

MOBILE PHONE CONTROLLED ROBOT-I

ANDY BOON TEEN YEN

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Bachelor of Engineering (Hons) Electrical and Electronic Engineering

Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

April 2011

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it

has not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature : _________________________

Name : _________________________

ID No. : _________________________

Date : _________________________

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “MOBILE PHONE CONTROLLED

ROBOT-I” was prepared by ANDY BOON TEEN YEN has met the required

standard for submission in partial fulfilment of the requirements for the award of

Bachelor of Engineering (Hons) Electrical and Electronic Engineering at Universiti

Tunku Abdul Rahman.

Approved by,

Signature : _________________________

Supervisor : Dr. Lo Fook Loong

Date : _________________________

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of University Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2011, Andy Boon Teen Yen. All right reserved.

v

ACKNOWLEDGEMENTS

I feel profound pleasure in bringing out this report for which I have to learn from

different view of programming and use it to interface with hardware. I would like to

thank everyone whom we had long discussion and without which it would not have

been possible. First of all, I must express my gratitude to my respected research

supervisor, Dr. Lo Fook Loong for his invaluable advice, guidance and his enormous

patience throughout the development of the research.

In addition, I would also like to express my gratitude to my loving parent and

friends who had helped and given me encouragement.

 Last but not the least I expresses my sincere thanks to Universiti Tunku

Abdul Rahman for providing such opportunity for implementing the ideas of my own.

vi

MOBILE PHONE CONTROLLED ROBOT

ABSTRACT

Many scenarios involve a robot to be controlled by a mobile phone. There are many

ways to control a robot using mobile phone, for example IrDA (Infrared Data

Association, WiFi, Mobile packed services (e.g. GPRS/EDGE/UMTS/HSPDA) or

Bluetooth. The interface between the mobile phone and microcontroller is the subject

of considerable discussion. Decision is made to use the Bluetooth to interface with

the robot. Bluetooth is the most popular method to control a robot because it does not

requires the robot to be limited by the length of the cable or in a direct line of sight

with the controller. This project is to optimize a way for image transferring through

Bluetooth while having the ability to control the movement of the robot. The

programming language used is in Java Language. With the completion of this project,

any Bluetooth and Java supported mobile phone will be able to control this robot and

accesses the image taken from the robot. The robot will be small enough to gain

access to a place where human is difficult to enter. Some problems can occur because

of the limitation such as the Bluetooth bandwidth. Two mobile phone will be use to

communicate with each other for data transferring. The mobile phone used will have

IrDA, Bluetooth, camera and Java support on the hardware side for receiving

command and transmitting image to another Bluetooth and Java supported mobile

phone. Most of these mobile phones are only able to connect as slave to a PC using

converter with PC act as a Master using USB cable. This communication is not

available between mobile phone and normal PIC without stack and USB support.

Other method will be use for communication with the robot.

vii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF SYMBOLS / ABBREVIATIONS xii

LIST OF APPENDICES xiii

CHAPTER

1 INTRODUCTION 1

1.1 Motivation for Project 1

1.2 Aims and Objectives 3

1.3 Approaches 4

1.3.1 Bluetooth Communication 4

1.3.2 Camera Manipulation 4

1.3.3 image processing 5

1.4 Why choose Bluetooth? 6

1.4.1 Bluetooth vs Infrared vs 802.11b 6

1.5 Why choose J2ME? 6

1.6 Organization of Report 7

2 LITERATURE REVIEW 8

2.0 Existing J2ME Application and Libraries 8

viii

2.1 Bluetooth Communication 8

2.1.1 BluetoothDemo 9

2.2 OBEX API 10

2.2.1 OBEX API 10

2.3 Camera Manipulation 12

2.3.1 Snapper 13

2.4 Image Processing 14

3 Developing Application for Mobile Phone 15

3.1 Using Java for Mobile Phone Applications 15

3.1.1 Developing a J2ME Application 17

3.2 Developing with Bluetooth Connection 21

3.2.1 Bluetooth Network Topology 21

3.2.2 The Bluetooth Protocol Stack 22

3.2.3 Establishing Network Connection 23

3.2.4 Bluetooth Profiles 24

3.2.5 Bluetooth Security 26

4 Methodology 27

4.1 Establishing Bluetooth Communication 27

4.1.1 Stack Initialization 27

4.1.2 Device Management 28

4.1.3 Device Discovery 28

4.1.4 Service Discovery 29

4.1.5 Service Registration 29

4.1.6 Communication 30

4.1.7 Serial Port Profile Communication Steps 31

4.2 Using Camera in J2ME 33

4.3 Image Processing 34

5 Results and Discussions 35

5.1 Bluetooth Connection 35

5.2 camera Manipulation 37

ix

6 Conclusion and recommendations 39

6.1 Development and Implementation 39

6.2 technology and Problems 39

6.3 Future Improvement 40

REFERENCES 41

APPENDICES 43

x

LIST OF TABLES

 TABLE TITLE PAGE

3.1 Summary for application development for mobile

phones 16

3.2 Comparisons between development options 16

xi

LIST OF FIGURES

 FIGURE TITLE PAGE

2.1 List to be published on Mobile Phone “Server” 9

2.2 Received Image on Mobile Phone “Client” 10

2.3 Waiting for connection using infrared 11

2.4 Connection established Between two devices 11

2.5 Image Received Through OBEX API 12

2.6 Camera Initialized for Image Capturing 13

2.7 Thumbnail of Captured Image 13

3.3 The J2ME Platform 1Error! Bookmark not defined.

3.4 Lifecycle of a MIDlet 19

No table of figures entries found.3.7List to be published on Mobile Phone “Server” 24

5.1 Publish image to be transfer on “Server” 35

5.2 Initialize Bluetooth for “Client” 36

5.3 Load Published Image on “ Client” 36

5.4 Image Capture on “Server” and Image Loaded on

"Client” 37

5.5 White Blank Screen when Start Camera 38

xii

LIST OF SYMBOLS / ABBREVIATIONS

GPRS general packet radio service

EDGE enhanced data rates for GSM evolution

UMTS universal mobile telecommunication system

HSPDA high-speed downlink packet access

USB universal serial bus

RS-232 recommended standard 232

OTG on-the-go

PAN personal area network

OBEX object exchange

L2CAP logical link control and adaptation protocol

RFCOMM radio frequency communication

URL uniform resource locator

JRE Java runtime environment

MMAPI mobile media API

CDC connected device configuration

CLDC connected limited device configuration

SDK software development kit

“Server” Mobile Phone which initiate a server for connection

„Client” Mobile Phone which connect to a server

xiii

LIST OF APPENDICES

 APPENDIX TITLE PAGE

A MIDlet (J2ME) 43

B Bluetooth Service Searcher (J2ME) 46

C Bluetooth Image Server (J2ME) 49

D GUI Image Server (J2ME) 59

E Bluetooth Image Client (J2ME) 67

F GUI Image Server (J2ME) 79

CHAPTER 1

1 INTRODUCTION

This chapter will describes the general overview of the final year project and the

contents to be included are the primary motivation and purpose, the components and

device involved and the organization of this report.

1.1 Motivation for Project

The propeller-driven radio controlled boat built by Nikola Tesla in 1898, is the

original prototype of all modern-day uninhabited aerial vehicles and precision guided

weapon.
[1]

 It is the beginning of all remotely controlled devices. All remotely

operated devices powered by lead-acid batteries and an electric drive motor all

receiving instruction from a wireless remote-control transmitter.

Nowadays, many applications have been developed using this kind of

approaches for all kind of uses. Bluetooth had become mature from the past few

years and it is used as the mechanism to connect more than two Bluetooth supported

devices. It will not restrict the direction between devices and can be controlled in any

places within the range.

A mobile phone controlled robot is defined as a robot in which react to the

instruction given from a mobile phone. It does not restrict the motion but it will be

limited by the distance for the Bluetooth connection. The robot will be implemented

2

by a camera that transfer image to the mobile phone in a desired frame per second

rate. Most of the mobile phone is Java supported and the application developed for

the mobile phone will be using Java programming.

A few products had been released for Bluetooth controlled robot. For

example Sony Ericsson released ROB-1, a remote controlled camera that can move

around and controlled by any Bluetooth enabled mobile phone
[2]

. Ecamm Network

also introduces the World‟s first Bluetooth wireless webcam on January 2009
[3]

.

Mobile phone is becoming a device that is owned by mostly everyone and it

plays a very important role in our life. The current mobile phones in the market will

have full colour displays, integrated cameras, fast processor and even dedicated

accelerometer. According to International Data Corporation (IDC) Worldwide

Quarterly Mobile Phone Tracker, the global sales of the mobile phones had grown

17.9% in third quarter 2010 as the result driven by the Smartphone sales. The

Vendors shipped a total of 1.39 billion units on a cumulative worldwide basis in

2010, which is up 18.5% from the 1.17 billion units shipped in 2009
[4]

.

Camera phones are very popular among mobile phone users which include a

large range of age, and it keeps increasing. In addition of taking still images, camera

phones also able to stream video using either the camera on the back for recording or

the camera in the front for video phone calls. Combination of camera and the CPU of

the mobile phones are capable in presenting new interaction techniques and link both

physical and virtual world. With improved image resolution and computing power,

camera phones can do better than just taking photo.

With the camera of mobile phones becoming common, the use of camera

input for anything other than capturing still images or video will have its opportunity

in developing innovative interactive applications. Mobile phones are programmable

by third party developers with access to communication, computing and image

capture capabilities.

3

1.2 Aims and Objectives

The aim of this project is to have robot that can be controlled by a mobile phone with

the image “seen” by the robot projected on the mobile phone. The robot will act as

the vision for mobile phone user in a place that the user cannot get to easily. The

robot will represent the user and hence provides safety to the user.

 This project can be divided into 3 major parts. They are user‟s mobile phone,

interface between microcontroller with mobile phone and the microcontroller. First

part will consists of the user‟s mobile phone; it can be any Bluetooth enabled mobile

phone with Java supported. Java is used as the main programming language for the

mobile phone. The objective is to develop a Java application for this mobile phone to

establish Bluetooth connection and receive image from another device. It will also

include the controlling for the robot. The Java programming will be the main focus in

my project. The optimized way of image transferring will be developed though this

part of the project.

 Second part will be the interfacing between microcontroller and the mobile

phone. The detail will be introduced and discussed in “MOBILE PHONE

CONTROLLED ROBOT-II” report. The microcontroller will decide the movement

of the robot. The microcontroller will only need to control the movement of the robot.

The challenge for this part is the interface between microcontroller and mobile phone.

The microcontroller has to able to establish the communication and retrieved

instruction from the mobile phone.

 When two Java supported mobile phone is used for image transferring, the

data transfer will be easier to decode and transferred across two devices. There is an

advantage when compared to transferring data from a Java programming mobile

phone to C programming microcontroller.

4

1.3 Approaches

There are several classes of application that could be used. In this project, we

will consider mainly on Mobile Media API (JSR-135) and Bluetooth (JSR-82) based

Application: (1) Bluetooth Communication (such as transferring image), (2) Camera

Manipulation (such as capturing image) and (3) Image Processing (such as decoding

and saving image).

1.3.1 Bluetooth Communication

For communication between interfaces of mobile phone with other devices

(such as another mobile phone or PC), Bluetooth is one of the method available. To

use the Bluetooth as the interface method, we will need to write a Java program that

will be able to initialize the Bluetooth communication using one of the Bluetooth

profiles, which are definitions of possible applications and specify general

behaviours. These profiles will parameterize and control the communication for the

Bluetooth. Once complete, we will know how a mobile phone is able to

communicate with other devices using Bluetooth as the method of communication.

Some examples of J2ME Bluetooth applications for mobile phones will be shown

later in this report.

1.3.2 Camera Manipulation

Developer is able to access the camera of the mobile phone with an API called

Mobile Media API (MMAPI)
 [5]

. Simple Java Programming will be created for the

mobile phone to capture photo on request. In the end of the project, the mobile phone

will be able to receive the command through the connection of Bluetooth. In this case,

photo taken by the camera will be save in desired format and prepared to be sent

trough the Bluetooth communication to another mobile phone.

5

1.3.3 Image Processing

The last part will be the image processing as the photo capture by the camera of

mobile phone through MMAPI will not be the desired size and format for sending.

Simple image processing will be developed to save the photo taken by the camera in

desired format and in the right resolution size. The main purpose for this process is to

help in increasing the speed of Bluetooth communication. There is more complex

image processing in compressing the image size without causing the image to be

unclear that involved better computational speed of current mobile phone. It can

greatly increase the Bluetooth transferring rate and with better image resolution, but

it is limited by the CPU speed of the mobile phone. However, the speed can also be

improved by increasing the processing speed of Java program by code optimization.

6

1.4 Why choose Bluetooth?

1.4.1 Bluetooth vs. Infrared vs. 802.11b

Infrared is fairly reliable and its cost is low. The drawbacks of infrared are the receiver

must be align with its sender and the device cannot be send to multiple receivers at the

same time. The advantage is that interference is uncommon and the message is able to

send into desired recipient even if there are many receivers together.

 802.11b protocol is designed for large devices with lots of power and speed such

as laptops and desktops. The speed is relatively higher and the distance can be larger

compared to Bluetooth. Bluetooth is designed for smaller devices like PDAs or mobile

phones. The range is shorter and the power requirement can be reduced.

 Bluetooth does not require keeping track of cables, connectors and connection.

The devices will find each other automatically and start communicating when needed.

Bluetooth can also handle both data and voice and it used frequency hopping which is

the spread spectrum approach that greatly prevents interception of communication. For

application designed in J2ME mobile phone, it is best we choose Bluetooth as our

communication.

1.5 Why use J2ME?

Mobile phones use different operating system for each other. Some of them might be

using platforms and technologies such as Window Mobile
[6]

. Palm OS, Symbian OS,

Macromedia‟s Flash Lite, DoCoMo‟s DoJa or Sun‟s J2ME (Java 2 Micro Edition)
 [9]

. It

is difficult to develop an application with the capability to run across all the different

operating system. However, Java and J2ME are designed to provide a platform

independent development tool.

7

Developing a Mobile Media API and Bluetooth based application that work on

real time on a mobile phone requires a selection of nice techniques. The mobile platform

will be limited by its computation speed and storage capacity. J2ME is one of the most

common platforms for mobile application and games because of its software library that

able to provide high-level user interface features such as lists and checkboxes. This

characteristic enables developers to create better and user-friendly interface for their

application. The applications developed under J2ME are portable between different

operating systems. Therefore, J2ME application is the best way in developing mobile

phone application.

1.6 Organization of Report

The report will include the use of library in Mobile Media API and Bluetooth for mobile

phone and describes several mobile application based on these library. In Chapter 2,

some of the camera phone applications will be reviewed. Chapter 3 gives an overview of

the library structure that we used. In Chapter 4, the details of the algorithms used in

building application for our project will be introduced. As for Chapter 5, experimental

result and trial will be presented. Finally, conclusion for our project and some suggestion

on how to improve the application in the future will be discussed in Chapter 6.

CHAPTER 2

2 LITERATURE REVIEW

In this chapter, existing related application available for mobile phone will be

introduced and reviewed. Although many games and applications have been

developed in the market, only small proportion of them is using the camera input or

Bluetooth. Hence, we will first describe the existing related applications and

libraries, which are developed based on the J2ME platform.

2.0 Existing J2ME Applications and Libraries

There are a few library involving mobile phone that will be used in our project, we

will categorize these into 3 types of applications which described previously

(Bluetooth Communication, Camera Manipulation, Image Processing).

2.1 Bluetooth Communication

In application which involved Bluetooth communication, two Bluetooth enabled

phone will be connected together and exchange data. Most of the multiplayer games

use Bluetooth as the communication method between two or more devices. Using

Bluetooth connection, two or more independent devices will be able to join together

in one field and play independently on their own device. One of the applications

9

which demonstrate the use of Bluetooth is BluetoothDemo application by Sun Java

which is included in Wireless Toolkit 2.2
[12]

.

2.1.1 BluetoothDemo

This application contains a MIDlet that demonstrates the use of JSR-82‟s Bluetooth

API. BluetoothDemo shows the transferring of images between two devices. The

first mobile phone will be called “Server” and it is use to select the image to be

transferred and Bluetooth need to be initialized at the beginning.

2.1 List to be published on Mobile Phone “Server”

On the second mobile phone, it will be called “Client” and the Bluetooth is enabled

at the beginning. Pressing “Find” command will established the Bluetooth

connection and searches for the image that is provided by the first mobile phone. The

image will be load when the user selects the particular image on the second mobile

phone.

10

2.2 Received Image on Mobile Phone “Client”

2.2 OBEX API

Bluetooth communication is better compared to Infrared connection as Bluetooth

does not require the transceiver to point directly for connection. OBEX API is one

of the methods used for transferring data. ObexDemo is also an application that

shows how to transfer image files between devices using the OBEX API. This

demonstration is used with infrared connection. The program used in this

demonstration will be used in our project which will be discussed later.

2.2.1 ObexDemo

One of the device will listens for incoming connections, while the other will attempts

to send the image. The first device is set to receive image and the device will start

waiting for incoming connections.

11

2.3 Waiting for connection using infrared

Second device will set to send image to the first device. When the first device

received the connection, there will be a prompt asking whether to accept the

incoming connection.

2.4 Connection established between two devices

The image sent by the second device will be displayed on the screen of the first

device.

12

2.5 Image received through OBEX API

2.3 Camera Manipulation

To access and control the camera implemented in a mobile phone, Mobile Media

API will be used. MMAPI
[13]

 extends the functionality of the J2ME platform by

providing audio,video and other time-based multimedia support to resource-

constrained devices. With only a simple and easy optional package, it allows Java

developers to gain permission in accessing the native multimedia services available

on the device. The main purpose is based on Connected Limited Device

Configuration (CLDC), but it also designed for supporting devices that based on

Connected Device Configuration (CDC). One of the applications available is called

Snapper.

13

2.3.1 Snapper

This application will be able to identify whether video capture is supported. When

the camera is available, a live video coming from the camera will be displayed on the

screen of the mobile phone.

2.6 Camera is initialized for image capturing

When capture button is pressed, the picture will be taken and snapper will creates a

thumbnail and shows it on the MIDlet‟s main screen. Thumbnail image will be added

to the main screen each time a picture is taken.

2.7 Thumbnail of captured image

14

2.4 Image Processing

In order to transfer the image faster, we need to convert the image capture into

smaller size with acceptable resolution. SavingCapturedImage
[14]

 demonstrate on

how to save the image capture by the camera using MMAPI. SavingCaputuredImage

is basically the same as Snapper which discussed earlier except it includes the

method to save the image while Snapper is only display the thumbnail.

CHAPTER 3

3 Developing Application for Mobile Phone

In this Chapter, we will first introduce Java 2 Micro Edition (J2ME) platform and the

tools that is used for developing the application in J2ME platform. Next, the library

and APIs used will be discussed in a more detail way. In the end of the chapter, we

will describe the algorithms that will be used in our application for this project.

3.1 Using Java for Mobile Phone Applications

The Chart Below shows the summary of various options for application development

for mobile phones. The option will be limited by the mobile phone used in our

project, which are Sony Ericsson k750i and c903i. Therefore, the best choice will be

Java ME.

16

3.1 Summary for application development for mobile phones

There are some advantages in choosing J2ME because J2ME has the largest

availability among the others by a large range and extensive developer community

with lower time for re-implementation and porting. The following charts will show

the relative comparisons between the different development options.

3.2 Comparisons between development options

17

In developing a Java based image transferring application for mobile phones. There

are two important aspects that must be considered:

- J2ME programming

- Connection between two devices

In this section we will review each of these elements first and then describe in detail

a sample J2ME image transferring application that we have developed for a mobile

phone.

3.1.1 Developing a J2ME Application

In order to run Java application on mobile device, J2ME code is necessary. J2ME is a

specification of the Java platform which is focusing on providing a certified

collection of Java APIs for the small, resource-constrained devices such as mobile

phone, PDAs and set-top boxes.

3.2 The J2ME Platform

18

There are configurations, profiles, and optional API packages in J2ME.

Configurations are mainly about the device memory configuration and the minimum

set of APIs used for developing applications to run on a range of devices. J2ME

configuration is divided into Connected Device Configuration (CDC) and Connected

Limited Device Configuration (CLDC).

CDC is normally found on high-end PDAs and other devices more powerful

than mobile phone. It needs a minimum requirement of 512kb of ROM and 256KB

of RAMs as well as some type of network connection. CLDC is more important for

us because of its support on mobile phones and other devices of small size such as

pagers. CLDC requires only 160kb of ROM and 32kb of RAM, a 16-bit processor. It

also has advantage such as low power consumption.

K Virtual Machine (KVM) is the reference implementation of CLDC which

is based on a small JVM. The KVM only includes a subset of the bytecode verifier

and it does not allow native methods to be added at runtime. There are a few versions

of CLDC that have been deployed, CLDC 1.0 (JSR 30) and CLDC 1.1 (JSR 139)

which added floating point data types. A profile with more specific set of APIs that

further target a device is on top of a configuration. The primary focus is on Mobile

Information Device Profile (MIDP) and there are MIDP 1.0 (JSR 37) and MIDP 2.0

(JSR 118). MIDP 2.0 introduces the support on multimedia

(java.microedition.media), game user interface API (java.microedition.lcdui.game),

and many other important features for image transferring application of mobile

phones. The phones available and used on this project will need to support MIDP2.0.

MIDP hardware minimum requirements are as follows:

 • 256KB of ROM for the MIDP API libraries

 • 128KB of RAM for the Java runtime system

 • 8KB of non-volatile writable memory for persistent application data

 • Screen size of 96x54 pixels with 1-bit colour depth (black and white at least)

 • Some input device, either a keypad, keyboard, or touch screen

 • Two-way network of some type (intermittent is expected)

19

Some optional API packages include functionality that will only be supported

on certain devices. Some of the APIs is found in Chapter 2 such as Java APIs for

Bluetooth (JSR 82) and Mobile Media API (JSR 135). Other APIs are Java binding

for OpenGL ES (JSR 239), and Advanced Graphics and User Interface (JSR 209).

There are some APIs which provide access to particular features and functionality.

MIDP applications are normally called MIDlets, the diagram below shows the

lifecycle of a MIDlet.

3.4 Lifecycle of a MIDlet

J2ME is a reduced version of J2SE and therefore the footprint is smaller and it does

not contain classes like swing and awt. The User Interface is based on a succession

of screens and it is not subsets of AWT/Swing. MIDP provides only limited UI

elements which are Form, Alert, Choice and ChoiceGroup, List, StringItem, TextBox,

TextField, DateField, Guage and Ticker. Some simple highlights for describing the

J@ME programming from normal Java programming are:

20

• No floating point in CLDC 1.0, although CLDC 1.1 includes floating point

support.

• No object finalization – mechanism by which objects can clean themselves up

before garbage collection

• No reflection

• No native methods

• No user classloading

• Multithreading similar to J2SE, but no interrupt() method

• The J2ME Math class is a subset of J2SE version, more so with CLDC 1.0 since

there is no floating point support

 • The Runtime and System classes are greatly reduced from J2SE versions

 • CLDC only includes a dozen classes from J2SE‟s java.util package

In terms of the development work for this report, the IDE used was:

 • Java 2 Platform, Standard Edition

 • Eclipse SDK 3.1

 • EclipseME 1.0

 • J2ME Wireless Toolkit (J2ME WTK) 2.2

21

3.2 Developing with Bluetooth Connection

3.2.1 Bluetooth Network Topology

Bluetooth-enabled devices are organized in groups called piconets. One piconet

consists of a master and up to seven active slaves. A master in one piconet can be a

slave in another piconet.

3.5 Piconets

22

3.2.2 The Bluetooth Protocol Stack

The Bluetooth specification is more than 1500 pages long and it contains the

information necessary. The following is the high-level view of the architecture of the

Bluetooth protocol stack:

3.6 Architecture of Bluetooth Protocol Stack

Radio layer is the layer of physical wireless connection. The modulation is

based on fast frequency hopping to avoid interference with other devices that

communicate in the ISM band. There are 79 channels with 1 MHz apart which is

divided from the 2.4GNz frequency band of Bluetooth (from 2.402 to 2.480 GHz).

Bluetooth uses this spread spectrum to hop from one another with up to 1600 times a

second.

Baseband layer is to control and send the data packets over radio link. It

provides transmission channels for both data and voice. Baseband layer maintains

Synchronous Connection-Oriented (SCO) links for voice and Asynchronous

Connectionless (ACL) links for data.

23

Link Manager Protocol (LMP) used the links set by the baseband to establish

connection and manage piconets. Their responsibilities also include authentication

and security services, and monitoring of service quality.

Host Controller Interface (HCI) is the driver interface for the physical bus

that connects these two components. The HCI may not be required as the L2CAP can

be accessed directly by the application.

Logical Link Control and Adaptation Protocol (L2CAP) receive application

data and adapt it to the Bluetooth format. Quality of Service (QoS) parameter is

exchanged at this layer.

3.2.3 Establishing Network Connection

A device will be in standby mode when it is not connected to a piconet. The device

will listens for messages every 1.28 seconds over 32 hop frequencies. It will send our

16 identical page message on 16 hop frequencies when one device wanted to

establish a connection with another. If the slave does not respond to the page

message, the master must precede the page message with an inquiry message.

24

The steps to establish a Bluetooth connection is as the example below:

3.7 Steps for Bluetooth Connection

3.2.4 Bluetooth Profiles

Bluetooth profiles are needed to ensure the devices and applications from different

manufacturers and vendors are able to operate with each other. The profile defines

the role and capabilities for specific types of applications and Bluetooth devices

cannot interact with other device if they have no profile.

25

Below are some examples of the Bluetooth profiles:

 • Generic Access Profile

 • Service Discovery Application and Profile

 • Serial Port Profile

 • LAN Access Profile

 • Synchronization

 The Generic Access profile defines connection procedures, device discovery,

and link management. Besides that, it also defines the procedures related to the use

of different security models and common format requirements for parameters

accessible on the user interface level. All Bluetooth devices must support this profile

as the minimum requirement.

 Service Discovery Application and Profile defines the features and procedure

for an application in the Bluetooth device to discover services registered in other

Bluetooth devices, and retrieves information related to the services.

 Serial Port Profile defines the requirements for Bluetooth devices that need to

set up the connections that emulate serial cables and use the RFCOMM protocol.

 LAN Access Profile defines how Bluetooth devices can access the services of

a LAN using PPP, and shows how PPP mechanism can be used to form a network

consisting of Bluetooth devices.

 Synchronization Profile defines the application requirement for Bluetooth

devices that need to synchronize data on two or more devices.

26

3.2.5 Bluetooth Security

Bluetooth connection provides security in three ways, pseudo-random frequency

hopping, authentication, and encryption. Frequency hops make it difficult to be

intersected. Authentication will allow the user to limit the connectivity to specified

devices. Encryption used secret keys to make data intelligible only to authorized

parties.

All Bluetooth-enabled devices must implement the generic Access Profile

that contains all the Bluetooth protocols and possible devices. This profile defined

three security modes:

 Mode 1 is an insecure mode of operation as there is no security procedures

initiated. Mode 2 is known as service-level enforced security. Devices operating in

this mode will not have security procedures until the channel is established. This

mode will also enable application to have different access policies and run them in

parallel. Mode 3 is also known as link-level enforced security. Security procedures

will be initiated before the link setup is complete.

CHAPTER 4

4 METHODOLOGY

In this chapter, we focus on the algorithms used in our image transferring application.

4.1 Establishing Bluetooth Communication

First we need to develop the connection for Bluetooth communication. The anatomy

of Bluetooth application has five parts and they are stack initialization, device

management, device discovery, service discovery, and communication.

4.1.1 Stack Initialization

In order to control the Bluetooth device, the Bluetooth stack that is responsible is

needed to be initialized. For J2ME programming, the Bluetooth specification (JSR 82)

is prepared and ready to be used anytime. Hence the initialization will be used

directly.

4.1.2 Device Management

Two classes are introduced in this Java Bluetooth APIs, LocalDevice and

RemoteDevice. LocalDevice is from javax.bluetooth.DeviceClass class and it is used

to retrieve the device‟s type and the kinds of services it offers. RemoteDevice class

provides methods for a device within the range to retrieve information about the

Bluetooth address and name of the device. The following code snippet is used.

4.1.3 Device Discovery

Wireless devices gain access to each other by using a mechanism which allows them

to find each other. The core Bluetooth API‟s DiscoveryAgent class and

DiscoveryListener interface provide the discovery services.

 The DiscoveryAgent.startInquiry method will places the device into an

inquiry mode and DiscoveryListener.deviceDiscovered is called each time an inquiry

finds a device. DisvcoveryListener.inquiryCompleted is executed when the inquiry is

completed or cancelled. The code snippet is as follows:

 // create/get a local device

 localDevice= LocalDevice.getLocalDevice();

// retrieve the discovery agent

DiscoveryAgent agent = local.getDiscoveryAgent();

4.1.4 Service Discovery

When at least one remote device is discovered, the local device will begin to search

for available services. DiscoverAgent also provides methods to discover services on

Bluetooth device, and initiate service-discovery transaction.

4.1.5 Service Registration

The service of a device is needed to be registered on the Bluetooth server first before

it can be discovered. The server will be responsible for:

 • Creating a service record that describes the service offered

 • Adding the service record to the server‟s Service Discovery DataBase (SDDB),

 so that it is visible and available to potential clients

 • Registering the Bluetooth security measures associated with the service

 (enforced for connections with clients)

 • Accepting connection for clients

 • Updating the service record in the SDDB whenever the service‟s attributes

 change

 • Removing or disabling the service record in the SDDB when the service is no

 longer available

To create new service record, invoke Connector.open with a server connection URL

argument, and cast the result to a StreamConnectionNotifier.

To obtain the service record created by server device:

StreamConnectionNotifier service =

(StreamConnectionNotifier) Connector.open(“someURL”);

ServiceRecord sr = local.getRecord(service);

To prepare the service for client connection:

The service.close() is used when the server is ready to exit, close the connection and

remove the service record.

4.1.6 Communication

Java APIs for Bluetooth provide mechanisms that use RFCOMM, L2CAP or OBEX

as its protocol to allow connections to any services between local device and remote

device. OBEX protocol is implemented independently in the core Bluetooth API

because it can be used for many different transmission media such as wired, infrared

or Bluetooth radio.

 In our application we will use the RFCOMM protocol, which is the layer over

L2CAP protocol and it emulates and RS-232 serial connection. The Serial Port

Profile (SPP) will provide a stream-based interface to the RFCOMM protocol. The

limitations of this protocol are:

 • Two devices can share only one RFCOMM session at a time

 • Up to 60 logical serial connection can be multiplexed over this session

 • Single device can have at most 30 active RFCOMM services

 • A device can support only one client connection at a time

StreamConnection connection =

(StreamConnection) service.acceptAndOpen();

4.1.7 Serial Port Profile Communication Steps

I. Construct a URL that indicates how to connect to the service and store

it in the service record

 II. Make the service record available to the client

 III. Accept a connection from the client

 IV. Send and receive data to and from the client

The following code is to set up the RFCOMM connection to a server by the clients

I. Initiate a service discovery to retrieve the service record

II. Construct a connection URL using the service record

III. Open a connection to the server

IV. Send and receive data to and from the server

// assuming the service UID has been retrieved

String serviceURL =

 "btspp://localhost:"+serviceUID.toString());

// more explicitly:

String ServiceURL =

 "btspp://localhost:10203040607040A1B1C1DE100;name=SPP

 Server1";

try {

 // create a server connection

 StreamConnectionNotifier notifier =

 (StreamConnectionNotifier)

Connector.open(serviceURL);

 // accept client connections

 StreamConnection connection =

notifier.acceptAndOpen();

 // prepare to send/receive data

 byte buffer[] = new byte[100];

 String msg = "hello there, client";

 InputStream is = connection.openInputStream();

 OutputStream os = connection.openOutputStream();

 // send data to the client

 os.write(msg.getBytes());

 // read data from client

 is.read(buffer);

 connection.close();

} catch(IOException e) {

 e.printStackTrace();

}

At this point, the Bluetooth connection is established and it is ready to share the

information.

// (assuming we have the service record)

// use record to retrieve a connection URL

String url =

 record.getConnectionURL(

 record.NOAUTHENTICATE_NOENCRYPT, false);

// open a connection to the server

StreamConnection connection =

 (StreamConnection) Connector.open(url);

// Send/receive data

try {

 byte buffer[] = new byte[100];

 String msg = "hello there, server";

 InputStream is = connection.openInputStream();

 OutputStream os = connection.openOutputStream();

 // send data to the server

 os.write(msg.getBytes);

 // read data from the server

 is.read(buffer);

 connection.close();

} catch(IOException e) {

 e.printStackTrace();

}

33

4.2 Using Camera in J2ME

Next we need to discuss the processing of the mobile phone camera input using

methods in J2ME. Mobile Media API (MMAPI) will be used in order to use the

camera function in J2ME. “The MMAPI extends the functionality of the J2ME

platform by providing audio, video and other time-based multimedia support to

resource-constrained devices.

As a simple and lightweight optional package, it allows Java developers to

gain access to native multimedia services available on a given device.”[42]. MMAPI

will create its Player for the camera using its locator “capture://video”. The

application can use the VideoControl to display a viewfinder on the screen and use

getsnapshot function to capture the photo. The default format for the image captured

will be PNG and it might also allow other supported format to be selected.

The code above is showing how the camera of a phone is utilized and output is

displayed on the screen. Camera is initialized with Manager.createPlayer

(“capture://video”) and it implements the PlayeListener interface. The player will be

ready to receive call backs by using the realize() method. The initDisplayMode()

method is used to initialize the video mode that shows the video in desired way.

There are two predefined values for its argument, USE_GUI_PRIMITIVE

and USE_DIRECT_VIDEO. The USE_DIRECT VIDEO mode will be used in our

application. The video will be directly rendered onto the canvas with this mode. The

location of the video rendered can be set by the setDisplayLocation() method and it

private VideoControl vc;

player = Manager.createPlayer("capture://video");

player.realize();

vc = (VideoControl)player.getControl("VideoControl");

vc.initDisplayMode(vc.USE_DIRECT_VIDEO, this);

vc.setVisible(true);

vc.setDisplaySize(128, 128);

player.start();

34

is (0,0) by default. The size and the location of the video with respect to the canvas

where it displayed can be set bu the VideoControl. In order for the video to be visible,

we need to call setVisible(true). Finally the video is render by using the start()

method.

4.3 Image Processing

The image saved by the method above will be used directly by transferring the image

captured to the function of image transferring. The image transferring function is

using byte[] as the transferring format and the image captured is also in byte[] format.

Hence, the image captured can be passed to transferring function and be ready to be

sent.

CHAPTER 5

5 RESULTS AND DISCUSSIONS

In this chapter, several applications and experiments that used for our algorithms will

be discussed.

5.1 Bluetooth Connection

Existing application “bluetoothDemo” will be used to establish the Bluetooth

connection between two mobile phones using Java programming.

5.1 Publish image to be transfer on “Server”

The Bluetooth Connection will be tested using two mobile phones, a “Server” and a

“Client”. In this experiment, “The leaf (jpg)” will be used as example. Moreover the

image is replaced with a photo taken using the camera earlier.

36

On the “client” mobile phone, after Bluetooth connection established, the image can

be load. Hence the first part for Bluetooth connection will be finish.

5.2 Initialize Bluetooth for “Client”

When the list is loaded, the image can be loaded and the experiment on Bluetooth

connection is completed. In addition, the application is modified to allow a loop of

load. Hence, the image can be load again if press the “load” button. This is to allow

different photo to load when the photo is updated in “Server”.

5.3 Load Published Image on “Client”

The image loaded is taken earlier and store in the package of JAR created. This

application is taking the photo store in the “res” folder in the package. It cannot be

used for photo taken by camera directly thus another approaches need to be achieved.

37

5.2 Camera Manipulation

In this part of the experiment, application “Snapper” will be used. The Application is

very straight forward and it can be used directly for the application without any

modification. The only challenge is to combine this application with the application

developed.

 After transferred the functions into the application developed, the camera can

be access after the Bluetooth connection is established. For initialization, the photo in

“res” folder will be used before any photo is taken.

5.4 Image capture on “Server” and Image loaded on “Client”

After a photo is taken on “Server”, the photo loaded on “Client” will be that photo.

At this stage, the whole process is not automatic. Some problems occur at this stage,

the first problem is the time for initialization of camera which is not constant.

38

5.5 White Blank Screen when Start Camera

Before the camera is in its “Ready” state, the screen will be white and blank. If the

photo taking is set to be automatically, white blank screen will be sent. The problem

shall be solved by adding a delay but by adding delay will cause the simulation of

real time image transferring to be unsuccessful.

CHAPTER 6

6 CONCLUSION AND RECOMMENDATIONS

6.1 Development and Implementation

In this research, we focused on the design, development and implementation of

image transferring algorithms with Bluetooth connection using J2ME for mobile

phone applications. The importance and the complexity of this project are discussed

in this report and the main functions and structure of the J2ME programming that we

used in our algorithm is introduced. Finally, some experiment is done to develop our

application.

The experiments show that one of the biggest problems in mobile phone on

the J2ME platform is the fact that practically the hardware is different from the

emulator provided. Some issue is not easy to be found as it is not in simulation.

Although most of the mobile phones on the market are supporting Java, but the APIs,

configuration and profile are different for each mobile phone and it is hard to

determine the problem and improve the performance.

6.2 Technology and Problems

As the technology is move onto more advanced Smartphone, the development of

J2ME platform might need replaced with the API used in Smartphone. If we can

familiarize ourselves with the API either in Java or other platform, we can develop

40

our application in a better way. Smartphone are more powerful than mobile phones

which we used in our research.

Two mobile phones is used in our project with one of the mobile phone is

part of the robot because the camera that was planned to be used with the

microcontroller on robot is difficult to find. Most of the components are now using

USB port. So in order to interface camera with microcontroller, we need to add the

USB support which is the stack from the operating system and it is almost impossible

without any supplier.

6.3 Future Improvement

The project is completed without having an automatically image capturing robot and

the controlling of robot is done without using Java programming. The ideal product

should be a robot which controlled by the mobile phone and at the same time

receiving the real time image. Hence, future improvement should be achieving an

automatically image transferring

41

REFERENCES

[1] Christopher E. (2007). The Robot Bat of Nikola Tesla. Retrieved at 28 July 2010

from http://naval-history.suite101.com/article.cfm/the_robot_boat_of_nikola_tesla

[2] Darren. (2005). Sony Ericsson ROB-1 Bluetooth Controlled Camera. Retrieved at

28 July 2010 from http://www.livingroom.org.au/photolog/news/sony_ericsson_r

ob1_bluetooth_controlled_camera.php

[3] Christopher E. (2007). The Robot Bat of Nikola Tesla. Retrieved at 28 July 2010

from http://naval-history.suite101.com/article.cfm/the_robot_boat_of_nikola_tesla

[4] Mobilesyrup. (2011). IDC: Worldwide Mible Phone Market. Retrieved at 28

February 2011 from http://mobilesyrup.com/2011/01/28/idc-worldwide-mobile-

phone-market-increased-17-9-in-q4-and-up-18-5-for-the-year/

[5] Oracle. (2011). Mobile Media API (JSR 135). Retrieved at 2 march 2011 from

http://java.sun.com/products/mmapi/

[6] Chaisatien, P. and K. Akahori (2007). “A Pilot Study on 3G Mobile Phone and

Two Dimension Barcode in Classroom Communication and Support System”.

Advanced Learning Technologies, 2007. ICALT 2007. Seventh IEEE

International Conference on. on Advanced Learning Technologies.

[7] Föckler, P., Zeidler, T., Brombach, B., Bruns, E., and Bimber, O. PhoneGuide:

Museum Guidance Supported by On-Device Object Recognition on Mobile

Phones In proceedings of International Conference on Mobile and Ubiquitous

Computing (MUM'05), 2005

[8] Pulli, K., T. Aarnio, et al. (2005). "Designing graphics programming interfaces

for mobile devices." Computer Graphics and Applications, IEEE 25(6): 66-75.

[9] Li, S., Knudsen, J., “Beginning J2ME: From Novice to Professional” Apress; 3rd

edition, 2005.

[10] Thompson, T. J., Kline, P. J., Kumar, C. B., & Kumar, C. B. (2008). Bluetooth

application programming with the Java APIs. Amsterdam: Morgan Kaufmann.

http://naval-history.suite101.com/article.cfm/the_robot_boat_of_nikola_tesla
http://www.livingroom.org.au/photolog/news/sony_ericsson_rob1_bluetooth_controlled_camera.php
http://naval-history.suite101.com/article.cfm/the_robot_boat_of_nikola_tesla
http://mobilesyrup.com/2011/01/28/idc-worldwide-mobile-phone-market-increased-17-9-in-q4-and-up-18-5-for-the-year/
http://mobilesyrup.com/2011/01/28/idc-worldwide-mobile-phone-market-increased-17-9-in-q4-and-up-18-5-for-the-year/
http://java.sun.com/products/mmapi/

42

[11] Wikipedia. (2007). Java (programming language). Retrieved at 29 July 2010

from http://en.wikipedia.org/wiki/Java_(programming_language)

[12] Simmons, J. (2007). Java programming. Delhi: Global Media.

[13] Jonathan Knudsen (2003). Taking Pictures with MMAPI. Retrieved at 29 July

2010 from Sun Developer Network (SDN) website: http://developers.sun.com/mo

bility/midp/articles/picture/

http://en.wikipedia.org/wiki/Java_(programming_language)
http://developers.sun.com/mobility/midp/articles/picture/

43

APPENDICES

APPENDIX A: MIDlet (J2ME)

package example.bluetooth.demo;

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.CommandListener;

import javax.microedition.lcdui.Display;

import javax.microedition.lcdui.Displayable;

import javax.microedition.lcdui.List;

import javax.microedition.midlet.MIDlet;

/**

 * Contains the Bluetooth API demo, that allows to download

 * the specific images from the other devices.

 *

 * @version ,

 */

public final class DemoMIDlet extends MIDlet implements CommandListener {

 /** The messages are shown in this demo this amount of time. */

 static final int ALERT_TIMEOUT = 2000;

 /** A list of menu items */

 private static final String[] elements = { "Server", "Client" };

 /** Soft button for exiting the demo. */

 private final Command EXIT_CMD = new Command("Exit", Command.EXIT, 2);

 /** Soft button for launching a client or sever. */

 private final Command OK_CMD = new Command("Ok", Command.SCREEN, 1);

 /** A menu list instance */

 private final List menu = new List("Bluetooth Demo", List.IMPLICIT, elements, null);

 /** A GUI part of server that publishes images. */

 private GUIImageServer imageServer;

 /** A GUI part of client that receives image from client */

 private GUIImageClient imageClient;

private CaptureAndSaveImage CASI;

 /** value is true after creating the server/client */

44

 private boolean isInit = false;

 /**

 * Constructs main screen of the MIDlet.

 */

 public DemoMIDlet() {

 menu.addCommand(EXIT_CMD);

 menu.addCommand(OK_CMD);

 menu.setCommandListener(this);

 }

 /**

 * Creates the demo view and action buttons.

 */

 public void startApp() {

 if (!isInit) {

 show();

 }

 }

 /**

 * Destroys the application.

 */

 protected void destroyApp(boolean unconditional) {

 if (imageServer != null) {

 imageServer.destroy();

 }

 if (imageClient != null) {

 imageClient.destroy();

 }

 }

 /**

 * Does nothing. Redefinition is required by MIDlet class.

 */

 protected void pauseApp() {

 }

 /**

 * Responds to commands issued on "client or server" form.

 *

 * @param c command object source of action

 * @param d screen object containing the item action was performed on

 */

 public void commandAction(Command c, Displayable d) {

 if (c == EXIT_CMD) {

 destroyApp(true);

 notifyDestroyed();

 return;

 }

 switch (menu.getSelectedIndex()) {

 case 0:

 imageServer = new GUIImageServer(this);

 break;

45

 case 1:

 //imageClient = new GUIImageClient(this);

 CASI = new CaptureAndSaveImage(this);

 break;

 default:

 System.err.println("Unexpected choice...");

 break;

 }

 isInit = true;

 }

 /** Shows main menu of MIDlet on the screen. */

 void show() {

 Display.getDisplay(this).setCurrent(menu);

 }

 /**

 * Returns the displayable object of this screen -

 * it is required for Alert construction for the error

 * cases.

 */

 Displayable getDisplayable() {

 return menu;

 }

} // end of class 'DemoMIDlet' definition

46

APPENDIX B: Bluetooth Service Searcher (J2ME)

package example.bluetooth.demo;

import java.io.IOException;

import java.util.Hashtable;

import java.util.Vector;

import javax.bluetooth.DeviceClass;

import javax.bluetooth.DiscoveryAgent;

import javax.bluetooth.DiscoveryListener;

import javax.bluetooth.LocalDevice;

import javax.bluetooth.RemoteDevice;

import javax.bluetooth.ServiceRecord;

import javax.bluetooth.UUID;

import javax.microedition.io.Connector;

import javax.microedition.io.StreamConnection;

import javax.microedition.io.StreamConnectionNotifier;

/**

 * Facade for JSR82, connecting via the <code>btspp</code> protocol.

 * This class simplifies searching for services on a device that

 * can only search for one device at the time.

 * It is based on the BlueToothFacade class found in the BlueGammon game.

 */

public class BTServiceSearcher implements DiscoveryListener

{

 /** Protocol */

 public static final String BT_PROTOCOL = "btspp";

 /** service id / server instance map */

 protected Hashtable m_servers = new Hashtable();

 /** Device Discovery lock */

 protected final Object DEVICE_LOCK = new Object();

 /** Service Discovery lock */

 protected final Object SERVICE_LOCK = new Object();

 /** Device lookup result */

 protected Vector m_devices = new Vector();

 /** Service lookup result */

 protected ServiceRecord m_record = null;

 public ServiceRecord findServiceOnDevice(String serviceNumber,

RemoteDevice device, int[] attr)

 throws IOException

 {

 ServiceRecord record = null;

 synchronized(SERVICE_LOCK)

 {

 m_record = null;

 UUID[] filter = { new UUID(serviceNumber, false) };

 DiscoveryAgent discoveryAgent =

 LocalDevice.getLocalDevice().getDiscoveryAgent();

 int trans =

 discoveryAgent.searchServices(attr, filter, device, this);

 try

 {

47

 SERVICE_LOCK.wait();

 } catch (InterruptedException e) {}

 record = m_record;

 m_record = null;

 return record;

 }

 }

 public ServiceRecord findServiceOnDevice(String serviceNumber,

RemoteDevice device)

 throws IOException

 {

 return findServiceOnDevice(serviceNumber, device, null);

 }

 /**

 * Setups a server if needed and returns a client. This method blocks

until a

 * client is connected. If multiple clients are allowed to be connected,

 * simply call this method multiple times.

 *

 * @param serviceNumber The ID for the provided service

 * @return A streamconnection

 * @throws IOException

 */

 private StreamConnection waitForClient(String serviceNumber)

 throws IOException

 {

 // Set BT device to general discoverable mode

 LocalDevice.getLocalDevice().setDiscoverable(DiscoveryAgent.GIAC);

 // Accept a client

 StreamConnectionNotifier server =

 (StreamConnectionNotifier) m_servers.get(serviceNumber);

 if (server == null)

 {

 server = (StreamConnectionNotifier)Connector.open(

 BT_PROTOCOL + "://localhost:" + serviceNumber);

 m_servers.put(serviceNumber, server);

 }

 StreamConnection clientConnection = server.acceptAndOpen();

 return clientConnection;

 }

 /**

 * Closes the server setup for specified service ID.

 *

 * @param serviceNumber The ID for the provided service

 * @throws IOException

 */

 private void closeServer(String serviceNumber) throws IOException

 {

 StreamConnectionNotifier server =

 (StreamConnectionNotifier) m_servers.get(serviceNumber);

 if (server != null)

 {

 server.close();

 m_servers.remove(serviceNumber);

 server = null;

 }

 }

 // See interface javadoc

 public void servicesDiscovered(int transID, ServiceRecord[] records)

 {

 for (int i = 0; i < records.length; i++)

 {

48

 String conURL =

 records[i].getConnectionURL(ServiceRecord.NOAUTHENTICATE_NOENCRYPT,

false);

 if (conURL.startsWith(BT_PROTOCOL))

 {

 synchronized (SERVICE_LOCK)

 {

 m_record = records[i];

 }

 break;

 }

 }

 }

 // See interface javadoc

 public void serviceSearchCompleted(int transID, int respCode)

 {

 synchronized (SERVICE_LOCK)

 {

 SERVICE_LOCK.notifyAll();

 }

 }

 // See interface javadoc

 public void deviceDiscovered(RemoteDevice btDevice, DeviceClass cod)

 {

 synchronized(DEVICE_LOCK)

 {

 m_devices.addElement(btDevice);

 }

 }

 // See interface javadoc

 public void inquiryCompleted(int discType)

 {

 synchronized(DEVICE_LOCK)

 {

 DEVICE_LOCK.notifyAll();

 }

 }

}

49

APPENDIX C: Bluetooth Image Server (J2ME)

package example.bluetooth.demo;

import java.io.ByteArrayOutputStream;

import java.io.IOException;

import java.io.InputStream;

import java.io.OutputStream;

import java.util.Hashtable;

import java.util.Vector;

// jsr082 API

import javax.bluetooth.DataElement;

import javax.bluetooth.DiscoveryAgent;

import javax.bluetooth.LocalDevice;

import javax.bluetooth.ServiceRecord;

import javax.bluetooth.ServiceRegistrationException;

import javax.bluetooth.UUID;

// midp/cldc API

import javax.microedition.io.Connector;

import javax.microedition.io.StreamConnection;

import javax.microedition.io.StreamConnectionNotifier;

import javax.microedition.lcdui.*;

import javax.microedition.media.*;

import javax.microedition.media.control.*;

import javax.microedition.midlet.MIDlet;

/**

 * Established the BT service, accepts connections

 * and send the requested image silently.

 *

 * @version ,

 */

final class BTImageServer implements Runnable {

 /** Describes this server */

 private static final UUID PICTURES_SERVER_UUID =

 new UUID("F0E0D0C0B0A000908070605040302010", false);

 /** The attribute id of the record item with images names. */

 private static final int IMAGES_NAMES_ATTRIBUTE_ID = 0x4321;

 /** Keeps the local device reference. */

 private LocalDevice localDevice;

 /** Accepts new connections. */

 private StreamConnectionNotifier notifier;

50

 /** Keeps the information about this server. */

 private ServiceRecord record;

 /** Keeps the parent reference to process specific actions. */

 private GUIImageServer parent;

 /** Becomes 'true' when this component is finalized. */

 private boolean isClosed;

 /** Creates notifier and accepts clients to be processed. */

 private Thread accepterThread;

 /** Process the particular client from queue. */

 private ClientProcessor processor;

 /** Optimization: keeps the table of data elements to be published. */

 private final Hashtable dataElements = new Hashtable();

 private Display display;

 // Form where camera viewfinder is placed

 private Form cameraForm;

 private Form thumbForm;

 // Command for capturing image by camera and saving it.

 // Placed in cameraForm.

 private Command cmdCapture = new Command("Capture", Command.OK, 0);

 // Command for exiting from midlet. Placed in cameraForm.

 private Command cmdExit = new Command("Exit", Command.EXIT, 0);

 // Player for camera

 private Player player;

 // Video control of camera

 private VideoControl videoControl;

 // Alert to be displayed if error occurs.

 private Alert alert;

private byte[] buff;

 /**

 * Constructs the bluetooth server, but it is initialized

 * in the different thread to "avoid dead lock".

 */

 BTImageServer(GUIImageServer parent) {

 this.parent = parent;

 // we have to initialize a system in different thread...

 accepterThread = new Thread(this);

 accepterThread.start();

 }

 /**

 * Accepts a new client and send him/her a requested image.

 */

 public void run() {

 boolean isBTReady = false;

51

 try {

 // create/get a local device

 localDevice = LocalDevice.getLocalDevice();

 // set we are discoverable

 if (!localDevice.setDiscoverable(DiscoveryAgent.GIAC)) {

 // Some implementations always return false, even if

 // setDiscoverable successful

 // throw new IOException("Can't set discoverable mode...");

 }

 // prepare a URL to create a notifier

 StringBuffer url = new StringBuffer("btspp://");

 // indicate this is a server

 url.append("localhost").append(':');

 // add the UUID to identify this service

 url.append(PICTURES_SERVER_UUID.toString());

 // add the name for our service

 url.append(";name=Picture Server");

 // request all of the client not to be authorized

 // some devices fail on authorize=true

 url.append(";authorize=false");

 // create notifier now

 notifier = (StreamConnectionNotifier)Connector.open(url.toString());

 // and remember the service record for the later updates

 record = localDevice.getRecord(notifier);

 // create a special attribute with images names

 DataElement base = new DataElement(DataElement.DATSEQ);

 record.setAttributeValue(IMAGES_NAMES_ATTRIBUTE_ID, base);

 // remember we've reached this point.

 isBTReady = true;

 } catch (Exception e) {

 System.err.println("Can't initialize bluetooth: " + e);

 }

 parent.completeInitialization(isBTReady);

 // nothing to do if no bluetooth available

 if (!isBTReady) {

 return;

 }

 // ok, start processor now

 processor = new ClientProcessor();

 // ok, start accepting connections then

 while (!isClosed) {

 StreamConnection conn = null;

 try {

 conn = notifier.acceptAndOpen();

52

 } catch (IOException e) {

 // wrong client or interrupted - continue anyway

 continue;

 }

 processor.addConnection(conn);

 }

 }

 /**

 * Updates the service record with the information

 * about the published images availability.

 * <p>

 * This method is invoked after the caller has checked

 * already that the real action should be done.

 *

 * @return true if record was updated successfully, false otherwise.

 */

 boolean changeImageInfo(String name, boolean isPublished) {

 // ok, get the record from service

 DataElement base = record.getAttributeValue(IMAGES_NAMES_ATTRIBUTE_ID);

 // check the corresponding DataElement object is created already

 DataElement de = (DataElement)dataElements.get(name);

 // if no, then create a new DataElement that describes this image

 if (de == null) {

 de = new DataElement(DataElement.STRING, name);

 dataElements.put(name, de);

 }

 // we know this data element has DATSEQ type

 if (isPublished) {

 base.addElement(de);

 } else {

 if (!base.removeElement(de)) {

 System.err.println("Error: item was not removed for: " + name);

 return false;

 }

 }

 record.setAttributeValue(IMAGES_NAMES_ATTRIBUTE_ID, base);

 try {

 localDevice.updateRecord(record);

 } catch (ServiceRegistrationException e) {

 System.err.println("Can't update record now for: " + name);

 return false;

 }

 return true;

 }

 /**

 * Destroy a work with bluetooth - exits the accepting

 * thread and close notifier.

 */

53

 void destroy() {

 isClosed = true;

 // finalize notifier work

 if (notifier != null) {

 try {

 notifier.close();

 } catch (IOException e) {

 } // ignore

 }

 // wait for acceptor thread is done

 try {

 accepterThread.join();

 } catch (InterruptedException e) {

 } // ignore

 // finalize processor

 if (processor != null) {

 processor.destroy(true);

 }

 processor = null;

 }

 /**

 * Reads the image name from the specified connection

 * and sends this image through this connection, then

 * close it after all.

 */

 private void processConnection(StreamConnection conn) {

 byte[] imgData;

 // read the image name first

 String imgName = readImageName(conn);

 // check this image is published and get the image file name

 imgName = "/images/leaf.jpg";// parent.getImageFileName(imgName);

 if(parent.raw==null) {

 // load image data into buffer to be send

 imgData = getImageData(imgName); }

 else imgData = parent.raw;

 // send image data now

 sendImageData(imgData, conn);

 // close connection and good-bye

 try {

 conn.close();

 } catch (IOException e) {

 } // ignore

 }

private void showAlert(String title, String message, Displayable nextDisp) {

 alert = new Alert(title);

 alert.setString(message);

 alert.setTimeout(Alert.FOREVER);

54

 if(nextDisp != null) {

 display.setCurrent(alert, nextDisp);

 } else {

 display.setCurrent(alert);

 }

 }

 /** Send image data. */

 private void sendImageData(byte[] imgData, StreamConnection conn) {

 if (imgData == null) {

 return;

 }

 OutputStream out = null;

 try {

 out = conn.openOutputStream();

 out.write(imgData.length >> 8);

 out.write(imgData.length & 0xff);

 out.write(imgData);

 out.flush();

 } catch (IOException e) {

 System.err.println("Can't send image data: " + e);

 }

 // close output stream anyway

 if (out != null) {

 try {

 out.close();

 } catch (IOException e) {

 } // ignore

 }

 }

/**

 * Creates camera control and places it to cameraForm.

 * @throws IOException if creation of player is failed.

 * @throws MediaException if creation of player is failed.

 */

 private void createCamera() throws IOException, MediaException {

 player = Manager.createPlayer("capture://video");

 player.realize();

 player.prefetch();

 videoControl = (VideoControl)player.getControl("VideoControl");

 }

 /**

 * Adds created camera as item to cameraForm.

 */

 private void addCameraToForm() {

 cameraForm.append((Item)videoControl.

 initDisplayMode(VideoControl.USE_GUI_PRIMITIVE, null));

 }

 /**

 * Start camera player

 * @throws IOException if starting of player is failed.

55

 * @throws MediaException if starting of player is failed.

 */

 private void startCamera() throws IOException, MediaException {

 if(player.getState() == Player.PREFETCHED) {

 player.start();

 }

 }

 private Image createThumbnail(Image image) {

 int sourceWidth = image.getWidth();

 int sourceHeight = image.getHeight();

 int thumbWidth = 64;

 int thumbHeight = -1;

 if (thumbHeight == -1)

 thumbHeight = thumbWidth * sourceHeight / sourceWidth;

 Image thumb = Image.createImage(thumbWidth, thumbHeight);

 Graphics g = thumb.getGraphics();

 for (int y = 0; y < thumbHeight; y++) {

 for (int x = 0; x < thumbWidth; x++) {

 g.setClip(x, y, 1, 1);

 int dx = x * sourceWidth / thumbWidth;

 int dy = y * sourceHeight / thumbHeight;

 g.drawImage(image, x - dx, y - dy, Graphics.LEFT | Graphics.TOP);

 }

 }

 Image immutableThumb = Image.createImage(thumb);

 return immutableThumb;

 }

 /** Reads image name from specified connection. */

 private String readImageName(StreamConnection conn) {

 String imgName = null;

 InputStream in = null;

 try {

 in = conn.openInputStream();

 int length = in.read(); // 'name' length is 1 byte

 if (length <= 0) {

 throw new IOException("Can't read name length");

 }

 byte[] nameData = new byte[length];

 length = 0;

 while (length != nameData.length) {

 int n = in.read(nameData, length, nameData.length - length);

 if (n == -1) {

 throw new IOException("Can't read name data");

 }

56

 length += n;

 }

 imgName = new String(nameData);

 } catch (IOException e) {

 System.err.println(e);

 }

 // close input stream anyway

 if (in != null) {

 try {

 in.close();

 } catch (IOException e) {

 } // ignore

 }

 return imgName;

 }

 /** Reads images data from MIDlet archive to array. */

 private byte[] getImageData(String imgName) {

 if (imgName == null) {

 return null;

 }

 InputStream in = getClass().getResourceAsStream(imgName);

 // read image data and create a byte array

 byte[] buff = new byte[1024];

 ByteArrayOutputStream baos = new ByteArrayOutputStream(1024);

 try {

 while (true) {

 int length = in.read(buff);

 if (length == -1) {

 break;

 }

 baos.write(buff, 0, length);

 }

 } catch (IOException e) {

 System.err.println("Can't get image data: imgName=" + imgName + " :" + e);

 return null;

 }

 return baos.toByteArray();

 }

 /**

 * Organizes the queue of clients to be processed,

 * processes the clients one by one until destroyed.

 */

 private class ClientProcessor implements Runnable {

 private Thread processorThread;

 private Vector queue = new Vector();

 private boolean isOk = true;

57

 ClientProcessor() {

 processorThread = new Thread(this);

 processorThread.start();

 }

 public void run() {

 while (!isClosed) {

 // wait for new task to be processed

 synchronized (this) {

 if (queue.size() == 0) {

 try {

 wait();

 } catch (InterruptedException e) {

 System.err.println("Unexpected exception: " + e);

 destroy(false);

 return;

 }

 }

 }

 // send the image to specified connection

 StreamConnection conn;

 synchronized (this) {

 // may be awaked by "destroy" method.

 if (isClosed) {

 return;

 }

 conn = (StreamConnection)queue.firstElement();

 queue.removeElementAt(0);

 processConnection(conn);

 }

 }

 }

 /** Adds the connection to queue and notifies the thread. */

 void addConnection(StreamConnection conn) {

 synchronized (this) {

 queue.addElement(conn);

 notify();

 }

 }

 /** Closes the connections and . */

 void destroy(boolean needJoin) {

 StreamConnection conn;

 synchronized (this) {

 notify();

 while (queue.size() != 0) {

 conn = (StreamConnection)queue.firstElement();

 queue.removeElementAt(0);

58

 try {

 conn.close();

 } catch (IOException e) {

 } // ignore

 }

 }

 // wait until dispatching thread is done

 try {

 processorThread.join();

 } catch (InterruptedException e) {

 } // ignore

 }

 }

} // end of class 'BTImageServer' definition

59

APPENDIX D: GUI Image Server (J2ME)

package example.bluetooth.demo;

import java.io.IOException;

import java.util.Vector;

import javax.microedition.lcdui.Alert;

import javax.microedition.lcdui.AlertType;

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.CommandListener;

import javax.microedition.lcdui.Display;

import javax.microedition.lcdui.Displayable;

import javax.microedition.lcdui.Graphics;

import javax.microedition.lcdui.Image;

import javax.microedition.lcdui.List;

import javax.microedition.lcdui.Ticker;

import javax.microedition.lcdui.*;

import javax.microedition.media.*;

import javax.microedition.media.control.*;

import javax.microedition.midlet.MIDlet;

/**

 * Allows to customize the images list to be published,

 * creates the corresponding service record to describe this list

 * and send the images to clients by request.

 *

 * @version ,

 */

final class GUIImageServer implements CommandListener {

 /** Keeps the help message of this demo. */

 private final String helpText =

 "The server is started by default.\n\n" +

 "No images are published initially. Change this by corresponding" +

 " commands - the changes have an effect immediately.\n\n" +

 "If image is removed from the published list, it can't " + "be downloaded.";

 /** This command goes to demo main screen. */

 private final Command backCommand = new Command("Back", Command.BACK, 2);

 /** Adds the selected image to the published list. */

 private final Command addCommand = new Command("Publish image", Command.SCREEN, 1);

 /** Removes the selected image from the published list. */

 private final Command removeCommand = new Command("Remove image", Command.SCREEN, 1);

 /** Shows the help message. */

 private final Command helpCommand = new Command("Help", Command.HELP, 1);

 /** The list control to configure images. */

60

 private final List imagesList = new List("Configure Server", List.IMPLICIT);

 /** The help screen for the server. */

 private final Alert helpScreen = new Alert("Help");

 /** Keeps the parent MIDlet reference to process specific actions. */

 private DemoMIDlet parent;

 /** The list of images file names. */

 private Vector imagesNames;

 /** These images are used to indicate the picture is published. */

 private Image onImage;

 /** These images are used to indicate the picture is published. */

 private Image offImage;

 /** Keeps an information about what images are published. */

 private boolean[] published;

 /** This object handles the real transmission. */

 private BTImageServer bt_server;

 private Display display;

 // Form where camera viewfinder is placed

 private Form cameraForm;

 private Form thumbForm;

 // Command for capturing image by camera and saving it.

 // Placed in cameraForm.

 private Command cmdCapture = new Command("Capture", Command.OK, 0);

 // Command for exiting from midlet. Placed in cameraForm.

 private Command cmdExit = new Command("Exit", Command.EXIT, 0);

 // Player for camera

 private Player player;

 // Video control of camera

 private VideoControl videoControl;

 // Alert to be displayed if error occurs.

 private Alert alert;

 public byte[] raw;

 /** Constructs images server GUI. */

 GUIImageServer(DemoMIDlet parent) {

 this.parent = parent;

 bt_server = new BTImageServer(this);

 setupIdicatorImage();

 setupImageList();

 published = new boolean[imagesList.size()];

 // prepare main screen

 imagesList.addCommand(backCommand);

 imagesList.addCommand(addCommand);

 imagesList.addCommand(removeCommand);

61

 imagesList.addCommand(helpCommand);

 imagesList.setCommandListener(this);

 // prepare help screen

 helpScreen.addCommand(backCommand);

 helpScreen.setTimeout(Alert.FOREVER);

 helpScreen.setString(helpText);

 helpScreen.setCommandListener(this);

 // Create camera form

 cameraForm = new Form("Camera");

 cameraForm.addCommand(cmdCapture);

 cameraForm.addCommand(cmdExit);

 cameraForm.setCommandListener(this);

 // Create thumbnail form

 thumbForm = new Form("thumb");

 thumbForm .addCommand(helpCommand);

 thumbForm .setCommandListener(this);

 }

 /**

 * Process the command event.

 *

 * @param c - the issued command.

 * @param d - the screen object the command was issued for.

 */

 public void commandAction(Command c, Displayable d) {

 if ((c == backCommand) && (d == imagesList)) {

 destroy();

 parent.show();

 return;

 }

 if ((c == backCommand) && (d == helpScreen)) {

 Display.getDisplay(parent).setCurrent(imagesList);

 return;

 }

 if (c == helpCommand) {

 //Display.getDisplay(parent).setCurrent(helpScreen);

 Display.getDisplay(parent).setCurrent(cameraForm);

 try {

 createCamera();

 addCameraToForm();

 startCamera();

 } catch(IOException ioExc) {

 showAlert("IO error", ioExc.getMessage(), null);

 } catch(MediaException mediaExc) {

 showAlert("Media error", mediaExc.getMessage(), null);

 }

 display = Display.getDisplay(parent);

 }

62

 if (c == cmdExit) {

 if(player != null) {

 player.deallocate();

 player.close();

 }

 Display.getDisplay(parent).setCurrent(imagesList);

 }

 if (c == cmdCapture) {

 capture();

 }

 /*

 * Changing the state of base of published images

 */

 int index = imagesList.getSelectedIndex();

 // nothing to do

 if ((c == addCommand) == published[index]) {

 return;

 }

 // update information and view

 published[index] = c == addCommand;

 Image stateImg = (c == addCommand) ? onImage : offImage;

 imagesList.set(index, imagesList.getString(index), stateImg);

 // update bluetooth service information

 if (!bt_server.changeImageInfo(imagesList.getString(index), published[index])) {

 // either a bad record or SDDB is busy

 Alert al = new Alert("Error", "Can't update base", null, AlertType.ERROR);

 al.setTimeout(DemoMIDlet.ALERT_TIMEOUT);

 Display.getDisplay(parent).setCurrent(al, imagesList);

 // restore internal information

 published[index] = !published[index];

 stateImg = published[index] ? onImage : offImage;

 imagesList.set(index, imagesList.getString(index), stateImg);

 }

 }

private void showAlert(String title, String message, Displayable nextDisp) {

 alert = new Alert(title);

 alert.setString(message);

 alert.setTimeout(Alert.FOREVER);

 if(nextDisp != null) {

 display.setCurrent(alert, nextDisp);

 } else {

 display.setCurrent(alert);

 alert.setCommandListener(this);

 }

 }

/**

 * Creates camera control and places it to cameraForm.

 * @throws IOException if creation of player is failed.

 * @throws MediaException if creation of player is failed.

63

 */

 private void createCamera() throws IOException, MediaException {

 player = Manager.createPlayer("capture://video");

 player.realize();

 player.prefetch();

 videoControl = (VideoControl)player.getControl("VideoControl");

 }

 /**

 * Adds created camera as item to cameraForm.

 */

 private void addCameraToForm() {

 cameraForm.append((Item)videoControl.

 initDisplayMode(VideoControl.USE_GUI_PRIMITIVE, null));

 }

 /**

 * Start camera player

 * @throws IOException if starting of player is failed.

 * @throws MediaException if starting of player is failed.

 */

 private void startCamera() throws IOException, MediaException {

 if(player.getState() == Player.PREFETCHED) {

 player.start();

 }

 }

 public void capture() {

 try {

 // Get the image.

 raw = videoControl.getSnapshot("encoding=jpeg");

 Image image = Image.createImage(raw, 0, raw.length);

 Image thumb = createThumbnail(image);

 // Shut down the player.

 player.close();

 player = null;

 videoControl = null;

 // Place it in the main form.

 cameraForm.delete(0);

 thumbForm.deleteAll();

 thumbForm.append(thumb);

 // Flip back to the main form.

 Display.getDisplay(parent).setCurrent(thumbForm);

 }

 catch (MediaException me) { }

 }

 private Image createThumbnail(Image image) {

 int sourceWidth = image.getWidth();

 int sourceHeight = image.getHeight();

 int thumbWidth = 64;

64

 int thumbHeight = -1;

 if (thumbHeight == -1)

 thumbHeight = thumbWidth * sourceHeight / sourceWidth;

 Image thumb = Image.createImage(thumbWidth, thumbHeight);

 Graphics g = thumb.getGraphics();

 for (int y = 0; y < thumbHeight; y++) {

 for (int x = 0; x < thumbWidth; x++) {

 g.setClip(x, y, 1, 1);

 int dx = x * sourceWidth / thumbWidth;

 int dy = y * sourceHeight / thumbHeight;

 g.drawImage(image, x - dx, y - dy, Graphics.LEFT | Graphics.TOP);

 }

 }

 Image immutableThumb = Image.createImage(thumb);

 return immutableThumb;

 }

 /**

 * We have to provide this method due to "do not do network

 * operation in command listener method" restriction, which

 * is caused by crooked midp design.

 *

 * This method is called by BTImageServer after it is done

 * with bluetooth initialization and next screen is ready

 * to appear.

 */

 void completeInitialization(boolean isBTReady) {

 // bluetooth was initialized successfully.

 if (isBTReady) {

 Ticker t = new Ticker("Choose images you want to publish...");

 imagesList.setTicker(t);

 Display.getDisplay(parent).setCurrent(imagesList);

 return;

 }

 // something wrong

 Alert al = new Alert("Error", "Can't initialize bluetooth", null, AlertType.ERROR);

 al.setTimeout(DemoMIDlet.ALERT_TIMEOUT);

 Display.getDisplay(parent).setCurrent(al, parent.getDisplayable());

 }

 /** Destroys this component. */

 void destroy() {

 // finalize the image server work

 bt_server.destroy();

 }

 /** Gets the image file name from its title (label). */

 String getImageFileName(String imgName) {

 if (imgName == null) {

 return null;

65

 }

 // no interface in List to get the index - should find

 int index = -1;

 for (int i = 0; i < imagesList.size(); i++) {

 if (imagesList.getString(i).equals(imgName)) {

 index = i;

 break;

 }

 }

 // not found or not published

 if ((index == -1) || !published[index]) {

 return null;

 }

 return (String)imagesNames.elementAt(index);

 }

 /**

 * Creates the image to indicate the base state.

 */

 private void setupIdicatorImage() {

 // create "on" image

 try {

 onImage = Image.createImage("/images/st-on.png");

 } catch (IOException e) {

 // provide off-screen image then

 onImage = createIndicatorImage(12, 12, 0, 255, 0);

 }

 // create "off" image

 try {

 offImage = Image.createImage("/images/st-off.png");

 } catch (IOException e) {

 // provide off-screen image then

 offImage = createIndicatorImage(12, 12, 255, 0, 0);

 }

 }

 /**

 * Gets the description of images from manifest and

 * prepares the list to control the configuration.

 * <p>

 * The attributes are named "ImageTitle-n" and "ImageImage-n".

 * The value "n" must start at "1" and be incremented by 1.

 */

 private void setupImageList() {

 imagesNames = new Vector();

 imagesList.setCommandListener(this);

 for (int n = 1; n < 100; n++) {

 String name = parent.getAppProperty("ImageName-" + n);

 // no more images available

66

 if ((name == null) || (name.length() == 0)) {

 break;

 }

 String label = parent.getAppProperty("ImageTitle-" + n);

 // no label available - use picture name instead

 if ((label == null) || (label.length() == 0)) {

 label = name;

 }

 imagesNames.addElement(name);

 imagesList.append(label, offImage);

 }

 }

 /**

 * Creates the off-screen image with specified size an color.

 */

 private Image createIndicatorImage(int w, int h, int r, int g, int b) {

 Image res = Image.createImage(w, h);

 Graphics gc = res.getGraphics();

 gc.setColor(r, g, b);

 gc.fillRect(0, 0, w, h);

 return res;

 }

} // end of class 'GUIImageServer' definition

67

APPENDIX E: Bluetooth Image Client (J2ME)

package example.bluetooth.demo;

import java.io.IOException;

import java.io.InputStream;

import java.io.OutputStream;

import java.util.Enumeration;

import java.util.Hashtable;

import java.util.Vector;

// jsr082 API

import javax.bluetooth.BluetoothStateException;

import javax.bluetooth.DataElement;

import javax.bluetooth.DeviceClass;

import javax.bluetooth.DiscoveryAgent;

import javax.bluetooth.DiscoveryListener;

import javax.bluetooth.LocalDevice;

import javax.bluetooth.RemoteDevice;

import javax.bluetooth.ServiceRecord;

import javax.bluetooth.UUID;

// midp/cldc API

import javax.microedition.io.Connector;

import javax.microedition.io.StreamConnection;

import javax.microedition.lcdui.Image;

/**

 * Initialize BT device, search for BT services,

 * presents them to user and picks his/her choice,

 * finally download the choosen image and present

 * it to user.

 *

 * @version ,

 */

final class BTImageClient implements Runnable, DiscoveryListener {

 /** Describes this server */

 private static final UUID PICTURES_SERVER_UUID =

 new UUID("F0E0D0C0B0A000908070605040302010", false);

 /** The attribute id of the record item with images names. */

 private static final int IMAGES_NAMES_ATTRIBUTE_ID = 0x4321;

 /** Shows the engine is ready to work. */

 private static final int READY = 0;

 /** Shows the engine is searching bluetooth devices. */

 private static final int DEVICE_SEARCH = 1;

 /** Shows the engine is searching bluetooth services. */

68

 private static final int SERVICE_SEARCH = 2;

 /** Keeps the current state of engine. */

 private int state = READY;

 /** Keeps the discovery agent reference. */

 private DiscoveryAgent discoveryAgent;

 /** Keeps the parent reference to process specific actions. */

 private GUIImageClient parent;

 /** Becomes 'true' when this component is finalized. */

 private boolean isClosed;

 /** Process the search/download requests. */

 private Thread processorThread;

 /** Collects the remote devices found during a search. */

 private Vector /* RemoteDevice */ devices = new Vector();

 /** Collects the services found during a search. */

 private Vector /* ServiceRecord */ records = new Vector();

 /** Keeps the device discovery return code. */

 private int discType;

 /** Keeps the services search IDs (just to be able to cancel them). */

 private int[] searchIDs;

 /** Keeps the image name to be load. */

 private String imageNameToLoad;

 /** Keeps the table of {name, Service} to process the user choice. */

 private Hashtable base = new Hashtable();

 /** Informs the thread the download should be canceled. */

 private boolean isDownloadCanceled;

 /** Optimization: keeps service search pattern. */

 private UUID[] uuidSet;

 /** Optimization: keeps attributes list to be retrieved. */

 private int[] attrSet;

 /**

 * Constructs the bluetooth server, but it is initialized

 * in the different thread to "avoid dead lock".

 */

 BTImageClient(GUIImageClient parent) {

 this.parent = parent;

 // we have to initialize a system in different thread...

 processorThread = new Thread(this);

 processorThread.start();

 }

 /**

 * Process the search/download requests.

 */

69

 public void run() {

 // initialize bluetooth first

 boolean isBTReady = false;

 try {

 // create/get a local device and discovery agent

 LocalDevice localDevice = LocalDevice.getLocalDevice();

 discoveryAgent = localDevice.getDiscoveryAgent();

 // remember we've reached this point.

 isBTReady = true;

 } catch (Exception e) {

 System.err.println("Can't initialize bluetooth: " + e);

 }

 parent.completeInitialization(isBTReady);

 // nothing to do if no bluetooth available

 if (!isBTReady) {

 return;

 }

 // initialize some optimization variables

 uuidSet = new UUID[2];

 // ok, we are interesting in btspp services only

 uuidSet[0] = new UUID(0x1101);

 // and only known ones, that allows pictures

 uuidSet[1] = PICTURES_SERVER_UUID;

 // we need an only service attribute actually

 attrSet = new int[1];

 // it's "images names" one

 attrSet[0] = IMAGES_NAMES_ATTRIBUTE_ID;

 // start processing the images search/download

 processImagesSearchDownload();

 }

 /**

 * Invoked by system when a new remote device is found -

 * remember the found device.

 */

 public void deviceDiscovered(RemoteDevice btDevice, DeviceClass cod) {

 // same device may found several times during single search

 if (devices.indexOf(btDevice) == -1) {

 devices.addElement(btDevice);

 }

 }

 /**

 * Invoked by system when device discovery is done.

 * <p>

 * Use a trick here - just remember the discType

 * and process its evaluation in another thread.

 */

 public void inquiryCompleted(int discType) {

70

 this.discType = discType;

 synchronized (this) {

 notify();

 }

 }

 public void servicesDiscovered(int transID, ServiceRecord[] servRecord) {

 for (int i = 0; i < servRecord.length; i++) {

 records.addElement(servRecord[i]);

 }

 }

 public void serviceSearchCompleted(int transID, int respCode) {

 // first, find the service search transaction index

 int index = -1;

 for (int i = 0; i < searchIDs.length; i++) {

 if (searchIDs[i] == transID) {

 index = i;

 break;

 }

 }

 // error - unexpected transaction index

 if (index == -1) {

 System.err.println("Unexpected transaction index: " + transID);

 // FIXME: process the error case

 } else {

 searchIDs[index] = -1;

 }

 /*

 * Actually, we do not care about the response code -

 * if device is not reachable or no records, etc.

 */

 // make sure it was the last transaction

 for (int i = 0; i < searchIDs.length; i++) {

 if (searchIDs[i] != -1) {

 return;

 }

 }

 // ok, all of the transactions are completed

 synchronized (this) {

 notify();

 }

 }

 /** Sets the request to search the devices/services. */

 void requestSearch() {

 synchronized (this) {

 notify();

 }

 }

71

 /** Cancel's the devices/services search. */

 void cancelSearch() {

 synchronized (this) {

 if (state == DEVICE_SEARCH) {

 discoveryAgent.cancelInquiry(this);

 } else if (state == SERVICE_SEARCH) {

 for (int i = 0; i < searchIDs.length; i++) {

 discoveryAgent.cancelServiceSearch(searchIDs[i]);

 }

 }

 }

 }

 /** Sets the request to load the specified image. */

 void requestLoad(String name) {

 synchronized (this) {

 imageNameToLoad = name;

 notify();

 }

 }

 /** Cancel's the image download. */

 void cancelLoad() {

 /*

 * The image download process is done by

 * this class's thread (not by a system one),

 * so no need to wake up the current thread -

 * it's running already.

 */

 isDownloadCanceled = true;

 }

 /**

 * Destroy a work with bluetooth - exits the accepting

 * thread and close notifier.

 */

 void destroy() {

 synchronized (this) {

 isClosed = true;

 isDownloadCanceled = true;

 notify();

 // FIXME: implement me

 }

 // wait for acceptor thread is done

 try {

 processorThread.join();

 } catch (InterruptedException e) {

 } // ignore

 }

 /**

 * Processes images search/download until component is closed

 * or system error has happen.

 */

 private synchronized void processImagesSearchDownload() {

 while (!isClosed) {

 // wait for new search request from user

72

 state = READY;

 try {

 wait();

 } catch (InterruptedException e) {

 System.err.println("Unexpected interruption: " + e);

 return;

 }

 // check the component is destroyed

 if (isClosed) {

 return;

 }

 // search for devices

 if (!searchDevices()) {

 return;

 } else if (devices.size() == 0) {

 continue;

 }

 // search for services now

 if (!searchServices()) {

 return;

 } else if (records.size() == 0) {

 continue;

 }

 // ok, something was found - present the result to user now

 if (!presentUserSearchResults()) {

 // services are found, but no names there

 continue;

 }

 // the several download requests may be processed

 while (true) {

 // this download is not canceled, right?

 isDownloadCanceled = false;

 // ok, wait for download or need to wait for next search

 try {

 wait();

 } catch (InterruptedException e) {

 System.err.println("Unexpected interruption: " + e);

 return;

 }

 // check the component is destroyed

 if (isClosed) {

 return;

 }

 // this means "go to the beginning"

 if (imageNameToLoad == null) {

 break;

 }

73

 // load selected image data

 Image img = loadImage();

 // FIXME: this never happen - monitor is taken...

 if (isClosed) {

 return;

 }

 if (isDownloadCanceled) {

 continue; // may be next image to be download

 }

 if (img == null) {

 parent.informLoadError("Can't load image: " + imageNameToLoad);

 continue; // may be next image to be download

 }

 // ok, show image to user

 parent.showImage(img, imageNameToLoad);

 // may be next image to be download

 continue;

 }

 }

 }

 /**

 * Search for bluetooth devices.

 *

 * @return false if should end the component work.

 */

 private boolean searchDevices() {

 // ok, start a new search then

 state = DEVICE_SEARCH;

 devices.removeAllElements();

 try {

 discoveryAgent.startInquiry(DiscoveryAgent.GIAC, this);

 } catch (BluetoothStateException e) {

 System.err.println("Can't start inquiry now: " + e);

 parent.informSearchError("Can't start device search");

 return true;

 }

 try {

 wait(); // until devices are found

 } catch (InterruptedException e) {

 System.err.println("Unexpected interruption: " + e);

 return false;

 }

 // this "wake up" may be caused by 'destroy' call

 if (isClosed) {

 return false;

 }

74

 // no?, ok, let's check the return code then

 switch (discType) {

 case INQUIRY_ERROR:

 parent.informSearchError("Device discovering error...");

 // fall through

 case INQUIRY_TERMINATED:

 // make sure no garbage in found devices list

 devices.removeAllElements();

 // nothing to report - go to next request

 break;

 case INQUIRY_COMPLETED:

 if (devices.size() == 0) {

 parent.informSearchError("No devices in range");

 }

 // go to service search now

 break;

 default:

 // what kind of system you are?... :(

 System.err.println("system error:" + " unexpected device discovery code: " +

discType);

 destroy();

 return false;

 }

 return true;

 }

 /**

 * Search for proper service.

 *

 * @return false if should end the component work.

 */

 private boolean searchServices() {

 state = SERVICE_SEARCH;

 records.removeAllElements();

 searchIDs = new int[devices.size()];

 boolean isSearchStarted = false;

 for (int i = 0; i < devices.size(); i++) {

 RemoteDevice rd = (RemoteDevice)devices.elementAt(i);

 try {

 searchIDs[i] = discoveryAgent.searchServices(attrSet, uuidSet, rd, this);

 } catch (BluetoothStateException e) {

 System.err.println("Can't search services for: " + rd.getBluetoothAddress()

+

 " due to " + e);

 searchIDs[i] = -1;

 continue;

 }

75

 isSearchStarted = true;

 }

 // at least one of the services search should be found

 if (!isSearchStarted) {

 parent.informSearchError("Can't search services.");

 return true;

 }

 try {

 wait(); // until services are found

 } catch (InterruptedException e) {

 System.err.println("Unexpected interruption: " + e);

 return false;

 }

 // this "wake up" may be caused by 'destroy' call

 if (isClosed) {

 return false;

 }

 // actually, no services were found

 if (records.size() == 0) {

 parent.informSearchError("No proper services were found");

 }

 return true;

 }

 /**

 * Gets the collection of the images titles (names)

 * from the services, prepares a hashtable to match

 * the image name to a services list, presents the images names

 * to user finally.

 *

 * @return false if no names in found services.

 */

 private boolean presentUserSearchResults() {

 base.clear();

 for (int i = 0; i < records.size(); i++) {

 ServiceRecord sr = (ServiceRecord)records.elementAt(i);

 // get the attribute with images names

 DataElement de = sr.getAttributeValue(IMAGES_NAMES_ATTRIBUTE_ID);

 if (de == null) {

 System.err.println("Unexpected service - missed attribute");

 continue;

 }

 // get the images names from this attribute

 Enumeration deEnum = (Enumeration)de.getValue();

 while (deEnum.hasMoreElements()) {

76

 de = (DataElement)deEnum.nextElement();

 String name = (String)de.getValue();

 // name may be stored already

 Object obj = base.get(name);

 // that's either the ServiceRecord or Vector

 if (obj != null) {

 Vector v;

 if (obj instanceof ServiceRecord) {

 v = new Vector();

 v.addElement(obj);

 } else {

 v = (Vector)obj;

 }

 v.addElement(sr);

 obj = v;

 } else {

 obj = sr;

 }

 base.put(name, obj);

 }

 }

 return parent.showImagesNames(base);

 }

 /**

 * Loads selected image data.

 */

 private Image loadImage() {

 if (imageNameToLoad == null) {

 System.err.println("Error: imageNameToLoad=null");

 return null;

 }

 // ok, get the list of service records

 ServiceRecord[] sr = null;

 Object obj = base.get(imageNameToLoad);

 if (obj == null) {

 System.err.println("Error: no record for: " + imageNameToLoad);

 return null;

 } else if (obj instanceof ServiceRecord) {

 sr = new ServiceRecord[] { (ServiceRecord)obj };

 } else {

 Vector v = (Vector)obj;

 sr = new ServiceRecord[v.size()];

 for (int i = 0; i < v.size(); i++) {

 sr[i] = (ServiceRecord)v.elementAt(i);

 }

 }

77

 // now try to load the image from each services one by one

 for (int i = 0; i < sr.length; i++) {

 StreamConnection conn = null;

 String url = null;

 // the process may be canceled

 if (isDownloadCanceled) {

 return null;

 }

 // first - connect

 try {

 url = sr[i].getConnectionURL(ServiceRecord.NOAUTHENTICATE_NOENCRYPT,

false);

 conn = (StreamConnection)Connector.open(url);

 } catch (IOException e) {

 System.err.println("Note: can't connect to: " + url);

 // ignore

 continue;

 }

 // then open a steam and write a name

 try {

 OutputStream out = conn.openOutputStream();

 out.write(imageNameToLoad.length()); // length is 1 byte

 out.write(imageNameToLoad.getBytes());

 out.flush();

 out.close();

 } catch (IOException e) {

 System.err.println("Can't write to server for: " + url);

 // close stream connection

 try {

 conn.close();

 } catch (IOException ee) {

 } // ignore

 continue;

 }

 // then open a steam and read an image

 byte[] imgData = null;

 try {

 InputStream in = conn.openInputStream();

 // read a length first

 int length = in.read() << 8;

 length |= in.read();

 if (length <= 0) {

 throw new IOException("Can't read a length");

 }

 // read the image now

 imgData = new byte[length];

 length = 0;

78

 while (length != imgData.length) {

 int n = in.read(imgData, length, imgData.length - length);

 if (n == -1) {

 throw new IOException("Can't read a image data");

 }

 length += n;

 }

 in.close();

 } catch (IOException e) {

 // SEMC BEGIN:

 System.err.println("Can't read from server for: " + url + ". Message was: "

+ e);

 // SEMC END

 continue;

 } finally {

 // close stream connection anyway

 try {

 conn.close();

 } catch (IOException e) {

 } // ignore

 }

 // ok, may it's a chance

 Image img = null;

 try {

 img = Image.createImage(imgData, 0, imgData.length);

 } catch (Exception e) {

 // may be next time

 System.err.println("Error: wrong image data from: " + url);

 continue;

 }

 return img;

 }

 return null;

 }

} // end of class 'BTImageClient' definition

79

APPENDIX F: GUI Image Client (J2ME)

package example.bluetooth.demo;

import java.io.IOException;

import java.util.Enumeration;

import java.util.Hashtable;

import javax.microedition.lcdui.Alert;

import javax.microedition.lcdui.AlertType;

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.CommandListener;

import javax.microedition.lcdui.Display;

import javax.microedition.lcdui.Displayable;

import javax.microedition.lcdui.Form;

import javax.microedition.lcdui.Gauge;

import javax.microedition.lcdui.Image;

import javax.microedition.lcdui.ImageItem;

import javax.microedition.lcdui.List;

import javax.microedition.lcdui.StringItem;

/**

 * Provides a GUI to present the download options

 * to used, gives a chance to make a choice,

 * finally shows the downloaded image.

*/

final class GUIImageClient implements CommandListener {

 /** This command goes to demo main screen. */

 private final Command SCR_MAIN_BACK_CMD = new Command("Back", Command.BACK, 2);

 /** Starts the proper services search. */

 private final Command SCR_MAIN_SEARCH_CMD = new Command("Find", Command.OK, 1);

 /** Cancels the device/services discovering. */

 private final Command SCR_SEARCH_CANCEL_CMD = new Command("Cancel", Command.BACK, 2);

 /** This command goes to client main screen. */

 private final Command SCR_IMAGES_BACK_CMD = new Command("Back", Command.BACK, 2);

 /** Start the chosen image download. */

 private final Command SCR_IMAGES_LOAD_CMD = new Command("Load", Command.OK, 1);

 /** Cancels the image download. */

 private final Command SCR_LOAD_CANCEL_CMD = new Command("Cancel", Command.BACK, 2);

 /** This command goes from image screen to images list one. */

 private final Command SCR_SHOW_BACK_CMD = new Command("Back", Command.BACK, 2);

 /** The main screen of the client part. */

 private final Form mainScreen = new Form("Image Viewer");

 /** The screen with found images names. */

80

 private final List listScreen = new List("Image Viewer", List.IMPLICIT);

 /** The screen with download image. */

 private final Form imageScreen = new Form("Image Viewer");

 /** Keeps the parent MIDlet reference to process specific actions. */

 private DemoMIDlet parent;

 /** This object handles the real transmission. */

 private BTImageClient bt_client;

 /** Constructs client GUI. */

 GUIImageClient(DemoMIDlet parent) {

 this.parent = parent;

 bt_client = new BTImageClient(this);

 mainScreen.addCommand(SCR_MAIN_BACK_CMD);

 mainScreen.addCommand(SCR_MAIN_SEARCH_CMD);

 mainScreen.setCommandListener(this);

 listScreen.addCommand(SCR_IMAGES_BACK_CMD);

 listScreen.addCommand(SCR_IMAGES_LOAD_CMD);

 listScreen.setCommandListener(this);

 imageScreen.addCommand(SCR_SHOW_BACK_CMD);

 imageScreen.setCommandListener(this);

 }

 /**

 * Process the command events.

 *

 * @param c - the issued command.

 * @param d - the screen object the command was issued for.

 */

 public void commandAction(Command c, Displayable d) {

 // back to demo main screen

 if (c == SCR_MAIN_BACK_CMD) {

 destroy();

 parent.show();

 return;

 }

 // starts images (device/services) search

 if (c == SCR_MAIN_SEARCH_CMD) {

 Form f = new Form("Searching...");

 f.addCommand(SCR_SEARCH_CANCEL_CMD);

 f.setCommandListener(this);

 f.append(new Gauge("Searching images...", false, Gauge.INDEFINITE,

 Gauge.CONTINUOUS_RUNNING));

 Display.getDisplay(parent).setCurrent(f);

 bt_client.requestSearch();

 return;

 }

 // cancels device/services search

 if (c == SCR_SEARCH_CANCEL_CMD) {

 bt_client.cancelSearch();

 Display.getDisplay(parent).setCurrent(mainScreen);

 return;

81

 }

 // back to client main screen

 if (c == SCR_IMAGES_BACK_CMD) {

 bt_client.requestLoad(null);

 Display.getDisplay(parent).setCurrent(mainScreen);

 return;

 }

 // starts image download

 if (c == SCR_IMAGES_LOAD_CMD) {

 Form f = new Form("Loading...");

 f.addCommand(SCR_LOAD_CANCEL_CMD);

 f.setCommandListener(this);

 f.append(new Gauge("Loading image...", false, Gauge.INDEFINITE,

Gauge.CONTINUOUS_RUNNING));

 Display.getDisplay(parent).setCurrent(f);

 List l = (List)d;

 bt_client.requestLoad(l.getString(l.getSelectedIndex()));

 return;

 }

 // cancels image load

 if (c == SCR_LOAD_CANCEL_CMD) {

 bt_client.cancelLoad();

 Display.getDisplay(parent).setCurrent(listScreen);

 return;

 }

 // back to client main screen

 if (c == SCR_SHOW_BACK_CMD) {

 Display.getDisplay(parent).setCurrent(listScreen);

 return;

 }

 }

 /**

 * We have to provide this method due to "do not do network

 * operation in command listener method" restriction, which

 * is caused by crooked midp design.

 *

 * This method is called by BTImageClient after it is done

 * with bluetooth initialization and next screen is ready

 * to appear.

 */

 void completeInitialization(boolean isBTReady) {

 // bluetooth was initialized successfully.

 if (isBTReady) {

 StringItem si = new StringItem("Ready for images search!",

null);

 si.setLayout(StringItem.LAYOUT_CENTER |

StringItem.LAYOUT_VCENTER);

 mainScreen.append(si);

 Display.getDisplay(parent).setCurrent(mainScreen);

 return;

 }

 // something wrong

 Alert al = new Alert("Error", "Can't initialize bluetooth", null,

AlertType.ERROR);

 al.setTimeout(DemoMIDlet.ALERT_TIMEOUT);

 Display.getDisplay(parent).setCurrent(al, parent.getDisplayable());

82

 }

 /** Destroys this component. */

 void destroy() {

 // finalize the image client work

 bt_client.destroy();

 }

 /**

 * Informs the error during the images search.

 */

 void informSearchError(String resMsg) {

 Alert al = new Alert("Error", resMsg, null, AlertType.ERROR);

 al.setTimeout(DemoMIDlet.ALERT_TIMEOUT);

 Display.getDisplay(parent).setCurrent(al, mainScreen);

 }

 /**

 * Informs the error during the selected image load.

 */

 void informLoadError(String resMsg) {

 Alert al = new Alert("Error", resMsg, null, AlertType.ERROR);

 al.setTimeout(DemoMIDlet.ALERT_TIMEOUT);

 Display.getDisplay(parent).setCurrent(al, listScreen);

 }

 /**

 * Shows the downloaded image.

 */

 void showImage(Image img, String imgName) {

 imageScreen.deleteAll();

 imageScreen.append(new ImageItem(imgName, img,

 ImageItem.LAYOUT_CENTER | ImageItem.LAYOUT_VCENTER,

"Downloaded image: " + imgName));

 Display.getDisplay(parent).setCurrent(imageScreen);

 }

 /**

 * Shows the available images names.

 * @return false if no images names were found actually

 */

 boolean showImagesNames(Hashtable base) {

 Enumeration keys = base.keys();

 // no images actually

 if (!keys.hasMoreElements()) {

 informSearchError("No images names in found services");

 return false;

 }

 // prepare the list to be shown

 while (listScreen.size() != 0) {

 listScreen.delete(0);

 }

 while (keys.hasMoreElements()) {

 listScreen.append((String)keys.nextElement(), null);

 }

 Display.getDisplay(parent).setCurrent(listScreen);

 return true;

 }

} // end of class 'GUIImageClient' definition

1

APPENDICES

APPENDIX A: MIDlet (J2ME)

package example.bluetooth.demo;

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.CommandListener;

import javax.microedition.lcdui.Display;

import javax.microedition.lcdui.Displayable;

import javax.microedition.lcdui.List;

import javax.microedition.midlet.MIDlet;

/**

 * Contains the Bluetooth API demo, that allows to download

 * the specific images from the other devices.

 *

 * @version ,

 */

public final class DemoMIDlet extends MIDlet implements CommandListener {

 /** The messages are shown in this demo this amount of time. */

 static final int ALERT_TIMEOUT = 2000;

 /** A list of menu items */

 private static final String[] elements = { "Server", "Client" };

 /** Soft button for exiting the demo. */

 private final Command EXIT_CMD = new Command("Exit", Command.EXIT, 2);

 /** Soft button for launching a client or sever. */

 private final Command OK_CMD = new Command("Ok", Command.SCREEN, 1);

 /** A menu list instance */

 private final List menu = new List("Bluetooth Demo", List.IMPLICIT, elements, null);

 /** A GUI part of server that publishes images. */

 private GUIImageServer imageServer;

 /** A GUI part of client that receives image from client */

 private GUIImageClient imageClient;

private CaptureAndSaveImage CASI;

 /** value is true after creating the server/client */

 private boolean isInit = false;

2

 /**

 * Constructs main screen of the MIDlet.

 */

 public DemoMIDlet() {

 menu.addCommand(EXIT_CMD);

 menu.addCommand(OK_CMD);

 menu.setCommandListener(this);

 }

 /**

 * Creates the demo view and action buttons.

 */

 public void startApp() {

 if (!isInit) {

 show();

 }

 }

 /**

 * Destroys the application.

 */

 protected void destroyApp(boolean unconditional) {

 if (imageServer != null) {

 imageServer.destroy();

 }

 if (imageClient != null) {

 imageClient.destroy();

 }

 }

 /**

 * Does nothing. Redefinition is required by MIDlet class.

 */

 protected void pauseApp() {

 }

 /**

 * Responds to commands issued on "client or server" form.

 *

 * @param c command object source of action

 * @param d screen object containing the item action was performed on

 */

 public void commandAction(Command c, Displayable d) {

 if (c == EXIT_CMD) {

 destroyApp(true);

 notifyDestroyed();

 return;

 }

 switch (menu.getSelectedIndex()) {

 case 0:

 imageServer = new GUIImageServer(this);

 break;

 case 1:

 //imageClient = new GUIImageClient(this);

3

 CASI = new CaptureAndSaveImage(this);

 break;

 default:

 System.err.println("Unexpected choice...");

 break;

 }

 isInit = true;

 }

 /** Shows main menu of MIDlet on the screen. */

 void show() {

 Display.getDisplay(this).setCurrent(menu);

 }

 /**

 * Returns the displayable object of this screen -

 * it is required for Alert construction for the error

 * cases.

 */

 Displayable getDisplayable() {

 return menu;

 }

} // end of class 'DemoMIDlet' definition

4

APPENDIX B: Bluetooth Service Searcher (J2ME)

package example.bluetooth.demo;

import java.io.IOException;

import java.util.Hashtable;

import java.util.Vector;

import javax.bluetooth.DeviceClass;

import javax.bluetooth.DiscoveryAgent;

import javax.bluetooth.DiscoveryListener;

import javax.bluetooth.LocalDevice;

import javax.bluetooth.RemoteDevice;

import javax.bluetooth.ServiceRecord;

import javax.bluetooth.UUID;

import javax.microedition.io.Connector;

import javax.microedition.io.StreamConnection;

import javax.microedition.io.StreamConnectionNotifier;

/**

 * Facade for JSR82, connecting via the <code>btspp</code> protocol.

 * This class simplifies searching for services on a device that

 * can only search for one device at the time.

 * It is based on the BlueToothFacade class found in the BlueGammon game.

 */

public class BTServiceSearcher implements DiscoveryListener

{

 /** Protocol */

 public static final String BT_PROTOCOL = "btspp";

 /** service id / server instance map */

 protected Hashtable m_servers = new Hashtable();

 /** Device Discovery lock */

 protected final Object DEVICE_LOCK = new Object();

 /** Service Discovery lock */

 protected final Object SERVICE_LOCK = new Object();

 /** Device lookup result */

 protected Vector m_devices = new Vector();

 /** Service lookup result */

 protected ServiceRecord m_record = null;

 public ServiceRecord findServiceOnDevice(String serviceNumber,

RemoteDevice device, int[] attr)

 throws IOException

 {

 ServiceRecord record = null;

 synchronized(SERVICE_LOCK)

 {

 m_record = null;

 UUID[] filter = { new UUID(serviceNumber, false) };

 DiscoveryAgent discoveryAgent =

 LocalDevice.getLocalDevice().getDiscoveryAgent();

 int trans =

 discoveryAgent.searchServices(attr, filter, device, this);

 try

 {

5

 SERVICE_LOCK.wait();

 } catch (InterruptedException e) {}

 record = m_record;

 m_record = null;

 return record;

 }

 }

 public ServiceRecord findServiceOnDevice(String serviceNumber,

RemoteDevice device)

 throws IOException

 {

 return findServiceOnDevice(serviceNumber, device, null);

 }

 /**

 * Setups a server if needed and returns a client. This method blocks

until a

 * client is connected. If multiple clients are allowed to be connected,

 * simply call this method multiple times.

 *

 * @param serviceNumber The ID for the provided service

 * @return A streamconnection

 * @throws IOException

 */

 private StreamConnection waitForClient(String serviceNumber)

 throws IOException

 {

 // Set BT device to general discoverable mode

 LocalDevice.getLocalDevice().setDiscoverable(DiscoveryAgent.GIAC);

 // Accept a client

 StreamConnectionNotifier server =

 (StreamConnectionNotifier) m_servers.get(serviceNumber);

 if (server == null)

 {

 server = (StreamConnectionNotifier)Connector.open(

 BT_PROTOCOL + "://localhost:" + serviceNumber);

 m_servers.put(serviceNumber, server);

 }

 StreamConnection clientConnection = server.acceptAndOpen();

 return clientConnection;

 }

 /**

 * Closes the server setup for specified service ID.

 *

 * @param serviceNumber The ID for the provided service

 * @throws IOException

 */

 private void closeServer(String serviceNumber) throws IOException

 {

 StreamConnectionNotifier server =

 (StreamConnectionNotifier) m_servers.get(serviceNumber);

 if (server != null)

 {

 server.close();

 m_servers.remove(serviceNumber);

 server = null;

 }

 }

 // See interface javadoc

 public void servicesDiscovered(int transID, ServiceRecord[] records)

 {

 for (int i = 0; i < records.length; i++)

 {

6

 String conURL =

 records[i].getConnectionURL(ServiceRecord.NOAUTHENTICATE_NOENCRYPT,

false);

 if (conURL.startsWith(BT_PROTOCOL))

 {

 synchronized (SERVICE_LOCK)

 {

 m_record = records[i];

 }

 break;

 }

 }

 }

 // See interface javadoc

 public void serviceSearchCompleted(int transID, int respCode)

 {

 synchronized (SERVICE_LOCK)

 {

 SERVICE_LOCK.notifyAll();

 }

 }

 // See interface javadoc

 public void deviceDiscovered(RemoteDevice btDevice, DeviceClass cod)

 {

 synchronized(DEVICE_LOCK)

 {

 m_devices.addElement(btDevice);

 }

 }

 // See interface javadoc

 public void inquiryCompleted(int discType)

 {

 synchronized(DEVICE_LOCK)

 {

 DEVICE_LOCK.notifyAll();

 }

 }

}

7

APPENDIX C: Bluetooth Image Server (J2ME)

package example.bluetooth.demo;

import java.io.ByteArrayOutputStream;

import java.io.IOException;

import java.io.InputStream;

import java.io.OutputStream;

import java.util.Hashtable;

import java.util.Vector;

// jsr082 API

import javax.bluetooth.DataElement;

import javax.bluetooth.DiscoveryAgent;

import javax.bluetooth.LocalDevice;

import javax.bluetooth.ServiceRecord;

import javax.bluetooth.ServiceRegistrationException;

import javax.bluetooth.UUID;

// midp/cldc API

import javax.microedition.io.Connector;

import javax.microedition.io.StreamConnection;

import javax.microedition.io.StreamConnectionNotifier;

import javax.microedition.lcdui.*;

import javax.microedition.media.*;

import javax.microedition.media.control.*;

import javax.microedition.midlet.MIDlet;

/**

 * Established the BT service, accepts connections

 * and send the requested image silently.

 *

 * @version ,

 */

final class BTImageServer implements Runnable {

 /** Describes this server */

 private static final UUID PICTURES_SERVER_UUID =

 new UUID("F0E0D0C0B0A000908070605040302010", false);

 /** The attribute id of the record item with images names. */

 private static final int IMAGES_NAMES_ATTRIBUTE_ID = 0x4321;

 /** Keeps the local device reference. */

 private LocalDevice localDevice;

 /** Accepts new connections. */

 private StreamConnectionNotifier notifier;

8

 /** Keeps the information about this server. */

 private ServiceRecord record;

 /** Keeps the parent reference to process specific actions. */

 private GUIImageServer parent;

 /** Becomes 'true' when this component is finalized. */

 private boolean isClosed;

 /** Creates notifier and accepts clients to be processed. */

 private Thread accepterThread;

 /** Process the particular client from queue. */

 private ClientProcessor processor;

 /** Optimization: keeps the table of data elements to be published. */

 private final Hashtable dataElements = new Hashtable();

 private Display display;

 // Form where camera viewfinder is placed

 private Form cameraForm;

 private Form thumbForm;

 // Command for capturing image by camera and saving it.

 // Placed in cameraForm.

 private Command cmdCapture = new Command("Capture", Command.OK, 0);

 // Command for exiting from midlet. Placed in cameraForm.

 private Command cmdExit = new Command("Exit", Command.EXIT, 0);

 // Player for camera

 private Player player;

 // Video control of camera

 private VideoControl videoControl;

 // Alert to be displayed if error occurs.

 private Alert alert;

private byte[] buff;

 /**

 * Constructs the bluetooth server, but it is initialized

 * in the different thread to "avoid dead lock".

 */

 BTImageServer(GUIImageServer parent) {

 this.parent = parent;

 // we have to initialize a system in different thread...

 accepterThread = new Thread(this);

 accepterThread.start();

 }

 /**

 * Accepts a new client and send him/her a requested image.

 */

 public void run() {

 boolean isBTReady = false;

9

 try {

 // create/get a local device

 localDevice = LocalDevice.getLocalDevice();

 // set we are discoverable

 if (!localDevice.setDiscoverable(DiscoveryAgent.GIAC)) {

 // Some implementations always return false, even if

 // setDiscoverable successful

 // throw new IOException("Can't set discoverable mode...");

 }

 // prepare a URL to create a notifier

 StringBuffer url = new StringBuffer("btspp://");

 // indicate this is a server

 url.append("localhost").append(':');

 // add the UUID to identify this service

 url.append(PICTURES_SERVER_UUID.toString());

 // add the name for our service

 url.append(";name=Picture Server");

 // request all of the client not to be authorized

 // some devices fail on authorize=true

 url.append(";authorize=false");

 // create notifier now

 notifier = (StreamConnectionNotifier)Connector.open(url.toString());

 // and remember the service record for the later updates

 record = localDevice.getRecord(notifier);

 // create a special attribute with images names

 DataElement base = new DataElement(DataElement.DATSEQ);

 record.setAttributeValue(IMAGES_NAMES_ATTRIBUTE_ID, base);

 // remember we've reached this point.

 isBTReady = true;

 } catch (Exception e) {

 System.err.println("Can't initialize bluetooth: " + e);

 }

 parent.completeInitialization(isBTReady);

 // nothing to do if no bluetooth available

 if (!isBTReady) {

 return;

 }

 // ok, start processor now

 processor = new ClientProcessor();

 // ok, start accepting connections then

 while (!isClosed) {

 StreamConnection conn = null;

 try {

 conn = notifier.acceptAndOpen();

10

 } catch (IOException e) {

 // wrong client or interrupted - continue anyway

 continue;

 }

 processor.addConnection(conn);

 }

 }

 /**

 * Updates the service record with the information

 * about the published images availability.

 * <p>

 * This method is invoked after the caller has checked

 * already that the real action should be done.

 *

 * @return true if record was updated successfully, false otherwise.

 */

 boolean changeImageInfo(String name, boolean isPublished) {

 // ok, get the record from service

 DataElement base = record.getAttributeValue(IMAGES_NAMES_ATTRIBUTE_ID);

 // check the corresponding DataElement object is created already

 DataElement de = (DataElement)dataElements.get(name);

 // if no, then create a new DataElement that describes this image

 if (de == null) {

 de = new DataElement(DataElement.STRING, name);

 dataElements.put(name, de);

 }

 // we know this data element has DATSEQ type

 if (isPublished) {

 base.addElement(de);

 } else {

 if (!base.removeElement(de)) {

 System.err.println("Error: item was not removed for: " + name);

 return false;

 }

 }

 record.setAttributeValue(IMAGES_NAMES_ATTRIBUTE_ID, base);

 try {

 localDevice.updateRecord(record);

 } catch (ServiceRegistrationException e) {

 System.err.println("Can't update record now for: " + name);

 return false;

 }

 return true;

 }

 /**

 * Destroy a work with bluetooth - exits the accepting

 * thread and close notifier.

 */

11

 void destroy() {

 isClosed = true;

 // finalize notifier work

 if (notifier != null) {

 try {

 notifier.close();

 } catch (IOException e) {

 } // ignore

 }

 // wait for acceptor thread is done

 try {

 accepterThread.join();

 } catch (InterruptedException e) {

 } // ignore

 // finalize processor

 if (processor != null) {

 processor.destroy(true);

 }

 processor = null;

 }

 /**

 * Reads the image name from the specified connection

 * and sends this image through this connection, then

 * close it after all.

 */

 private void processConnection(StreamConnection conn) {

 byte[] imgData;

 // read the image name first

 String imgName = readImageName(conn);

 // check this image is published and get the image file name

 imgName = "/images/leaf.jpg";// parent.getImageFileName(imgName);

 if(parent.raw==null) {

 // load image data into buffer to be send

 imgData = getImageData(imgName); }

 else imgData = parent.raw;

 // send image data now

 sendImageData(imgData, conn);

 // close connection and good-bye

 try {

 conn.close();

 } catch (IOException e) {

 } // ignore

 }

private void showAlert(String title, String message, Displayable nextDisp) {

 alert = new Alert(title);

 alert.setString(message);

 alert.setTimeout(Alert.FOREVER);

12

 if(nextDisp != null) {

 display.setCurrent(alert, nextDisp);

 } else {

 display.setCurrent(alert);

 }

 }

 /** Send image data. */

 private void sendImageData(byte[] imgData, StreamConnection conn) {

 if (imgData == null) {

 return;

 }

 OutputStream out = null;

 try {

 out = conn.openOutputStream();

 out.write(imgData.length >> 8);

 out.write(imgData.length & 0xff);

 out.write(imgData);

 out.flush();

 } catch (IOException e) {

 System.err.println("Can't send image data: " + e);

 }

 // close output stream anyway

 if (out != null) {

 try {

 out.close();

 } catch (IOException e) {

 } // ignore

 }

 }

/**

 * Creates camera control and places it to cameraForm.

 * @throws IOException if creation of player is failed.

 * @throws MediaException if creation of player is failed.

 */

 private void createCamera() throws IOException, MediaException {

 player = Manager.createPlayer("capture://video");

 player.realize();

 player.prefetch();

 videoControl = (VideoControl)player.getControl("VideoControl");

 }

 /**

 * Adds created camera as item to cameraForm.

 */

 private void addCameraToForm() {

 cameraForm.append((Item)videoControl.

 initDisplayMode(VideoControl.USE_GUI_PRIMITIVE, null));

 }

 /**

 * Start camera player

 * @throws IOException if starting of player is failed.

13

 * @throws MediaException if starting of player is failed.

 */

 private void startCamera() throws IOException, MediaException {

 if(player.getState() == Player.PREFETCHED) {

 player.start();

 }

 }

 private Image createThumbnail(Image image) {

 int sourceWidth = image.getWidth();

 int sourceHeight = image.getHeight();

 int thumbWidth = 64;

 int thumbHeight = -1;

 if (thumbHeight == -1)

 thumbHeight = thumbWidth * sourceHeight / sourceWidth;

 Image thumb = Image.createImage(thumbWidth, thumbHeight);

 Graphics g = thumb.getGraphics();

 for (int y = 0; y < thumbHeight; y++) {

 for (int x = 0; x < thumbWidth; x++) {

 g.setClip(x, y, 1, 1);

 int dx = x * sourceWidth / thumbWidth;

 int dy = y * sourceHeight / thumbHeight;

 g.drawImage(image, x - dx, y - dy, Graphics.LEFT | Graphics.TOP);

 }

 }

 Image immutableThumb = Image.createImage(thumb);

 return immutableThumb;

 }

 /** Reads image name from specified connection. */

 private String readImageName(StreamConnection conn) {

 String imgName = null;

 InputStream in = null;

 try {

 in = conn.openInputStream();

 int length = in.read(); // 'name' length is 1 byte

 if (length <= 0) {

 throw new IOException("Can't read name length");

 }

 byte[] nameData = new byte[length];

 length = 0;

 while (length != nameData.length) {

 int n = in.read(nameData, length, nameData.length - length);

 if (n == -1) {

 throw new IOException("Can't read name data");

 }

14

 length += n;

 }

 imgName = new String(nameData);

 } catch (IOException e) {

 System.err.println(e);

 }

 // close input stream anyway

 if (in != null) {

 try {

 in.close();

 } catch (IOException e) {

 } // ignore

 }

 return imgName;

 }

 /** Reads images data from MIDlet archive to array. */

 private byte[] getImageData(String imgName) {

 if (imgName == null) {

 return null;

 }

 InputStream in = getClass().getResourceAsStream(imgName);

 // read image data and create a byte array

 byte[] buff = new byte[1024];

 ByteArrayOutputStream baos = new ByteArrayOutputStream(1024);

 try {

 while (true) {

 int length = in.read(buff);

 if (length == -1) {

 break;

 }

 baos.write(buff, 0, length);

 }

 } catch (IOException e) {

 System.err.println("Can't get image data: imgName=" + imgName + " :" + e);

 return null;

 }

 return baos.toByteArray();

 }

 /**

 * Organizes the queue of clients to be processed,

 * processes the clients one by one until destroyed.

 */

 private class ClientProcessor implements Runnable {

 private Thread processorThread;

 private Vector queue = new Vector();

 private boolean isOk = true;

15

 ClientProcessor() {

 processorThread = new Thread(this);

 processorThread.start();

 }

 public void run() {

 while (!isClosed) {

 // wait for new task to be processed

 synchronized (this) {

 if (queue.size() == 0) {

 try {

 wait();

 } catch (InterruptedException e) {

 System.err.println("Unexpected exception: " + e);

 destroy(false);

 return;

 }

 }

 }

 // send the image to specified connection

 StreamConnection conn;

 synchronized (this) {

 // may be awaked by "destroy" method.

 if (isClosed) {

 return;

 }

 conn = (StreamConnection)queue.firstElement();

 queue.removeElementAt(0);

 processConnection(conn);

 }

 }

 }

 /** Adds the connection to queue and notifies the thread. */

 void addConnection(StreamConnection conn) {

 synchronized (this) {

 queue.addElement(conn);

 notify();

 }

 }

 /** Closes the connections and . */

 void destroy(boolean needJoin) {

 StreamConnection conn;

 synchronized (this) {

 notify();

 while (queue.size() != 0) {

 conn = (StreamConnection)queue.firstElement();

 queue.removeElementAt(0);

16

 try {

 conn.close();

 } catch (IOException e) {

 } // ignore

 }

 }

 // wait until dispatching thread is done

 try {

 processorThread.join();

 } catch (InterruptedException e) {

 } // ignore

 }

 }

} // end of class 'BTImageServer' definition

17

APPENDIX D: GUI Image Server (J2ME)

package example.bluetooth.demo;

import java.io.IOException;

import java.util.Vector;

import javax.microedition.lcdui.Alert;

import javax.microedition.lcdui.AlertType;

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.CommandListener;

import javax.microedition.lcdui.Display;

import javax.microedition.lcdui.Displayable;

import javax.microedition.lcdui.Graphics;

import javax.microedition.lcdui.Image;

import javax.microedition.lcdui.List;

import javax.microedition.lcdui.Ticker;

import javax.microedition.lcdui.*;

import javax.microedition.media.*;

import javax.microedition.media.control.*;

import javax.microedition.midlet.MIDlet;

/**

 * Allows to customize the images list to be published,

 * creates the corresponding service record to describe this list

 * and send the images to clients by request.

 *

 * @version ,

 */

final class GUIImageServer implements CommandListener {

 /** Keeps the help message of this demo. */

 private final String helpText =

 "The server is started by default.\n\n" +

 "No images are published initially. Change this by corresponding" +

 " commands - the changes have an effect immediately.\n\n" +

 "If image is removed from the published list, it can't " + "be downloaded.";

 /** This command goes to demo main screen. */

 private final Command backCommand = new Command("Back", Command.BACK, 2);

 /** Adds the selected image to the published list. */

 private final Command addCommand = new Command("Publish image", Command.SCREEN, 1);

 /** Removes the selected image from the published list. */

 private final Command removeCommand = new Command("Remove image", Command.SCREEN, 1);

 /** Shows the help message. */

 private final Command helpCommand = new Command("Help", Command.HELP, 1);

 /** The list control to configure images. */

18

 private final List imagesList = new List("Configure Server", List.IMPLICIT);

 /** The help screen for the server. */

 private final Alert helpScreen = new Alert("Help");

 /** Keeps the parent MIDlet reference to process specific actions. */

 private DemoMIDlet parent;

 /** The list of images file names. */

 private Vector imagesNames;

 /** These images are used to indicate the picture is published. */

 private Image onImage;

 /** These images are used to indicate the picture is published. */

 private Image offImage;

 /** Keeps an information about what images are published. */

 private boolean[] published;

 /** This object handles the real transmission. */

 private BTImageServer bt_server;

 private Display display;

 // Form where camera viewfinder is placed

 private Form cameraForm;

 private Form thumbForm;

 // Command for capturing image by camera and saving it.

 // Placed in cameraForm.

 private Command cmdCapture = new Command("Capture", Command.OK, 0);

 // Command for exiting from midlet. Placed in cameraForm.

 private Command cmdExit = new Command("Exit", Command.EXIT, 0);

 // Player for camera

 private Player player;

 // Video control of camera

 private VideoControl videoControl;

 // Alert to be displayed if error occurs.

 private Alert alert;

 public byte[] raw;

 /** Constructs images server GUI. */

 GUIImageServer(DemoMIDlet parent) {

 this.parent = parent;

 bt_server = new BTImageServer(this);

 setupIdicatorImage();

 setupImageList();

 published = new boolean[imagesList.size()];

 // prepare main screen

 imagesList.addCommand(backCommand);

 imagesList.addCommand(addCommand);

 imagesList.addCommand(removeCommand);

19

 imagesList.addCommand(helpCommand);

 imagesList.setCommandListener(this);

 // prepare help screen

 helpScreen.addCommand(backCommand);

 helpScreen.setTimeout(Alert.FOREVER);

 helpScreen.setString(helpText);

 helpScreen.setCommandListener(this);

 // Create camera form

 cameraForm = new Form("Camera");

 cameraForm.addCommand(cmdCapture);

 cameraForm.addCommand(cmdExit);

 cameraForm.setCommandListener(this);

 // Create thumbnail form

 thumbForm = new Form("thumb");

 thumbForm .addCommand(helpCommand);

 thumbForm .setCommandListener(this);

 }

 /**

 * Process the command event.

 *

 * @param c - the issued command.

 * @param d - the screen object the command was issued for.

 */

 public void commandAction(Command c, Displayable d) {

 if ((c == backCommand) && (d == imagesList)) {

 destroy();

 parent.show();

 return;

 }

 if ((c == backCommand) && (d == helpScreen)) {

 Display.getDisplay(parent).setCurrent(imagesList);

 return;

 }

 if (c == helpCommand) {

 //Display.getDisplay(parent).setCurrent(helpScreen);

 Display.getDisplay(parent).setCurrent(cameraForm);

 try {

 createCamera();

 addCameraToForm();

 startCamera();

 } catch(IOException ioExc) {

 showAlert("IO error", ioExc.getMessage(), null);

 } catch(MediaException mediaExc) {

 showAlert("Media error", mediaExc.getMessage(), null);

 }

 display = Display.getDisplay(parent);

 }

20

 if (c == cmdExit) {

 if(player != null) {

 player.deallocate();

 player.close();

 }

 Display.getDisplay(parent).setCurrent(imagesList);

 }

 if (c == cmdCapture) {

 capture();

 }

 /*

 * Changing the state of base of published images

 */

 int index = imagesList.getSelectedIndex();

 // nothing to do

 if ((c == addCommand) == published[index]) {

 return;

 }

 // update information and view

 published[index] = c == addCommand;

 Image stateImg = (c == addCommand) ? onImage : offImage;

 imagesList.set(index, imagesList.getString(index), stateImg);

 // update bluetooth service information

 if (!bt_server.changeImageInfo(imagesList.getString(index), published[index])) {

 // either a bad record or SDDB is busy

 Alert al = new Alert("Error", "Can't update base", null, AlertType.ERROR);

 al.setTimeout(DemoMIDlet.ALERT_TIMEOUT);

 Display.getDisplay(parent).setCurrent(al, imagesList);

 // restore internal information

 published[index] = !published[index];

 stateImg = published[index] ? onImage : offImage;

 imagesList.set(index, imagesList.getString(index), stateImg);

 }

 }

private void showAlert(String title, String message, Displayable nextDisp) {

 alert = new Alert(title);

 alert.setString(message);

 alert.setTimeout(Alert.FOREVER);

 if(nextDisp != null) {

 display.setCurrent(alert, nextDisp);

 } else {

 display.setCurrent(alert);

 alert.setCommandListener(this);

 }

 }

/**

 * Creates camera control and places it to cameraForm.

 * @throws IOException if creation of player is failed.

 * @throws MediaException if creation of player is failed.

21

 */

 private void createCamera() throws IOException, MediaException {

 player = Manager.createPlayer("capture://video");

 player.realize();

 player.prefetch();

 videoControl = (VideoControl)player.getControl("VideoControl");

 }

 /**

 * Adds created camera as item to cameraForm.

 */

 private void addCameraToForm() {

 cameraForm.append((Item)videoControl.

 initDisplayMode(VideoControl.USE_GUI_PRIMITIVE, null));

 }

 /**

 * Start camera player

 * @throws IOException if starting of player is failed.

 * @throws MediaException if starting of player is failed.

 */

 private void startCamera() throws IOException, MediaException {

 if(player.getState() == Player.PREFETCHED) {

 player.start();

 }

 }

 public void capture() {

 try {

 // Get the image.

 raw = videoControl.getSnapshot("encoding=jpeg");

 Image image = Image.createImage(raw, 0, raw.length);

 Image thumb = createThumbnail(image);

 // Shut down the player.

 player.close();

 player = null;

 videoControl = null;

 // Place it in the main form.

 cameraForm.delete(0);

 thumbForm.deleteAll();

 thumbForm.append(thumb);

 // Flip back to the main form.

 Display.getDisplay(parent).setCurrent(thumbForm);

 }

 catch (MediaException me) { }

 }

 private Image createThumbnail(Image image) {

 int sourceWidth = image.getWidth();

 int sourceHeight = image.getHeight();

 int thumbWidth = 64;

22

 int thumbHeight = -1;

 if (thumbHeight == -1)

 thumbHeight = thumbWidth * sourceHeight / sourceWidth;

 Image thumb = Image.createImage(thumbWidth, thumbHeight);

 Graphics g = thumb.getGraphics();

 for (int y = 0; y < thumbHeight; y++) {

 for (int x = 0; x < thumbWidth; x++) {

 g.setClip(x, y, 1, 1);

 int dx = x * sourceWidth / thumbWidth;

 int dy = y * sourceHeight / thumbHeight;

 g.drawImage(image, x - dx, y - dy, Graphics.LEFT | Graphics.TOP);

 }

 }

 Image immutableThumb = Image.createImage(thumb);

 return immutableThumb;

 }

 /**

 * We have to provide this method due to "do not do network

 * operation in command listener method" restriction, which

 * is caused by crooked midp design.

 *

 * This method is called by BTImageServer after it is done

 * with bluetooth initialization and next screen is ready

 * to appear.

 */

 void completeInitialization(boolean isBTReady) {

 // bluetooth was initialized successfully.

 if (isBTReady) {

 Ticker t = new Ticker("Choose images you want to publish...");

 imagesList.setTicker(t);

 Display.getDisplay(parent).setCurrent(imagesList);

 return;

 }

 // something wrong

 Alert al = new Alert("Error", "Can't initialize bluetooth", null, AlertType.ERROR);

 al.setTimeout(DemoMIDlet.ALERT_TIMEOUT);

 Display.getDisplay(parent).setCurrent(al, parent.getDisplayable());

 }

 /** Destroys this component. */

 void destroy() {

 // finalize the image server work

 bt_server.destroy();

 }

 /** Gets the image file name from its title (label). */

 String getImageFileName(String imgName) {

 if (imgName == null) {

 return null;

23

 }

 // no interface in List to get the index - should find

 int index = -1;

 for (int i = 0; i < imagesList.size(); i++) {

 if (imagesList.getString(i).equals(imgName)) {

 index = i;

 break;

 }

 }

 // not found or not published

 if ((index == -1) || !published[index]) {

 return null;

 }

 return (String)imagesNames.elementAt(index);

 }

 /**

 * Creates the image to indicate the base state.

 */

 private void setupIdicatorImage() {

 // create "on" image

 try {

 onImage = Image.createImage("/images/st-on.png");

 } catch (IOException e) {

 // provide off-screen image then

 onImage = createIndicatorImage(12, 12, 0, 255, 0);

 }

 // create "off" image

 try {

 offImage = Image.createImage("/images/st-off.png");

 } catch (IOException e) {

 // provide off-screen image then

 offImage = createIndicatorImage(12, 12, 255, 0, 0);

 }

 }

 /**

 * Gets the description of images from manifest and

 * prepares the list to control the configuration.

 * <p>

 * The attributes are named "ImageTitle-n" and "ImageImage-n".

 * The value "n" must start at "1" and be incremented by 1.

 */

 private void setupImageList() {

 imagesNames = new Vector();

 imagesList.setCommandListener(this);

 for (int n = 1; n < 100; n++) {

 String name = parent.getAppProperty("ImageName-" + n);

 // no more images available

24

 if ((name == null) || (name.length() == 0)) {

 break;

 }

 String label = parent.getAppProperty("ImageTitle-" + n);

 // no label available - use picture name instead

 if ((label == null) || (label.length() == 0)) {

 label = name;

 }

 imagesNames.addElement(name);

 imagesList.append(label, offImage);

 }

 }

 /**

 * Creates the off-screen image with specified size an color.

 */

 private Image createIndicatorImage(int w, int h, int r, int g, int b) {

 Image res = Image.createImage(w, h);

 Graphics gc = res.getGraphics();

 gc.setColor(r, g, b);

 gc.fillRect(0, 0, w, h);

 return res;

 }

} // end of class 'GUIImageServer' definition

25

APPENDIX E: Bluetooth Image Client (J2ME)

package example.bluetooth.demo;

import java.io.IOException;

import java.io.InputStream;

import java.io.OutputStream;

import java.util.Enumeration;

import java.util.Hashtable;

import java.util.Vector;

// jsr082 API

import javax.bluetooth.BluetoothStateException;

import javax.bluetooth.DataElement;

import javax.bluetooth.DeviceClass;

import javax.bluetooth.DiscoveryAgent;

import javax.bluetooth.DiscoveryListener;

import javax.bluetooth.LocalDevice;

import javax.bluetooth.RemoteDevice;

import javax.bluetooth.ServiceRecord;

import javax.bluetooth.UUID;

// midp/cldc API

import javax.microedition.io.Connector;

import javax.microedition.io.StreamConnection;

import javax.microedition.lcdui.Image;

/**

 * Initialize BT device, search for BT services,

 * presents them to user and picks his/her choice,

 * finally download the choosen image and present

 * it to user.

 *

 * @version ,

 */

final class BTImageClient implements Runnable, DiscoveryListener {

 /** Describes this server */

 private static final UUID PICTURES_SERVER_UUID =

 new UUID("F0E0D0C0B0A000908070605040302010", false);

 /** The attribute id of the record item with images names. */

 private static final int IMAGES_NAMES_ATTRIBUTE_ID = 0x4321;

 /** Shows the engine is ready to work. */

 private static final int READY = 0;

 /** Shows the engine is searching bluetooth devices. */

 private static final int DEVICE_SEARCH = 1;

 /** Shows the engine is searching bluetooth services. */

26

 private static final int SERVICE_SEARCH = 2;

 /** Keeps the current state of engine. */

 private int state = READY;

 /** Keeps the discovery agent reference. */

 private DiscoveryAgent discoveryAgent;

 /** Keeps the parent reference to process specific actions. */

 private GUIImageClient parent;

 /** Becomes 'true' when this component is finalized. */

 private boolean isClosed;

 /** Process the search/download requests. */

 private Thread processorThread;

 /** Collects the remote devices found during a search. */

 private Vector /* RemoteDevice */ devices = new Vector();

 /** Collects the services found during a search. */

 private Vector /* ServiceRecord */ records = new Vector();

 /** Keeps the device discovery return code. */

 private int discType;

 /** Keeps the services search IDs (just to be able to cancel them). */

 private int[] searchIDs;

 /** Keeps the image name to be load. */

 private String imageNameToLoad;

 /** Keeps the table of {name, Service} to process the user choice. */

 private Hashtable base = new Hashtable();

 /** Informs the thread the download should be canceled. */

 private boolean isDownloadCanceled;

 /** Optimization: keeps service search pattern. */

 private UUID[] uuidSet;

 /** Optimization: keeps attributes list to be retrieved. */

 private int[] attrSet;

 /**

 * Constructs the bluetooth server, but it is initialized

 * in the different thread to "avoid dead lock".

 */

 BTImageClient(GUIImageClient parent) {

 this.parent = parent;

 // we have to initialize a system in different thread...

 processorThread = new Thread(this);

 processorThread.start();

 }

 /**

 * Process the search/download requests.

 */

27

 public void run() {

 // initialize bluetooth first

 boolean isBTReady = false;

 try {

 // create/get a local device and discovery agent

 LocalDevice localDevice = LocalDevice.getLocalDevice();

 discoveryAgent = localDevice.getDiscoveryAgent();

 // remember we've reached this point.

 isBTReady = true;

 } catch (Exception e) {

 System.err.println("Can't initialize bluetooth: " + e);

 }

 parent.completeInitialization(isBTReady);

 // nothing to do if no bluetooth available

 if (!isBTReady) {

 return;

 }

 // initialize some optimization variables

 uuidSet = new UUID[2];

 // ok, we are interesting in btspp services only

 uuidSet[0] = new UUID(0x1101);

 // and only known ones, that allows pictures

 uuidSet[1] = PICTURES_SERVER_UUID;

 // we need an only service attribute actually

 attrSet = new int[1];

 // it's "images names" one

 attrSet[0] = IMAGES_NAMES_ATTRIBUTE_ID;

 // start processing the images search/download

 processImagesSearchDownload();

 }

 /**

 * Invoked by system when a new remote device is found -

 * remember the found device.

 */

 public void deviceDiscovered(RemoteDevice btDevice, DeviceClass cod) {

 // same device may found several times during single search

 if (devices.indexOf(btDevice) == -1) {

 devices.addElement(btDevice);

 }

 }

 /**

 * Invoked by system when device discovery is done.

 * <p>

 * Use a trick here - just remember the discType

 * and process its evaluation in another thread.

 */

 public void inquiryCompleted(int discType) {

28

 this.discType = discType;

 synchronized (this) {

 notify();

 }

 }

 public void servicesDiscovered(int transID, ServiceRecord[] servRecord) {

 for (int i = 0; i < servRecord.length; i++) {

 records.addElement(servRecord[i]);

 }

 }

 public void serviceSearchCompleted(int transID, int respCode) {

 // first, find the service search transaction index

 int index = -1;

 for (int i = 0; i < searchIDs.length; i++) {

 if (searchIDs[i] == transID) {

 index = i;

 break;

 }

 }

 // error - unexpected transaction index

 if (index == -1) {

 System.err.println("Unexpected transaction index: " + transID);

 // FIXME: process the error case

 } else {

 searchIDs[index] = -1;

 }

 /*

 * Actually, we do not care about the response code -

 * if device is not reachable or no records, etc.

 */

 // make sure it was the last transaction

 for (int i = 0; i < searchIDs.length; i++) {

 if (searchIDs[i] != -1) {

 return;

 }

 }

 // ok, all of the transactions are completed

 synchronized (this) {

 notify();

 }

 }

 /** Sets the request to search the devices/services. */

 void requestSearch() {

 synchronized (this) {

 notify();

 }

 }

29

 /** Cancel's the devices/services search. */

 void cancelSearch() {

 synchronized (this) {

 if (state == DEVICE_SEARCH) {

 discoveryAgent.cancelInquiry(this);

 } else if (state == SERVICE_SEARCH) {

 for (int i = 0; i < searchIDs.length; i++) {

 discoveryAgent.cancelServiceSearch(searchIDs[i]);

 }

 }

 }

 }

 /** Sets the request to load the specified image. */

 void requestLoad(String name) {

 synchronized (this) {

 imageNameToLoad = name;

 notify();

 }

 }

 /** Cancel's the image download. */

 void cancelLoad() {

 /*

 * The image download process is done by

 * this class's thread (not by a system one),

 * so no need to wake up the current thread -

 * it's running already.

 */

 isDownloadCanceled = true;

 }

 /**

 * Destroy a work with bluetooth - exits the accepting

 * thread and close notifier.

 */

 void destroy() {

 synchronized (this) {

 isClosed = true;

 isDownloadCanceled = true;

 notify();

 // FIXME: implement me

 }

 // wait for acceptor thread is done

 try {

 processorThread.join();

 } catch (InterruptedException e) {

 } // ignore

 }

 /**

 * Processes images search/download until component is closed

 * or system error has happen.

 */

 private synchronized void processImagesSearchDownload() {

 while (!isClosed) {

 // wait for new search request from user

30

 state = READY;

 try {

 wait();

 } catch (InterruptedException e) {

 System.err.println("Unexpected interruption: " + e);

 return;

 }

 // check the component is destroyed

 if (isClosed) {

 return;

 }

 // search for devices

 if (!searchDevices()) {

 return;

 } else if (devices.size() == 0) {

 continue;

 }

 // search for services now

 if (!searchServices()) {

 return;

 } else if (records.size() == 0) {

 continue;

 }

 // ok, something was found - present the result to user now

 if (!presentUserSearchResults()) {

 // services are found, but no names there

 continue;

 }

 // the several download requests may be processed

 while (true) {

 // this download is not canceled, right?

 isDownloadCanceled = false;

 // ok, wait for download or need to wait for next search

 try {

 wait();

 } catch (InterruptedException e) {

 System.err.println("Unexpected interruption: " + e);

 return;

 }

 // check the component is destroyed

 if (isClosed) {

 return;

 }

 // this means "go to the beginning"

 if (imageNameToLoad == null) {

 break;

 }

31

 // load selected image data

 Image img = loadImage();

 // FIXME: this never happen - monitor is taken...

 if (isClosed) {

 return;

 }

 if (isDownloadCanceled) {

 continue; // may be next image to be download

 }

 if (img == null) {

 parent.informLoadError("Can't load image: " + imageNameToLoad);

 continue; // may be next image to be download

 }

 // ok, show image to user

 parent.showImage(img, imageNameToLoad);

 // may be next image to be download

 continue;

 }

 }

 }

 /**

 * Search for bluetooth devices.

 *

 * @return false if should end the component work.

 */

 private boolean searchDevices() {

 // ok, start a new search then

 state = DEVICE_SEARCH;

 devices.removeAllElements();

 try {

 discoveryAgent.startInquiry(DiscoveryAgent.GIAC, this);

 } catch (BluetoothStateException e) {

 System.err.println("Can't start inquiry now: " + e);

 parent.informSearchError("Can't start device search");

 return true;

 }

 try {

 wait(); // until devices are found

 } catch (InterruptedException e) {

 System.err.println("Unexpected interruption: " + e);

 return false;

 }

 // this "wake up" may be caused by 'destroy' call

 if (isClosed) {

 return false;

 }

32

 // no?, ok, let's check the return code then

 switch (discType) {

 case INQUIRY_ERROR:

 parent.informSearchError("Device discovering error...");

 // fall through

 case INQUIRY_TERMINATED:

 // make sure no garbage in found devices list

 devices.removeAllElements();

 // nothing to report - go to next request

 break;

 case INQUIRY_COMPLETED:

 if (devices.size() == 0) {

 parent.informSearchError("No devices in range");

 }

 // go to service search now

 break;

 default:

 // what kind of system you are?... :(

 System.err.println("system error:" + " unexpected device discovery code: " +

discType);

 destroy();

 return false;

 }

 return true;

 }

 /**

 * Search for proper service.

 *

 * @return false if should end the component work.

 */

 private boolean searchServices() {

 state = SERVICE_SEARCH;

 records.removeAllElements();

 searchIDs = new int[devices.size()];

 boolean isSearchStarted = false;

 for (int i = 0; i < devices.size(); i++) {

 RemoteDevice rd = (RemoteDevice)devices.elementAt(i);

 try {

 searchIDs[i] = discoveryAgent.searchServices(attrSet, uuidSet, rd, this);

 } catch (BluetoothStateException e) {

 System.err.println("Can't search services for: " + rd.getBluetoothAddress()

+

 " due to " + e);

 searchIDs[i] = -1;

 continue;

 }

33

 isSearchStarted = true;

 }

 // at least one of the services search should be found

 if (!isSearchStarted) {

 parent.informSearchError("Can't search services.");

 return true;

 }

 try {

 wait(); // until services are found

 } catch (InterruptedException e) {

 System.err.println("Unexpected interruption: " + e);

 return false;

 }

 // this "wake up" may be caused by 'destroy' call

 if (isClosed) {

 return false;

 }

 // actually, no services were found

 if (records.size() == 0) {

 parent.informSearchError("No proper services were found");

 }

 return true;

 }

 /**

 * Gets the collection of the images titles (names)

 * from the services, prepares a hashtable to match

 * the image name to a services list, presents the images names

 * to user finally.

 *

 * @return false if no names in found services.

 */

 private boolean presentUserSearchResults() {

 base.clear();

 for (int i = 0; i < records.size(); i++) {

 ServiceRecord sr = (ServiceRecord)records.elementAt(i);

 // get the attribute with images names

 DataElement de = sr.getAttributeValue(IMAGES_NAMES_ATTRIBUTE_ID);

 if (de == null) {

 System.err.println("Unexpected service - missed attribute");

 continue;

 }

 // get the images names from this attribute

 Enumeration deEnum = (Enumeration)de.getValue();

 while (deEnum.hasMoreElements()) {

34

 de = (DataElement)deEnum.nextElement();

 String name = (String)de.getValue();

 // name may be stored already

 Object obj = base.get(name);

 // that's either the ServiceRecord or Vector

 if (obj != null) {

 Vector v;

 if (obj instanceof ServiceRecord) {

 v = new Vector();

 v.addElement(obj);

 } else {

 v = (Vector)obj;

 }

 v.addElement(sr);

 obj = v;

 } else {

 obj = sr;

 }

 base.put(name, obj);

 }

 }

 return parent.showImagesNames(base);

 }

 /**

 * Loads selected image data.

 */

 private Image loadImage() {

 if (imageNameToLoad == null) {

 System.err.println("Error: imageNameToLoad=null");

 return null;

 }

 // ok, get the list of service records

 ServiceRecord[] sr = null;

 Object obj = base.get(imageNameToLoad);

 if (obj == null) {

 System.err.println("Error: no record for: " + imageNameToLoad);

 return null;

 } else if (obj instanceof ServiceRecord) {

 sr = new ServiceRecord[] { (ServiceRecord)obj };

 } else {

 Vector v = (Vector)obj;

 sr = new ServiceRecord[v.size()];

 for (int i = 0; i < v.size(); i++) {

 sr[i] = (ServiceRecord)v.elementAt(i);

 }

 }

35

 // now try to load the image from each services one by one

 for (int i = 0; i < sr.length; i++) {

 StreamConnection conn = null;

 String url = null;

 // the process may be canceled

 if (isDownloadCanceled) {

 return null;

 }

 // first - connect

 try {

 url = sr[i].getConnectionURL(ServiceRecord.NOAUTHENTICATE_NOENCRYPT,

false);

 conn = (StreamConnection)Connector.open(url);

 } catch (IOException e) {

 System.err.println("Note: can't connect to: " + url);

 // ignore

 continue;

 }

 // then open a steam and write a name

 try {

 OutputStream out = conn.openOutputStream();

 out.write(imageNameToLoad.length()); // length is 1 byte

 out.write(imageNameToLoad.getBytes());

 out.flush();

 out.close();

 } catch (IOException e) {

 System.err.println("Can't write to server for: " + url);

 // close stream connection

 try {

 conn.close();

 } catch (IOException ee) {

 } // ignore

 continue;

 }

 // then open a steam and read an image

 byte[] imgData = null;

 try {

 InputStream in = conn.openInputStream();

 // read a length first

 int length = in.read() << 8;

 length |= in.read();

 if (length <= 0) {

 throw new IOException("Can't read a length");

 }

 // read the image now

 imgData = new byte[length];

 length = 0;

36

 while (length != imgData.length) {

 int n = in.read(imgData, length, imgData.length - length);

 if (n == -1) {

 throw new IOException("Can't read a image data");

 }

 length += n;

 }

 in.close();

 } catch (IOException e) {

 // SEMC BEGIN:

 System.err.println("Can't read from server for: " + url + ". Message was: "

+ e);

 // SEMC END

 continue;

 } finally {

 // close stream connection anyway

 try {

 conn.close();

 } catch (IOException e) {

 } // ignore

 }

 // ok, may it's a chance

 Image img = null;

 try {

 img = Image.createImage(imgData, 0, imgData.length);

 } catch (Exception e) {

 // may be next time

 System.err.println("Error: wrong image data from: " + url);

 continue;

 }

 return img;

 }

 return null;

 }

} // end of class 'BTImageClient' definition

37

APPENDIX F: GUI Image Client (J2ME)

package example.bluetooth.demo;

import java.io.IOException;

import java.util.Enumeration;

import java.util.Hashtable;

import javax.microedition.lcdui.Alert;

import javax.microedition.lcdui.AlertType;

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.CommandListener;

import javax.microedition.lcdui.Display;

import javax.microedition.lcdui.Displayable;

import javax.microedition.lcdui.Form;

import javax.microedition.lcdui.Gauge;

import javax.microedition.lcdui.Image;

import javax.microedition.lcdui.ImageItem;

import javax.microedition.lcdui.List;

import javax.microedition.lcdui.StringItem;

/**

 * Provides a GUI to present the download options

 * to used, gives a chance to make a choice,

 * finally shows the downloaded image.

*/

final class GUIImageClient implements CommandListener {

 /** This command goes to demo main screen. */

 private final Command SCR_MAIN_BACK_CMD = new Command("Back", Command.BACK, 2);

 /** Starts the proper services search. */

 private final Command SCR_MAIN_SEARCH_CMD = new Command("Find", Command.OK, 1);

 /** Cancels the device/services discovering. */

 private final Command SCR_SEARCH_CANCEL_CMD = new Command("Cancel", Command.BACK, 2);

 /** This command goes to client main screen. */

 private final Command SCR_IMAGES_BACK_CMD = new Command("Back", Command.BACK, 2);

 /** Start the chosen image download. */

 private final Command SCR_IMAGES_LOAD_CMD = new Command("Load", Command.OK, 1);

 /** Cancels the image download. */

 private final Command SCR_LOAD_CANCEL_CMD = new Command("Cancel", Command.BACK, 2);

 /** This command goes from image screen to images list one. */

 private final Command SCR_SHOW_BACK_CMD = new Command("Back", Command.BACK, 2);

 /** The main screen of the client part. */

 private final Form mainScreen = new Form("Image Viewer");

 /** The screen with found images names. */

38

 private final List listScreen = new List("Image Viewer", List.IMPLICIT);

 /** The screen with download image. */

 private final Form imageScreen = new Form("Image Viewer");

 /** Keeps the parent MIDlet reference to process specific actions. */

 private DemoMIDlet parent;

 /** This object handles the real transmission. */

 private BTImageClient bt_client;

 /** Constructs client GUI. */

 GUIImageClient(DemoMIDlet parent) {

 this.parent = parent;

 bt_client = new BTImageClient(this);

 mainScreen.addCommand(SCR_MAIN_BACK_CMD);

 mainScreen.addCommand(SCR_MAIN_SEARCH_CMD);

 mainScreen.setCommandListener(this);

 listScreen.addCommand(SCR_IMAGES_BACK_CMD);

 listScreen.addCommand(SCR_IMAGES_LOAD_CMD);

 listScreen.setCommandListener(this);

 imageScreen.addCommand(SCR_SHOW_BACK_CMD);

 imageScreen.setCommandListener(this);

 }

 /**

 * Process the command events.

 *

 * @param c - the issued command.

 * @param d - the screen object the command was issued for.

 */

 public void commandAction(Command c, Displayable d) {

 // back to demo main screen

 if (c == SCR_MAIN_BACK_CMD) {

 destroy();

 parent.show();

 return;

 }

 // starts images (device/services) search

 if (c == SCR_MAIN_SEARCH_CMD) {

 Form f = new Form("Searching...");

 f.addCommand(SCR_SEARCH_CANCEL_CMD);

 f.setCommandListener(this);

 f.append(new Gauge("Searching images...", false, Gauge.INDEFINITE,

 Gauge.CONTINUOUS_RUNNING));

 Display.getDisplay(parent).setCurrent(f);

 bt_client.requestSearch();

 return;

 }

 // cancels device/services search

 if (c == SCR_SEARCH_CANCEL_CMD) {

 bt_client.cancelSearch();

 Display.getDisplay(parent).setCurrent(mainScreen);

 return;

39

 }

 // back to client main screen

 if (c == SCR_IMAGES_BACK_CMD) {

 bt_client.requestLoad(null);

 Display.getDisplay(parent).setCurrent(mainScreen);

 return;

 }

 // starts image download

 if (c == SCR_IMAGES_LOAD_CMD) {

 Form f = new Form("Loading...");

 f.addCommand(SCR_LOAD_CANCEL_CMD);

 f.setCommandListener(this);

 f.append(new Gauge("Loading image...", false, Gauge.INDEFINITE,

Gauge.CONTINUOUS_RUNNING));

 Display.getDisplay(parent).setCurrent(f);

 List l = (List)d;

 bt_client.requestLoad(l.getString(l.getSelectedIndex()));

 return;

 }

 // cancels image load

 if (c == SCR_LOAD_CANCEL_CMD) {

 bt_client.cancelLoad();

 Display.getDisplay(parent).setCurrent(listScreen);

 return;

 }

 // back to client main screen

 if (c == SCR_SHOW_BACK_CMD) {

 Display.getDisplay(parent).setCurrent(listScreen);

 return;

 }

 }

 /**

 * We have to provide this method due to "do not do network

 * operation in command listener method" restriction, which

 * is caused by crooked midp design.

 *

 * This method is called by BTImageClient after it is done

 * with bluetooth initialization and next screen is ready

 * to appear.

 */

 void completeInitialization(boolean isBTReady) {

 // bluetooth was initialized successfully.

 if (isBTReady) {

 StringItem si = new StringItem("Ready for images search!",

null);

 si.setLayout(StringItem.LAYOUT_CENTER |

StringItem.LAYOUT_VCENTER);

 mainScreen.append(si);

 Display.getDisplay(parent).setCurrent(mainScreen);

 return;

 }

 // something wrong

 Alert al = new Alert("Error", "Can't initialize bluetooth", null,

AlertType.ERROR);

 al.setTimeout(DemoMIDlet.ALERT_TIMEOUT);

 Display.getDisplay(parent).setCurrent(al, parent.getDisplayable());

40

 }

 /** Destroys this component. */

 void destroy() {

 // finalize the image client work

 bt_client.destroy();

 }

 /**

 * Informs the error during the images search.

 */

 void informSearchError(String resMsg) {

 Alert al = new Alert("Error", resMsg, null, AlertType.ERROR);

 al.setTimeout(DemoMIDlet.ALERT_TIMEOUT);

 Display.getDisplay(parent).setCurrent(al, mainScreen);

 }

 /**

 * Informs the error during the selected image load.

 */

 void informLoadError(String resMsg) {

 Alert al = new Alert("Error", resMsg, null, AlertType.ERROR);

 al.setTimeout(DemoMIDlet.ALERT_TIMEOUT);

 Display.getDisplay(parent).setCurrent(al, listScreen);

 }

 /**

 * Shows the downloaded image.

 */

 void showImage(Image img, String imgName) {

 imageScreen.deleteAll();

 imageScreen.append(new ImageItem(imgName, img,

 ImageItem.LAYOUT_CENTER | ImageItem.LAYOUT_VCENTER,

"Downloaded image: " + imgName));

 Display.getDisplay(parent).setCurrent(imageScreen);

 }

 /**

 * Shows the available images names.

 * @return false if no images names were found actually

 */

 boolean showImagesNames(Hashtable base) {

 Enumeration keys = base.keys();

 // no images actually

 if (!keys.hasMoreElements()) {

 informSearchError("No images names in found services");

 return false;

 }

 // prepare the list to be shown

 while (listScreen.size() != 0) {

 listScreen.delete(0);

 }

 while (keys.hasMoreElements()) {

 listScreen.append((String)keys.nextElement(), null);

 }

 Display.getDisplay(parent).setCurrent(listScreen);

 return true;

 }

} // end of class 'GUIImageClient' definition

	FES Final Year Project Template
	FES Final Year Project Template

