
TheTheTheThe DesignDesignDesignDesign andandandand DevelopmentDevelopmentDevelopmentDevelopment OfOfOfOf AAAA

BranchBranchBranchBranch TargetTargetTargetTarget BufferBufferBufferBuffer BasedBasedBasedBased

OnOnOnOn AAAA 2-bit2-bit2-bit2-bit PredictionPredictionPredictionPrediction SchemeSchemeSchemeScheme ForForForFor

AAAA 32-bit32-bit32-bit32-bit RISC32RISC32RISC32RISC32 PipelinePipelinePipelinePipeline ProcessorProcessorProcessorProcessor

BY

Ho Ming Cheng

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONS)

COMPUTER ENGINEERING

Faculty of Information and Communication Technology

Department of Information Technology and Engineering

May 2013

2

3

DECLARATIONDECLARATIONDECLARATIONDECLARATIONOFOFOFOFORIGINALITYORIGINALITYORIGINALITYORIGINALITY

I declare that this report entitled “TheTheTheThe DesignDesignDesignDesign andandandand DevelopmentDevelopmentDevelopmentDevelopment OfOfOfOf AAAA BranchBranchBranchBranch TargetTargetTargetTarget

BufferBufferBufferBuffer BasedBasedBasedBased OnOnOnOn AAAA 2-bit2-bit2-bit2-bit PredictionPredictionPredictionPrediction SchemeSchemeSchemeScheme ForForForFor AAAA 32-bit32-bit32-bit32-bit RISC32RISC32RISC32RISC32 PipelinePipelinePipelinePipeline

ProcessorProcessorProcessorProcessor” is my own work except as cited in the references. The report has not been

accepted for any degree and is not being submitted concurrently in candidature for any

degree or other award.

Signature : _________________________

Name : ____________________________

Date : _____________________________

4

ACKNOWLEDGEMENTSACKNOWLEDGEMENTSACKNOWLEDGEMENTSACKNOWLEDGEMENTS

I would like to say thanks a lot to my final year project supervisor, Mr. Mok Kai Ming

who guided me through out the project with the right direction to complete my project.

Without his guidance, the project might not be easily completed, and really thanks for

spending so much of precious time guiding me through.

Next, I wish to thanks my friends. They have been so supportive when I am facing

problem. They have been helping in releasing my pressure and tension while doing the

project.

Last but not the least, I would like to say a big thank you to my family for their support

and encouragement to continue to work on and complete the course.

Ho Ming Cheng

5

ABSTRACTABSTRACTABSTRACTABSTRACT

This project is the enhance of the Branch Prediction development of the RISC32

processor based on RISC Architecture that previously processor is developed in

Universiti Tunku Abdul Rahman under Faculty of Information and Communication

Technology. After reviewing the previous projects, there is a part where the branch

prediction is not complete. The purpose of this project is remodeling the branch

prediction block of previous design and applying the cache technology as the buffer of

branch prediction. All the modeling will be using HDL (Hardware Description Language)

which is Verilog and verification will be done to test the compatibility.

6

TableTableTableTable ofofofof ContentsContentsContentsContents

DECLARATION OF ORIGINALITY.. 3
ACKNOWLEDGEMENTS... 4
ABSTRACT...5
Table of Contents... 6
List of Figures.. 7
Chapter 1 - Background... 10

1.1.MIPS - 32-bit RISC Processor... 10
1.2 Hazard - Control Hazard.. 10
1.3 Motivation and Problem Statement..11
1.4 Project Scope..11
1.5 Project Objective..11
1.6 Contribution and Innovation.. 12

Chapter 2 - Literature Review..13
2.1 Branch Target Buffer (BTB)..13
2.2 Cache Memory Design...14
2.3 Associativity of Cache... 14
2.4 Operation of Cache.. 17
2.5 Performance of Cache.. 19
2.6 Cache Miss...20

Chapter 3 - Methodology and Technology Involved... 21
3.1 Design Methodology..21

3.1.1 System Level Design.. 22
3.1.2 Micro-architecture Design.. 22

3.2 Design Tools.. 25
3.3 Design Language..25

Chapter 4 - System Specifications... 26
4.1 Features.. 26
4.2 Naming Convention... 26

Chapter 5 - Micro-architecture Specification of Branch Prediction Block........................28
5.1 Branch Prediction Block.. 28
5.2 I/O Pin Descriptions...29
5.3 Prediction Transition..33
5.4 Contents of BTB.. 34
5.5 Branch Target Table...34
5.6 Branch Target Dataflow...35
5.7 Test Plan...36

Chapter 6 - Verification Specification... 38
6.1 Test Program for BPB..38
6.2 Verification Result... 39
7.1 Discussion.. 58
7.2 Future Works..58

7

ListListListList ofofofof FiguresFiguresFiguresFigures

Figure 2.1 Direct Mapping in Cache Memory ---6

Figure 2.2 Fully Associative Mapping in Cache Memory--------------------------------------7

Figure 2.3 Set Associative Mapping in Cache Memory---7

Figure 2.4 Read Hit Operation--8

Figure 2.5 Read Miss Operation--8

Figure 2.6 Write Through Operation---9

Figure 2.7 Write Back Operation--- 10

Figure 2.8 Miss Rate versus Cache Size with Different Mapping Techniques------------- 10

Figure 3.1 General Design Flow without Physical Design and Logic Synthesis-----------12

Figure 3.2 Data flow of the Branch Prediction Block--14

Figure 5.1 Branch Prediction Block Diagram---19

Figure 5.2 Prediction Transition-- 24

Figure 5.3 Implemented Branch Prediction Table--25

Figure 5.4 Dataflow of the BTB--26

8

ListListListList ofofofof TablesTablesTablesTables

Table 4.1 RISC32 Features-- 17

Table 4.2 Naming Convention-- 18

Table 5.1 BPB Input Pin Description---21

Table 5.2 BPB Output Pin Description---23

Table 5.3 Branch Target Buffer---25

Table 5.4 Test Plan of BPB--27

9

ListListListList ofofofof AbbreviationsAbbreviationsAbbreviationsAbbreviations

BPB Branch Prediction Block

BTB Branch Target Buffer

ID Instruction Decode

IF Instruction Fetch

I/O Input Output

LRU Least Recently Used

MIPS Microprocessor without Interlocked Pipelined Stages

PC Program Counter

RISC Reduced Instructions Set Computer

RISC32 RISC32 Micro-processor

RTL Register Transfer Level

10

ChapterChapterChapterChapter 1111 ---- BackgroundBackgroundBackgroundBackground

1.1.MIPS1.1.MIPS1.1.MIPS1.1.MIPS ---- 32-bit32-bit32-bit32-bit RISCRISCRISCRISC ProcessorProcessorProcessorProcessor

MIPS is the short form for Microprocessor without Interlock Pipeline Stages. It is a

reduced instruction set computer (RISC) instruction set architecture (ISA) developed by

MIPS Technologies.

Its primary implementations are embedded system, eg. Windows CE devices, video game

consoles and so on. It also has several optional extensions that are available, such as

MIP-3D which added new instructions for improving the 3D graphics applications'

performance, MDMX that for accelerating multimedia applications and so on.

1.21.21.21.2 HazardHazardHazardHazard ---- ControlControlControlControl HazardHazardHazardHazard

Hazards are commonly occur in the pipeline microprocessor. Basically there are three

categories, which is structural hazard, data hazard and control hazard. Throughout this

report, it only will be focusing on the control hazard.

Control hazard, is also known as the branching hazard, it is an attempt to make decision

on the program flow before the condition has been evaluated and the new arrival of PC

(Program counter) target address.

Three events that cause control hazard to be occurred:

� Conditional branch: beq, bne

� Unconditional branch: j, jal, jr

� Exceptions

The program flow will not be affected if the branch is untaken and it will follow the

pre-designed flow. If the branch is taken, the program flow will be incorrect. There are

multiple ways designed to solve this problem, such as stalling the next instruction until

the branch is completed, flushing all the other stages in the pipeline that causing huge

11

delay into the system and never the less, a hardware implementation.

1.31.31.31.3 MotivationMotivationMotivationMotivation andandandand ProblemProblemProblemProblem StatementStatementStatementStatement

Based on the ongoing project that has been developing in the Faculty of Information and

Communication Technology of Universiti Tunku Abdul Rahman, it is consists of RISC32

RISC processor. Following reasons make the initiation of motivations of this project:

The current problem found:

� The branch prediction of the previous design is not well-implemented

� The design of the BTB is not fully applied

� The branch prediction has large latency

� Design to overcome control hazard not well-developed

1.41.41.41.4 ProjectProjectProjectProject ScopeScopeScopeScope

The main purpose of this project is to build a 2-bit prediction scheme BTB for the

RISC32 RISC processor. BTB is the main component in the branch prediction. Building

the BTB could improve the performance of the CPU during the branch instructions. In

order to build the BTB, cache memory design is needed. Following precautions should be

taken place:

� Performance of BTB

� Read and write of BTB

� Hit rate (Branch taken) of BTB

� Verification methodology testing the overall function of the BTB

� Improve the previous design of BTB

1.51.51.51.5 ProjectProjectProjectProject ObjectiveObjectiveObjectiveObjective

The main objective of the project is to design and develop a BTB based on a 2-bit

prediction scheme. In respect to this objective, there are some sub-objectives to be

archived as follow:

12

� Analysis - Cache memory design and its performance, mapping and the

operation of cache memory.

� Specification Design and Development - Micro-architecture specification of

the BTB will be defined according to the instruction of the program

� RTL Modeling - BTB will be modeled in ModelSim, using HDL, hardware

language, which Verilog is used in this project. The model will be formed

by using RTL (Register Transfer Level)

� Verification - Multiple test cases will be developed to run testing and verify

the functionality of BTB

1.61.61.61.6 ContributionContributionContributionContribution andandandand InnovationInnovationInnovationInnovation

As a short summary of above problem statement, there is an incomplete 32-bits RISC

microprocessor core-based development environment being develop. The development

environment refers to the following availability:

� A well-developed design document, includes chip specification and

micro-architecture specification

� A fully functional well-developed BTB in the form of RTL written in

Verilog

� A well-developed verification environment for BTB. The verification

specification including suitable verification methodology, verification

techniques, test plans, test program and so on.

With the new BTB is being developed, the control hazards in RISC32 processor can be

solved. With the design and development in RTL model, researcher can quickly verify

model obtaining results, without worrying the development of verification environment

and modeling environment. Research work could be speed up significantly.

13

ChapterChapterChapterChapter 2222 ---- LiteratureLiteratureLiteratureLiterature ReviewReviewReviewReview

2.12.12.12.1 BranchBranchBranchBranch TargetTargetTargetTarget BufferBufferBufferBuffer (BTB)(BTB)(BTB)(BTB)

Due to the incompetency of the BHT design in the MIPS32 RISC processor, a better

buffer design is introduced to solve the branching problems. The main reason why BHT

is incompetent because it just give information whether the branch is taken or untaken, as

what the information needed for the CPU is much more than just results of previous

occurrence, so its always fine for the whole system if branches are never taken, problem

comes when a branch is taken.

As to improve the previous design, BTB has a column which stores the branch target

address or "the next address" as well as combining the design of the BHT. BTB can

reduce the penalty of branches in the pipeline processor as it predicted the target of

branch and stored the information needed in it. For a 5-stages pipeline processor, it

become a must for the pipeline to know the next address, either the following instruction

address(branch untaken condition) or branch target address(branch taken condition). In

BTB, it has prediction bit which is used to predict whether the branch is taken or untaken.

If the entry is exist in the BTB, which means it is a branch instruction as well as it occurs

at least once. Unless it occur for the first time, or it is a non-branch instruction. As if the

branch is predicted taken, it outputs the branch target address or else it loads the next

sequence instruction address. If the branch is mis-predict taken, ID stage is being flushed

and the next sequence address is loaded into the IF stage and if it is mis-predict untaken,

BTB is updated and ID stage is being flushed as the next instruction address is to be

cleared and the branch target address is to be loaded into the pipeline.

In order to implement a BTB, a fast but small memory is needed in this place, which

means cache memory is made as the primary choice in this case. Other than its faster in

retrieving the data inside the cache memory, it consume less power than other type of

memory design.

14

2.22.22.22.2 CacheCacheCacheCache MemoryMemoryMemoryMemory DesignDesignDesignDesign

Cache memory is just like RAM, basically it is a small memory and the operation of

retrieving and updating is much faster compare to the main memory. The accessing time

taken is shorter than main memory. Cache memory is very commonly used in the

computer system to speed up the processors' speed as well as its overall performance.

Currently, there is a few different level of cache memory which is L1, L2, and L3. It has a

smaller capacity but the access time is few cycles lesser than the main memory which

give it a big advantage. Frequently used data is stored in the cache memory and the least

using one will be flushed or removed to replace with new frequently used data.

2.32.32.32.3AssociativityAssociativityAssociativityAssociativity ofofofof CacheCacheCacheCache

The replacement policy decides the entry of the cache for cache memory. As it has been

brought out continuously that cache memory is a small and fast memory, so the data in

the cache should be brought in and out of the cache memory continuously. The

performance of cache memory mapping function is the key to speed. There are three

types of mapping techniques:

� Direct Mapping - Each location has a specific place that held the data

� Set Associative Mapping - Specifies a set of cache lines for each memory

block

� Fully Associative Mapping - Entire cache is being searched for an address.

All of the entries can choose which block to be entered randomly within

the cache.

Direct mapping, it is the easiest implementation. It specifies a single cache line for each

memory block. In this mapping technique, part of the memory block address is to be used

as index for cache to identify where the data is being held. It does not need any

replacement algorithm because the new feeding data will be replacing all the old entries

in the cache memory. It is more unpredictable but it gives a better performance.

15

Figure 2.1 Direct Mapping in Cache Memory

Fully associative mapping is more complex, as it is much flexible than the others. It needs

a replacement algorithm to selectively choose on the old entry to be removed. The

replacement policy is free to choose any entry in the cache to hold a copy. All tag fields is

being searched when the processor needs an address, to determine whether the data entry

is in the cache memory or not. Each tag line is required to compare withe the desired

address with tag field. All the tag fields are being checked parallelly.

16

Figure 2.2 Fully Associative Mapping in Cache Memory

Set associative mapping is the combination of both direct mapping technique and fully

associative mapping technique. The part that uses the direct mapping technique is that the

blocks of data will be mapping into cache as specific set, but they can be in any N-cache

block frames within each set, which is the associative mapping technique occur.

Figure 2.3 Set Associative Mapping in Cache Memory

17

2.42.42.42.4 OperationOperationOperationOperation ofofofof CacheCacheCacheCache

The main operations of the cache memory are the read operation and write operation. For

both of the operation, there are two scenarios which can be happening, a "hit" and a

"miss". A "hit" means the data acquire is in the cache memory while a "miss" means the

data acquire is not in the cache memory. When a data is needed, and as if the data is in the

cache memory, it would be a "READ HIT", while as if the data does not appear in the

cache memory, it would be a "READ MISS".

Figure 2.4 Read Hit Operation

Figure 2.5 Read Miss Operation

On the other hand, the write operation is slightly different from the read operation in both

18

of the occurring scenarios. "Hit" in the write operation means "WRITE BACK" or

"WRITE THROUGH" and "miss" means "WRITE ALLOCATE" or "NO WRITE

ALLOCATE". For "WRITE ALLOCATE", the data is first loaded into the cache from

main memory and followed by a WRITE HIT action. For "NO WRITE ALLOCATION",

the data is not loaded into the cache memory and it directly modified in the main memory

only. Similarly, "WRITE THROUGH" operation occurs on both cache memory and main

memory where modified data is being written to both of them. "WRITE BACK" is an

operation where it writes the modified data into the cache memory only. The status bit of

the cache memory (dirty bit) is used to indicate whether it is modified (dirty) or

unmodified (clean), so if it is a "clean", it means the data is not written on a "miss".

Figure 2.6 Write Through Operation

19

Figure 2.7 Write Back Operation

2.52.52.52.5 PerformancePerformancePerformancePerformance ofofofof CacheCacheCacheCache

The performance of cache memory can be increased as the size of the cache increases.

Larger the size of the cache memory, the miss rate of cache of different associativity and

sizes decrease rapidly. The following graph can show us the result:

Figure 2.8 Miss Rate versus Cache Size with Different Mapping Techniques

Fully associative cache seems to have the best performance after all but yet it is the most

complex one, while the direct mapped cache has the worst performance, yet the simplest

between the three mapping techniques. Set associative cache's performance lies between

both of the cache above. As the N value increases, the performance of the set associative

20

cache increases and it tends to be having the same result as the fully associative cache.

2.62.62.62.6 CacheCacheCacheCache MissMissMissMiss

Cache memory is created to improve the performance of the CPU, so in order to do so,

cache memory should have a high "hit" rate. There are some misses that its unavoidable

and it can be categories to three different misses (known as Three Cs):

� Compulsory Miss - It occurs when the very first access to a block that is

unavailable in the cache and must be brought into the cache. It also can be

called as the first reference miss or cold-start miss. The associativity and

size of cache do not make any difference to the compulsory miss, but if the

cache has the pre-fetching function, compulsory miss would be reduced.

� Capacity Miss - It occurs due to the finite size of the cache memory. This

occurs because the cache memory size is small and it is unable to contain

all the blocks needed during the execution of program as the blocks are

being discarded and later retrieved.

� Conflict Miss - It occurs when there are multiple of memory accesses

mapped into the same index set in the cache for the fully associative

mapping technique. It also can be known as the interfere miss or collision

miss.

21

ChapterChapterChapterChapter 3333 ---- MethodologyMethodologyMethodologyMethodology andandandand TechnologyTechnologyTechnologyTechnology InvolvedInvolvedInvolvedInvolved

3.13.13.13.1 DesignDesignDesignDesign MethodologyMethodologyMethodologyMethodology

Design methodology is the method of development of system design. There are a few

guideline to be fulfill:

� Correct functionality

� Satisfaction of performance and power goals

� Catching bugs early

� Good documentation

In this project, top-down design methodology will be used. This methodology keeps all

level of the hierarchy with its own functionality. This methodology also provides

advantages such as functionality, performance, power consumption and area of silicon.

22

Figure 3.1 General Design Flow without Physical Design and Logic Synthesis

3.1.13.1.13.1.13.1.1 SystemSystemSystemSystem LevelLevelLevelLevel DesignDesignDesignDesign

System level design is the design of chip specification. The system level design can be

sorted as two categories:

� Written Specification: English written specification of function,

performance and time, cost of design included as well. Furthermore,

function specification, verification specification, development plan and

packaging specification are included as well.

� Executable Specification: High level language is used to program

according to the design features and functionalities. The language here

refers to Verilog, VHDL and etc..

3.1.23.1.23.1.23.1.2 Micro-architectureMicro-architectureMicro-architectureMicro-architecture DesignDesignDesignDesign

Micro-architecture design is the development of RTL design of the system. There are a

few information is included, such as:

� Overview of functional description

� I/O pin description

� I/O timing requirements

� Function table

� Finite-state machine (FSM) and Algorithm-state machine (ASM)

� Test plan

RTL modeling with programming language can be done after the development of

micro-architecture specification. The modeling of design can be done by software and

verification can be done by setting test plan, timing and functionality verifications.

23

Figure 3.2 Data flow of the Branch Prediction Block

In the 2-bit scheme branch prediction, it need a "wrong" to strengthen the correct

prediction. Either taken or untaken, it needs to be "11" or "00" as a "strong" confirmation

of the condition.

From the data flow above, if the current pc is not appear in the buffer entry, it will be a

false for the prediction request and also "Read miss" of the BTB. We then further inspect

whether it is a branch instruction or a non-branch instruction. If it is a non-branch

instruction, IF stage will just feed the next PC value and no entry is added into the BTB.

On the other hand, if it is a branch instruction, the inspection must go further deep. If it is

a branch equal instruction (beq), it suppose to be taken, but resulting as untaken in the

BPB as it is not appear in the BTB, so scenario 1 is to be executed. For scenario 1, the ID

stage will be flushed, pc will be given the branch target address. The BTB will be updated,

24

prediction bit will be a "weakly taken" (10) and the LRU state of all blocks with the same

index will be updated. If it is not a equal, Scenario 2 is executed, which means branch is

untaken, the branch is then correctly predicted, it will continue to execute the next

sequential address in the IF stage.

If the prediction request is true, which means the current pc is an entry in the BTB, it will

be a "Read Hit". If the prediction is predicted as taken, in ID stage, it detected a branch

and it is evaluated as taken, the prediction is correct. As a result, Scenario 3 is to be

executed. No new entry added as it exists in the BTB, the prediction bit is changed to

"Strongly taken" and the LRU state of the same index is being updated. In this case, we

need not to flush the ID stage.

If the prediction request is true, at ID stage, it detects a branch and evaluated as untaken,

in this case, the prediction bit will be changed and the LRU state bit need to be update as

well, but in this case, flushing of ID stage is needed as it is a misprediction case. It is

Scenario 4.

For Scenario 5, it will occur when the prediction request is true, at ID stage, it detected a

branch and the condition is evaluated as taken, which resulted as misprediction. The

prediction bit of the block and the LRU state of the same index will be updated and due to

misprediction, ID stage will be flushed.

Last but not the least, for scenario 6, it is executed when the prediction request is true, it

detected a branch at ID stage and it is untaken, in this case, it has no misprediction. The

prediction will be updated as "Strongly untaken" and the LRU state of the same index

will be updated.

25

For reading of the BTB, it uses pc at the IF stage as tag and index. The tag here uses to

find which cache it is stored and index uses as a guide to the block which has the data we

needed. The tag bit here takes IF.pc[31:12] and index bit takes IF.pc[13:2].

For the update of BTB, it uses the pc at the ID stage as the tag and index of the entry. The

tag bit, which is ID.pc[31:12] will be store in as part of the entry as well. The index, as

we uses 4X1K cache, it consists of 10 bits, ID.pc[13:2] as a guide of which space that the

entry should store the data to. In both cases, the last two bits of pc is ignored.

3.23.23.23.2 DesignDesignDesignDesign ToolsToolsToolsTools

The main development tool used in this project is ModelSim SE 10.2b. It is a simulation

and debugging tool to run this project. It support the HDLs like Verilog and VHDL as

well as RTL simulation and gate-level design. It is equipped with graphical user interface

(GUI) that shorten design time and keep debugging and simulation easy. With the aid of

GUI, errors and warnings can be easily trace back during compilation and simulation.

Tutorials and documentations are provided by ModelSim as well as technical support to

users.

3.33.33.33.3 DesignDesignDesignDesign LanguageLanguageLanguageLanguage

The design language being used here is HDL (Hardware Description Language). The

HDL used here is Verilog. Verilog is standardized as IEEE 1364, used to model electronic

systems. It is commonly used to design and verify digital circuitries at the RTL.

26

ChapterChapterChapterChapter 4444 ---- SystemSystemSystemSystem SpecificationsSpecificationsSpecificationsSpecifications

4.14.14.14.1 FeaturesFeaturesFeaturesFeatures

Chip level design: RISC32 processor

RISC32 processor

Dummy Instruction Cache (KB) 16

Dummy Data Cache (KB) 16

Data width (bits) 32

Instruction width (bits) 32

General Purpose Register 32

Special Purpose Register HILO, PC

Co-Processor Register 32

Pipelined Stage 5

Hazard Handling Yes

Interlock Handling Yes

Interrupt Handling Yes

Data Dependency Forwarding Yes

BranchBranchBranchBranch PredictionPredictionPredictionPrediction DynamicDynamicDynamicDynamic –––– 2bits2bits2bits2bits schemeschemeschemescheme

BranchBranchBranchBranch TargetTargetTargetTarget BufferBufferBufferBuffer (KB)(KB)(KB)(KB) 4444

Multiplication (size of multiplier

and multiplicand)

yes – 32 bits

Branch Delay Slot Not supported

Instruction supported 41

Table 4.1 RISC32 Features

4.24.24.24.2 NamingNamingNamingNaming ConventionConventionConventionConvention

Module - [lvl]_[mod. name]

Instantiation - [lvl]_[abbr. mod. name(3)]

27

Pin - [lvl]_[abbr. mod. name(3)]_[type]_[pin name]

- [lvl]_[abbr. mod. name(3)]_[type]_[stage]_[pin name]

Abbreviation:

Description Case Available Remark

lvl Level Upper C: Chip

U: Unit

B: Block

mod. name Module name Upper all any

abbr. mod.

name

Abbreviated

module name

Upper all any

(n) Max n

characters

N/A N/A

type Pin type Lower all o: output

i: input

r: register

w: wire

f: function

stage Stage name Upper all IF, ID, EX,

MEM, WB

pin name Pin name Upper first any Several word separate

by "_"

Table 4.2 Naming Convention

28

ChapterChapterChapterChapter 5555 ---- Micro-architectureMicro-architectureMicro-architectureMicro-architecture SpecificationSpecificationSpecificationSpecification ofofofof BranchBranchBranchBranch PredictionPredictionPredictionPrediction

BlockBlockBlockBlock

5.15.15.15.1 BranchBranchBranchBranch PredictionPredictionPredictionPrediction BlockBlockBlockBlock

B_BP_BTB4WAY

B_BP_BTB4WAY_i_IF_Rd_Addr B_BP_BTB4WAY_o_Br_Taddr

B_BP_BTB4WAY_i_ID_Wr_Addr B_BP_BTB4WAY_o_Pred

B_BP_BTB4WAY_o_Rd_Hit

B_BP_BTB4WAY_i_Br B_BP_BTB4WAY_o_LRU_st_0

B_BP_BTB4WAY_i_ID_Equal B_BP_BTB4WAY_o_LRU_st_1

B_BP_BTB4WAY_o_LRU_st_2

B_BP_BTB4WAY_o_LRU_st_3

B_BP_BTB4WAY_i_ID_Br_Taddr

B_BP_BTB4WAY_o_Mispred_Untaken

B_BP_BTB4WAY_o_Mispred_Taken

B_BP_BTB4WAY_i_Clk

B_BP_BTB4WAY_i_Rst

Figure 5.1 Branch Prediction Block Diagram

2

2

2

2

3232

32

32

29

5.25.25.25.2 I/OI/OI/OI/O PinPinPinPin DescriptionsDescriptionsDescriptionsDescriptions

Block Input Pins Description

Pin Name:

B_BP_BTB4WAY_i_IF_Rd

_Addr [31:0]

Source -> Destination:

Datapath Unit(IF) -> Datapath

Unit(BPB)

Registered:

No

Pin Function:

Fetch the address as the index and tag used to find the block inside the buffer.

Pin Name:

B_BP_BTB4WAY_i_ID_W

r_Addr[31:0]

Source -> Destination:

Datapath Unit(ID) -> Datapath

Unit(BPB)

Registered:

No

Pin Function:

Fetch the address as the index and tag used to update the block inside the buffer.

Pin Name:

B_BP_BTB4WAY_i_Br

Source -> Destination:

Main Control Unit -> Datapath

Unit(BPB)

Registered:

No

Pin Function:

This is a flag to indicate the current instruction is a branch instruction.

Pin Name:

B_BP_BTB4WAY_i_ID_E

qual

Source -> Destination:

Datapath Unit(ID) -> Datapath

Unit(BPB)

Registered:

No

Pin Function:

This is a flag to indicate the current instruction is a branch instruction.

Pin Name:

B_BP_BTB4WAY_i_ID_Br

_Taddr[31:0]

Source -> Destination:

Datapath Unit(ID) -> Datapath

Unit(BPB)

Registered:

No

Pin Function:

Address to be stored in the buffer (Update)

Pin Name:

B_BP_BTB4WAY_i_Clk

Source -> Destination:

Micro-processor -> Datapath

Unit(BPB)

Registered:

No

30

Pin Function:

Synchronous system clock

Pin Name:

B_BP_BTB4WAY_i_Rst

Source -> Destination:

Micro-processor -> Datapath

Unit(BPB)

Registered:

No

Pin Function:

System Reset Control

0: Reset disabled

1: Rest asserted

Table 5.1 BPB Input Pin Description

Block Output Pin Description

Pin Name:

B_BP_BTB4WAY_o_Br_T

addr[31:0]

Source -> Destination:

Datapath Unit(BPB) -> Datapath

Unit(IF)

Registered:

Yes

Pin Function:

Output the Branch Target Address from the buffer.

Pin Name:

B_BP_BTB4WAY_o_Pred

Source -> Destination:

Datapath Unit(BPB) -> Datapath

Unit(IF)

Registered:

Yes

Pin Function:

Output the Prediction value from the buffer

Pin Name:

B_BP_BTB4WAY_o_Rd_H

it

Source -> Destination:

Datapath Unit(BPB) -> Datapath

Unit(IF)

Registered:

Yes

Pin Function:

Output the result of searching from the buffer.

0: Read Miss - The address is not a branch address / The address is not available in the

buffer.

1: Read Hit - The address is found in the buffer

Pin Name: Source -> Destination: Registered:

31

B_BP_BTB4WAY_o_LRU

_st_0[1:0]

Datapath Unit(BPB) -> Datapath

Unit(IF)

Yes

Pin Function:

The LRU state of the buffer (Set 0).

0: Least recently used

1: Next least recently used

2: Further least recently used

3: Recently used

Pin Name:

B_BP_BTB4WAY_o_LRU

_st_1[1:0]

Source -> Destination:

Datapath Unit(BPB) -> Datapath

Unit(IF)

Registered:

Yes

Pin Function:

The LRU state of the buffer (Set 1).

0: Least recently used

1: Next least recently used

2: Further least recently used

3: Recently used

Pin Name:

B_BP_BTB4WAY_o_LRU

_st_2[1:0]

Source -> Destination:

Datapath Unit(BPB) -> Datapath

Unit(IF)

Registered:

Yes

Pin Function:

The LRU state of the buffer (Set 2).

0: Least recently used

1: Next least recently used

2: Further least recently used

3: Recently used

Pin Name:

B_BP_BTB4WAY_o_LRU

_st_3[1:0]

Source -> Destination:

Datapath Unit(BPB) -> Datapath

Unit(IF)

Registered:

Yes

Pin Function:

The LRU state of the buffer (Set 3).

32

0: Least recently used

1: Next least recently used

2: Further least recently used

3: Recently used

Pin Name:

B_BP_BTB4WAY_o_Mispr

ed_Untaken

Source -> Destination:

Datapath Unit(BPB) -> Datapath

Unit(IF)

Registered:

Yes

Pin Function:

To state whether the branch is a correct or wrong untaken prediction.

0: Not mispredict untaken

1: Mispredict untaken

Pin Name:

B_BP_BTB4WAY_o_Mispr

ed_Taken

Source -> Destination:

Datapath Unit(BPB) -> Datapath

Unit(IF)

Registered:

Yes

Pin Function:

To state whether the branch is a correct or wrong taken prediction.

0: Not mispredict taken

1: Mispredict taken

Table 5.2 BPB Output Pin Description

33

5.35.35.35.3 PredictionPredictionPredictionPrediction TransitionTransitionTransitionTransition

Figure 5.2 Prediction Transition

34

5.45.45.45.4 ContentsContentsContentsContents ofofofof BTBBTBBTBBTB

Buffer[56] Buffer [55:36] Buffer [35:4] Buffer [3:2] Buffer [1:0]

Valid

content

Tag bit [19:0] Branch Target

Address [31:0]

Prediction bit

[1:0]

LRU state bit

[1:0]

Table 5.3 Branch Target Buffer

5.55.55.55.5 BranchBranchBranchBranch TargetTargetTargetTarget TableTableTableTable

==

v tag br_taddr pred lru_st v tag br_taddr pred lru_st v tag br_taddr pred lru_st v tag br_taddr pred lru_st

Way Selector

== == ==

Figure 5.3 Implemented Branch Prediction Table

WritingAddress

Reading Address

index

index
tag

valid, tag, branch target address

indextag

tag index

Read Hit Branch Target Address Prediction LRU State

35

5.65.65.65.6 BranchBranchBranchBranch TargetTargetTargetTarget DataflowDataflowDataflowDataflow

Figure 5.4 Dataflow of the BTB

36

5.75.75.75.7 TestTestTestTest PlanPlanPlanPlan

Descriptions Expected Result

1 Reset

Reset on the block is enabled.

Valid bit = 0,

Prediction bit = 2'b10,

LRU_state_0 = 2'b00,

LRU_state_1 = 2'b01,

LRU_state_2 = 2'b10,

LRU_state_3 = 2'b11.

2 Scenario 1

Buffer Read Miss

Update BTB due to read miss

Valid bit = 1,

Prediction bit = 2'b10,

*LRU_state = 2'b11

3 Scenario 2

Buffer Read Miss

The instruction is not a branch instruction

No changes on BTB

4 Scenario 3

Buffer Read Hit - Predict taken, No mispredict

Update prediction bit and LRU state

Prediction bit = 2'b11,

*LRU_state = 2'b11

5 Scenario 4

Buffer Read Hit - Predict taken, Mispredict

Update prediction bit and LRU state

Prediction bit decrease,

*LRU_state = 2'b11

6 Scenario 5

Buffer Read Hit - Predict untaken, Mispredict

Update prediction bit and LRU state

Prediction bit increase,

*LRU_state = 2'b11

7 Scenario 6

Buffer Read Hit - Prediction untaken, No

mispredict

Update prediction bit and LRU state

rediction bit = 2'b00,

*LRU_state = 2'b11

Table 5.4 Test Plan of BPB

*LRU_state stated above is only for the current entry in the BTB, others are updated too,

37

but the value will not be the same, so it will not be stated here.

38

ChapterChapterChapterChapter 6666 ---- VerificationVerificationVerificationVerification SpecificationSpecificationSpecificationSpecification

6.16.16.16.1 TestTestTestTest ProgramProgramProgramProgram forforforfor BPBBPBBPBBPB

In order to test out the functionality of the BPB, a test bench program is written to test out

the hardware model. Test bench is a virtual environment used to verify the correctness of

the design.

In test bench, the input is to be fed into the DUT to provide the output according to the

model. As the verification is done inside the computer, it can avoid the mistake and

wastage if all model need to fabricate before testing.

For the testing of BPB, ModelSim SE 10.2b is used as a tool to program the test bench

and running the result simulation. The development language using here is also the HDLs,

Verilog. The test bench is program according to the test plan on the given model.

39

6.26.26.26.2 VerificationVerificationVerificationVerification ResultResultResultResult

1. Reset of BPB

B_BP_BTB4WAY_i_Rst <= 1'b1;

� Valid bit Way 0 in BTB

� Valid bit Way 1 in BTB

40

� Valid bit Way 2 in BTB

� Valid bit Way 3 in BTB

41

� Prediction bit Way 0 in BTB

� Prediction bit Way 1 in BTB

42

� Prediction bit Way 2 in BTB

� Prediction bit Way 3 in BTB

43

� LRU state bit Way 0 in BTB

� LRU state bit Way 1 in BTB

44

� LRU state bit Way 2 in BTB

� LRU state Way 3in BTB

45

2. Scenario 1 - Read Miss

B_BP_BTB4WAY_i_Br <= 1'b1;

B_BP_BTB4WAY_i_ID_Equal <= 1'b1;

B_BP_BTB4WAY_i_ID_Wr_Addr <= 32'h0000_0018; -> Index = 006, Tag = 00000

B_BP_BTB4WAY_i_ID_Br_Addr <= 32'h1232_01a9;

It resulted as a mispredict untaken, and the BTB is updated a clock cycle after the input is

pass in. (Due to using value at ID stage not IF stage)

� Valid bit of BTB

� Tag bit of BTB

46

� Branch Target Address

� Prediction bit in BTB

� LRU state at the way it store - Way 0

� LRU state at Way 1

47

� LRU state at Way 2

� LRU state at Way 3

48

3. Scenario 2 - Read Miss

B_BP_BTB4WAY_i_Br <= 1'b1;

B_BP_BTB4WAY_i_ID_Equal <= 1'b0;

� Valid bit Way 0 of BTB

� Valid bit Way 1 in BTB

49

� Valid bit Way 2 in BTB

� Valid bit Way 3 in BTB

� Tag bit of BTB

50

� Branch Target Address Way 0

� Branch Target Address Way 1

� Branch Target Address Way 2

51

� Branch Target Address Way 3

� Prediction bit Way 0 in BTB

� Prediction bit Way 1 in BTB

52

� Prediction bit Way 2 in BTB

� Prediction bit Way 3 in BTB

� LRU state at Way 0

53

� LRU state at Way 1

� LRU state at Way 2

� LRU state at Way 3

4. Scenario3 - Read Hit

B_BP_BTB4WAY_i_Br <= 1'b1;

B_BP_BTB4WAY_i_ID_Equal <= 1'b1;

� Prediction bit

54

� LRU state at the way it store - Way 0

� LRU state at Way 1

� LRU state at Way 2

� LRU state at Way 3

55

5. Scenario 4 - Read Hit - Mispredict

B_BP_BTB4WAY_i_Br <= 1'b1;

B_BP_BTB4WAY_i_ID_Equal <= 1'b0;

Prediction bit changes from "10" to "00". (Weakly taken -> Strongly untaken)

� LRU state at the way it store - Way 0

� LRU state at Way 1

56

� LRU state at Way 2

� LRU state at Way 3

6. Read Hit - Mispredict

B_BP_BTB4WAY_i_Br <= 1'b1;

B_BP_BTB4WAY_i_ID_Equal <= 1'b0;

Misprediction, so the prediction bit changes. (Increase)

57

7. Read Hit

B_BP_BTB4WAY_i_Br <= 1'b1;

B_BP_BTB4WAY_i_ID_Equal <= 1'b1;

No misprediction, and prediction bit change to "Strongly untaken"

58

ChapterChapterChapterChapter 7777 ---- DiscussionDiscussionDiscussionDiscussion

7.17.17.17.1 DiscussionDiscussionDiscussionDiscussion

The branch predictor is essential as there is always branch instruction occurring in a

microprocessor.

The branch predictor developed in this project is capable of solving the beq instruction. It

able to send out the branch targeted address, read hit or miss of buffer, prediction bit

value as well as the LRU. If there is any misprediction occur, it will notify the BPB to

update the entry inside the BTB.

In this design, the BTB are capable of handling accessing and updating at the same

moment as it uses the dual-port configuration and both the process will not have the same

output source.

Cache memory technology is used as a guide of designing the buffer, so the BTB

characteristics is almost similar with a normal cache but it has much more information

store inside the BTB. Somehow, there is always a miss while first start of the

microprocessor and this model only capable for beq function only.

Lastly, the objective of this project is achieved. The BPB is developed in RTL and work

well. The functionality of BPB is tested as well. The BTB that work inside the BPB also

functioning well.

7.27.27.27.2 FutureFutureFutureFutureWorksWorksWorksWorks

The branch predictor in this project is completed, yet, it still need to be implemented into

the RISC32 processor. The future improvement should implement the model into the

microprocessor and enhance it to make it capable for other branch instruction as well.

59

BibliographyBibliographyBibliographyBibliography

1. Mok, K.M. Computer Organization and Architecture Notes.. : University of

Tunku Abdul Rahman, Faculty of Information and Communication Technology,

2009.

2. Patterson, David. Computer Architecture A Quantitative Approach. 2ed . s.l. :

Morgan Kaufmann.

3. Hennessy, John L. and Patterson, David A. Computer Organization and Design :

The Hardware/Software Interface. 4th. San Francisco : Morgan Kaufmann,

4. Cache Memory. (2009). Retrieved 2012, from
http://codingfreak.blogspot.com/2009/03/cache-memory-part2.html

5. Electronics Technician. (n.d.). Retrieved 2012, from
http://electronicstechnician.tpub.com/14091/css/14091_122.htm

6. Finley, T. (2000). Cache. Retrieved 2012, from
http://www.tfinley.net/notes/cps104/cache.html#details_miss

7. Handy, J. (1998). The Cache Memory Book. San Diego: Academic Press.

8. Hennessy, J.L., Patterson, D.A. (2003). Computer Architecture. San Francisco: Morgan
Kaufmann.

9. Mok, K. M. Digital System Design Lecture Notes. University Tunku Abdul

Rahman. Kampar , Lecture Notes.

10. Yee Hen, Ong, Enhancement of CPU - RISC32. Faculty of Information and

Communication Technology, Universiti Tunku Abdul Rahman.

11. Chun Jin, Teoh, RISC32Interrupt Handling For Enhanced RISC32 Architecture. Faculty

of Information and Communication Technology, Universiti Tunku Abdul Rahman. August

2008

	DECLARATIONOFORIGINALITY
	ACKNOWLEDGEMENTS
	ABSTRACT
	TableofContents
	ListofFigures
	Chapter1-Background
	1.1.MIPS-32-bitRISCProcessor
	1.2Hazard-ControlHazard
	1.3MotivationandProblemStatement
	1.4ProjectScope
	1.5ProjectObjective
	1.6ContributionandInnovation

	Chapter2-LiteratureReview
	2.1BranchTargetBuffer(BTB)
	2.2CacheMemoryDesign
	2.3AssociativityofCache
	2.4OperationofCache
	2.5PerformanceofCache
	2.6CacheMiss

	Chapter3-MethodologyandTechnologyInvolved
	3.1DesignMethodology
	3.1.1SystemLevelDesign
	3.1.2Micro-architectureDesign

	3.2DesignTools
	3.3DesignLanguage

	Chapter4-SystemSpecifications
	4.1Features
	4.2NamingConvention

	Chapter5-Micro-architectureSpecificationofB
	5.1BranchPredictionBlock
	5.2I/OPinDescriptions
	5.3PredictionTransition
	5.4ContentsofBTB
	5.5BranchTargetTable
	5.6BranchTargetDataflow
	5.7TestPlan

	Chapter6-VerificationSpecification
	6.1TestProgramforBPB
	6.2VerificationResult
	7.1Discussion
	7.2FutureWorks

