
 

 

 

DIGITAL SECURITY LOCKING SYSTEM –  

USB BASED GSM SECURITY SYSTEM 

 

 

 

 

 

 

 

CHAI CHONG YI 

 

 

 

 

 

 

 

A project report submitted in partial fulfilment of the 

requirements for the award of the degree of 

Bachelor (Hons.) of Electrical and Electronic Engineering 

 

 

 

 

 

Faculty of Engineering and Science 

Universiti Tunku Abdul Rahman 

 

 

April 2011 



ii 

 

 

 

DECLARATION 

 

 

 

 

 

I hereby declare that this project report is based on my original work except for 

citations and quotations which have been duly acknowledged.  I also declare that it 

has not been previously and concurrently submitted for any other degree or award at 

UTAR or other institutions. 

 

 

 

 

 

Signature : _________________________ 

 

Name : CHAI CHONG YI_________ 

 

ID No. : 07UEB06518______________ 

 

Date  : 15 APRIL 2011____________ 

 

 



iii 

 

 

 

APPROVAL FOR SUBMISSION 

 

 

 

 

 

I certify that this project report entitled “DIGITAL SECURITY LOCKING 

SYSTEM– USB BASED GSM SECURITY SYSTEM” was prepared by CHAI 

CHONG YI has met the required standard for submission in partial fulfilment of the 

requirements for the award of Bachelor of Engineering (Hons.) Electrical and 

Electronic Engineering at Universiti Tunku Abdul Rahman. 

 

 

 

 

 

Approved by, 

 

 

Signature :   _________________________ 

 

Supervisor :   Dr. Yong Thian Khok 

 

Date  :   _________________________ 

 

 



iv 

 

 

 

 

 

 

 

 

 

 

 

The copyright of this report belongs to the author under the terms of the 

copyright Act 1987 as qualified by Intellectual Property Policy of University Tunku 

Abdul Rahman. Due acknowledgement shall always be made of the use of any 

material contained in, or derived from, this report. 

 

 

© 2011, Chai Chong Yi. All right reserved. 



v 

 

 

 

 

 

 

 

 

 

 

 

Specially dedicated to  

my beloved family,  

supervisor Dr. Yong Thian Khok  

and partner Miss Chan Sieu Chen 

 

 

 



vi 

 

 

 

ACKNOWLEDGEMENTS 

 

 

 

I would like to thank everyone who had contributed to the successful completion of 

this project.  I would like to express my gratitude to my research supervisor, Dr. 

Yong Thian Khok for his invaluable advice, guidance and his enormous patience 

throughout the development of the research. 

 

In addition, I would like to express my gratitude to my loving parent and 

friends who had helped and given me encouragement during the development of the 

project as well as providing guidance on the project. 

 

In addition, I would like to express my sincere thanks to my partner Miss 

Chan Sieu Chen for providing me guidance and help me in completing this project as 

well as providing me the opportunity to work as a team to complete a project. 

 

 Lastly, I would like to thanks UTAR for providing me an opportunity to 

complete a project as a part of fulfilment of the requirement for the Bachelor of 

Engineering Programme.  

 

 



vii 

 

 

 

DIGITAL SECURITY LOCKING SYSTEM 

 

 

ABSTRACT 

 

 

Security threat has becomes an important issue to most of the people especially in 

urban area. With the increase in criminal rate, having a security system is desirable to 

ensure home is a safe place to live in. However, security alarm system may not be 

cheap depending on the features available on the security system and most of the 

security system can only provide local alarm which property owner cannot know 

what is happening to their properly at the time emergency case happen. This problem 

has become the motivation of developing a low cost, low power, simplicity of 

operation, small and standalone security system. The developed project has to make 

use of mobile phone that use USB cable as GSM terminal instead of GSM modem 

which is not cost effective. Mobile phones that use USB cable can be found 

everywhere and some of the old model may potentially become GSM terminal to 

lower down the cost of the whole project. In the project, PIC24FJ64GB002 is used as 

the core processor of the project to act as a USB host as well as processing some task 

required by the security system. Mobile phone Sony Ericsson C902 is the main 

experimental GSM terminal in the system. A LCD and a 4x4 keypad are used to 

change setting for the security system. This system can then integrate with RFID 

based locking system to become a complete digital security locking system which is 

more useful and can be use in home, office or automotive. 



viii 

 

 

 

TABLE OF CONTENTS 

 

 

 

DECLARATION ii 

APPROVAL FOR SUBMISSION iii 

ACKNOWLEDGEMENTS vi 

ABSTRACT vii 

TABLE OF CONTENTS viii 

LIST OF TABLES xi 

LIST OF FIGURES xii 

LIST OF SYMBOLS / ABBREVIATIONS xiv 

LIST OF APPENDICES xv 

 

 

CHAPTER 

1 INTRODUCTION 1 

1.1 Background and Motivation 1 

1.2 Aims and Objectives 3 

1.3 Outline of Thesis 3 

2 LITERATURE REVIEW 4 

2.1 Introduction 4 

2.2 Alarm System 4 

2.2.1 History of Alarm System 4 

2.2.2 Types of Alarm System 5 

2.3 USB Based Embedded System 6 

2.4 Short Message Service (SMS) 7 

2.4.1 History of SMS 7 



ix 

2.4.2 Advantages of Short Service Message 7 

2.5 AT Command 8 

2.5.1 History of AT Command 8 

2.5.2 Types of AT Command 9 

2.5.3 AT Command Mode 10 

2.6 Comparison and Critic 12 

3 METHODOLOGY 13 

3.1 Introduction 13 

3.2 Overall System Setup 13 

3.3 USB Based GSM Alarm System Setup 15 

3.4 GSM terminal 16 

3.4.1 GSM/GPRS Modems 16 

3.4.2 Cellular Phones 17 

3.4.3 Choosing GSM terminal 17 

3.5 Modem Commands 18 

3.6 Sensor 18 

3.7 Microcontroller 19 

3.8 Matrix Keypad 21 

3.9 LCD Display 22 

3.10 MPLAB IDE 24 

3.11 EAGLE Layout Editor 25 

3.12 Schedule of FYP 2 25 

4 RESULTS AND DISCUSSIONS 26 

4.1 Introduction 26 

4.2 Software Implementation 26 

4.2.1 Software Language 26 

4.2.2 USB 27 

4.2.3 Emulating Data EEPROM 37 

4.2.4 Decoding keypad 39 

4.2.5 Program on LCD Display 42 

4.3 Program overview 44 



x 

4.3.1 Option menu 46 

4.3.2 Detailed Operation on Changing Password 50 

4.3.3 Detailed Operation on Changing Target Phone 

Number 51 

4.3.4 Detailed Operation on Changing SMSC Number 52 

4.4 Results of Tested Possible Mobile Phone as GSM Terminal 

  53 

4.5 Hardware implementation 54 

4.5.1 Hardware Placement 54 

4.5.2 Circuit Diagram 54 

4.6 Problem Encounter 56 

5 CONCLUSION AND RECOMMENDATIONS 58 

5.1 Conclusion 58 

5.2 Limitation and Future Enhancement 59 

REFERENCES 60 

APPENDICES 61 

 

 

 

 

 

 

 

 

 



xi 

 

 

 

LIST OF TABLES 

 

 

 

 TABLE TITLE PAGE 

Table 2.1: PDU String Decoding 11 

Table 3.1: PIC24FJ64GB002 Specification 20 

Table 3.2: LCD Pin Table 23 

Table 4.1: USB Device Classes 29 

Table 4.2: Enumeration Steps 30 

Table 4.3: USB Files in Programming Part of the Project 31 

Table 4.4: Effect of USBHostTasks Calling Interval on USB 

Enumeration 32 

Table 4.5: USB Result Code 37 

Table 4.6: Data Memory Structure 38 

Table 4.7: User Data Storage Location 38 

Table 4.8: List of Option Menu 47 

Table 4.9: Detail Operation on Changing Password 50 

Table 4.10: Detail Operation on Changing Target Phone Number 51 

Table 4.11: Detail Operation on Changing SMSC Number 52 

Table 4.12: Test Result of Mobile Phones 53 

 

 

 



xii 

 

 

 

LIST OF FIGURES 

 

 

 

 FIGURE TITLE PAGE 

Figure 2.1: PDU Encoding Method 11 

Figure 3.1: Digital Security Locking System Setup 14 

Figure 3.2: Project Division of Digital Security Locking System 15 

Figure 3.3: USB Based GSM Alarm System Setup 16 

Figure 3.4: GSM Modem from Wavecom 17 

Figure 3.5: Snap Action Switch 19 

Figure 3.6: Magnetic Proximity Sensor 19 

Figure 3.7: PIC Microcontroller (SPDIP Package) 20 

Figure 3.8: Pin Diagram of PIC24FJ64BG002 21 

Figure 3.9: A 4x4 Matrix Keypad 22 

Figure 3.10: Internal Connection of a 4x4 Matrix Keypad 22 

Figure 3.11: A 2x16 LCD Display 23 

Figure 3.12 Gantt Chart of FYP Part 2 25 

Figure 4.1: Example of TPL List 31 

Figure 4.2: Transfer Types of Different Endpoint 34 

Figure 4.3: Code to Test Transfer Types and Initiating Data 

Transfer 34 

Figure 4.4: Flow Chart of Testing USB Transfer Type and 

Initializing Data Transfer 35 

Figure 4.5: Generic Host Driver Write Function 36 



xiii 

Figure 4.7: Flow Chart of Decoding Keypad Part 1 40 

Figure 4.8: Flow Chart of Decoding Keypad Part 2 41 

Figure 4.9: LCD Initiation Process 42 

Figure 4.10: Program Code for Function Set and Entry Mode Set 

of LCD 43 

Figure 4.11: Program Code of Writing Data to LCD 44 

Figure 4.12: Program Flow Chart of USB Based GSM Security 

System 45 

Figure 4.13: LCD Display on (a) Start up, (b) Supported Terminal 

Attached, (c) Unsupported Terminal Attached, (d) 

Terminal Detach 46 

Figure 4.14: Menu Flow Chat Part One 48 

Figure 4.15: Menu Flow Chat Part Two 49 

Figure 4.16: Circuit Diagram of Digital Security Locking System 55 

Figure 4.17: PCB Layout of Digital Security Locking System 56 
 

 

 

 

file:///G:/Desk/FYP/USB%20GSM.doc%23_Toc293011005


xiv 

 

 

 

LIST OF SYMBOLS / ABBREVIATIONS  

 

 

 

ASCII American Standard Code for Information Interchange 

AT ATtention  

CDC  Communications Device Class 

CPU Central Processing Unit 

EEPROM Electrically Erasable Programmable Read-Only Memory 

GPRS General Packet Radio Service 

GSM Global System for Mobile Communication 

HID Human Interface Device 

I/O Input / Output 

LCD Liquid Crystal Display 

LED Light-emitting Diode 

OTG On-The-Go 

PCB Printed Circuit Board 

PDU Protocol Data Unit 

PIC Peripheral Interface Controller 

PID Product Identification 

RAM Random-access Memory 

RFID Radio Frequency Identification 

SMS Short Message Service 

SMSC Short Message Service Center 

SPDIP Skinny Dual In-line Package 

SPI Serial Peripheral Interface 

TPL Target Peripheral List 

USB Universal Serial Bus 

VID Vendor Identification 

WLAN Wireless Local Area Network 

 



xv 

 

 

LIST OF APPENDICES  

 

 

 

 APPENDIX TITLE PAGE 

APPENDIX A: Main Program Code 61 

 

 

 



 

 

 

 

CHAPTER 1 

 

 

 

1 INTRODUCTION 

 

 

 

1.1 Background and Motivation 

 

In this modern age, security has becomes an important issue for most of the people 

especially in the urban area. With the living standard of people improved, people 

tend to have more valuable property inside their house. Some people will try to rob 

or steal the property which may endanger the safety of property owner or people 

inside the house. To overcome the security threat, most people will install bunch of 

locks or alarm system. 

 

Alarm system is useful in reducing the security threat at home regardless it is 

a high technology or a simple alarm system. Robbers and thieves will tend to make 

house with no alarm system as a target rather than those with alarm system. Even a 

dummy alarm system can scare off some of the thieves and robbers due to human 

nature where most people tend to stay out of trouble. 

 

 With alarm system, property owner do not have to always look after their 

property or having people guard at the property. This can reduce the time and cost on 

guarding property. Moreover, security system can guard the property all the time 

without have to worried getting tired or boring. 

 

There are many types of alarm system in the market which utilize different 

types of sensor. Each types of sensor can detect different types of changes occur in 



 

the surrounding and given out alert when the value is exceed the pre-set value. When 

combining few types of sensor, a place can me monitor very well. 

 

Alarm system typically consists of sensor, alarm siren and relay. For home 

alarm system, alarm siren will sound whenever the sensor detects the door or 

window is open. This kind of security system can only provide local alarm and 

property can never know when emergency case happen. Some of the new alarm 

system includes a modem which will send alert to property owner when any security 

threat occurs. Property owner can know what is going on and taking any further 

action as soon as possible to minimize any loses. 

 

When comes to security product in the market, the price for security product 

is usually high. Security manufacturer have to come out with new security technique 

form time to time to ensure their product has high level of security level. There are 

some low cost security systems which offer limited security. Thus, it is desirable to 

build a low cost, low power, simple operation, small and standalone digital security 

alarm system.  

 

For digital security alarm system, the cost of fixed line security alarm system 

is fair enough. However, the prices for wireless security alert system are generally 

high in the market due to the cost of GSM/GPRS modem are high. Even the module 

of the GSM/GPRS modem is costly. There are many old models of cellular phones in 

the market. This cellular phone can be use as a low cost terminal to replace 

GSM/GPRS modem. This cellular phone can send alert to particular person when 

emergency case happened. By integrating these phones in the digital security alert 

system, the cost would be much more lowered. When integrate to the digital locking 

system, we can create a low cost digital security locking system. 

 

 

 

 

 

 



 

1.2 Aims and Objectives 

 

The aims and objective for this project is to develop a security system which is based 

on GSM network and USB host terminal. The security system is able to send SMS to 

user when emergency case occurs. The cost of the developed project should be low 

cost, low power, simple operation, small and standalone. This project is then able to 

integrate with RFID based locking system to form digital security locking system. 

 

 

 

1.3 Outline of Thesis 

 

This thesis starts with introduction of the digital security locking system and the 

focused part USB based GSM security system. In this chapter, the motivation as well 

as objective of the project development is stated. 

 

Second chapter state the review on the currently available security system and 

possible method to develop a security system using GSM terminal. If possible, USB 

connection is used to connect between GSM terminal and microcontroller. Next 

chapter will be discussing on which potential component will be used in the project 

and how the project development progress is identified. 

 

 Chapter four is about how the project is developed and the results of each 

experiment are stated. After the project is developed, it will then combine with RFID 

based locking system to form a complete digital security locking system. The results 

of integration as well as problems encounter are stated in this chapter. The final 

chapter will be on the conclusion as well as future enhancement can be made on the 

project to develop a more powerful digital security locking system. 



 

 

 

 

CHAPTER 2 

 

 

 

2 LITERATURE REVIEW 

 

 

 

2.1 Introduction 

 

To understand better how a security system should work, a review on others people 

work is important to develop a better solution. In this chapter, history of alarm 

system as well as types of alarm system will be reviewed. GSM history as well as AT 

command is reviewed to develop a GSM based security system. Furthermore, 

working principle of USB and embedded host can provide cheaper solution for GSM 

based security system. 

 

 

 

2.2 Alarm System 

 

2.2.1 History of Alarm System 

 

Long before the invention of electronic alarm system, people use animal such as 

dogs to alert them when someone is trying to steal the belonging from them or enter 

certain area. In the middle age, people uses large gong to alert people when there is 

invasion. Things started to change when Tildesley invented the first home alarm 

system, which contain a series of bells connecting together and link to the door 

(Gregory, 2007). When someone is open the door, the bells will ring and alerting the 

people inside. Soon after that, Edwin Homes invented first electro-mechanical alarm 

system (Gregory, 2007). The alarm system contains a spring connected to the switch 



 

which attach to door and whenever the door is open, the circuit will closed and the 

bell will ring. This alarm system only uses simple electrical circuit such as switch, 

relay and bells. With the invention of integrated circuit, the size of alarm system has 

becomes smaller and the features has increased. The alarm system nowadays is no 

longer work only on switch, but also can work on infrared, ultrasonic, microwave, 

photoelectric and more. Some alarm system even has integrated circuit which can 

send alert to property owner when there is emergency case occurs (Gregory, 2007). 

 

 

 

2.2.2 Types of Alarm System 

 

Alarm system can be categorized into two main types. First type is the alarm system 

that uses wired sensor nodes and another type uses wireless sensor nodes. Wired 

alarm system has hard wire connected between the sensor network and the main 

processing unit while wireless alarm system utilize wireless local area network 

(WLAN), wireless USB and Bluetooth for communication between sensor and the 

main processing unit.  

 

Research done by Ahmed, A., Ali, J., Raza, A. & Abbas, G. (2007) shows 

that  wireless sensor network has advantages over wired sensor network in the sense 

that the sensor can be placed at any terrain without have to worry about the wiring 

problem. However, most of the wireless sensors run on battery supply. Battery 

lifetime becomes the most deadly disadvantages to the wireless network especially 

the distance is long. Longer distance require stronger signal which also means higher 

power require to drive the signal. In another words, power efficiency of wireless 

sensor determines the operating lifetime of sensor network. Once battery is drained 

up, it can no longer provide any protection to the perimeter and are vulnerable to any 

attack.  

 

On the other hand, wired sensor network does not suffer power source 

problem but it does has disadvantages where the quantity of sensors is limited due to 

the wiring problems. The network becomes complicated with the number of sensor 

build up. However, the transmission speed of wired network is fast when compare 



 

with wireless network. Additionally, the wired sensor network can provide more 

reliable security over wireless sensor network as wired sensor network does not 

suffer signal lost where wireless sensor network did. Besides, wired sensor network 

is easier to setup compare with wireless sensor network (Ahmed, 2007). 

 

Based on the survey done by Zhoa & Ye (2008) indicate the cost for wireless 

sensor network vary by technology used. Both WLAN and Bluetooth are high cost 

and high power consumption technology while wireless USB offer low on both cost 

and power consumption. To inform the user when any event occur, it can be done via 

internet or GSM network. In order for user get the information as soon as possible, 

GSM network is preferable as user will carry phone almost all the time compare to 

staying in front of computer all the time. According to research done by Huang, H. P., 

Xiao, S. S., Meng, X. Y. & Xiong, Y. (2010), GSM is a mature technology and 

hence, high security, wide coverage and can transmit over long distance. 

 

 

 

2.3 USB Based Embedded System 

 

With the growth of USB technology, USB has been gradually replaces traditional 

serial protocol and parallel protocol. Due the ease of use, fast transfer rate and high 

stability, USB becomes a favourite choice of most people. USB can support control 

transfer, bulk transfer, interrupt transfer and isochronous transfer. Control transfer 

enable USB host read the configuration of device connected to it. Bulk transfer can 

transfer non-fixed amount of data with error correction while interrupt transfer is use 

to transfer small amount of data. For isochronous transfer, the data is transfer at a 

constant rate and no retransmission if error occurs (Kim, Y. S., Kim, H. S. & Lee, 

2005). Most electronic appliances in the market nowadays uses USB interface. 



7 

2.4 Short Message Service (SMS) 

 

SMS is a technology which enables a short message to send and receive between 

mobile phone. SMS can send up to 140 bytes or equivalent to 1120 bits of data. If 

these 1120 bits is fully utilize, SMS can include 160 characters of 7-bits character 

encoding which is the English character and 70 characters of 16-bit Unicode used for 

many language. SMS is compatible for all GSM phones. GSM 07.05 is a standard for 

short message rules for SMS (Bodic, 2005). 

 

 

 

2.4.1 History of SMS 

 

SMS was first appeared in 1992 in Europe. SMS is included in Global System for 

Mobile Communication (GSM). Both SMS and GSM standard was developed by 

European Telecommunication Standard Institute (ETSI). The development and 

maintenance of GSM and SMS standard was then turn to Third Generation 

Partnership Project (3GPP) (Bodic). 

 

 

 

2.4.2 Advantages of Short Service Message 

 

According to the survey done by CTIA Wireless Association in year 2009, there are 

about 4.1 billion messages being sent daily. According to Bodic, the core reason why 

SMS is so successful is mainly due to its conveniences. 

 

i. SMS can be sent or read at anytime 

When a SMS is received, the message will store into the memory. User can 

either read it immediately or read it later. Nowadays, most people have their 

mobile phone with them most of the time. SMS can be read or sent anytime 

regardless the user is in office, home, street or even in the bus. 

 

 



8 

ii. SMS is less disturbing than phone call 

If user is on a phone call, every word the user says will immediately pass to 

another side of the phone. Sometimes, user may require some thinking before 

replying the question. Furthermore, SMS will not create load noise as talking 

on phone. This enable user to send or receive SMS while they are in library 

or theater without have to going outside. This enable users to keep in touch 

all the time without causing much disturbing. 

 

iii. SMS can be sent to offline mobile phone 

The benefits of SMS is if the destination phone is offline, the user can still 

receive the message after he or she is turn on the phone. Most of the time, the 

network signal may be weak on some area especially rural area. The message 

can still be receive by user if the user moves to a place with better network 

coverage. 

 

 

 

2.5 AT Command 

 

AT Command is the modem command code and it is define in GSM 07.07 standard. 

GSM 07.07 provides AT Command which enable mobile platform to communicate 

with Data Terminal Equipment in serial communication (Cao, 2009). 

 

 

 

2.5.1 History of AT Command 

 

In early 1980s, a company named Hayes has developed a modem called Hayes Smart 

modem 1200. Shortly after that, the company releases another modem call Hayes 

smart modem 2400. The model number simply represents the baud rate of the 

modem. They call the modem as smart modem because of the ability of the modem 

to auto-dial a number. Furthermore, this modem can send morse mode, work with 

Radioteletype (RTTY) and amateur radio repeaters. These two modems accept same 

programming command with only the operating speed is different. This has a great 



9 

advantage where the old driver can be use by new model of modem. Few modems 

makers has follow what Hayes did, where they develop modem that accept same 

command set as previous modem and called it “Hayes Compatible”. Soon after that, 

Hayes sued these modems makers for using the word “Hayes” in their product. 

Subsequently, these modem makers has change to “AT Command Set compatible”. 

AT command is taken from the words Attention, where the first two letters is used. 

AT command is the programming command that modem receive from the input and 

execute it. However, mobile usually do not implement full AT command and some 

of the command used in mobile phone may varied from manufacturer to 

manufacturer and model to model. Overall, the GSM/GPRS modem will have better 

support on AT command (Bodic). 

 

 

 

2.5.2 Types of AT Command 

 

There are two types of AT commands, which categorize as basic commands and 

extended commands. Basic commands are the commands that do not start with “+”. 

For example ATA stands for Answer, ATD stands for dial and ATH stands for hook 

control. On the other hand, extended command are the command that start with “+”. 

As for example, AT+CMGS will send the message and AT+CMSS will send 

message from storage. Following is some example of extended AT command 

(Developer's Home, 2004-2010). 

 

+CSMS    Select message service 

+CPMS    Preferred message storage 

+CMGS    Message format 

+CESP     Enter SIM block mode protocol 

+CMS ERROR   Message failure code 

+CSCA    Service center address 

+CSMP    Set text mode parameter 

+CSDS    Show text mode parameter 

+CSCB    Select cell broadcast message type 

+CSAS    Save setting 



10 

+CRES    Restore setting 

+CNMI    New message indication to TE 

+CMGL    List message 

+CMRG    Read message 

+CNMA    New message acknowledgement  

+CMGS    Send message 

+CMSS    Send message from storage 

+CMGW    Write message to memory 

+CMGD    Delete message 

+CMGC    Send command 

+CMMS    More message to send 

 

 

 

2.5.3 AT Command Mode 

 

Control of SMS function can be made via AT command in three mode which is 

Block mode, Text mode, and Protocol Data Unit (PDU) mode. AT stands for 

Attention. Block mode is a binary communication protocol including error protection. 

Text mode is a character based protocol suitable for high level software application 

while PDU mode is a character based protocol with hexadecimal-encoded binary 

transfer of command. PDU mode is usually for low level software driver that do not 

understand the content of command while text mode is suitable for high level 

programming language (Bodic). 

 

 PDU is harder for people to read it but it has advantages where it has lots 

more features compare to the simple text mode. Thus, PDU mode can support better 

on GSM modem and some of the mobile phone will only understand PDU mode. 

PDU mode has three encoding mode namely 7-bit code, 8-bit code, and 16-bit code. 

7-bit and 8-bit code is use for normal ASCII code which is English message while 

16-bit code is use for Unicode character which supports not only English but Chinese 

and other language as well. It is clear that to use other language in sending message, 

PDU mode in 16-bit code must be adopted since text mode does not support 16-bit 

mode (Cao, 2009). 



11 

 

 When come to encoding in PDU mode, we need to know the meaning of each 

of the string. Since the syntax is fixed, the PDU string can easily created with the 

reference of the meaning for each words. The only tricky part of the PDU string is 

the semi-octets string. For example an international number +60123456789. To 

encode it into PDU string, we need to remove the “+” sign and add “F” to the end of 

the string. Then, each of the pair is twisted to convert to PDU string. +60123456789 

will become 0621436587F9 (Wan, Zhang & Fang, 2008). 

 

 

Figure 2.1: PDU Encoding Method 

 

 

One example of PDU string contains the following information. 

07910621000010F511000B910621436587F90000AA08C7F79B0C2287F3 will 

have the meaning as shown in the table below. 

 

Table 2.1: PDU String Decoding 

Octet(s) Description Example 

07 Length of the SMSC information 7 octets 

91 Type of address of SMSC International format 

0621000010F5 SMSC number +60120000015 

00 

First Octets of SMS-DELIVER 

message - 

0B Length of sender address 11 

91 

Type of address of the sender 

number International format 

0621436587F9 Sender number +60123456789 

00 Protocol identifier - 

00 Data encoding scheme - 

08 Length of User data 8 

C7F79B0C2287F3 User data Good Day 

 

 

 



12 

2.6 Comparison and Critic 

 

The security system purpose by Zhoa & Ye and Huang et al. has a disadvantage 

where it runs on battery supply. User will never know when the power of battery will 

drained up and causing the security system failed to work. Besides, they uses RS-232 

serial interface which normally found on GSM modems and rarely on cellular phones. 

The system built by Kim et al. is based on USB which is widely used by cellular 

phones and most electronic appliances today. 

 

As for the modem command, Cao and Wan, Zhang el al. recommend PDU 

mode as Chinese text is required and compatibility issue on GSM modem and most 

of the phones. Text mode is easier to apply but is hardware limited. PDU mode is 

better option since it can be supported by most of the phone and GSM modem.



 

 

 

 

CHAPTER 3 

 

 

 

3 METHODOLOGY 

 

 

 

3.1 Introduction 

 

To start the development of a project, the component needed must first be indentified 

clearly. In this chapter, the list of the component required as well as technical 

specification of the component is discussed. The software needed for project 

development is also discussed in this chapter.  

 

 

 

3.2 Overall System Setup 

 

Figure 3.1 shows the core components of digital security locking system and how the 

components are related to each other. Direction of arrow represent flow of data and 

each block represent one component. Digital security locking system consist of seven 

core component which is PIC microcontroller, RFID reader, keypad, magnetic lock, 

alarm siren, door opening sensor, LCD display and GSM terminal.



14 

 

 

 

Figure 3.1: Digital Security Locking System Setup 

 

 

The RFID reader will read a RFID tag and sent the data to the microcontroller. 

If the tag ID is in the access list, a signal will be sent to magnetic lock to release the 

lock. When there is no card present, microcontroller will keep on reading from 

keypad for password input. If the password matches the current password, lock will 

be release. User can choose to use either way to release lock or both of them depend 

on user setting. However, if the door is force to open without entering password or 

scanning tag, the microcontroller will send out a signal to the alarm and GSM 

terminal. The alarm will sound and GSM terminal will send a message to inform the 

property owner. Password is needed to turn off the alarm. 

 

Digital security locking system consist two main parts which is the RFID 

based locking system and USB based GSM alarm system. These parts will be 

developed separately and combined at the final stage. After combination of both 

parts, optimization of project will be carry on. Figure 3.2 shows the project division 

of digital security locking system. 

 

 

 



15 

 

 

Figure 3.2: Project Division of Digital Security Locking System 

 

 

 

3.3 USB Based GSM Alarm System Setup 

 

USB based GSM alarm system consist of six core component which are door 

opening sensor, alarm siren, GSM terminal, LCD display, keypad and 

microcontroller. When the system is turn on, door opening sensor will keep on 

checking the door. If the door is open, microcontroller will send signal for the alarm 

siren to sound. At the same time, microcontroller will send a message to the property 

owner through GSM terminal. Figure 3.3 show the structure of USB based GSM 

alarm system. 

 

 

 

 



16 

 

 

Figure 3.3: USB Based GSM Alarm System Setup 

 

 

There are few major components that are needed to develop a digital security locking 

system. These components are PIC microcontroller PIC24FJ64GB002, 125 kHz 

RFID card reader, 4x4 matrix keypad, LCD display, magnetic lock and GSM 

terminal. 

 

 

 

3.4 GSM terminal 

 

3.4.1 GSM/GPRS Modems 

 

GSM/GPRS modem is the easiest way to build the security alert system. The best 

thing about the GSM/GPRS modem is that this modem can support AT commands 

very well and come in two types on connectivity interface, serial RS-232 and USB. 

However, the choice of these modems on the market is limited and the prices are 

expensive. USB has advantages on the ease of use but the way to program it is 

slightly difficult. The deep understanding in USB is a must to work with 

programming with USB.  

 



17 

 

 

Figure 3.4: GSM Modem from Wavecom 

 

 

3.4.2 Cellular Phones 

 

Cellular phones can serve as a cheaper terminal for sending SMS. However, not all 

cellular phones can work with AT Commands. Only certain models of phones are 

compatible with AT Command. Another issue will be the availability of data cable of 

old cellular phones. To find an old model of cell phone, it will be very easy. 

However, to get the data cable will the hardest work as old model of cell phone 

mostly did not come with data cable. New model of cell phones usually come with 

cable which is in USB interface. Old model phones uses RS-232 interface which is 

easier to work with compare to new model of phone which utilize USB cable. 

 

 

 

3.4.3 Choosing GSM terminal 

 

After doing some research, it is better to use a mobile phone as a GSM terminal for 

lower the cost of the system. Since the price of mobile phone is very much depends 

on the model numbers, old model of mobile phones will be use in the project as long 

as the phones support AT Command. Next, USB interface phone will be used as the 

availability is very much higher than those phones using RS-232 serial interface 

cable. Mobile phone Sony Ericsson C902 is the main experimental GSM terminal for 

this project and few other phones will be taken to test the performance of the project. 



18 

 

 

3.5 Modem Commands 

 

AT command will be the best choice among the modem commands as it has a 

standard command set. AT command is applicable in all AT Commands compatible 

modem while other modem command only work on certain model of phones only 

and usually the model of phones uses same modem commands are limited. Most of 

the phone in the market supports AT command. PDU mode will be adopted as it 

support on most of the GSM modem as well as mobile phone. Text mode is easier to 

implement but only very little phone does support text mode while almost all the 

phone that support AT command will support PDU mode. 

 

 

 

3.6 Sensor 

 

Sensor can be either in wired or wireless. Since the number of sensor is very small 

and to lower the cost, wired sensor is recommended. Wired sensor is also easier to 

configure than wireless sensors. To get a stable signal from the sources, switch is the 

best choice. Switch can give a very accurate signal to feed to the microcontroller as 

an input to indicate the door is closed or opened. This is important as good signal can 

ensure the happening of false alarm is minimized. Since signal is required when the 

door touches the switch, snap action switch or proximity sensor will be the best 

available choice. Snap action switch may be good but due to it mechanical switch 

properties makes the device cannot last for long runs. There are many types of 

proximity sensor available and cheapest solution with high stability will be magnetic 

sensor. 

 



19 

 

 

Figure 3.5: Snap Action Switch 

 

 

Figure 3.6: Magnetic Proximity Sensor 

 

 

 

3.7 Microcontroller 

 

There are several types of major microcontroller available in the market for our 

choice. They are 68HC08/68HC11 from Freescale or formally known as Motorola, 

8051 from Intel, AVR from Atmel, Z8 from Zilog and PIC from Microchip 

Technology. Among the microcontroller, PIC microcontroller from Microchip is 

recommended. PIC stands for Peripheral Interface Controller. Microchip is the top 

supplier of 8 bits microcontroller in the world. 

 

Since USB interface is chosen, a microcontroller with host capability is a 

must. USB require a host to control the speed of buses and manage the device 

connect to it which is called slave. Majority of the PIC microcontroller do not have 

USB capability and even they have USB capability, the only serve as a device or 

USB slave. USB On-The-Go (OTG) is a technology which enables a PIC 



20 

 

microcontroller to serve as a USB host. This technology was developed few years 

ago and until recently, the technology is included in some new PIC microcontroller. 

 

 There are two way to getting USB work on microcontroller. One is using 

USB host peripheral control together with another microcontroller and another is 

using microcontroller with USB OTG capability. The price of USB host peripheral is 

not cheap and deep knowledge on the device is required for it to work. Thus, 

microcontroller with USB OTG capability will be the choice. 

 

 

Figure 3.7: PIC Microcontroller (SPDIP Package) 

 

 

PIC24FJ64GB002 is a 16 bits microcontroller with 64k flash memory. It has 

USB-OTG capability and 28 pins Shrink Plastic Dual In-Line Package (SPDIP) 

which is suitable to fit into our design. Besides, it is the cheapest and only PIC with 

USB-OTG capability in SPDIP. PIC24FJ64GB002 has the following features. PIC24 

has advantage over earlier PIC family in the pin assignment. Most of the pin are 

remappable to easier the design of the whole circuit. Furthermore, more 

communication module can be use compared to earlier family of PIC if the pins are 

available. It comes with 5 timer and internal Real-Time Clock. 

 

Table 3.1: PIC24FJ64GB002 Specification 

Architecture 16-bit 

Program Memory 64KB 

CPU Speed 16 MIPS 

Timer 5 x 16 bit 



21 

 

USB 1, Full Speed, USB OTG 2.0 

Digital Communication Peripherals 2-UART, 2-SPI, 2-I2C 

I/O Pins 21 

RAM bytes 8192 

 

 

 

 

 

Figure 3.8: Pin Diagram of PIC24FJ64BG002 

 

 

 

3.8 Matrix Keypad 

 

To enter phone number and change setting, it is essential to have a keypad for this 

project. Matrix keypad is the most common keypad available due to its cheap and 

easy production. Compared with a SPI output keypad, the price of a SPI output 

keypad can be as high as five times of normal matrix keypad. Figure 3.8 and Figure 

3.9 show the figure of 4x4 matrix keypad and internal connection respectively. 

 



22 

 

 

Figure 3.9: A 4x4 Matrix Keypad 

 

Figure 3.10: Internal Connection of a 4x4 Matrix Keypad 

 

 

To read from the keypad, microcontroller has to do scanning through rows 

and column to read the key. Another option is using a keypad decoder which will be 

easier but a more costly solution. To stick with low cost solution, decode using 

microcontroller is preferable choice. 

 

 

 

3.9 LCD Display 

 



23 

 

LCD is useful to display setting available so that setting can be changed on the 

project. LCD makes the project more user friendly and easier to understand on which 

operation is currently going on. A 2x16 LCD display is more than enough to display 

the information and changing setting. Figure 3.10 shows a 2x16 LCD display and 

table 3.1 shows the connection pin of the LCD. 

 

 

Figure 3.11: A 2x16 LCD Display 

 

 

Table 3.2: LCD Pin Table 

Pin Number Name Description 

1 VSS Negative supply for LCD 

2 VCC Positive supply for LCD 

3 VEE Contrast Adjustment for LCD 

4 RS Register Select (0: Command, 1: Data) 

5 R/W Read or write selection (0: Write, 1: Read) 

6 E Enable Signal 

7 DB0 Data Bus 0 

8 DB1 Data Bus 1 

9 DB2 Data Bus 2 

10 DB3 Data Bus 3 

11 DB4 Data Bus 4 

12 DB5 Data Bus 5 

13 DB6 Data Bus 6 

14 DB7 Data Bus 7 

15 LED+ Positive supply for LCD back light 



24 

 

16 LED- Negative supply for LCD back light 

 

 

 

 

 

3.10 MPLAB IDE 

 

MPLAB IDE is a free programming tool which is use together with PIC 

microcontroller developed by Microchip. This software has the ability to build the 

files require to program into microcontroller for project development as well as in 

circuit debugging.  

 

 MPLAB IDE will be use to write the program for digital security locking 

system. In this project, program of USB based GSM security system is developed 

using MPLAB IDE C30 compiler which the program is written using C language. 

Assemble language may have faster and more compact code but due to the 

complexity of the code in large program, it is hard to handle and C language is 

preferred over assembly language. There will be few major functions inside the 

program which is reading and decoding keypad, write to LCD display, read from 

sensor when interrupt occurs and send SMS using GSM terminal when anything 

happen. 

 

 MPLAB will be using together with PICKIT 2 to program the microcontroller. 

PIC24FJ64GB002 can only perform in circuit debugging when use with newer 

version of PICKIT which is PICKIT 3. However, the cost of PICKIT 3 cost around 

RM360 which is very expensive and it is beyond the budge. Thus, PICKIT 2 will be 

use for programming purpose. Debugging of the program will be done manually 

using test and trial method.   

 

 

 



25 

 

3.11 EAGLE Layout Editor 

  

Eagle Layout Editor simply means Easily Applicable Graphical Layout Editor. It is 

software developed by Cadsoft. Eagle Layout Editor will be use to develop PCB 

layout for digital security locking system. Eagle Layout Editor has a lot of 

component to choose from and it has auto route function to express the PCB layout 

development. However, auto route function may not be suitable in this project but it 

may be a good guidance for new user. 

3.12 Schedule of FYP 2 

 

The schedule of FYP 2 starts with development of USB based GSM security system. 

After the focused part is done, the project will then integrate with RFID based 

locking system to create a digital security locking system. After that, whole project 

after integration will be built on PCB and a model is built to represent the house. 

 

 

Figure 3.12 Gantt Chart of FYP Part 2



 

 

 

 

CHAPTER 4 

 

 

 

4 RESULTS AND DISCUSSIONS 

 

 

 

4.1 Introduction 

 

In this chapter, there will be two major parts which is the software part and the 

hardware part. The software part includes the discussion of program codes as well as 

step by step system configuration while the hardware part includes the schematic and 

PCB drawing. Discussion of program codes include embedded generic USB host, 

LCD as well as matrix keypad. 

 

 

 

4.2 Software Implementation 

 

4.2.1 Software Language 

 

Due to complexity of the program and the effectiveness of C language in MPLAB 

C30 compiler, C language is preferred over assembly as the program code is 

expected to be very long. There will be some long string appear in the program and 

with the advantages of C language in comparing the string, we can easily writing out 

the code and combine few of the part together using C language program.



27 

 

4.2.2 USB 

 

4.2.2.1 USB System 

 

USB is a type of serial communication which is more intelligent than previous serial 

communication such as RS-232. In RS-232 interface, the content of data is treated as 

a piece of data regardless what types of data it is. In the USB, each data is 

categorized and the types of transfer depending of the data types. However, the data 

is transferred between host and device(s). Typically a host is a computer with host 

controller hardware and software and a device is a peripheral with device controller 

hardware and firmware. 

 

 Host is responsible to detect attachment of device and assign each device 

attached a driver. These drivers manage the communication between host and 

devices. When device is attached, host will perform enumeration in which host and 

device are exchanging information. Host will request device description which acts 

like an identity of the device. During the enumeration process, the device is assign 

with a device address 0. 

 

4.2.2.2 USB Embedded Host System 

 

USB does not allow direct communication of host to host and device to device. 

When data transfer between two devices such as camera and printer is needed, it is 

inconvenience to have a computer to do the job. An USB embedded host is needed to 

solve the problem. Unlike USB host of computer, USB Embedded host only has 

limited capability and support certain device classes. Most of the embedded host do 

not support Hubs structure as computer USB host does which is part of the limitation 

of USB embedded host. USB embedded host is design for specific purpose and to 

meet the minimum requirement of data transfer. 

 

 

 

 



28 

4.2.2.3 USB On-The-Go (USB OTG) 

 

To perform data transfer between two USB devices, one of them must be able to 

perform the role as the host and another as the device. On PC, the driver of USB host 

is complicated and with many function. However, the Embedded USB host has only 

limited function due to its memory size. USB has many classes and one of them is 

CDC (Communication Device Classes). Communication device classes are suitable 

for communication devices that utilized AP command.  

 

There are few USB host driver provided by Microchip which is CDC, charger, 

mass storage, HID, printer and generic type driver. There are two types of driver we 

can choose from which is CDC and generic host. However, CDC embedded host is 

not suitable as mobile phone is not just a communication device but also a mass 

storage device. To deal with this problem, a generic embedded host driver is used 

instead of CDC host. Apart from combination of CDC device and mass storage 

device, mobile phone may fall in other category which is neither CDC nor mass 

storage.  

 

When these devices do not falls to one of the class stated above, a generic 

host will be the last hope. A generic host has the basic ability of USB host which is 

managing the flow the data and at the same time, enabling both devices to 

communicate with each other. After some experiment, CDC classes host driver 

cannot support the mobile phone that is use in the experiment. On the other hand, 

generic driver can support most of the mobile phone in which the mobile phone can 

act like a GSM terminal. 

 

 

 

4.2.2.4 USB Device Classes 

 

Unlike older serial communication interface, USB categorized types of data transfer 

according to device classes. These device classes increase with the version of USB 

increase. There are some popular classes which are commonly used and Table 1.2 

shows the popular device classes. 



29 

Table 4.1: USB Device Classes 

Classes Description Example 

0x01h Audio Speaker 

0x02h Communication Device Classes (CDC) Modem 

0x03h Human Interface Device (HID) Mouse 

0x07h Printer - 

0x08h Mass Storage Flash Drive 

0x09h Hub - 

 

 

When some of the composite device which has overlapped classes that does not 

belongs to any of the group above, typical a generic host driver is needed to solve the 

problem. Generic drivers enables the use of control, isochronous, bulk and interrupt 

transfer using driver specified application programming interface (API). A mobile 

phone may not be belongs to CDC classes since it includes modem and mass storage. 

 

 

 

4.2.2.5 USB Enumeration 

 

There are six steps in enumeration process which is Powered, Default, Address, 

Configuration, Attach and Suspend process. During a device attached to the host, the 

typical process in list in the table. 

 

 

 

 

 

 

 

 

 

 



30 

 

Table 4.2: Enumeration Steps 

No Step Description 

1 Power up 

device 

The device attach is drawing power from the host up to 

100mA. 

2 Detect new 

device 

The host detects the device by monitors the D+ and D- signal 

lines. 

3 Host learn 

new device 

Interrupt occurs and host check the new device attached. 

4 Detect device 

speed 

Host determine the speed by monitoring both D+ and D- line. 

5 Reset device Port is reset using the new configuration. 

6 Detect if 

support high 

speed 

If the device supports full speed, host will then try to use high 

speed if available. 

7 Establish 

signal path 

After port resume from reset, the device is now in default state. 

The device is ready to response from the host. 

8 Learn 

Descriptor 

Host request device descriptor from the device using endpoint 

0. 

9 Assign 

address 

After getting device descriptor, the device is reset and gives a 

new address. 

10 Learn device 

ability 

The host now request for full device descriptor such as 

maximum packet size, number of configuration and some basic 

information. 

11 Assign 

device driver 

The host will search for any match in the device management 

and assign to it. 

12 Select 

configuration 

If device configuration is available, the device driver request 

configuration from the device. 

 

 

 

4.2.2.6 USB Files in Programming Part of the Project 

 

Microchip provided USB host driver demo project and USB client driver project in 

their website for use with their development board. These files contain host driver 

file with can be use with other device if proper modification are made.  Writing an 

own USB host driver may be time consuming and great knowledge in USB structure, 

as well as USB operation is needed. Thus, several files are taken from the demo 

which is then include in the project to make the USB host driver project easier. There 

are many categories of host driver files and the most suitable host driver will be 

included in the project. Apart from choosing host driver, defining types of transfer 

and targeted peripheral list (TPL) must be done to make the project working. Some 



31 

major files included in the project are as following. Table 4.1 shows some important 

file in the project and Figure 4.1 shows an example of target peripheral list. 

 

Table 4.3: USB Files in Programming Part of the Project 

File name Comment 

usb_config.c This file defining types of transfer allowed, current needed by 

USB client and attach debounce interval. Types of transfer 

allowed must be select correctly or else the project cannot 

work properly or fail to work. This file configures the USB 

stack. 

usb_config.h This file contain target peripheral list (TPL) in which defining 

the client supported by the host. This file configures the USB 

stack. 

usb_host_generic.c This is generic USB embedded host driver file in which the 

operation of generic host is enabling by this file. Each type of 

host driver has different operation allowed which defining by 

this file. 

usb_host.c This file is the main USB embedded host driver file which use 

to control most of the USB operations. These operations 

include detection of device attached and detached, configuring 

speed of transfer, performing USB enumeration, and start of 

transferring data between host and client. All USB embedded 

host driver must have this file included in the project. This file 

does not provide class support. 

 

 

Figure 4.1: Example of TPL List 

 

 

 



32 

4.2.2.7 USB Operation 

 

To use the USB function inside microcontroller, the function USBHostInit must be 

called before any USB operation can be perform. USBHostInit will initiate the USB 

host stack for USB operation. As soon as USBHostInit is successfully performed, 

USBHostTasks should be called to perform hardware initialization as well as 

perform USB host task. USBHostTasks include checking on device attach or detach 

and perform enumeration. USBHostTasks must be called regularly to make sure 

USB operation is working correctly. If USBHostTasks did not call regularly, device 

detachment or attachment will not be detected by microcontroller and USB operation 

might fail. Table 4.2 shows the experimental result of time for enumeration for 

different calling interval of USBHostTasks. 

 

 

 

 

 

 

Table 4.4: Effect of USBHostTasks Calling Interval on USB Enumeration 

Calling Interval (ms) Enumeration Time (s) 

1000.000 30.0 

500.000 15.0 

250.000 7.8 

125.000 4.0 

62.500 2.6 

31.250 2.0 

15.625 2.0 

 

 

USB enumeration will take minimum 2 s to complete the whole process. For calling 

interval of 31.250 ms, the system will have periodic lag on displaying text on LCD 

and for 15.625 ms, the system can hardly display text on LCD screen. Calling 



33 

interval of 62.500 ms is the better choice for system performance and enumeration 

time. 

 

 

 

4.2.2.8 Device Endpoint 

 

Each of the data is travel from or to device endpoint. Device endpoint is served as a 

buffer for the data to be transferred to the host and buffer for data received from the 

host. When USB stack is initializes, each endpoint is assign with transferred types 

using and Endpoint 0 is especially for enumeration process. Every USB device must 

at lease have endpoint 0 for the host to obtain information from the device. Each 

endpoint can have data in both directions. For example endpoint 0 IN means data 

transfer from device to host in endpoint 0 and endpoint 0 OUT will means data 

transfer from host to device. Endpoint can have the number range from 0 to 15. 

 

 

 

4.2.2.9 USB Transfer Types 

 

As mention of earlier chapter, there are four types of transfer in USB. Control type 

transfer is supported by all the USB device of else the enumeration will fail. Three 

other transfer types is use for different purpose and both USB host and USB device 

must aware which types of transfer will going to take place or the transfer of data 

will fail.  

 

Referring to embedded generic USB host driver provided by Microchip, 

generic host will utilize Endpoint 0 for enumeration and Endpoint 1 for data transfer. 

In the code, each endpoint has different types of data transfer. Figure 4.2 shows the 

transfer type on different endpoint. 



34 

 

Figure 4.2: Transfer Types of Different Endpoint 

 

 

To use another endpoint other than the default Endpoint 1 for data transfers, another 

function is written to use Endpoint 2 for data transfer. Besides that, a function is 

written to test on which transfer types that the device supported. After the function 

has finish testing on types of transfer supported, the next transfer of data will utilize 

the type of transfer that is supported. Figure 4.3 shows the coding for testing transfer 

types available and begin to transfer immediately after the test. Figure 4.4 show the 

process of testing transfer types. 

 

 

Figure 4.3: Code to Test Transfer Types and Initiating Data Transfer 

 



35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Flow Chart of Testing USB Transfer Type and Initializing Data Transfer 

 

 

4.2.2.10 Generic Host Driver Write Function 

 

Figure 1 shows the default USB write function in the Microchip generic host driver. 

Start 

Send a packet of data using 

Endpoint 2 (bulk endpoint) 

Is the transfer 

successful? 

Endpoint 2 (bulk 

endpoint) is selected 

Endpoint 1 

(isochronous 

endpoint) is selected 

Start Data Transfer using 

selected endpoint 

Yes 

No 



36 

 

Figure 4.5: Generic Host Driver Write Function 

 

The function will first check for valid machine state as well as any USB host is still 

busy to transfer data to device. If machine state is not valid or USB transfer is still 

busy, the function is terminated and returns the error code. When the entire test 

passes, the write flag will be set high to indicate a write is preforming at that time. 

Next, the write process is started by calling USBHostWrite function in host driver. 

USBHostWrite function takes four variables which are the device address, endpoint 

number, pointer to the data and the length of the data to be transferred. The default 

endpoint is endpoint 1 which is for isochronous transfer. By replacing 

USB_GENERIC_EP in the figure to other value, different types of transfer can be 

used as different endpoint has its own transfer types. Another function called 

USBHostGenericEP2Write is written same as USBHostGenericWrite function with 

underline part changed to USB_GENERIC_EP2. This function utilizes endpoint 2 

which is bulk transfer instead of endpoint 1 isochronous transfer for USB data 

transfer. Note that USBHostWrite will return result of the USB write function. This 

result code is defined in USBHost.h and Table 1 shows the result code. 

 

 

 

 

 

 

 



37 

Table 4.5: USB Result Code 

Result Code Description 

USB_SUCCESS Write started successfully. 

USB_UNKNOWN_DEVICE Device with the specified address not 

found. 

USB_INVALID_STATE We are not in a normal running state 

USB_ENDPOINT_ILLEGAL_TYPE Must use USBHostControlWrite to 

write to a control endpoint. 

USB_ENDPOINT_ILLEGAL_DIRECTION   Must write to an OUT endpoint 

USB_ENDPOINT_STALLED  Endpoint is stalled.  Must be cleared 

by the application. 

USB_ENDPOINT_ERROR Endpoint has too many errors.  Must 

be cleared by the application. 

USB_ENDPOINT_BUSY A Write is already in progress. 

USB_ENDPOINT_NOT_FOUND Invalid endpoint. 

 

 

With the USB result code, we can determine the transfer types which are supported 

by the device and use the transfer types to communicate between host and device. 

 

 

 

4.2.3 Emulating Data EEPROM 

 

This project need memory to store phone number, SMSC number as well as 

password so that the device is customizable and flexible to use. It is unacceptable for 

user to program the whole device again if they need to change password or target 

phone number.  

 

In PIC24, there are no EEPROM which available in past family of PIC such 

as PIC18, PIC16 or PIC12. PIC uses flash memory as program memory. One of the 

methods is using table lookup to use the internal flash memory or using external 

memory storage such as Data EEPROM or memory card. In the design, the pin is 



38 

very limited as the PIC in the project has just twenty eight pins and nineteen pins are 

capable to become I/O pins. To integrate the microcontroller with LCD, keypad, 

USB connector and RS-232 converter, all the pins become unavailable and hence, 

external memory is not an option.  

 

As a result, Emulating Data EEPROM which utilized internal flash memory 

will be a better option for its fast operation. PIC24 has twenty four bits width data 

size in which emulating data EEPROM will take eight bits as address and sixteen bits 

as data. This eight bits is not a real address but it act like a tag for the data. First Data 

EE Address is use store page status and it is not available for storing user data. Table 

4.3 shows the data memory structure and Table 4.4 shows the user data storage 

location of this project. 

 

Table 4.6: Data Memory Structure 

Page Address Data EE Address Data EE Data 

This is the real address in 

the program memory. 

This is tag for data. User data. 

 

 

Table 4.7: User Data Storage Location 

Data EE Address User Data 

1-110 Card unique ID. Each card uses 10 addresses to store data in 

word. 

200 User password. Uses 6 addresses space. 

210 Administrative password. Uses 6 addresses space. 

220 SMSC number. Uses 12 addresses space. As for PDU modes, 

an „F‟ is added after the number before it is encoded. 

240 Target phone number. Uses 12 addresses space. As for PDU 

modes, an „F‟ is added after the number before it is encoded. 

 

 

 



39 

4.2.4 Decoding keypad 

 

Matrix keypad is the most common keypad available due to most cost effective 

device. However, a hardware decoder is needed to decode the keypad or keypad can 

simply decode inside microcontroller by writing some function. 

 

When a key is pressed, one wire from a column will touch with another wire 

from a row. To decode the wire, either row or column will be the input. If column is 

the input, the row will be the output and vice versa. Now, column is to be the output 

and row will be the input. Initially the entire row connected to the microcontroller is 

set to high.  

 

Next, scan all the port connected to column to detect any port is high. 

Whenever port connected to column is high, entire row is set to low. Then, each row 

is turn on one by one to scan which row is pressed so that the location of the button 

can be determined. In between turning on and off, delay is needed to avoid detection 

of wrong key pressed. After the location of the key is determined, the program will 

return the value and wait until user leave their hand from the keypad. Again, delay is 

needed to avoid the function to go inside the loop again to test for key pressed when 

user leave their hand from keypad. Figure 4.5 and Figure 4.6 show the flow chart of 

decoding keypad. 

 

 

 

 

 

 

 

 

 

 

 

 

 



40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Flow Chart of Decoding Keypad Part 1 

 

 

 

Start 

All port connected to row is set 

to output 1 (high) 

Scan port connected to column to 

detect any port is input 1 (high) 

Any input 

port is high? 

All port connected to row is set 

to output 0 (low) 

 

Set port connected to first row 

output 1 (high) 

 

Any input 

port is high? 

Set port connected to first row 

output 0 (low) 

 

Set port connected to second 

row output 1 (high) 

 

Any input 

port is high? 

Set port connected to second 

row output 0 (low) 

 

A 

B 

Yes 

Yes 

Yes 

No 

No 

No 



41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Flow Chart of Decoding Keypad Part 2 

 

 

 

 

 

 

 

Set port connected to third row 

output 1 (high) 

 

Set port connected to third row 

output 0 (low) 

 

Any input 

port is high? Return Value 

End 

A 

Set port connected to forth row 

output 1 (high) 

 

Any input 

port is high? 

B 

Yes 

Yes 

No 

No 



42 

4.2.5 Program on LCD Display 

 

LCD is useful to show information and change setting. Before an LCD can display 

words or symbol, it has to be first initialize with proper configuration for it to display 

correctly. There are some sequences that need to be done for LCD initialization. 

Figure 4.7 shows initialization process for four bits mode of the LCD in this project. 

 

 

Figure 4.8: LCD Initiation Process 

 



43 

 Suppose the LCD is to display two rows and showing the location of the 

cursor, function and entry mode had to be set to ensure proper operation. The LCD is 

use in four bits mode to reduce the I/O pins required by the LCD. To do that, LCD is 

configured to four bits mode operation and Figure 4.8 shows the coding for function 

set and entry mode set. 

 

  

Figure 4.9: Program Code for Function Set and Entry Mode Set of LCD 

 

 

 To access LCD using four bits mode operation, each data bytes sent to LCD 

has to be done in two times of four bits each of the time. Higher nibble is sent before 

the lower nibble does. To achieve this operation, the data is first saved into 

temporary data space. After that, the data are performing with logical conjunction to 

obtain the lower nibble and higher nibble. When the data are ready, it will send to 

LCD with higher nibble follow by lower nibble. Register select is to be high when 

writing data to LCD and low when giving command to LCD. Figure 4.9 shows the 

program code for sending data to LCD. 

 

 



44 

 

Figure 4.10: Program Code of Writing Data to LCD 

 

 

 

4.3 Program overview 

 

The program begins at initiating the USB peripheral. As soon as USB peripheral is 

stared, it will check for any USB device plug into the USB type-A female connector. 

If there is no device detected, it will continue looping to search for device attached. 

On the other hand, if a USB device is attached, it will then check whether the device 

is supported. If the attached device is supported, the program will now ready to read 

the input from door sensor. Any unauthorized opening of door will cause the alarm to 

be activated and at the same time, a SMS is sent to warn the user. Figure 4.10 shows 

the program flow chart of the main program and Figure 4.11 shows the LCD screen 

of the main program. 

 



45 

 

Figure 4.11: Program Flow Chart of USB Based GSM Security System 

 

 

 

 

 

 

 

 

 

 

 

 



46 

    

(a)      (b) 

 

   

(c)       (d) 

 

Figure 4.12: LCD Display on (a) Start up, (b) Supported Terminal Attached, (c) 

Unsupported Terminal Attached, (d) Terminal Detach 

 

 

 

4.3.1 Option menu 

 

Option menu can be accessible by pressing „B‟ on the keypad. When pressing „B‟ on 

keypad, user will be prompt for two set of password. First password will be user 

password where it uses to unlock door and second set of password is the 

administrative password which is use when user change setting. Table 4.5 shows the 

option menu for the program and Figure 4.12 and Figure 4.13 show the menu flow 

chart.  

 

 

 

 

 

 

 

 

 

 



47 

Table 4.8: List of Option Menu 

Option key Description 

3 This option is use to change user password. User password is in 6 

digits length and use for unlocks door. When this option is 

selected, user will be prompt to enter 6 digits of user password. If 

user accidentally press the wrong button, the key „C‟ is use to re-

enter the password again. A message “DONE” will be displayed 

on LCD for successful changing of user password. 

4 This option is use to change administrative password. 

Administrative password is also in 6 digits length and use when 

changing setting. When this option is selected, user will be 

prompt to enter 6 digits of administrative password. If user 

accidentally press the wrong button, the key „C‟ is use to re-enter 

the password again. A message “DONE” will be displayed on 

LCD for successful editing of administrative password. 

5 This option enable user to change the target phone number for 

break in case occurs. The length of target phone number is 11 

digits which including the country code. Example of phone 

number in Malaysia is “60123456789”. A message “DONE” will 

be displayed on LCD for successful changing target phone 

number. 

6 This option lets user change SMSC number. Different service 

provider will have different SMSC number. This is useful when 

user changes service provider of the GSM terminal. The length 

of SMSC number is same as phone number which is 11 digits. A 

message “DONE” will be displayed on LCD for successful 

editing of SMSC number. 

 

 

 

 

 

 



48 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 4.13: Menu Flow Chat Part One 

 



49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14: Menu Flow Chat Part Two 

 

 

3 

Enter new user password Enter new administrative 

password 

4 

Is key „C‟ 

pressed? Is key „C‟ 

pressed? 

Update user password Update administrative 

password 

5 
6 

Enter new target mobile 

number 

Enter new SMSC number 

Is key „C‟ 

pressed? 

Is key „C‟ 

pressed? 

Update target mobile number 
Update SMSC number 

Start 

N 
N 

N N 

Y 
Y 

Y 

Y 



50 

4.3.2 Detailed Operation on Changing Password 

 

The operation of changing password will be show in detail steps by step together 

with display on LCD to explain how password changing process is carry on. Table 

4.6 shows the detailed steps to change password. 

 

Table 4.9: Detail Operation on Changing Password 

Detail Operation Display shown on LCD 

When user presses „B‟ during normal 

operating condition, user will be 

prompt for user password. Password 

to be entered is in six digit lengths. 

 

After user password verification is 

successful, user will then prompt 

again for administrative password. 

The administrative password is in six 

digits length. 

 

If both passwords are entered 

correctly, user will then redirect to 

option selection menu. There are 

totally seven options available to 

select from. 

 

Press „3‟ on keypad for changing user 

password and „4‟ for changing 

administrative password. LCD will 

show enter password after the key is 

pressed. 

 

If user accidentally pressed the wrong 

key, „C‟ on keypad is use to enter 

password from the beginning.  

When user successfully entered all the 

passwords, a message will show on 

LCD to indicate operation successful.  



51 

4.3.3 Detailed Operation on Changing Target Phone Number 

 

It is important for a GSM based security system able to change target phone number 

for emergency case. Detailed operation of changing target phone number is shown in 

Table 4.7. 

 

Table 4.10: Detail Operation on Changing Target Phone Number 

Detail Operation Display shown on LCD 

When user presses „B‟ during normal 

operating condition, user will be 

prompt for user password. Password 

to be entered is in six digit lengths. 

 

After user password verification is 

successful, user will then prompt 

again for administrative password. 

The administrative password is in six 

digits length. 

 

If both passwords are entered 

correctly, user will then redirect to 

option selection menu. There are 

totally seven options available to 

select from. 

 

Press „5‟ on keypad for changing 

target phone number. Phone number 

to be entered is in ten digits length and 

example is 60123456789. 

 

If user accidentally pressed the wrong 

key, „C‟ on keypad is use to enter 

phone number from the beginning.  

When user successfully entered all the 

numbers, a message will show on 

LCD to indicate operation successful.  



52 

4.3.4 Detailed Operation on Changing SMSC Number 

 

By using PDU mode, SMSC number has to be entering manually by user. Wrong 

SMSC number can lead to message unable to deliver out and leave to whole system 

unprotected. Table 4.8 show the step needed to change SMSC number. 

 

Table 4.11: Detail Operation on Changing SMSC Number 

Detail Operation Display shown on LCD 

When user presses „B‟ during normal 

operating condition, user will be 

prompt for user password. Password 

to be entered is in six digit lengths. 

 

After user password verification is 

successful, user will then prompt 

again for administrative password. 

The administrative password is in six 

digits length. 

 

If both passwords are entered 

correctly, user will then redirect to 

option selection menu. There are 

totally seven options available to 

select from. 

 

Press „6‟ on keypad for changing 

target phone number. Phone number 

to be entered is in ten digits length and 

example of SMSC number for 

MAXIS is 60120000015. 

 

If user accidentally pressed the wrong 

key, „C‟ on keypad is use to enter 

phone number from the beginning.  

When user successfully entered all the 

numbers, a message will show on 

LCD to indicate operation successful.  



53 

4.4 Results of Tested Possible Mobile Phone as GSM Terminal 

 

To test the performance of generic host driver with GSM terminal, some phone has 

been taken into experiment. Before that, product number (PID) and vendor number 

(VID) must be obtain and insert into target peripheral list (TPL). Generic host will 

only support the device inside TPL table. Table 4.9 shows some result obtain from 

the experiment of few mobile devices. 

 

Table 4.12: Test Result of Mobile Phones 

Device Name Enumerations Send Message 

Nokia 5300 Success Supported, PDU and text mode 

Nokia 5800 Express Music Success Supported, PDU and text mode 

Nokia N95 Success Supported, PDU and text mode 

Sony Ericsson C501 Success Supported, PDU mode only 

Sony Ericsson C902 Success Supported, PDU mode only 

Sony Ericsson K750 Success Supported, PDU mode only 

Sony Ericsson K770 Success Supported, PDU mode only 

Sony Ericsson K800 Success Supported, PDU mode only 

 

 

The data in Table 4.9 show that most of mobile phone can communicate 

effectively with microcontroller using control transfer.  Control transfer is use to 

perform enumerations and most of the device will support this types of data transfer. 

In the experiment that carried out, all the mobile phone listed in Table 4.9 

successfully send out SMS by using either isochronous transfer or bulk transfer. Note 

that PDU mode is supported by all the phones use in the experiment and only Nokia 

phones in the experiment support text mode. 

 

 

 

 

 



54 

4.5 Hardware implementation 

 

4.5.1 Hardware Placement 

 

The main board which microcontroller is on it is to be placed inside the house while 

LCD and keypad is to be located on outside the house. With this placement, the main 

board can protected from attack to keep the security system working all the time 

while providing access to user outside the house. If the whole unit is place outside 

the house, people can easily damage the board and security system will offline and 

thus, leaving the house unprotected. 

 

 

 

4.5.2 Circuit Diagram 

 

This project includes development of hardware as well as software. A circuit is 

needed achieve the goal. USB based GSM alarm system is part of the digital security 

locking system and it consist of a microcontroller, a keypad, a LCD display, a sensor 

and as well as USB GSM terminal. Microcontroller is the core of the project and all 

components is connected to it and main task is process here. With limited pin of a 28 

pin microcontroller, the project is done by utilize all the available port. Port A has 

five I/O pins and two will be use for RFID based locking system. Two I/O pins is 

connected to external crystal for more accurate operation. With only one Port A pins 

left, the pin is use to connect to magnetic sensor. 

  

 Port B has total 16 I/O port and most of the pin will be use for LCD and 

keypad. Four common pin will be share by LCD and keypad to maximize the 

utilization of I/O pins and these pins are RB0 to RB3. RB4, RB7, RB8 and RB9 are 

use for keypad for input detection pin. These pins cannot be shared to avoid any error 

in decoding keypad. RB13 and RB14 are connected to LCD as the Register Select 

and Enable bit of LCD. These pins must no share with any other component to avoid 

error. RB5 is use to connect to buzzer which is use to indicate as an alarm siren and 

RB15 is connected to a transistor and a relay to drive the magnetic lock on and off. 



55 

Figure 4.14 shows the schematic diagram of digital security locking system and 

Figure 4.15 shows the PCB layout of digital security locking system. 

 

 

Figure 4.15: Circuit Diagram of Digital Security Locking System 

 



56 

 

Figure 4.16: PCB Layout of Digital Security Locking System 

 

 

 

4.6 Problem Encounter 

 

Most of the project will not go smoothly where some problem may be encounter 

during the process. The first problem encounter in this project is the USB 

enumerations. Enumerations process is quite complex in which require deep 

knowledge of USB structure to make it right. As for the result, USB host driver 

release by Microchip is used in the project to cope with this problem. 

 

 Second problem arise when other GSM terminals is used in the project 

instead of Sony Ericsson C902. Microcontroller fails to send data to the GSM 

terminal which results in USB error. This problem is due to the endpoint use by 

embedded generic host driver provided by Microchip only utilize Endpoint 1 for data 

transfer which is isochronous transfer. This problem is soon solved by adding 

another transfer types to the embedded host which is bulk transfer that utilize 

Endpoint 2. 



57 

 Third problem is on the input pin on microcontroller that connected to keypad 

as well as LCD. Some input pin must be properly pulled to ground to avoid any 

floating state when microcontroller tries to read the state of the input pin. 

Unexpected input will generated when the input of microcontroller is in floating state. 

High value of resistor is used to connect between these pin and ground to provide 

proper grounding. 

 

 Forth problem is regarding the voltage regulator. Initially the design is 

cascading two voltage regulator to provide 5 V and 3.3 V from a 12 V source. The 12 

V source is first regulated to 5 V and the further down to 3.3 V. The 12 V supply is 

use to power magnetic lock and 5 V supply is use for MAX232 IC for RS-232 

communication between RFID reader and microcontroller and USB device. As for 

3.3 V supply, it is use in USB as well as microcontroller itself. Cascading two 

voltage regulators may work fine if the current drawn is large enough to avoid too 

low of dropout voltage which will cause the voltage regulator fail to work. When the 

circuit is placed on PCB, the voltage regulator fails to operate properly. As such, two 

different voltage regulators is use in which both of them are connected directly to 

source.



 

 

 

 

CHAPTER 5 

 

 

 

5 CONCLUSION AND RECOMMENDATIONS 

 

 

 

5.1 Conclusion 

 

As a conclusion, the aim and objective of this final year project had been achieved in 

which both RFID based digital locking system and USB based GSM security system 

have successfully integrated to form a digital security locking system. 

 

This digital locking system is a low cost, low power, simple operation, small 

size, and standalone system. Digital locking system reads RFID tag or reads from 

keypad which will then unlock the door when the tag or password is matched. This 

system is able to change password, adding tag to access list, change the period the 

system is being blocked if password entered wrong for five times, change target 

phone number and change access types. Even the system is turned off, this 

information can still keep in memory and these setting will restored when system 

starts up next time. 

 

Besides, this system can send SMS to user when security is breached or 

password is being entered wrong for five times. Alarm will be turn on whenever door 

is forced to open without first enter password or scan tag on the reader. Alarm can be 

turn off by enter correct password. 



59 

 

5.2 Limitation and Future Enhancement 

 

The number of phone model that support AT command is considerable. However, 

most of them only support PDU mode instead of both PDU and Text mode. To 

decode the message in PDU mode, the program is complex. As such, if cannot 

decode the PDU string, microcontroller cannot response according to what message 

the GSM terminal has received. To enhance the project, it is desirable to write a 

program to decode PDU string so that this system can be controlled remotely. 

 

 To keep track on when and how door is unlocked, a Real-Time Clock is 

needed. There are real time clock inside the microcontroller but the precision is the 

most important thing. This can also be done through connecting the whole project to 

the computer and let the computer do the tracking. 

 

 Besides, this system can further enhance when combining with different types 

of sensor using wireless sensor such as Bluetooth sensor. All sensors using a single 

node will save all the pins required by wired sensor and a sensor network can be 

developed. Many different types of alert can be sent to user through SMS which 

makes the system even more powerful on monitoring surrounding. 

 

 At last, the system can also integrate with home automation system to create 

more complete home automation system. This system can provide home automotive 

as well as home security. User can keep track on most of the information at home 

when they are not around. 

 

 

 

 

 

 

 

 

 



60 

 

 

 

 

REFERENCES 

 

 

 

Ahmed, A., Ali, J., Raza, A. & Abbas, G. (2007). Wired vs wireless deployment 

support for wireless sensor networks. Retrieved August 9, 2010 from 

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4142257&tag=1 

 

Bodic, G. L. (2005). Mobile Messaging Technologies and Services SMS, EMS and 

MMS (2nd ed.). Chichester: John Wiley & Sons, Ltd 

 

Cao, S. Q. (2009). GSM Modem-Based Mobile Auxiliary Learning System. 2009 

International Conference on Computational Intelligence and Software Engineering, 

1, 1-4. 

 

Developer's Home. (2004-2010). Short Message Service / SMS Tutorial. Retrieved 

July 1, 2010, from http://www.developershome.com/sms/ 

Gregory, J. (2007). A short history of burglar alarms. Retrieved August 1, 2010 

from 

http://ezinearticles.com/?A-Short-History-of-Burglar-Alarms&id=475162 

 

Huang, H. P., Xiao, S. S., Meng, X. Y. & Xiong, Y. (2010). A remote home security 

system based on wireless sensor network and GSM technology. 2010 second 

international conference on networks security, wireless communications and 

trusted computing, 1, 535-538. 

 

Jasio, L. D. (2007). Programming 16-Bit Microcontroller in C - Learn to Fly the 

PIC24. Oxford: Elsevier Inc. 

 

Kim, Y. S., Kim, H. S. & Lee, C. G. (2005). The development of USB home control 

network system. 2004 8
th

 international conference on control, automation, robotics 

and vision, 1, 289-293. 

 

Wan, S. F., Zhang, Q. Q. & Fang, M. F. (2008). SMS Receiving and Dispatching 

System Based on Embeded Linux. 2008 ISECS International Colloquium on 

Computing, Communication, Control, and Management, 2, 475-479. 

 

Zhao,Y. & Ye Z. (2008). A low cost GSM/GPRS based wireless home security 

system. IEEE Transactions on consumer electronics, 54 (2), 567-572. 

 



61 

 

 

 

APPENDICES 

 

 

 

APPENDIX A: Main Program Code 

 

#include <stdlib.h> 

#include "GenericTypeDefs.h" 

#include "usb_config.h" 

#include "USB/usb.h" 

#include "USB/usb_host_generic.h" 

#include "DEE Emulation 16-bit.h" 

 

// Configuration Bits 

// ****************** 

_CONFIG1(WDTPS_PS1 & FWPSA_PR32 & WINDIS_OFF & FWDTEN_OFF & ICS_PGx1 & 

GWRP_OFF & GCP_OFF & JTAGEN_OFF) 

_CONFIG2(POSCMOD_HS & I2C1SEL_PRI & IOL1WAY_OFF & OSCIOFNC_ON & 

FCKSM_CSDCMD & FNOSC_PRIPLL & PLL96MHZ_ON & PLLDIV_DIV2 & IESO_ON) 

_CONFIG3(WPFP_WPFP0 & SOSCSEL_IO & WUTSEL_LEG & WPDIS_WPDIS & 

WPCFG_WPCFGDIS & WPEND_WPENDMEM) 

_CONFIG4(DSWDTPS_DSWDTPS3 & DSWDTOSC_LPRC & RTCOSC_LPRC & 

DSBOREN_OFF & DSWDTEN_OFF) 

 

 

// Global Variables 

// **************** 

#define SLEN 10 

BYTE deviceAddress;  // Address of the device on the USB 

unsigned int USBOn = 0, currstate = 0, retry = 0, alarm = 0, offalarm = 0, halt = 0, wrong = 0, 

halttime= 0, cardkey = 0; 

char Home[150]; 

char buff[4] = {'A','T',13,'\0'}; 

char buff0[12]  = "AT+CMGS=52"; 

char buff1[123] = 

"07910621000010F511000B910621520291F10000AA2BD3F2B82E4FD3F3A020BB2CA7835AA0

AA3B5CA7A3DFF2B4BE4C0691DF6F39E80D2FBBD3EE3308"; 

char buff2[12] = "AT+CMGS=64"; 

char buff3[147] = 

"07910621000010F511000B910621520291F10000AA39D3F2B82E4FD3F3A020BB2CA7835AA0

ABFCED3E83A0E1F9FCFE9693414537BD2C2F9341CDB7BC0CA2A2C36E500D444DB7CB73"; 

 

 

// Function Prototype 

void delay(unsigned int msec); 

void initt2(unsigned int time); 

void initt1(void); 

void initU1(void); 

void writeU1(char c); 

void writesU1(char *str); 



62 

char readU1(void); 

char *readsU1(char *str, unsigned int slen); 

void accesslcd(void); 

void writelcd8b(unsigned int fnc, char text); 

void writelcd4b(unsigned int fnc, char text); 

void writeslcd (unsigned int fnc, char *string); 

void accesskey(void); 

char readkey(void); 

void initlcd(void); 

void DataInit(void); 

BOOL InitializeSystem (void); 

void readcard(void); 

BOOL CheckForNewAttach ( void ); 

BOOL USB_ApplicationEventHandler ( BYTE address, USB_EVENT event, void *data, DWORD 

size ); 

void SendAlert(void); 

void SendAlert1(void); 

void RWFlash(unsigned int task); 

void GetPass(unsigned int Add); 

void GetNum(unsigned int Add); 

void GetTime(void); 

void setup(void); 

void grandaccess (void); 

void blockaccess (void); 

unsigned int verifykey(unsigned int Add); 

unsigned int disarm(unsigned int Add); 

 

 

// Interrupt Routines 

void __attribute__((interrupt, no_auto_psv)) _U1RXInterrupt(void); 

void __attribute__((interrupt, no_auto_psv)) _CNInterrupt(void); 

void __attribute__((interrupt, no_auto_psv)) _T3Interrupt(void); 

void __attribute__((interrupt, no_auto_psv)) _T1Interrupt(void); 

 

void _ISR _U1RXInterrupt(void) 

{ 

 IEC0bits.U1RXIE = 0; // Disable U1RX interrupt 

 readcard(); 

 IFS0bits.U1RXIF = 0; // Reset U1RX interrupt register 

 IEC0bits.U1RXIE = 1; // Enable U1RX interrupt 

 

} 

 

void _ISR _CNInterrupt(void) 

{  

 if (PORTAbits.RA4 == 0 && offalarm == 0){ 

  TRISBbits.TRISB5 = 0; 

  PORTBbits.RB5 = 1; 

  alarm = 1; 

  SendAlert(); 

  } 

 

 if (PORTAbits.RA4 == 1 && offalarm == 1){ 

  offalarm = 0; 

 } 

 while (alarm){ 

  if (disarm(200)){ 

   if (alarm == 1 && PORTAbits.RA4 == 1){ 

   offalarm = 0; 

   } 



63 

   else{ 

   offalarm = 1; 

   } 

   alarm = 0;    

  } 

 } 

 IFS1bits.CNIF = 0; 

} 

 

void _ISR _T3Interrupt(void) 

{  

 halt = 0; 

 IFS0bits.T3IF = 0; 

} 

 

void _ISR _T1Interrupt(void) 

{  

 USBHostTasks(); 

 IFS0bits.T1IF = 0; 

} 

// Local Routines 

//*************** 

  

 

/* Function: delay 

 Overview: This routine take time in millisecond and cause system to do nothing. */ 

void delay(unsigned int msec) 

{ 

 unsigned int fac; 

 for (;msec > 0;msec--) 

 { 

  for (fac = 16000; fac > 0; fac --); 

 } 

} 

 

 

/*  Function: initt2 

 Overview: This routine initializes timer 2 in 32bit operation for blockaccess function. 

*/ 

void initt2(unsigned int time) 

{ 

 T2CONbits.T32 = 1;   //32bit operation 

 T2CONbits.TCKPS = 3; // 1:256 Prescale 

 T2CONbits.TCS = 0;  // Intrnal fosc/2 

 T2CONbits.TGATE = 0; // Disable gated timer operation 

 PR3 = time;   // 

 PR2 = 0;   // 

 IFS0bits.T3IF = 0; // Clear interrupt 

 IEC0bits.T3IE = 1; // Enable interrupt  

 T2CONbits.TON = 1; 

} 

 

/*  Function: initt1 

 Overview: This routine initializes timer 1 in 16bit operation for usbhosttask. */ 

void initt1(void) 

{ 

 T1CONbits.TCKPS = 3; // 1:256 Prescale 

 T1CONbits.TCS = 0;  // Intrnal fosc/2 

 T1CONbits.TGATE = 0; // Disable gated timer operation 

 PR1 = 3906;   // 



64 

 IFS0bits.T1IF = 0; // Clear interrupt 

 IEC0bits.T1IE = 1; // Enable interrupt  

 T1CONbits.TON = 1; 

} 

 

/*  Function: initU1 

 Overview: This routine initializes the Tx/Rx pin, setting the baund rate and enabling 

interrupt on Rx pin. */ 

void initU1(void) 

{ 

 U1BRG = 103; 

 U1MODE = 0x8000; 

 U1STA = 0x8400; 

 IFS0bits.U1RXIF = 0; 

 RPINR18bits.U1RXR = 5; // Assign U1RX To Pin RR5/RA0 

 RPOR3bits.RP6R = 3;  // Assign U1TX To Pin RP6/RA1 

 IFS0bits.U1RXIF = 0; // Reset U1RX interrupt register 

 IEC0bits.U1RXIE = 1; // Enable U1RX interrupt 

 IPC2bits.U1RXIP = 7; 

} 

 

 

/* Function: writeU1 

 Overview: This routine takes a character as input and writes to Tx port. */ 

void writeU1(char c) 

{ 

 while (U1STAbits.UTXBF); 

 U1TXREG = c;  

} 

 

 

/* Function: writesU1 

 Overview: This routine takes a string from input and writes to Tx port. */ 

void writesU1(char *str) 

{ 

 while ( *str) 

  writeU1( *str++); 

} 

 

 

/* Function: readU1 

 Overview: This routine reads a single character from Rx port and return the character. 

*/ 

char readU1(void) 

{ 

 while (!U1STAbits.URXDA);   

 return U1RXREG; 

} 

 

 

/* Function: readsU1 

 Overview: This routine reads a string from Rx port and return the string. */ 

char *readsU1(char *str, unsigned int slen) 

{ 

 char waste; 

 char *ptr = str; 

 waste = readU1();  // discard 1st unused character  

 do{ 

  *str = readU1(); 

  str++; 



65 

  slen--; 

}while (slen > 0); 

 waste = readU1();  // discard last unused character 

 *str = '\0';   // add null terminal to string 

 return ptr; 

} 

 

 

/* Function: accesslcd 

 Overview: This routine enable write to lcd and disable input from keypad */ 

void accesslcd(void) 

{ 

 TRISBbits.TRISB0 = 0; 

 TRISBbits.TRISB1 = 0; 

 TRISBbits.TRISB2 = 0; 

 TRISBbits.TRISB3 = 0; 

 TRISBbits.TRISB13 = 0; //Output RB13 

 TRISBbits.TRISB14 = 0; //Output RB14 

 PORTB = 0x0000; 

} 

 

 

/* Function: writelcd8b 

 Overview: This routine writes a byte of data to lcd. Data is send to lcd in 4bit mode */ 

void writelcd8b(unsigned int fnc, char text) 

{ 

 accesslcd();   // Switch to LCD 

 delay(1); 

 char temp = text;  // Save data inside temp 

 temp = temp & 0xF0;  // Take upper 4 bit 

 temp = temp >> 4;  // Right shift to output data 

 text = text & 0x0F;  // Take lower 4 bit 

 PORTB = temp;   // Output upper 4 bit first 

 if(fnc)     // Check for intruction or data 

 PORTBbits.RB13 = 1; 

 else 

 PORTBbits.RB13 = 0; 

 PORTBbits.RB14 = 1;  // Enable 

 delay(1); 

 PORTBbits.RB14 = 0;  // Disable 

 PORTB = text; 

 if(fnc) 

 PORTBbits.RB13 = 1; 

 else 

 PORTBbits.RB13 = 0; 

 PORTBbits.RB14 = 1; 

 delay(1); 

 PORTBbits.RB14 = 0; 

} 

 

 

/* Function: writelcd4b 

 Overview: This routine writes a 4bit of data to lcd. */ 

void writelcd4b(unsigned int fnc, char text) 

{ 

 accesslcd(); 

 delay(1); 

 PORTB = text; 

 if(fnc) 

 PORTBbits.RB13 = 1; 



66 

 else 

 PORTBbits.RB13 = 0; 

 PORTBbits.RB14 = 1; 

 delay(10); 

 PORTBbits.RB14 = 0; 

 delay(1); 

} 

 

 

/* Function: writeslcd 

 Overview: This routine writes string to lcd in 4bit mode. */ 

void writeslcd (unsigned int fnc, char *string) 

{ 

 while(*string) 

 { writelcd8b(fnc,*string); 

  string++; 

 } 

} 

 

 

/* Function: accesskey 

 Overview: This routine enable input from keypad and disable write to lcd  */ 

void accesskey(void) 

{ 

 TRISBbits.TRISB0 = 0; 

 TRISBbits.TRISB1 = 0; 

 TRISBbits.TRISB2 = 0; 

 TRISBbits.TRISB3 = 0; 

 TRISBbits.TRISB4 = 1; 

 TRISBbits.TRISB7 = 1; 

 TRISBbits.TRISB8 = 1; 

 TRISBbits.TRISB9 = 1; 

 TRISBbits.TRISB13 = 1; 

 TRISBbits.TRISB14 = 1; 

 

 if (alarm) 

  PORTB = 0x002F; 

 else 

  PORTB = 0x000F; 

} 

 

 

/* Function: readkey 

 Overview: This routine scan matrix keypad for key pressed and return the key pressed  

*/ 

char readkey(void) 

{  

 accesskey(); 

 delay(1); 

 unsigned int col = 0; 

 char key = '\0'; 

 if(PORTBbits.RB4||PORTBbits.RB7||PORTBbits.RB8||PORTBbits.RB9) 

 { 

  if(PORTBbits.RB4){ 

   col = 1; 

  } 

  else if (PORTBbits.RB7){ 

   col = 2; 

  } 

  else if (PORTBbits.RB8){ 



67 

   col = 3; 

  } 

  else if (PORTBbits.RB9){ 

   col = 4; 

  } 

 

  if (alarm) 

   PORTB = 0x0020; 

  else 

   PORTB = 0x0000; 

  delay(1); 

  

  switch (col) 

  { 

  case 1 :  

  if (alarm) 

   PORTB = 0x0021; 

  else 

   PORTB = 0x0001; 

  delay(1); 

  if(PORTBbits.RB4) 

  { 

  key = '1'; 

  break; 

  } 

 

  if (alarm) 

   PORTB = 0x0022; 

  else 

   PORTB = 0x0002; 

  delay(1); 

  if(PORTBbits.RB4) 

  { 

  key = '4'; 

  break; 

  } 

 

  if (alarm) 

   PORTB = 0x0024; 

  else 

   PORTB = 0x0004; 

  delay(1); 

  if(PORTBbits.RB4) 

  { 

  key = '7'; 

  break; 

  } 

 

  if (alarm) 

   PORTB = 0x0028; 

  else 

   PORTB = 0x0008; 

  delay(1); 

  if(PORTBbits.RB4) 

  { 

  key = '*'; 

  break; 

  } 

 

  case 2 :  



68 

  if (alarm) 

   PORTB = 0x0021; 

  else 

   PORTB = 0x0001; 

  delay(1); 

  if(PORTBbits.RB7) 

  { 

  key = '2'; 

  break; 

  } 

 

  if (alarm) 

   PORTB = 0x0022; 

  else 

   PORTB = 0x0002; 

  delay(1); 

  if(PORTBbits.RB7) 

  { 

  key = '5'; 

  break; 

  } 

 

  if (alarm) 

   PORTB = 0x0024; 

  else 

   PORTB = 0x0004; 

  delay(1); 

  if(PORTBbits.RB7) 

  { 

  key = '8'; 

  break; 

  } 

  

  if (alarm) 

   PORTB = 0x0028; 

  else 

   PORTB = 0x0008; 

  delay(1); 

  if(PORTBbits.RB7) 

  { 

  key = '0'; 

  break; 

  } 

 

  case 3 :  

  if (alarm) 

   PORTB = 0x0021; 

  else 

   PORTB = 0x0001; 

  delay(1); 

  if(PORTBbits.RB8) 

  { 

  key = '3'; 

  break; 

  } 

 

  if (alarm) 

   PORTB = 0x0022; 

  else 

   PORTB = 0x0002; 



69 

  delay(1); 

  if(PORTBbits.RB8) 

  { 

  key = '6'; 

  break; 

  } 

 

  if (alarm) 

   PORTB = 0x0024; 

  else 

   PORTB = 0x0004; 

  delay(1); 

  if(PORTBbits.RB8) 

  { 

  key = '9'; 

  break; 

  } 

 

  if (alarm) 

   PORTB = 0x0028; 

  else 

   PORTB = 0x0008; 

  delay(1); 

  if(PORTBbits.RB8) 

  { 

  key = '#'; 

  break; 

  } 

 

  case 4 :  

  if (alarm) 

   PORTB = 0x0021; 

  else 

   PORTB = 0x0001; 

  delay(1); 

  if(PORTBbits.RB9) 

  { 

  key = 'A'; 

  break; 

  } 

  

  if (alarm) 

   PORTB = 0x0022; 

  else 

   PORTB = 0x0002; 

  delay(1); 

  if(PORTBbits.RB9) 

  { 

  key = 'B'; 

  break; 

  } 

  

  if (alarm) 

   PORTB = 0x0024; 

  else 

   PORTB = 0x0004; 

  delay(1); 

  if(PORTBbits.RB9) 

  { 

  key = 'C'; 



70 

  break; 

  } 

 

  if (alarm) 

   PORTB = 0x0028; 

  else 

   PORTB = 0x0008; 

  delay(1); 

  if(PORTBbits.RB9) 

  { 

  key = 'D'; 

  break; 

  } 

  default: break; 

  } 

  while(PORTBbits.RB4||PORTBbits.RB7||PORTBbits.RB8||PORTBbits.RB9); 

  delay(10); 

 } 

 return key; 

} 

 

 

/* Function: initlcd 

 Overview: This routine initialize port for lcd and configure lcd for system 

initialization  */  

void initlcd(void) 

{  

 TRISB = 0xFFF0;   // Output RB0-RB3 

 TRISBbits.TRISB13 = 0; // Output RB13 

 TRISBbits.TRISB14 = 0; // Output RB14 

 delay(1); 

 writelcd8b(0,0x08);  // turn off display 

 delay(8); 

 writelcd4b(0,0x02);  // 4bit mode 

 delay(8); 

 writelcd8b(0,0x28);  // 4bit mode 

 delay(8); 

 writelcd8b(0,0x0E);  // turn on display, on cursor 

 delay(8); 

 writelcd8b(0,0x06);  // Increment mode 

 delay(8); 

 writelcd8b(0,0x01);  // Clear screen 

 delay(8); 

} 

 

 

 

/* Function: DataInit 

   Overview: This routine copy data from flash memory to user variable and setting password for 

first time running */ 

void DataInit(void){ 

 unsigned int i; 

 char temp; 

 buff0[10] = 13; 

 buff0[11] = '\0'; 

 buff2[10] = 13; 

 buff2[11] = '\0'; 

 buff1[120] = 26; 

 buff1[121] = 13; 

 buff1[122] = '\0'; 



71 

 buff3[144] = 26; 

 buff3[145] = 13; 

 buff3[146] = '\0'; 

 DataEEInit(); 

    dataEEFlags.val = 0; 

 temp = DataEERead(254); 

 if (temp == 'Y'){ 

  for( i = 0; i < 12; i++){ 

   buff1[24+i] = DataEERead(240+i); 

   buff1[4+i] = DataEERead(220+i); 

   buff3[24+i] = DataEERead(240+i); 

   buff3[4+i] = DataEERead(220+i); 

  } 

  halttime = DataEERead(234); 

  cardkey = halttime = DataEERead(235); 

 } 

 else{ 

  for( i = 0; i < 6; i++){ 

  DataEEWrite('0',200+i); 

  DataEEWrite('0',210+i); 

  } 

 halttime = 1; 

 }  

} 

 

 

/* Function: InitializeSystem 

 Overview: This routine initializes the processor and peripheral, setting clock speeds 

and enabling any required features.  

    Return true if seccessful and vice versa. */ 

BOOL InitializeSystem (void) 

{ 

 delay(200); 

 CLKDIVbits.CPDIV = 0; 

 CLKDIVbits.PLLEN = 1; 

 AD1PCFGL = 0xFFFF;   //Set to all digital I/O 

  TRISB  = 0xFFFF;   //Configure all PortB as input 

 TRISA  =  0xFFFF; 

 TRISBbits.TRISB5 = 0; 

 CNEN1bits.CN0IE = 1; 

 IFS1bits.CNIF = 0; 

 IEC1bits.CNIE = 1; 

 initlcd(); 

 initU1();  

    USBOn = 0;// Set Default demo state 

 DataInit(); 

    return TRUE; 

} 

 

 

/* Function: readcard 

   Overview: This routine verify card read by reader */ 

void readcard(void) 

{ 

 unsigned int i, flag, num; 

 char str[11],str1[11]; 

 readsU1(str,SLEN); 

 flag = 0; 

 DataEEInit(); 

    dataEEFlags.val = 0; 



72 

 

 for( num = 0; num < 10; num++) 

 { 

  for ( i = 1; i < 11 ; i++ ) 

  { 

   str1[i-1]=DataEERead(num*10+i); 

  } 

  str1[10] = '\0'; 

  if(!strcmp(str, str1)) 

   flag = 1; 

 } 

   

 if (flag){ 

  if (cardkey == 1){ 

   writelcd8b(0,0x01); 

   writelcd8b(0,0x80); 

   writeslcd(1,"USER PASSWORD"); 

   writelcd8b(0,0xC0);  

   writelcd8b(1,'>'); 

   if (verifykey(200)){ 

    TRISBbits.TRISB15 = 0; //Output RB15 

    PORTBbits.RB15 = 1; 

    delay(3000); 

   } 

   else{ 

    TRISBbits.TRISB15 = 0; //Output RB15 

    PORTBbits.RB15 = 0; 

   } 

  } 

  else{ 

   writelcd8b(0,0x01); 

   writeslcd(1,"ACCESS GRANTED"); 

   TRISBbits.TRISB15 = 0; //Output RB15 

   PORTBbits.RB15 = 1; 

   delay(3000); 

  } 

 } 

 else{ 

  writelcd8b(0,0x01); 

  writeslcd(1,"ACCESS DENIED"); 

  TRISBbits.TRISB15 = 0; //Output RB15 

  PORTBbits.RB15 = 0; 

 } 

} 

 

 

/* Function: CheckForNewAttach 

 Overview: This routine checks to see if a new device has been attached.  If it has, it 

records the address. */ 

BOOL CheckForNewAttach ( void ) 

{ 

  if (deviceAddress == 0) 

    { 

        GENERIC_DEVICE_ID DevID; 

 

        #ifdef USB_GENERIC_SUPPORT_SERIAL_NUMBERS 

            DevID.serialNumberLength = 0; 

            DevID.serialNumber = NULL; 

        #endif 

 



73 

        if (USBHostGenericGetDeviceAddress(&DevID)) 

        { 

            deviceAddress = DevID.deviceAddress; 

   #ifdef DEBUG_MODE 

   #endif 

            return TRUE; 

        } 

    } 

   return FALSE; 

}  

 

 

// USB Support Functions 

//********************** 

/*  Function: USB_ApplicationEventHandler 

 Overview: This routine is called by the Host layer or client driver to notify the  

    application of events that occur. If the event is recognized, it is  

    handled and the routine returns TRUE.  Otherwise, it is ignored 

(or 

    just "sniffed" and the routine returns FALSE. */ 

BOOL USB_ApplicationEventHandler ( BYTE address, USB_EVENT event, void *data, DWORD 

size ) 

{ 

    #ifdef USB_GENERIC_SUPPORT_SERIAL_NUMBERS 

        BYTE i; 

    #endif 

 

    // Handle specific events. 

    switch (event) 

    { 

        case EVENT_GENERIC_ATTACH: 

   writesU1( "Generic demo device attached\r\n" ); 

            if (size == sizeof(GENERIC_DEVICE_ID)) 

            { 

                deviceAddress   = ((GENERIC_DEVICE_ID *)data)->deviceAddress; 

                USBOn = 1; 

    writelcd8b(0,0x01); 

    writelcd8b(0,0x80); 

    writeslcd(1,"DEVICE OK"); 

    writelcd8b(0,0xC0);  

    writeslcd(1,"ADDRESS = "); 

    writelcd8b(1,deviceAddress+0x30); 

     

                #ifdef USB_GENERIC_SUPPORT_SERIAL_NUMBERS 

                    for (i=1; i<((GENERIC_DEVICE_ID *)data)->serialNumberLength; i++) 

                    { 

                        writesU1( ((GENERIC_DEVICE_ID *)data)->serialNumber[i] ); 

                    } 

                #endif 

                writesU1( "\r\n" ); 

                return TRUE; 

            } 

            break; 

 

        case EVENT_GENERIC_DETACH: 

            deviceAddress   = 0; 

            USBOn = 0; 

   writelcd8b(0,0x01); 

   writeslcd(1,"DEVIDE DETACHED"); 

   delay(300); 



74 

            return TRUE; 

 

        case EVENT_GENERIC_TX_DONE:  

        case EVENT_GENERIC_RX_DONE: 

            return TRUE; 

 

        case EVENT_VBUS_REQUEST_POWER: 

            return TRUE; 

 

        case EVENT_VBUS_RELEASE_POWER: 

            return TRUE; 

 

        case EVENT_HUB_ATTACH: 

    writelcd8b(0,0x01); 

   writeslcd(1,"HUB DETECTED"); 

            return TRUE; 

            break; 

 

        case EVENT_UNSUPPORTED_DEVICE: 

   writelcd8b(0,0x01); 

   writeslcd(1,"DEVICE ERROR"); 

            return TRUE; 

            break; 

 

        case EVENT_CANNOT_ENUMERATE: 

   writelcd8b(0,0x01); 

   writeslcd(1,"ENUMERATE FAIL"); 

            return TRUE; 

            break; 

 

        case EVENT_CLIENT_INIT_ERROR: 

   writelcd8b(0,0x01); 

   writeslcd(1,"CLIENT ERROR"); 

            return TRUE; 

            break; 

 

        case EVENT_OUT_OF_MEMORY: 

   writelcd8b(0,0x01); 

   writeslcd(1,"OUT OF MEMORY"); 

            return TRUE; 

            break; 

 

        case EVENT_UNSPECIFIED_ERROR:  

    writelcd8b(0,0x01); 

   writeslcd(1,"UNKNOW ERROR"); 

            return TRUE; 

            break; 

 

        case EVENT_SUSPEND: 

        case EVENT_DETACH: 

        case EVENT_RESUME: 

        case EVENT_BUS_ERROR: 

            return TRUE; 

            break; 

 

        default: 

            break; 

    } 

    return FALSE; 

} 



75 

 

 

/* Function: SendAlert 

   Overview: This routine send sms to user when door is forced to opened */ 

void SendAlert(void) 

{ 

 BYTE RetVal; 

 unsigned int EP = 0; 

 USBHostTasks(); 

 if (USBOn == 1) 

 { 

  while (USBHostGenericTxIsBusy(deviceAddress)); 

  RetVal = USBHostGenericEP2Write(deviceAddress, buff, 3); 

  if (RetVal == USB_SUCCESS){ 

   EP = 1; 

  } 

  else{ 

   EP = 0; 

  } 

 

  if (currstate == 0){ 

   while(USBHostGenericTxIsBusy(deviceAddress)); 

   if(EP == 1){ 

    RetVal=USBHostGenericEP2Write(deviceAddress, buff0, 11); 

   } 

   else{ 

    RetVal=USBHostGenericWrite(deviceAddress, buff0, 11); 

   } 

   currstate = 1; 

   delay(100);    

  } 

  if (currstate == 1) 

  { while(USBHostGenericRxIsBusy(deviceAddress)); 

   if (EP == 1){ 

    RetVal=USBHostGenericEP2Read(deviceAddress,Home, 

sizeof(Home)); 

   } 

   else{  

    RetVal=USBHostGenericRead(deviceAddress,Home, 

sizeof(Home)); 

   } 

   currstate = 2; 

  } 

 

  if (currstate == 2){ 

   while(USBHostGenericTxIsBusy(deviceAddress)); 

   if(EP == 1){ 

    RetVal=USBHostGenericEP2Write(deviceAddress, buff1, 122); 

   } 

   else{ 

    RetVal=USBHostGenericWrite(deviceAddress, buff1, 122); 

   } 

   currstate = 3; 

   delay(1000);    

  } 

 

  if (currstate == 3) 

  { while(USBHostGenericRxIsBusy(deviceAddress)); 

   if (EP == 1){ 



76 

    RetVal=USBHostGenericEP2Read(deviceAddress,Home, 

sizeof(Home)); 

   } 

   else{  

    RetVal=USBHostGenericRead(deviceAddress,Home, 

sizeof(Home)); 

   } 

   currstate = 0; 

  } 

 } 

}  

 

/* Function: SendAlert1 

   Overview: This routine send sms to user when password entered was wrong 5 times */ 

void SendAlert1(void) 

{ 

 BYTE RetVal; 

 unsigned int EP = 0; 

 USBHostTasks(); 

 if (USBOn == 1) 

 { 

  while (USBHostGenericTxIsBusy(deviceAddress)); 

  RetVal = USBHostGenericEP2Write(deviceAddress, buff, 3); 

  if (RetVal == USB_SUCCESS){ 

   EP = 1; 

  } 

  else{ 

   EP = 0; 

  } 

 

  if (currstate == 0){ 

   while(USBHostGenericTxIsBusy(deviceAddress)); 

   if(EP == 1){ 

    RetVal=USBHostGenericEP2Write(deviceAddress, buff2, 11); 

   } 

   else{ 

    RetVal=USBHostGenericWrite(deviceAddress, buff2, 11); 

   } 

   currstate = 1; 

   delay(100);    

  } 

  if (currstate == 1) 

  { while(USBHostGenericRxIsBusy(deviceAddress)); 

   if (EP == 1){ 

    RetVal=USBHostGenericEP2Read(deviceAddress,Home, 

sizeof(Home)); 

   } 

   else{  

    RetVal=USBHostGenericRead(deviceAddress,Home, 

sizeof(Home)); 

   } 

   currstate = 2; 

  } 

 

  if (currstate == 2){ 

   while(USBHostGenericTxIsBusy(deviceAddress)); 

   if(EP == 1){ 

    RetVal=USBHostGenericEP2Write(deviceAddress, buff3, 146); 

   } 

   else{ 



77 

    RetVal=USBHostGenericWrite(deviceAddress, buff3, 146); 

   } 

   currstate = 3; 

   delay(2000);    

  } 

 

  if (currstate == 3) 

  { while(USBHostGenericRxIsBusy(deviceAddress)); 

   if (EP == 1){ 

    RetVal=USBHostGenericEP2Read(deviceAddress,Home, 

sizeof(Home)); 

   } 

   else{  

    RetVal=USBHostGenericRead(deviceAddress,Home, 

sizeof(Home)); 

   } 

   currstate = 0; 

  } 

 } 

}  

 

/* Function: verifykey 

   Overview: This routine add/remove card unique ID from database */ 

void RWFlash(unsigned int task){ 

 unsigned int i = 1; 

 unsigned int num; 

 char str[11] = "**********"; 

 IEC0bits.U1RXIE = 0; // Disable U1RX interrupt 

 do{ 

  num = readkey(); 

  USBHostTasks(); 

 }  

 while(num == '\0' || num  == 'B'); 

 writeU1(num); 

 writelcd8b(1,num); 

 if (task == 1){ 

  writelcd8b(0,0x01); 

  writeslcd(1,"PLEASE SCAN CARD"); 

  readsU1(str,SLEN); 

 }  

 DataEEInit(); 

    dataEEFlags.val = 0; 

 num -= 0x30; 

 while(i < 11 && USBOn == 1){ 

  DataEEWrite(str[i-1],num*10+i); 

  i++; 

  } 

 writelcd8b(0,0x01); 

 writeslcd(1,"DONE"); 

 IFS0bits.U1RXIF = 0; // Reset U1RX interrupt register 

 IEC0bits.U1RXIE = 1; // Enable U1RX interrupt 

} 

 

 

/* Function: GetPass 

   Overview: This routine get password from user */ 

void GetPass(unsigned int Add){ 

 unsigned int i = 0; 

 char Pass[7]; 

 char Temp; 



78 

  

 IEC0bits.U1RXIE = 0; // Disable U1RX interrupt  

 while( i < 6 ){ 

  Temp = readkey(); 

  if(Temp != '\0' && Temp != 'A' && Temp != 'B' && Temp != 'D' ){ 

   Pass[i] = Temp; 

    if (Pass[i]!= 'C'){ 

     writeU1(Pass[i]); 

     writelcd8b(1,Pass[i]); 

     i++; 

    } 

    else{ 

     i = 0; 

     writelcd8b(0,0x01); 

     writelcd8b(0,0x80); 

     writeslcd(1,"ENTER PASSWORD"); 

     writelcd8b(0,0xC0);  

     writelcd8b(1,'>'); 

    } 

  } 

 } 

 i = 0; 

 DataEEInit(); 

    dataEEFlags.val = 0; 

 while(i < 6){ 

  DataEEWrite(Pass[i],Add+i); 

  i++; 

  } 

 writelcd8b(0,0x01); 

 writeslcd(1,"DONE"); 

 DataEEWrite('Y',254); 

 IFS0bits.U1RXIF = 0; // Reset U1RX interrupt register 

 IEC0bits.U1RXIE = 1; // Enable U1RX interrupt 

} 

 

 

/* Function: GetNum 

   Overview: This routine get target phone number & SMSC number from user */ 

void GetNum(unsigned int Add){ 

 unsigned int i = 0; 

 char Num[13]; 

 char Temp; 

 Num[11] = 'F'; 

 Num[12] = '\0'; 

 char str1[12]; 

  

 IEC0bits.U1RXIE = 0; // Disable U1RX interrupt 

 while( i < 11 ){ 

  Temp = readkey(); 

  if(Temp != '\0' && Temp != 'A' && Temp != 'B' && Temp != 'D' ){ 

   Num[i] = Temp; 

    if (Num[i]!= 'C'){ 

     writeU1(Num[i]); 

     writelcd8b(1,Num[i]); 

     i++; 

    } 

    else{ 

     i = 0; 

     writelcd8b(0,0x01); 

     if (Add == 220){ 



79 

      writelcd8b(0,0x80); 

      writeslcd(1,"ENTER SMSC NUM."); 

      writelcd8b(0,0xC0);  

      writelcd8b(1,'>'); 

     } 

     else{ 

      writelcd8b(0,0x80); 

      writeslcd(1,"ENTER PHONE NUM."); 

      writelcd8b(0,0xC0);  

      writelcd8b(1,'>'); 

     } 

    } 

  } 

 } 

 

 for(i = 0; i < 12; i+=2){ 

  Temp = Num[i]; 

  Num[i] = Num[i+1]; 

  Num[i+1] = Temp; 

 } 

 i = 0; 

 DataEEInit(); 

    dataEEFlags.val = 0; 

 while(i < 13){ 

  DataEEWrite(Num[i],Add+i); 

  i++; 

  } 

 writelcd8b(0,0x01); 

 writeslcd(1,"DONE"); 

 i = 0; 

 while(i < 12){ 

  str1[i]=DataEERead(Add+i); 

  buff1[24+i] = DataEERead(240+i); 

  buff1[4+i] = DataEERead(220+i); 

  i++; 

 } 

 writesU1(str1); 

 IFS0bits.U1RXIF = 0; // Reset U1RX interrupt register 

 IEC0bits.U1RXIE = 1; // Enable U1RX interrupt 

} 

 

 

/* Function: GetTime 

   Overview: This routine get blocked time from user */ 

void GetTime(void){ 

 unsigned int i = 0, t = 0; 

 char time[3]; 

 char Temp; 

  

 IEC0bits.U1RXIE = 0; // Disable U1RX interrupt 

 while( i < 2 ){ 

  Temp = readkey(); 

  if(Temp != '\0' && Temp != 'A' && Temp != 'B' && Temp != 'D' ){ 

   time[i] = Temp; 

    if (time[i]!= 'C'){ 

     writeU1(time[i]); 

     writelcd8b(1,time[i]); 

     i++; 

    } 

    else{ 



80 

     i = 0; 

     writelcd8b(0,0x01); 

     writelcd8b(0,0x80); 

     writeslcd(1,"MINUTES TO BLOCK"); 

     writelcd8b(0,0xC0);  

     writelcd8b(1,'>'); 

    } 

  } 

 } 

 

 t = ((time[0]-0x30) + ((time[1]-0x30)*10))*60; 

 DataEEInit(); 

    dataEEFlags.val = 0; 

 DataEEWrite(t,234); 

 writelcd8b(0,0x01); 

 writeslcd(1,"DONE"); 

 IFS0bits.U1RXIF = 0; // Reset U1RX interrupt register 

 IEC0bits.U1RXIE = 1; // Enable U1RX interrupt 

} 

 

/* Function: GetType 

   Overview: This routine get access type from user */ 

void GetType(void){ 

 unsigned int i = 0; 

 char Temp; 

  

 IEC0bits.U1RXIE = 0; // Disable U1RX interrupt 

 while( i < 1 ){ 

  Temp = readkey(); 

  if(Temp == '1' || Temp == '0'){ 

    if (Temp == '1'){ 

     cardkey = 1; 

    } 

    else{ 

     cardkey = 0; 

    } 

    i++; 

  } 

 } 

 DataEEInit(); 

    dataEEFlags.val = 0; 

 DataEEWrite(cardkey,235); 

 writelcd8b(0,0x01); 

 writeslcd(1,"DONE"); 

 IFS0bits.U1RXIF = 0; // Reset U1RX interrupt register 

 IEC0bits.U1RXIE = 1; // Enable U1RX interrupt 

} 

 

/* Function: setup 

   Overview: This routine configure user password, admin password, target phone number ,  

    add/remove card, setting bloacked time, setting access type and 

user SMSC number*/ 

void setup(void){ 

 

 unsigned int i = 1; 

 char keypad; 

 writelcd8b(0,0x01); 

 writelcd8b(0,0x80); 

 writeslcd(1,"SETUP MENU:"); 

 writelcd8b(0,0xC0);  



81 

 writelcd8b(1,'>'); 

 

 while (i){ 

  keypad = readkey(); 

 

  if (keypad == '1'){ 

   writelcd8b(0,0x01); 

   writelcd8b(0,0x80); 

   writeslcd(1,"ENTER CARD ID"); 

   writelcd8b(0,0xC0);  

   writelcd8b(1,'>'); 

   RWFlash(1); 

   i = 0; 

  } 

  else if (keypad == '2'){ 

   writelcd8b(0,0x01); 

   writelcd8b(0,0x80); 

   writeslcd(1,"ENTER CARD ID"); 

   writelcd8b(0,0xC0);  

   writelcd8b(1,'>'); 

   RWFlash(2); 

   i = 0; 

  } 

  else if (keypad == '3'){ 

   writelcd8b(0,0x01); 

   writelcd8b(0,0x80); 

   writeslcd(1,"ENTER PASSWORD"); 

   writelcd8b(0,0xC0);  

   writelcd8b(1,'>'); 

   GetPass(200); 

   i = 0; 

  } 

  else if (keypad == '4'){ 

   writelcd8b(0,0x01); 

   writelcd8b(0,0x80); 

   writeslcd(1,"ENTER PASSWORD"); 

   writelcd8b(0,0xC0);  

   writelcd8b(1,'>'); 

   GetPass(210); 

   i = 0; 

  } 

  else if (keypad == '5'){ 

   writelcd8b(0,0x01); 

   writelcd8b(0,0x80); 

   writeslcd(1,"ENTER PHONE NUM."); 

   writelcd8b(0,0xC0);  

   writelcd8b(1,'>'); 

   GetNum(240); 

   i = 0; 

  } 

  else if (keypad == '6'){ 

   writelcd8b(0,0x01); 

   writelcd8b(0,0x80); 

   writeslcd(1,"ENTER SMSC NUM."); 

   writelcd8b(0,0xC0);  

   writelcd8b(1,'>'); 

   GetNum(220); 

   i = 0; 

  } 

  else if (keypad == '7'){ 



82 

   writelcd8b(0,0x01); 

   writelcd8b(0,0x80); 

   writeslcd(1,"MINUTES TO BLOCK"); 

   writelcd8b(0,0xC0);  

   writelcd8b(1,'>'); 

   GetTime(); 

   i = 0; 

  } 

  else if (keypad == '8'){ 

   writelcd8b(0,0x01); 

   writelcd8b(0,0x80); 

   writeslcd(1,"TAG & PASSWORD?"); 

   writelcd8b(0,0xC0);  

   writelcd8b(1,'>'); 

   GetType(); 

   i = 0; 

  } 

  else if (keypad == '*'){ 

  i = 0; 

  writelcd8b(0,0x01); 

  writeslcd(1,"CANCELLED"); 

  } 

 } 

} 

 

 

/* Function: grandaccess 

   Overview: This routine release magnetic door */ 

void grandaccess (void){       

 TRISBbits.TRISB15 = 0; //Output RB15 

 PORTBbits.RB15 = 1; 

 IEC1bits.CNIE = 0; 

 offalarm = 1; 

 delay(3000); 

 IEC1bits.CNIE = 1; 

 if (PORTAbits.RA4 == 1 && offalarm == 1){ 

  offalarm = 0; 

 } 

} 

 

/* Function: blockaccess 

   Overview: This routine block access after 5 times trying */ 

void blockaccess (void){ 

 initt2(halttime); 

 halt = 1; 

 writelcd8b(0,0x01); 

 writeslcd(1,"ACCESS BLOCKED"); 

 SendAlert1(); 

 while (halt); 

 writelcd8b(0,0x01); 

 writeslcd(1,"ACCESS UNBLOCKED"); 

 T2CONbits.TON = 0; 

 wrong = 0; 

} 

 

/* Function: verifykey 

   Overview: This routine verify the password entered by user */ 

unsigned int verifykey(unsigned int Add){ 

 unsigned int i = 0; 

 char temp; 



83 

 char pass[7]; 

 char input[7]; 

 

 while(i < 6){ 

  temp = readkey(); 

  if(temp != '\0' && temp != 'A' && temp != 'B' && temp != 'D'){ 

  input[i] = temp; 

   if (input[i]!= 'C'){ 

    writeU1(input[i]); 

    writelcd8b(1,input[i]); 

    i++; 

   } 

   else{ 

    i = 0; 

    writelcd8b(0,0x01); 

    if (Add == 200){ 

     writelcd8b(0,0x80); 

     writeslcd(1,"USER PASSWORD"); 

     writelcd8b(0,0xC0);  

     writelcd8b(1,'>'); 

    } 

    else{ 

     writelcd8b(0,0x80); 

     writeslcd(1,"ADMIN PASSWORD"); 

     writelcd8b(0,0xC0);  

     writelcd8b(1,'>'); 

    } 

   } 

  } 

 } 

 input[6] = '\0'; 

 DataEEInit(); 

    dataEEFlags.val = 0; 

 for( i = 0; i < 6; i++){ 

  pass[i] = DataEERead(Add+i); 

  pass[6] = '\0'; 

 } 

 if(!strcmp(input, pass)){ 

  writelcd8b(0,0x01); 

  writeslcd(1,"ACCESS GRANTED"); 

  i = 1; 

  wrong = 0; 

 } 

 else{ 

  writelcd8b(0,0x01); 

  writeslcd(1,"ACCESS DENIED"); 

  i = 0; 

  wrong += 1; 

 } 

 return i; 

} 

 

 

/* Function: disarm 

   Overview: This routine is use to turn off the alarm */ 

unsigned int disarm(unsigned int Add){ 

 unsigned int i = 0; 

 char temp; 

 char pass[7]; 

 char input[7]; 



84 

 

 while(i < 6){ 

  USBHostTasks(); 

  temp = readkey(); 

  if(temp != '\0' && temp != 'A' && temp != 'B' && temp != 'D'){ 

  input[i] = temp; 

   if (input[i]!= 'C'){ 

    i++; 

   } 

   else{ 

    i = 0; 

    } 

   } 

  } 

 input[6] = '\0'; 

 DataEEInit(); 

    dataEEFlags.val = 0; 

 for( i = 0; i < 6; i++){ 

  pass[i] = DataEERead(Add+i); 

  pass[6] = '\0'; 

 } 

 

 if(!strcmp(input, pass)){ 

  i = 1; 

  writelcd8b(0,0x01); 

  writeslcd(1,"ALARM DISARM"); 

 } 

 else{ 

  i = 0; 

 } 

 return i; 

} 

 

 

/* Function: main 

   Overview: This is the Application's main entry point */ 

int main ( void ) 

{ 

 

 char keypad; 

 

    if ( InitializeSystem() != TRUE ) 

    { 

  writelcd8b(0,0x01); 

  writeslcd(1, "SYSTEM FAILURE"); 

        while (1); 

    } 

    if ( USBHostInit(0) == TRUE ) 

    { 

  writeslcd(1, "BOOTING UP....."); 

    } 

    else 

    { 

  writelcd8b(0,0x01); 

  writeslcd(1, "USB FAILURE"); 

        while (1); 

    } 

 delay(500); 

 initt1(); 

    while (1) 



85 

    { 

  while (USBOn == 1 || USBOn == 2){ 

   if (wrong > 4){ 

    blockaccess(); 

   }  

   keypad = readkey(); 

 

   if (keypad == 'B') 

   { 

    writelcd8b(0,0x01); 

    writelcd8b(0,0x80); 

    writeslcd(1,"USER PASSWORD"); 

    writelcd8b(0,0xC0);  

    writelcd8b(1,'>'); 

    if (verifykey(200)){ 

     writelcd8b(0,0x01); 

     writelcd8b(0,0x80); 

     writeslcd(1,"ADMIN PASSWORD"); 

     writelcd8b(0,0xC0);  

     writelcd8b(1,'>'); 

     if (verifykey(210)){ 

      setup(); 

     } 

    }     

   } 

   else if (keypad == 'D'){ 

    writelcd8b(0,0x01); 

    writelcd8b(0,0x80); 

    writeslcd(1,"USER PASSWORD"); 

    writelcd8b(0,0xC0);  

    writelcd8b(1,'>'); 

    if (verifykey(200)){ 

     grandaccess(); 

     } 

    } 

  }   

  writelcd8b(0,0x01); 

  writelcd8b(0,0x80); 

  writeslcd(1,"PLEASE PLUG IN"); 

  writelcd8b(0,0xC0); 

  writeslcd(1,"GSM TERMINAL"); 

  while(USBOn == 0){ 

   if (wrong > 4){ 

    blockaccess(); 

   } 

   keypad = readkey(); 

 

   if (keypad == 'A'){ 

    writelcd8b(0,0x01); 

    writelcd8b(0,0x80); 

    writeslcd(1,"USER PASSWORD"); 

    writelcd8b(0,0xC0);  

    writelcd8b(1,'>'); 

    if (verifykey(200)){ 

     writelcd8b(0,0x01); 

     writelcd8b(0,0x80); 

     writeslcd(1,"ADMIN PASSWORD"); 

     writelcd8b(0,0xC0);  

     writelcd8b(1,'>'); 

     if (verifykey(210)){ 



86 

      USBOn = 2; 

     } 

    } 

   } 

  } 

 

   } 

    return 0; 

} 


