL are supported. This software provides syntax error checking and waveform simulation. The timing diagrams and the waveforms of the inputs and outputs can be verified by writing a program called a testbench in the simulation mode of the ModelSim. This software ensures that the function of modules is working correctly. Student version instead of full version of the ModelSim is sufficient enough for this project.

3.2.3 MIPS Simulator – PCSPIM

PCSPIM is a MIPS simulator. This program used for program writing and simulation as similar to running a MIPS micro-processor. PCSPIM is translating the MIPS assembly code into hex code. The hex code will port into Modelsim SE for simulation and verification of RTL model. The limitation of using PCSPIM is

Branch delay	- inside the setting, the branch delay should be disabled else the
	program will include a delay slot which is not supported by
	RISC32.
Branch address	- the branch address in PCSPIM is incremented offset by 1 for
	beginner's understanding. Thus, the program generated is
	required to decrement the offset by 1.

3.2.4 RISC32 Assembly Language

The RISC32 instruction set is portion of MIPS32 instruction set. It is specified in the written specification. This instruction set is used to verify the system in bus functional model to ensure the correctness of the system. This instruction set is particular to the RISC32 that enhanced. Any newly implemented instruction will require remodelling of RISC32.

Chapter 4: Architecture of the RISC32

Figure 4.0.1 Full RISC32's Architecture and Micro-architecture Partitioning.

4.1 Design Hierarchy

Chip Partitioning at Architecture Level	Unit Partitioning at Micro- architecture Level	Block and Functional Block Partitioning at RTL Level (Micro-Architecture Level)
c_risc32_full	u_data_path	b_reg_file
		b_alb_32
		b_mult_32
		b_branch_pred
	u_ctrl_path	b_alb_ctrl
		b_iag_ctrl
		b_main_ctrl
		b_fwrd
		b_itl_ctrl
	u_mem_sys	u_cache (for instruction)
		u_cache (for data)
		u_tlb (for instruction)
		u_tlb (for data)
	u_cp0	b_cp0_dc
		b_cp0_regfile
Structural description	Structural description/Behavioral description	Behavioral description

 Table 4.1.1 Formation of a design hierarchy for Full RISC32 microprocessor through top down design methodology

*Note that this design is provided as a mindset for future improvement.

Chapter 5: Memory System Design

5.1 Memory System Specifications

	RISC32 with Integrated Main Memory
SDRAM	16MB
Instruction TLB	64 Entries
Data TLB	64 Entries
Instruction Cache	2-way set associative, 2MB
Data Cache	2-way set associative, 2MB
Data Bus Width	32-bits
Instruction Width	32-bits

Table 5.1.1 Specifications of the Memory System

5.2 Naming Convention

Module	- [lvl]_[mod. name]
Instantiation	- [lvl]_[abbr. mod. name]
Pin	- [lvl]_[abbr. mod. name]_[Type]_[pin name]
	- [lvl]_[abbr. mod. name]_[Type]_[stage]_[pin name]

Abbreviation:

	Description	Case	Available	Remark
lvl	level	lower	c : Chip	
			u : Unit	
			b : Block	
mod. name	Module	lower all	any	
	Name			
abbr. mod.	Abbreviated	lower all	any	maximum 3 characters
name	module			
	name			
Туре	Pin type	lower	o : output	
			i : input	
			r : register	
			w : wire	
			f- :function	
stage	Stage name	lower all	if, id, ex,	
			mem, wb	
pin name	Pin name	lower all	any	Several word separate by
				" " —

Table 5.2.1 Naming convention

5.3 Memory Map

Segment	Address	Purpose
kseg2 – 1GB	0xFFFF FFFF	Kernel module, Page Table allocated here
kseg1 – 512MB	0xBFFF FFFF 0xA000 0000	Boot Rom I/O Register (if below 512MB)
kseg0 – 512MB	0x9FFF FFFF 0x8000 0000	Direct view of memory to 512MB kernel code and data. Exception and Page Table Base Register allocated here.
kuseg – 2GB	0x7FFF FFFF 0x1000 8000	Stack Segment starts from the ending address and expand down. Heap Segment starts from the starting address and expand top.
	0x1000 7FFF 0x1000 0000	Data segment and Dynamic library code.
	0x09FFF FFFF 0x0040 0000	Code Segment , where the main program stored.
	0x003F FFFF 0x0000 0000	Reserved

Table 5.3.1 Virtual memory map of 32-bits MIPS

• Stack Segment

• Use for storing automatic variables, which are variables that allocated and de-allocated automatically when program flow.

• Heap Segment

• Use for dynamic memory allocation such as malloc(), realloc() and free().

• Data Segment

- Use for storing global or static variables that initialize by programmer.
- Code Segment
 - Use for storing codes of main program or main program instructions.

5.4 Memory System Interface

Figure 5.4.0.1 Block Diagram of u_mem_sys

5.4.1 I/O Description

5.4.1.1 Input Pins

Pin Name:	Source \rightarrow Destination:	Registered:	
u_mem_sys_i_sdrcntr_ack	SDRAM CNTR \rightarrow Memory	No	
,	System		
	5		
Pin Function:			
Acknowledge signal (active HIGH) to	indicate read or write to SDRA	M is done.	
Pin Name:	Source \rightarrow Destination:	Registered:	
u mem sys i sdrcntr data[31:0]	SDRAM CNTR \rightarrow Memory	No	
a_mem_sys_i_surenti_auta[51.0]	System	110	
	System		
Pin Function:			
32-bits data that read from SDRAM			
Pin Name:	Source \rightarrow Destination:	Registered:	
u mem sys i cp0 entrylo[31:0]	$CP0 \rightarrow Memory System$	No	
	Cro / Memory System	110	
Pin Function:			
32-bits data that comes from the EntryLo register of CP0			
Pin Name [.]	Source \rightarrow Destination:	Registered	
u mem sys i cp0 entryhi[31:0]	$CP0 \rightarrow Memory System$	No	
u_mem_sys_1_epo_enu ym[51.0]	Crov Memory System	110	
Pin Function:			
32-bits data that comes from the Entry	Hi register of CP0.		
Pin Name:	Source \rightarrow Destination:	Registered:	
μ mem sys i cp0 random[31:0]	$CP0 \rightarrow Memory System$	No	
u_mem_sys_1_epo_random[51.0]	Cr 0 7 Memory System	110	
Pin Function:			
32-bits data that come from the random	n register of CP0.		

Pin Name:	Source \rightarrow Destination:	Registered:	
u_mem_sys_i_cp0_status[31:0]	CP0→ Memory System	No	
Pin Function:			
32-bits data that comes from status reg	ister of CP0.		
Pin Name:	Source \rightarrow Destination:	Registered:	
u_mem_sys_i_cp0_baddr[31:0]	CP0→ Memory System	No	
Pin Function:	•		
32-bits data that comes from baddr reg	ister of CP0.		
Pin Name:	Source \rightarrow Destination:	Registered:	
u_mem_sys_i_cpu_pc[31:0]	$CPU \rightarrow Memory System$	No	
Pin Function:	·		
Program Counter (PC) that comes from	CPU to retrieve instructions in	nside I-Cache.	
Pin Name:	Source \rightarrow Destination:	Registered:	
u_mem_sys_i_cpu_data[31:0]	$CPU \rightarrow Memory System$	No	
Pin Function:			
32-bits data that comes from MEM sta	ge of the pipelines. It will be w	ritten into the	
D-Cache if u_mem_sys_i_cpu_wr is as	sserted.	D	
Pin Name:	Source \rightarrow Destination:	Registered:	
u_mem_sys_1_cpu_addr[31:0]	$CPU \rightarrow Memory System$	No	
Pin Function:			
32-bits address that comes from MEM	stage of the pipelines. It indica	tes which	
location should the data to be read from or write to.			
Pin Name:	Source \rightarrow Destination:	Registered:	
u_mem_sys_i_cpu_re	$CPU \rightarrow Memory System$	No	
Pin Function:			
Control signal that comes from MEM stage of the pipelines. When it is asserted			
(HIGH) data will be read from the D-Cache.			

Pin Name:	Source \rightarrow Destination:	Registered:	
u_mem_sys_i_cpu_wr	$CPU \rightarrow Memory System$	No	
Pin Function:			
Control signal that comes from MEM	stage of the pipelines. When it i	is asserted	
(HIGH), data will be written into D-Ca	iche.		
Pin Name:	Source \rightarrow Destination:	Registered:	
u_mem_sys_i_clk	Extrenal \rightarrow Memory System	No	
Pin Function:			
System clock signal.			
Pin Name:	Source \rightarrow Destination:	Registered:	
u_mem_sys_i_rst	Extrenal \rightarrow Memory System	No	
Pin Function:			
System reset signal.			

Table 5.4.1.1.1 Memory System's input pin description.

5.4.1.2 Output Pins

Pin Name: u_mem_sys_o_sdrctnr_stb	Source → Destination: Memory System→ SDRAM Controller	Registered: No
Pin Function:		
Strobe signal that goes to SDRAM Cor	ntroller.	
Pin Name:	Source \rightarrow Destination:	Registered:
u_mem_sys_o_sdrctnr_cyc	Memory System→	No
	SDRAM Controller	
Pin Function:		
Cycle signal that goes to SDRAM Controller.		

Din Nama:	Source -> Destination:	Degisterad	
Pin Name:	Source - Destination:	Registered:	
u_mem_sys_o_sdrctnr_we	Memory System→	No	
	SDRAM Controller		
Die Ernetion:			
Pin Function:	. 11		
write signal that goes to SDRAM Con	troller.		
I – Write			
0 - Read			
Pin Name:	Source \rightarrow Destination:	Registered:	
u_mem_sys_o_sdrctnr_host_ld_mode	Memory System→	No	
	SDRAM Controller		
Pin Function:			
Host load mode, assert it (HIGH) to co	nfigure the operating mode in S	SDRAM.	
Pin Name:	Source \rightarrow Destination:	Registered:	
u_mem_sys_o_sdrctnr_sel[3:0]	Memory System→	No	
	SDRAM Controller		
Pin Function:			
4-bits control signals to mask which byte of the 4 bytes (32-bits) data goes in or			
comes out from SDRAM.			
When it is '1', the corresponding byte will enable.			
When it is '0', the corresponding byte will be masked and the output becomes 'z'.			
Pin Name:	Source \rightarrow Destination:	Registered:	
u mem sys o sdrctnr addr [31:0]	Memory System→	No	
	SDRAM Controller		
Pin Function:			
32-bits address to indicate which locati	on in the SDRAM to be access	ed.	
Pin Name:	Source \rightarrow Destination:	Registered:	
u mem sys o sdrctnr data [31:0]	Memory System→	No	
	SDRAM Controller		
Pin Function:			
32-bits data that goes into the SDRAM.			
When wants to configure the operating mode of the SDRAM, the configuration			
values goes into SDRAM via this port	too.	C	

Pin Name: u_mem_sys_o_cp0_tlb_miss	Source \rightarrow Destination: Memory System \rightarrow CP0	Registered: No
Pin Function:		
A status signal that indicates the miss of	of I-TLB or D-TLB.	
Pin Name:	Source \rightarrow Destination:	Registered:
u_mem_sys_o_cp0_addr_exception	Memory System→ CP0	No
Pin Function:		
A status signal that indicates the address	ss exception happened in I-TLI	B or D-TLB.
Pin Name:	Source \rightarrow Destination:	Registered:
u_mem_sys_o_cp0_page_fault	Memory System→ CP0	No
Pin Function:		
A status signal that indicates the page f	fault occurred in I-TLB or D-T	LB.
Pin Name:	Source \rightarrow Destination:	Registered:
u_mem_sys_o_cp0_is_mtc0	Memory System→ CP0	No
Pin Function:	•	
Write enable signal to CP0.		
0: Write Disable.		
1: Write Enable.		
Pin Name:	Source \rightarrow Destination:	Registered:
u_mem_sys_o_cp0_is_eret	Memory System→ CP0	No
Pin Function:		
Restart instruction signal for CP0.		
0: Normal operation.		
1: Restart exception instruction.		

Pin Name:	Source \rightarrow Destination:	Registered:
u_mem_sys_o_cp0_reg_data [31:0]	Memory System \rightarrow CP0	No
Pin Function:		
32 bits data to be written into CP0 register.		
Pin Name:	Source \rightarrow Destination:	Registered:
u_mem_sys_o_cp0_reg_address [4:0]	Memory System \rightarrow CP0	No
Pin Function:		
5 bits address to indicate which register of C	CPO should be update.	
Pin Name:	Source \rightarrow Destination:	Registered:
u_mem_sys_o_cpu_instr[31:0]	Memory System →CPU	No
Pin Function:		
32-bits instruction that read from the I-Cach	e.	
Pin Name:	Source \rightarrow Destination:	Registered:
u_mem_sys_o_cpu_data[31:0]	Memory System \rightarrow CPU	No
Pin Function:		
32-bits data that read from the D-Cache.		
Pin Name.	Source \rightarrow Destination:	Registered
u_mem_sys_o_cpu_stall	Memory System →CPU	No
Pin Function: Control signal to stall the pipelines		
control orginal to stant the piperines.		

Table 5.4.1.2.1 Memory System's output pin description.

5.5 Memory System Operating Procedure

- 1. Start the system
- 2. Porting appropriate instruction, data, first level page table, second level page table into SDRAM.
- 3. Reset the system for at least 2 clocks
- 4. While release the reset, the system will automatically run the program inside instruction cache
- 5. Observe the waveform from the development tools.

Chapter 6: Micro-architecture Specification

Figure 6.1.1 Micro-architecture of the Memory System

cp0 mux o is mto

Basically the Memory System is made up of two caches (one for instruction and one for data), two TLBs (one for instruction and one for data), a memory arbiter and a multiplexer for cp0 signals.

6.2 Cache Unit

Figure 6.2.0.1 Block diagram of u_cache

This is a 2-way set associative cache. Functionalities of Cache Unit:

- Store a small fraction of data (for D-Cache) or instructions (for I-Cache) of main memory.
- 2. Output desired data or instruction to CPU when it issues a READ.
- 3. Write data into desired location as instructed by CPU (D-Cache only).
- 4. Send signal to stall the CPU when read miss or write miss.
- Communicate with SDRAM Controller to write back 'dirty' block of data back into SDRAM and fetch new block of data from it.

6.2.1 I/O Description

6.2.1.1 Input Pins

Pin Name:	Source \rightarrow Destination:	Registered:
u_cache_i_cpu_addr[31:0]	$CPU \rightarrow Cache$	No
Pin Function:		
32-bits address from CPU that indicates a ce	rtain location that to be acce	ssed.
Din Nome	Course N Destination	Desistaned
Pin Name:	Source \rightarrow Destination:	Registered:
u_cache_i_cpu_data[31:0]	$CPU \rightarrow Cache$	No
Din Expetion:		
PIII FUICUOII.		
32-bits data from CPU that to be written into the cache.		
Pin Name:	Source \rightarrow Destination:	Registered:
u_cache_i_cpu_read	$CPU \rightarrow Cache$	No
Pin Function:		
A control signal that anables the read from eache from siven address when it is		
A control signal that enables the read from cache from given address when it is		
asserted (HIGH).		

Pin Name:	Source \rightarrow Destination:	Registered:	
u_cache_i_cpu_write	$CPU \rightarrow Cache$	No	
Pin Function:			
A control signal that enables the write of dat	a into a certain location in ca	ache when it	
is asserted (HIGH).			
Pin Name:	Source -> Destination:	Pagistarad	
r = 11 Name.	Source \checkmark Destination.	No	
u_cache_1_mem_data[51.0]	Cache	INU	
Pin Function:	Cache		
32-bits data that is read from SDRAM			
Pin Name:	Source \rightarrow Destination:	Registered:	
u_cache_i_mem_ack	SDRAM Controller \rightarrow	No	
	Cache		
Pin Function:			
Acknowledge signal (active HIGH) to indicate read or write to SDRAM is done.			
	~ <u> </u>		
Pin Name:	Source \rightarrow Destination:	Registered:	
u_cache_i_rst	External \rightarrow Cache	No	
Pin Function:			
System reset signal.			
Pin Name:	Source \rightarrow Destination:	Registered:	
u_cache_i_clk	External \rightarrow Cache	No	
System clock signal.			

Table 6.2.1.1.1 Cache Unit's input pin description

6.2.1.2 Output Pins

Pin Name:	Source \rightarrow Destination:	Registered:	
u_cache_o_cpu_data[31:0]	Cache \rightarrow CPU	No	
Pin Function:			
32-bits data that to be output to CPU.		-	
Pin Name:	Source \rightarrow Destination:	Registered:	
u_cache_o_mem_addr[31:0]	Cache → SDRAM Controller	No	
Pin Function:		·	
32-bits address that indicates which location	in the SDRAM to be access	sed.	
Pin Name:	Source \rightarrow Destination:	Registered:	
u_cache_o_mem_data[31:0]	Cache \rightarrow SDRAM	No	
	Controller		
Pin Function:			
32-bits data that to be written in to the SDR.	AM.		
When in host load mode, it contains the vali	d mode value for configurati	ion.	
Pin Name:	Source \rightarrow Destination:	Registered:	
u_cache_o_miss	Cache \rightarrow CPU	No	
Pin Function:			
A status signal indicates cache miss. It is to	stall the pipelines.		
Pin Name:	Source \rightarrow Destination:	Registered:	
u_cache_o_mem_cycle	Cache \rightarrow SDRAM	No	
	Controller		
Pin Function:			
Cycle signal that goes into SDRAM Control	ler.		
Pin Name:	Source \rightarrow Destination:	Registered:	
u_cache_o_mem_strobe	Cache \rightarrow SDRAM	No	
	Controller		
Pin Function:			
Strobe signal that goes into SDRAM Contro	oller.		

Pin Name:	Source \rightarrow Destination:	Registered:	
u_cache_o_mem_rw	Cache \rightarrow SDRAM	No	
	Controller		
Pin Function:			
A read or write signal that goes into SDRAM	A Controller.		
When '1', write.			
When '0', read.			
Pin Name:	Source \rightarrow Destination:	Registered:	
u_cache_o_mem_host_ld_mode	Cache \rightarrow SDRAM	No	
	Controller		
Pin Function:			
Assert (HIGH) this signal to configure the op	perating mode of SDRAM		
Pin Name:	Source \rightarrow Destination:	Registered:	
u_cache_o_mem_sel[3:0]	Cache \rightarrow SDRAM	No	
	Controller		
Pin Function:			
4-bits control signals to mask which byte of	the 4 bytes (32-bits) data go	es in or	
comes out from SDRAM.			
When it is '1', the corresponding byte will enable.			
When it is '0', the corresponding byte will be masked and the output becomes 'z'.			
Table 6.2.1.2.1 Cache Unit's output pin description			

6.2.2 Block Partitioning of Cache Unit

Figure 6.2.2.1 Block Partition of Cache Unit

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology (Perak Campus), UTAR

b_cache_ctrl		
	b_cache_ctrl_i_mem_ack -	
 b_cache_ctrl_i_cpu_read	b_cache_ctrl_o_mem_strobe	
 b_cache_ctrl_i_cpu_write	b_cache_ctrl_o_mem_cycle _	
	b_cache_ctrl_o_mem_sel -	4
	b_cache_ctrl_o_mem_rw _	
 b_cache_ctrl_i_rst	b_cache_ctrl_o_mem_host_ld_mode _	
 b_cache_ctrl_i_clk	b_cache_ctrl_o_cpu_data_output_en _	
	b_cache_ctrl_o_mem_data_output_en -	
	b_cache_ctrl_i_dirty _	2
	b_cache_ctrl_i_hit _	2
	b_cache_ctrl_i_valid _	2
	b_cache_ctrl_i_lru_set _	/
	b_cache_ctrl_o_counter _	3
	b_cache_ctrl_o_cache_data_select _	/
	b_cache_ctrl_o_wb_en _	
	b_cache_ctrl_o_update_en _	2
	b_cache_ctrl_o_update_Iru _	
	b_cache_ctrl_o_update_dirty _	2
		/

6.2.3 Cache Controller Block

Figure 6.2.3.1 Block diagram of b_cache_ctrl

Functionalities of Cache Controller:

- 1. Control main activity of cache unit.
- 2. Determine write-back is needed in write miss.
- 3. Determine data to read when read hit.
- 4. Determine data to be replaced when read miss.
- 5. Determine data to be updated when write hit.
- 6. Control when LRU update.
- 7. Output control signal and status signal out to CPU and SDRAM.

6.2.3.1 I/O Description

6.2.3.1.1 Input Pins

Pin Name:	Source \rightarrow Destination:	Registered:	
b_cache_ctrl_i_dirty[1:0]	Cache Datapath \rightarrow Cache	No	
	Controller		
Pin Function:			
2-bits status signals which each bit of it indi	cate the value of dirty ram of	2	
corresponding set. (Indexed by the index bit	s of input address from CPU)	
	-		
Pin Name:	Source \rightarrow Destination:	Registered:	
b_cache_ctrl_i_hit[1:0]	Cache Datapath \rightarrow Cache	No	
	Controller		
Pin Function:			
2-bits status signals which each bit of it indicate the hit or miss of corresponding set.			
(Indexed by the index bits of input address from CPU)			
Pin Name:	Source \rightarrow Destination:	Registered:	
b_cache_ctrl_i_valid[1:0]	Cache Datapath \rightarrow Cache	No	
	Controller		
Pin Function:			
2-bits status signals which each bit of it indicate the value of valid ram of			
corresponding set. (Indexed by the index bits of input address from CPU)			
	-		

Pin Name [.]	Source \rightarrow Destination:	Registered.	
h cache ctrl i lru set	Cache Datapath \rightarrow Cache	No	
o_cucho_curi_i_nu_set	Controller	110	
Pin Function:			
Tell which set of the data is Least Recently U	Used.		
'0' for set 0.			
'1' for set 1.			
Pin Name:	Source \rightarrow Destination:	Registered:	
b_cache_ctrl_i_cpu_read	CPU \rightarrow Cache Controller	No	
Pin Function:			
READ signal from CPU, to instruct the cach	e to output the value at desir	ed location.	
Pin Name:	Source \rightarrow Destination:	Registered:	
b_cache_ctrl_i_cpu_write	CPU \rightarrow Cache Controller	No	
Pin Function:			
WRITE signal from CPU, to instruct the cache to write the input data from CPU into			
the data ram.			
Pin Name:	Source \rightarrow Destination:	Registered:	
b_cache_ctrl_i_mem_ack	SDRAM Controller	No	
	→Cache Controller		
Pin Function:			
Acknowledge signal (active HIGH) to indica	te read or write to SDRAM	is done.	
Pin Name:	Source \rightarrow Destination:	Registered:	
b_cache_ctrl_i_rst	External \rightarrow Cache	No	
	Controller		
Pin Function:			
System reset signal.			
Pin Name:	Source \rightarrow Destination:	Registered:	
b_cache_ctrl_i_clk	External \rightarrow Cache	No	
	Controller		
Pin Function:			
System clock signal.			

Table 6.2.3.1.1.1 Cache Controller's input pin description

6.2.3.1.2 Output Pins

Pin Name: b_cache_ctrl_o_cpu_data_output_en	Source → Destination: Cache Controller → Cache Datapath	Registered: No	
Pin Function: When asserted (HIGH), data is enabled to be	e output to CPU.		
Pin Name: b_cache_ctrl_o_counter[2:0]	Source → Destination: Cache Controller → Cache Datapath	Registered: No	
Pin Function: 3-bits counter value. This is used to count th (8 words) of data.	e data when transferring a w	hole block	
Pin Name: b_cache_ctrl_o_cache_data_select	Source → Destination: Cache Controller → Cache Datapath	Registered: No	
Pin Function: Instruct the cache datapath which data (data from cpu or data from SDRAM) to be written into. When HIGH, choose data from SDRAM. When LOW, choose data from CPU.			
Pin Name: b_cache_ctrl_o_mem_rw	Source \rightarrow Destination: Cache Controller \rightarrow SDRAM Controller	Registered: No	
Pin Function: READ or WRITE signal to the SDRAM. '1' for write '0' for read			
Pin Name: b_cache_ctrl_o_mem_strobe	Source → Destination: Cache Controller → SDRAM Controller	Registered: No	
Pin Function: Strobe signal that goes into SDRAM.			

Pin Name:	Source \rightarrow Destination:	Registered:	
b cache ctrl o mem cvcle	Cache Controller \rightarrow	No	
	SDRAM Controller		
Pin Function:			
Cycle signal that goes into SDRAM.			
Pin Name:	Source \rightarrow Destination:	Registered:	
b_cache_ctrl_o_mem_host_ld_mode	Cache Controller \rightarrow	No	
	SDRAM Controller		
Pin Function:			
Assert (HIGH) this signal to configure the op	perating mode of SDRAM.		
	I		
Pin Name:	Source \rightarrow Destination:	Registered:	
b_cache_ctrl_o_mem_sel[3:0]	Cache Controller \rightarrow	No	
	SDRAM Controller		
Pin Function:			
4-bits control signals to mask which byte of	the 4 bytes (32-bits) data go	es in or	
comes out from SDRAM.			
When it is '1', the corresponding byte will be enabled.			
When it is '0', the corresponding byte will b	e masked and the output bec	omes 'z'.	
Din Nama:	Source -> Destination:	Pagistarad	
r ill Nallie.	Source γ Destination.	No	
b_cache_ctri_o_mem_data_output_en	Cache Datapath	INU	
Din Eurotion:	Cache Datapath		
When asserted (HIGH) data is enabled to be	\mathbf{A} output to $\mathbf{S}\mathbf{D}\mathbf{P}\mathbf{A}\mathbf{M}$		
Pin Name.	Source \rightarrow Destination:	Registered	
h cache ctrl o wh en	Source \rightarrow Destination.	No	
b_cachc_cu1_0_wb_ch	Cache Datapath	NO	
Din Function:	Cache Datapath		
When asserted (HIGH) the cache will output	t the address where the data	needed to	
be written back to SDPAM			
When deasserted (I OW), the cache will output the address where the data product to			
be read from the SDRAM			
et read from the opportunit.			

	-	
Pin Name:	Source \rightarrow Destination:	Registered:
b_cache_ctrl_o_mem_update_en[1:0]	Cache Controller \rightarrow	No
	Cache Datapath	
Pin Function:		
Enables the update of cache when asserted (HIGH).	
Pin Name:	Source \rightarrow Destination:	Registered:
b_cache_ctrl_o_mem_update_lru	Cache Controller \rightarrow	No
	Cache Datapath	
Pin Function:		
Enables the update of LRU when asserted (HIGH).		
Pin Name:	Source \rightarrow Destination:	Registered:
b_cache_ctrl_o_mem_update_dirty[1:0]	Cache Controller \rightarrow	No
	Cache Datapath	
Pin Function:		
Enables the update of 'Dirty' when asserted (HIGH).		
Table 6.2.3.1.2.1 Cashe Controller's output nin description		

Table 6.2.3.1.2.1 Cache Controller's output pin description

6.2.4 Cache Datapath Block

Figure 6.2.4.1 Block diagram of b_cache_dp

Functionalities of Cache Datapath:

- 1. Compare the tag of the input address and the tags inside the tag ram to produces hit or miss signal to controller.
- 2. Output the read data or instructions when read hit.
- 3. Write the input data from CPU to the data ram and update the corresponding status signals (valid, dirty and etc.) when write hit (only for D-Cache).
- 4. When read miss or write miss, output dirty block of data to SDRAM (for D-Cache only).
- 5. When read miss or write miss, write a new block of data into the data ram and update the corresponding status signals.

6.2.4.1 I/O Description

6.2.4.1.1 Input Pins

Pin Name:	Source \rightarrow Destination:	Registered:
b_cache_dp_i_cpu_data[31:0]	CPU \rightarrow Cache Datapath	No
	_	
Pin Function:		
32-bits data that comes from CPU.		
Pin Name:	Source \rightarrow Destination:	Registered:
b_cache_dp_i_mem_ack	SDRAM Controller \rightarrow	No
	Cache Datapath	
Pin Function:		
Acknowledge signal (active HIGH) to indicate read or write to SDRAM is done.		
Pin Name:	Source \rightarrow Destination:	Registered:
b_cache_dp_i_mem_data[31:0]	SDRAM Controller \rightarrow	No
· · · ·	Cache Datapath	
Pin Function:		
32-bits data that comes from SDRAM.		

Pin Name:	Source \rightarrow Destination:	Registered:	
b_cache_dp_1_cpu_addr[31:0]	$CPU \rightarrow Cache Datapath$	No	
Pin Function:			
32-bits address that comes from CPU.			
Pin Name:	Source \rightarrow Destination:	Registered:	
b_cache_dp_i_counter[2:0]	Cache Controller \rightarrow	No	
	Cache Datapath		
Pin Function:			
3-bits counter value. This is used to count th	e data when transferring a w	hole block	
(8 words) of data.			
Pin Name:	Source \rightarrow Destination:	Registered:	
b_cache_dp_i_cache_data_select	Cache Controller \rightarrow	No	
	Cache Datapath		
Pin Function:			
Instruct the cache datapath which data (data	from cpu or data from SDR.	AM) to be	
written into.			
When HIGH, choose data from SDRAM.			
When LOW, choose data from CPU.			
Pin Name:	Source \rightarrow Destination:	Registered:	
b_cache_dp_i_mem_rw	Cache Controller \rightarrow	No	
	Cache Datapath		
Pin Function:			
READ or WRITE signal to the SDRAM.			
1 for write.			
U for read.			
Din Name:	Source > Destination:	Degistered	
Fill Nallie.	Source \rightarrow Destination:	No	
b_cache_up_1_cpu_data_output_en	Cache Detenath	INO	
Din Eurotion:	Cache Datapath		
Pin Function: When accented (IIICII), data is anabled to be output to CDU			
Pin Name:	Source \rightarrow Destination:	Degistered	
h cache dn i mem data output en	$\begin{array}{c} \text{Source } \neq \text{Destination.} \\ \text{Cache Controller} \rightarrow \end{array}$	No	
0_cache_up_1_mem_uata_output_en	Cache Datapath	NO	
Pin Function:			
When asserted (HIGH) data is enabled to be	e output to SDRAM		
when asserted (mon), data is enabled to be output to SDR hvi.			

Pin Name:	Source \rightarrow Destination:	Registered:	
b_cache_dp_i_wb_en	Cache Controller \rightarrow	No	
-	Cache Datapath		
Pin Function:			
When asserted (HIGH), the cache will outpu	t the address where the data	needed to	
be written back to SDRAM.			
When deasserted (LOW), the cache will output	out the address where the dat	ta needed to	
be read from the SDRAM.			
Pin Name:	Source \rightarrow Destination:	Registered:	
b_cache_dp_i_update_en[1:0]	Cache Controller \rightarrow	No	
	Cache Datapath		
Pin Function:			
Enables the update of cache when asserted (l	HIGH).		
Pin Name:	Source \rightarrow Destination:	Registered:	
b_cache_dp_i_update_lru	Cache Controller \rightarrow	No	
	Cache Datapath		
Pin Function:			
Enables the update of LRU when asserted (H	IIGH).		
Pin Name:	Source \rightarrow Destination:	Registered:	
b_cache_dp_i_update_dirty[1:0]	Cache Controller \rightarrow	No	
	Cache Datapath		
Pin Function:			
Enables the update of 'Dirty' when asserted	(HIGH).		
Pin Name:	Source \rightarrow Destination:	Registered:	
b_cache_dp_i_host_ld_mode	Cache Controller \rightarrow	No	
	Cache Datapath		
Pin Function:			
Assert (HIGH) this signal to configure the op	perating mode of SDRAM.		
Pin Name:	Source \rightarrow Destination:	Registered:	
b_cache_dp_i_cpu_read	CPU \rightarrow Cache Datapath	No	
Pin Function:			
READ signal from CPU, to instruct the cache to output the value at desired location.			
Pin Name:	Source \rightarrow Destination:	Registered:	
b_cache_dp_i_cpu_write	CPU \rightarrow Cache Datapath	No	
Pin Function:			
WRITE signal from CPU, to instruct the cache to write the input data from CPU into			
the data ram.			

Pin Name:	Source \rightarrow Destination:	Registered:
b_cache_dp_i_rst	External \rightarrow Cache	No
	Datapath	
Pin Function:		
System reset signal.		
Pin Name:	Source \rightarrow Destination:	Registered:
b_cache_dp_i_clk	External \rightarrow Cache	No
_	Detenath	
	Datapath	
Pin Function:	Datapati	
Pin Function: System clock signal.	Datapati	

Table 6.2.4.1.1.1 Cache Datapath's input pin description

6.2.4.1.2 Output Pins

Pin Name:	Source \rightarrow Destination:	Registered:
b_cache_dp_o_cpu_data[31:0]	Cache Datapath \rightarrow CPU	No
	-	
Pin Function:		
32-bits data that to be output to CPU.		
Pin Name:	Source \rightarrow Destination:	Registered:
b_cache_dp_o_mem_data[31:0]	Cache Datapath \rightarrow	No
	SDRAM Controller	
Pin Function:		
32-bits data that to be output to SDRAM.		
Pin Name:	Source \rightarrow Destination:	Registered:
b_cache_dp_o_mem_addr[31:0]	Cache Datapath \rightarrow	No
_	SDRAM Controller	
Pin Function:		
32-bits address that to be output to SDRAM to accessed its locations.		
-		
Pin Name:	Source \rightarrow Destination:	Registered:
b_cache_dp_o_hit[1:0]	Cache Datapath \rightarrow Cache	No
-	Controller	
Pin Function:		
2-bits status signals which each bit of it indicate the hit or miss of corresponding set.		
(Indexed by the index bits of input address from CPU)		

Pin Name:	Source \rightarrow Destination:	Registered:	
b_cache_dp_o_valid[1:0]	Cache Datapath \rightarrow Cache	No	
	Controller		
Pin Function:			
2-bits status signals which each bit of it indic	cate valid of corresponding s	et. (Indexed	
by the index bits of input address from CPU)		
Pin Name:	Source \rightarrow Destination:	Registered:	
b_cache_dp_o_dirty[1:0]	Cache Datapath \rightarrow Cache	No	
	Controller		
Pin Function:			
2-bits status signals which each bit of it indicate dirty of corresponding set. (Indexed			
by the index bits of input address from CPU)			
Pin Name:	Source \rightarrow Destination:	Registered:	
b_cache_dp_o_lru_set	Cache Datapath \rightarrow Cache	No	
	Controller		
Pin Function:			
Tell which set of the data is Least Recently Used.			
'0' for set 0.			
'1' for set 1.			
Table 6.2.4.1.2.1 Cache Datapath's output pin description			

	u_tlb	
 u_tlb_i_rst u_tlb_i_clk	u_tlb_i_sdrctnr_ack u_tlb_i_sdrctnr_data u_tlb_o_sdrctnr_stb u_tlb_o_sdrctnr_cyc u_tlb_o_sdrctnr_we u_tlb_o_sdrctnr_sel u_tlb_o_sdrctnr_sel u_tlb_o_sdrctnr_addr u_tlb_o_sdrctnr_addr	32 4 32 32 32
	u_tlb_i_cp0_entrylo u_tlb_i_cp0_entryhi u_tlb_i_cp0_random u_tlb_i_cp0_status u_tlb_i_cp0_baddr u_tlb_o_cp0_rwen	32 32 32 32 32 32 32 32
 u_tlb_i_cpu_read u_tlb_i_cpu_write	u_tib_o_tib_ois_mtc0 u_tib_o_tib_page_fault u_tib_o_addr_exception u_tib_o_cp0_is_eret u_tib_o_cp0_is_mtc0	
 u_tlb_i_cpu_vaddr u_tlb_o_cache_paddr	u_tlb_o_cp0_reg_address · u_tlb_o_cp0_reg_data ·	5 32
 u_tlb_o_cpu_stall		

6.3 Translation Lookaside Buffer (TLB) Unit

Figure 6.3.0.1 Block digram of u_tlb

Functionalities of TLB:

- 1. Consist of 64 entries.
- 2. Fully associative.
- 3. Capable to handle TLB Miss.
- 4. Translate virtual page number to physical page number.

6.3.1 I/O Description

6.3.1.1 Input Pins

Dia Maraa	Course N Destinations	Desistand
Pin Name:	Source - Destination:	Registered:
u_tlb_i_cpu_vaddr[31:0]	$CPU \rightarrow TLB$	No
Pin Function:		
32-bits virtual address come from CPU.		
Pin Name:	Source \rightarrow Destination:	Registered:
u_tlb_i_cpu_read	$CPU \rightarrow TLB$	No
-		
Pin Function:		
READ signal from CPU, to instruct the cache to output the value at desired location.		
Pin Name:	Source \rightarrow Destination:	Registered:
u_tlb_i_cpu_write	CPU \rightarrow TLB	No
Pin Function:		
WRITE signal from CPU, to instruct the cache to write the input data from CPU into		
the data ram.		
Pin Name:	Source \rightarrow Destination:	Registered:
u_tlb_i_sdrctnr_ack	SDRAM Controller \rightarrow	No
	TLB	
Pin Function:		
Acknowledge signal (active HIGH) to indicate read or write to SDRAM is done.		
Pin Name:	Source \rightarrow Destination:	Registered:
u_tlb_i_sdrctnr_data[31:0]	SDRAM Controller \rightarrow	No
	TLB	
Pin Function:		
32-bits data that comes from SDRAM.		

Pin Name:	Source \rightarrow Destination:	Registered:
u_tlb_i_cp0_entrylo[31:0]	$CP0 \rightarrow TLB$	No
Pin Function:		
32-bits data that comes from the EntryLo re	gister of CP0.	
Pin Name:	Source \rightarrow Destination:	Registered:
u_tlb_i_cp0_entryhi[31:0]	$CP0 \rightarrow TLB$	No
Pin Function:		
32-bits data that comes from the EntryHi reg	gister of CP0.	-
Pin Name:	Source \rightarrow Destination:	Registered:
u_tlb_i_cp0_random[31:0]	$CP0 \rightarrow TLB$	No
Pin Function:		
32-bits data that come from the random regi	ster of CP0.	
Pin Name:	Source \rightarrow Destination:	Registered:
u_tlb_i_cp0_status[31:0]	$CP0 \rightarrow TLB$	No
Pin Function:		
32-bits data that comes from status register	of CP0.	
Pin Name:	Source \rightarrow Destination:	Registered:
u_tlb_i_cp0_baddr[31:0]	$CP0 \rightarrow TLB$	No
Pin Function:		
32-bits data that comes from baddr register	of CP0.	
Pin Name:	Source \rightarrow Destination:	Registered:
u_tlb_i_clk	External \rightarrow TLB	No
Pin Function:		
System clock signal.		
Pin Name:	Source \rightarrow Destination:	Registered:
u_tlb_i_rst	External \rightarrow TLB	No
Pin Function:	1	<u> </u>
System reset signal.		

Table 6.3.1.1.1 TLB Unit's input pin description

6.3.1.2 Output Pins

Pin Name:	Source \rightarrow Destination:	Registered:
	ILD 7 CFU	INO
Pin Function:		
When HIGH, indicates the miss in TLB.		
Pin Name:	Source \rightarrow Destination:	Registered:
u_tlb_o_tlb_page_fault	$TLB \rightarrow CP0$	No
Pin Function:	I	
When HIGH, indicates page fault happened.	I	
Pin Name:	Source \rightarrow Destination:	Registered:
u_tlb_o_addr_exception	$TLB \rightarrow CP0$	No
Pin Function:		
When HIGH, indicates address exception happened.		
Pin Name:	Source \rightarrow Destination:	Registered:
u_tlb_o_cp0_rwen	$TLB \rightarrow CP0$	No
Pin Function:	I	
When HIGH, it indicates the TLB wants to a	access CP0.	
Pin Name:	Source \rightarrow Destination:	Registered:
u_tlb_o_cp0_is_mtc0	TLB \rightarrow CP0	No
Pin Function:		•
Instruction signal to insert data into CP0 reg	ister file.	
Pin Name:	Source \rightarrow Destination:	Registered:
u_tlb_o_cp0_is_eret	$TLB \rightarrow CP0$	No
Pin Function:		1
1 bit signal to indicate end of TLB miss by s	ending the signal to CP0 an	d CP0 will
restart the instruction by loading address sto	re in EPC register.	
Pin Name:	Source \rightarrow Destination:	Registered:
u_tlb_o_cp0_reg_addr[4:0]	$TLB \rightarrow CP0$	No
Pin Function:	1	1
5 bits register address to be update.		

Pin Name: u_tlb_o_cp0_reg_data[31:0]	Source \rightarrow Destination: TLB \rightarrow CP0	Registered: No	
Pin Function: 32 bits register data to be update in CP0 register file.			
Pin Name: u_tlb_o_cpu_stall	Source \rightarrow Destination: TLB \rightarrow CPU	Registered: No	
Pin Function: Stall signal to control unit when TLB miss.			
Pin Name: u_tlb_o_sdrctnr_stb	Source \rightarrow Destination: TLB \rightarrow SDRAM Controller	Registered: No	
Pin Function: Strobe signal that goes to SDRAM Controller.			
Pin Name: u_tlb_o_sdrctnr_cyc	Source \rightarrow Destination: TLB \rightarrow SDRAM Controller	Registered: No	
Pin Function: Cycle signal that goes to SDRAM Controller.			
Pin Name: u_tlb_o_sdrctnr_we	Source \rightarrow Destination: TLB \rightarrow SDRAM Controller	Registered: No	
Pin Function: Write signal that goes to SDRAM Controller. 1 – Write 0 – Read			
Pin Name: u_tlb_o_sdrctnr_host_ld_mode	Source \rightarrow Destination: TLB \rightarrow SDRAM Controller	Registered: No	
Pin Function: Host load mode, assert it (HIGH) to configure the operating mode in SDRAM.			

Pin Name:	Source \rightarrow Destination:	Registered:
u_tlb_o_sdrctnr_sel[3:0]	TLB \rightarrow SDRAM	No
	Controller	
Pin Function:		
4-bits control signals to mask which byte of	the 4 bytes (32-bits) data go	es in or
comes out from SDRAM.		
When it is '1', the corresponding byte will e	nable.	
When it is '0', the corresponding byte will b	e masked and the output bec	omes 'z'.
Pin Name:	Source \rightarrow Destination:	Registered:
u_tlb_o_sdrctnr_addr[31:0]	TLB \rightarrow SDRAM	No
	Controller	
Pin Function:		
32-bits address to indicate which location in	the SDRAM to be accessed.	
Pin Name:	Source \rightarrow Destination:	Registered:
u_tlb_o_sdrctnr_data[31:0]	TLB → SDRAM	No
	Controller	
Pin Function:		
32-bits data that goes into the SDRAM.		
When wants to configure the operating mode of the SDRAM, the configuration		
values goes into SDRAM via this port too.		
Pin Name:	Source \rightarrow Destination:	Registered:
u_tlb_o_cache_paddr[31:0]	TLB \rightarrow Cache	No
Pin Function:		
32-bit translated physical address.		

 Table 6.3.1.2.1 TLB Unit's output pin description.

6.3.2 Block Partitioning of TLB Unit

Figure 6.3.2.1 Block partitioning of TLB Unit

BIT (Hons) Computer Engineering Faculty of Information and Communication Technology (Perak Campus), UTAR

6.3.3 Memory Management Unit (MMU) block

Figure 6.3.3.1 Block diagram of b_mmu

Memory Management Unit is responsible to handle the page table walk through when TLB Miss occurs. In this project, two-level page table is used. Therefore, for each time TLB miss and invoke MMU to handle Page Table Entries (PTE) transfer, physical memory has to be access twice to get the appropriate PTE.

6.3.3.1 I/O Description

6.3.3.1.1 Input Pins

Pin Name:	Source \rightarrow Destination:	Registered:
b_mmu_i_sdrctnr_ack	SDRAM Controller \rightarrow	No
	MMU	
Pin Function:		
Acknowledge signal (active HIGH) to indica	ate read or write to SDRAM	is done.
Pin Name:	Source \rightarrow Destination:	Registered:
b_mmu_i_sdrctnr_data[31:0]	SDRAM Controller \rightarrow	No
	MMU	
Pin Function:		
32-bits data that read from SDRAM.		
Pin Name:	Source \rightarrow Destination:	Registered:
b_mmu_i_vaddr[31:0]	SDRAM Controller \rightarrow	No
	MMU	
Pin Function:		
32-bits virtual address from CPU.		
Pin Name:	Source \rightarrow Destination:	Registered:
b_mmu_i_tlb_miss	TLB Datapath \rightarrow MMU	No
Pin Function:	I	
Indicates TLB miss when HIGH		
Pin Name:	Source \rightarrow Destination:	Registered:
b_mmu_i_sys_clock	External \rightarrow MMU	No
Pin Function:		
System clock signal.		
Pin Name:	Source \rightarrow Destination:	Registered:
b_mmu_i_sys_reset	External \rightarrow MMU	No
Pin Function:	1	1
System reset signal.		

Table 6.3.3.1.1.1 MMU's input pin description
6.3.3.1.2 Output Pins

Pin Name:	Source \rightarrow Destination:	Registered:
b_mmu_o_tlb_page_fault	$MMU \rightarrow CP0$	No
Pin Function:		
When HIGH, indicates page fault happened.		
Pin Name:	Source \rightarrow Destination:	Registered:
b_mmu_o_tlb_write_enable	MMU \rightarrow TLB Datapath	No
Pin Function:	I	
Enables the update of the entries of TLB wh	en HIGH.	
Pin Name:	Source \rightarrow Destination:	Registered:
b_mmu_o_cp0_rwen	$MMU \rightarrow CP0$	No
Pin Function:		
When HIGH, it indicates the TLB wants to a	access CP0.	
Pin Name:	Source \rightarrow Destination:	Registered:
b_mmu_o_cp0_is_mtc0	MMU → CP0	No
Pin Function:		
Write enable signal to CP0.		
0: Write Disable.		
1: Write Enable.		
Pin Name:	Source \rightarrow Destination:	Registered:
b_mmu_o_cp0_is_eret	MMU → CP0	No
Pin Function:		
Restart instruction signal for CP0.		
0: Normal operation.		
1: Restart exception instruction.		
Pin Name:	Source \rightarrow Destination:	Registered:
b_mmu_o_cp0_reg_address[4:0]	MMU → CP0	No
Pin Function:		
5 bits address to indicate which register of CP0 should be update.		

Pin Name: b_mmu_o_cp0_reg_data[31:0]	Source \rightarrow Destination: MMU \rightarrow CP0	Registered: No
Pin Function: 32 bits data to be written into CP0 register.		
Pin Name: b_mmu_o_cpu_stall	Source \rightarrow Destination: MMU \rightarrow CPU	Registered: No
Pin Function: Control signal to stall the pipelines.		
Pin Name: b_mmu_o_sdrctnr_host_ld_mode	Source → Destination: MMU → SDRAM Controller	Registered: No
Pin Function: Host load mode, assert it (HIGH) to configure the operating mode in SDRAM.		
Pin Name: b_mmu_o_sdrctnr_stb	Source \rightarrow Destination: MMU \rightarrow SDRAM Controller	Registered: No
Pin Function: Strobe signal that goes to SDRAM Controller.		
Pin Name: b_mmu_o_sdrctnr_cyc	Source → Destination: MMU → SDRAM Controller	Registered: No
Pin Function: Cycle signal that goes to SDRAM Controller.		
Pin Name: b_mmu_o_sdrctnr_we	Source → Destination: MMU → SDRAM Controller	Registered: No
Pin Function: Write signal that goes to SDRAM Controller 1 – Write 0 – Read	r.	

Pin Name:	Source \rightarrow Destination:	Registered:
b_mmu_o_sdrctnr_sel[3:0]	MMU → SDRAM	No
	Controller	
Pin Function:		
4-bits control signals to mask which byte of	the 4 bytes (32-bits) data go	es in or
comes out from SDRAM.		
When it is '1', the corresponding byte will e	nable.	
When it is '0', the corresponding byte will b	e masked and the output bec	omes 'z'.
Pin Name:	Source \rightarrow Destination:	Registered:
b_mmu_o_sdrctnr_addr[31:0]	MMU → SDRAM	No
	Controller	
Pin Function:		
32-bits address to indicate which location in	the SDRAM to be accessed.	
Pin Name:	Source \rightarrow Destination:	Registered:
b_mmu_o_sdrctnr_data[31:0]	MMU → SDRAM	No
	Controller	
Pin Function:		
32-bits data that goes into the SDRAM.		
When wants to configure the operating mode of the SDRAM, the configuration		
values goes into SDRAM via this port too.		
Table 6.3.3.1.2.1 MMU's output pin description		

Figure 6.3.4.1 Block diagram of b_tlb_dp

Functionalities of TLB Datapath:

- 1. Compare the virtual page number (VPN) of the input virtual address with the VPNs in all the entries in TLB to produce hit or miss signals.
- 2. Translate virtual address into physical address.
- 3. Update new page table entries from SDRAM.

6.3.4.1 I/O Description

6.3.4.1.1 Input Pins

Pin Name:	Source \rightarrow Destination:	Registered:
b_tlb_dp_i_vaddr[31:0]	CPU \rightarrow TLB Datapath	No
Pin Function:		
32-bits virtual address from CPU.		
Pin Name:	Source \rightarrow Destination:	Registered:
b_tlb_dp_i_cp0_entrylo[31:0]	CP0 \rightarrow TLB Datapath	No
Pin Function:		
32-bits data that comes from the EntryLo reg	gister of CP0.	•
Pin Name:	Source \rightarrow Destination:	Registered:
b_tlb_dp_i_cp0_entryhi[31:0]	CP0 \rightarrow TLB Datapath	No
Pin Function:		
32-bits data that comes from the EntryHi reg	gister of CP0.	
Pin Name:	Source \rightarrow Destination:	Registered:
b_tlb_dp_i_cp0_random[31:0]	CP0 \rightarrow TLB Datapath	No
Pin Function:		
32-bits data that come from the random register of CP0.		
Pin Name:	Source \rightarrow Destination:	Registered:
b_tlb_dp_i_cp0_status[31:0]	CP0 \rightarrow TLB Datapath	No
Pin Function:		
32-bits data that comes from status register of CP0.		

Pin Name:	Source \rightarrow Destination:	Registered:
b_tlb_dp_i_cp0_baddr[31:0]	CP0 \rightarrow TLB Datapath	No
Pin Function:	(CDO	
32-bits data that comes from baddr register (of CPO.	
Pin Name:	Source \rightarrow Destination:	Registered:
b_tlb_dp_1_wr_en	$MMU \rightarrow TLB Datapath$	No
Pin Function:		I
Enables the update of the entries of TLB wh	en HIGH.	
Pin Name:	Source \rightarrow Destination:	Registered:
b_tlb_dp_i_cpu_read	CPU \rightarrow TLB Datapath	No
Pin Function:		
READ signal from CPU, to instruct the cach	e to output the value at desir	red location.
Pin Name:	Source \rightarrow Destination:	Registered:
b_tlb_dp_i_cpu_write	CPU \rightarrow TLB Datapath	No
Pin Function:		
WRITE signal from CPU, to instruct the cac	he to write the input data from	om CPU into
the data ram.		
Pin Name:	Source \rightarrow Destination:	Registered:
b_tlb_dp_i_rst	External \rightarrow TLB	No
	Datapath	
Pin Function:		
System reset signal.		
Pin Name:	Source \rightarrow Destination:	Registered:
b_tlb_dp_i_clk	External \rightarrow TLB	No
	Datapath	
Pin Function:		
System clock signal.		

Table 6.3.4.1.1.1 TLB Datapath's input pin description

6.3.4.1.2 Output Pins

Pin Name:	Source \rightarrow Destination:	Registered:
b_tlb_dp_o_paddr[31:0]	TLB Datapath \rightarrow CPU	No
· · · ·	-	
Pin Function:		
32-bits translated physical address.		
Pin Name:	Source \rightarrow Destination:	Registered:
b_tlb_dp_o_miss	TLB Datapath \rightarrow CPU	No
Pin Function:		
When HIGH, indicates the miss in TLB.		
Pin Name:	Source \rightarrow Destination:	Registered:
b_tlb_dp_o_addr_exception	TLB Datapath \rightarrow CPU	No
Pin Function:		
When HIGH, indicates address exception happened.		

Table 6.3.4.1.2.1 TLB Datapath's output pin description

6.4 Memory Arbiter Block

Figure 6.4.0.1 Block diagram of b_mem_arbiter

Functionalities of memory Arbiter:

- Decides which of the i_TLB, d_TLB, i_Cache and d_Cache get to access the SDRAM first.
- They all have different priority, from highest priority to lowest priority are d_TLB, i_TLB, d_Cache and i_Cache.

6.4.1 I/O Description

6.4.1.1 Input Pins

D' 11		D 1
Pin Name:	Source \rightarrow Destination:	Registered:
b_mem_arbtr_i_stb[3:0]	TLB or Cache \rightarrow	No
	Memory Arbiter	
Pin Function:		
Strobe signals from the TLBs and Caches.		
Pin Name:	Source \rightarrow Destination:	Registered:
b mem arbtr i cvc[3:0]	TLB or Cache \rightarrow	No
	Memory Arbiter	
Pin Function:		1
Cycle signals from the TLBs and Caches.		
Pin Name:	Source \rightarrow Destination:	Registered:
b mem arbtr i we[3:0]	TLB or Cache \rightarrow	No
oom.o.u_ro[0.10]	Memory Arbiter	1.00
Pin Function:		
\mathbf{READ} or WRITE signals from the TLBs and	d Caches	
READ of WRITE Signals from the TEDS and	d Caelles.	
Pin Name:	Source \rightarrow Destination:	Registered:
h mem arbtr i host ld mode[3:0]	TLB or Cache \rightarrow	No
	Memory Arbiter	110
Pin Function:	Memory Monter	
Host Load Mode signals from the TLBs and	Caches	
Din Name:	Source - Destination:	Degistered
Pill Nalle:	TL P or Cooke ->	No
D_mem_arbtr_1_set[15:0]	ILB of Cache –	INO
	Memory Arbiter	
Pin Function:		
Byte Select signals from the TLBs and Cach	es.	
Pin Name:	Source \rightarrow Destination:	Registered:
b_mem_arbtr_i_addr[127:0]	TLB or Cache \rightarrow	No
	Memory Arbiter	
Pin Function:		
Addresses from the TLBs and Caches.		

Pin Name:	Source \rightarrow Destination:	Registered:
b_mem_arbtr_i_data[127:0]	TLB or Cache \rightarrow	No
	Memory Arbiter	
Pin Function:		•
Data from the TLBs and Caches.		
Pin Name:	Source \rightarrow Destination:	Registered:
b_mem_arbtr_i_miss[3:0]	TLB or Cache \rightarrow	No
	Memory Arbiter	
Pin Function:		
Miss signals from the TLBs and Caches.		
Pin Name:	Source \rightarrow Destination:	Registered:
b_mem_arbtr_i_sdrctnr_ack	SDRAM Controller \rightarrow	No
	Memory Arbiter	
Pin Function:		
Acknowledge signal (active HIGH) to indicate	ate read or write to SDRAM	is done.
Pin Name:	Source \rightarrow Destination:	Registered:
b_mem_arbtr_i_sdrctnr_data[31:0]	SDRAM Controller \rightarrow	No
	Memory Arbiter	
Pin Function:		
32-bits data that comes from SDRAM.		
Table 6.4.1.1.1 Memory Arbiter's input pin description		

6.4.1.2 Output Pins

Pin Name:	Source \rightarrow Destination:	Registered:
b_mem_arbtr_o_sdrctnr_stb	Memory Arbiter \rightarrow	No
	SDRAM Controller	
Pin Function:		
Strobe signal that goes to SDRAM Controlle	er	
Pin Name:	Source \rightarrow Destination:	Registered:
b_mem_arbtr_o_sdrctnr_cyc	Memory Arbiter \rightarrow	No
	SDRAM Controller	
Pin Function:		
Cycle signal that goes to SDRAM Controller.		

Din Nama:	Source - Destination:	Degistered	
r III Indille.	Source - Destination.	No	
D_mem_arour_o_surcuir_we	SDRAM Controller	INO	
Die Eurotian.	SDRAM Controller		
Pin Function:			
write signal that goes to SDRAM Controller	ſ.		
1 - Write			
0 – Read			
Pin Name:	Source \rightarrow Destination:	Registered:	
b_mem_arbtr_o_sdrctnr_host_ld_mode	Memory Arbiter \rightarrow	No	
	SDRAM Controller		
Pin Function:			
Host load mode, assert it (HIGH) to configur	re the operating mode in SD	RAM.	
	1 0		
Pin Name:	Source \rightarrow Destination:	Registered:	
b mem arbtr o sdrctnr sel[3:0]	Memory Arbiter \rightarrow	No	
	SDRAM Controller		
Pin Function:			
4-bits control signals to mask which byte of the 4 bytes (32-bits) data goes in or			
comes out from SDRAM.			
When it is '1', the corresponding byte will enable.			
When it is '0', the corresponding byte will be masked and the output becomes 'z'.			
Pin Name:	Source \rightarrow Destination:	Registered:	
b mem arbtr o sdrctnr addr[31:0]	Memory Arbiter \rightarrow TLBs	No	
o	or Caches	110	
Pin Function:			
32-bits address to indicate which location in	the SDRAM to be accessed.		
Pin Name:	Source \rightarrow Destination:	Registered:	
b mem arbtr o sdrctnr data[31:0]	Memory Arbiter \rightarrow TLBs	No	
	or Caches	110	
Pin Function:	5. Swelle 5		
32-bits data that goes into the SDRAM			
When wants to configure the operating mode of the SDRAM, the configuration			
values goes into SDRAM via this port too			

Pin Name:	Source \rightarrow Destination:	Registered:
b_mem_arbtr_o_ack[3:0]	Memory Arbiter \rightarrow	No
	SDRAM Controller	
Pin Function:		
Acknowledge signals (active HIGH) to indicate read or write to SDRAM is done.		
Pin Name:	Source \rightarrow Destination:	Registered:
b_mem_arbtr_o_data[127:0]	Memory Arbiter \rightarrow	No
	SDRAM Controller	
Pin Function:		
Data that read from SDRAM.		
Data tilat itali itolii SDKAM.		

Table 6.4.1.2.1 Memory Arbiter's output pin description

6.5 CP0 Multiplexer Block

Figure 6.5.0.1 Block diagram of b_cp0_mux

Functionalities of CP0 Multiplexer:

- 1. Decides which of the i_TLB and d_TLB get to access the CP0 first.
- 2. d_TLB has higher priority over i_TLB.

6.5.1 I/O Description

6.5.1.1 Input Pins

Pin Name:	Source \rightarrow Destination:	Registered:
b_cp0_mux_i_itlb_cp0_rwen	$I_TLB \rightarrow CP0$	No
	Multiplexer	
Pin Function:		•
When HIGH, it indicates the i_TLB wants to	access CP0.	
Pin Name:	Source \rightarrow Destination:	Registered:
b_cp0_mux_i_itlb_tlb_miss	I_TLB \rightarrow CP0	No
-	Multiplexer	
Pin Function:		•
Indicates i_TLB miss when HIGH		
Pin Name:	Source \rightarrow Destination:	Registered:
b_cp0_mux_i_itlb_page_fault	I_TLB \rightarrow CP0	No
	Multiplexer	
Pin Function:		
When HIGH, indicates page fault happened	in i_TLB.	
Pin Name:	Source \rightarrow Destination:	Registered:
b_cp0_mux_i_itlb_addr_exception	I_TLB \rightarrow CP0	No
	Multiplexer	
Pin Function:		
When HIGH, indicates address exception ha	ppened in i_TLB.	
Pin Name:	Source \rightarrow Destination:	Registered:
b_cp0_mux_i_itlb_is_mtc0	I_TLB \rightarrow CP0	No
	Multiplexer	
Pin Function:		
Write enable signal to CP0 from i_TLB.		
0: Write Disable.		
1: Write Enable.		

Pin Name:	Source \rightarrow Destination:	Registered:
b_cp0_mux_i_itlb_is_eret	$I_TLB \rightarrow CP0$	No
-	Multiplexer	
Pin Function:		•
1 bit signal to indicate end of i_TLB miss by	v sending the signal to CP0 a	and CP0 will
restart the instruction by loading address sto	re in EPC register.	
Pin Name:	Source \rightarrow Destination:	Registered:
b_cp0_mux_i_itlb_reg_address[4:0]	$I_TLB \rightarrow CP0$	No
	Multiplexer	
Pin Function:		
5 bits register address to be update from i_T	LB.	
Pin Name:	Source \rightarrow Destination:	Registered:
b_cp0_mux_i_itlb_reg_data[31:0]	$I_TLB \rightarrow CP0$	No
	Multiplexer	
Pin Function:		
32 bits register data to be update in CP0 regi	ster file from i_TLB	
Pin Name:	Source \rightarrow Destination:	Registered:
b_cp0_mux_i_dtlb_ cp0_rwen	$D_TLB \rightarrow CP0$	No
	Multiplexer	
Pin Function:		
When HIGH, it indicates the d_TLB wants t	o access CP0.	
Pin Name:	Source \rightarrow Destination:	Registered:
b_cp0_mux_i_dtlb_ tlb_miss	$D_TLB \rightarrow CP0$	No
	Multiplexer	
Pin Function:		
Indicates d_TLB miss when HIGH		
Pin Name:	Source \rightarrow Destination:	Registered:
b_cp0_mux_i_dtlb_ page_fault	$D_{TLB} \rightarrow CP0$	No
	Multiplexer	
Pin Function:		
when HIGH, indicates page fault happened	$\ln d_{1LB}$.	
D'a Maara	Common Destinations	Desistand
Pin Name:	Source \rightarrow Destination:	Registered:
b_cp0_mux_1_dtib_ addr_exception	D_ILB 7 CP0	INO
Din Function:	wuupiexer	I
FIN FUNCTION: When HIGH indicates address excention happened in d. TI B		
when more, mulcales address exception happened in d_1LD.		

Pin Name:	Source \rightarrow Destination:	Registered:
b_cp0_mux_i_dtlb_ mtc0	$D_TLB \rightarrow CP0$	No
	Multiplexer	
Pin Function:		
Write enable signal to CP0 from d_TLB.		
0: Write Disable.		
1: Write Enable.		
Pin Name:	Source \rightarrow Destination:	Registered:
b_cp0_mux_i_dtlb_ is_eret	$D_TLB \rightarrow CP0$	No
	Multiplexer	
Pin Function:		
1 bit signal to indicate end of d_TLB miss by	y sending the signal to CP0 a	and CP0 will
restart the instruction by loading address stor	re in EPC register.	
Pin Name:	Source \rightarrow Destination:	Registered:
b_cp0_mux_i_dtlb_reg_address[4:0]	$D_TLB \rightarrow CP0$	No
	Multiplexer	
Pin Function:		
5 bits register address to be update from d_T	ĽB.	
Pin Name:	Source \rightarrow Destination:	Registered:
b_cp0_mux_i_dtlb_ reg_data[31:0]	$D_TLB \rightarrow CP0$	No
	Multiplexer	
Pin Function:		
32 bits register data to be update in CP0 regi	ster file d_TLB.	

Table 6.5.1.1.1 CP0 Multiplexer's input pin description

6.5.1.2 Output Pins

Pin Name:	Source \rightarrow Destination:	Registered:
b_cp0_mux_o_ tlb_miss	CP0 Multiplexer \rightarrow CP0	No
Pin Function:		
Indicates TLB miss when HIGH		
Pin Name:	Source \rightarrow Destination:	Registered
b cp0 mux o page fault	CP0 Multiplexer \rightarrow CP0	No
	1	
Pin Function:		
when HIGH, indicates address exception ha	ippened.	
Pin Name:	Source \rightarrow Destination:	Registered:
b_cp0_mux_o_ addr_exception	CP0 Multiplexer \rightarrow CP0	No
Pin Function:		
When HIGH, indicates address exception ha	ppened.	
Pin Name:	Source \rightarrow Destination:	Registered:
b_cp0_mux_o_mtc0	CP0 Multiplexer \rightarrow CP0	No
Pin Function:		
Write enable signal to CP0.		
0: Write Disable.		
1: Write Enable.		
Pin Name:	Source \rightarrow Destination:	Registered:
b_cp0_mux_o_ is_eret	CP0 Multiplexer \rightarrow CP0	No
Pin Function:		
1 bit signal to indicate end of TLB miss by s	sending the signal to CP0 and	d CP0 will
restart the instruction by loading address sto	re in EPC register.	

Pin Name: b_cp0_mux_o_reg_address[4:0]	Source \rightarrow Destination: CP0 Multiplexer \rightarrow CP0	Registered: No
Pin Function:		
5 bits register address to be update.		
Pin Name:	Source \rightarrow Destination:	Registered:
b_cp0_mux_o_ reg_data[31:0]	CP0 Multiplexer \rightarrow CP0	No
	-	
Pin Function:		
32 bits register data to be update in CP0 register file.		

Table 6.5.1.2.1 CP0 Multiplexer's output pin description

Chapter 7: Test and Verification

7.1 Test Plan

Data is loaded into the SDRAM by \$readmemh to setup the environment for testing:

Figure 7.1.1 Test plan for Memory System

The value of pc and CPU address is set to 0x0040_0000 and 0x1000_000 respectively, then let the system runs. Expected results should be as shown in the above figure.

7.2 Test Bench

```
`timescale 1ns / 10ps
module tb u mem sys() ;
  // Between u mem sys and sdram controller
  wire
             w sdrctnr stb ;
  wire
             w sdrctnr cyc ;
  wire
            w sdrctnr we ;
             w sdrctnr host ld mode ;
  wire
  wire [3:0] w sdrctnr sel ;
 wire [31:0] w sdrctnr addr ;
  wire [31:0] w sdrctnr data ;
  wire [31:0] w sdrctnr o data ;
  wire
             w sdrctnr ack ;
  // Between sdram controller and sdram
  wire [31:0] w sdr dq ;
  wire [31:0] w sdr addr ;
  wire [3:0] w sdr dqm ;
  wire [1:0] w sdr ba ;
  wire
             w sdr cs n ;
             w sdr ras n ;
  wire
  wire
             w sdr cas n ;
  wire
             w sdr we n ;
  // Between u mem sys and cp0
        w cp0 tlb miss ;
  wire
  wire
             w cp0 addr exception ;
            w_cp0_page_fault ;
  wire
            w cp0 is mtc0 ;
 wire
             w_cp0_is_eret ;
  wire
 wire [4:0] w cp0 reg addr ;
 wire [31:0] w cp0 reg data ;
  wire [31:0] w cp0 entrylo ;
  wire [31:0] w cp0 entryhi ;
  wire [31:0] w cp0 random ;
```

```
wire [31:0] w cp0 status ;
wire [31:0] w cp0 baddr ;
// cp0
wire [31:0] tb w cp0 reg data ;
wire [31:0] tb w cp0 excep handler addr ;
wire
           tb w cp0 is intr ;
wire
            tb w cp0 is overflow ;
// Between u mem sys and cpu
wire [31:0] tb_w_o_cpu_instr ;
wire [31:0] tb w o cpu data ;
wire
           tb w o cpu stall ;
reg [31:0] tb r i cpu pc ;
reg [31:0] tb r i cpu data ;
reg [31:0] tb r i cpu addr ;
reg
            tb r_i_cpu_re ;
            tb r i cpu wr ;
req
// Global signals
reg tb r clk ;
reg tb r rst ;
и ср0 ср0
(.u cp0 i mtc0(w cp0 is mtc0),
.u cp0_i is_eret(w cp0_is_eret),
 .u cp0 i current pc 2 EPC(tb r i cpu pc),
 .u cp0 i intr vector(6'b0),
 .u cp0 i overflow signal(1'b0),
 .u cp0 i reg data(w cp0 reg data),
 .u cp0 i reg address(w cp0 reg addr),
 .u cp0 i tlb miss(w cp0 tlb miss),
 .u cp0 i tlb addr excep(w cp0 addr exception),
 .u cp0 i page fault(w cp0 page fault),
 .u cp0 i sys clock(tb r clk),
 .u_cp0_reg_i_sys_reset(tb_r_rst),
 .u cp0 o cp0 reg data(tb w cp0 reg data),
 .u cp0 o excep handler address(tb w cp0 excep handler addr),
 .u cp0 o is intr(tb w cp0 is intr),
```

```
.u cp0 o is overflow(tb w cp0 is overflow),
 .u cp0 o entryLo reg data(w cp0 entrylo),
 .u cp0 o entryHi reg data(w cp0 entryhi),
 .u cp0 o random reg data(w cp0 random),
 .u cp0 o baddr reg data(w cp0 baddr),
 .u cp0 o status reg data(w cp0 status) ) ;
u mem sys DUT
(.u mem sys o sdrctnr stb(w sdrctnr stb),
 .u mem sys o sdrctnr cyc(w sdrctnr cyc),
 .u mem sys o sdrctnr we(w sdrctnr we),
 .u mem sys o sdrctnr host ld mode(w sdrctnr host ld mode),
 .u mem sys o sdrctnr sel(w sdrctnr sel),
 .u_mem_sys_o_sdrctnr addr(w sdrctnr addr),
 .u mem sys o sdrctnr data(w sdrctnr data),
 .u mem sys o cp0 tlb miss(w cp0 tlb miss),
 .u mem sys o cp0 addr exception(w cp0 addr exception),
 .u mem sys o cp0 page fault(w cp0 page fault),
 .u mem sys o cp0 is mtc0(w cp0 is mtc0),
 .u mem sys o cp0 is eret(w cp0 is eret),
 .u mem sys o cp0 reg addr(w cp0 reg addr),
 .u mem sys o cp0 reg data(w cp0 reg data),
 .u mem sys o cpu instr(tb w o cpu instr),
 .u mem sys o cpu data(tb w o cpu data),
 .u mem sys o cpu stall(tb w o cpu stall),
 .u mem sys i sdrctnr ack(w sdrctnr ack),
 .u mem sys i sdrctnr data(w sdrctnr o data),
 .u mem sys i cp0 entrylo(w cp0 entrylo),
 .u mem sys i cp0 entryhi(w cp0 entryhi),
 .u mem sys i cp0 random(w cp0 random),
 .u mem sys i cp0 status(w cp0 status),
 .u mem sys i cp0 baddr(w cp0 baddr),
 .u mem sys i cpu pc(tb r i cpu pc),
 .u mem sys i cpu data(tb r i cpu data),
 .u mem sys i cpu addr(tb r i cpu addr),
 .u mem sys i cpu re(tb r i cpu re),
 .u mem sys i cpu wr(tb r i cpu wr),
 .u mem sys i clk(tb r clk),
```

```
.u mem sys i rst(tb r rst) ) ;
sdram controller sdram controller
(.ip wb clk(tb r clk),
 .ip wb rst(tb r rst),
 .ip host ld mode(w sdrctnr host ld mode),
 .ip wb stb(w sdrctnr stb),
 .ip wb cyc(w sdrctnr cyc),
 .ip wb we(w sdrctnr we),
 .ip wb sel(w sdrctnr sel),
 .ip wb addr(w sdrctnr addr),
 .ip wb dat(w sdrctnr data),
 .op wb dat(w sdrctnr o data),
 .op_wb_ack(w_sdrctnr ack),
 .io sdr dq(w sdr dq),
 .op_sdr_ba(w_sdr_ba),
 .op sdr dqm(w sdr dqm),
 .op sdr addr(w sdr addr),
 .op sdr cs n(w sdr cs n),
 .op sdr ras n(w sdr ras n),
 .op sdr cas n(w sdr cas n),
 .op sdr we n(w sdr we n) ) ;
mt48lc4m32b2 SDRAM
(.Dq(w sdr dq),
.Addr(w sdr addr),
 .Ba(w sdr ba),
 .Clk(tb r clk),
 .Cke(1'b1),
 .Cs n(w sdr cs n),
 .Ras n(w sdr ras n),
 .Cas n(w sdr cas n),
 .We n(w sdr we n),
 .Dqm(w_sdr_dqm) ) ;
initial tb r clk = 0;
always #20 tb r clk = \simtb r clk ;
```

```
initial begin
 tb r i cpu pc = 32'h0040~0000;
 tb r i cpu data = 32'h0000 0000 ;
 tb r i cpu addr = 32'h0000 0000 ;
 tb r i cpu re = 1'b0;
 tb r i cpu wr = 1'b0;
 tb r rst = 1'b1;
 repeat(10) @(posedge tb r clk) ;
 tb r rst = 1'b0;
 // Prepare data in sdram
 $readmemh("sdram bank0 data.txt", SDRAM.Bank0);
   // itlb and icache should miss
 // wait until itlb and icache done
 while(tb w o cpu stall) @(posedge tb r clk) ;
 tb r i cpu pc = 32'h0040 0004 ; // 2nd instr comes in
 @(posedge tb r clk)
   tb r i cpu pc = 32'h0040 0008 ; // 3rd instr comes in
 @(posedge tb r clk)
   tb r i cpu pc = 32'h0040 000C ; // 4th instr comes in
 // MEM stage
  // Read a data from 0x1000_000
 tb r i cpu data = 32'h0000 0000 ;
 tb r i cpu addr = 32'h1000 0000 ;
 tb r i cpu re = 1'b1;
 tb r i cpu wr = 1'b0;
 @(posedge tb r clk) ;
   // Expecting dtlb and dcache misses
   // Wait until they are done
 while(tb_w_o_cpu_stall) @(posedge tb_r_clk) ;
```

```
tb_r_i_cpu_pc = 32'h0040_0010 ; // 5th instr comes in
//Write a data to 0x1000_004
tb_r_i_cpu_data = 32'hBEEF_900D ;
tb_r_i_cpu_addr = 32'h1000_0004 ;
tb_r_i_cpu_re = 1'b0 ;
tb_r_i_cpu_wr = 1'b1 ;
repeat(2) @(posedge tb_r_clk) ;
tb_r_i_cpu_pc = 32'h0040_0014 ; // 6th instr comes in
// Read the previous data back
tb_r_i_cpu_data = 32'h0000_0000 ;
tb_r_i_cpu_addr = 32'h1000_0004 ;
tb_r_i_cpu_re = 1'b1 ;
tb_r_i_cpu_wr = 1'b0 ;
repeat(100) @(posedge tb_r_clk) ;
end
```

endmodule

7.3 Simulation Results

ar Megs	
• ◆mem_sys_o_sdrctmr_sel 1111 0000 X1111	
• ◆em_sys_o_sdrctmr_addr 00000000 00000000 00000000 00000000	(00)(00234000
• ◆em_sys_o_sdrchrr_data 00000220 00000000 00000000 00000000 000000	
→mem_sys_j_sdrchr_ack St1	
em_sys_j_sdr.ctm_data zzzzzzz →	80
• ◆iter/b_mem_arbtr_j_miss 1010 1010	
mem_sys/bf_j_cpu_pc 00400000 00400000	
• • •UT/w_itb_icache_paddr 00000000 00000000	
• ◆sys/tb_r_j_cpu_data 00000000 00000000	
± ◆sys/tb_rj_cpu_addr 00000000 00000000	
T/w_dtb_dcache_paddr	
→mem_sys/tb_r_i_cpu_re 0	
→mem_sys/tb_rj_cpu_wr	
<u></u> _ y sys/bb_w_o_cpu_data x00000000 □	
→m_sys/tb_w_o_cpu_stal St1	
itlb missed configuring the	
Reset Reset	
operating mode to single	
location access	
Now 6000 ns) ns 200 ns 400 ns 600 ns 800 ns 100 ns 100 ns 100 ns 100 ns	1400 ns 1600 ne

Figure 7.3.1 Simulation results

Figure 7.3.2 Simulation results

Figure 7.3.3 Simulation results

Figure 7.3.4 Simulation results

Figure 7.3.5 Simulation results

Figure 7.3.6 Simulation results

Figure 7.3.7 Simulation results

Figure 7.3.8 Simulation results

VSIM 15> run	
<pre># tb_u_mem_sys.SDRAM : at time 540.0 ns PRE</pre>	CH : Precharge All
<pre># tb_u_mem_sys.SDRAM : at time 660.0 ns ARE</pre>	F : Auto Refresh
<pre># tb_u_mem_sys.SDRAM : at time 820.0 ns ARE</pre>	F : Auto Refresh
<pre># tb_u_mem_sys.SDRAM : at time 980.0 ns LMF</pre>	: Load Mode Register
<pre># tb_u_mem_sys.SDRAM :</pre>	CAS Latency = 2
<pre># tb_u_mem_sys.SDRAM :</pre>	Burst Length = 1
<pre># tb_u_mem_sys.SDRAM :</pre>	Burst Type = Sequential
<pre># tb_u_mem_sys.SDRAM :</pre>	Write Burst Mode = Single Location Access
<pre># tb_u_mem_sys.SDRAM : at time 1100.0 ns ACT</pre>	: $Bank = 0 Row = 0$
<pre># tb_u_mem_sys.SDRAM : at time 1266.0 ns REA</pre>	D : Bank = 0 Row = 0, Col = 1, Data = 2147488308
<pre># tb_u_mem_sys.SDRAM : at time 1460.0 ns PRE</pre>	CH : Bank = 0 Row = 0
<pre># tb_u_mem_sys.SDRAM : at time 1580.0 ns ACT</pre>	: $Bank = 0 Row = 564$
<pre># tb_u_mem_sys.SDRAM : at time 1746.0 ns REA</pre>	D : Bank = 0 Row = 564, Col = 0, Data = 2098535
<pre># tb_u_mem_sys.SDRAM : at time 1980.0 ns PRE</pre>	CH : Precharge All
<pre># tb_u_mem_sys.SDRAM : at time 2100.0 ns LMF</pre>	: Load Mode Register
<pre># tb_u_mem_sys.SDRAM :</pre>	CAS Latency = 2
<pre># tb_u_mem_sys.SDRAM :</pre>	Burst Length = 8
<pre># tb_u_mem_sys.SDRAM :</pre>	Burst Type = Sequential
<pre># tb_u_mem_sys.SDRAM :</pre>	Write Burst Mode = Programmed Burst Length
<pre># tb_u_mem_sys.SDRAM : at time 2220.0 ns ACT</pre>	: Bank = 0 Row = 1383
<pre># tb_u_mem_sys.SDRAM : at time 2386.0 ns REA</pre>	D : Bank = 0 Row = 1383, Col = 0, Data = 2409889792
<pre># tb_u_mem_sys.SDRAM : at time 2426.0 ns REA</pre>	D : Bank = 0 Row = 1383, Col = 1, Data = 665124868
<pre># tb_u_mem_sys.SDRAM : at time 2466.0 ns REA</pre>	D : Bank = 0 Row = 1383, Col = 2, Data = 614858756
<pre># tb_u_mem_sys.SDRAM : at time 2506.0 ns REA</pre>	D : Bank = 0 Row = 1383, Col = 3, Data = 266368
<pre># tb_u_mem_sys.SDRAM : at time 2546.0 ns REA</pre>	D : Bank = 0 Row = 1383, Col = 4, Data = 12726305
<pre># tb_u_mem_sys.SDRAM : at time 2586.0 ns REA</pre>	D : Bank = 0 Row = 1383, Col = 5, Data = 201326592
<pre># tb_u_mem_sys.SDRAM : at time 2626.0 ns REA</pre>	D : Bank = 0 Row = 1383, Col = 6, Data = 0
<pre># tb_u_mem_sys.SDRAM : at time 2666.0 ns REA</pre>	D : Bank = 0 Row = 1383, Col = 7, Data = 872546314
<pre># tb_u_mem_sys.SDRAM : at time 2980.0 ns PRE</pre>	CH : Precharge All
<pre># tb_u_mem_sys.SDRAM : at time 3100.0 ns LMF</pre>	: Load Mode Register
the second process CDD TM is	
# tb_u_mem_sys.SDRAM :	CAS Latency = 2
<pre># tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : </pre>	CAS Latency = 2 Burst Length = 1
<pre># tb_u mem_sys.SDRAM : # tb_u mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : </pre>	CAS Latency = 2 Burst Length = 1 Burst Type = Sequential
<pre># tb_u mem_sys.SDRAM : # tb_u mem_sys.SDRAM : # tb_u mem_sys.SDRAM : # tb_u mem_sys.SDRAM : # tb_u mem_sys.SDRAM : </pre>	CAS Latency = 2 Burst Length = 1 Burst Type = Sequential Write Burst Mode = Single Location Access
<pre># tb_u mem_sys.SDRAM : # tb_u mem_sys.SDRAM : # tb_u mem_sys.SDRAM : # tb_u mem_sys.SDRAM : # tb_u mem_sys.SDRAM : at time 3220.0 ns ACD # tb_u mem_sys.SDRAM : at time 3220.0 ns ACD</pre>	CAS Latency = 2 Burst Length = 1 Burst Type = Sequential Write Burst Mode = Single Location Access : Bank = 0 Row = 0 Parts = 0 Row = 0
<pre># tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : at time 3220.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3386.0 ns REE # tb_u_mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm</pre>	CAS Latency = 2 Burst Length = 1 Burst Type = Sequential Write Burst Mode = Single Location Access : Bank = 0 Row = 0 D : Bank = 0 Row = 0, Col = 64, Data = 2147492677 CL + Data = 0 Row = 0
<pre># tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : at time 3220.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3386.0 ns REA # tb_u_mem_sys.SDRAM : at time 3580.0 ns PRE # tb_u_mm_sys.SDRAM : at time 3580.0 ns PRE # tb_u_mm_sys.S</pre>	CAS Latency = 2 Burst Length = 1 Burst Type = Sequential Write Burst Mode = Single Location Access : Bank = 0 Row = 0 D : Bank = 0 Row = 0, Col = 64, Data = 2147492677 CH : Bank = 0 Row = 0 - Rank = 0 Row = 0
<pre># tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : at time 3220.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3386.0 ns REA # tb_u_mem_sys.SDRAM : at time 3580.0 ns PRE # tb_u_mem_sys.SDRAM : at time 3700.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3700.0 ns ACT</pre>	CAS Latency = 2 Burst Length = 1 Burst Type = Sequential Write Burst Mode = Single Location Access : Bank = 0 Row = 0 D : Bank = 0 Row = 0, Col = 64, Data = 2147492677 CH : Bank = 0 Row = 0 : Bank = 0 Row = 837 D : Bank = 0 Row = 827 CH = 0 Row = 2027 Col = 0 Data = 2000354
<pre># tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : at time 3220.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3386.0 ns REA # tb_u_mem_sys.SDRAM : at time 3580.0 ns PRE # tb_u_mem_sys.SDRAM : at time 3700.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3866.0 ns REA # tb_u_mm_sys.</pre>	CAS Latency = 2 Burst Length = 1 Burst Type = Sequential Write Burst Mode = Single Location Access : Bank = 0 Row = 0 D : Bank = 0 Row = 0, Col = 64, Data = 2147492677 CH : Bank = 0 Row = 0 : Bank = 0 Row = 837 D : Bank = 0 Row = 837, Col = 0, Data = 2099354 CH : Descharge 213
<pre># tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : at time 3220.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3386.0 ns REA # tb_u_mem_sys.SDRAM : at time 3580.0 ns REA # tb_u_mem_sys.SDRAM : at time 3866.0 ns REA # tb_u_mem_sys.SDRAM : at time 3866.0 ns REA # tb_u_mem_sys.SDRAM : at time 4100.0 ns REA # tb_u_mem_sys</pre>	CAS Latency = 2 Burst Length = 1 Burst Type = Sequential Write Burst Mode = Single Location Access : Bank = 0 Row = 0 D : Bank = 0 Row = 0, Col = 64, Data = 2147492677 CH : Bank = 0 Row = 0 : Bank = 0 Row = 837 D : Bank = 0 Row = 837, Col = 0, Data = 2099354 CH : Precharge All
<pre># tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : at time 3220.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3386.0 ns REA # tb_u_mem_sys.SDRAM : at time 3580.0 ns REA # tb_u_mem_sys.SDRAM : at time 3700.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3866.0 ns REA # tb_u_mem_sys.SDRAM : at time 4100.0 ns PRE # tb_u_mem_sys.SDRAM : at time 4220.0 ns LME # tb_u_mem_sys.SDRAM : at time 4220.0 ns LME # tb_u_mem_sys.SDRAM : at time 4220.0 ns LME # tb_u_mem_sys.SDRAM : at time 4220.0 ns LME</pre>	CAS Latency = 2 Burst Length = 1 Burst Type = Sequential Write Burst Mode = Single Location Access : Bank = 0 Row = 0 D : Bank = 0 Row = 0, Col = 64, Data = 2147492677 CH : Bank = 0 Row = 0 : Bank = 0 Row = 837 D : Bank = 0 Row = 837, Col = 0, Data = 2099354 CH : Precharge All : Load Mode Register CAS Latence = 2
<pre># tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : at time 3220.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3386.0 ns REF # tb_u_mem_sys.SDRAM : at time 3580.0 ns REF # tb_u_mem_sys.SDRAM : at time 3700.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3866.0 ns REF # tb_u_mem_sys.SDRAM : at time 4100.0 ns PRE # tb_u_mem_sys.SDRAM : at time 4220.0 ns LME # tb_u_mem_sys.SDRAM :</pre>	CAS Latency = 2 Burst Length = 1 Burst Type = Sequential Write Burst Mode = Single Location Access : Bank = 0 Row = 0 D : Bank = 0 Row = 0, Col = 64, Data = 2147492677 CH : Bank = 0 Row = 0 : Bank = 0 Row = 837 D : Bank = 0 Row = 837, Col = 0, Data = 2099354 CH : Precharge All : Load Mode Register CAS Latency = 2 Event Longth = 2
<pre># tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : at time 3220.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3386.0 ns REZ # tb_u_mem_sys.SDRAM : at time 3580.0 ns PRE # tb_u_mem_sys.SDRAM : at time 3866.0 ns REZ # tb_u_mem_sys.SDRAM : at time 3866.0 ns REZ # tb_u_mem_sys.SDRAM : at time 4100.0 ns PRE # tb_u_mem_sys.SDRAM : at time 4220.0 ns LMF # tb_u_mem_sys.SDRAM : #</pre>	CAS Latency = 2 Burst Length = 1 Burst Type = Sequential Write Burst Mode = Single Location Access : Bank = 0 Row = 0 D : Bank = 0 Row = 0, Col = 64, Data = 2147492677 CH : Bank = 0 Row = 0 : Bank = 0 Row = 837 D : Bank = 0 Row = 837, Col = 0, Data = 2099354 CH : Precharge All : Load Mode Register CAS Latency = 2 Burst Length = 8 Event Type = Sequential
<pre># tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : at time 3220.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3386.0 ns REA # tb_u_mem_sys.SDRAM : at time 3580.0 ns PRE # tb_u_mem_sys.SDRAM : at time 3700.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3866.0 ns REA # tb_u_mem_sys.SDRAM : at time 4100.0 ns PRE # tb_u_mem_sys.SDRAM : at time 4220.0 ns LME # tb_u_mem_sys.SDRAM : #</pre>	CAS Latency = 2 Burst Length = 1 Burst Type = Sequential Write Burst Mode = Single Location Access : Bank = 0 Row = 0 D : Bank = 0 Row = 0, Col = 64, Data = 2147492677 CH : Bank = 0 Row = 0 : Bank = 0 Row = 837 D : Bank = 0 Row = 837, Col = 0, Data = 2099354 CH : Precharge All : Load Mode Register CAS Latency = 2 Burst Length = 8 Burst Type = Sequential Write Burst Mode = Decompeted Burst Length
<pre># tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : at time 3220.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3386.0 ns REA # tb_u_mem_sys.SDRAM : at time 3580.0 ns PRE # tb_u_mem_sys.SDRAM : at time 3700.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3866.0 ns REA # tb_u_mem_sys.SDRAM : at time 4100.0 ns PRE # tb_u_mem_sys.SDRAM : at time 4220.0 ns LME # tb_u_mem_sys.SDRAM : #</pre>	CAS Latency = 2 Burst Length = 1 Burst Type = Sequential Write Burst Mode = Single Location Access : Bank = 0 Row = 0 D : Bank = 0 Row = 0, Col = 64, Data = 2147492677 CH : Bank = 0 Row = 0 : Bank = 0 Row = 837 D : Bank = 0 Row = 837, Col = 0, Data = 2099354 CH : Precharge All : Load Mode Register CAS Latency = 2 Burst Length = 8 Burst Type = Sequential Write Burst Mode = Programmed Burst Length : Bank = 0 Row = 222
<pre># tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : at time 3220.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3386.0 ns REA # tb_u_mem_sys.SDRAM : at time 3580.0 ns PRE # tb_u_mem_sys.SDRAM : at time 3700.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3866.0 ns REA # tb_u_mem_sys.SDRAM : at time 4100.0 ns PRE # tb_u_mem_sys.SDRAM : at time 4220.0 ns LME # tb_u_mem_sys.SDRAM : #</pre>	CAS Latency = 2 Burst Length = 1 Burst Type = Sequential Write Burst Mode = Single Location Access : Bank = 0 Row = 0 D : Bank = 0 Row = 0, Col = 64, Data = 2147492677 CH : Bank = 0 Row = 837 D : Bank = 0 Row = 837, Col = 0, Data = 2099354 CH : Precharge All : Load Mode Register CAS Latency = 2 Burst Length = 8 Burst Type = Sequential Write Burst Mode = Programmed Burst Length : Bank = 0 Row = 2202 D : Bank = 0 Row = 2202 D : Bank = 0 Row = 2202
<pre># tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : at time 3220.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3386.0 ns REA # tb_u_mem_sys.SDRAM : at time 3700.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3700.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3866.0 ns REA # tb_u_mem_sys.SDRAM : at time 4100.0 ns PRE # tb_u_mem_sys.SDRAM : at time 4220.0 ns IMF # tb_u_mem_sys.SDRAM : at time 4340.0 ns ACT # tb_u_mem_sys.SDRAM : at time 4506.0 ns REA # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : at time 4506.0 ns REA # tb_u_mem_sys.SDRAM : # tb</pre>	CAS Latency = 2 Burst Length = 1 Burst Type = Sequential Write Burst Mode = Single Location Access : Bank = 0 Row = 0 D : Bank = 0 Row = 0, Col = 64, Data = 2147492677 CH : Bank = 0 Row = 837 D : Bank = 0 Row = 837, Col = 0, Data = 2099354 CH : Precharge All : Load Mode Register CAS Latency = 2 Burst Length = 8 Burst Type = Sequential Write Burst Mode = Programmed Burst Length : Bank = 0 Row = 2202 D : Bank = 0 Row = 2202, Col = 0, Data = 2880163277 D : Bank = 0 Row = 2202, Col = 1, Data = 2805441741
<pre># tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : at time 3220.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3386.0 ns REA # tb_u_mem_sys.SDRAM : at time 3700.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3700.0 ns ACT # tb_u_mem_sys.SDRAM : at time 4100.0 ns REA # tb_u_mem_sys.SDRAM : at time 4220.0 ns LME # tb_u_mem_sys.SDRAM : at time 4340.0 ns ACT # tb_u_mem_sys.SDRAM : at time 4506.0 ns REA # tb_u_mem_sys.SDRAM : at time</pre>	CAS Latency = 2 Burst Length = 1 Burst Type = Sequential Write Burst Mode = Single Location Access : Bank = 0 Row = 0 D : Bank = 0 Row = 0, Col = 64, Data = 2147492677 CH : Bank = 0 Row = 837 D : Bank = 0 Row = 837, Col = 0, Data = 2099354 CH : Precharge All : Load Mode Register CAS Latency = 2 Burst Length = 8 Burst Type = Sequential Write Burst Mode = Programmed Burst Length : Bank = 0 Row = 2202 D : Bank = 0 Row = 2202, Col = 0, Data = 2880163277 D : Bank = 0 Row = 2202, Col = 1, Data = 305441741 D : Bank = 0 Row = 2202, Col = 2, Data = 1450235186
<pre># tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : at time 3220.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3386.0 ns REZ # tb_u_mem_sys.SDRAM : at time 3580.0 ns REZ # tb_u_mem_sys.SDRAM : at time 3700.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3866.0 ns REZ # tb_u_mem_sys.SDRAM : at time 4100.0 ns REZ # tb_u_mem_sys.SDRAM : at time 4220.0 ns IMF # tb_u_mem_sys.SDRAM : at time 4220.0 ns IMF # tb_u_mem_sys.SDRAM : at time 4340.0 ns ACT # tb_u_mem_sys.SDRAM : at time 4566.0 ns REZ # tb_u_mem</pre>	CAS Latency = 2 Burst Length = 1 Burst Type = Sequential Write Burst Mode = Single Location Access : Bank = 0 Row = 0 D : Bank = 0 Row = 0, Col = 64, Data = 2147492677 CH : Bank = 0 Row = 0 : Bank = 0 Row = 837 D : Bank = 0 Row = 837, Col = 0, Data = 2099354 CH : Precharge All : Load Mode Register CAS Latency = 2 Burst Length = 8 Burst Type = Sequential Write Burst Mode = Programmed Burst Length : Bank = 0 Row = 2202 D : Bank = 0 Row = 2202, Col = 0, Data = 2880163277 D : Bank = 0 Row = 2202, Col = 1, Data = 305441741 D : Bank = 0 Row = 2202, Col = 2, Data = 1450735188 D : Bank = 0 Row = 2202, Col = 3, Data = 878082202
<pre># tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : at time 3386.0 ns REZ # tb_u_mem_sys.SDRAM : at time 3386.0 ns REZ # tb_u_mem_sys.SDRAM : at time 3866.0 ns REZ # tb_u_mem_sys.SDRAM : at time 3866.0 ns REZ # tb_u_mem_sys.SDRAM : at time 4100.0 ns REZ # tb_u_mem_sys.SDRAM : at time 4220.0 ns LMF # tb_u_mem_sys.SDRAM : at time 4220.0 ns LMF # tb_u_mem_sys.SDRAM : at time 4340.0 ns REZ # tb_u_mem_sys.SDRAM : at time 4566.0 ns REZ # tb_u_mem_sys.SDRAM : at time 4566.0 ns REZ # tb_u_mem_sys.SDRAM : at time 4626.0 ns REZ # tb_u_mem_sys.SDRAM : at time</pre>	CAS Latency = 2 Burst Length = 1 Burst Type = Sequential Write Burst Mode = Single Location Access : Bank = 0 Row = 0 D : Bank = 0 Row = 0, Col = 64, Data = 2147492677 CH : Bank = 0 Row = 0 : Bank = 0 Row = 837 D : Bank = 0 Row = 837, Col = 0, Data = 2099354 CH : Precharge All : Load Mode Register CAS Latency = 2 Burst Length = 8 Burst Type = Sequential Write Burst Mode = Programmed Burst Length : Bank = 0 Row = 2202 D : Bank = 0 Row = 2202, Col = 0, Data = 2880163277 D : Bank = 0 Row = 2202, Col = 1, Data = 305441741 D : Bank = 0 Row = 2202, Col = 2, Data = 1450735188 D : Bank = 0 Row = 2202, Col = 3, Data = 878082202 D : Bank = 0 Row = 2202, Col = 4, Data = 27828286
<pre># tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : at time 3386.0 ns REZ # tb_u_mem_sys.SDRAM : at time 3386.0 ns REZ # tb_u_mem_sys.SDRAM : at time 3580.0 ns PRE # tb_u_mem_sys.SDRAM : at time 3700.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3866.0 ns REZ # tb_u_mem_sys.SDRAM : at time 4100.0 ns PRE # tb_u_mem_sys.SDRAM : at time 4220.0 ns LMF # tb_u_mem_sys.SDRAM : at time 4220.0 ns LMF # tb_u_mem_sys.SDRAM : at time 4220.0 ns LMF # tb_u_mem_sys.SDRAM : at time 4340.0 ns ACT # tb_u_mem_sys.SDRAM : at time 4506.0 ns REZ # tb_u_mem_sys.SDRAM : at time 4566.0 ns REZ # tb_u_mem_s</pre>	CAS Latency = 2 Burst Length = 1 Burst Type = Sequential Write Burst Mode = Single Location Access : Bank = 0 Row = 0 D : Bank = 0 Row = 0, Col = 64, Data = 2147492677 CH : Bank = 0 Row = 0 : Bank = 0 Row = 837 D : Bank = 0 Row = 837, Col = 0, Data = 2099354 CH : Precharge All : Load Mode Register CAS Latency = 2 Burst Length = 8 Burst Type = Sequential Write Burst Mode = Programmed Burst Length : Bank = 0 Row = 2202 D : Bank = 0 Row = 2202, Col = 0, Data = 2880163277 D : Bank = 0 Row = 2202, Col = 1, Data = 305441741 D : Bank = 0 Row = 2202, Col = 2, Data = 1450735188 D : Bank = 0 Row = 2202, Col = 3, Data = 878082202 D : Bank = 0 Row = 2202, Col = 3, Data = 878082202 D : Bank = 0 Row = 2202, Col = 3, Data = 878082202 D : Bank = 0 Row = 2202, Col = 5, Data = 4257882896 D : Bank = 0 Row = 2202, Col = 5, Data = 4257882896
<pre># tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : at time 3220.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3386.0 ns REA # tb_u_mem_sys.SDRAM : at time 3866.0 ns REA # tb_u_mem_sys.SDRAM : at time 3700.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3866.0 ns REA # tb_u_mem_sys.SDRAM : at time 4100.0 ns PRE # tb_u_mem_sys.SDRAM : at time 4220.0 ns LME # tb_u_mem_sys.SDRAM : at time 4220.0 ns LME # tb_u_mem_sys.SDRAM : at time 4340.0 ns ACT # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : at time 4566.0 ns REA # tb_u_mem_sys.SDRAM : at time 4566.0 ns REA # tb_u_mem_sys.SDRAM : at time 4566.0 ns REA # tb_u_mem_sys.SDRAM : at time 4666.0 ns REA # tb_u_mem_sys.SDRAM : at time 4706.0 ns REA # tb_u_mem</pre>	CAS Latency = 2 Burst Length = 1 Burst Type = Sequential Write Burst Mode = Single Location Access : Bank = 0 Row = 0 D : Bank = 0 Row = 0, Col = 64, Data = 2147492677 CH : Bank = 0 Row = 0 : Bank = 0 Row = 837 D : Bank = 0 Row = 837, Col = 0, Data = 2099354 CH : Precharge All : Load Mode Register CAS Latency = 2 Burst Length = 8 Burst Type = Sequential Write Burst Mode = Programmed Burst Length : Bank = 0 Row = 2202 D : Bank = 0 Row = 2202, Col = 0, Data = 2880163277 D : Bank = 0 Row = 2202, Col = 1, Data = 305441741 D : Bank = 0 Row = 2202, Col = 2, Data = 1450735188 D : Bank = 0 Row = 2202, Col = 3, Data = 878082202 D : Bank = 0 Row = 2202, Col = 4, Data = 2557882896 D : Bank = 0 Row = 2202, Col = 5, Data = 4210752250 D : Bank = 0 Row = 2202, Col = 5, Data = 4210752250 D : Bank = 0 Row = 2202, Col = 5, Data = 4210752250 D : Bank = 0 Row = 2202, Col = 5, Data = 4210752250 D : Bank = 0 Row = 2202, Col = 5, Data = 4210752250 D : Bank = 0 Row = 2202, Col = 5, Data = 4210752250 D : Bank = 0 Row = 2202, Col = 5, Data = 320383023 D : Bank = 0 Row = 2202, Col = 5, Data = 320383023 D : Bank = 0 Row = 2202, Col = 5, Data = 4210752250 D : Bank = 0 Row = 2202, Col = 5, Data = 421075250 D : Bank = 0 Row = 2202, Col = 5, Data = 421075250 D : Bank = 0 Row = 2202, Col = 5, Data = 421075250 D : Bank = 0 Row = 2202, Col = 5, Data = 421075250 D : Bank = 0 Row = 2202, Col = 5, Data = 421075250 D : Bank = 0 Row = 2202, Col = 5, Data = 421075250 D : Bank = 0 Row = 2202, Col = 5, Data = 421075250 D : Bank = 0 Row = 2202, Col = 5, Data = 421075250 D : Bank = 0 Row = 2202, Col = 5, Data = 421075250 D : Bank = 0 Row = 2202, Col = 5, Data = 421075250 D : Bank = 0 Row = 2202, Col = 5, Data = 421075250 D : Bank = 0 Row = 2202, Col = 5, Data = 421075250 D : Bank = 0 Row = 2202, Col = 5, Data = 421075250 D : Bank = 0 Row = 2202, Col = 5, Data = 421075250 D : Bank = 0 Row = 202, Col = 5, Data = 421075250 D : Bank = 0 Row = 202, Col = 5, Data = 421075250 D : Bank = 0 Row = 202, Col = 5, Data = 4
<pre># tb_u_nem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : at time 3220.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3386.0 ns REA # tb_u_mem_sys.SDRAM : at time 3580.0 ns PRE # tb_u_mem_sys.SDRAM : at time 3700.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3700.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3866.0 ns REA # tb_u_mem_sys.SDRAM : at time 4100.0 ns PRE # tb_u_mem_sys.SDRAM : at time 4220.0 ns LME # tb_u_mem_sys.SDRAM : at time 4220.0 ns LME # tb_u_mem_sys.SDRAM : at time 4340.0 ns ACT # tb_u_mem_sys.SDRAM : at time 4506.0 ns REA # tb_u_mem_sys.SDRAM : at time 4546.0 ns REA # tb_u_mem_sys.SDRAM : at time 4546.0 ns REA # tb_u_mem_sys.SDRAM : at time 4566.0 ns REA # tb_u_mem_sys.SDRAM : at time 4666.0 ns REA # tb_u_mem_sys.SDRAM : at time 4706.0 ns REA # tb_u_mem_s</pre>	CAS Latency = 2 Burst Length = 1 Burst Type = Sequential Write Burst Mode = Single Location Access : Bank = 0 Row = 0 D : Bank = 0 Row = 0, Col = 64, Data = 2147492677 CH : Bank = 0 Row = 837 D : Bank = 0 Row = 837, Col = 0, Data = 2099354 CH : Precharge All : Load Mode Register CAS Latency = 2 Burst Length = 8 Burst Type = Sequential Write Burst Mode = Programmed Burst Length : Bank = 0 Row = 2202, D : Bank = 0 Row = 2202, Col = 0, Data = 2880163277 D : Bank = 0 Row = 2202, Col = 1, Data = 305441741 D : Bank = 0 Row = 2202, Col = 2, Data = 1450735188 D : Bank = 0 Row = 2202, Col = 3, Data = 878082202 D : Bank = 0 Row = 2202, Col = 4, Data = 2557882896 D : Bank = 0 Row = 2202, Col = 5, Data = 4210752250 D : Bank = 0 Row = 2202, Col = 5, Data = 320383023 D : Bank = 0 Row = 2202, Col = 7, Data = 320383023 D : Bank = 0 Row = 2202, Col = 7, Data = 320383023
<pre># tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : at time 3220.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3386.0 ns REA # tb_u_mem_sys.SDRAM : at time 3580.0 ns PRE # tb_u_mem_sys.SDRAM : at time 3700.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3700.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3866.0 ns REA # tb_u_mem_sys.SDRAM : at time 4100.0 ns PRE # tb_u_mem_sys.SDRAM : at time 4220.0 ns IMF # tb_u_mem_sys.SDRAM : at time 4220.0 ns IMF # tb_u_mem_sys.SDRAM : at time 4220.0 ns IMF # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : at time 4340.0 ns ACT # tb_u_mem_sys.SDRAM : at time 4506.0 ns REA # tb_u_mem_sys.SDRAM : at time 4566.0 ns REA # tb_u_mem_sys.SDRAM : at time 4766.0 ns REA # tb_u_mem_sys.SDRAM : at time 4766</pre>	CAS Latency = 2 Burst Length = 1 Burst Type = Sequential Write Burst Mode = Single Location Access : Bank = 0 Row = 0 D : Bank = 0 Row = 0, Col = 64, Data = 2147492677 CH : Bank = 0 Row = 837 D : Bank = 0 Row = 837, Col = 0, Data = 2099354 CH : Precharge All : Load Mode Register CAS Latency = 2 Burst Length = 8 Burst Type = Sequential Write Burst Mode = Programmed Burst Length : Bank = 0 Row = 2202, Col = 0, Data = 2880163277 D : Bank = 0 Row = 2202, Col = 1, Data = 305441741 D : Bank = 0 Row = 2202, Col = 1, Data = 305441741 D : Bank = 0 Row = 2202, Col = 3, Data = 1450735188 D : Bank = 0 Row = 2202, Col = 3, Data = 478082202 D : Bank = 0 Row = 2202, Col = 5, Data = 4210752250 D : Bank = 0 Row = 2202, Col = 5, Data = 3203383023 D : Bank = 0 Row = 2202, Col = 7, Data = 3735936685
<pre># tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : at time 3220.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3386.0 ns REA # tb_u_mem_sys.SDRAM : at time 3580.0 ns PRE # tb_u_mem_sys.SDRAM : at time 3700.0 ns ACT # tb_u_mem_sys.SDRAM : at time 3700.0 ns ACT # tb_u_mem_sys.SDRAM : at time 4100.0 ns PRE # tb_u_mem_sys.SDRAM : at time 4100.0 ns PRE # tb_u_mem_sys.SDRAM : at time 4220.0 ns IMF # tb_u_mem_sys.SDRAM : at time 4220.0 ns IMF # tb_u_mem_sys.SDRAM : at time 4220.0 ns IMF # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : # tb_u_mem_sys.SDRAM : at time 4340.0 ns ACT # tb_u_mem_sys.SDRAM : at time 4546.0 ns REA # tb_u_mem_sys.SDRAM : at time 4666.0 ns REA # tb_u_mem_sys.SDRAM : at time 4746.0 ns REA # tb_u_mem_sys.SDRAM : at time 4746</pre>	CAS Latency = 2 Burst Length = 1 Burst Type = Sequential Write Burst Mode = Single Location Access : Bank = 0 Row = 0 D : Bank = 0 Row = 0, Col = 64, Data = 2147492677 CH : Bank = 0 Row = 837 D : Bank = 0 Row = 837, Col = 0, Data = 2099354 CH : Precharge All : Load Mode Register CAS Latency = 2 Burst Length = 8 Burst Type = Sequential Write Burst Mode = Programmed Burst Length : Bank = 0 Row = 2202 D : Bank = 0 Row = 2202, Col = 0, Data = 2880163277 D : Bank = 0 Row = 2202, Col = 1, Data = 305441741 D : Bank = 0 Row = 2202, Col = 2, Data = 1450735188 D : Bank = 0 Row = 2202, Col = 3, Data = 878082202 D : Bank = 0 Row = 2202, Col = 4, Data = 2557882896 D : Bank = 0 Row = 2202, Col = 5, Data = 4210752250 D : Bank = 0 Row = 2202, Col = 7, Data = 3735936685

Figure 7.3.9 SRAM's read/write transcript

Chapter 8: Discussion and Conclusion

8.1 Discussion and Conclusion

Virtual memory act as a barrier to hide the physical memory specifications from the users and programmers. Adoption on virtual memory requires the translation of virtual addresses to physical addresses. Translating a virtual address to physical address will need to access its page table which is stored in main memory. Although it might seems a little abit troublesome to translate the addresses before accessing the memory, but virtual memory is the reason why we can have several programs running on the system at the same time, it totally worth the effort.

Caches and Translation Lookaside Buffer (TLB) are implemented to boost up the performance of the whole system. Without caches or TLB, the processor will have to obtain data or instruction directly from main memory, which is probably a DRAM. Accessing DRAM once can take up to 40 to 50 clock cycles. In this case, the performance of the system will be limited by the memory regardless how fast the processor is. Caches and TLBs are temporary buffers which are small but fast to hold a small fraction of the data or instruction (for caches) and page table (for TLB) in main memory. Reading from caches and TLB will only need one clock cycle, or maybe two for caches, and writing to caches will have to take two to three clock cycles only. Compare this 3 clock cycles with 50 clock cycles, what a huge boost up. However, we will have to bear the penalties when read miss or write miss. Several processes will have to go through in order to handle the misses. In this project, 64 entries TLBs, 2MB Caches and 16MB of SDRAM have been successfully put together as a whole Memory System. Its behaviour has been tested during the verification stage. Seems like it works fine, just that the cpu stall signal working not quite well, it does not asserted when the cache write hit, which requires 2 clock cycles. Furthermore, the test cases in the verification stage is not complete, so we still cannot justify that the memory system is complete yet.

8.2 Future Works

The Memory System is not complete yet, but nearly. The cpu stall signal need to be fixed and the Memory System need to be tested with complete test cases to ensure it is working fine.

There are some enhancements that can be done on this Memory System. Add a write buffer to the cache so that the data that is going to be written back to SDRAM can wait, let the data requested by CPU can be fetched from SDRAM first, this will further boost up the performance of the system. Enhance the SDRAM Controller, so that it can control more than one SDRAM chip, the systen will have more physical memory. Add another victim buffer to the cache, so that the data that is going to be thrown away can stay inside, they might have another chance to be called by the CPU again, who knows?
References

- [1] Mittra, S. (1995) IEEE Xplore/IEL. A Virtual Memory Management Scheme For Simulation Enviroment, 1 (2012), p.114,115,116.
- [2] JAY SMITH, A. (2010) IEEE Xplore/IEL. A Comparative Study of Set Associative Memory Mapping Algorithms and Their Use for Cache and Main Memory, p.121-128.
- [3] Design Gateway Corporation (2002) SDRAM CONTROLLER DESIGN MANUAL. [online] Available at: http://www.dgway.com/products/IP/IP-SDRAMCTL.pdf [Accessed: 20 July 2012].
- [4] G. Cragon, H. (1996) *Memory Systems and Pipelined Processors Jones and Bartlett Books in Computer Science*. Jones & Bartlett Publishers, Inc..
- [5] L. Hennessy, J. and A. Patterson , D. (2004) Computer Organization and Design the hardware/software interface. 3rd ed. India: Morgan Kaufman Publishers.
- [6] Sweetman, D. (2012) See MIPS Run . 2nd ed. Boston: Denise E. M. Penrose.
- [7] Zhi Kang Oon, "SDRAM Enhancement: Design of a SDRAM Controller WISHBONE Industrial Standard" University of Tunku Abdul Rahman, Faculty of Information and Communication Technology, 2008.

References

- [8] Chun Jin Teoh, "RISC32 Interrupt Handling or Enhanced RISC32 Architecture" University of Tunku Abdul Rahman, Faculty of Information and Communication Technology, 2012.
- [9] Kim Yuh Change, "Design and Development of Memory System for 32 bits 5stage Pipelined Processor: Main Memory (DRAM) Integration" University of Tunku Abdul Rahman, Faculty of Information and Communication Technology, 2013.
- [10] Khoo Chong Siang, "Design and Development of Memory System for 32bit 5stage pipeline processor: I-cache and D-cache Integration" University of Tunku Abdul Rahman, Faculty of Information and Communication Technology, 2013.