
HIGH-AVAILABILITY RESOURCE MONITORING FRAMEWORK ON

DYNAMIC DISTRIBUTED ENVIRONMENT

By

WONG SIAW LING

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

In partial fulfilment of the requirements

For the degree of

BACHELOR OF COMPUTER SCIENCE (HONS)

Faculty of Information and Communication Technology

(Perak Campus)

Jan 2014

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

i

DECLARATION OF ORIGINALITY

I declare that this report entitled “High-Availability Resource Monitoring

Framework on Dynamic Distributed Environment” is my own work except as

cited in the references. The report has not been accepted for any degree and is not

being submitted concurrently in candidature for any degree or other award.

Signature : _____________________

Name : WONG SIAW LING _

Date : 11th April 2014 _

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

ii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my greatest gratitude to my supervisor Dr.

Alex Ooi Boon Yaik for his excellent guidance, advice and support throughout this

project. Without his consistent encouragement, motivation and inspiration, this work

will never come into existence, and I will never develop my interest on distributed

system. Sincerely thanks to him for being a great mentor of mine for both

academically and personally, throughout this project and my university life.

I would also like to thank Mr. Ng Eng Siong, Mr. Muhamad Shukri Bin Muhamad

Shukur, Mr. Kurt Strebel and other colleagues as well who guided and shared their

knowledge with me during my internship with Hilti Asia IT Services Sdn. Bhd.

Thanks to them for giving me opportunity to work and gain exposure on enterprise

level IT setup, particularly on resource monitoring area. Those experiences are

extremely useful to this work. Also, thank you for their willingness and time to

discuss and feedback on my project.

Also, sincerely thank you to Mr. Wong Chee Siang, Dr. Liew Soung Yue, Dr. Tan

Hung Khoon and Mr. Gan Chee Tak for their constructive advices and

recommendations on my project.

Last but not least, my heartily thank dedicated to my parents, my love, family and

friends who being supportive and considerate for all the time.

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

iii

ABSTRACT

Resource Monitoring System (RMS) is one of the most crucial components under an

IT landscape. It oversees all the sub-systems and services’ performance to maintain

their availability, and responsible to raise alert when any component is under critical

situation. Thus, the RMS must achieve the highest availability among all the

computing resources in the monitored system which otherwise its monitoring would

not be complete as it may fail to monitor some events. However, due to the increasing

complexity and heterogeneous of an IT over the years, the mission of maintaining a

High-Availability RMS has become very challenging. To counteract this, the RMS

should have self-managed properties within the system itself. This work proposed a

novel approach to improve RMS availability via automated failover and fallback

mechanism through automated service placement. As compared to conventional

approach that uses dedicated and redundant servers, together with much human

intervention to achieve high availability, this work simplifies and automates most of

the processes to realizes the HA operational goals. A prototype of proposed solution

is being implemented on both controlled and dynamic environments, and experiments

were carried out to investigate the feasibility and limitation of the proposed approach.

Based on the experimental result, the proposed solution is promising under controlled

environment with human-injected failure. However, it does not work as expected and

we face some reliability issues when it is deployed under dynamic environment.

These problems are identified and will be improved in the future work.

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

iv

TABLE OF CONTENT

DECLARATION OF ORIGINALITY ... i

ACKNOWLEDGEMENTS .. ii

ABSTRACT .. iii

TABLE OF CONTENT .. iv

LIST OF FIGURES ... viii

LIST OF TABLES .. ix

LIST OF ABBREVIATIONS ... x

CHAPTER 1 INTRODUCTION .. 11

1.1 Introduction .. 11

1.2 Project Motivations .. 13

1.3 Problem Statements .. 13

1.4 Project Objectives .. 15

1.5 Project Scopes .. 16

1.6 Project Contributions ... 17

CHAPTER 2 LITERATURE REVIEW .. 18

2.1 Introduction .. 18

2.2 Review on Existing RMSs ... 18

2.2.1 High Performance Computing Monitoring ... 18

2.2.2 Enterprise/Industry Computing Monitoring ... 20

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

v

2.2.3 Cloud-based Monitoring ... 21

2.3 Service Encapsulation .. 22

2.3.1 Virtualization .. 23

2.3.2 Operating-system level virtualization ... 24

2.4 Discussion .. 25

CHAPTER 3 METHODOLOGY AND TOOLS .. 29

3.1 Methodology .. 29

3.1.1 Prototype 1 .. 30

3.1.2 Prototype 2 .. 30

3.1.3 Prototype 3 .. 31

3.2 Development Platform and Technology Used ... 31

3.2.1 Operating System .. 31

3.2.2 Programming Platform.. 32

3.2.3 Resources Monitoring Application ... 32

3.2.4 Virtualization .. 32

3.3 System Architecture ... 33

3.4 Requirement Specification ... 36

3.4.1 Class Diagram ... 36

3.4.2 Use Case Diagram... 38

3.4.3 Activity Diagram .. 40

3.4.4 Sequence Diagram .. 42

3.4.5 State Machine Diagram ... 44

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

vi

3.5 Project I Timeline .. 45

3.6 Project II Timeline ... 45

CHAPTER 4 IMPLEMENTATION .. 46

4.1 Zabbix .. 46

4.2 Navigator Implementation ... 47

4.3 High-Availability ... 48

4.4 Failover and Fallback ... 48

4.5 Communication .. 49

4.6 Service Container movement Tracking ... 50

4.7 Data Synchronization ... 51

CHAPTER 5 TESTING .. 52

5.1 Navigator Footprint .. 52

5.1.1 Agents Resource Consumption ... 53

5.1.2 Service Container Resource Consumption ... 54

5.1.3 Network Consumption .. 54

5.1.4 I/O Consumption ... 55

5.1.5 Failover and Fallback .. 55

5.1.6 Benchmarking ... 56

5.2 Overall Service Availability and Service Placement Activity 57

5.2.1 Summary of Experimental Result ... 58

CHAPTER 6 PROJECT REVIEW .. 59

6.1 System Review... 59

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

vii

6.1.1 Self-Management .. 59

6.1.2 Service Encapsulation ... 60

6.1.3 Data Synchronization .. 60

6.1.4 Failover and Fallback .. 60

6.1.5 Awareness ... 61

6.2 Future Work ... 61

6.2.1 Data Management ... 61

6.2.2 Service Encapsulation ... 62

6.2.3 Scalability of High-Availability .. 62

6.2.4 Failover ... 63

6.2.5 Navigator Agents .. 63

6.2.6 RMS .. 63

6.2.7 Optimal Service placement ... 64

BIBLIOGRAPHY .. 65

APPENDIX A ... A-1

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

viii

LIST OF FIGURES

Figure 3-1: Spiral Model of software development ... 29

Figure 3-2: The Architecture Design of Navigator .. 33

Figure 3-3: Class Diagram of Navigator .. 36

Figure 3-4: Use Case Diagram of Navigator ... 38

Figure 3-5: Activity Diagram of Navigator ... 40

Figure 3-6: Sequence Diagram of Navigator ... 42

Figure 3-7: State Machine Diagram of Navigator ... 44

Figure 3-8: Grantt Chart & Milestone of Project 1 .. 45

Figure 3-9: Grantt Chart & Milestone of Project II ... 45

Figure 4-1: Screenshot of Zabbix Monitoring Page .. 47

Figure 4-2: Navigator Service Container Tracking Page ... 51

Figure 5-1: PassMark Overall Score .. 57

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

ix

LIST OF TABLES

Table 2-1: Comparison of existing Resource Monitoring Solutions 25

Table 5-1: Specification of testing workstation ... 52

Table 5-2: specification of Service Container ... 53

Table 5-3: Agents Resource Consumption .. 53

Table 5-4: Service Container Resource Consumption ... 54

Table 5-5: Network Consumption between different operations 54

Table 5-6: I/O consumption of backup disk image operation...................................... 55

Table 5-7: Time taken of various Failover and fallback process 55

Table 5-8: PassMark Score with different workload ... 56

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

x

LIST OF ABBREVIATIONS

RMS Resource Monitoring System

IT Information Technology

CPU Central Processing Unit

IP Internet Protocol

LAN Local Area Network

WAN Wide Area Network

OS Operating System

API Application Programming interface

HPC High Performance Computing

REST Representational state transfer

DBMS Database Management System

GUI Graphical User Interface

TCP/IP Transmission Control Protocol - Internet Protocol

SSH Secure Shell

SFTP SSH File Transfer Protocol

PHP Hypertext Preprocessor

I/O Input-Output

ICT Information and Communication Technology

Chapter 1 Introduction

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

11

CHAPTER 1 INTRODUCTION

1.1 Introduction

Resource Monitoring is one of the most crucial components under an IT landscape as

it oversees the system performance, availability, and responsible to raise alerts when

any component is undergoing critical situations such as server failure, network failure,

critical service is unavailable and etc. However, due to the rapid growth of the

complexity and heterogeneity of computer systems and software solutions, resource

monitoring is becoming more challenging. In order to provide an effective RMS, most

of the solution providers have continuously improved their RMS in terms of

functionality and reliability. Unfortunately, as the RMS advances, its own complexity

increases proportionally. Consequently, the task of managing RMS is getting more

challenging and requires trained and experience administrators to maintain and

manage the system.

Most of the present RMS use centralized and client-server approach to perform

monitoring meaning that the RMS must be installed in one centralized and dedicated

server. Centralized and dedicated hardware approach is often the cause of single point

of failure problem. Thus, in order to maintain high-availability of the RMS, additional

hardware is often required to achieve high-availability which increases operating cost

and management complexity. Apart from that, most of the current RMSs are having

difficulty to maintain high-availability. For conventional practice, there will be only

one redundant server prepared for hot swap in case of failure and such configuration

can only withstand at most one failure. More redundant servers are required for RMS

to achieve better availability. Unfortunately, more redundant servers will require more

Chapter 1 Introduction

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

12

complex configuration and more time to perform the configuration which eventually

increases the overall operating cost to IT management.

In view of the importance of HA-RMS and additional servers are expensive, cloud-

based monitoring is introduced and has started to gain popularity for recent years.

Cloud-based monitoring solved the hardware cost problem by renting services

(Resource monitoring-as-a-Service) from cloud vendors. Users are freed from

configuration and maintenance problems and they use the monitoring services directly.

Majority of the cloud-based monitoring service vendors offer 99% of availability of

service level agreement. Despite the HA advantages, cloud monitoring services are

very network dependent and do not guarantee lower cost compare to in-house

monitoring in longer term.

This work proposed a high-availability resource monitoring framework called

Navigator, which aims to improve the management complexity and scalability of the

RMS, and ultimately achieve automated high-availability with minimal human

intervention via automated failover and fallback mechanism through automated

service placement of virtualized RM.

This work is inspired by the vision of autonomic computing: System manage

themselves according to an administrator’s goals. (Kephart and Chess 2003, p. 41–50)

The essence of autonomic computing systems is self-management, which intended to

free system administrator from the details of system operation and maintenance, and

to provide users with a machine that run at peak performance 24/7. With this

inspiration, the work emphasizes on the automation of various administration process

to achieve high-availability resource monitoring goal with minimal human

intervention.

Chapter 1 Introduction

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

13

1.2 Project Motivations

The key motivation of this project is to enhance current RMS’ high-availability

architecture and its scalability via automation. Constructing a high-availability RMS

isn’t new. However, most of the existing solutions require intensive human

intervention to configure, maintain and manage the high-availability architecture.

Consequently, the reliability of the RMS and the high-availability setup is greatly

depend on how the system administrator setups the whole system. In this project, we

aim to improve this situation via pre-configuration of the high-availability system,

together with automation of most the operating processes, so that only minimal

human intervention is required to maintain the RMS.

Apart of that, although hardware redundancy is one of the most common method to

secure high-availability and it has proven successful, but this method is poor in

scalability and the number of consecutive failure it can withstand is subjected to the

number of extra hardware is deployed. Thus, in this project, we will focus on how to

lessen the hardware dependency, in order to improve the overall scalability of the

high-availability architecture, and eventually allow the system to resist to more

consecutive failure with minimal operational process and cost.

1.3 Problem Statements

Contemporary monitoring systems provide comprehensive monitoring features which

sufficient to cover different type of complex heterogeneous or homogeneous

computer system landscape. Also, high availability can be achieve via hardware-

redundancy with a series of complicated configuration and maintenance procedure.

Chapter 1 Introduction

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

14

However, such approach required intensive human intervention and high operation

cost.

In order to allow a RMS running under high-availability, it involved activities such as

setting up the extra monitoring service in redundant server, manage the data

synchronization and etc. Those processes usually involve a series of detailed and

advanced configuration steps. System administrators have to proceed all the steps

meticulously in order to ensure the system is working properly. Consequently, it is

difficult to maintain and manage the RMS. This situation becomes worse when come

to the substituting experience staff with new staff who without any experience. The

learning curve of new staff to handle such system is steep due to its complexity.

Most of the existing RMSs are hardware dependent and so with the high-

availability setup. For common high-availability setup, the system administrator will

required to deploy two dedicated hardware in the IT landscape. One of the hardware

will actively running the RMS while another redundant hardware will configured to

stay idle for immediate failover. However, such architecture is hard to scale as in it

could be difficult and complex to add the third hardware to achieve higher availability.

Inherited from scalability issue, high availability via redundancy only can

withstand a limited number of consecutive failover and it is subjected to the

number of redundant hardware is deployed. Besides, in most of the case, fallback

process need to be done manually due to lack of automation mechanism. As a result,

the RMS might not have enough room to perform failover if there are multiple failure

happens consecutively

Chapter 1 Introduction

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

15

Therefore, to mitigate the issues listed above, a high availability Resource Monitoring

Framework on dynamic distributed environment is proposed in this project.

1.4 Project Objectives

This work is presenting a self-managed high-availability resource monitoring

framework by using automation mechanism. Thus, in order to achieve the goal, the

project objectives are listed as below.

1. To design a dynamic service placement mechanism which enable dynamic

service migration and shifting among heterogeneous hardware with the

integration of service encapsulation. This mechanism will self-managed and

performs all the configuration and deployment work involved in service

migration and placement without human intervention.

2. To define and automate processes on failover and fallback to achieve high-

availability without human intervention as well as additional hardware. At the

same time the system able to resist multiple consecutive failovers.

3. To investigate and validate the usability of the defined framework, a prototype

of the system will be built deployed under a small-scale system landscape.

Various testing include examine the automated failover processes, service

performance measure, overhead and etc. will be carried out.

Chapter 1 Introduction

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

16

1.5 Project Scopes

In general, this project mainly involved in constructing the high-availability resource

monitoring framework and architecture namely Navigator, followed by the

development of prototype the exam the usability and the performance of the

framework. Hence the project scope is defined as below.

1. The prototype is developed to run under Windows .NET environment.

Windows .NET is chosen because most of the machines in laboratory labs are

installed with Windows platform. Develop under Windows .NET will ease the

deployment of testing.

2. The proposed High-Availability Resource Monitoring Framework only

operates within a Local Area Network (LAN). Although the resource

monitoring scope might cover up to Wide Area Network (WAN), but

Navigator framework will only enforced within the LAN where the RMS is

deployed.

3. The RMS including the core monitoring application, web server and database

are encapsulated with virtualization technology. These components have to be

install in one single instance and it is not allowed to reside in different

physical hardware under Navigator framework.

4. This work will only focus on infrastructure monitoring which cover metrics

such as system availability, CPU and memory usage, and network utilization

of the monitored host.

Chapter 1 Introduction

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

17

1.6 Project Contributions

As RMS is crucial to an IT landscape, failure of resource monitoring is almost

intolerable and it should not require too much downtime for maintenance purpose. In

this project, a high availability resource monitoring framework is designed to reduce

the RMS management complexity and the same time the RMS’s availability is

maintained via automation process. As a result, the operation processes will be much

simplified and system administrator will be freed from the detail of system operations

and maintenance, which is corresponded to the motivation of autonomic computing. .

In the future, similar framework can be used to implement any generic services for

instance web services and database services with minimal management complexity to

achieve high-availability. As the complexity of management is reduced, system

administrators can now devote their time in higher level system management such as

optimization of the resource utilization of an IT landscape.

High-availability via redundancy is well-known to be success but it exposed to

scalability issues. In this project, we improved the scalability issue with automated

dynamic service placement method. Without the need of introducing a complete set of

dedicated redundant hardware to the landscape, the high-availability is scaled by

harnessing the redundant resources available under the IT landscape.

Chapter 2 Literature Review

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

18

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

Plenty of RMSs and high-availability architecture have been developed and studied

over years. They differentiate each of other in term of architecture, features and type

of computer systems they specialized. In general, this work classifies all the related

work into 3 major domain: high performance computing monitoring, enterprise or

industry computing monitoring and cloud-based monitoring. Each of this domain will

be review in section 2.2.

Literature review on the existing services encapsulation technologies will be done in

section 2.3 and lastly a discussion and conclusion will be made in section 2.4 and

section 2.5

2.2 Review on Existing RMSs

2.2.1 High Performance Computing Monitoring

High performance computing system such as Grid and cluster usually consist large

amount of interconnected node. Therefore, scalability is very important in order to

monitor this type of distributed system. Ganglia(Massie, Chun and Culler 2004, p.

817–840), is a RMS which leverage hierarchical architecture to perform monitoring

for large-scale distributed system. Even though Ganglia still using centralized

management, but Ganglia solved the problem of single point failure via hierarchical

monitors with the cost of redundancy. In order to ensure data availability for a set of

cluster, data of each node will publish to other nodes within the same cluster via

Chapter 2 Literature Review

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

19

multicast protocol. Similarly, monitoring service availability is maintained via

introduce multiple redundant gmetad (a Ganglia daemon which allows monitoring

information for multiple cluster to be aggregated). Although high availability can be

easily achieved in Ganglia via introducing redundancy in various components, but it

might create a lot of overhead to the system. The multicast protocol itself creates high

bandwidth consumption to the landscape and furthermore the number of failure is

limited to the number of redundancy deployed. Also, there is no clear automated

fallback mechanism if defined in the system if failover occurred.

Instead of a pure RMS, Astrolabe(Van Renesse, Birman and Vogels 2003, p. 164–206)

is an integrated system for distributed system monitoring, management and data

mining. The design of the system is focus on its scalability and it achieves scalability

through its zone hierarchy. Astrolabe uses Peer-to-Peer protocol for communication to

eliminate single-point of failure and increase the system robustness. By utilizing the

design of zone hierarchy and peer-to-peer communication, Astrolabe is highly

scalable and basically the failure of any single node in the system will not affect the

service, however the performance of Astrolabe is very much depends on the zone

definition and unfortunately system administrators responsible for configure the

system and assign zone. System administrator is required to have in-depth knowledge

of their IT landscape’s network in order to define all the zones in the consideration of

different topology might result in different overhead resulted from communication of

Astrolabe system. In this case, management of Astrolabe becomes difficult and

complex. Furthermore, Astrolabe uses IP multicast to communicate between hosts. If

monitored machines does not support IP multicast, Astrolabe will do broadcast

communication which might result vast overhead to the network.

Both Ganglia and Astrolabe are highly-scalable and resilient to failure based on their

architecture. However, approach such as introduce multiple redundancy and vast

Chapter 2 Literature Review

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

20

communication between nodes to control failure can generate a lot of overhead. Such

amount of overhead can only be justified if we want to monitor a very large scale

distributed system else apart of wasting resource, it might overload the landscape for

instance a distributed system which only contain less than hundred nodes.

Furthermore, hierarchical monitoring is not easy to be configured and maintained if

the system administrators do not have in-depth knowledge of the network.

Misconfiguration will affect the performance of the system. Furthermore, the

management of the system will getting more complex while the landscape is scale.

2.2.2 Enterprise/Industry Computing Monitoring

Depends on the size of the organization, the IT infrastructure can scale from few ten

nodes to few hundred or even thousand nodes. Generally, Enterprise/Industry

computing are more heterogeneous in the sense of different resources are integrated

under one landscape. For example under an enterprise IT landscape, it might consist

of workstation, server farm, cluster, virtual instances, cloud and numbers of network

device. RMS like Nagios(Nagios 2002), Icinga(Icinga 2009), Zabbix (Zabbix 2001),

Zenoss (Zenoss, Inc. 2005), openNMS (The OpenNMS Group Inc. 2002) and

Solarwinds (SolarWinds 2003) are dedicated to monitor this kind of IT infrastructure.

These RMS differentiate themselves in term of features provided for instance

reporting, system performance analyzer, open source and etc. However most of them

are design under similar architecture which is centralized management of the

monitoring server. RMS are required to installed is dedicated hardware and the

monitoring process is carried in a client-server fashion. Such approach is exposed to

single point failure. Some RMS like Icinga has documented how to set up redundant

monitoring to handle failover. Redundant monitoring means user will required to set

Chapter 2 Literature Review

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

21

up another identical monitoring server. Furthermore, users will need to write some

automation script to control the process. Although the guidelines is given, but the

process is complex and any wrong configuration might fail the whole high availability

setup. Apart of this, there is no explicit guideline in term of fallback after failover and

the number of consecutive failure the system can withstand is subjected to the number

of redundant servers present.

2.2.3 Cloud-based Monitoring

With the rise of cloud computing, cloud-based monitoring is introduced since past

few years. Basically, cloud-based monitoring provides monitoring as a services to

customers. In this case, user will not need to install the monitoring system on premise

but just required to subscribe to the monitoring services. There are numbers of cloud-

based RMS namely: Rackspace Cloud Monitoring(Rackspace, US Inc 2014),

Monitis(Monitis.com 2006), Logic Monitor(LogicMonitor 2008) and

Opsview(Opsview Ltd. 2014). Similar to enterprise computing monitoring, cloud-

based monitoring perform centralized infrastructure and application monitoring.

However, scalability of the monitoring is based on how much subscription fees that

the user willing to pay.

Since the RMS is hosted on the cloud, the user will not require to configure and

maintain the RMS. Generally, he or she only required to add or remove monitoring

host and metrics through the administrator panel or API provided. For instance

Rackspace Cloud Monitoring allowed user to monitor anything by creating entity via

their API provided. Compare to enterprise or HPC monitoring, the hassle of

installation and maintenance is greatly reduced by using cloud-based monitoring as

those tasks have become the responsibility of the service provider. Apart of that, for

Chapter 2 Literature Review

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

22

instance Rackspace Cloud Monitoring maintain the service availability by having

multiple monitoring zone globally so services and failover to different if any problem

occur.

Compare to conventional enterprise and HPC monitoring, cloud-based monitoring

indeed eliminates most of the service management problem and we have choice to

acquire monitoring on-demand. However, there are several potentials pitfall with

cloud-based monitoring. First of all, cloud-based monitoring required user to have

consistent communication to the cloud. For example Rackspace Cloud Monitoring

uses REST to perform the pulling and pushing of data continuously. This might

impose high bandwidth consumption when the monitoring scope is scaled. The

situation becomes worst if user would like to have high frequency checking onto the

IT landscape. Also, cloud-based monitoring charge user per usage. In long term, it

might be more expensive than hosting a monitoring services in-house.

2.3 Service Encapsulation

In order to achieve dynamic service placement, the RMS need to have portability in

order to move within different environment or even physical hardware. However,

most of the existing RMS required numbers of dependency package to be installed.

For instance, a database management system (DBMS) to record data and web server

to host the graphical user interface (GUI) is required to run a monitoring services.

Such dependencies make the service lack of portability. Thus, in order to solve this

issue, we need to encapsulate the RMS into a single component so that RMS is

portable and able to perform dynamic service placement between hosts.

Chapter 2 Literature Review

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

23

2.3.1 Virtualization

Computer resources have become more powerful and inexpensive compare to the past.

There are always excessive computing resources in one physical machine which

sufficient to run extra set of operating system application. Virtualization realizes the

concept of running multiple virtual machines in one single hardware platform. By

using virtualization technology, a single machine able to aggregate all kinds of data

resources, software resources and hardware resources for different tasks. Moreover,

virtualization separates hardware and software management, and provide useful

features such as performance isolation, server consolidation and live migration(Clark

et al. 2005, p. 273–286). In addition virtual technology can also provide portable

environments for the modern computing systems.(Li, Li and Jiang 2010, p. 332–336)

Thus, we can encapsulate the whole monitoring services into a virtual machine and

make it portable across different hardware platform.

Apart of that, although most of the existing resources monitoring solution did not

officially support hosting in a virtual machine, but for demonstration or simplicity

purpose, resources monitoring application such as Icinga, Zabbix, Hyperic and Nagios

provide pre-configured virtual machine which allows user to deploy and experience

the RMS without the need of carry out any configuration and installation. This proved

that, it is practical to encapsulate the resources monitoring application together with

necessary dependency packages into a virtual machine. It will eliminate the effort of

configuration and installation and with the current technology, virtual machine can be

easily port within different physical hardware by using different virtual machine

migration technique. In this work, virtualization will be leverage in order to achieve

dynamic services placement.

Chapter 2 Literature Review

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

24

2.3.2 Operating-system level virtualization

A subset from virtualization, OS level virtualization or containers virtualization in

general, can be define as a technique of virtualization which provide the required

isolation and security to run multiple applications or copies under a single

OS.(OpvenVZ.org 2005) Compare to full-system or hardware virtualization, OS level

virtualization usually generate lesser footprint since they only required to manage a

single OS kernel compare to multiple OS kernel, OS-level virtualization lack of

portability as it only as the guest container only can hosted in one OS kernel but not

different OS, and thus, migration of services is somehow challenging in OS-level

virtualization.

Currently, there are numbers of OS-level virtualization implementation is available

namely openVZ(OpvenVZ.org 2005), Linux Containers (LXC)(linuxcontainers.org

2014), Jails(DVL Software Ltd. n.d.), Zones(Tucker and Comay 2004) and

Docker(Docker Inc. n.d.). In particular, Docker utilizes LXC to provide an open-

source engine that automates the deployment of any application as a lightweight,

portable, self-sufficient container that will run virtually anywhere regardless different

hardware platforms. The vision of Docker is built once run..run anywhere and

configure once..run anything. Docker container is highly portable as almost

everything can be encapsulate into Docker and the containers able to deploy in almost

any platform without dependency issues at the same time the consistency of the

container is maintained. Docker is first introduced in year 2013 and it considers a

relatively new technology. Thus it is still not advisable to use in production system

since it still under heavy development.

Chapter 2 Literature Review

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

25

2.4 Discussion

( indicates the feature is provided; X indicates the feature is not provided)

Table 2-1: Comparison of existing RMS

Feature

System

High

Availability

features

Automated

HA setup

Automated

fallback

process

Number of consecutive failover can

withstand

Dynamically

service placement

Enterprise/Industry

Monitoring

Nagios  X X Subjected to number of redundancy X

Icinga  X X Subjected to number of redundancy X

Zabbix  X X Subjected to number of redundancy X

Zenoss  X X Subjected to number of redundancy X

openNMS  X X Subjected to number of redundancy X

SolarWinds  X X Subjected to number of redundancy X

HPC Monitoring Ganglia  X X Subjected to number of redundancy X

Astrolable   X Subjected to number of nodes X

Cloud-based

Monitoring

Rackspace Cloud Monitoring Subject to SLA agreement X

Monitis Subject to SLA agreement X

Logic Monitor Subject to SLA agreement X

OpsView Subject to SLA agreement X

Chapter 2 Literature Review

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

26

Based on the tabulated data shown in table 2-1, conclusion can be made as most of the

RMSs do provide high-availability via hardware redundancy. However, in most the

case especially for enterprise/Industry monitoring, the high-availability did not come

off-the-shelf with application. System administrator need to setup the high-availability

function by referring to the manual provided and very often the steps involved is

complex.

For instance, according to Zabbix high Availability setup manual(Zabbix.org 2014),

in order to setup the high-availability features, system administrator need to do

perform configuration on database, Zabbix web frontend, Zabbix server, Zabbix

Agent and firewall. Additionally, OpenAIS/Corosync is required for low availability

checking and pacemaker to ensure all services are properly switched from on node to

another. These instructions are inter-related. Any mistake in the process might cause

the high-availability to be fail.

Compare to enterprise monitoring, HPC monitoring have more sophisticated method

to ensure high-availability. Ganglia replicates the monitoring data in many instances

so that when a particular node failed, the monitoring data still available to user whilst

Astrolabe aggregate the monitoring data through Peer-to-Peer protocol and zone

definition. However, too much redundancy might intrusive to the system and it is

inefficient, thus such high-availability concept only justified in large-scale distributed

system like clustering and Grid.

Cloud-based monitoring hides all the configuration and architecture of the monitoring

application from the user. They provide monitoring as a service and what user’s is

needed to is define all the monitoring metrics provided at the service level and hence,

the high-availability setup is not visible to user. In most of the time, if users would

Chapter 2 Literature Review

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

27

like to acquire certain level of high-availability, they will need to define such

requirement in the service-level agreement with their vendor.

 Although, cloud-based monitoring is good in such a way that it eliminates all the

configuration and maintenance process compare to conventional monitoring, but user

have no control on the monitoring system and eventually might fall to the risk of

vendor lock-in. For instance, software vendor might only allow specific high

availability module to be integrated with the cloud-based monitoring services and

leave user no choice

Despite of cloud-based monitoring, almost all the existing RMSs do not offer

automated fallback. Imagine the scenarios of one active monitoring server and one

redundancy server is up. At the moment, the availability of RMS is secured, once the

active monitoring server is failed it will automatically failover to redundancy server,

given all the high-availability configuration is setup properly. At this point of time,

the high-availability is broken down because there is only single monitoring server is

running. If any failure is happened again at this critical period, the monitoring service

will no longer be available to user.

If the cost of introducing more redundancy hardware is acceptable, the problem

mentioned above can be relieved by introduce more redundant monitoring servers so

that the architecture can withstand more than one failure event. However, in most of

the time it is not cost-effective and the effort and complexity of maintenance increase

proportionally with the number of redundancy implemented in the landscape.

Virtualization technology promotes portability and simplicity in computing system. In

general, virtualization is platform or framework which allows multiple independent

operating system or even services to work on top of a single hardware instances. It

makes sense to encapsulate a RMS into a virtual container to grant the monitoring

Chapter 2 Literature Review

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

28

services better portability and eventually it be used to design a dynamic service

placement architecture.

As conclusion, this project will focus on designing an automated high-availability

resource monitoring framework which capable to perform self-configuration and self-

management and ultimately, increase the efficiency and effectiveness of the whole

resource monitoring management with minimal human intervention. To achieve that,

a dynamic placement architecture will be designed and together with monitoring

services encapsulation, a high-availability framework will be defined.

Chapter 3 Methodology and Tools

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

29

a b

c d

f

g

e

h

CHAPTER 3 METHODOLOGY AND TOOLS

3.1 Methodology

In this project, spiral model will be adapted as the software development methodology.

Each of the alphabet inside the spiral represents the milestone of the project.

The process of the software development can be depicted visually as figure 3-1.

Figure 3-1: Spiral Model of software development

(Please refer to the next section for the detail description of each phase from a-h)

Chapter 3 Methodology and Tools

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

30

3.1.1 Prototype 1

The first spiral will be started with requirement gathering and feasibility study of the

project. Activities such as literature review, objective and problem statement setting

will be done subsequently. After the all the objectives is set. The process will be

continue by developing the 1st prototype. The requirement of 1st prototype will be

listed as below.

a. RMS is encapsulated in a virtual machine and capable to perform monitoring

in a controlled computer systems.

b. The virtualized RMS is capable to migrate to any hosts without the monitoring

process being interrupt.

After the 1st prototype is completed, benchmark on the resource consumption of the

virtualized RMS to the physical host will be carried out.

3.1.2 Prototype 2

Spiral 2 will begin with the evaluation of the 1st prototype. After the evaluation

completed, the development of 2nd prototype will begin with the requirement listed as

below.

c. Migration process will be automated by a coordinator program

d. Coordinator program are required to handle the migration process for both

failover and fallback process

Chapter 3 Methodology and Tools

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

31

e. Coordinator program is required to have the capability of making decision on

who is the optimal host to migrate.

Testing on the coordinator program’s functionality will be carried out after the 2nd

prototype is completed.

3.1.3 Prototype 3

Similarly, evaluation of 2nd prototype will be done before the development of 3rd

prototype begin. The 3rd prototype’s requirements are listed as below.

f. A resource manager program is developed to manage the RMS and a proxy

program is developed to allow communication between resource manager

program and coordinator program

g. Full system implementation

Benchmarking on the overall performance of the resource monitoring in aspect of

native environment, virtualized environment and cloud environment will be done.

3.2 Development Platform and Technology Used

The detail of development platform and technology used in this project

implementation is elaborate at each of the section below.

3.2.1 Operating System

1. The high-availability resource monitoring framework is developed an operate

under Microsoft Windows .NET environment

Chapter 3 Methodology and Tools

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

32

2. The RMS will be installed in a Linux CentOS operating system.

3.2.2 Programming Platform

1. C# programming language will be used to develop all the programs which

define the high availability resource monitoring framework.

2. Bash shell script is used to achieve some automation in the Linux OS where

the RMS resides.

3. PHP scripting is used to developed web-frontend of the high-availability

resource monitoring framework.

3.2.3 Resources Monitoring Application

1. Zabbix is used as the RMS.

3.2.4 Virtualization

1. Virtualization technology from VMware is used to achieve service

encapsulation.

Chapter 3 Methodology and Tools

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

33

3.3 System Architecture

Figure 3-2: The Architecture Design of Navigator

Inspired from sea port management, we adopted some naming convention from there

to describe our architecture design. Under Navigator System, the RMS is

encapsulated inside a virtual machine to form a service container. In this case,

virtualization helped us to solve the issues of portability. By using dynamic service

placement technique, we given the freedom to move the RMS between different

resources and ultimately achieve automated high availability without affect the

normal monitoring process. In specific, the architecture can be separated in three layer

which is:

Chapter 3 Methodology and Tools

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

34

1. Layer 0: This layer consist a set of interconnected physical resources such as

workstation, cluster, workstation or server farm. Navigator did not operate at

the hardware layer, thus, only resources which managed by operating system

will be consider usable infrastructure under layer 0.

2. Layer 1: The Navigator middleware layer consist three agents which

responsible to perform resources management, maintain high availability via

automated failover and fallback mechanism. As show in figure 1, Service

Depot and Depot Agent will reside under each of the computer resources.

They execute on Operating System level. Service Depot manages the local

computer resources in the Navigator system. Thus any resource without

Services Depot is known as unmanaged resources and will not fall under the

scope of Navigator System. As mentioned previously, the RMS will

encapsulated into a virtual services container. Pilot agent will take care of this

service container and does all the automation process to ensure the availability

of services container and eventually the resources monitoring services too.

Meanwhile, Pilot Agent will act as a proxy in order to allow communication

between Service Depot and Pilot Agent in matter of resources management

and coordination. All the communication here will be done by using TCP and

UDP protocol.

3. Layer 3: In application layer, Resource Monitoring is encapsulated in a virtual

machine together with all the required dependencies package such as web

server and database management systems and form a service container.

Created an abstraction layer between the RMS and the hardware resources by

using three of the agents in middleware layer. The service container will have

no knowledge on what resources they are hosted on but the middleware layer

Chapter 3 Methodology and Tools

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

35

will ensure the availability of services container 24/7 and so with the RMS.

Also, at any point of time, a part of primary monitoring services container,

there will always be another secondary services container to serve the purpose

of redundancy for failover.

Chapter 3 Methodology and Tools

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

36

3.4 Requirement Specification

3.4.1 Class Diagram

Figure 3-3: Class Diagram of Navigator

Navigator framework composed by three main components which are the RMS,

Depot Agent, Service Depot and Pilot Agent. Service Depot and Depot Agent will be

installed in every single computing resource under Navigator framework, where else

at one point of time, there will be primary and secondary RMS is running under the

framework, which manage by two different instance of pilot agent respectively.

Chapter 3 Methodology and Tools

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

37

Service Depot can be seen as a local coordinator of a computing resources under the

scope of Navigator. When there is any service container or in another word virtual

machine is hosted under a particular resources, Service Depot will be responsible to

perform the instruction to control the virtual machine. Also Service Depot executes

the actual operation that needed to be done for service container migration. Apart of

that, Service Depot is responsible to provide local resource information to Navigator

as per request too.

Unlike from Service Depot, Pilot Agent acts as the coordinator of the resource

monitoring service container. At one point of time, there will be always two Pilot

Agent working hand in hand to take care both the primary and secondary resource

monitoring service container. Pilot Agent makes the decision of which computing

resources should host the services by sending appropriate instruction to Service Depot.

Pilot Agent is also the component which ensures the availability of the RMS. Pilot

Agent responsible for all the failover and fallback process under Navigator framework.

Apart of that, Pilot Agent also required to perform data synchronization between

primary and secondary resources monitoring services container.

 Pilot Agent is the decision maker whilst Service Depot is the daemon who executes

all the actual operation upon request. Both of them need a communication channel to

talk to each other. In this case, Depot Agent is the proxy between Pilot Agent and

Service Depot

Chapter 3 Methodology and Tools

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

38

3.4.2 Use Case Diagram

Figure 3-4: Use Case Diagram of Navigator

Both primary and secondary Pilot Agents are the decision makers under Navigator

framework. By default, primary and secondary Pilot Agent is identical in term of their

capability, but they will perform appropriate operation according to the role they are

opposed, which is either primary or secondary.

Chapter 3 Methodology and Tools

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

39

Primary Pilot Agent responsible for the setup of primary resource monitoring service

container. After the setup completed, primary Pilot Agent is required to initiates the

setup of secondary service container under Navigator landscape to ensure high-

availability. Under this event primary Pilot Agent need to select the optimal host and

transfer the service container disk image to the selected host. The responsibility of

Pilot Agent is consider done once it initiates the execution of secondary Pilot Agent

on the selected host.

After the secondary Pilot Agent is started to operate, he will perform all the necessary

work to setup the secondary service container. Once the secondary service container

is ready, the high-availability is secured. Both Pilot Agent will check on each other

service container to ensure their availability. If any service container failed, both Pilot

Agent will execute failover and fallback process to ensure the availability of the RMS.

Apart of that, primary Pilot Agent will perform data synchronization between primary

and secondary service container to achieve data consistency between both service

containers.

Chapter 3 Methodology and Tools

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

40

3.4.3 Activity Diagram

Figure 3-5: Activity Diagram of Navigator

Once the primary Pilot Agent is started to execute, it will first backup the service

container disk image it opposed. Then, primary Pilot Agent will initiates the primary

recourse monitoring service container and kick start the RMS in the landscape. Once

the RMS is up and running, primary Pilot Agent will started to find a suitable

Chapter 3 Methodology and Tools

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

41

computing resources under Navigator landscape to host the secondary resource

monitoring container. When a suitable host is found, primary Pilot Agent will send

the backup disk image to the particular host. Once the transfer is done, Primary Pilot

Agent will then kicks start secondary Pilot Agent at the selected host.

On the selected host, the secondary Pilot Agent will kicks start the service container

but the RMS will remain idle. When the secondary service container up and running,

primary Pilot Agent will periodically check on the secondary service container’s

availability status and data synchronization will be performed by primary Pilot Agent

to ensure the data consistency between primary and secondary service container. Also,

at the same, secondary Pilot Agent will periodically check on primary service

container’s availability to ensure the RMS is running fine.

If the secondary service container is not available in the landscape, this even will be

detected by primary Pilot Agent and it will perform failover process of the failure of

secondary service container. Primary Pilot Agent will find another suitable computing

resources to hose the secondary service container. The process is identical to previous

secondary service container setup.

In contrary, if the primary service container is failed, secondary Pilot Agent will

resolve the IP address of the secondary service container to be identical to primary

service container. At the same time the RMS will be started. Once the failover is

completed, the RMS will be again available and the process is hidden from user. Once

the secondary resource monitoring container has completely took up the role of

primary service container, secondary Pilot Agent will then take up the role of primary

Pilot Agent and execute all the responsibility fall under primary Pilot Agent.

Chapter 3 Methodology and Tools

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

42

3.4.4 Sequence Diagram

Figure 3-6: Sequence Diagram of Navigator

Chapter 3 Methodology and Tools

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

43

Figure 3-6 depicted the interaction between each of the component inside Navigator

framework. When the primary Pilot Agent is started, it will first backup the service container

image. Then, via Depot Agent, it will request for starting the primary resource monitoring

service container on the computing resource where it reside on. Once the resource monitoring

is up and running, primary Pilot Agent will start to setup the secondary service container.

Through Depot Agent, primary Pilot Agent will able to retrieve a list of available computing

resource’s IP address. From the list, primary Pilot Agent will one by one request the upTime

information directly from the particular computing resource and select the most suitable

candidate to host the secondary resource monitoring service container.

Once suitable candidate is found, primary Pilot Agent will then transfer the disk image to the

selected candidate and kicks start the secondary Pilot Agent. Again, the secondary Pilot

Agent will back up the disk image before it starts the secondary service container via Service

Depot. The high-availability setup is considers done at the moment of both primary and

secondary service container is up and running at the same time.

Primary and secondary Pilot Agent continues to secure availability of the RMS by cross-

check on each other service container’s availability status. If any service container is failed,

corresponding Pilot Agent will initiate the failover process to ensure the availability of

recourse monitoring services.

Chapter 3 Methodology and Tools

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

44

3.4.5 State Machine Diagram

Figure 3-7: State Machine Diagram of Navigator

The state machine diagram on figure 3-7 shows the behavior of the whole Navigator

framework. The execution begins with starting up the primary Pilot Agent. Once the primary

Pilot Agent is running, it will starts to setup the primary service container together with starts

up the RMS. Once the primary service container is been setup successfully, primary Pilot

Agent will find a suitable candidate to host the secondary service container. When the

suitable candidate is found, primary Pilot Agent will then send the backup disk image to the

candidate and start up the secondary Pilot Agent over there.

When the secondary Pilot Agent is started, it will setup the secondary service container to

achieve high availability through redundancy. Once the secondary service container is up and

running, both primary and secondary Pilot Agent will check on each other service container’s

availability at the same time, primary Pilot Agent will perform data synchronization between

both of the host. Both availability checking and data synchronization will be carried out

periodically. If any service container is failed, the corresponded Pilot Agent will initiate

failover and fallback process to recover the service.

Chapter 3 Methodology and Tools

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

45

3.5 Project I Timeline

Figure 3-8: Grantt Chart & Milestone of Project 1

3.6 Project II Timeline

Figure 3-9: Grantt Chart & Milestone of Project II

Chapter 4 Implementation

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

46

CHAPTER 4 IMPLEMENTATION

The implementation consists of two part. The first part is deploying the monitoring service

and encapsulates it into virtual machine whilst the second part involves the deployment of

Navigator.

4.1 Zabbix

We have choosen Zabbix as our RMS. Zabbix opposed few features which favor to us. First

of all, Zabbix is one of the top-notch open source RMS in the current market. Zabbix can be

fully configure via their web GUI and thus it is easy to use and maintains Zabbix without

complex configuration on OS level. Monitoring process of Zabbix is straightforward. User

only required to install an agent in monitored host, include the monitored host via Zabbix

GUI and the monitoring process will begin. One of the crucial design with Zabbix is Zabbix

stores all the historical data and configuration in database, this brought great advantages to us

in term of setting up primary and secondary monitoring services synchronization. Unlike

Zabbix, other RMS for instance Icinga and Nagios, the configuration involve modify config

file at OS level and all the config file is store text file separately. It is hard to perform the

synchronization and consistency is harder to maintain since the config file might located in

different place. In this case, Zabbix solved this issues by store all the configuration together

with historical data in a centralized database.

Back to Navigator, we installed Zabbix with all the required dependencies inside a virtual

machine. The OS chosen is CentOS 6.5. Also, we installed Zabbix agent in the host we which

to monitor and added all the host into the monitoring scope via Zabbix Web interface. The

services container is considered done at this moment. Since the service container is a virtual

machine, it will be given a static IP address and hence user can login via the IP address. A

note here is, this work presents a high-availability framework for RMS, and service container

can consider as black box which able to perform monitoring. What application is installed in

the service container will not affect the performance of high-availability framework.

Chapter 4 Implementation

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

47

Figure 4-1: Screenshot of Zabbix Monitoring Page

4.2 Navigator Implementation

In navigator, every single hardware resources represent a potential candidate to host the

dynamic services container. To bring hardware resources into Navigator, we need to install

Depot Agent and Service Depot to manage and coordinate the local hardware resource

allocation on each of the instances we which to include in Navigator scope. To start the

monitoring services for the very first time, user required to choose a host randomly and place

the service container which configure previously into that particular host together with Pilot

Agent, and finally, a high availability RMS will be running under Navigator framework.

Chapter 4 Implementation

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

48

4.3 High-Availability

Once the RMS is initiated, the Pilot Agent will start to look for a potential candidate to host

the secondary monitoring service container. Pilot Agent asks the local Service Depot through

Depot Agent to find out who is the best candidate of hosting the secondary services across the

network. After the Service Depot received the message, it will broadcast a message to other

potential candidates in the network to retrieve all the resources up time information. From

there, the local service depot will find out the best candidate based on the longest uptime and

respond back to Pilot Agent.

While Pilot Agent knows who the best candidate in the network is, it will initiate the process

of creating a secondary monitoring services container. Pilot Agent will send a pre-backup

service container to the secondary monitoring services container together with a Pilot Agent

to the candidate via Secure Copy. After all the transfer is done, the primary Pilot Agent will

start up the secondary Pilot Agent at the candidate itself. Once the Secondary Pilot Agent is

started up, it will start to manage the secondary monitoring services container and eventually

automate all the failover and fallback process if there is any failure happens on the primary

monitoring services. In order to ensure the consistency between both primary and secondary

monitoring service container, primary Pilot Agent will periodically backup the database to

secondary service container. As mentioned before, all the configuration and historical data is

stored under a database, backing up database is sufficient to ensure the consistency between

both service containers. At this moment, monitoring services is conducted from primary

services container and secondary services container will stay idle. In this case, an automated

high availability setup is done. Primary and secondary Pilot Agent will periodically check on

each other availability to ensure both primary and secondary services container is up and

running fine.

4.4 Failover and Fallback

If the primary services container failed, for instance a hardware shut down on where the

primary service container hosted, the secondary pilot agent will initiate the failover which

involve the step listed as below:

Chapter 4 Implementation

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

49

1. Secondary Pilot Agent will take up the role to become Primary Pilot Agent. It will

change the IP address of the secondary service container on-the-fly to become the

primary services container.

2. Pilot Agent will start up the Monitoring Services in the services container and ensure

the service is started to perform the monitoring on the network.

3. Pilot Agent started to find a suitable candidate to host the secondary services

container and the process will be same as what mentioned is section 3.1

In contrary, if the secondary services container fails, the primary Pilot Agent will again find

another suitable candidate to host the secondary services container.

We designed all the agents in a way there are identical but have the ability to taking up

different role. For instance Pilot Agent has two different role which is primary and secondary

according to what services container they are governing on. By doing so, we improved the

scalability of the high availability framework. Since a single Pilot Agent can take up any role

while necessary, for instance once failure detected, the secondary Pilot Agent will take up

primary role and continue to maintain the high availability, we can scale the high availability

to withstand more failure by just utilize the existing resources own in the network. Let said

we have 5 active hosts under Navigator system, the monitoring service can at least withstand

4 times of failure until the 5th workstation is failed. All the failover and fallback process is

automated via the coordination of all agents. Complex configuration and fallback process is

omitted.

4.5 Communication

In order to coordinate between agents under the Navigator framework, agents need to talk to

each other constantly and so with service containers. There are two type of communication

technique is being used by Navigator. As mentioned previously Pilot Agent is the decision

maker at the same time Service Depot a daemon to execute the actual operation based on the

Chapter 4 Implementation

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

50

instruction it receive. In this case, Depot Agent is the one whole act as the proxy between this

two agents. In the actual design, Service Depot will only listened to its own Depot Agent,

while Depot Agent will listen to any Pilot Agent request. By doing so, all the message

posting and respond between Pilot Agent and Service Depot will be centralized with Depot

Agent. During any point of time, Depot Agent can handle multiple connection from multiple

Pilot Agent and pass the message to the Service Depot. The communication channel between

Pilot Agent and Depot Agent is through process message passing whereas Pilot Agent and

Service Depot communicate via TCP/IP protocol.

In order to establish connection between Pilot Agent and service container, Secure Shell

(SSH) protocol is being used. SSH allowed secure remote login and other secure network

service over an insecure network(T. Ylonen 2006). By using SSH, Pilot Agent can remotely

login into its service container and perform necessary operation. Besides, SSH File Transfer

Protocol (SFTP) is used and programmed to transfer disk image between hosts within the

network.

4.6 Service Container movement Tracking

Due to the nature of dynamic service placement of the resource monitoring service containers,

there do not have a fix location of where both of the service containers located. Thus in order

to track the physical locations where the service containers are located, a tracking mechanism

is needed. Under Navigator framework, the one who have the highest availability is the

resource monitoring service container itself. So we hosted the tracking mechanism inside the

resource monitoring service container so that user able to know where is the primary and

secondary service container’s physical location at any moment.

The tracking mechanism comprised of two element, database and a PHP web page. Every

time when a service container is started in a new location, Pilot Agent will update the

location information into tracking database and then, the information will be retrieved and

displayed on the PHP web page. User can log into the web page by simply access the IP

address of the primary resource monitoring container to see all the movement for both

primary and secondary service container in the landscape. Figure below showed the

screenshot of the tracking page.

Chapter 4 Implementation

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

51

Figure 4-2: Navigator Service Container Tracking Page

4.7 Data Synchronization

Data synchronization is critical to ensure all the configuration and history monitoring data is

conserved. In order to achieve, when both primary and secondary container are up and

running, the primary Pilot Agent will initiate the data synchronization on the primary service

container. For every 1 minute, the service container will execute mysqldump(Oracle

Corporation 2008)backup to the secondary service container. The process is identical to

movement tracking database. The only different here is instead of every 1 minute, the backup

is only done once when a new location record is inserted to the particular database.

Chapter 5 Testing

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

52

CHAPTER 5 TESTING

In order to evaluate and benchmark the usability and reliability of Navigator, Navigator is

being tested in various perspective under different environment. The testing phase can be

divided in to 2 main parts, which is under controlled environment and a dynamic

environment. Under controlled environment, we focused on investigating the footprint of

Navigator imposed to the network whereas under a dynamic environment, we aim to study

the effectiveness of the high-availability mechanism and the movement of service container

under Navigator framework.

All the absolute value documented in this section is obtain by calculating the average value of

30 sampling, each sampling is taken at 5 seconds interval.

5.1 Navigator Footprint

Four workstation is used to deploy Navigator. Four of them are interconnected under a local

area network and each of them is given a static IP. The specification of the workstation is

shown in the table below.

Operating System 32-bit Windows 7

Process Intel Core 2 Quad Processor Q8400

Memory 3072MB

Table 5-1: Specification of testing workstation

Each of the workstations is installed with Depot Agent and Service Depot. Once the

installation is done, the service container is placed inside one of the workstation and Pilot

Agent is started on the particular machine. The testing and data collection is begun once the

Pilot Agent. Along the testing, multiple failover injection is done to exam behavior the

failover and fallback process and the footprint imposed.

Apart from workstation specification, the specification of the resource monitoring service

container is tabulated in table 5.2.

Chapter 5 Testing

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

53

Operating System CentOS 6.5 64-bit

RMS used Zabbix

Number of process being assigned 1

Amount of memory being assigned 1G

Size of the disk image 1.25G

Hypervisor VMware Player

Type of network connection Bridged Connection

Table 5-2: specification of Service Container

5.1.1 Agents Resource Consumption

The Resource Consumption in term of CPU, Memory, Disk and Network I/O is recorded and

tabulated in table 5.3.

Name CPU Usage

(in %)

Memory Usage (in MB) Disk I/O

(Kb/sec)

Network

I/O

(Kb/sec)

Private

Bytes

Sharable

Bytes

Working

Set

Pilot Agent < 0.1 23.8 20.9 44.54 0.4 0.9

Service

Depot

< 0.1 9.46 3.86 13.32 < 0.1 <0.1

Table 5-3: Agents Resource Consumption

Depot Agent is not a long run process. It will only being executed when it being called by

Pilot Agent and it will be terminated once the operation is done. Due to this nature, the

resource consumption of Depot Agent is insignificant to the local computing resource and

thus it is not being recorded and documented.

Chapter 5 Testing

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

54

5.1.2 Service Container Resource Consumption

CPU Usage

(in %)

Memory Usage (in MB) Disk I/O

(Kb/sec)
Private Bytes Sharable Bytes Working Set

1.5 20.99 662.7 683 1429.7

Table 5-4: Service Container Resource Consumption

Service container or in another word virtual machine is where the monitoring service is being

hosted. While RMS is running, it constantly logging the monitoring data into database, and

thus the disk I/O of the service container is relatively high.

5.1.3 Network Consumption

A handful of data transfer operations between local or remote hosts within the network is

involved in Navigator mechanism. For instance backing up the disk image and transferring

the disk image to other host. It is worthwhile to examine the network consumption during

those processes.

Operation Network

Utilization

(in %)

Actual

Transfer Rate

(Mb/sec)

Time

Taken(in

Minute)

Transfer disk image to remote host 66% 66 2:34

Database synchronization between

primary and secondary service container

0.1% 0.1 0:11

Table 5-5: Network Consumption between different operations

Chapter 5 Testing

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

55

5.1.4 I/O Consumption

Backup disk image is one of the essential step in data consistency management. Before the

service container is started for execution, a backup copy will be made and for service

placement usage in later time. Figure

Operation Transfer Rate

(Mb/sec)

Time Taken

(in minute)

Backup disk image 96 1.43

Table 5-6: I/O consumption of backup disk image operation

5.1.5 Failover and Fallback

Time taken to complete the failover and fallback process is important as it directly affect the

efficiency and effectiveness of the high-availability framework. Table 5-5 shows the time

taken data for various operations.

Operation Time Taken (in minute)

Failover for primary service

container’s failure

1:09

Failover for secondary service

container’s failure

3.45

Fallback for primary service

container’s failure

5:26

Table 5-7: Time taken of various Failover and fallback process

If the secondary service container is failed, basically the failover process will be the primary

Pilot Agent will required to find another suitable candidate to host the secondary service

container. The Process is consider done once the secondary service container is up and

running. Thus in this case, the failover and fallback process for secondary service container

Chapter 5 Testing

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

56

belongs to same process and thus, there is no data recorded for fallback for secondary service

container’s failure.

Based on the result tabulated in Table 5-7, the failover for secondary service container is

much slower compare to failover primary service container. This is so because is secondary

service container’s availability is less important, the primary Pilot Agent will do the checking

every 5 minute compare to checking on primary Service Container which is every 5 sec.

5.1.6 Benchmarking

To investigate the performance deterioration of hosting a service container on a workstation,

PassMark Performance Test 7 (PassMark 1998) is used to benchmark the performance of the

workstation under different workload and the performance when hosting a service container.

To benchmark the performance of the pc, PassMark will carry out a series of Performance

Test include CPU Tests, graphics Tests, Disk Tests and Memory Tests.

We used a single-threaded CPU-bound program called FiboPrime to simulate workload.

FiboPrime is a program which identifies prime Fibonacci number. Since the workstation used

is a quad-core machine, by executing one FiboPrime.exe, it will able to simulate 25%

workload. Workload can be increase simply by executing more Fibo.exe at the same time.

For example executing 2 FiboPrim.exe at the same time will simulate 50% workload of CPU.

CPU Utilization PassMark Score

Idle 861.8

25% 823.5

50% 792.7

75% 757.2

Hosting a Service Container 854.3

Table 5-8: PassMark Score with different workload

Chapter 5 Testing

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

57

Figure 5-1: PassMark Overall Score

By referring the data tabulated in Table 5-8 and Figure 5-1, the benchmarking result indicates

that when a particular physical host is hosting a service container, the host’s performance

degradation only around 0.7% as compare to 38% when the host on 25% CPU utilization. It

proved that the service container and the High-Availability framework did not over-consume

the resources of the local physical resources even though the particular host is not dedicated

as a component of the high-availability.

5.2 Overall Service Availability and Service Placement Activity

To further examine the usability of Navigator, we have deployed the Navigator framework

under an ICT teaching laboratory which having 32 interconnected workstation. ICT teaching

laboratory is chosen because every day the workstation is being used by different people.

Power on and off the workstation is very often and the activity is very random. Under such

environment, we can exam the survivability of the RMS under Navigator framework and to

what extend Navigator can secure the service availability

700

720

740

760

780

800

820

840

860

880

0% 25% 50% 75% Hosting Service
Container

PassMark Overall Score

PassMark Overall Score

Chapter 5 Testing

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

58

5.2.1 Summary of Experimental Result

We deployed both Depot Agent and Service Depot on 32 computers. We deployed the

service container at one of the computer randomly and the experiment is started with

execution of the Primary Pilot Agent. The experiment has been carry out for 12 days in total.

However, we faced some constraints during this experiment and one of it is the policy of the

ICT teaching laboratory is all the computers will be turned off at the end of the day which is

6pm. Thus in the experimental result, the longest period of the RMS can survive is until the

end of the day. The detail of Navigator activities at each of the day is documented in

Appendix A.

Generally, the experimental result is not as expected. There is very little movement of

Navigator and so with the failover process. Most of the day, primary and secondary service

container will survive until end of the day when all the computers being turn off. We able to

record two failover activities for primary service container however we can’t capture any

failover for secondary service container. Apart of that, the resource monitoring is failed once

during mid of the day when both the computer is being shut down at about the same time.

This indicates that the failover process is still not fast enough to cover immediate failure from

primary to secondary service container.

Due to lack of informative data is being collected, there is no conclusion can be made can be

make regarding to the usability and reliability of the Navigator prototype. However, since

there is a case that RMS failed to perform failover during the mid of the day, it means that the

Navigator is still not reliable enough to be use in production. One of the critical issue which

led to failure of RMS is the process of data synchronization, backup and transfer keep very

long time and its result in the RMS can’t resist to consecutive failure in short interval. Hence,

further improvement and optimization need to be done in order to improve the usability and

reliability of the system.

Chapter 6 Project Review

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

59

CHAPTER 6 PROJECT REVIEW

In this project, a novel Automated High-Availability Resource Monitoring Framework is

being devised and developed. In this chapter, the project will be reviewed in different

perspective including strength and weakness opposed by the proposed solution. In later

section, discussion will be done on identifying potential improvements and future works of

the project.

6.1 System Review

6.1.1 Self-Management

The essence of autonomic computing systems is self-management, the intent of which is to

free system administrators from the details of system operation and maintenance and to

provide user with a machine that runs at peak performance 24/7. (Kephart and Chess 2003, p.

41–50) Align with this motivation, Navigator framework automated most of the configuration

and maintenance operation assures the availability of the RMS with the cooperation between

three agents: Depot Agent, Service Depot and Pilot Agent.

Most of the conventional High-Availability technique lack of portability due the problem of

there is always two different set of configuration for primary and secondary services.

However, it is difficult to construct a set of configuration for both primary and secondary

service simply because primary and secondary their role is different. One should remain idle

while another is active. Hence, in order to improve the scalability of the High-Availability

framework, all different set of configuration is encapsulate into Pilot Agent. Pilot Agent will

execute appropriate configuration based on which service container it is responsible to.

This is done by ping the IP address the primary and secondary service container. If primary is

not exist in the landscape yet, Pilot Agent will take up the role of primary Pilot Agent.

Similarly, if primary service container is exist while secondary service container is not, the

Pilot Agent will become secondary. Basically Pilot Agent will always be aware which role it

should take up in the framework. Portability is improved with such mechanism without the

need of any human intervention.

Chapter 6 Project Review

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

60

6.1.2 Service Encapsulation

Encapsulate the whole RMS indeed give us much advantage on portability of the service.

Under Navigator framework, Pilot Agent can moves the disk images to anywhere and just

start up the service from there. The dependency on dedicated machine is greatly reduced in

this case. However, the size of disk image produced often very huge. For instance in this

project, the disk image produced is 1.2G and the size is growing along with the growth of

database size which reside inside the virtual machine. This situation imposed a threat to

Navigator framework, if the size of virtual machine is too large, it will directly affect the

transfer time and backup time of the disk image. If the disk image is too large, the critical

period before fallback is completed will become unreasonably wrong.

6.1.3 Data Synchronization

Similar with conventional high-availability configuration problem, data synchronization is

often required two different set up for secondary and primary. In order to eliminate such

limitation, we decided to use mysqldump to back up all the configuration and historical data

to the secondary service container periodically. The data consistency is still maintained in this

way however the process can be intrusive if the database is growing bigger in term of size.

One of the possible solution is to only backup the configuration data. But the tradeoff here

will be losing the historical data which is often intolerable to user.

6.1.4 Failover and Fallback

The experimental result in Chapter 5 has proved Navigator able to handle multiple hardware

failure with about 10sec downtime. This is so because once the Pilot Agent can’t ping the

service container, failover process will be initiated immediately. This approach is efficient for

hardware failure, however this is not so with network failure. Image if the network is not

available, Pilot Agent will not able to ping service container even though the service

container is up and running. If the Pilot Agent initiate another instance of service container at

Chapter 6 Project Review

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

61

this moment, there will be duplicate either primary of secondary service container inside the

network.

6.1.5 Awareness

Due to the lack of communication between Pilot Agent and Service Depot, Service Depot

have no idea there is a service container reside under it local resource. Service Depot should

be aware if a service container is running on its own local resource. If let says the local

resources is overloaded, at least the Service Depot is aware and proceed with negotiation with

Pilot Agent to migrate the resource to any other vacant resources.

 Besides, Pilot Agent resolves the IP address of secondary service container to become the

primary IP address during failover. This approach is not robust as changing IP on-the-fly is

only meant for temporary purpose. The IP might be inaccessible after a long duration. The

primary Pilot Agent should be aware of this and carry appropriate step to handle such error.

6.2 Future Work

6.2.1 Data Management

The size of database is growing over time. Thus the idea of encapsulate the RMS together

with database is not feasible as the size of database directly affect the dynamic service

placement performance. Thus in future, the historical data should be managed in a distributed

fashion. One of the option here is Hadoop(Apache Software Foundation. 2005). Hadoop is a

framework that allows for the distributed processing of large data set across clusters of

Computer. Rather rely on hardware to deliver high-availability, Hadoop is designed to detect

and handle failures at the application layer. These features are similar to Navigator

framework, thus Navigator can be integrated with Hadoop, allows Hadoop to do the data

management and Navigator remains on safeguarding the availability of the RMS.

Chapter 6 Project Review

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

62

6.2.2 Service Encapsulation

It is efficient to encapsulate the RMS into a virtual machine since it able to eliminate almost

all the dependency of the service to hardware. However this technique is prone to few

problem which mentioned in section 6.1.2. In the future, we should try on other approach of

service encapsulation like Operating-system level virtualization. OS level virtualization

produce lighter service container but the challenge here will be how to solve the dependency

of OS level virtualization to the kernel dependency.

We can install multiple identical RMS under one landscape. We can configure each of RMS

to monitor different host or different metrics under the landscape. So at the end of the day,

the component that differentiates these RMS is the set of configuration. An approach we used

here is, instead of encapsulate the service into a container together with the configuration, we

can encapsulate the configuration and migrate it when it is necessary. The potential problem

of this mechanism is how exactly the RMS load the configuration. If the configurations need

to be pre-loaded, then we will be facing difficulty to migrate the configuration only.

6.2.3 Scalability of High-Availability

Although Navigator framework able to withstand unlimited failure as long as there is vacant

computing resource to host the primary and service container, however there is critical time

where the service cannot be failed. Although the critical time is short, but it still posting

threat to the RMS. Especially if the RMS is deployed under a very large scale computing

system which have high failure rate.

In large scale computing system, multiple redundancy is justifiable and thus, Navigator

framework can be improved in a way that allow user to create more redundancy for failover.

If there is at least two redundancy is standby for failover, basically the critical time will be

greatly reduce.

Chapter 6 Project Review

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

63

6.2.4 Failover

As mentioned in section 6.1.4, current failover process is not robust. Instead of hiding the

failover process to the other node in the network, Navigator can choose to propagate the

failover notification to all the nodes in the network. In this case, if all the nodes is aware

about the failover, there will be no failure of failover since everybody is aware of it and

everybody will refer the new service container as the primary service container. For instance,

we broadcast a message to every single node in the network about the event. If broadcasting

is intrusive, we can use protocol such as Peer-to-Peer protocol to achieve the message

propagation to all the nodes.

6.2.5 Navigator Agents

To achieve seamless automation, all the Navigator agents is ought running 24/7 to manage

the Navigator framework. However, for the current design, all agents only able to handle

failure of RMS but not error which also often occur in computing system and also to the

agents itself. For instance, if the agents encounter error, it might terminate itself and will not

have self-healing process will be executed. Thus, Navigator agents need to have more sense

of “cognitive” in order to handle various kind of failure and error.

6.2.6 RMS

We used Zabbix as our RMS so that we do not need to reinvent the RMS. Unfortunately, very

often, due to Zabbix is not dedicated to use under Navigator framework, we face a numbers

of obstacles to realize the Navigator architecture. For example, to scale Zabbix, we have to

host Zabbix in a better hardware specification environment. This issue will cause the dynamic

service placement process become more challenging as the mechanism need to find an

optimal host for Zabbix to reside.

The fact here is Zabbix operates under a client-server architecture. Zabbix’s performance can

be deteriorate if too much movement involved. Thus, in future we have to design a

distributed RMS which do not rely on client-service architecture and integrate it into

Navigator framework.

Chapter 6 Project Review

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

64

6.2.7 Optimal Service placement

Navigator uses the up time of the computing resource as the indicator on selecting candidate

to host the service container. But up time alone is not enough to identify the best candidate to

host the service container. In future, different algorithm which taking account of different

indicator or even user behavior can be used to analyze and determine the optimal candidate to

host the RMS.

Bibliography

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

65

BIBLIOGRAPHY

Apache Software Foundation. 2005, Hadoop, viewed 5 April, 2014,

<http://www.freebsddiary.org/jail-6.php>.

Clark, C, Fraser, K, Hand, S, Hansen, JG, Jul, E, Limpach, C, Pratt, I and Warfield, A 2005,

Live migration of virtual machines, Proceedings of the 2nd conference on Symposium

on Networked Systems Design & Implementation-Volume 2, pp. 273–286.

Docker Inc. n.d., Homepage - Docker: the Linux container engine, viewed 5 April, 2014,

<https://www.docker.io/>.

DVL Software Ltd. n.d., The FreeBSD Diary -- Jails under FreeBSD 6, viewed 5 April, 2014,

<http://www.freebsddiary.org/jail-6.php>.

Icinga 2009, Home - Icinga: Open Source Monitoring, viewed 29 May, 2013,

<https://www.icinga.org/>.

Kephart, JO and Chess, DM 2003, The vision of autonomic computing, Computer, 36, (1), pp.

41–50.

Li, Y, Li, W and Jiang, C 2010, A Survey of Virtual Machine System: Current Technology

and Future Trends, IEEE, pp. 332–336.

linuxcontainers.org 2014, Linux Container, linuxcontainers.org, viewed 5 April, 2014,

<http://www.solarwinds.com/>.

LogicMonitor 2008, Network Monitoring, SNMP monitoring software, Server Monitoring |

LogicMonitor, viewed 30 June, 2013, <http://www.logicmonitor.com/>.

Massie, ML, Chun, BN and Culler, DE 2004, The ganglia distributed monitoring system:

design, implementation, and experience, Parallel Computing, 30, (7), pp. 817–840.

Monitis.com 2006, Network & IT Systems Monitoring | Monitis - Monitor Everything,

viewed 21 February, 2014, <http://www.monitis.com/>.

Bibliography

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

66

Nagios 2002, Nagios - The Industry Standard in IT Infrastructure Monitoring, viewed 29

May, 2013, <http://www.nagios.org/>.

Opsview Ltd. 2014, Opsview | Enterprise IT Monitoring for Networks, Applications, Virtual

Servers & the Cloud, viewed 5 April, 2014, <http://www.opsview.com/>.

OpvenVZ.org 2005, OpenVZ Linux Containers Wiki, viewed 5 April, 2014,

<http://openvz.org/Main_Page>.

Oracle Corporation 2008, MySQL :: MySQL 5.1 Reference Manual :: 4.5.4 mysqldump — A

Database Backup Program, viewed 5 April, 2014,

<https://dev.mysql.com/doc/refman/5.1/en/mysqldump.html>.

PassMark 1998, PassMark Software - PC Benchmark and Test Software, viewed 5 April,

2014, <http://www.passmark.com/index.html>.

Rackspace, US Inc 2014, Technical Details of Cloud Monitoring, viewed 21 February, 2014,

<http://www.rackspace.com/cloud/monitoring/techdetails/>.

Van Renesse, R, Birman, KP and Vogels, W 2003, Astrolabe: A robust and scalable

technology for distributed system monitoring, management, and data mining, ACM

Transactions on Computer Systems (TOCS), 21, (2), pp. 164–206.

SolarWinds 2003, Solarwinds: The Power to Manage IT, viewed 5 April, 2014,

<http://www.solarwinds.com/>.

T. Ylonen 2006, RFC 4251 - The Secure Shell (SSH) Protocol Architecture, viewed 29

March, 2014, <http://tools.ietf.org/html/rfc4251>.

The OpenNMS Group Inc. 2002, Get OpenNMS « The OpenNMS Project, viewed 21

February, 2014, <http://www.opennms.org/get-opennms/>.

Tucker, A and Comay, D 2004, Solaris Zones: Operating System Support for Server

Consolidation., Virtual Machine Research and Technology Symposium.

Bibliography

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

67

Zabbix 2001, Homepage of Zabbix :: An Enterprise-Class Open Source Distributed

Monitoring Solution, viewed 29 June, 2013, <http://www.zabbix.com/>.

Zabbix.org 2014, Docs/howto/high availability - Zabbix.org, viewed 9 April, 2014,

<https://www.zabbix.org/wiki/Docs/howto/high_availability#Successful_failover>.

Zenoss, Inc. 2005, Transforming IT Operations | Zenoss, viewed 21 February, 2014,

<http://www.zenoss.com/>.

Appendix

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

A-1

APPENDIX A

◄ Feb 2014 ~ March 2014 ~ Apr 2014 ►

Sun Mon Tue Wed Thu Fri Sat

 1

2

3

4

5

6

7

8

9

10

11

12

13

14

Service is up and

experiment is

started

15

Service is up

16

Service is up

17

Service is up until

the end of day

18

Service is up until

the end of day

19

x

20

Service is up until

about 1pm and the

resource

monitoring is

unavailable

anymore

21

x

22

x

23

x

24

x

25

x

26

Service is up until

the end of day

27

Service is up until

the end of day

28

x

29

x

30

x

31

Service is up until

the end of day

Notes:

X indicates no experiment is being carried out.

http://www.wincalendar.com/February-Calendar/February-2014-Calendar.html
http://www.wincalendar.com/April-Calendar/April-2014-Calendar.html

Appendix

Bachelor of Computer Science (HONS)

Faculty of Information and Communication Technology (Perak Campus), UTAR

A-2

◄ Mar 2014 ~ April 2014 ~ May 2014 ►

Sun Mon Tue Wed Thu Fri Sat

 1

Failover once

(failover after

primary service

container is

unavailable and

service is up until

the end of day)

2

Service is up until

the end of day

3

Failover once

(failover after

primary service

container is

unavailable and

service is up until

the end of day)

4

Service is up until

the end of day

and experiment is

stop at the same

day

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Notes:

http://www.wincalendar.com/March-Calendar/March-2014-Calendar.html
http://www.wincalendar.com/May-Calendar/May-2014-Calendar.html

