

THE DESIGN AND DEVELOPMENT OF A PS/2 MOUSE CONTROLLER AND

MULTIPLE I/O BUS SYSTEM INTEGRATION

BY

NG KWONG CHEONG

A REPORT

SUBMITTED TO

University Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONS)

COMPUTER ENGINEERING

Faculty of Information and Communication Technology

Department of Information Technology and Engineering

APRIL 2014

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

 Title: The Design and Development of a PS/2 Mouse Controller and Multiple

 I/O Bus System Integration__________________________________

 __

Academic Session: _2014/2015____________

 I _________________NG KWONG CHEONG_____________________

(CAPITAL LETTER)

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 _________________________ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 32AA, Jalan Lagenda 14,Taman

 Lagenda Mas, Kajang, Selangor_ _________________________

 __________________________ Supervisor’s name

 Date: _4
th

 April_2014_____ Date: ___4
th

 April 2014___

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR i

DECLARATION OF ORIGINALITY

I declare that this report entitled “The Design and Development of a PS/2 Mouse Controller

and Multiple I/O Bus System Integration” is my own work except as cited in the references.

The report has not been accepted for any degree and is not being submitted concurrently in

candidature for any degree or other award.

Signature : _________________________

Name : __NG KWONG CHEONG___

Date : _________________________

Acknowledgement

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR ii

Acknowledgement

On behalf of this project, I would like to express my deepest gratitude to my project supervisor,

Mr. Mok Kai Ming who has been providing me invaluable guidance and constructive

suggestions during the planning and development of this project. His willingness to give his time

so generously has been much appreciated.

I would also like to express my appreciation to my family members who have been giving me

endless support and encouragement since the starting of my undergraduate years. In addition, I

would like to thank my course mates and friends who supported me throughout the entire course

of this project.

Once again, it is my honour to say that the accomplishment of this project is indeed, due to the

heartfelt support rendered by the people I have mentioned above. Their help and guidance is very

much appreciated.

Abstract

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR iii

Abstract

As stated in the project title, the main objective of this project involves the design and

development of a PS/2 Mouse Controller and Multiple I/O Bus System Integration. To fulfil this

purpose, the investigation and analysis on previous works done by the senior in the design of

Mouse Controller was also involved. In addition, there was a necessity for the investigation and

analysis of the PS/2 Controller interface which includes the PS/2 Controller design, physical

interface, low – level protocol, modes of operation, commands and extensions.

The design of the Mouse Controller was completed by the previous student. Its design is

based on the bidirectional synchronous serial communication protocol, whereby it contains two

wires for communication purposes. One is responsible for transmitting data to the PS/2

Controller while the other generates the clock signal to specify the data sent is valid and

therefore can be retrieved.

Despite that, the project was incomplete because the implementation of PS/2 Controller

has not been done in previous student’s work. Therefore, this project is initiated to continue the

work of modelling the PS/2 Controller and ensuring the PS/2 Controller can communicate with

the Mouse Controller designed by the previous student. Therefore, the emphasis of this project is

to focus on verifying the correctness on the functional behaviour of the newly designed PS/2

Controller. Thus, the research and design methodologies done by the previous student were

studied and practiced on this project.

Lastly, after the verification is done, the newly designed PS/2 Controller will be

integrated into 32-bit RISC processor which is ready in the Faculty of Information Technology,

UTAR. A test program will be developed to test the compatibility, functionality and behaviour

for the new 32-bit RISC processor with the integrated PS/2 Controller.

Table of Contents

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR iv

Table of Contents

Declaration of Originality …………………….……………………………………….… i

Acknowledgement ……………………………………………………………………….. ii

Abstract …………………………………………………………………………………... iii

Table of Content …………………………………………………………………………. iv-vi

List of Figures …………………………………………………………………………..... vii-viii

List of Tables …………………………………………………………………………….. ix

List of Flow Charts ……………………………………………………………...……..... x

Chapter 1: Introduction ……………………………………………………………….... 1-4

1.1 Background Information ……………………………………………………………... 1

1.2 Problem Statement …………………………………………………………………… 2-3

1.3 Project Scope ……………………………………………………………………...…. 3

1.4 Project Objectives ……………………………………………………………….....… 3

1.5 Impact and Significance ……………………………………………………...........… 4

Chapter 2: Literature Review …………………………………………………..……... 5-52

2.1 PS/2 port and I/O Device …………………………………………………..………... 5

2.2 PS/2 Architecture ………………………………………………….………..……….. 5-6

2.3 Mouse Controller sends information to PS/2 Controller ……………………...…….. 6-11

2.4 PS/2 Controller sends information to Mouse Controller ………………………...….. 11-17

2.5 Operation Mode for Mouse Controller …………………………………………...…. 17-18

2.6 PS/2 Keyboard architecture ………………………………………………...……….. 18

2.7 PS/2 Keyboard Scan Code ……………………………………………………..…… 18-22

2.8 I/O Controller interface with I/O Devices ……………………………………......… 23-24

2.9 I/O Data Transfer ……………………………………………………………............ 24-26

2.10 Bus System …………………………………………………………………......…. 27-32

Table of Contents

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR v

2.11 WISHBONE Architecture ……………………………………………………..…. 33-52

Chapter 3: Design Methodologies and Development Tools ……………..…………. 53-56

3.1 Design Tools ………………………………………………………………..……… 53-55

3.2 Design Method …………………………………………………………………...... 56

Chapter 4: System Specification …………………………………………………...... 57

4.1 Naming Convention ……………………………………………………………...... 57

Chapter 5: Microarchitecture Specification (Unit Level) …………...……..……… 58-73

5.1 Microarchitecture (unit level) of RISC processor …………………………….…... 58

5.2 Design Hierarchy ………………………………….………………………….…… 59

5.3 Datapath Unit ………………………………………………………………..…….. 60-61

5.4 Control Path Unit ………………………………………………..………………… 62-63

5.5 Memory Unit ………………………………………………………..…………….. 64

5.6 Co-Processor Unit ………………………………………………………..……….. 64-65

5.7 PS/2 Controller Unit ………………………………………….…………………... 66-73

Chapter 6: Microarchitecture Specification (Block Level) ...………….….……… 74-99

6.1 The Receiver Block ……………………………………………………………… 74-80

6.2 The Transmitter Block …………………………………………………………… 81-86

6.3 The WISHBONE interface Block …………………………………………...…... 87-92

6.4 The Address decoder …………………………………………………………….. 93-97

6.5 The Synchronizer Block …………………………………………………………. 98-99

Chapter 7: Verification Specification ……………………………………………... 100-106

7.1 Test Program for I/O Serial Communication ..…... 100-103

7.2 Verification Result ……………………………………….……………………… 104-106

Chapter 8: Conclusion and Discussion …….…………………...….……………… 107-108

8.1 Conclusion ……………………………………………………....………………. 107

Table of Contents

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR vi

8.2 Discussion and Future Work ……………………………………………………. 108

Appendix A Bibliography

Appendix B Source Code

Appendix C Turnitin Result

List of Figures

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR vii

List of Figures

Figure Title Page
Figure 2.1 The pins for PS/2 connector 5

Figure 2.2.1 The Power – On Reset 5

Figure 2.2.2 The Open Collector for Data and Clock Pins 6

Figure 2.3.1 Mouse Controller data transmit format 6

Figure 2.3.2 Timing requirement for Mouse Controller to PS/2 Controller 7

Figure 2.4.1 Timing Requirement for PS/2 Controller to Mouse Controller 11

Figure 2.7 PS/2 keyboard scan code 20

Figure 2.8.1 The Block Diagram of a Generic I/O Device Interface 23

Figure 2.8.2 The Block Diagram of PS/2 Controller Interface with Mouse

Controller

24

Figure 2.9.1 The Programmed I/O Design 25

Figure 2.9.2 The DMA Design 26

Figure 2.10 General I/O Structure 27

Figure 2.10.1.1 Typical Tri-state Bus Structure 28

Figure 2.10.1.2 Typical multiplexer-based bus structure 29

Figure 2.10.2.1 Bus interface connected to I/O system 30

Figure 2.10.2.2 Simple bus interface unit interfaced with CPU 31

Figure 2.11 The WISHBONE MASTER/SLAVE interconnection 34

Figure 2.11.1.1 Point-to-point interconnection 35

Figure 2.11.1.2 Data flow interconnection 35

Figure 2.11.1.3 Shared bus interconnection 36

Figure 2.11.1.4 Crossbar Switch interconnection 37

Figure 2.11.3.1 Standard single READ cycle 45

Figure 2.11.3.2 Standard single WRITE cycle 46

Figure 2.11.3.3 Use of CYC_O signal during BLOCK cycles 47

Figure 2.11.3.4 Standard BLOCK READ cycle 48

Figure 2.11.3.5 Standard BLOCK WRITE cycle 49

Figure 2.11.3.6 Standard RMW cycle 51

Figure 5.1 Microarchitecture (unit level) of RISC32 processor 58

Figure 5.3.1 Full RISC32’s Datapath Unit 60

Figure 5.3.4 Microarchitecture for Datapath Unit 61

Figure 5.4.1 Full RISC32’s Control Path Unit 62

Figure 5.4.2 Microarchitecture for Full RISC32’s Control Path Unit 63

Figure 5.5.1 Memory Unit’s interface 64

Figure 5.6.1 Co-Processor 0 Unit’s interface 64

Figure 5.6.3 Microarchitecture for Co-Processor 0 Unit 65

Figure 5.7.1 PS/2 Controller’s Unit interface 66

Figure 5.7.4 Microarchitecture for PS/2 Controller Unit 69

Figure 5.7.6.1 PS/2 Controller Unit simulation result (a) 71

Figure 5.7.6.2 PS/2 Controller Unit simulation result (b) 72

Figure 5.7.6.3 PS/2 Controller Unit simulation result (c) 73

Figure 6.1.1 Receiver’s Block interface 74

Figure 6.1.6 Receiver Block Finite State Machine 78

List of Figures

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR viii

Figure 6.1.7.1 Receiver Block simulation result (a) 79

Figure 6.1.7.2 Receiver Block simulation result (b) 79

Figure 6.1.7.3 Receiver Block simulation result (c) 80

Figure 6.2.1 Transmitter Block interface 81

Figure 6.2.6 Transmitter Block Finite State Machine 84

Figure 6.2.7.1 Transmitter Block simulation result (a) 85

Figure 6.2.7.2 Transmitter Block simulation result (b) 86

Figure 6.3.1 WISHBONE interface Block interface 87

Figure 6.3.6 WISHBONE interface Block Finite State Machine 91

Figure 6.3.7 WISHBONE interface Block simulation result 92

Figure 6.4.1 Address decoder interface 93

Figure 6.4.5 Microarchitecture for address decoder 96

Figure 6.5.1 Synchronizer Block interface 98

Figure 7.2.1 Register content in Register File 103

Figure 7.2.2 Data memory content in data memory 103

Figure 7.2.3.1 RISC32 interrupt handling process 104

Figure 7.2.3.2 Exception handler jumps to appropriate ISR 105

Figure 7.2.3.3 Return from exception 106

List of Tables

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR ix

List of Tables

Tables Title Page

Table 2.3.1 Mouse Controller Data Packet Format 9

Table 2.3.2 Mouse Controller to PS/2 Controller Data 10

Table 2.4.1 Lists of command from PS/2 Controller to Mouse Controller 15 – 17

Table 2.5.1 The Operation Mode of the Mouse Controller 17 - 18

Table 2.7 PS/2 Keyboard Scan Code Set 2 22

Table 2.11.2.1 System controller module signals 38

Table 2.11.2.2 MASTER and SLAVE interfaces common signals 38 – 39

Table 2.11.2.3 MASTER signals 40 - 41

Table 2.11.2.4 SLAVE signals 42 - 43

Table 3.1 Comparison between simulators chosen 55

Table 4.1 Naming Convention 57

Table 5.2 Design hierarchy of a PS/2 mouse system integration to

RISC32 processor

59

Table 5.7.2 PS/2 Controller Unit’s Input Pin Description 66 - 68

Table 5.7.3 PS/2 Controller Unit’s Output Pin Description 68 - 69

Table 5.7.5 Internal Operation for PS/2 Controller Unit 70

Table 6.1.2 Receiver Block Input Pin Description 74 - 75

Table 6.1.3 Receiver Block Output Pin Description 75 - 76

Table 6.1.5 Internal operation for Receiver Block 76 - 77

Table 6.2.2 Transmitter Block Input Pin Description 81 - 82

Table 6.2.3 Transmitter Block Output Pin Description 82 - 83

Table 6.2.5 Internal operation for Transmitter Block 83

Table 6.3.2 WISHBONE interconnect Input Pin Description 87 - 89

Table 6.3.3 WISHBONE interconnect Output Pin Description 89 - 90

Table 6.3.5 Internal operation for WISHBONE interconnect 90

Table 6.4.1.1 WISHBONE write/read_not signal decoding table 93

Table 6.4.1.2 WISHBONE output signal decoding table 93

Table 6.4.2 Address Decoder Input Pin Description 94

Table 6.4.3 Address Decoder Output Pin Description 95

Table 6.4.6 Internal operation for Address Decoder 97

Table 6.5.2 Synchronizer Block Input Pin Description 98

Table 6.5.3 Synchronizer Block Output Pin Description 99

Table 6.5.5 Internal operation for Synchronizer Block 99

Table 8.1 Enhancement Outcome 107

List of Flow Charts

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR x

List of Flow Charts

Flow Charts Title Page

Flow Chart 2.3.1 Mouse Controller sends information to PS/2 Controller 9

Flow Chart 2.3.2 PS/2 Controller receives data from Mouse Controller 10

Flow Chart 2.4.1 PS/2 Controller sends information to Mouse Controller 12

Flow Chart 2.4.2 Mouse Controller generates the Clock signal and

receives information from PS/2 Controller

13

Flow Chart 2.10.2.1 State machine for simple bus interface unit 32

Flow Chart 3.2.1 Design Flow 56

Chapter 1 Introduction

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 1

Chapter 1: Introduction

1.1 Background

1.1.1 Design Background

The Personal System/2, also known as PS/2 was originally IBM’s third generation of personal

computers released in 1987. Its production line was created in an attempt to recapture control of

the PC market by introducing an advanced yet proprietary architecture. Although the PS/2 line

was unsuccessful with the consumer market, many of the PS/2’s innovation, such as the 16550

UART, 1440KB 3.5-inch floppy disk format, 72 – pin SIMMs, the PS/2 keyboard and mouse

ports, and the VGA video standard, went on to become standards in the broader PC

market(Wikipedia, 2012). Nowadays, the term “PS/2” refers to the innovation of IBM’s third

generation of personal computer.

PS/2 is a type of serial communication which is specifically used for user input devices. The

design involves a controller, the mechanical and electrical information of the communication,

and a device (OSDev.org, 2012). In personal computing, it is generally used to connect the

keyboard and mouse for data transmission between the devices and the host (CPU). The PS/2

system contains two wires for communication: one is for transmitting data in a serial stream,

while the other is for the clock information to specify when the data is valid and can be retrieved

(Chu, 2008). Similar to the PS/2 keyboard system, the PS/2 mouse implements a bidirectional

synchronous serial protocol. When the data and clock are high, the bus is “idle”. This is the only

state where the keyboard and mouse are allowed to transmit data. The CPU has priority over the

bus and may inhibit communication at any time by holding the clock low (Chapweske, 2003).

The data sent from the device to the host is read on the falling edge of the clock signal; data sent

from the host to the device is read on the rising edge. The device always generates the clock

signal for both direction of communication(Chapweske, 2003). Therefore, the host must first

inhibit communication from the device by pulling the clock low in order to send data. This is

called a “Request to Send” state. When the device detected it, it will start to generate clock

pulses (Chapweske, 2003). The data sent is arranged in bytes, consisting of 1 start bit, 8 data bits,

1 parity bit and 1 stop bit (Chapweske, 2003).

Chapter 1 Introduction

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 2

1.1.2 Problem Background

A 32-bit 5-stage pipeline RISC soft-core can be advantageous in creating a core–based

environment to assist research and development work in the area of developing Intellectual

Properties (IP) cores. However, there are limitations in obtaining such workable core-based

design environment.

Microchip design companies develop microprocessors cores as IP for commercial purposes. The

microprocessor IP includes information on the entire design process for the front – end

(modelling and verification) and back – end (layout and physical design) IC design. These are

trade secrets of a company and certainly not made available in the market at an affordable price

for research purposes.

Several freely available microprocessor cores are freely available from source such as the

miniMIPS (www.opencores.org), the PH processor (Leicester University), uCore, Yellow Star

(Manchester University), etc. Unfortunately, these processors do not implement the entire MIPS

Instruction Set Architecture (ISA) and lack of comprehensive documentation. This makes them

unsuitable for reuse and customization.

Verification is vital for proving the functionality of any digital design. The microprocessor cores

mentioned above are handicapped by incomplete and poorly developed verification

specifications. This hampers the verification process, slowing down the overall design process.

The lack of well – developed verification specifications for these microprocessor cores will

inevitably affect the physical design phase. A design needs to be functionally proven before the

physical design can proceed smoothly. Otherwise, if the front – end design needs to be changed,

the physical process also needs to be redone.

1.2 Problem Statement

So far, there is MIPS compatible ISA which includes the PS/2 mouse system, PS/2 keyboard

system, basic memory, coprocessor 0 (CP0) and a Universal Asynchronous Receiver/Transmitter

(UART) in contribution to the development of 32-bit RISC project. The functionality of the PS/2

keyboard system has been tested and verified. However, the existing PS/2 mouse system is

incomplete as the PS/2 Controller that is attached to the CPU has not been developed yet,

http://www.opencores.org/

Chapter 1 Introduction

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 3

causing the verification and testing of a fully functional PS/2 mouse system cannot be done. The

existing PS/2 mouse system is designed to be integrated to a point-to-point bus system to the

CPU, however modifications are need to be made to convert it into a shared bus system which

supports multiple I/O’s which in this case, the PS/2 mouse and PS/2 keyboard using bus

arbitration.

1.3 Project Scope

The scope of this project includes the development of the PS/2 Controller which includes its

specifications at architecture level and microarchitecture level. Apart from that, the modeling of

the PS/2 Controller will be constructed using Verilog HDL (Hardware Descriptive Language).

The functional behavior verification of the PS/2 Controller will be done using functional

verification techniques involving the construction of testbench based on bus functional model.

Apart from that, the device will be tested to communicate with the readily available Mouse

Controller. Lastly, the PS/2 Controller will be integrated to the bus system to implement the PS/2

mouse system into the 32-bit RISC processor. In addition, the Interrupt Service Routine (ISR) for

the PS/2 Controller will be developed using MIPS assembly language.

1.4 Project Objectives

The objectives of the project are as follows:

 To analyse the specification of the PS/2 architecture and fulfilling its design requirements.

 To develop the RTL model of the PS/2 Controller, including the development of chip

specification, microarchitecture specification and Verilog HDL

 To develop a verification strategy based on a bus functional model to perform functional

verification on the PS/2 Controller.

 To integrate the PS/2 Controller into the bus system using the Wish Bone Master-to-

Slave connection architecture.

 To write an Interrupt Service Routine (ISR) using MIPS Assembly Language for the PS/2

Controller.

Chapter 1 Introduction

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 4

1.5 Impact and Significance

As a summary to the problem statement, there is a lack of well – developed and well – founded

32-bit RISC microprocessor core – based development environment. The development

environment refers to the availability of the following:

 A well – developed design document, which includes the chip specification, architecture

specification and microarchitecture specification.

 A fully functional well – developed 32-bit RISC architecture core in the form of

synthesis – ready RTL written in Verilog HDL.

 A well – developed verification environment for the 32-bit RISC core. The verification

specification should contain suitable verification methodology, verification techniques,

test plans, testbench architectures etc.

 A complete physical design in Field Programmable Gate Array (FPGA) with

documented timing and resource usage information.

With the available well – developed basic 32-bit RISC RTL model (which has been fully

functional verified), the verification environment and the design documents, researchers can

develop their own specific RTL model as part of the development environment (whether directly

modifying the internals of the processor or interface to the processor) and can quickly verify

their model to obtain results, without having to worry about the development of the verification

environment and the modeling environment. This can speed up the research work significantly.

For example, a researcher may have developed an image – processing algorithm and modified

the algorithm to obtain a structure that suits the hardware implementation. The structure can be

modeled in Verilog as part of a specialized datapath or as a coprocessor interfacing to the RISC

processor.

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 5

Chapter 2: Literature Review

2.1 PS/2 Port and I/O Device (Mouse)

The PS/2 (Personal System/2) device interface was developed by IBM. It was released to the

consumer market in 1987 and originally appeared in the IBM Technical Reference Manual

(Chapweske, 2003).

The output pins for the PS/2 connector are shown below:

Male

(Plug)

Female

(Socket)

Figure 2.1: The pins for PS/2 connector (Chapweske, 2003)

2.2 PS/2 Architecture

2.2.1 Power – On Reset

Mouse controller uses Power – On Reset architecture. When the power is on, it will trigger the

reset pin and the Mouse Controller will reset the device. (Johnson, 1998)

Figure 2.2.1: The Power – On Reset (Johnson, 1998)

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 6

P
S

/2
 C

o
n

tr
o
ll

er

Mouse Controller

2.2.2 Open Collector Interface

There are four pins on the connectors: Data, Ground, +5V, and Clock. The +5V is supplied by

the PS/2 Controller (host) and the Ground is connected to the PS/2 Controller’s electrical ground.

The Data and Clock pins are both based on open collector architecture, which means they are

normally held at a high logic level (logic 1) but can be easily pulled down to ground (logic 0).

When the PS/2 Controller connects to a PS/2 device (Mouse or Keyboard), it should have large

pull-up resistors on the Clock and Data lines. When pulling the line low, it will produce logic “0”.

When releasing the line, logic “1” will be produced instead. (Chapweske, 2003)

Figure 2.2.2: The Open Collector for Data and Clock Pins

2.3 Mouse Controller sends information to PS/2 Controller

The Mouse Controller always transmits data in 3 frames, which is 1 transaction, each. Each

frame contains 1 start bit, 8 data bits, 1 parity bit and 1 stop bit. The transaction is shown below:

Figure 2.3.1: Mouse Controller data transmit format

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 7

The timing requirement of the Mouse Controller sends 1 frame of the packet to the PS/2

Controller is shown below:

Figure 2.3.2: Timing requirement for Mouse Controller to PS/2 Controller

Mouse Controller is designed to detect two – dimensional motion on a surface. It measures the

relative distance of movement and checks the status of the button. The Mouse Controller has

three packets of information to be sent to the PS/2 Controller, whereby it transmits the packets

continuously in a predesigned sampling rate.

The Mouse Controller always generates or toggles the Clock signal. When not toggling the

Clock signal, it will remain high (weak pull-up). The Clock signal is bidirectional, which means

the Mouse Controller can send the Clock signal through Clock line to the PS/2 Controller and

PS/2 Controller can pull the Clock line too to send data to Mouse Controller. When the Data and

Clock signal are both high, it is in “idle” state. This is the only state which the Mouse Controller

is allowed to perform data transmission (Chapweske, 2003).

If the Mouse Controller wants to send data, it must make sure the Data and Clock signal are high

(idle state). If the condition is met, it will first send the start bit (0). After that, the PS/2

Controller will read the data at the falling edge. The 8 data bits and 1 parity bit will be sent at the

rising edge of the Clock signal. Once these 9 bits of data is sent, the Mouse Controller will send

the following stop bit (1) to the PS/2 Controller.

All data is transmitted one byte at a line and each byte is sent in a frame consisting of 11 bits.

These bits are:

 1 start bit. This bit is always logic “0”.

 8 data bits. They are sent in Little-Endian format (LSB is sent first).

(Mouse)

(Mouse)

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 8

 1 parity bit (odd parity). It should be logic “1”. If not, error occurs.

 1 stop bit. This bit is always logic “1”.

The parity bit is set (1) if there is an even number of 1’s in the data bits and reset (0) if there is an

odd number of 1’s in the data bits. The numbers of 1’s in the data bits plus the parity bit are

always added up to an odd number (odd parity). This is used for error detection. The PS/2

Controller must check this bit and if incorrect it should respond as it had received an invalid

command.

Data is sent from the PS/2 Device (Mouse) to the PS/2 Controller (host) on the rising edge of the

clock signal and PS/2 Controller reads the data on the falling edge of the clock signal. The clock

frequency must be within the range of 10 – 16.7 kHz. In other words, the Clock must be high for

30 – 50 microseconds and low for 30 – 50 microseconds. In this design, the clock frequency is

12.5 kHz, which is high for 40 microseconds and low for 40 microseconds. The Mouse

Controller always generates the clock signal, but the PS/2 Controller always has the ultimate

control over communication.

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 9

The Mouse Controller sends out data packet to PS/2 Controller in the following format:

 MSB LSB

Bit 7 6 5 4 3 2 1 0

1
st
 Byte Yo Xo Ys Xs 1 M R L

2
nd

Byte X7 X6 X5 X4 X3 X2 X1 X0

3
rd

 Byte Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

L = Left Key Status Bit

 (1 = Pressed; 0 = Released)

M = Middle Key Status Bit

 (Reserved for standard Mouse Controller which has three button mouse)

 (1 = Pressed; 0 = Released)

R = Right Key Status Bit

 (1 = Pressed; 0 = Released)

X7 – X0 = Moving distance of X in two complements format

 (Moving Left = Negative; Moving Right = Positive)

Y7 – Y0 = Moving distance of Y in two complements format

 (Moving Down = Negative, Moving Up = Positive)

Xo = X Data Overflow bit (1 = Overflow)

Yo = Y Data Overflow bit (1 = Overflow)

Xs = X Data sign bit (1 = Negative)

Ys = Y Data sign bit (1 = Negative)

Table 2.3.1: Mouse Controller Data Packet Format

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 10

Code (Hex) Command

FA Acknowledge

AA Self-Test passed

FC Self-Test failed or Error

00 Device ID. Sent immediately after the Self-Test status command and is

always 0x00

Table 2.3.2: Mouse Controller to PS/2 Controller data

The flow charts of data transmission from Mouse Controller to PS/2 Controller are shown below:

On Mouse Controller side,

Flow Chart 2.3.1: Mouse Controller sends information to PS/2 Controller

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 11

On the PS/2 Controller side,

Flow Chart 2.3.2: PS/2 Controller receives data from Mouse Controller

The flow chart above only shows 1 transaction of 1 frame of data sent from the Mouse Controller

to the PS/2 Controller, and there are 3 frames of data (1 packet) will be sent to PS/2 Controller,

so the actual transmission process runs 3 times.

2.4 PS/2 Controller sends information to Mouse Controller

The timing requirement of PS/2 Controller sends 1 frame of the packet to Mouse Controller is

shown below:

Figure 2.4.1: Timing Requirement for PS/2 Controller to Mouse Controller

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 12

The Mouse Controller is a bidirectional device. Thus, it can send data transmit data to PS/2

Controller and vice versa. In addition, the Mouse Controller always generates the Clock signal,

but the PS/2 Controller has the ultimate control over the communication. When PS/2 Controller

wishes to send data to Mouse Controller, it will control the Clock signal to low to reset the Clock

signal and send data to Mouse Controller at the falling edge of the Clock signal. When the PS/2

Controller pulls the Clock signal to low and then pulls the Data line to low and releases the

Clock line, it is a “Request to Send” state.

When the Mouse Controller detected the “Request to Send” state, it will begin toggling the Clock

signal to receive and read the data from the PS/2 Controller. Differ to the Mouse Controller, the

PS/2 Controller sends data at falling edge of the Clock signal, while the Mouse Controller reads

the data at rising edge of the Clock signal.

All data is transmitted one byte at a time and each byte is sent in a frame consisting of 12 bits.

These bits are:

 1 start bit. This bit is always logic “0”.

 8 data bits. They are sent in Little-Endian format (LSB is sent first).

 1 parity bit (odd parity). It should be logic “1”. If not, error occurs.

 1 stop bit. This bit is always logic “1”.

 1 acknowledge bit.

The parity bit is set (1) if there is an even number of 1’s in the data bits and reset (0) if there is an

odd number of 1’s in the data bits. The numbers of 1’s in the data bits plus the parity bit are

always added up to an odd number (odd parity). This is used for error detection. The Mouse

Controller must check this bit and if incorrect it should respond as it had received an invalid

command.

The clock frequency generated by the Mouse Controller must be in the range of 10 – 16.7 kHz.

In other words, the clock must be high for 30 – 50 microseconds and low for 30 – 50

microseconds. In this design, the clock frequency is 12.5 kHz, which is high for 40 microseconds

and low for 40 microseconds. As mentioned, the Mouse Controller always generates the clock

signal, but the PS/2 Controller always has the ultimate control over communication.

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 13

The flow charts of data transmission from the PS/2 Controller to Mouse Controller are shown

below:

On PS/2 Controller side,

Flow Chart 2.4.1: PS/2 Controller sends information to Mouse Controller

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 14

On Mouse Controller side,

Flow Chart 2.4.2: Mouse Controller generates the Clock signal and receives information from

PS/2 Controller

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 15

Table below shows the list of command PS/2 Controller sends to Mouse Controller

Code (Hex) Command

FF Reset. The Mouse Controller responds to this command with

“Acknowledge” (0xFA) then enters Reset Mode.

FE Resend. The PS/2 Controller sends this command whenever it receives

invalid data from the Mouse Controller. The Mouse Controller responds by

resending the last packet it sent to the PS/2 Controller. If the Mouse

Controller responds to the “Resend” command with another invalid packet,

the PS/2 Controller may either issues another “Resend” command or an

“Error” command, cycles the Mouse Controller’s power supply to reset the

Mouse Controller. It may even inhibit communication (by pulling the

Clock line low). The action depends on the PS/2 Controller.

F6 Set default. The Mouse Controller responds with “Acknowledge” (0xFA)

then loads the following values: sampling rate = 100, resolution = 4

counts/mm, scaling = 1:1, disable data reporting. The Mouse Controller

then resets its movement counters and enters Stream mode.

F5 Disable data report. The Mouse Controller responds with “Acknowledge”

(0xFA) then disables data reporting and resets its movement counters. This

only affects data reporting in Stream mode and does not disable sampling.

Disabled Stream mode functions the same as Remote mode.

F4 Enable data report. The Mouse Controller responds with “Acknowledge”

(0xFA) then enables data reporting and resets its movement counters. This

command may be issued when the Mouse Controller is in Remote mode (or

Stream mode), but it only affects data reporting in Stream mode.

F3 Set Sample rate. The Mouse Controller responds with “Acknowledge”

(0xFA) then reads one more byte from the host. The Mouse Controller

saves this byte as the new sample rate. After receiving the sample rate, it

again responds with “Acknowledge” (0xFA) and resets its movement

counters. Valid sample rates are 10, 20, 40, 60, 80, 100 and 200

samples/sec.

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 16

F2 Get device ID. The Mouse Controller responds with “Acknowledge”

(0xFA) followed by its device ID (0x00 for the Mouse Controller). It

should also reset its movement counters.

F0 Set Remote mode. The Mouse Controller responds with “Acknowledge”

(0xFA) then resets its movement counters and enters Remote mode.

EE Set Wrap mode. The Mouse Controller responds with “Acknowledge”

(0xFA) then resets its movement counters and enters Wrap mode.

EC Reset Wrap mode. The Mouse Controller responds with “Acknowledge”

(0xFA) then resets its movement counters and enters the mode it was

before Wrap mode (Stream mode or Remote mode).

EB Read data. The Mouse Controller responds with “Acknowledge” (0xFA)

then sends a movement data packet. This is the only way to read data in

Remote mode. After the data packets have been successfully sent, it resets

its movement counters.

EA Set Stream mode. The Mouse Controller responds with “Acknowledge”

(0xFA) then resets its movement counters and enters Stream mode.

E9 Status Request. The Mouse Controller responds with “Acknowledge”

(0xFA) then sends the following 3 – byte status packet (then resets its

movement counters).

Bit 7 6 5 4 3 2 1 0

1
st

Byte

0 Mode Enable Scaling 0 Middle Right Left

2
nd

Byte

Resolution

3
rd

Byte

Sample Rate

Left, Right, Middle: 1 = Pressed, 0 = Released

Scaling: 1 = Scaling is 2:1, 0 = Scaling is 1:1

Enable: 1 = Enable data report, 0 = Disable data report

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 17

Mode: 1 = In Remote mode, 0 = In Stream mode

0xE9 only can be used in Remote mode or Stream mode

E8 Set resolution. The Mouse Controller responds with “Acknowledge”

(0xFA) then reads one byte from the host and again responds with another

“Acknowledge” signal before resetting its movement counters. The byte

read from the host determines the resolution as the following values:

Value Resolution

0x00 1 count /mm

0x01 2 counts /mm

0x02 4 counts /mm

0x03 8 counts /mm

E7 Set scaling 2:1. The Mouse Controller responds with “Acknowledge”

(0xFA) then enables 2:1 scaling.

E6 Set scaling 1:1. The Mouse Controller responds with “Acknowledge”

(0xFA) then enables 1:1 scaling.

Table 2.4.1: Lists of command from PS/2 Controller to Mouse Controller

2.5 Operation Mode for Mouse Controller

Operation Mode Description

Reset The Mouse Controller enters Reset mode at power up or after

receiving the 0xFF (Reset) command.

Stream This is the default mode (after Reset mode) and is the mode in

which most software uses the mouse. If the PS/2 Controller has

previously set the Mouse Controller to Remote mode, it may re-

enter Stream mode by sending the 0xEA (Set Stream mode)

command to the Mouse Controller.

Remote This is the mode where the Mouse Controller sends data packet

(button + movement) to PS/2 Controller and may be entered by

sending the 0xF0 (Set Remote mode) command to the Mouse

Controller. In this mode, the data packet will only be received after

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 18

request by sending the 0xEB (Read Data).

Wrap This mode is not particularly useful except for testing the

connection between the Mouse Controller and PS/2 Controller.

Wrap mode may be entered by sending the 0xEE (Set Wrap mode)

command to the Mouse Controller. To exit Wrap mode, the PS/2

Controller must issue the 0xFF (Reset) command or 0xEC (Reset

Wrap mode) command. If the 0xFF (Reset) command is received,

the Mouse Controller will enter Reset mode. If the 0xEC (Reset

Wrap mode) command is received, the Mouse Controller will enter

the mode it was prior to Wrap mode.

Table 2.5.1: The Operation Mode of the Mouse Controller

2.6 PS/2 Keyboard architecture

The PS/2 keyboard consists of a large matrix of keys, which are monitored by an on-board

processor, known as the “keyboard encoder”. The encoder monitors which key(s) are being

pressed or released and sends the data to the host (CPU). In addition, it takes care of all the de-

bouncing and buffers any data in a 16-byte buffer. (Chapweske, 2003)

The keyboard’s processor is always busy monitoring the matrix of keys. If any key is being

pressed, released, or held down, the keyboard will send a packet of information known as “scan

codes” to the host. Scan codes can be categorized as two types: “make codes” and “break codes”.

A make code is sent when a key is pressed or held down. A break code is sent when a key is

released. As every key has its own unique make code and break code, the set of make and break

codes for every key comprises a “scan code set”. According to the standard PS/2 protocol, there

are three different scan code sets which is one, two, and three. By default, all modern keyboards

follow scan code two. (Chapweske, 2003)

2.7 PS/2 Keyboard Scan Code

Keyboard is encoded by placing the key switches in a matrix of rows and columns. All rows and

columns are periodically monitored by the keyboard encoder to detect any key state changes. If

any state change is detected, the data is send serially to the PS/2 port from the keyboard using a

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 19

certain scan code. Each key has a unique scan code based on the key switch matrix row and

column to identify the key pressed. Nevertheless, this depends on which scan code set the

keyboard is following.

The type of key activities can be summarized as the following:

 When a key is pressed, the make code of the key is transmitted.

 When a key is pressed and held down continuously, known as being typematic, the make

code is transmitted repeatedly at a specific rate. For every half a second, the keyboard

transmits make code every 100ms after the key is held down.

 When a key is released, the break code is transmiited.

For example, when we press and release the ‘A’ key, the keyboard will transmit its make code

and break code in the following fashion.

 1C F0 1C

If we press and hold the key down for a while before releasing it, the make code will be

transmitted repeatedly before the break code is sent.

 1C 1C ... 1C F0 1C

Multiple keys can be pressed at the same time. An example would be pressing the shift key

(make code is 0x12) and then the ‘N’ key, then releasing the ‘N’ key followed by the shift key.

The transmitted code follows the make code and break code of the two keys:

 12 31 F0 31 F0 12

Note: in this design there is no special code for lower or uppercase key.

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 20

Figure 2.7: PS/2 keyboard scan code

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 21

Table below shows the structure of an IBM PS/2 keyboard scan code set 2.

KEY MAKE BREAK --- KEY MAKE BREAK --- KEY MAKE BREAK

A 1C F0, 1C 9 46 F0, 46 [54 F0, 54

B 32 F0, 32 ` 0E F0, 0E INSERT E0, 70 E0, F0,

70

C 21 F0, 21 - 4E F0, 4E HOME E0, 6C E0, F0,

6C

D 23 F0, 23 = 55 F0, 55 PG UP E0, 7D E0, F0,

7D

E 24 F0, 24 \ 5D F0, 5D DELETE E0, 71 E0, F0,

71

F 2B F0, 2B BKSP 66 F0, 66 END E0, 69 E0, F0,

69

G 34 F0, 3B SPACE 29 F0, 29 PG DN E0, 7A E0, F0,

7A

H 33 F0, 33 TAB 0D F0, 0D U

ARROW

E0, 75 E0, F0,

75

I 43 F0, 43 CAPS 58 F0, 58 L

ARROW

E0, 6B E0, F0,

6B

J 3B F0, 3B L SHIFT 12 F0, 12 D

ARROW

E0, 72 E0, F0,

72

K 42 F0, 42 L CTRL 14 F0, 14 R

ARROW

E0, 74 E0, F0,

74

L 4B F0, 4B L GUI E0, 1F E0, F0,

1F

 NUM 77 F0, 77

M 3A F0, 3A L ALT 11 F0, 11 KP / E0, 4A E0, F0,

4A

N 31 F0, 31 R SHIFT 59 F0, 59 KP * 7C F0, 7C

O 44 F0, 44 R CTRL E0, 14 E0, F0,

14

 KP - 7B F0, 7B

P 4D F0, 4D R GUI E0, 27 E0, F0,

27

 KP + 79 F0, 79

Q 15 F0, 15 R ALT E0, 11 E0, F0,

11

 KP EN E0, 5A E0, F0,

5A

R 2D F0, 2D APPS E0, 2F E0, F0,

2F

 KP . 71 F0, 71

S 1B F0, 1B ENTER 5A F0, 5A KP 0 70 F0, 70

T 2C F0, 2C ESC 76 F0, 76 KP 1 69 F0, 69

U 3C F0, 3C F1 05 F0, 05 KP 2 72 F0, 72

V 2A F0, 2A F2 06 F0, 06 KP 3 7A F0, 7A

W 1D F0, 1D F3 04 F0, 04 KP 4 6B F0, 6B

X 22 F0, 22 F4 0C F0, 0C KP 5 73 F0, 73

Y 35 F0, 35 F5 03 F0, 03 KP 6 74 F0, 74

Z 1A F0, 1A F6 0B F0, 0B KP 7 6C F0, 6C

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 22

0 45 F0, 45 F7 83 F0, 83 KP 8 75 F0, 75

1 16 F0, 16 F8 0A F0, 0A KP 9 7D F0, 7D

2 1E F0, 1E F9 01 F0, 01] 5B F0, 5B

3 26 F0, 26 F10 09 F0, 09 ; 4C F0, 4C

4 25 F0, 25 F11 78 F0, 78 ’ 41 F0, 41

5 2E F0, 2E F2 07 F0, 07 , 52 F0, 52

6 36 F0, 36 PRNT

SCRN

E0, 12,

E0, 7C

E0, F0,

7C, E0,

F0, 12

 . 49 F0, 49

7 3D F0, 3D SCROLL 7E F0, 7E / 4A F0, 4A

8 3E F0, 3E PAUSE E1, 14,

77, E1,

F0, 14,

F0, 77

-

NONE-

Table 2.7: PS/2 Keyboard Scan Code Set 2

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 23

2.8 I/O Controller Interface with I/O Device

Figure 2.8.1: The Block Diagram of a Generic I/O Device Interface (Dandamudi, 2002)

Computer – use device are also called as peripheral device. There are two main purposes for I/O

device: to communicate with the outside world and store data. Regardless of the intended

purpose of the I/O device, all communications with these devices must involve the system bus.

However, they are not directly connected to the system bus. Instead, there is usually an I/O

Controller that functions as an interface between the system bus and the I/O device.

There are two main reasons for using an I/O controller. Firstly, different I/O devices exhibit

different characteristics. If they are connected correctly, the CPU would have to understand and

respond appropriately to each I/O device. This would cause the CPU to spend a lot of time

interacting with each I/O device and spend less time executing user programs. Thus, the I/O

controller is introduced to provide necessary low – level commands and data for proper operation

of the associated I/O device. For complex I/O devices such as disk drives, there are special I/O

control chips available.

Secondly, the amount of electrical power used to send signals on the system bus is very low.

Thus, the cable connecting the I/O device has to be very short (a few centimeters at most). I/O

controllers typically contain driver hardware to send current over long cables that connect the I/O

devices. I/O controllers typically have three types of internal registers – a data register, a

command register and a status register. When the CPU wants to interact with an I/O device, it

communicates only with the associated I/O controller. (Dandamudi, 2002)

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 24

PS/2 Controller

Mouse

Controller

3 Byte Data

1 Byte Data

The interface of the PS/2 Controller connected to the Mouse Controller is shown as below:

Figure 2.8.2: The Block Diagram of PS/2 Controller Interface with Mouse Controller

2.9 I/O Data Transfer

There are various ways I/O devices can be accessed by a system. The data transfer process

involves two distinct phases, which are data transfer phase and the end –notification phase.

The data transfer phase transmits data between the memory and I/O device. This can be done by

the programmed I/O or direct memory access (DMA). The end – notification informs the

processor that the data transfer has been completed. The processor gets this information either by

an interrupt or through the programmed I/O mechanism. (Dandamudi, 2002).

To understand I/O data transfer, we have to look at three basic techniques

i. Programmed I/O,

ii. Interrupt – driven I/O,

iii. DMA

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 25

Figure 2.9.1: The Programmed I/O Design

i) Programmed I/O Mechanism

Programmed I/O involves the processor in the I/O data transfer. After the command is sent to the

I/O devices, the processor will send signal to the I/O controller repeatedly to ensure whether the

task has been completed or not. It repeatedly checks to confirm if a particular condition is true.

Typically, it busy – waits until the condition is true. From this brief description, it is clear that

the programmed I/O mechanism wastes processor time. (Dandamudi, 2002)

ii) Interrupt – driven I/O Mechanism

In the same situation, after the command is sent to the I/O devices, the processor assigns a task to

an I/O controller and resumes its pending work. When the task is completed, the I/O controller

notifies the processor by using an interrupt signal. Obviously, this is a better way of using the

processor though an interrupt – driven mechanism requires hardware support, which is provided

by all processors. (Dandamudi, 2002)

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 26

Figure 2.9.2: The DMA Design

iii) DMA

The last technique, DMA, relieves the processor of the low – level data transfer chore. DMA is

used for bulk data transfer. For example, in an interrupt – driven I/O, the task assigned could be a

DMA request to transfer data from a disk drive. Typically, a DMA controller oversees the data

transfer. When the specified transfer is complete, the processor is notified by an interrupt signal.

(Dandamudi, 2002)

DMA is implemented by using a DMA controller. The DMA controller acts as a slave to the

processor and receives data transfer instructions from the processor. For example, to read a block

of data from an I/O device, the CPU sends the I/O device number, main memory buffer address,

number of bytes to be transferred, and the direction of transfer (I/O to memory or memory to

I/O). After the DMA controller has received the transfer instruction, it requests the bus. Once the

DMA controller becomes the bus master, it generates all bus control signals to facilitate the data

transfer. The DMA transfer not only relieves the processor from the data transfer chore but also

causes the data transfer process to be more efficient by transferring data directly from the I/O

device to memory. (Dandamudi, 2002)

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 27

2.10 Bus System

Memories and input-output devices are usually interfaced to a microprocessor through a tri-state

bus. To assure proper data transfer on the bus, the timing characteristics of both the

microprocessor bus interface and the devices must be carefully considered. The bus system

comprises of 3 major components:

 Data bus

 Address bus

 Control bus

 Figure below shows a generalized I/O structure connecting CPU with other peripheral devices.

Figure 2.10: General I/O structure (Shiva, 2008)

Memories are usually interfaced to the CPU through a memory bus that consists of address, data,

and control lines. It is also known as a “North Bridge”. Other peripherals such as I/O devices

communicate with the CPU over the I/O bus, which is also known as the “South Bridge”. The

data transfer rate of the memory bus is much higher than the I/O bus.

Each device has its own decoded address which is carried on the address bus. Hence, only the

device whose address matches that on the address bus will participate in its corresponding I/O

operation. The data bus is bidirectional. The control bus carries control signals such as READ,

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 28

WRITE, and so on. In addition, several status signals such as DEVICE BUSY and ERRORS

originating in the device interface also form a part of the control bus (Shiva, 2008).

2.10.1 Bus Structures

In practice, a bus structure can be realized by using either tri-state buffers or multiplexers. A bus

is called a tri-state bus when using tri-state buffers and a multiplexer-based bus when using

multiplexers (Lin, 2011).

i) Tri-state Bus

Figure 2.10.1.1: Typical Tri-state Bus Structure (Lin, 2011)

A typical tri-state bus is used in digital systems when there are n modules connected to the bus.

Each module is connected to the bus through a bidirectional interface that enables it to drive a

signal T to the bus when then transmit enable control signal TE is asserted. When the receive

enable control signal RE is asserted, the module is enabled to sample a signal off the bus onto an

internal signal R (Lin, 2011).

Using a bus structure may not be suitable for some applications, especially when the capacitive

loading of the driver within the bidirectional interface of the active module is large. In the figure

above, each transmit buffer needs to drive an amount of capacitive load,

where and are the output capacitance of the tri-state output buffer and the input

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 29

capacitance of the input buffer, respectively. This amount of capacitive load may be intolerant in

some applications (Lin, 2011).

ii) Multiplexer-Based Bus

Figure 2.10.1.2: Typical multiplexer-based bus structure (Lin, 2011)

A multiplexer-based bus structure is used to avoid large amount of capacitive load in some

applications. From the figure above, the output signals of n modules are routed to their

destination through a multiplexer tree. Compared to a tri-state bus structure, the propagation

delay of a multiplexer tree is less when the number of modules attached to it is large enough.

Thus, it is more often used instead of a tri-state bus for a better performance (Lin, 2011).

2.10.2 Bus System Interfacing

Typically, the bus system can be interfaced point-to-point with the other peripherals such as

memory and I/O controllers. Figure below shows an example of a bus interface unit connected to

an I/O system.

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 30

Figure 2.10.2.1: Bus interface connected to I/O system (Charles H. Roth, 1998)

The address bus signal is a unidirectional signal given from the bus interface to the I/O system,

while the data bus signal is bidirectional. In addition, control lines such as Write/Read, Ready,

and Address Strobe are also needed for basic read and write operation.

When the CPU wants to write to I/O system, it needs to follow a sequence of events:

1. The CPU outputs an address on the address bus and asserts ̅̅ ̅̅ ̅ (address strobe) to

indicate a valid address on the bus.

2. CPU places data on the data bus and asserts ̅ (write/ ̅̅ ̅̅ ̅̅ ̅) to initiate writing the

data. The I/O system asserts ̅̅ ̅̅ ̅̅ (ready) to indicate that the data transfer is ready

For reading, step (1) is the same, but in step (2) the I/O system places data on the data bus and

are stored inside the CPU when the memory asserts ̅̅ ̅̅ ̅̅ .

The interface signals for the bus interface unit are shown in figure 2.8.3 below. This is a

simplified version of a complex bus interface unit, where only the signals needed to run the basic

read and write bus cycles are included.

I/O

System

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 31

Figure 2.10.2.2: Simple bus interface unit interfaced with CPU. (Charles H. Roth, 1998)

The internal bus interface shows only those signals needed for transferring data between the bus

interface unit and the CPU. If the CPU needs to write data to a memory attached to the external

bus interface, it requests a write cycle by setting br (bus request) to 1 and wr to 1. If the CPU

needs to read data, it requests a read cycle by setting br to 1 and wr to 0. Whe the write or read

cycle is complete, the bus interface unit returns done to 1 to the CPU.

The state machine of the bus interface unit is shown in the flow chart below. In state Ti, the bus

interface is in idle state, and the data bus is driven in high impedance state (high-Z). When a bus

request (br) is received from the CPU, the controller goes to state T1. in T1, the new address is

driven onto the address bus, and the address strobe signal, ̅̅ ̅̅ ̅ is set to 0 to indicate a valid

address on the bus, The write-read signal (̅) is set to low for a read cycle or high for a write

cycle, and the controller goes to state T2. In T2, ̅̅ ̅̅ ̅ returns to 1. For a read cycle, wr is set to 0

and the controller waits for the ready signal, ̅̅ ̅̅ ̅̅ to be 0, which indicates valid data is available

from the memory, and then store data signal (std) is asserted to indicate that the data should be

stored in the CPU. For a write cycle, wr is set to 1 and data from CPU is placed on the data bus.

The controller then waits for ̅̅ ̅̅ ̅̅ to be 0 to indicate that the data has been in memory. The done

signal, done is asserted when ̅̅ ̅̅ ̅̅ is set to 0 to indicate that the write or read cycle is completed.

After the read or write cycle is completed, the controller goes back to Ti state if no bus request is

Simple bus interface unit

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 32

pending. Otherwise, it goes to state T1 to initiate another read or write cycle. The done signal

remains on in Ti. (Charles H. Roth, 1998)

Flow Chart 2.10.2.1: State machine for simple bus interface unit. (Charles H. Roth, 1998)

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 33

2.11 WISHBONE Architecture

The WISHBONE System-on-Chip (SOC) Interconnection Architecture (generally known as

WISHBONE) is a flexible design methodology for use with semiconductor intellectual property

(IP) cores. It is used to foster design reuse by alleviating System-on-Chip integration problems

by creating a common interface between IP cores. The advantages of this architecture include

improving the portability and reliability of the system, and results in faster time-to-market for the

end user (Peterson, 2010).

WISHBONE architecture was introduced as an intention as a general purpose interface. It

defines the standard data exchange between IP core modules and does not regulate the

application specific functions of the IP core. In fact, the WISHBONE architecture is analogous to

a microcomputer bus in such that they both offer:

 A flexible integration solution that can be tailored to a specific application.

 A variety of bus cycles and data path widths to solve various system problems

 Allow products to be designed by a variety of suppliers (thereby driving down price

while improving performance and quality).

However, traditional microcomputer buses are normally handicapped for use as a System-on-

Chip interconnection as they are designed to drive long signal traces and connector systems

which are highly inductive and capacitive. In contrast, WISHBONE architecture is much simpler

and faster as well as having a rich set of interconnection resources, which do not exist in

microcomputer buses (Peterson, 2010).

WISHBONE utilizes MASTER/SLAVE architecture. The functional modules with MASTER

interfaces initiate data transactions to participating SLAVE interfaces. An idea of the

communication between the MASTERs and SLAVEs is shown in the figure below.

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 34

Figure 2.11: The WISHBONE MASTER/SLAVE interconnection (Peterson, 2010)

The MASTERs and SLAVEs usually communicate with each other through an interconnection

(INTERCON), which is conceptualized as a ‘cloud’ that contains circuits. Different from

traditional microcomputer buses, WISHBONE uses variable interconnection, a new scheme that

allows the interconnection network to be changed by the system integrator to suit one’s own

requirements. This is possible because integrated circuit (IC) chips have interconnection paths

that can be adjusted. These are very flexible, and take the form of logic gates and routing paths.

These can be ‘programmed’ into the chip using variety of tools such as using hardware

descriptive languages like Verilog or VHDL (Peterson, 2010).

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 35

2.11.1 Types of WISHBONE interconnection

There are 4 defined types of WISHBONE interconnection. They include:

i. Point-to-point

ii. Data flow

iii. Shared bus

iv. Crossbar switch

i) Point-to-point Interconnection

Figure 2.11.1.1: Point-to-point interconnection (Peterson, 2010)

The point-to-point interconnection is the simplest way to connect two WISHBONE IP cores

together. It allows a single MASTER interface to connect to a single SLAVE interface. The

MASTER interface could be on microprocessor IP core, and the SLAVE interface could be on a

serial I/O port.

ii) Data Flow Interconnection

Figure 2.11.1.2: Data flow interconnection (Peterson, 2010)

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 36

The data flow interconnection is used when data is processed in a sequential manner, where each

IP core in the data flow architecture has both a MASTER and a SLAVE interface. Data flows

from core-to-core. This process is also known as pipelining.

The data flow architecture exploits parallelism, thereby speeding up execution time. For instance,

if each of the IP cores in the figure represents a floating point processor, then the system has 3

times the number crunching potential of a single unit, assuming that each IP core takes an equal

amount of time to solve its problem, and that the problem can be solved in a sequential manner.

iii) Shared Bus Interconnection

Figure 2.11.1.3: Shared bus interconnection (Peterson, 2010)

This interconnection is normally used to connect 2 or more MASTERs with one or more

SLAVEs. As shown in figure 2.9.1.3, a MASTER initiates a bus cycle to a target SLAVE. The

target SLAVE then participates in 1 or more bus cycles with the MASTER.

The shared bus interconnection uses an arbiter to determine when a MASTER may gain access

to the shared bus. It also decides how each MASTER accesses the shared resource. The type of

arbiter is completely defined by the system integrator, whether using a priority-based or round

robin type.

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 37

The main advantage to this technique is that it is relatively compact, whereby it needs fewer

logic gates and routing resources than other configurations, especially the crossbar switch.

However, the main drawback of this technique is that the MASTERs may have to wait for a

period of time before gaining access to the interconnection, which degrades the overall speed of

the data transfer.

iv) Crossbar Switch Interconnection

Figure 2.11.1.4: Crossbar Switch interconnection (Peterson, 2010)

The crossbar switch interconnection is used to connect 2 or more WISHBONE MASTERs

together so that each can access 2 or more SLAVEs. Using this technique, a MASTER can

initiate an addressable bus cycle to a target SLAVE. Similar to shared bus interconnection, an

arbiter is also used to determine when each MASTER may gain access to the indicated SLAVE.

The difference is the crossbar switch allows more than 1 MASTER to use the interconnection, as

long as 2 MASTERs don’t access the same SLAVE at the same time.

Under this method, each master arbitrates for a ‘channel’ on the switch. Once this is established,

data is transferred between the MASTER and the SLAVE over a private communication link.

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 38

Overall, the crossbar switch technique has a higher data transfer rate than shared bus

mechanisms. It can also be expanded to support extremely high data transfer rates. One

disadvantage is that more interconnection logic and routing resources are required than shared

bus systems.

2.11.2 WISHBONE architecture signal description

There are some signals that are commonly used in the WISHBONE interconnect. This section

describes the signals that are used between the MASTER and SLAVE interfaces.

2.11.2.1 System controller (SYSCON) module signals

Signal Name Type Description

System clock CLK_O Output Coordinate all activities for internal

logic within the WISHBONE

interconnect.

 Connect to the clock input on

MASTER and SLAVE interfaces.

Reset RST_O Output Force all WISHBONE interfaces to

restart and initialize all internal self-

starting machines.

 Connect to the reset input on

MASTER and SLAVE interfaces.

Table 2.11.2.1: System controller module signals (Peterson, 2010)

2.11.2.2 MASTER and SLAVE interfaces common signals

Signal Name Type Description

Clock CLK_I Input Coordinate all activities for the

internal logic within the WISHBONE

interconnect.

 All output signals are registered at the

rising edge of clock signal.

 All input signals are stable before the

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 39

rising edge of clock signal.

Data input

array

DAT_I() Input Pass binary data. Array boundaries are

determined by port size with a

maximum size of 64-bits

Data output

array

DAT_O() Output Pass binary data. Array boundaries are

determined by port size with a

maximum size of 64-bits.

Reset RST_I Input Force the WISHBONE interface to

restart and initialize all internal self-

starting state machines.

 Only resets the WISHBONE interface.

Data tag type TGD_I Input Contain information that is associated

with data input array, and is qualified a

strobe signal.

 Simplify the task of defining new

signals because their timing (in

relation to every bus cycle) is pre-

defined by this specification.

 Examples are parity correction, error

correction and time stamp information.

Data tag type TGD_O Output Contain information that is associated

with data input array, and is qualified a

strobe signal.

 Simplify the task of defining new

signals because their timing (in

relation to every bus cycle) is pre-

defined by this specification.

 Examples are parity correction, error

correction and time stamp information.

Table 2.11.2.2: MASTER and SLAVE interfaces common signals (Peterson, 2010)

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 40

2.11.2.3 MASTER signals

Signal Name Type Description

Acknowledge ACK_I Input When asserted, indicates the normal

termination of a bus cycle.

Address

output array

ADR_O() Output Pass a binary address. The higher

array boundary is specific to the

address width of the core, and the

lower array boundary is determined by

the data port size and granularity.

Select output

array

SEL_O() Output Indicate where valid data is expected

on the DAT_I() during READ cycles,

and where it is placed on DAT_O()

during WRITE cycles.

 Array boundaries are determined by

granularity of a port. For example, if

8-bit granularity is used on a 64-bit

port, then there would be an array of

eight select signals with boundaries of

SEL_O(7..0).

Cycle output CYC_O Output When asserted, indicates that a valid

bus cycle is in progress. The signal is

asserted for the duration of all cycles.

 Useful for interfaces with multi-port

interfaces (such as dual port

memories). In these cases, the CYC_O

signal requests use of a common bus

from an arbiter.

Error detect ERR_I Input Indicate an abnormal cycle

termination. The source of the error,

and the response generated by the

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 41

MASTER is defined by the IP core

supplier.

Strobe STB_O Output Indicate a valid data transfer cycle.

Used to qualify various other signals

on the interface such as SEL_O.

Address tag

type

TGA_O() Output Contain information associated with

address lines, and is qualified by

signal STB_O.

 Simplify the task of defining new

signals because their timing (in

relation to every bus cycle) is defined

by this specification.

Cycle tag type TGC_O() Output Contain information associated with

bus cycles, and is qualified by signal

CYC_O. For example, data transfer,

interrupt acknowledge and cache

control cycles can be uniquely

identified. They can also be used to

discriminate between WISHBONE

SINGLE, BLOCK and RMW cycles.

Write enable WE_O Output Indicate whether the current local bus

cycle is a READ or WRITE cycle, and

is asserted during WRITE cycles.

Table 2.11.2.3: MASTER signals (Peterson, 2010)

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 42

2.11.2.4 SLAVE signals

Signal Name Type Description

Acknowledge ACK_O Output When asserted, indicates the

termination of a normal bus cycle.

Address input

array

ADR_I() Input Pass a binary address. The higher

array boundary is specific to the

address width of the core, and the

lower array boundary is determined by

the data port size.

Cycle input CYC_I Input When asserted, indicates that a valid

bus cycle is in progress. The signal is

asserted for the duration of all bus

cycles.

Select input

array

SEL_I() Input Indicate where valid data is placed on

the DAT_I() signal array during

WRITE cycles, and where it should be

present on the DAT_O() signal array

during READ cycles.

 Array boundaries are determined by

the granularity of a port.

Error detect ERR_O Output Indicate an abnormal cycle

termination. The source of the error,

and the response generated by the

MASTER is defined by the IP core

supplier.

Strobe STB_I Input When asserted, indicates that the

SLAVE is selected. A SLAVE shall

respond to other WISHBONE signals

only when STB_I is asserted (except

for reset signal, RST_I).

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 43

 The SLAVE asserts either ACK_O or

ERR_O signals in response to every

assertion of STB_I signal.

Address tag

type

TGA_I() Input Contain information associated with

address lines ADR_I(), and is qualified

by signal STB_I.

 Simplify the task of defining new

signals because their timing (in

relation to every bus cycle) is pre-

defined by this specification.

Cycle tag type TGC_I() Input Contain information associated with

bus cycles, and is qualified by signal

CYC_I. For example, data transfer,

interrupt acknowledge and cache

control cycles can be uniquely

identified with the cycle tag. They can

also be used to discriminate between

WISHBONE SINGLE, BLOCK and

RMW cycles.

Write enable WE_I Input Indicates whether the current local bus

cycle is a READ or WRITE cycle. The

signal is de-asserted during READ

cycles, and is asserted during WRITE

cycles.

Table 2.11.2.4: SLAVE signals (Peterson, 2010)

Note that the signal names mentioned in this section is just a convention for convenience purpose

in this paper. They may be different in response to the modules designed by the designers. In

addition, not all signals are necessary to be implemented in every design. However, there are

some rules that must be followed as shown below (Peterson, 2010):

 All WISHBONE interface signals must use active high logic.

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 44

 As a minimum, the MASTER interface must include the following signals: ACK_I,

CLK_I, CYC_O, RST_I, and STB_O. All other signals are optional.

 As a minimum, the SLAVE interface must include the following signals: ACK_O,

CLK_I, CYC_I, STB_I, and RST_I. All other signals are optional.

 The signals must allow MASTER and SLAVE interfaces to support either one of the

WISHBONE interconnect technique.

 The signals must allow three basic types of the bus cycle. These include SINGLE

READ/WRITE, BLOCK READ/WRITE and RMW (read-modify-write) bus cycles.

 All signals on MASTER and SLAVE interfaces are either inputs or outputs, but are

never bi-directional. However, it is permissible to use bi-directional signals in the

interconnection logic if the target device supports it.

 A handshaking mechanism allows a used so that either the MASTER or the participating

SLAVE interface can adjust the data transfer rate during a bus cycle. This allows the

speed of each cycle to be adjusted by either the MASTER or SLAVE interface. This

means that all WISHBONE bus cycles run at the speed of the slowest interface.

 The handshaking mechanism allows a participating SLAVE to accept a data transfer,

reject a data transfer with an error. The SLAVE does this by generating the ACK_O,

ERR_O signals. Every interface must support the ACK_O signal, but the error signal is

optional.

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 45

2.11.3 WISHBONE Classic Bus Cycles

In WISHBONE architecture, the MASTER and SLAVE interfaces are interconnected with a set

of signals that permit them to exchange data. These signals are cumulatively known as a bus, and

are contained within a functional module called the INTERCON. Address, data and other

information is impressed upon the bus in the form of bus cycles.

There are three types of bus cycles:

i. Single READ/WRITE cycle

ii. BLOCK READ/WRITE cycle

iii. READ-MODIFY-WRITE (RMW) cycle

i) Single READ/WRITE cycle

The single read/write cycle performs one data transfer at a time. These are the basic cycles used

to perform data transfers on the WISHBONE interconnect.

Figure 2.11.3.1: Standard single READ cycle (WISHBONE B4)

1
st
 Clock Edge 2

nd
 Clock Edge 3

rd
 Clock Edge

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 46

In a standard single READ cycle, the bus protocol works as follows:

 1
st
 clock edge

o MASTER presents a valid address on ADR_O() and TGA_O().

o MASTER de-asserts WE_O to indicate a READ cycle.

o MASTER presents back select SEL_O() to indicate where it expects data.

o MASTER asserts CYC_O and TGC_O() to indicate the start of the cycle.

o MASTER asserts STB_O to indicate the start of the phase.

 2
nd

 clock edge

o SLAVE decodes inputs and responding SLAVE asserts ACK_I.

o SLAVE presents valid data on DAT_I() and TGD_I().

o SLAVE asserts ACK_I in response to STB_O to indicate valid data.

o MASTER monitors ACK_I, and prepares to latch data on DAT_I().

[Note: SLAVE may insert wait states before asserting ACK_I, thereby allowing it

to throttle the cycle speed. Any number of wait states may be added]

 3
rd

 clock edge

o MASTER latches data on DAT_I().

o MASTER negates STB_O and CYC_O to indicate the end of cycle.

o SLAVE de-asserts ACK_I in response to negated STB_O.

Figure 2.11.3.2: Standard single WRITE cycle (Peterson, 2010)

1
st
 Clock Edge 2

nd
 Clock Edge 3

rd
 Clock Edge

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 47

In a standard WRITE cycle, the bus protocol works as follow:

 1
st
 clock edge

o MASTER presents a valid address on ADR_O() and TGA_O().

o MASTER presents a valid data on DAT_O() and TGD_O().

o MASTER asserts WE_O to indicate a WRITE cycle.

o MASTER presents bank select SEL_O() to indicate where it sends data.

o MASTER asserts CYC_O and TGC_O() to indicate the start of the cycle.

o MASTER asserts STB_O to indicate the start of the phase.

 2
nd

 clock edge

o SLAVE decodes inputs, and responding SLAVE asserts ACK_I.

o SLAVE prepares to latch data on DAT_O() and TGD_O().

o SLAVE asserts ACK_I in response to STB_O to indicate latched data.

o MASTER monitors ACK_I, and prepares to terminate the cycle.

[Note: SLAVE may insert wait states before asserting ACK_I, thereby allowing it

to throttle the cycle speed. Any number of wait states may be added]

 3
rd

 clock edge

o SLAVE latches data on DAT_O() and TGD().

o MASTER de-asserts STB_O and CYC_O to indicate the end of the cycle.

o SLAVE de-asserts AKC_I in response to negated STB_O.

ii) BLOCK READ/WRITE cycle

The BLOCK transfer cycles perform multiple data transfers. They are very similar to single

READ and WRITE cycles, but have a few special modifications to support multiple transfers.

During BLOCK cycles, the interface basically performs SINGLE READ/WRITE cycles.

However, the BLOCK cycles are modified somewhat so that these individual cycles (called

phases) are combined together to form a single BLOCK cycle, which is useful when multiple

MASTERS are used on the interconnect (Peterson, 2010).

Figure

2.11.3.3: Use of CYC_O signal during BLOCK cycles (Peterson, 2010)

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 48

From figure above, the CYC_O signal is asserted for the duration of a BLOCK cycle. It can be

used to request permission to access a shared resource from a local arbiter. To hold the access

until the end of the cycle, a signal to request the complete ownership of the bus, called LOCK_O

is introduced. When this signal is asserted, it indicates that the current bus cycle is

uninterruptible. During each of the data transfer phases (within the block transfer), the normal

handshaking protocol between STB_O and ACK_I is maintained (WISHBONE b4).

Figure 2.11.3.4: Standard BLOCK READ cycle (Peterson, 2010)

The protocol for a standard BLOCK READ cycle works as follows:

 1
st
 clock edge

o MASTER presents a valid address on ADR_O() and TGA_O().

o MASTER de-asserts WE_O to indicate a READ cycle.

o MASTER presents bank select SEL_O to indicate where it expects data.

o MASTER asserts CYC_O and TGC_O to indicate the start of the cycle.

o MASTER asserts STB_O to indicate the start of the first phase.

[Note: the MASTER asserts CYC_O and/or TGC_O() at, or any time before, 2
nd

clock edge.]

 2
nd

 clock edge

o SLAVE decodes inputs, and responding SLAVE asserts ACK_I.

o SLAVE presents valid data on DAT_I() and TGD_I().

1
st

Clock

Edge

2
nd

Clock

Edge

3
rd

Clock

Edge

4
th

Clock

Edge

5
th

Clock

Edge

6
th

Clock

Edge

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 49

o MASTER monitors ACK_I, and prepares to latch DAT_I() and TGD_I().

 3
rd

 clock edge

o MASTER latches data on DAT_I and TGD_I().

o MASTER de-asserts STB_O to introduce a wait state.

 4
th

 clock edge

o MASTER presents a valid address on ADR_O() and TGA().

o MASTER de-asserts WE_O to indicate a READ cycle.

o MASTER presents bank select SEL_O() to indicate where it expects data.

o MASTER asserts STB_O.

 5
th

 clock edge

o SLAVE decodes inputs, and responding SLAVE asserts ACK_I.

o SLAVE presents valid data on DAT_I() and TGD_I().

 6
th

 clock edge

o MASTER latches data on DAT_I() and TGD_I().

o MASTER terminates cycle by negating STB_O and CYC_O.

Figure 2.11.3.5: Standard BLOCK WRITE cycle (Peterson, 2010)

1
st

Clock

Edge

2
nd

Clock

Edge

3
rd

Clock

Edge

4
th

Clock

Edge

5
th

Clock

Edge

6
th

Clock

Edge

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 50

The protocol for a BLOCK WRITE cycle works as follows:

 1
st
 clock edge

o MASTER presents a valid address on ADR_O() and TGA_O().

o MASTER asserts WE_O to indicate a WRITE cycle.

o MASTER presents bank select SEL_O() to indicate where it sends data.

o MASTER asserts CYC_O and TGC_O to indicate the start of the cycle.

o MASTER asserts STB_O to indicate the start of the first phase.

[Note: the MASTER asserts CYC_O and/or TGC_O at, or any time before 2
nd

clock edge.]

 2
nd

 clock edge

o SLAVE decodes inputs, and responding SLAVE asserts ACK_I.

 3
rd

 clock edge

o MASTER monitors ACK_I.

o MASTER de-asserts STB_O to introduce a wait state.

 4
th

 clock edge

o MASTER presents a valid address on ADR_O() and TGA_O().

o MASTER asserts WE_O to indicate a WRITE cycle.

o MASTER presents bank select SEL_O() to indicate where it sends data.

o MASTER asserts CYC_O and TGC_O() to indicate the start of the cycle.

o MASTER asserts STB_O to indicate the start of the second phase.

 5
th

 clock edge

o MASTER presents a valid address on ADR_O() and TGA_O().

o MASTER de-asserts WE_O to indicate a READ cycle.

o MASTER presents bank select SEL_O() to indicate where it expects data.

 5
th

 clock edge

o SLAVE decodes inputs, and responding SLAVE asserts ACK_I.

 6
th

 clock edge

o MASTER monitors ACK_I.

o MASTER terminates cycle by negating STB_O and CYC_O.

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 51

iii) READ-MODIFY-WRITE (RMW) cycle

The RMW cycle is used for indivisible semaphore operations. During the first half of the cycle a

single read data transfer is performed. During the second half of the cycle a write data transfer is

performed. The CYC_O signal remains asserted during both halves of the cycle.

It is possible for the MASTER and SLAVE to be designed so that they do not support the RMW

cycles.

Figure 2.11.3.6: Standard RMW cycle (Peterson, 2010)

A standard RMW cycle protocol works as follows:

 1
st
 clock edge

o MASTER presents ADR_O() and TGA_O().

o MASTER de-asserts WE_O to indicate a READ cycle.

o MASTER presents bank select SEL_O() to indicate where it expects data.

o MASTER asserts CYC_O and TGC_O() to indicate the start of the cycle.

o MASTER asserts STB_O.

[Note: the MASTER asserts CYC_O and/or TGC_O at, or any time before 2
nd

clock edge. The use of TAGN_O is optional.]

1
st
 Clock Edge 2

nd
 Clock Edge 3

rd
 Clock Edge 4

th
 Clock Edge

Chapter 2 Literature Review

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 52

 SETUP, 2
nd

 edge

o SLAVE decodes inputs, and responds by asserting ACK_I.

o SLAVE presents valid data on DAT_I() and TGD_I().

o MASTER monitors ACK_I, and prepares to latch DAT_I() and TGD_I().

 2
nd

 clock edge

o MASTER latches data on DAT_I() and TGD_I().

o MASTER de-asserts STB_O to introduce a wait state.

 SETUP, 3
rd

 edge

o SLAVE de-asserts ACK_I in response to STB_O.

o MASTER asserts WE_O to indicate a WRITE cycle.

[Note: any number of wait states can be inserted by the MASTER at this point.]

 3
rd

 clock edge

o MASTER presents WRITE data on DAT_O() and TGD_O().

o MASTER presents new bank select SEL_O() to indicate where it sends data.

o MASTER asserts STB_O.

 SETUP, 4
th

 edge

o SLAVE decodes inputs, and responds by asserting ACK_I.

o SLAVE prepares to latch data on DAT_O() and TGD_O().

o MASTER monitors ACK_I, and prepares to terminate the data phase.

[Note: any number of wait states can be inserted by the SLAVE at this point.]

 4
th

 clock edge

o SLAVE latches data on DAT_O() and TGD_O().

o MASTER de-asserts STB_O and CYC_O indicating the end of the cycle.

o SLAVE de-asserts ACK_I in response to negated STB_O.

Chapter 3 Design Methodology and Development Tools

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 53

Chapter 3: Design Methodology and Development Tools

3.1 Design Tools

There are lots of design tools that can create and edit Verilog HDL files. Among them, there are

3 famous Verilog HDL design tools with rich graphical user interface (GUI) which will be

discussed and compared in this chapter.

3.1.1 Altera Quartus II

The Quartus II development software is designed by Altera. This software provides a complete

design environment for system – on – a – programmable – chip (SOPC) design. Besides that, it

also ensures easy design entry, fast processing, and straightforward device programming. It

offers a rich graphical user interface (GUI) complemented with an illustrated, easy – to – use

online Help system. (Altera, 2012)

The Quartus II software can combine different types of design files into a hierarchical project,

choosing the design entry format that works best for each functional block. Moreover, the

Quartus II software can create block diagrams that describes at a high – level, then uses

additional block diagrams, schematics, AHDL Text Design Files (.tdf), EDIF Input Files (.edf),

VHDL Design Files (.vhd) , and Verilog HDL (.v) to create lower – level design components.

(Altera, 2012)

The Quartus II software can work with multiple files at the same time, editing multiple design

files to transfer information between them, while simultaneously compiling or simulating another

project. It can also view an entire hierarchy of design files and move smoothly from one

hierarchical level to another. (Altera, 2012)

3.1.2 Synopsys VCS

VCS development software is designed by Synopsys. This software is based on multi – core

technology, which can delivers a 2x verification speed – up that helps users find design bugs

early in the product development cycle. VCS multi – core technology cuts down verification

time by running the design, testbench, assertions, coverage and debug in parallel on machines

with multiple cores. (Synopsys, 2012)

Chapter 3 Design Methodology and Development Tools

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 54

VCS supports all popular design and verification languages including Verilog HDL, VHDL,

SystemVerilog, OpenVera, and SystemC™ and the VMM, OVM, and UVM™ methodologies

which help VCS users to develop high – quality designs. The VCS solution’s advanced bug –

finding technologies include full – featured Native Testbench (NTB), complete assertions,

comprehensive code and functional coverage to find more design bugs faster and easier.

(Synopsys, 2012)

Additionally, the VCS solutions powerful debug and visualization environment minimizes the

turnaround time to find and fix design bugs. VCS with MVSIM and MVRC delivers innovative

voltage – aware verification techniques to find bugs related to modern low power designs.

(Synopsys, 2012)

3.1.3 Mentor Graphics ModelSim XE III 10.1a

Mentor Graphics ModelSim XE III 10.1a is created by Mentor Graphics and Xilinx. This

development software enables users to verify the hardware descriptive language (HDL) source

code, behavioural, functional and timing simulation of the designs. It includes a complete HDL

simulation and debugging environment providing 100% VHDL and Verilog language coverage,

a source code viewer/editor, waveform viewer, design structure browser, list window and a host

of other features designed. (ModelSim, 2012)

This software has a Student Edition (SE) which is a freeware but it is limited to 10,000 lines of

code. Although it has its limitation, it will not affect this project because 10,000 lines of code are

sufficient for the purpose of this project.

The ModelSim XE III 10.1a has 30% of Professional Edition (PE) which has the performance

(speed) of the simulation engine. It does not slow down the time needed to compile the design

(VCOM/VLOG) or to load the design in MXE III (VSIM). The slowdown occurs during

simulation. For example, a design that takes 20 seconds to run in PE, will take approximately 60

seconds to run in MXE III. (ModelSim, 2012)

Chapter 3 Design Methodology and Development Tools

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 55

To choose the most appropriate design tools in this project, some factors such as language

supported, user-friendly environment, affordability and performance need to be put in a serious

consideration. Since most the simulators support system level and RTL design, some minor

comparisons between the simulators discussed in this paper are shown in the table below.

 Simulator

Chosen Chosen

Factors

Considered

Altera Quartus II ModelSim VCS

Company

Language

Supported

VHDL

Verilog HDL

VHDL-2002

V2002

SV2005

VHDL-2002

V2001

SV2005

Platform Supported -Windows XP/7

-Linux

-Windows

XP/Vista/7

-Linux

-Linux

Affordability No Yes (SE Edition

only)

No

Table 3.1: Comparison between simulators chosen

Based on the comparison table above, it is clearly stated that the software which is going to be

used in this project is Mentor Graphics ModelSim XE III 10.1a; this is because ModelSim XE III

10.1a is free license software. Moreover, I’ve been practicing this software since my sophomore

year. Thus, I’ve been familiar with the software and do not need to learn other development

software from scratch.

Chapter 3 Design Methodology and Development Tools

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR 56

3.2 Design Method

Designing a PS/2 Controller involves two levels which are the architecture level and register

transfer level (RTL). It needs to design the I/O unit of the PS/2 Controller by using Verilog code

to describe the algorithm and data flow. After completing the Verilog code, the testbench is used

to simulate and test the Verilog code whether it is functionally correct or not.

Flow Chart 3.2.1: Design Flow

A top down design approach was used in the design accordingly to the functionality in this

project. Specification is the beginning of the design methodology. The functionality and feature

of the PS/2 Controller are defined. The design is made to meet the specification at first.

Secondly, the RTL coding is written based on the functionality of the PS/2 Controller’s design.

When the RTL code is completed, the next step is to create the testbench using Verilog to

simulate the design. If the expected waveforms are not correct, the RTL code needs to be

corrected repeatedly until the correct waveforms are generated.

Notes: The synthesis process is not performed in this project. Hence, the formal verification

on the synthesis netlist will not be used.

Chapter 4 System Specification

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 57

Chapter 4 System Specification

4.1 Naming Convention

Module - [lvl]_[mod. name]

Instantiation - [lvl]_[abbr. mod. name]

Pin - [lvl]_ [type]_[abbr. mod. name]_[pin name]

- [lvl]_ [type]_[abbr. mod. name]_[stage]_[pin name]

Abbreviation

 Description Case Available Remark

lvl level lower c: Chip

u: Unit

b: Block

mod. name module name lower all any

abbr. mod.

name

abbreviated

module name

lower all any maximum 3

characters

type pin type lower o: output

i: input

f-: function

stage stage name lower all if, id, ex, mem,

wb

pin name pin name lower all any several words are

separated by “-”

Table 4.1: Naming Convention

Chapter 5 Microarchitecture Specification (Unit Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 58

Chapter 5 Microarchitecture Specification (Unit Level)

5.1 Microarchitecture (unit level) of RISC32 processor

Figure 5.1: Microarchitecture (unit level) of RISC32 processor

Chapter 5 Microarchitecture Specification (Unit Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 59

5.2 Design Hierarchy

Chip

Partitioning at

System Level

Unit Partitioning

at Architecture

Level

Block and Functional Block

Partitioning at RTL Level

(Microarchitecture level)

Sub-block

c_risc32_full u_data_path_full b_reg_file

b_alb_32

b_mult_32 add_lvl1

adder_lvl1_firstrow

Add_lvl1_lastrow

adder_lvl2

adder_lvl2_lastrow

adder_lvl3

adder_lvl4

adder_lvl5

sub_lvl1_lastrow

b_branch_pred

u_ctrl_path_full b_alb_ctrl

b_iag_ctrl

b_main_ctrl

b_fwrd

b_itld_ctrl

u_memory b_cache (for instruction)

b_cache (for data)

u_cp0 b_cp0_dc

b_cp0_regfile

u_ps2 b_transmit

b_receive

b_wb_if

b_synch

Table 5.2: Design hierarchy of a PS/2 mouse system integration to RISC32 processor

Chapter 5 Microarchitecture Specification (Unit Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 60

5.3 Datapath Unit

5.3.1 Datapath Unit’s Interface

Figure 5.3.1: Full RISC32’s Datapath Unit

Chapter 5 Microarchitecture Specification (Unit Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 61

5.3.4 Microarchitecture for Datapath Unit

Figure 5.3.4: Microarchitecture for Datapath Unit

Chapter 5 Microarchitecture Specification (Unit Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 62

5.4 Control Path Unit

5.4.1 Control Path’s Unit Interface

Figure 5.4.1: Full RISC32’s Control Path Unit

Chapter 5 Microarchitecture Specification (Unit Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 63

5.4.2 Microarchitecture for Control Path Unit

Figure 5.4.2: Microarchitecture for Full RISC32’s Control Path Unit

Chapter 5 Microarchitecture Specification (Unit Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 64

5.5 Memory Unit

5.5.1 Memory Unit’s Interface

Figure 5.5.1: Memory Unit’s interface

5.6 Co-Processor 0 Unit

5.6.1 Co-Processor 0 Unit’s Interface

Figure 5.6.1: Co-Processor 0 Unit’s Interface

The Co-Processor 0 (CP0) is a unit used to process and store exception and interrupt

information. It plays a major role in exception/interrupt handling mechanism. Once the

instruction mtc0 is decoded, the control signal will travel along along the pipeline and

Chapter 5 Microarchitecture Specification (Unit Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 65

reach to CP0 at stage WB. Both register write, either to CP0 register file (via instruction

mtc0) or CPU register file (via instruction mfc0) will be completed in CPU stage WB.

Once the instruction eret is decoded, the control signal will immediately output by

Control Unit to CP0.

5.6.3 Microarchitecture for Co-Processor 0 Unit

Figure 5.6.4: Microarchitecture for Co-Processor 0 Unit

Chapter 5 Microarchitecture Specification (Unit Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 66

5.7 PS/2 Controller Unit (u_ps2)

5.7.1 PS/2 Controller Unit’s interface

Figure 5.7.1: PS/2 Controller’s Unit interface

5.7.2 Input pins description

Pin Name:

ui_ps2_clk

Source Destination :

External Source u_ps2

Registered:

No

Pin Function:

Clock signal for u_ps2.

Pin Name:

ui_ps2_rst

Source Destination :

External Source u_ps2

Registered:

No

Pin Function:

Reset signal for u_ps2. When asserted, resets the whole unit of u_ps2.

Pin Name:

ui_ps2_wb_stb

Source Destination :

External Source u_ps2

Registered:

No

Pin Function:

Chapter 5 Microarchitecture Specification (Unit Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 67

Strobe signal for u_ps2. When asserted, indicates that u_ps2 is selected to respond to

other WISHBONE signals (except for reset signal).

Pin Name:

ui_ps2_wb_cyc

Source Destination :

External Source u_ps2

Registered:

No

Pin Function:

Cycle signal for u_ps2. When asserted, indicates the start of a valid WISHBONE data

transfer cycle.

Pin Name:

ui_ps2_wb_addr

Source Destination :

Datapath Unit u_ps2

Registered:

No

Pin Function:

Address bus signal, used to select an internal register of the device from:

Asserted = WISHBONE Control register (WCREG)

De-asserted = WISHBONE Data register (WDREG)

Pin Name:

ui_ps2_wb_dat[7:0]

Source Destination :

Memory Unit u_ps2

Registered:

No

Pin Function:

Data signal sent from Memory Unit.

Pin Name:

ui_ps2_wb_w_rn

Source Destination :

Control Path Unit u_ps2

Registered:

No

Pin Function:

Write enable signal for u_ps2. Used to indicate whether current bus cycle is a Read or

Write cycle.

Asserted = Write

De-asserted = Read

Pin Name:

ui_ps2_eclk

Source Destination :

Mouse Controller u_ps2

Registered:

No

Pin Function:

Clock input signal from Mouse Controller.

Pin Name:

ui_ps2_edat

Source Destination :

Mouse Controller u_ps2

Registered:

No

Chapter 5 Microarchitecture Specification (Unit Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 68

Pin Function:

Data signal from Mouse Controller.

Table 5.7.2: PS/2 Controller Unit’s Input Pin Description

5.7.3 Output Pin Description

Pin Name:

uo_ps2_clock_en

Source Destination:

u_ps2 External

Registered:

No

Pin Function:

Tri-state enable signal for bidirectional clock signal between Mouse Controller and

u_ps2.

Pin Name:

uo_ps2_clk

Source Destination:

u_ps2 External

Registered:

No

Pin Function:

Clock output signal to control communication between Mouse Controller and u_ps2.

Pin Name:

uo_ps2_dat_en

Source Destination:

u_ps2 External

Registered:

No

Pin Function:

Tri-state enable signal for bidirectional data signal between Mouse Controller and u_ps2.

Pin Name:

uo_ps2_dat

Source Destination:

u_ps2 External

Registered:

No

Pin Function:

Data output signal from u_ps2 to Mouse Controller

Pin Name:

uo_ps2_wb_dat[7:0]

Source Destination:

u_ps2 Memory Unit

Registered:

No

Pin Function:

Data output signal sent from u_ps2 to Memory Unit

Pin Name:

uo_ps2_wb_ack

Source Destination:

u_ps2 CP0 Unit

Registered:

No

Pin Function:

 Standard WISHBONE acknowledgement signal.

Chapter 5 Microarchitecture Specification (Unit Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 69

Asserted = the PS/2 controller has finished execution of the requested action and the

current bus cycle is terminated.

Pin Name:

uo_ps2_intr

Source Destination:

u_ps2 CP0 Unit

Registered:

No

Pin Function:

Interrupt signal that is used to alert CP0 Unit to the presence of data received from Mouse

Controller. It will not be asserted if the parity bit of the byte received is not correct.

Asserted = Signifies that 1 byte of data has been received from Mouse Controller.

Table 5.7.3: PS/2 Controller Unit’s Output Pin Description

5.7.4 Microarchitecture for PS/2 Controller Unit

Figure 5.7.4: Microarchitecture for PS/2 Controller Unit

Chapter 5 Microarchitecture Specification (Unit Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 70

5.7.5 Internal Operation

Test Case Test Function Test vector Expected results

1. System reset.

To initialize

the PS/2

Controller

Unit.

 ui_ps2_i_rst is asserted

for 2 clock cycles, then

de-asserted

 uo_ps2_clk_en = 1’b0.

 uo_ps2_clk = 1’b1

 uo_ps2_dat_en = 1’b0

 uo_ps2_dat = 1’b1

2. Output

WISHBONE

signals and

enable

WRITE

cycle (PS/2

Controller

transmits)

To enable PS/2

Controller Unit

to send data to

PS/2 mouse

 ui_ps2_i_wb_addr =

1'b1

 ui_ps2_i_wb_cyc = 1'b1

 ui_ps2_i_wb_stb = 1'b1

 ui_ps2_i_wb_w_rn =

1'b1

 ui_ps2_i_wb_dat =

8’hFA

 uo_ps2_clk_en = 1’b0.

 uo_ps2_clk = uo_ps2_clk

 uo_ps2_dat_en = 1’b1

 uo_ps2_dat <=

ui_ps2_wb_dat[bit_count],

bit_count <= bit_count + 1

3. Output

WISHBONE

signals and

enable

READ cycle

for 3 cycles

(PS/2

Controller

receives)

To enable PS/2

Controller to

receive 3

packets of data

from PS/2

mouse

 ui_ps2_i_wb_addr =

1'b1

 ui_ps2_i_wb_cyc = 1'b1

 ui_ps2_i_wb_stb = 1'b1

 ui_ps2_i_wb_w_rn =

1'b0

 ui_ps2_i_edat <=

test_receive_data[bit_co

unt], bit_count <=

bit_count + 1

 uo_ps2_intr is asserted for 13

clock cycles after stop bit is

detected, then de-asserted

 uo_ps2_wb_dat outputs the 8

data bits received from PS/2

mouse

Table 5.7.5: Internal Operation for PS/2 Controller Unit

Chapter 5 Microarchitecture Specification (Unit Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 71

5.7.6 Simulation results

Figure 5.7.6.1: PS/2 Controller Unit simulation result (a)

ui_ps2_rst is asserted for 2 clock cycles to initialize the output signals uo_ps2_clk_en, uo_ps2_clk, uo_ps2_dat_en and uo_ps2_dat

Chapter 5 Microarchitecture Specification (Unit Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 72

Figure 5.7.6.2: PS/2 Controller Unit simulation result (b)

From figure above, the clock signal, io_ps2c is held at logic 1 when it is in idle state. When the PS/2 Controller wants to transmit

command, it will inhibit transmission for 10 clock cycles (100 microseconds) first. After that, the data signal, io_ps2d will first send

the start bit which is always “0”, followed by the 8 bits command and the parity bit. After it has received an acknowledge bit from the

Mouse Controller, the data signal will be in idle state.

Chapter 5 Microarchitecture Specification (Unit Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 73

Figure 5.7.6.3: PS/2 Controller Unit simulation result (c)

Based on figure 5.7.6.3, the input signals: ui_ps2_eclk and ui_ps2_edat is at logic 1 which is in idle state. When the PS/2 Controller

receives data from the Mouse Controller, ui_ps2_eclk will begin to toggle and the start bit (always “0”) is received first, followed by

the 8 data bits in LSB format and the parity bit. Finally, the stop bit (always “1”) is received by the PS/2 Controller. If the transmission

is successful and the parity bit is correct, the PS/2 Controller will send out an interrupt signal, uo_ps2_intr to the cp0 block for 13

clock cycles.

Chapter 6 Microarchitecture Specification (Block Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 74

Chapter 6 Microarchitecture Specification (Block Level)

6.1 The Receiver Block

6.1.1 Receiver’s Block Interface

Figure 6.1.1: Receiver’s Block interface

6.1.2 Input pin description

Pin Name:

bi_clk

Source Destination:

External Source b_receive

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Clock signal for b_receive.

Pin Name:

bi_rst

Source Destination:

External Source b_receive

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Reset signal for b_receive. When asserted, b_receive will be in idle mode.

Pin Name:

bi_read_n

Source Destination:

b_wb_if b_receive

Size:

1 bit

Active:

Low

Registered:

No

Pin Function:

Enable signal to enable b_receive to receive data from Mouse Controller.

Pin Name:

bi_ps2c

Source Destination:

Mouse Controller b_receive

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Clock input signal from Mouse Controller. It is activated when b_receive is receiving data from

Mouse Controller.

Chapter 6 Microarchitecture Specification (Block Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 75

Pin Name:

bi_ps2d

Source Destination:

Mouse Controller b_receive

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Data input signal from Mouse Controller. It receives 10 bytes of data in serial form.

Table 6.1.2: Receiver Block Input Pin Description

6.1.3 Output pin description

Pin Name:

bo_busy

Source Destination:

b_receive b_wb_if

Size:

1 bit

Active:

High

Registered:

Yes

Pin Function:

Status signal to inform b_wb_if that a READ cycle is in progress. When asserted, b_transmit

should be in idle mode.

Pin Name:

bo_dat_tx[7:0]

Source Destination:

b_receive b_wb_if

Size:

8 bits

Active:

High

Registered:

Yes

Pin Function:

Sends received data to b_wb_if. When the parity bit received is not correct, b_receive will not

send the data.

Pin Name:

bo_mouse_ack

Source Destination:

b_receive b_transmit

Size:

1 bit

Active:

High

Registered:

Yes

Pin Function:

Status signal to inform b_transmit that the Mouse Controller has received the command

b_transmit has transmitted. It is asserted when b_receive receives an acknowledge signal from

Mouse Controller.

Pin Name:

bo_ps2c_valid

Source Destination:

b_receive b_transmit

Size:

1 bit

Active:

High

Registered:

Yes

Pin Function:

Output a valid signal when detected a negative edge of bi_ps2c.

Pin Name:

bo_intr

Source Destination:

b_receive CP0 unit

Size:

1 bit

Active:

High

Registered:

Yes

Pin Function:

Chapter 6 Microarchitecture Specification (Block Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 76

Interrupt signal that is used to alert CP0 Unit to the presence of data received from Mouse

Controller. It will not be asserted if the parity bit of the byte received is not correct.

Asserted = Signifies that 1 byte of data has been received from Mouse Controller.

Table 6.1.3: Receiver Block Output Pin Description

6.1.4 Functionalities and Feature

1. Receive 8 bits of data from PS/2 Mouse by receiving by the least significant bit first.

2. Able to perform a parity check before sending the received data to WISHBONE interface

block.

3. Able to send an interrupt signal to alert the processor about the presence of data.

4. Able to receive an acknowledgement signal from PS/2 Mouse to signify that PS/2 Mouse has

successfully received command from Transmitter Block.

6.1.5 Internal Operation

Test Case Test

Function

Test vector Expected results

4. Assert high

bi_rst

and de-

assert low.

To initialize

the receiver

block.

 bi_rst is asserted bo_busy = 1’b0.

 bo_mouse_ack =

1’b0

 bo_intr = 1b0

5. Assert high

bi_ps2d

while

bi_read_n is

low

To test

receiver

whether can

send an

acknowledge

signal or not

 bi_read_n is de-

asserted for 1 clock

cycle

 bo_busy = 1’b0

 bo_mouse_ack =

1’b1

 bo_intr = 1’b0

6. Generate

bi_ps2c at

80us when

sending test

data to

bi_ps2d

To create a

valid signal

for edge-

detect circuit

when

receiving

data from

bi_ps2d

 repeat(10) begin

 repeat(4) @(posedge

bi_clk);

 bi_ps2c = 1'b0;

 repeat(4)

 @(posedge bi_clk);

 bi_ps2c = 1'b1;

 end

 repeat(10) @(posedge

bi_ps2c)begin

bi_ps2d <=

test_data[bit_count];

 bit_count <=

 bo_busy = 1’b1

 bo_dat_tx =

test_data

 bo_mouse_ack =

1’b0

 bo_intr is asserted

for 10 clock

cycles

Chapter 6 Microarchitecture Specification (Block Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 77

bit_count + 1;

 end

7. Repeat test

case 3 for

three times

To test

whether

receiver can

complete

receiving 3

data packets

 bo_busy = 1’b1

 bo_dat_tx =

test_data

 bo_mouse_ack =

1’b0

 bo_intr is asserted

for 10 clock

cycles

Table 6.1.5: Internal operation for Receiver Block

Chapter 6 Microarchitecture Specification (Block Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 78

6.1.6 Finite State Machine

Figure 6.1.6: Receiver Block Finite State Machine

Chapter 6 Microarchitecture Specification (Block Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 79

6.1.7 Simulation Results

Figure 6.1.7.1: Receiver Block simulation result (a)

At (1), bi_rst is asserted.

At (2), bo_mouse_ack is asserted.

Figure 6.1.7.2: Receiver block simulation result (b)

At (3), data is being received into bi_ps2d

At (4), 8-bits data is output

At (5), bo_intr is asserted for 13 clock cycles.

Chapter 6 Microarchitecture Specification (Block Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 80

Figure 6.1.7.3: Receiver block simulation result (c)

Figure shows the full data transmission of the Receiver block. The Receiver block has successfully received 3 data packets and able to

output an interrupt signals for 13 clock cycles for each transmission.

Chapter 6 Microarchitecture Specification (Block Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 81

6.2 The Transmitter Block

6.2.1 Transmitter Block Interface

Figure 6.2.1: Transmitter Block interface

6.2.2 Input pin description

Pin Name:

bi_clk

Source Destination:

External Source b_transmit

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Clock signal for b_transmit.

Pin Name:

bi_rst

Source Destination:

External Source b_transmit

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Reset signal for b_transmit. When asserted, b_transmit will be in idle mode.

Pin Name:

bi_write

Source Destination:

b_wb_if b_transmit

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Enable signal to enable b_transmit to send command to Mouse Controller.

Pin Name:

bi_dat[7:0]

Source Destination:

b_wb_if b_transmit

Size:

8 bits

Active:

High

Registered:

No

Pin Function:

Data signal for b_transmit to receive the command from b_wb_if.

Pin Name:

bi_mouse_ack

Source Destination:

b_receive b_transmit

Size:

1 bit

Active:

High

Registered:

No

Chapter 6 Microarchitecture Specification (Block Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 82

Pin Function:

Status signal to inform b_transmit that the Mouse Controller has received the command

b_transmit has transmitted. It is asserted when b_receive receives an acknowledge signal from

Mouse Controller.

Pin Name:

bi_ps2c_valid

Source Destination:

b_receive b_transmit

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Input valid signal from b_receive when detected a negative edge of bi_ps2c.

Table 6.2.2: Transmitter Block Input Pin Description

6.2.3 Output pin description

Pin Name:

bo_ps2c_en

Source Destination:

b_transmit External

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Tri-state enable signal for bidirectional clock signal between Mouse Controller and b_transmit.

Pin Name:

bo_ps2d_en

Source Destination:

b_transmit External

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Tri-state enable signal for bidirectional data signal between Mouse Controller and b_transmit

Pin Name:

bo_ps2c

Source Destination:

b_transmit Mouse Controller

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Clock output signal to Mouse Controller.

Pin Name:

bo_ps2d

Source Destination:

b_transmit Mouse Controller

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Data output signal to Mouse Controller.

Pin Name:

bo_busy

Source Destination:

b_transmit b_wb_if

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Status signal to inform b_wb_if that a WRITE cycle is in progress. When asserted, b_receive

Chapter 6 Microarchitecture Specification (Block Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 83

should be in idle mode.

Table 6.2.3: Transmitter Block Output Pin Description

6.2.4 Functionalities and Features

1. Transmit 11 bits of command to PS/2 Mouse.

2. Control the bidirectional clock signal and data signal between Mouse Controller and

b_transmit.

3. Able to receive an acknowledgement signal from Receiver Block to signify that the previous

command has been successfully received from PS/2 Mouse.

4. Able to receive a valid signal from Receiver Block to detect a negative edge of PS/2 clock

signal to send data.

6.2.5 Internal Operation

Test Case Test Function Test Vector Expected results

1. Assert high

bi_rst for 2

clock cycles

and de-assert

low.

To initialize the

transmitter block

to idle state.

 bi_rst is asserted bo_ps2c_en = 1’b0

bo_ps2d_en = 1’b0

bo_ps2c = 1’b1

bo_ps2d = 1’b1

bo_busy = 1’b0

2. Assert high

bi_write

To enable

transmitter block

to inhibit

transmission with

PS/2 mouse for 10

clock cycles

 bi_write is

asserted

bo_ps2c_en = 1’b1

bo_ps2d_en = 1’b1

bo_ps2c = 1’b0

bo_ps2d = 1’b1

bo_busy = 1’b1

3. De-assert low

bi_ps2c_valid

for 8 clock

cycles then

assert high

bi_ps2c_valid.

Repeat it for

10 times.

To enable

transmitter block

to send Start Bit ,

8 data bits and

parity bit to PS/2

mouse

 repeat(11) begin

 @(posedge

bi_clk)

 bi_ps2c_valid = 1'b1;

 repeat(7) @(posedge

bi_clk)

 bi_ps2c_valid = 1'b0;

 end

bo_ps2c_en = 1’b0

bo_ps2d_en = 1’b1

bo_ps2c = bo_ps2c

bo_ps2d =

bi_dat[bit_count]

bo_busy = 1’b1

4. Assert high

bi_mouse_ack

after sending

the stop bit.

To notice

transmitter block

that PS/2 mouse

received the

command

successfully

 bi_mouse_ack is

asserted after

transmitting stop

bit

bo_ps2c_en = 1’b0

bo_ps2d_en = 1’b0

bo_ps2c = 1’b1

bo_ps2d = 1’b1

bo_busy = 1’b0

Table 6.2.5: Internal operation for Transmitter Block

Chapter 6 Microarchitecture Specification (Block Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 84

6.2.6 Finite State Machine

Figure 6.2.6: Transmitter Block Finite State Machine

Chapter 6 Microarchitecture Specification (Block Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 85

6.2.7 Simulation result

Figure 6.2.7.1: Transmitter Block simulation result (a)

At (1), bi_rst is asserted. All output signals are initialized.

At (2), bi_write is asserted. bo_ps2c is pull down as 1’b0 to inhibit transmission.

At (3), data is being transmitted.

Chapter 6 Microarchitecture Specification (Block Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 86

 Figure 6.2.7.2: Transmitter block simulation result (b)

At (4), second data is being transmitted.

Chapter 6 Microarchitecture Specification (Block Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 87

6.3 The WISHBONE interface Block

6.3.1 WISHBONE interface Block interface

Figure 6.3.1: WISHBONE interface Block interface

6.3.2 Input pin description

Pin Name:

bi_clk

Source Destination:

External Source b_wb_if

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Clock signal for b_wb_if.

Pin Name:

bi_rst

Source Destination:

External Source b_wb_if

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Reset signal for b_wb_if. When asserted, b_wb_if will be in idle mode.

Pin Name:

bi_wb_dat_tx[7:0]

Source Destination:

Datapath Unit b_wb_if

Size:

8 bits

Active:

High

Registered:

Yes

Pin Function:

Data input signal for b_wb_if. It receives command data from Datapath Unit and sends it to

b_transmit when it is in WRITE cycle.

Chapter 6 Microarchitecture Specification (Block Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 88

Pin Name:

bi_dat_rx[7:0]

Source Destination:

b_receive b_wb_if

Size:

8 bits

Active:

High

Registered:

Yes

Pin Function:

Data input signal for b_wb_if. It receives 8 bits of data from b_receive when it is in a READ

cycle.

Pin Name:

bi_wb_addr

Source Destination:

Datapath unit b_wb_if

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Address bus signal, used to select an internal register of the device from:

Asserted = WISHBONE Data register (WDREG)

De-asserted = WISHBONE Control register (WDREG)

Pin Name:

bi_wb_stb

Source Destination:

 External Source b_wb_if

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Strobe signal for b_wb_if. When asserted, indicates that it is selected to respond to other

WISHBONE signals. (except for reset signal)

Pin Name:

bi_wb_cyc

Source Destination:

 External Source b_wb_if

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Cycle signal for b_wb_if. When asserted, indicates the start of a valid WISHBONE data transfer

cycle.

Pin Name:

bi_wb_w_rn

Source Destination:

 Control Path Unit

b_wb_if

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Write enable signal for b_wb_if. Used to indicate whether current bus cycle is a Read or Write

Cycle.

Asserted = Write

De-asserted = Read

Pin Name: Source Destination: Size: Active: Registered:

Chapter 6 Microarchitecture Specification (Block Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 89

bi_busy b_trasnmit, b_receive

b_wb_if

1 bit High No

Pin Function:

Status signal from b_transmit and b_receive to b_wb_if.When asserted, indicates that either one

is performing a Write or Read cycle.

Table 6.3.2: WISHBONE interface Block Input Pin Description

6.3.3 Output pin description

Pin Name:

bo_wb_dat_rx[7:0]

Source Destination:

b_wb_if Datapath Unit

Size:

8 bits

Active:

High

Registered:

Yes

Pin Function:

Data output signal. It sends 8 bits of data received from b_receive to Datapath Unit. If the parity

bit received is incorrect, the data will not be sent.

Pin Name:

bo_dat_tx[7:0]

Source Destination:

b_wb_if b_transmit

Size:

8 bits

Active:

High

Registered:

Yes

Pin Function:

Data output signal. It sends 8 bits of command to b_transmit.

Pin Name:

bo_write

Source Destination:

b_wb_if b_transmit

Size:

1 bit

Active:

High

Registered:

Yes

Pin Function:

Enable signal to start a valid WRITE cycle.

Pin Name:

bo_read_n

Source Destination:

b_wb_if b_receive

Size:

8 bits

Active:

Low

Registered:

Yes

Pin Function:

Enable signal to start a valid READ cycle.

Pin Name:

bo_wb_ack

Source Destination:

b_wb_if

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Standard WISHBONE acknowledgement signal.

Asserted = the PS/2 controller has finished execution of the requested action and the current bus

Chapter 6 Microarchitecture Specification (Block Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 90

cycle is terminated.

Table 6.3.3: WISHBONE interface Block Output Pin Description

6.3.4 Functionalities and Features

1. Transmit 8 bits of command from processor to the Transmitter Block.

2. Receive 8 bits of data from Receiver Block to the processor.

6.3.5 Internal Operation

Test Case Test Function Test Vector Expected results

1. Assert high

bi_rst for 2

clock cycles

and de-assert

low

To initialize

WISHBONE interface

Block to idle state.

 bi_rst is asserted bo_write = 1’b0

 bo_read_n = 1’b0

 bo_wb_ack = 1’b0

2. Assert high

bi_wb_addr,

bi_wb_cyc and

bi_wb_stb

while de-assert

low

bi_wb_w_rn

and bi_busy

To enable

WISHBONE interface

Block to enter READ

cycle

 bi_wb_addr =

1'b1;

 bi_wb_w_rn =

1'b0;

 bi_busy = 1'b1;

 bi_wb_cyc =

1'b1;

 bi_wb_stb =

1'b1;

 bi_dat_rx =

8'b1111_1010

 bo_wb_dat_rx =

bi_dat_rx

 bo_write = 1’b0

 bo_read_n = 1’b1

 bo_wb_ack = 1’b1

3. Assert high

bi_addr,

bi_cyc, bi_stb

and bi_w_rn

To enable

WISHBONE interface

Block to enter WRITE

cycle

 bi_wb_addr =

1'b1;

 bi_wb_w_rn =

1'b1;

 bi_busy = 1'b1;

 bi_wb_cyc =

1'b1;

 bi_wb_stb =

1'b1;

 bi_wb_dat_tx =

8'b1111_0101;

 bo_dat_tx =

bi_wb_dat_tx

 bo_write = 1’b1

 bo_read_n = 1’b0

 bo_wb_ack = 1’b1

Table 6.3.5: Internal operation for WISHBONE interface Block

Chapter 6 Microarchitecture Specification (Block Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 91

6.3.6 Finite State Machine

Figure 6.3.6: WISHBONE interface Block Finite State Machine

Chapter 6 Microarchitecture Specification (Block Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 92

6.3.7 Simulation results

Figure 6.3.7: WISHBONE interface Block simulation result

At (1), READ cycle begins

At (2), WRITE cycle begins

Chapter 6 Microarchitecture Specification (Block Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 93

6.4 The address decoder

6.4.1 Address decoder interface

Figure 6.4.1: Address decoder interface

The address decoder decodes the control signals from CPU (bi_addr_cpu, bi_rd_cpu, bi_wr_cpu)

and WISHBONE interface Block (bi_wb_ack) to output the appropriate WISHBONE compatible

signals to the WISHBONE interface Block.

Input Signals Output signal

bi_wb_ack bi_rd_cpu bi_wr_cpu bo_wb_w_rn

1 x x x

0 0 0 x

0 0 1 1

0 1 0 0

0 1 1 x

Table 6.4.1.1: WISHBONE write/read_not signal decoding table

Input signal Output signals

bi_addr_cpu bo_wb_stb bo_wb_cyc bo_wb_addr

<260 or >260 0 0 0

260 1 1 1

Table 6.4.1.2: WISHBONE output signal decoding table

Chapter 6 Microarchitecture Specification (Block Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 94

6.4.2 Input pin description

Pin Name:

bi_addr_cpu

Source Destination:

RISC32CPU b_addr_dec

Size:

32 bit

Active:

High

Registered:

No

Pin Function:

32-bit address signal from CPU

Pin Name:

bi_dat_cpu

Source Destination:

RISC32CPU b_addr_dec

Size:

32 bit

Active:

High

Registered:

No

Pin Function:

32-bit data signal from CPU

Pin Name:

bi_rd_cpu

Source Destination:

RISC32CPU b_addr_dec

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Read signal from CPU

Pin Name:

bi_wr_cpu

Source Destination:

RISC32CPU b_addr_dec

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Write signal from CPU

Pin Name:

bi_dat_ps2

Source Destination:

b_wb_if b_addr_dec

Size:

8 bit

Active:

High

Registered:

No

Pin Function:

8-bit data signal from PS/2 Controller

Pin Name:

bi_wb_ack

Source Destination:

b_wb_if b_addr_dec

Size:

1 bit

Active:

Low

Registered:

No

Pin Function:

WISHBONE acknowledge signal from PS/2 Controller

Table 6.4.2: Address Decoder Input Pin Description

Chapter 6 Microarchitecture Specification (Block Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 95

6.4.3 Output pin description

Pin Name:

bo_wb_stb

Source Destination:

b_addr_dec b_wb_if

Size:

1 bit

Active:

High

Registered:

Yes

Pin Function:

Strobe output signal to b_wb_if

Pin Name:

bo_wb_cyc

Source Destination:

b_addr_dec b_wb_if

Size:

1 bit

Active:

High

Registered:

Yes

Pin Function:

Cycle output signal to b_wb_if

Pin Name:

bo_wb_addr

Source Destination:

b_addr_dec b_wb_if

Size:

1 bit

Active:

High

Registered:

Yes

Pin Function:

Address output signal to b_wb_if

Pin Name:

bo_wb_w_rn

Source Destination:

b_addr_dec b_wb_if

Size:

1 bit

Active:

High

Registered:

Yes

Pin Function:

Write enable output signal to b_wb_if. Used to indicate whether current bus cycle is a Read or

Write Cycle.

Asserted = Write

De-asserted = Read

Pin Name:

bo_wb_sel

Source Destination:

b_addr_dec b_wb_ic

Size:

1 bit

Active:

High

Registered:

Yes

Select enable output signal to b_wb_ic. Used to determine which PS/2 external device is selected

to perform transaction.

Asserted = PS/2 keyboard is selected

De-asserted = PS/2 mouse is selected

Pin Name:

bo_wb_dat

Source Destination:

b_addr_dec b_wb_if

Size:

8 bit

Active:

High

Registered:

Yes

Pin Function:

8-bit data signal to b_wb_if

Chapter 6 Microarchitecture Specification (Block Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 96

Pin Name:

bo_dat_cpu

Source Destination:

b_addr_dec CPU

Size:

32 bit

Active:

High

Registered:

Yes

Pin Function:

32-bit data signal to RISC32PU

Table 6.4.3: Address Decoder Output Pin Description

6.4.4 Functionalities and Features

1. Decodes the input signals from RISC32 CPU and output WISHBONE compatible signals to

the WISHBONE interface Block of the PS/2 Controller.

2. Receives data from PS/2 Controller and sends to the memory according to the designated

address.

6.4.5 Microarchitecture of address decoder

Figure 6.4.5: Microarchitecture for address decoder

Chapter 6 Microarchitecture Specification (Block Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 97

6.4.6 Internal Operation

Test Case Test Function Test Vector Expected results

1. Assert high

bi_wr_cpu and

other input

signals

To enable address

decoder to write data

into the WISHBONE

interface Block

 bi_addr_cpu =

CPU_DATA_AD

DR;

 bi_rd_cpu =

1'b0;

 bi_wr_cpu =

1'b1;

 bi_wb_ack =

1'b0;

 bi_dat_cpu =

32'h0000_00FF;

 bo_wb_stb = 1’b1

 bo_wb_cyc = 1’b1

 bo_wb_addr =

1’b1

 bo_wb_w_rn =

1’b1

 bo_wb_dat =

8’hFF

2. Assert low

bi_rd_cpu and

assert high

other input

signals

To enable address

decoder to read data

from WISHBONE

interface Block

 bi_addr_cpu =

CPU_DATA_AD

DR;

 bi_rd_cpu =

1'b0;

 bi_wr_cpu =

1'b1;

 bi_wb_ack =

1'b0;

 bi_dat_ps2 =

8’hFA;

 bo_wb_stb = 1’b1

 bo_wb_cyc = 1’b1

 bo_wb_addr =

1’b1

 bo_wb_w_rn =

1’b0

 bo_dat_cpu =

32’h0000_00FA

Table 6.4.6: Internal operation for Address Decoder

Chapter 6 Microarchitecture Specification (Block Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 98

6.5 The Synchronizer Block

6.5.1 Synchronizer Block interface

Figure 6.5.1: Synchronizer Block interface

6.5.2 Input pin description

Pin Name:

bi_clk

Source Destination:

External Source b_synch

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Clock signal for b_synch

Pin Name:

bi_rst

Source Destination:

External Source b_synch

Size:

1 bit

Active:

High

Registered:

No

Pin Function:

Reset signal for b_synch.

Pin Name:

bi_dat

Source Destination:

Datapath Unit b_synch

Size:

1 bit

Active:

High

Registered:

Yes

Pin Function:

Load signal into b_synch

Table 6.5.2: Synchronizer Block Input Pin Description

Chapter 6 Microarchitecture Specification (Block Level)

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 99

6.5.3 Output pin description

Pin Name:

bo_dat_tx

Source Destination:

b_synch other block module

Size:

1 bit

Active:

High

Registered:

Yes

Pin Function:

Synchronize output signal

Table 6.5.3: Synchronizer Block Output Pin Description

6.5.4 Functionalities and Features

1. Synchronize all input signals.

2. Filter glitches.

6.5.5 Internal Operation

Test Case Function Expected Result

Assert bi_rst.

 Assert bi_rst for 3 clock

cycles.

To initialise bo_dat_tx will be initialized to

0 or initial stage. b_synch will

not operate.

Assert any input signal after

the TCS is reset.

 Assert bi_dat for 3 clock

cycles.

To test the functionality of

b_synch

The input signal will be

synchronized. b_synch will

generate output signals to the

respective block module.

Table 6.5.5: Internal operation for Synchronizer Block

Chapter 7 Verification Specification

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 100

Chapter 7 Verification Specification

7.1 Test Program for I/O Serial Communication

The RISC32 CPU utilizes a memory mapped I/O that reserves specific memory address from

0x8000 0000 to 0x8000 000C to communicate with I/O modules. Any I/O communication with

the RISC32 CPU by input or output data from these memory locations is conducted in 32-bits in

for each location. The memory location can be accessed by using instruction load word (lw) and

store word (sw) to read/write data from/to I/O.

A test program is written to examine the integration of the I/O serial communication into

enhanced RISC32 architecture, which the RISC32 CPU will interface with the PS/2 Controller

via the address decoder. In the test program, the CPU will first send 8 bits of command to the

address decoder before running a looping program to mimic user program running. After

transmitting the command byte, it will receive the 3 bytes of data from the PS/2 Controller after

the PS/2 Controller triggers an interrupt to the CPU. The command byte is 8’hFF and the data

bytes received are: 8’hFA, 8’hAA, and 8’h00.

I/O interrupt happens when the PS/2 Controller’s interrupt signal triggers the interrupt handling

mechanism in CP0 block, which dispatches RISC32 CPU to jump into exception handler. The

exception handler manages the software handling and it will investigate the exception causes and

jump to the appropriate ISR.

ISR is the place where the interrupt is served. The instruction is issued to send data from the

PS/2 Controller and places it into the register file. After the data is loaded, the data will be saved

into the data memory. The “exception return” instruction (eret) will be called and the CPU will

resume to user program as before.

Chapter 7 Verification Specification

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 101

7.1.1 Test Program

. .ktext 0x00400024

#------------------PS/2 Wish Bone Data Register Initialization-------------------------

 lw $t3, 260($s0) #set Wish Bone data register

#------------------------CP0 Registers Initialization---------------------------------------

 lw $s1, $0, $0 #reg[s1] = 0x00000000

 mtc0 $s1, $13 #Initialize cause register, $cp0_cause = $13

 ori $s1, $0, 0xff01 #reg[s1] = 0x0000ff01

 mtc0 $s1, $12 #Initialize status register, $cp0_status = $12

#-----------------Jump to Transmit Routine address, 0x800001d0----------------------

 lui $t9, 0x8000 #reg[t9] = 0x80000000

 ori $t9, 0x01d0 #reg[t9] = 0x800001d0

 jal $t9 #jump to address 0x800001d0

#----------------------------------Looping Program--

loop: ori $t4, $0, 0x0104 #reg[t4] = 0x00000104

 nop #no operation

 j loop #jump back to loop

#----------------------------------Exception Handler--

.ktext 0x80000180

exceptionhandler:

 mfc0 $k0, $13 #move cause register to $k0

 mfc0 $k1, $12 #move status register to $k1

 nop #delay to prevent data hazard

 andi $t2, $k0, 0x007c #extract code Excode

 andi $k0, $k0, 0xff00 #extract cause register IP field

 and $k0, $k1, $k0 #check whether interrupt is mask

 beq $k0, $0, EXIT #IP field is not set, ignore interrupt

 beq $t2, $0, ps2rx #branch to external interrupt

Chapter 7 Verification Specification

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 102

EXIT:

 eret #exception return

#----------------------------------ISR--

ps2rx:

 lw $s1, 260($s0) #receive first data

 nop #delay

 lw $s2, 260($s0) #receive second data

 nop #delay

 lw $s3, 260($s0) #receive final data

 nop #delay

 sw $s1, 0($s0) #MEM[10000000] = reg[s1]

 sw $s2, 4($s0) #MEM[10000004] = reg[s2]

 sw $s3, 8($s0) #MEM[10000008] = reg[s3]

#----------------------------------Transmit Data-------------------------------------

ps2tx:

 ori $t6, $0, 0x00ff #reg[t6] = 0x000000ff

 sw $t6, 260($s0) #MEM[00000104] = reg[t6]

 jr $ra, #jump back to return address

Chapter 7 Verification Specification

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 103

7.2 Verification Result

7.2.1 Register content in Register File

Figure below describes the content in Register File of RISC32 CPU:

Figure 7.2.1: Register content in Register File

7.2.2 Data memory content in data memory

Figure below shows the data memory content of RISC32 CPU:

Figure 7.2.2: Data memory content in data memory

Chapter 7 Verification Specification

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 104

7.2.3 Waveform and explanation for RISC32 interrupt

The figure below shows the waveform when interrupt handling occurs:

Figure 7.2.3.1: RISC32 interrupt handling process

When the PS/2 Controller sends an interrupt to the RISC32 CPU, the Co-processor 0 will check the status register ($cp0_status) bit [0]

to check whether interrupt is enabled. CP0 will then update the status register into kernel mode, update the exception code in cause

register ($cp0_cause) and store the next PC address in the EPC register ($cp0_epc). This will cause the RISC32 CPU to jump to the

exception handler address which is 80000180.

Chapter 7 Verification Specification

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 105

Figure 7.2.3.2: Exception handler jumps to appropriate ISR

Based on the figure above, the exception handler will extract the exception code and examine the interrupt pending bit to check

whether it should ignore or run the interrupt, then jump to specific ISR based on exception code in cause register.

Chapter 7 Verification Specification

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 106

Figure 7.2.3.3: Return from exception

When the RISC32 CPU has finished executing the interrupt handling and start executing the instruction eret, Co-processor 0 will

update $cp0_status by switching to kernel mode to user mode in bit [1], clearing the interrupt pending bit and exception code in

$cp0_cause and finally will output the PC value in $cp0_epc to main core. The program will jump back to the PC value based on the

value in $cp0_epc to resume program.

Chapter 8 Conclusion and Discussion

Bachelor of Information Technology (Hons) Computer Engineering 107
Faculty of Information and Communication Technology, UTAR

Chapter 8 Conclusion and Discussion

8.1 Conclusion

A PS/2 Controller has been successfully modelled and tested its functionality. With an address

decoder designed to produce WISHBONE compatible output signals to the PS/2 Controller, both

of them have been integrated into the RISC32 architecture. Hence, the 32-bit RISC CPU can

communicate with the PS/2 Controller using instructions lw to transmit command to the PS/2

Controller and sw to receive 8 bits of data from the PS/2 Controller. The I/O serial

communication follows the protocol mentioned in Chapter 2 of this project.

The integration of PS/2 Controller into enhanced RISC32 architecture has been accomplished, as

shown in Chapter 4 In addition; the address decoder for the PS/2 Controller was modelled using

Verilog HDL based on the developed microarchitecture (block level) specifications as shown in

Chapter 6. The full integration verification has also completed as shown in Chapter 6. Moreover,

the software handling part, which are the Exception Handler and also the Interrupt Service

Routine (ISR) are proved to be working. The data from I/O was successfully transferred to the

memory.

Based on the following table, the list of objectives stated in Chapter 1 has been achieved:

Objectives Status

Study of existing PS/2 architecture Enhanced

Development of the RTL model of the PS/2 Controller Enhanced

Integration of the PS/2 Controller into the bus system using Wish Bone

Master-to-Slave connection architecture

Enhanced

Interrupt Service Routine (ISR) for PS/2 Controller Enhanced

Table 8.1: Enhancement Outcome

Chapter 8 Conclusion and Discussion

Bachelor of Information Technology (Hons) Computer Engineering 108
Faculty of Information and Communication Technology, UTAR

8.2 Discussion and Future Work

The Mouse Controller that was developed by senior wasn’t tested successfully for its

functionality; hence it was not integrated into the RISC32 architecture to test the serial

communication between PS/2 Controller and the Mouse Controller. The reason for this failure is

due to the design faults on the Mouse Controller modelled by the senior, as the finite state

machine (FSM) for the Mouse Controller does not follow the proper design rules. The Mouse

Controller design should be revised and improved so that a proper test of serial communication

can be conducted in future.

Lastly, the PS/2 Controller for the keyboard has not been developed, hence it the future design,

the RISC32 CPU can be enhanced to connect to both the PS/2 Controller for mouse and for the

keyboard via the I/O bus using either a bus arbitration system or a Wish Bone interconnects.

For future, the Keyboard Controller and the Mouse Controller can be remodelled to

communicate with their corresponding PS/2 Controller to create a complete PS/2 system

environment. In addition, exception handling can be implemented to arithmetic overflow

exception, breakpoint exception and others.

Appendix A Bibliography

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

BIBLIOGRAPHY

WIKIPEDIA (2012) IBM Personal System/2.

OSDEV.ORG (2012) PS/2.

CHU, P. P. (2008) FPGA Protoyping by Verilog Examples, John Wiley & Sons, Inc.

CHAPWESKE, A. (2003) The PS/2 Mouse/Keyboard Protocol.

JOHNSON, H. (1998) Power - On - Reset.

DANDAMUDI, S. P. (2002) Fundamentals of Computer Organization and Design, New York,

United States of America, Springer.

ALTERA (2012) Welcome to the Quartus II Software.

MODELSIM (2012) ModelSim PE Student Edition - HDL Simulation.

SYNOPSYS (2012) VCS.

ASHENDEN, P. J. (2008) Digital Design: An Embedded Systems Approach Using Verilog, MU,

United States of America, Morgan Kaufmann.

CHONNAD, S. & BALACHANDER, N. (2004) Verilog Frequently Asked Question: Languages,

Applications and Extensions, Boston, Springer Science + Business Media, Inc.

SHIVA, S. G. (2008) Computer Organization, Design, and Architecture, New York, United

States of America, CRC Press.

WILSON, P. (2007) Design Recipes for FPGA Examples, ELSEVIER.

SHIVA, S. G. (2008) Computer Organization, Design, and Architecture, New York, United

States of America, CRC Press.

LIN, M.-B. (2011) Digital System Designs and Practices Using Verilog HDL and FPGAs,

Singapore, John Wiley & Sons (Asia) Pte Ltd.

PETERSON, W. D. (2010) WISHBONE System-On-Chip (SoC) Interconnection Architecture

Portable IP Cores. IN HERVEILLE, R. (Ed.), OpenCores.

Appendix A Bibliography

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

ALTIUM (2008) WB_INTERCON Configurable Wishbone Interconnect.

Appendix B Source Code

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

B-1RISC32 Processor integrated with PS/2 Controller Unit and Address Decoder

//##

//Filename: c_risc32_join_ps2.v

//Date created: 14/2/2014

//Author : ?

//Modified by : Ng Kwong Cheong

//Description: This module is the full chip module.

//##

//Load macro file

`include "macro.v"

//Load design for cp0

`include "cp0/Microarch/b_cp0_dc.v"

`include "cp0/Microarch/b_cp0_regfile.v"

`include "cp0/u_cp0.v"

//Load design for control path

`include "ctrlpath/Microarch/b_alb_ctrl.v"

`include "ctrlpath/Microarch/b_fwrd.v"

`include "ctrlpath/Microarch/b_iag_ctrl.v"

`include "ctrlpath/Microarch/b_itl_ctrl.v"

`include "ctrlpath/Microarch/b_main_ctrl.v"

`include "ctrlpath/u_ctrl_path_full.v"

//Load design from data path

`include "datapath/Microarch/mult/add_lvl1_lastrow.v"

`include "datapath/Microarch/mult/adder_lvl1.v"

`include "datapath/Microarch/mult/adder_lvl1_firstrow.v"

`include "datapath/Microarch/mult/adder_lvl2.v"

`include "datapath/Microarch/mult/adder_lvl2_lastrow.v"

`include "datapath/Microarch/mult/adder_lvl3.v"

`include "datapath/Microarch/mult/adder_lvl4.v"

`include "datapath/Microarch/mult/adder_lvl5.v"

`include "datapath/Microarch/mult/sub_lvl1_lastrow.v"

`include "datapath/Microarch/b_alb_32.v"

`include "datapath/Microarch/b_branch_pred.v"

`include "datapath/Microarch/b_mult_32.v"

`include "datapath/Microarch/b_reg_file.v"

`include "datapath/u_data_path_full.v"

//Load design from memory

`include "memory/Microarch/b_cache.v"

`include "memory/u_memory.v"

//Load design from PS/2 mouse

`include "fyp_ps2_mouse/b_receive.v"

`include "fyp_ps2_mouse/b_transmit.v"

`include "fyp_ps2_mouse/b_wb_if.v"

`include "fyp_ps2_mouse/b_synch_single.v"

Appendix B Source Code

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

`include "fyp_ps2_mouse/b_synch_full.v"

`include "fyp_ps2_mouse/b_addr_decoder.v"

`include "fyp_ps2_mouse/u_ps2.v"

module c_r32_join_ps2

 #(parameter

 CPU_MS_DATA_ADDR = `WIDTH_WORD'h0000_0104)

 (output co_r32_ps2_clk_en, //PS/2 clock output

enable

 output co_r32_ps2_clk, //PS/2 clock output

 output co_r32_ps2_dat_en, //PS/2 data output

enable

 output co_r32_ps2_dat, //PS/2 data output

 input ci_r32_ps2_clk,

 input ci_r32_ps2_rst,

 input ci_r32_ps2_eclk, //PS/2 device clock

input

 input ci_r32_ps2_edat //PS/2 device data

input

);

 wire [`WIDTH_OPCODE - 1:0] c_r32_opcode;

 wire [`WIDTH_FUNCT - 1:0] c_r32_funct;

 wire c_r32_prediction;

 wire c_r32_bran_vid;

 wire [`WIDTH_WORD - 1:0] c_r32_pc;

 wire [`WIDTH_WORD - 1:0] c_r32_dmem_addr;

 wire [`WIDTH_WORD - 1:0] c_r32_store_data;

 wire c_r32_alb_src;

 wire c_r32_rdst_src;

 wire [`WIDTH_BRAN_CTRL - 1:0] c_r32_bran_ctrl;

 wire c_r32_sign_mult;

 wire c_r32_rf_write;

 wire c_r32_mem_write;

 wire c_r32_mem_read;

 wire c_r32_sign_ext;

 wire c_r32_hi_to_rf;

 wire c_r32_hi_we;

 wire c_r32_lo_we;

 wire c_r32_alb_to_rf;

 wire c_r32_mult_en;

 wire c_r32_mem_to_rf;

 wire [`WIDTH_ALB_CTRL - 1:0] c_r32_alb_ctrl;

 wire [4:0]

 c_r32_dp_inst25_21;

 wire c_r32_if_flush;

 wire c_r32_pc_src;

 wire c_r32_prediction_src;

 wire [1:0] c_r32_correction_src;

Appendix B Source Code

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 wire c_r32_store_addr;

 wire [`WIDTH_WORD - 1:0] c_r32_instruction;

 wire [`WIDTH_WORD - 1:0] c_r32_loaded_data;

 wire c_r32_mem_re;

 wire c_r32_mem_we;

 //forwarding

 wire [`WIDTH_FWRD_ALB - 1:0] c_r32_fwrd_alb_id_rsrc;

 wire [`WIDTH_FWRD_ALB - 1:0] c_r32_fwrd_alb_id_rtgt;

 wire c_r32_fwrd_hilo;

 wire c_r32_fwrd_mem_ex_rtgt;

 wire c_r32_fwrd_mem_id_rsrc;

 wire c_r32_fwrd_mem_id_rtgt;

 wire c_r32_ex_rf_write;

 wire c_r32_mem_rf_write;

 wire c_r32_wb_rf_write;

 wire [`WIDTH_REG_ADDR - 1:0] c_r32_ex_rdst;

 wire [`WIDTH_REG_ADDR - 1:0] c_r32_mem_rdst;

 wire [`WIDTH_REG_ADDR - 1:0] c_r32_wb_rdst;

 //forwarding and interlock control

 wire [`WIDTH_REG_ADDR - 1:0] c_r32_id_rsrc;

 wire [`WIDTH_REG_ADDR - 1:0] c_r32_id_rtgt;

 wire [`WIDTH_REG_ADDR - 1:0] c_r32_ex_rtgt;

 //interlock control

 wire c_r32_pc_write;

 wire c_r32_ifid_write;

 wire c_r32_idex_write;

 wire c_r32_exmem_write;

 wire c_r32_memwb_write;

 wire c_r32_id_flush;

 wire c_r32_ex_flush;

 wire c_r32_mem_flush;

 wire c_r32_ex_mem_read;

 wire c_r32_mult_busy;

 //branch prediction

 wire c_r32_upd_pred;

 //cp0 added wire

 //control unit

 wire c_r32_ctrl_is_mfc0;

 wire c_r32_ctrl_is_mtc0;

 wire c_r32_ctrl_is_eret;

 //datapath

 wire c_r32_dp_is_mtc0;

 wire [`WIDTH_WORD - 1:0] c_r32_dp_cp0_reg_data;

 wire [`WIDTH_REG_ADDR - 1:0] c_r32_dp_cp0_reg_addr;

 wire c_r32_dp_is_overflow;

Appendix B Source Code

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 //cp0

 wire [`WIDTH_WORD - 1:0] c_r32_cp0_reg_data;

 wire [`WIDTH_WORD - 1:0] c_r32_cp0_excep_addr;

 wire c_r32_cp0_is_intr;

 wire c_r32_cp0_is_overflow;

 wire [5:0] c_r32_intr_vector;

 //address_decoder

 wire c_r32_wb_addr;

 wire [`PS2_WORD - 1:0] c_r32_wb_dat;

 wire c_r32_wb_stb;

 wire c_r32_wb_cyc;

 wire c_r32_wb_w_rn;

 wire c_r32_wb_ack;

 wire [`PS2_WORD - 1:0] c_r32_dat_ps2;

 //ps2_ctrl

 wire c_r32_ps2_interrupt;

 wire c_r32_ps2_io_ps2c;

 wire c_r32_ps2_io_ps2d;

 //data select for ps2

 wire c_r32_operation_io;

 wire [`WIDTH_WORD - 1:0] c_r32_dcrddata;

 wire [`WIDTH_WORD - 1:0] c_r32_data_io;

 pullup(c_r32_ps2_io_ps2c);

 pullup(c_r32_ps2_io_ps2d);

 assign c_r32_ps2_io_ps2c = co_r32_ps2_clk_en ? co_r32_ps2_clk : 1'bz;

 assign c_r32_ps2_io_ps2d = co_r32_ps2_dat_en ? co_r32_ps2_dat : 1'bz;

 assign c_r32_operation_io = c_r32_dmem_addr>=CPU_MS_DATA_ADDR &&

c_r32_dmem_addr<=CPU_MS_DATA_ADDR;

 assign c_r32_dcrddata = c_r32_operation_io ? c_r32_data_io :

c_r32_loaded_data;

 assign c_r32_intr_vector = {c_r32_ps2_interrupt, 5'b0};

 u_ctrl_path_full u_control

 (//main control signal

 .uo_cp_alb_src(c_r32_alb_src),

 .uo_cp_rdst_src(c_r32_rdst_src),

 .uo_cp_bran_ctrl(c_r32_bran_ctrl),

 .uo_cp_mult_en(c_r32_mult_en),

 .uo_cp_sign_mult(c_r32_sign_mult),

 .uo_cp_rf_write(c_r32_rf_write),

 .uo_cp_mem_write(c_r32_mem_write),

 .uo_cp_mem_read(c_r32_mem_read),

 .uo_cp_sign_ext(c_r32_sign_ext),

 .uo_cp_hi_we(c_r32_hi_we),

 .uo_cp_lo_we(c_r32_lo_we),

 .uo_cp_alb_to_rf(c_r32_alb_to_rf),

 .uo_cp_hi_to_rf(c_r32_hi_to_rf),

 .uo_cp_mem_to_rf(c_r32_mem_to_rf),

 .uo_cp_is_mtc0(c_r32_ctrl_is_mtc0),

Appendix B Source Code

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 .uo_cp_is_mfc0(c_r32_ctrl_is_mfc0),

 .uo_cp_is_eret(c_r32_ctrl_is_eret),

 //alb

 .uo_cp_alb_ctrl(c_r32_alb_ctrl),

 //branch control signal

 .uo_cp_if_flush(c_r32_if_flush),

 .uo_cp_pc_src(c_r32_pc_src),

 .uo_cp_prediction_src(c_r32_prediction_src),

 .uo_cp_correction_src(c_r32_correction_src),

 .uo_cp_store_addr(c_r32_store_addr),

 .uo_cp_upd_pred(c_r32_upd_pred),

 //forwarding

 .uo_cp_fwrd_alb_id_rsrc(c_r32_fwrd_alb_id_rsrc),

 .uo_cp_fwrd_alb_id_rtgt(c_r32_fwrd_alb_id_rtgt),

 .uo_cp_fwrd_hilo(c_r32_fwrd_hilo),

 .uo_cp_fwrd_mem_ex_rtgt(c_r32_fwrd_mem_ex_rtgt), //mem-to-mem copy

 .uo_cp_fwrd_mem_id_rsrc(c_r32_fwrd_mem_id_rsrc),

 .uo_cp_fwrd_mem_id_rtgt(c_r32_fwrd_mem_id_rtgt),

 //interlock control

 .uo_cp_pc_write(c_r32_pc_write),

 .uo_cp_ifid_write(c_r32_ifid_write),

 .uo_cp_idex_write(c_r32_idex_write),

 .uo_cp_exmem_write(c_r32_exmem_write),

 .uo_cp_memwb_write(c_r32_memwb_write),

 .uo_cp_id_flush(c_r32_id_flush),

 .uo_cp_ex_flush(c_r32_ex_flush),

 .uo_cp_mem_flush(c_r32_mem_flush),

 //main control

 .ui_cp_opcode(c_r32_opcode),

 .ui_cp_funct(c_r32_funct),

 .ui_cp_inst25_21(c_r32_dp_inst25_21),

 //branch

 .ui_cp_prediction(c_r32_prediction),

 .ui_cp_bran_vld(c_r32_bran_vid),

 .ui_cp_pred_crt(c_r32_pred_crt),

 //interlock control

 .ui_cp_ex_mem_read(c_r32_ex_mem_read),

 .ui_cp_mult_busy(c_r32_mult_busy),

 .ui_cp_is_overflow(c_r32_cp0_is_overflow),

 //interlock control and forwarding

 .ui_cp_id_rsrc(c_r32_id_rsrc),

 .ui_cp_id_rtgt(c_r32_id_rtgt),

 .ui_cp_ex_rtgt(c_r32_ex_rtgt),

 //forwarding

 .ui_cp_ex_rf_write(c_r32_ex_rf_write),

 .ui_cp_mem_rf_write(c_r32_mem_rf_write),

 .ui_cp_wb_rf_write(c_r32_wb_rf_write),

 .ui_cp_mem_mem_read(c_r32_mem_re),

 .ui_cp_ex_rdst(c_r32_ex_rdst),

 .ui_cp_mem_rdst(c_r32_mem_rdst),

 .ui_cp_wb_rdst(c_r32_wb_rdst));

 u_data_path_full u_dp

Appendix B Source Code

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 (//cp0

 .uo_dp_is_mtc0(c_r32_dp_is_mtc0),

 .uo_dp_cp0_reg_addr(c_r32_dp_cp0_reg_addr),

 .uo_dp_cp0_reg_data(c_r32_dp_cp0_reg_data),

 .uo_dp_inst25_21(c_r32_dp_inst25_21),

 //main control

 .uo_dp_opcode(c_r32_opcode),

 .uo_dp_funct(c_r32_funct),

 //branch control

 .uo_dp_prediction(c_r32_prediction),

 .uo_dp_bran_vld(c_r32_bran_vid),

 .uo_dp_pred_crt(c_r32_pred_crt),

 //alb

 .uo_dp_overflow(c_r32_dp_is_overflow),

 //memory unit

 .uo_dp_pc(c_r32_pc),

 .uo_dp_dmem_addr(c_r32_dmem_addr),

 .uo_dp_store_data(c_r32_store_data),

 .uo_dp_mem_we(c_r32_mem_we),

 //mem unit and forwarding

 .uo_dp_mem_re(c_r32_mem_re),

 //interlock control

 .uo_dp_ex_mem_read(c_r32_ex_mem_read),

 .uo_dp_mult_busy(c_r32_mult_busy),

 //interlock control and forwarding

 .uo_dp_id_rsrc(c_r32_id_rsrc),

 .uo_dp_id_rtgt(c_r32_id_rtgt),

 .uo_dp_ex_rtgt(c_r32_ex_rtgt),

 //forwarding

 .uo_dp_ex_rf_write(c_r32_ex_rf_write),

 .uo_dp_mem_rf_write(c_r32_mem_rf_write),

 .uo_dp_wb_rf_write(c_r32_wb_rf_write),

 .uo_dp_ex_rdst(c_r32_ex_rdst),

 .uo_dp_mem_rdst(c_r32_mem_rdst),

 .uo_dp_wb_rdst(c_r32_wb_rdst),

 //main control

 .ui_dp_alb_src(c_r32_alb_src),

 .ui_dp_rdst_src(c_r32_rdst_src),

 .ui_dp_bran_ctrl(c_r32_bran_ctrl),

 .ui_dp_mult_en(c_r32_mult_en),

 .ui_dp_sign_mult(c_r32_sign_mult),

 .ui_dp_rf_write(c_r32_rf_write),

 .ui_dp_mem_write(c_r32_mem_write),

 .ui_dp_mem_read(c_r32_mem_read),

 .ui_dp_sign_ext(c_r32_sign_ext),

 .ui_dp_hi_we(c_r32_hi_we),

 .ui_dp_lo_we(c_r32_lo_we),

 .ui_dp_alb_to_rf(c_r32_alb_to_rf),

 .ui_dp_hi_to_rf(c_r32_hi_to_rf),

 .ui_dp_mem_to_rf(c_r32_mem_to_rf),

 //alb

 .ui_dp_alb_ctrl(c_r32_alb_ctrl),

 //branch control signal

Appendix B Source Code

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 .ui_dp_if_flush(c_r32_if_flush),

 .ui_dp_pc_src(c_r32_pc_src),

 .ui_dp_prediction_src(c_r32_prediction_src),

 .ui_dp_correction_src(c_r32_correction_src),

 .ui_dp_store_addr(c_r32_store_addr),

 .ui_dp_upd_pred(c_r32_upd_pred),

 //forwarding

 .ui_dp_fwrd_alb_id_rsrc(c_r32_fwrd_alb_id_rsrc),

 .ui_dp_fwrd_alb_id_rtgt(c_r32_fwrd_alb_id_rtgt),

 .ui_dp_fwrd_hilo(c_r32_fwrd_hilo),

 .ui_dp_fwrd_mem_ex_rtgt(c_r32_fwrd_mem_ex_rtgt),

 .ui_dp_fwrd_mem_id_rsrc(c_r32_fwrd_mem_id_rsrc),

 .ui_dp_fwrd_mem_id_rtgt(c_r32_fwrd_mem_id_rtgt),

 //interlock control

 .ui_dp_pc_write(c_r32_pc_write),

 .ui_dp_ifid_write(c_r32_ifid_write),

 .ui_dp_idex_write(c_r32_idex_write),

 .ui_dp_exmem_write(c_r32_exmem_write),

 .ui_dp_memwb_write(c_r32_memwb_write),

 .ui_dp_id_flush(c_r32_id_flush),

 .ui_dp_ex_flush(c_r32_ex_flush),

 .ui_dp_mem_flush(c_r32_mem_flush),

 //memory unit

 .ui_dp_instruction(c_r32_instruction),

 .ui_dp_loaded_data(c_r32_dcrddata),

 //cp0

 .ui_dp_is_mtc0(c_r32_ctrl_is_mtc0),

 .ui_dp_is_mfc0(c_r32_ctrl_is_mfc0),

 .ui_dp_cp0_reg_data(c_r32_cp0_reg_data),

 .ui_dp_excep_addr(c_r32_cp0_excep_addr),

 .ui_dp_is_intr(c_r32_cp0_is_intr),

 .ui_dp_is_overflow(c_r32_cp0_is_overflow),

 .ui_dp_is_eret(c_r32_ctrl_is_eret),

 //system signal

 .ui_dp_clk(ci_r32_ps2_clk),

 .ui_dp_reset(ci_r32_ps2_rst));

 u_memory u_memory

 (.uo_mem_ic_data_rd(c_r32_instruction),

 .uo_mem_dc_data_rd(c_r32_loaded_data),

 .ui_mem_ic_addr(c_r32_pc),

 .ui_mem_dc_addr(c_r32_dmem_addr),

 .ui_mem_dc_data_wr(c_r32_store_data),

 .ui_mem_dc_we(c_r32_mem_we), //to dc

 .ui_mem_dc_re(c_r32_mem_re), //to dc

 .ui_mem_clk(ci_r32_ps2_clk));

 u_cp0 u_cp0

 (.ui_cp0_mtc0(c_r32_dp_is_mtc0),

 .ui_cp0_is_eret(c_r32_ctrl_is_eret),

 .ui_cp0_current_pc_2_EPC(c_r32_pc),

 .ui_cp0_intr_vector(c_r32_intr_vector),

 .ui_cp0_overflow_signal(c_r32_dp_is_overflow),

Appendix B Source Code

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 .ui_cp0_reg_data(c_r32_dp_cp0_reg_data),

 .ui_cp0_reg_address(c_r32_dp_cp0_reg_addr),

 .ui_cp0_sys_clock(ci_r32_ps2_clk),

 .uo_cp0_cp0_reg_data(c_r32_cp0_reg_data),

 .uo_cp0_excep_handler_address(c_r32_cp0_excep_addr),

 .uo_cp0_is_intr(c_r32_cp0_is_intr),

 .uo_cp0_is_overflow(c_r32_cp0_is_overflow));

 b_addr_decoder b_addr_decoder

 (.bo_wb_stb(c_r32_wb_stb),

 .bo_wb_cyc(c_r32_wb_cyc),

 .bo_wb_addr(c_r32_wb_addr),

 .bo_wb_w_rn(c_r32_wb_w_rn),

 .bo_wb_dat(c_r32_wb_dat),

 .bo_dat_cpu(c_r32_data_io),

 .bi_dat_ps2(c_r32_dat_ps2),

 .bi_dat_cpu(c_r32_store_data),

 .bi_addr_cpu(c_r32_dmem_addr),

 .bi_wb_ack(c_r32_wb_ack),

 .bi_rd_cpu(c_r32_mem_re),

 .bi_wr_cpu(c_r32_mem_we));

 u_ps2 u_ps2

 (.uo_ps2_clk_en(co_r32_ps2_clk_en),

 .uo_ps2_clk(co_r32_ps2_clk),

 .uo_ps2_dat_en(co_r32_ps2_dat_en),

 .uo_ps2_dat(co_r32_ps2_dat),

 .uo_ps2_wb_dat(c_r32_dat_ps2),

 .uo_ps2_wb_ack(c_r32_wb_ack),

 .uo_ps2_intr(c_r32_ps2_interrupt),

 .ui_ps2_clk(ci_r32_ps2_clk),

 .ui_ps2_rst(ci_r32_ps2_rst),

 .ui_ps2_wb_stb(c_r32_wb_stb),

 .ui_ps2_wb_cyc(c_r32_wb_cyc),

 .ui_ps2_wb_addr(c_r32_wb_addr),

 .ui_ps2_wb_w_rn(c_r32_wb_w_rn),

 .ui_ps2_wb_dat(c_r32_wb_dat),

 .ui_ps2_eclk(ci_r32_ps2_eclk),

 .ui_ps2_edat(ci_r32_ps2_edat));

endmodule

B-2 Test Bench

//##

//Filename: tb_c_risc32_join_ps2.v

//Date created: 28/2/2014

//Author : Ng Kwong Cheong

//Description: Testbench for the full chip module.

//##

Appendix B Source Code

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

module tb_c_r32_join_ps2

 ();

 //Wire declarations

 wire tbo_r32_ps2_clk_en;

 wire tbo_r32_ps2_clk;

 wire tbo_r32_ps2_dat_en;

 wire tbo_r32_ps2_dat;

 //Register declarations

 reg tbi_r32_ps2_clk;

 reg tbi_r32_ps2_rst;

 reg tbi_r32_ps2_eclk;

 reg tbi_r32_ps2_edat;

 //Test data buffer declarations

 reg [9:0] test_rx_data;

 reg [9:0] test_rx_data_two;

 reg [9:0] test_rx_data_three;

 //Flag register declarations

 reg rx_flag_start, rx_flag_stop;

 reg rx_flag_start_two, rx_flag_stop_two;

 reg rx_flag_start_three, rx_flag_stop_three;

 //Counter declarations

 integer location;

 integer rx_bit_count = 0;

 integer rx_bit_count_two = 0;

 integer rx_bit_count_three = 0;

 c_r32_join_ps2 DUT_c_r32_join_ps2

 (.co_r32_ps2_clk_en(tbo_r32_ps2_clk_en),

 .co_r32_ps2_clk(tbo_r32_ps2_clk),

 .co_r32_ps2_dat_en(tbo_r32_ps2_dat_en),

 .co_r32_ps2_dat(tbo_r32_ps2_dat),

 .ci_r32_ps2_clk(tbi_r32_ps2_clk),

 .ci_r32_ps2_rst(tbi_r32_ps2_rst),

 .ci_r32_ps2_eclk(tbi_r32_ps2_eclk),

 .ci_r32_ps2_edat(tbi_r32_ps2_edat));

 initial tbi_r32_ps2_clk = 1'b0;

 always #5000 tbi_r32_ps2_clk = ~tbi_r32_ps2_clk;

 initial begin

 //Signals initialization

 tbi_r32_ps2_rst = 1'b0;

 tbi_r32_ps2_eclk = 1'b1; //standard signal

 tbi_r32_ps2_edat = 1'b1; //standard signal

 rx_flag_start = 1'b0;

 rx_flag_stop = 1'b0;

 rx_flag_start_two = 1'b0;

 rx_flag_stop_two = 1'b0;

Appendix B Source Code

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 rx_flag_start_three = 1'b0;

 rx_flag_stop_three = 1'b0;

 //Read file and load to memory

 $readmemh("ps2_test_hex.txt",

DUT_c_r32_join_ps2.u_memory.b_ic.b_cm_r_memory);

 $readmemh("ps2_test_data.txt",

DUT_c_r32_join_ps2.u_memory.b_dc.b_cm_r_memory);

 $readmemh("ps2_test_rf.txt",

DUT_c_r32_join_ps2.u_dp.b_rf.b_rf_r_register);

 //Display loaded data

 for(location = 0; location < 4096; location = location +

1)begin

 $display("Memory [%0d]\t = \t%h", location,

DUT_c_r32_join_ps2.u_memory.b_ic.b_cm_r_memory[location]);

 end

 //System reset

 @(posedge tbi_r32_ps2_clk)

 tbi_r32_ps2_rst = 1'b1;

 repeat(3) @(posedge tbi_r32_ps2_clk);

 tbi_r32_ps2_rst = 1'b0;

 //Receive data from PS/2 mouse

 @(posedge tbi_r32_ps2_clk)

 test_rx_data = 10'b11_1111_1010; //8'hFA, acknowledge byte,

parity bit = 1'b1

 repeat(4) @(posedge tbi_r32_ps2_clk);

 rx_flag_start = 1'b1;

 repeat(10) begin

 repeat(4) @(posedge tbi_r32_ps2_clk);

 tbi_r32_ps2_eclk = 1'b0;

 repeat(4) @(posedge tbi_r32_ps2_clk);

 tbi_r32_ps2_eclk = 1'b1;

 end

 rx_flag_stop = 1'b1;//Generate stop bit after sending data +

parity bits

 repeat(4) @(posedge tbi_r32_ps2_clk);

 tbi_r32_ps2_eclk = 1'b0;

 repeat(4) @(posedge tbi_r32_ps2_clk);

 tbi_r32_ps2_eclk = 1'b1;

 //Receive second data from PS/2 mouse

 @(posedge tbi_r32_ps2_clk)

Appendix B Source Code

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 test_rx_data_two = 10'b11_1010_1010; //8'hAA, Power-on basic

assurance test "passed" result, parity bit = 1'b1

 repeat(4) @(posedge tbi_r32_ps2_clk);

 rx_flag_start_two = 1'b1;

 repeat(10) begin

 repeat(4) @(posedge tbi_r32_ps2_clk);

 tbi_r32_ps2_eclk = 1'b0;

 repeat(4) @(posedge tbi_r32_ps2_clk);

 tbi_r32_ps2_eclk = 1'b1;

 end

 rx_flag_stop_two = 1'b1; //Generate stop bit after sending

data + parity bits

 repeat(4) @(posedge tbi_r32_ps2_clk);

 tbi_r32_ps2_eclk = 1'b0;

 repeat(4) @(posedge tbi_r32_ps2_clk);

 tbi_r32_ps2_eclk = 1'b1;

 //Receive last data from PS/2 mouse

 @(posedge tbi_r32_ps2_clk)

 test_rx_data_three = 10'b11_0000_0000; //8'h00, PS/2 mouse ID, parity

bit = 1'b1

 repeat(4) @(posedge tbi_r32_ps2_clk);

 rx_flag_start_three = 1'b1;

 repeat(10) begin

 repeat(4) @(posedge tbi_r32_ps2_clk);

 tbi_r32_ps2_eclk = 1'b0;

 repeat(4) @(posedge tbi_r32_ps2_clk);

 tbi_r32_ps2_eclk = 1'b1;

 end

 rx_flag_stop_three = 1'b1; //Generate stop bit after sending

data + parity bits

 repeat(4) @(posedge tbi_r32_ps2_clk);

 tbi_r32_ps2_eclk = 1'b0;

 repeat(4) @(posedge tbi_r32_ps2_clk);

 tbi_r32_ps2_eclk = 1'b1;

 //Stop operation

 repeat(80) @(posedge tbi_r32_ps2_clk);

 $stop;

 end

Appendix B Source Code

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 /*********Receiver block for receiving first data**********/

 initial begin

 tbi_r32_ps2_edat = 1'b1;

 wait(rx_flag_start)

 tbi_r32_ps2_edat = 1'b0;

 repeat(10) @(posedge tbi_r32_ps2_eclk)begin

 tbi_r32_ps2_edat <= test_rx_data[rx_bit_count];

 rx_bit_count <= rx_bit_count + 1;

 end

 wait(rx_flag_stop)

 tbi_r32_ps2_edat = 1'b1;

 end

 /**/

 /*********Receiver block for receiving second data*********/

 initial begin

 tbi_r32_ps2_edat = 1'b1;

 wait(rx_flag_start_two)

 tbi_r32_ps2_edat = 1'b0;

 repeat(10) @(posedge tbi_r32_ps2_eclk)begin

 tbi_r32_ps2_edat <= test_rx_data_two[rx_bit_count_two];

 rx_bit_count_two <= rx_bit_count_two + 1;

 end

 wait(rx_flag_stop_two)

 tbi_r32_ps2_edat = 1'b1;

 end

 /**/

 /*********Receiver block for receiving last data***********/

 initial begin

 tbi_r32_ps2_edat = 1'b1;

 wait(rx_flag_start_three)

 tbi_r32_ps2_edat = 1'b0;

 repeat(10) @(posedge tbi_r32_ps2_eclk)begin

 tbi_r32_ps2_edat <=

test_rx_data_three[rx_bit_count_three];

 rx_bit_count_three <= rx_bit_count_three + 1;

 end

 wait(rx_flag_stop_three)

 tbi_r32_ps2_edat = 1'b1;

 end

 /**/

endmodule

Appendix C Turnitin result

Bachelor of Information Technology (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

