

ELECTRIC VEHICLE INTELLIGENT CONTROL

SYSTEM (EVICS)

VINCENT CHEAH BENG KEAT

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Bachelor (Hons.) of Electrical and Electronics Engineering

Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

May 2011

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it

has not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature : _________________________

Name : _________________________

ID No. : _________________________

Date : _________________________

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled ELECTRIC VEHICLE INTELLIGENT

CONTROL SYSTEM (EVICS) was prepared by VINCENT CHEAH BENG

KEAT has met the required standard for submission in partial fulfilment of the

requirements for the award of Bachelor of Engineering (hons) Electrical and

Electronics Engineering Universiti Tunku Abdul Rahman.

Approved by,

Signature : _________________________

Supervisor : Dr. Chew Kuew Wai

Date : _________________________

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of University Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2011, VINCENT CHEAH BENG KEAT. All right reserved.

v

ACKNOWLEDGEMENTS

Firstly, I would like to express our sincere thanks and gratitude towards our

supervisor, Dr. Chew Kuew Wai for his guidance, encouragement, and constructive

feedback throughout the entire duration of this project. Without his expertise and

helpfulness, this project will not be an ongoing project.

Next, I would like to extent my heartfelt gratitude towards my colleagues, as

we do not only working side by side to accomplish the overall project but more

importantly providing a lot of suggestions and feedbacks pertaining to one‟s project.

Apart from that I would also like to thank the University for providing all the

facilities upon completion of this project.

Finally, I would like to say thank you to my parent who are my constant

source of inspiration, motivation and pillar of for me to complete this final year

project.

vi

ELECTRIC VEHICLE INTELLIGENT CONTROL

SYSTEM (EVICS)

ABSTRACT ACKNOWLEDGEMENTS

This final year project presents Electric Car Intelligent Controller System project

aims to create a multiple platform controller that can control each and every function

needed to be implemented in an electric car system such as battery management

system, inverters, amplifiers, voltage converters, constant current controllers and

many more. However, the main problem faced is that most commonly used

microcontrollers usually used in the university assignments and projects such as PIC

(Peripheral Control Interface) is not powerful enough to control multiple functions in

the electric car intelligent controller system in long term. Despite using a few of the

most powerful PICs such as 24, 32, or even 64 series, we will not be able to

guarantee the reliability to control such complex systems such as the Lithium-ion

battery management system. Hence, Intel Atom processor platform is used.

Consequently, the main goal is to have an electric car equipped with a

comprehensive intelligent controller system that can manage the battery profile

accordingly and display certain interactive data to the users, such as:

 The level of charges left in the battery on a monitor

 Interaction with the user's commands accurately to operate the hardware

 Ensure the safety aspect of the vehicle is always in good condition

 Display warnings if something is not right

 Manage the thermal or temperature level of the battery and controller

accordingly

vii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS / ABBREVIATIONS xiii

LIST OF APPENDICES xiv

CHAPTER

1 INTRODUCTION 1

1.1 Background 1

1.2 Aims and Objectives 2

2 LITERATURE REVIEW 3

2.1 Introduction 3

2.2 Battery Management System (BMS) 5

2.2.1 Battery Monitoring Unit (BMU) 6

2.2.2 Battery Control Unit (BCU) 7

2.2.3 Controller Area Network (CAN) 7

2.2.4 Thermal Management System (TMS) 7

2.3 Component of an Electrical Vehicle 8

2.4 Overview on EV‟s Power Management System 10

3 METHODOLOGY 11

viii

3.1 System Consideration 11

3.2 Software Consideration 13

3.3 Hardware Consideration 14

3.4 Overview Idea EVICS 18

4 RESULTS AND DISCUSSIONS 20

4.1 GUI 20

4.1.1 GUI Simulation based on Different conditions 21

4.2 XML Player 23

4.3 GUI Dynamic Time and Date Generation 29

4.4 Serial Communication 30

4.5 SOC Prediction Estimation 35

4.6 Webserver 36

4.7 Stage 1 of Battery Monitoring System 40

4.8 Copy Function from Adobe Flash Player 42

5 AWARDS AND ACHIEVEMENT 45

5.1 Research Paper Publications & Conference 45

5.1.1 Book Publications 47

5.2 Innovate Malaysia Design Competition 2011 (Intel track) 48

6 CONCLUSION AND RECOMMENDATIONS 50

6.1 Recommendations 50

6.2 Conclusion 51

REFERENCES 52

APPENDICES 54

ix

LIST OF TABLES

 TABLE TITLE PAGE

4-1 Table shows each of the characters shared between Intel

board and PIC 34

x

LIST OF FIGURES

 FIGURE TITLE PAGE

Figure 2-1 Proton Saga EV Green Propulsion 3

Figure 2-2 Charging profile of Lithium Battery 4

Figure 2-3 Conceptual representation of BMS primary function 5

Figure 2-4 Multiplexer to reduce component count 6

Figure 2-5 illustrates the major component for an electric vehicle 8

Figure 2-6 illustrates top level perspective of typical EV system

conditions 9

Figure 2-7 shows a very fundamental idea on each module and

every single module integrated together in order to

create an EV system 10

Figure 3-1 shows Universal-USB-Installer-1.8.2.6 in action 12

Figure 3-2 illustrates Intel board configuration 12

Figure 3-3 Adobe Flash (CS5) 13

Figure 3-4 Running Ubuntu 10.10 OS using Vmware

Workstation 14

Figure 3-5 16 Lead Acid Batteries from Yokohama for EV testing 15

Figure 3-6 Motors and its controller from Yokohama for EV

testing 16

Figure 3-7 Fundamental Concept of Acceleration Pedal in an EV 16

Figure 3-8 Bidirectional and Motor Speed Controller 17

Figure 3-9 Circuit Constructed on Bread Board 17

xi

Figure 3-10 EVICS overview 18

Figure 4-1 Flash Design Layouts 20

Figure 4-2 Dangerous zone 21

Figure 4-3Hide Player 21

Figure 4-4 No Flash Drive Detected 22

Figure 4-5 Flash Drive Detected 22

Figure 4-6 XML Player GUI 23

Figure 4-7 Linux Kernel 24

Figure 4-8 Bash Script together with its launcher 25

Figure 4-9 Launcher Program in Action Searching for Drive 25

Figure 4-10 Launcher Program detected the existence of Flash

Drive 26

Figure 4-11Similar Program running on Linux Shell 26

Figure 4-12 Block Behind Flash Drive Detection 27

Figure 4-13 Upper top of EV GUI 29

Figure 4-14 Serial Communication between Intel board with

PIC18F2550 30

Figure 4-15 Serial Communication using moserial 31

Figure 4-16 Serial communication data processing using shell 32

Figure 4-17 Block diagram pertaining to serial communication

protocol 33

Figure 4-18 Prediction of battery running time and distance left 35

Figure 4-19 Power up the whole system using 75AH Yokohama

battery 35

Figure 4-20 Intel board connects to a router for wireless LAN

connection 36

Figure 4-21 Connecting to Intel board using google chrome

[ev.cgi] 37

xii

Figure 4-22 Adding vehicle status record [ev_2.cgi] 37

Figure 4-23 View vehicle records [ev_1.cgi] 38

Figure 4-24 Block diagram behind webserver programming 38

Figure 4-25 Connected to the Intel board via putty - Windows 39

Figure 4-26 Putty connection connecting windows to Linux 39

Figure 4-27 creating a new file called “new_file” in putty 40

Figure 4-28 connecting to Intel board using Linux OS through via

SSH command 40

Figure 4-29 ADC in action 41

Figure 4-30 Mdm Zinc Builder 3.0 42

Figure 5-1 MUTRFC publication 47

Figure 5-2 Intel platform training October 2010 49

Figure 5-3 Preliminary Stage and Hardware Presentation April

2011 49

Figure 6-1 webcam application written in action script 50

xiii

LIST OF SYMBOLS / ABBREVIATIONS

V voltage, V

I current, A

R resistance, Ω

P Power, W

T torque, N.m

F force, N

r radius, m

ω angular velocity, rad/s

Vs speed, m/s or km/h

Hp horse power, Hp

xiv

LIST OF APPENDICES

 APPENDIX TITLE PAGE

APPENDIX A: EVICS Design 54

APPENDIX B: AS 3.0 GUI Source code 56

APPENDIX C: Mplab serial communication source code 72

APPENDIX D: Bash Shell script 78

APPENDIX E: Webserver application 92

1

CHAPTER 1

1 INTRODUCTION

1.1 Background

The application for the designed Pulse Width Modulation Motor Control circuit

including Battery Management System is in the field of battery powered cars. This

new move towards renewable energy and environmental friendliness is definitely a

goal worth aiming for as the Earth‟s natural resources continue to diminish. Battery

powered vehicles are indeed a very important component in the future of electrical

and electronics engineering in this nation. This is evident considering Proton‟s latest

offering, the Proton Saga EV Green Propulsion, and is Malaysia‟s first very electric

vehicle. It is hoped that through the execution of this assignment, we as engineering

students may someday contribute towards the technological development in the field

of electronics of our very own country, Malaysia.

In an Electrical Vehicle (EV) design, the power management system and

controller plays an important role as a „brain‟ of the EV, to ensure the car can run

smoothly and in order. The main functions of a controller is basically to control the

main contactor and kill switch contactor, incorporating appropriate safety measures

and interlocks, control the reversing contactor, incorporating appropriate safety

measures and interlocks, power the vacuum pump in the EV braking System, power

the toaster heater contactor and power DC-to-DC-contactor, where as the power

management system ensured that the power distribution are in order and at the

meantime achieving maximum transfer efficiency. The power management system

2

includes converter circuit, charging circuit, motor drive and base drive circuit. In this

report, the works are mainly focus on power management system and base drive

circuit inclusive of their controller and converter circuit. The functionality of each of

the controller will be investigated and discussed.

1.2 Aims and Objectives

The overall project mainly focuses on the development of light weight electric

vehicles (EVs) using brushless DC motor. In this project, each and every

characteristic including the working principle of the electrical vehicle will be studied.

The scope in this project covers battery management system, converters and

controllers, motor characteristics and selection, braking and gearing system.

However, the battery power management system and controller including converters

will be examined and discussed in this paper.

.

3

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

Recently, Malaysia is owned their first homemade pure electric car, officially

known as Proton Saga EV Green Propulsion concept. The whole concept behind this

is to produce a fully functioning electrical vehicle with zero emission incorporates

with key technology such as battery management system. In order to achieve to this,

proton place more attention on the heart of the vehicle (Lithium Balance). This

Lithium Balance battery is placed together with plug in and play concept, with built

in management electronic (Sandeep Dhameja,2002).

Figure 2-1 Proton Saga EV Green Propulsion

4

The whole idea behind this concept is basically to develop a system that does

battery monitoring, in which it keeps track on the operational parameters charging

and discharging. This may also include voltage, currents, battery internal and

ambient temperature (temperature surrounding the vehicle). The controller in this

case, must be smart enough to provide proper protection to the system by providing

an appropriate indication to sound an alarm or electronically disconnect the battery

from the load if any of the parameters exceeds its limit.

There are mainly three objectives of having a BMS (Battery Management

System) inside an EV which are protecting Lithium Battery from any damage

typically by protecting the cells, prolong the lifespan of that battery and to maintain

the battery states in which allowed the system to run specific functions and

applications specifically attached to it.

The primary application of this BMS is to provide necessary monitoring and

control, avoiding the cells from damage due to over rating temperature condition.

This is essential as the vehicle may be working under harsh condition or even

differences in climate (Tropical Climates, Subtropical Climates, Mediterranean

Climates, Temperature climates, Arctic temperature and Desert Climates) within a

particular continent which affect the overall ambient temperature. Hence, individual

cell in the automotive must be protected by isolating the battery detect the cause of

the fault when an external fault takes place. To illustrate this, disconnect the battery

source when the heat generated within a system is severe. However, for non-severe

cases, we may turn on an additional fan attached in front of the battery.

Figure 2-2 Charging profile of Lithium Battery

5

Secondary major development of BMS refers to state of charge (SOC)

determination. This basically providing the user some indication the amount left over

before performing any recharging. This SOC estimation is also known as “Gas

Gauge” or “Fuel Gauge” functions. In this design, SOC basically calculates each of

the individual cells within the battery besides ensuring them from overstressed

condition (Zanthic Technologies, 2008). Apart from that, with SOC indicator, over-

charging and over-discharging condition can be prevented since each of the charging

and discharging cycle can easily be monitored.

2.2 Battery Management System (BMS)

Figure 2-3 Conceptual representation of BMS primary function

According to the figure 3 above, there are basically three main building blocks

needed to be considered throughout this design. They are Battery Monitoring Unit

(BMU), Battery Control Unit (BCU) and Controller Area Network (CAN) bus

vehicle communication network including its internal configuration to the vehicle‟s

management system. Note also that, other parts of the vehicle systems may not only

be connected to one another within a system, but more importantly, they are able to

communicate with BMS via CAN bus such as Thermal Management System,

including anti theft devices which has the capability to disable the battery. The ECU

6

(Engine Control Unit) module may not be needed, in the case where the parameter

concerning Internal Combustion Engine (ICE) is not being examined.

2.2.1 Battery Monitoring Unit (BMU)

 The Battery Monitoring Unit is microcontroller based which is mainly used to

monitor health of the battery bank. In other words, BMU calculates battery capacities

apart from battery efficiency from time to time and simultaneously monitoring each

of the cells upon cell deterioration prior to failure as illustrated by three sub-module

of BMU. This sub-module is separated for the purpose of clarification. Battery

failure can easily be determined by monitoring the cell voltage during discharging.

Note that, in this case, the charging voltage drop should not be long enough. This

type of failure, however, can be classified as battery abuse in which the main causes

are high temperature and excessive charge current. Other typical factors that may

give rise to battery failure are ageing and premature-failure where they are caused by

corrosion and manufacturing defect respectively.

Figure 2-4 Multiplexer to reduce component count

Apart from monitoring all the cells in parallel, a multiplex architecture can easily

be interfaced to the BMU in order to reduce cost. Based on this design, only single

analog or digital output can be monitored from time to time. One of the drawbacks of

this system is that only one voltage cell can be determined at a time. Hence, a very

high speed mechanism is required such that each can be monitored sequentially.

7

2.2.2 Battery Control Unit (BCU)

Power electronics circuitry is the main component that lies within Battery

Control Unit (BCU). From figure 3, it is observed that BMU obtains its instruction in

terms of control signal from the earlier block that mentioned earlier, BMU to carry

out a specific task, such as controlling battery charging profile. In this case,

controlling the voltage and current charging profile, providing a top up charge to

each of the individual cell serving as a purpose to equalize all the charge within the

battery, fault isolation, regenerative braking switching to charge battery whenever it

is required, dump out excessive braking charges generated during breaking and last

but not least able to respond corresponding to the vehicle‟s operation mode. In order

to have these functions working properly, each of the battery cells must be equip

with highly expensive current switch, having the capability to do switching around

200 AMPS or more in order to perform necessary interconnect.

2.2.3 Controller Area Network (CAN)

 Controller Area Network (CAN) was developed back in 1985, by Bosch to be

used in-vehicle network. Back in the past, automotive manufacturers start of by using

point to point wiring. As time goes by, it was realized that having a lot of wires not

only result in bulky, heavy but also expensive. Today, CAN is used instead of

traditional wiring as CAN not only cheap, less complexity, reduce in weight but

more importantly it has high-integrity serial data communication for real-time

control application integrated into standard in-vehicle network.

2.2.4 Thermal Management System (TMS)

 Thermal Management System is designed to monitor variation in temperature

due to battery chemistry and performing necessary task such as heating or cooling

the battery cells depending on its state. Tests conducted in the laboratory and with

8

EV urban driving suggest that using a thermal management system improves the

mileage and battery life by at least 20%. Thermal management system plays a very

crucial role when performing rapid charging. Imagine, during the charging process,

large amount of charge is delivered to the EV, hence temperature issued is inevitable.

The primary design is to keep the battery insulated. The insulation will help to

enhance heat generation especially during winter or summer. On the other hands, as

for second criterion design, air flow circulation has to be properly distributed to

ensure minimum temperature, achieving equilibrium between battery and the

surrounding. Note different design criterion should takes place under various

operating conditions.

2.3 Component of an Electrical Vehicle

The main components of an electrical vehicle are motor, controller, power

supply and transmission channel.

Figure 2-5 illustrates the major component for an electric vehicle

9

As exhibits from the diagram above, the power supply needs to be charged up in

order to restore the energy level once its available energy is near to deletion usage.

Note also that the electric motor is driven by a power-electronic-based power-

processing unit that converts the fixed DC voltage available from of source into

variable voltage to maintain the desired operating of the vehicle. Power electronics is

always a driving force key to order to develop a more effective, efficient yet high

performance power train unit for the battery. A drive train system simply refers to

electromechanical conversion linkage system between vehicle energy source and

wheels. In other words, the drive train has combinational of both electrical and

electronic components.

Figure 2-6 illustrates top level perspective of typical EV system conditions

10

2.4 Overview on EV’s Power Management System

Figure 2-7 shows a very fundamental idea on each module and every single module

integrated together in order to create an EV system

11

CHAPTER 3

3 METHODOLOGY

3.1 System Consideration

In this project, intelligent electric vehicle controller system, Intel atom board

(D510M0) and PICs microcontrollers will be used in this case in order to create a

stable and yet reliable system. Note that Intel atom board does not only provide great

opportunity for future implementations but more importantly unlike any other

processors, it does not consume a lot of power. Hence, in my opinion, it is the one of

the most suitable tools to be used as an embedded system of the vehicle.

Besides building and compiling kernel from scratch by repackaging Ubuntu

distribution like any embedded system, Linux OS typically Ubuntu 10.10, is being

installed on this system. With an OS, generally things become easier as most of the

drivers and libraries are right there for us. Moreover, there are also lots of open

source codes available in the internet relating to Linux OS which can be used on this

project. Take note also that kernel building and compilation may takes up a lot of

time and yet it may not be very successful due to software issue. As a result OS is

being installed directly instead.

Now let us take a closer look at storage devices that are available to us to

hold the contents of this OS. Some of these storage media are hard disks, floppy disk,

Zip disk, CDs, DvDs, tape, PC cards, flash memory card, USB flash drive and

microfilm. However, since this system is design for an embedded system towards

vehicle industries, SSD (solid state hardisk) would be most preferred solution as it

12

does not only has large storage capacity in nature but more importantly it does not

have any mechanical parts. Having no mechanical parts in SSD simply implies that

SSD can be avoided from damage due to vehicle shaking caused by uneven surface.

In order to start off with this project, a bootable flash drive with Linux OS

lies on to it is created. This however serves as one of the methods to install Linux OS

on to a SSD. Since, the price of a SSD is exorbitant in the market; normal hardisk is

used instead. A bootable Linux USB flash drive can easily be created using

Universal-USB-Installer-1.8.2.6, as shown in the figure below.

Figure 3-1 shows Universal-USB-Installer-1.8.2.6 in action

Figure 3-2 illustrates Intel board configuration

 Besides that, since the I/O card expansion is not widely used in the computer

industries, yet very expensive. To overcome this problem, in term of saving time and

13

cost, PIC is being used instead. In this event, serial has to be taken in place. Further

elaboration on this design will be discussed in the following chapter.

3.2 Software Consideration

Another most essential design is none other than graphic user interface (GUI).

GUI provides easy navigation for user to communicate. This means that designed

GUI must not only be interactive but also able to provide an easy way as a mean of

communication to the users. There are many ways available for us to design GUI on

Linux OS. Some of these languages are python script, shell script, perl script,

Gambas (visual basic in Linux OS), Linux C programming (Gnome programming

using GTK+) and many more.

The easiest way out in order to design GUI is by using Adobe Flash (action

script 3.0). Through this way, Application Programmable Interface, API can easily

be created by underlying all the database programming underneath the GUI.

Moreover, with the use of adobe flash, GUI can easily be developed within a short

period of time.

Figure 3-3 Adobe Flash (CS5)

14

Database such as XML playlist can simply be created by using standard shell

called bash which is better known as GNU Bourne Again Shell, from the GNU suite

tools. Since this is an excellent shell that is always installed on Linux Systems, open

source, and is portable to almost all Linux variant, shell is indeed the best tool to

handle the entire database within Linux OS. Of course, with the used of shell script,

the level of complexity of a particular code can easily be reduced. Obviously, one

must be very well versed in that language. Nevertheless, having the knowledge of

Advanced Shell Script may even simplify shell script coding further. This however

may not be a good as compared to install Linux natively on the OS. This is because

running two OS simultaneously on top of one another may result in the losses of

RAM size during execution.

Figure 3-4 Running Ubuntu 10.10 OS using Vmware Workstation

3.3 Hardware Consideration

For hardware implementation, at this point AGM lead-acid will be used as a

first testing ground for the overall EV project. Of course, Lithium Polymer (LiPo)

battery will be coming into the whole picture once every testing concerning lead acid

battery has been done. This however could be done in the second phase of this

project.

15

Next, in order to ensure that the power management system able to run within

the whole vehicle, only one lead acid maintenance free battery (12V, 75AH) will be

used in this design. The whole idea behind this is to model the overall EV having

one enormous power source, approximately 196V of lead acid battery. In addition to

that, some of the BMPS feature such as cell monitoring and smart cell isolation will

not be taken into consideration since our battery sponsorship willing to do battery

research just to produce battery suitable to be used on our EV prototype.

Figure 3-5 16 Lead Acid Batteries from Yokohama for EV testing

Hardware design for this project covers battery monitoring system ranges

from monitoring battery status to temperature monitoring system. In this design,

watchdog timer will also be taken into consideration, in order to verify that sensors to

be used in monitoring those applications are working properly from time to time.

Apart from that, before proceeding any further in the design, it is very imperative for

us to understand the motor characteristic (torque profile) and state of charge (SOC)

before determining safe operating area (SOA) of the battery. Both of these studies

will be carried out my colleagues. In this testing, we will be running on motorcycle‟s

motor which then acts as a load for the whole system, as exhibits in the figure below.

Note that the batteries must be connected directly to its controller (drivers) before it

is ready to be coupled to the load.

16

Figure 3-6 Motors and its controller from Yokohama for EV testing

The fundamental connection concept between the battery, controller and

motor are almost the same as exhibits in the figure below.

Figure 3-7 Fundamental Concept of Acceleration Pedal in an EV

As seen from the figure above, the variation in speed of the motor is typically

controlled by PWM (Pulse Width Modulation). A simple circuit has been developed

to fully understand the DC controller‟s mechanism. In this circuit design, variation in

both speed and direction can easily be achieved. On top of that, modelling of the

vehicle‟s stop behaviour can also be attained when the potentiometer (direction and

speed controller) is adjusted to a specific value. To achieve this, the potential drops

across the potentiometer must be approximately 5V for the reason that both of the

op-amps will not be set as high. This simply means that none of the transistors are

17

forward biased. Hence, there is no force to turn the motor. Note that this circuit

design does not permit us to govern the motor‟s torque.

Figure 3-8 Bidirectional and Motor Speed Controller

The most fundamental working principle behind this design is none other

than the PWM generator. IC 555, also known as timer chip is indeed one of the

easiest yet cost effective ways to produce PWM. In this case, PWM is created by

configuring the timer to be astable state (unstable state). Next, the op-amps act as a

comparator which then compares one of its input corresponding to 5V (half of VCC).

With the difference in the input value of the op-amp, a particular op-amp can either

be turned on or off. In other words, digital output will then be created by the op-amp.

With the corresponding digital output, the base drive circuit will not only as a

directional control but more importantly speed control. The main theory lies behind

this speed control is none other than the variation of the pulse. The base drive circuit

on the other hands only contributes towards the direction of the motor.

Figure 3-9 Circuit Constructed on Bread Board

18

3.4 Overview Idea EVICS

Figure 3-10 EVICS overview

 The figure above simply demonstrates how each of these submodules

connected between one another in order to form a whole system. Microcontroller in

this design does not only manage all those hardware associated to it. Microcontroller

does not provide flexibilty in terms of handling those hardware sub modules

effective but also serves as a solution to keep the protection system from any

undesired circumstances such as Intel board break down. Note also that for any PIC

18F series, the program counter takes in four instructions cycle of the crystal

frequency everytime. Hence, the PIC18 divides the crystal oscillator by four to get

the instruction cycle time. In this case, since 10MHz crytal oscillator is used in this

19

project, the instruction cycle frequency 2.5MHz. This basically means that the PIC

response time is to peform isolation takes about 400ns .

 EUSART is used as a mean to interface to Intel atom board. Since serial only

enable one to send one character at a time. These characters must correspond to a

unique value in order to be able for board to distinguish among themselves so that it

knows where to be updated in the GUI. There is no way for flash to update itself

which is why shell script as known as bash script is introduced. Shell script is used in

this project to manipulate suitable result to be process by Adobe flash player, web

server application, and not be left out file to be copied to flash drive.

 Copy to flash drive application can easily be obtained by combining mdm 3.0

features together with action script. With this manner, one can easily write to a file,

say text file. Once this text file has been updated, shell script can easily be written to

carry out a specific task within an operating system.

 Webserver application can easily be set up also be set up with the use of

antiweb httpd. As discussed earlier, bash shell script can also be used as a tool to

update DHTML. Dynamic HTML (DHTML), enable technicians to obtain

information vehicle information directly with the used of website connected

wirelessly. On top of that, technicians also enable to access past vehicle records of

one vehicle before start to mend. In this case, one is able determine vehicle problem

easily. In this case, once the technicians finished repairing, they have to update the

vehicle‟s database.

20

CHAPTER 4

4 RESULTS AND DISCUSSIONS

4.1 GUI

Graphical user interface (GUI) for this project is basically designed by using Adobe

flash for simplicity purposes. To ensure that the system is able to be run as an

application file on Linux OS, software such as mdm Zinc builder 3.0 will used in this

case. Note that mdm zinc builder 3.0 does not only allow flash file format to be

converted into to an application file but more importantly to provide additional

feature to assist adobe flash functionality due to its software limitation. The GUI

verification test is as shown as below.

Figure 4-1 Flash Design Layouts

21

4.1.1 GUI Simulation based on Different conditions

Figure 4-2 Dangerous zone

Figure 4-3Hide Player

22

Figure 4-4 No Flash Drive Detected

Figure 4-5 Flash Drive Detected

23

4.2 XML Player

XML player in this project serves as an additional feature for users to play

songs while they are on the road. To keep the system as simple as possible, the XML

player will only play mp3 file format. XML player simply indicates that the player

only plays song generated by the XML file. An XML file, in this case, playlist.xml

keeps all the songs directories once a flash drive is plug into the system. Once the

play button is pushed, each of the songs will be played respectively according to their

turn. Note that the playlist must be dynamic as it changes from time to time.

Figure 4-6 XML Player GUI

Next, there is no way for us to update time and date of GUI from time to time.

Hence, dynamic text with a little bit of Action Script 3.0 (AS 3) is written to support

that application. With the used of this dynamic time generation, updated XML

database, generated by unix shell script every 1 second will be read then by flash

player. In this case, the number of flash drive and its content will be up to date every

microprocessor‟s clock cycle. This simply means that the flash player has to be

updated by unix shell script and without it would be nothing but a static system.

The dynamic XML of a system typically, Linux OS can easily be written in

various languages but in this case bash script is considered it is indeed one of the

easiest ways to create dynamic database within a Linux webserver, CGI – Common

Gateway Interface. Of course, according to Linux GNU programming, Linux C

programming language can also be written to replace bash shell script, however one

must be very familiar with GNU libraries. Moreover, note that unlike any bash script

programming, Linux C programming must be compiled first before it is ready for

execution.

24

Figure 4-7 Linux Kernel

Now let us look into flash drive detection. In Linux OS it is very obvious that

USB storage devices will be auto mounted to the /media directory directly, as shown

in the figure above. Hence, the next stage would be nothing more than searching for

mp3 songs from this location. Once the locations of the songs are grabbed, they are

then dumped into playlist.xml. The XML generally holds the entire songs location

database inside a flash drive. As discussed, the XML database enables this player to

know which songs to be played at an instance of time besides providing its location.

Anyway, searching or even creating dynamic XML file was not as tricky as detecting

the presence of flash drive. In this case, the source code should not only be able to

perform checking, monitoring device every 1 second within the system but also

updating XML file once changes has been detected.

Crontab is generally a program that does task scheduling under Linux OS. In

other words, commands or even programs can be executed scheduler based on a

specific time attached to that task. This time frame could be as simple as a date or

subroutine. To have a better picture concerning subroutine, let us imagine of a task,

say XML bash script gets executed every one seconds, the complexity of writing a

source code can be reduced. Unfortunately, the slightest subroutine time frame on

this system can never be less than 1 minute. Thus, it may not be very so practical to

the users (there a long pause in the system – delay). In this case, it is understood that

the scheduler‟s deamon gets executed every 30 seconds. Moreover, it is learnt that

crontab can never execute script that contains continuous while loop. From

observation, setting the crontab to execute a script during boot up (only once – no

subroutine) does not really going to help much since the program stops its execution

when it sees while loop.

25

To solve this problem, the shell script is written in a form of application

program. In this case, the file is created such that it will launch basic terminal before

executing a program attached to it. This can be achieved by making another bash

script file to call for the main program (XML bash script program) upon execution.

Once this is ready, it is then to be placed in on Linux start up system called (system -

> preferences -> startup applications preferences) upon ready to for execution

during the next start up. To have a better illustration, please refer to the figure below.

Figure 4-8 Bash Script together with its launcher

Figure 4-9 Launcher Program in Action Searching for Drive

26

Figure 4-10 Launcher Program detected the existence of Flash Drive

Figure 4-11Similar Program running on Linux Shell

27

Figure 4-12 Block Behind Flash Drive Detection

Now let us take a closer look at the project modular design in order to

understand the program flow better. As seen from the figure above, a.sh is typically a

file that calls for an external terminal that is ready to execute another source code, in

this case, active.sh. The source code acive.sh typically checks the media directory for

any changes (every one second). Once it detects any changes it will write songs url

content and name of the flash drive connected to the system directly with the

corresponding XML tag. Flash drive detection not only used as mean to detect

numbers of songs that a system has but more importantly to be used as mean transfer

file directory. Without showing the name for each of the flash drives connected to a

system, one is unable to determine where the most updated monitoring status file to

be copied to. Apart from that to avoid from any circumstances, the XML player is

designed to play mp3 format on XML player.

XML player in flash player on the other hand can easily be designed by using

AS 3 (action script). The play function does not differ much as compared to any

28

other functions of the XML player - they all response to mouse click. As a

consequence, the source code for each of these functions will look almost the same

as one another. The word “play_btn” simply refers to name attached towards the

play symbol. From the source code below, once “play_btn” is clicked onPlay

function will then be executed.

AS 3.0 – play function

play_btn.addEventListener(MouseEvent.CLICK, onPlay);

function onPlay(e:MouseEvent):void{

/*add source code here*/

}

The next function is certainly a very tricky utility to be handled. From the

source code, it is clearly understood that onNext function may not necessary comes

from mouse click. It may also come from playSong function since it has to start

playing the next song once the current song has already been played. Next, slight

modification in the source code has been made to the onNext function by making it

responses to all sorts of events. Note that mouse click is just one of an event in this

case. Part of the source code is as shows as below.

AS 3.0 – Moves to the Next Song

/*function designed to play a song */

function playSong(mySong:Number):void{

…

my_channel.addEventListener(Event.SOUND_COMPLETE, onNext);

}

/*using playSong function to call for onNext function*/

next_btn.addEventListener(MouseEvent.CLICK, onNext);

function onNext(e:Event):void{ /*event */

/*add source code here*/

}

29

4.3 GUI Dynamic Time and Date Generation

Figure 4-13 Upper top of EV GUI

There is no way for us to update time and date of GUI from time to time.

Hence, dynamic text with a little bit of Action Script 3.0 (AS 3) is written. With the

used of dynamic time generation XML database will only be read every 0.25 second

at a time. This is essential to avoid the system from crash. Imagine that system tries

to read from the database every instruction cycle – not necessary one second. Part of

the source code is as shown as below. Do take note that the tick function takes place

every 500 ms.

AS 3.0 – Dynamic Reading from XML Database

function tick(event:TimerEvent):void {

updateTimer(); /*functions that gets date and time */

/*loading playlist.xml to be used in processXML function */

var myXMLLoader:URLLoader = new URLLoader();

myXMLLoader.load(new URLRequest("playlist.xml"));

myXMLLoader.addEventListener(Event.COMPLETE, processXML);

}

Time and date has to be updated dynamically using dynamic text as discussed.

Each of these dynamic text created must be given a name in order to for us to

distinguish among them. In this case, “timetxt” and “datetxt” are names that given to

the time and date respectively. Note that the date that attained in this project is not

written in string data type. Therefore, they are then being transformed with the used

of pad(argument) function. The add symbol simply denotes appending all the strings

together as one entire string.

30

AS 3.0 – Date and Time Generation

function updateTimer():void{

var date = new Date(); /*gets date from the system*/

…

/*display time and date using string data type*/

timetxt.text = hours_check(hours) + ":" + pad(mins)+ ":" + pad(secs) + " " +daylight;

datetxt.text = monthconvert(month) + " " + day + ", " + year;

}

4.4 Serial Communication

Figure 4-14 Serial Communication between Intel board with PIC18F2550

 One of the communications medium between microchip to Intel atom board

is none other than serial communication (Enhanced Universal Synchronous

Asynchronous Receiver Transmitter - EUSART). This connection can be achieved

by means of serial port available by the board, USB-serial (PL3203) or even serial

expansion slot (MAX EXPANSION). Alternatively, one can try PCI slot if one has

the money and time but keep in mind that I/O expansion ports may not be widely

available in the market. As for that reason, the decision ultimately goes back to serial

communication. As seen from the figure above, Transmitter (TX) and receiver (RX)

pins of the MAX-232 can be connected directly to the Intel board serial port without

the use of DB-9

31

Besides that to ensure that serial communication between the PIC and the

Intel board has been established, PIC18F2550 under Linux Operating System,

software such as GTKterm, minicom, moserial and Terminal had been tried out.

However, at the end of the day only terminal will considered since it has the

capability to store whatever it has received from serial just with use of shell script

(similar concept to XML generation).

Figure 4-15 Serial Communication using moserial

From our discussion above, it is easily noted that shell script does not only

plays an imperative role in terms of database programming (creating dynamic XML)

but more importantly serves as intermediate system ensuring that Adobe Flash is able

to tag along with serial communication which is then attached to PIC. As stated,

there no ways for Adobe flash to obtain information directly from PIC just by using

serial communication‟s software as mentioned above. In other words, with the use

Linux programming, for instance shell script or GNU - C programming, suitable

dynamic data file can be created to suit the needs of AS 3. In this project, Linux shell

is used as a main tool to handle all of these applications.

32

Figure 4-16 Serial communication data processing using shell

To keep things going perfectly, PIC programming is set such that it only

sends one character back to PC where by these characters are understood by both

Intel board and PIC once it received signal from the personal computer (PC). Two

way communications is also used between PC and PIC to ensure that the system has

been established for debugging purposes. The figure above simply illustrates, the use

of shell not only as an application program but also as debugging message running

behind flash player.

33

Figure 4-17 Block diagram pertaining to serial communication protocol

Now let us look at the working design behind serial communication protocol.

In order to ensure that the system works perfectly, send.sh and serial_com.sh is

created so that most recently information obtained by the PIC can easily be

determined. In this design, instead of using one shell script to received information

from serial, two shell scripts are written so that the most updated information can

easily be determined before it is ready to be processed. In this case, PIC

programming is set such that it sends only one character back to the PC once it is

received from the PC. This simply means that characters used during the

transmission must be understood by both Intel board and PIC so that it does not crash

or even overlap with other module system attached to the PC. Once serial_com.sh

received information, it will then write to com_data.txt for later manipulation and

decoding. Of course, the content of the file must not be so much as it may cause the

34

system response time to be very slow. As discussed earlier, a file is needed to

basically gets the most recent information and decode the information to some useful

information that people and action script (AS) 3.0 can understand. This is where the

file entitled serial.sh comes into picture. Text file entitled, pic_data.txt is designed so

that users are able download the monitoring results on the flash drive apart from

playing songs on the board itself. Com.txt on the other hand, serves as a

communication medium between flash player and bash script. Once, there is some

changes in the com.txt file, the flash player will ultimately vary as well.

4-1 Table shows each of the characters shared between Intel board and PIC

35

4.5 SOC Prediction Estimation

Figure 4-18 Prediction of battery running time and distance left

Another feature attached to the GUI is none other than battery predictions. With the

help of this module, one is able to prepare for the worst case scenario. This module

can easily be achieved based on some simple experiment. Based on the experiment, it

is easily observed that 1V drops across 12V, 75AH Yokohama battery, takes up

approximately 10 hours. In this experiment, to ensure that the results are practical,

the load used in this experiment is typically the integration of the entire sub module

together with speaker simulating the vehicle on the go. Of course, LCD monitor

screen will be used instead of touch screen devices in order to cut off some cost. The

Distance left can be computed easily by multiplying running time left with current

vehicle speed.

Figure 4-19 Power up the whole system using 75AH Yokohama battery

Battery pack

36

4.6 Webserver

Figure 4-20 Intel board connects to a router for wireless LAN connection

Another feature embedded into the board none other than to use the board as a

server. Of course, a wireless router has to be turned off in this case in order to

provide flexibility to the customer during servicing. Having such advantage,

technicians whom are servicing that vehicle can easily obtain battery profile

information and vehicle past records simply by connecting to the board via web

browser. In this case, the device can either be a personal computer or notebook

inclusive of todays‟ smart phones. In this case, one only has to know the board

board‟s IP address (static IP address set by a router – 192.168.0.102) and its port

number attached to the system. The port number, on the other hand, can easily be set

inside awhttpd.conf. 8384 is the port number set for this web application.

This can module can easily be implemented with the help of anti-web httpd.

An anti-web httpd is also known as a single process web server that relies on its

inherent simplicity to be robust and secure. It basically supports virtual hosts, CGI,

IPv6 and more. In this project, Common Gateway Interface (CGI) will be used

instead. CGI programming can easily be written as a mixture of bash scripts (server

side programming), HTML, javascript (client side programming), and CSS in order

37

to generate dynamic HTML with interactive feature and they normally placed in the

awhttpd/default directory. Of course in order to run the webserver application during

start up, crontab (linux scheduler) has to be used instead.

Figure 4-21 Connecting to Intel board using google chrome [ev.cgi]

Figure 4-22 Adding vehicle status record [ev_2.cgi]

38

Figure 4-23 View vehicle records [ev_1.cgi]

Figure 4-24 Block diagram behind webserver programming

 On top of that with this wireless feature also enable Intel board to provide

flexibility especially to software engineers who are dealing with software issue. With

this, one need not even have to go to near the corresponding vehicle just to do

programming. All one has is nothing but connecting to the host computer via

wireless connection. This can be achieved by using putty (for window) and shell

(SSH – for Linux). By having this connection more than one programmer can gain

access to the board at an instant.

39

Figure 4-25 Connected to the Intel board via putty - Windows

Figure 4-26 Putty connection connecting windows to Linux

40

Figure 4-27 creating a new file called “new_file” in putty

Figure 4-28 connecting to Intel board using Linux OS through via SSH command

4.7 Stage 1 of Battery Monitoring System

Generally, as discussed above, there are mainly three main modules

concerning BMS. They are current monitoring system, voltage monitoring system

and temperature monitoring system.

coding to create

new file

New file created here

41

The current monitoring system plays a very important role in determining the

right amount to be injected into the battery terminal and at the meantime take

necessary a measurement if unexpected circumstances occur. In the purpose of

developing an effective yet efficient smart monitoring system, it is utmost important

for us to understand the battery charger‟s characteristic. Voltage monitoring and

temperature monitoring systems on the other hands are essential to ensure the safety

of the vehicle.

All of these monitoring systems can simply be achieved by using ADC

conversion of the PIC18F4680. With the use of PIC, not only numbers of wire

connection can be reduced, but more importantly enable us to perform direct

processing by connecting directly to the Intel board via Max-232. Reducing numbers

of wire will eventually enable one to obtain more accurate yet reliable result. Current

monitoring devices can easily be designed by placing a low resistance value in

between the charging circuit and the battery. These modules later have been followed

up by my fellow teammate, Kenny Gan and Gan Yu Han.

Figure 4-29 ADC in action

Before waiting for real system to be implemented to the BMS, a microchip is

program to respond to two ADC functions (for testing purposes). As illustrates from

the diagram above, the source code is written such that it reads analogue from

channel 0 (RA0) and channel 1(RA2), then perform some specific task such as

turning the red led on and off based on certain specify condition. This is very

essential in order to ensure that the ADC of the microchip has been functioning

42

properly. ADC input to the system in this case is model by potentiometer to model

variation in the BMS, as comprehended in the figure above. Later the red Led is

replace by a fan to confirm that the system able to trigger a transistor to power up a

fan as well. Of course, in this case, a capacitor is connected parallel with fan so that

there is enough current to produce sufficient to kick start a motor fan.

At this point, it is then realized that this project does not require a lot of ports.

This simply means that lesser circuit connections under micro-controller

implementation. Therefore, PIC18F4680 can simply be substituted by PIC18F2550

since it is best to implement everything inclusive of applications, functionalities

under one roof with a cheaper cost.

4.8 Copy Function from Adobe Flash Player

Figure 4-30 Mdm Zinc Builder 3.0

Mdm Zinc builder 3.0 software is more or less similar to Adobe Flex. They

are designed for the development and deployment of cross-platform rich internet

applications based on Adobe flash platform. In this project, to design the copy

functionality, mdm file system utmost important. With the use of this mdm file

system, the result of button pressed from flash GUI can then be written to a drive.txt

file. Once this updated file has been detected by the shell script, UNIX command

pertaining to copy utility will somehow be executed.

43

AS 3.0 – write to a file from Flash

function processXML(e:Event):void {

var myXML:XML = new XML(e.target.data);

/*read XML file*/

if (dev_total == 0){

/*disable flash drive icon and save info navigation tool*/

}

else { /*control invisiblility */

drive.visible = true;

save_txt.text="Save info"

save_info.visible=true;

save_info.addEventListener(MouseEvent.CLICK, function(){gotoAndStop("three");

/*go to frame 3 and shows flash drive names connected on the system*/

switch (dev_total){

/*

The source code below gets the flash drive name from playlist.XML then display in

frame 3. Once the first object is pressed (obj1), say on one flash drive connected to

that system, the flash drive name will then be written on to drive.txt; ready to deploy

by shell scripts.

*/

case 1 : obj1.visible=true;

obj2.visible=true;

obj3.visible=false;

obj4.visible=false;

str=my_data[0].@URL /*get flash drive content */

nav1.text=str; /*Display dynamic text on the screen */

nav2.text="Back"

obj1.addEventListener(MouseEvent.CLICK,

function(){mdm.FileSystem.saveFile("drive.txt", my_data[0].@URL);});

obj2.addEventListener(MouseEvent.CLICK, function(){gotoAndStop("one")});

44

break;

… /*source code continue here*/

/*similar concept applies to case 2 and 3*/

}

})

}//end if

}

45

CHAPTER 5

5 AWARDS AND ACHIEVEMENT

5.1 Research Paper Publications & Conference

 B.K Cheah*, Y.H Gan, G.D Gan, Z.Y Phuan, M.K Yoong, C.K.Leong. K.W Chew,

“Case Study of EV Controller and Power Management System”, Malaysian

Universities Transportation Research Forum and Conference (MUTRFC), 21

December 2010, Uniten

Website:

http://www.uniten.edu.my/newhome/uploaded/coe_civil/mutrfc2010/020%20CASE

%20STUDY%20OF%20EV%20CONTROLLER%20AND%20POWER%20MANA

GEMENT%20SYSTEM.pdf

http://www.uniten.edu.my/newhome/uploaded/coe_civil/mutrfc2010/021%20UG.pdf

 Z.Y Phuan* ,B.K Cheah, Y.H Gan, G.D Gan, M.K Yoong, C.K.Leong. K.W Chew,

“Design of Battery Pack For Electric Vehicle Based on Lithium-Ion Technology”,

Malaysian Universities Transportation Research Forum and Conference

(MUTRFC), 21 December 2010, Uniten

Website:

http://www.uniten.edu.my/newhome/uploaded/coe_civil/mutrfc2010/014%20DESIG

N%20OF%20BATTERY%20PACK%20fOR%20ELECTRIC%20VEHICLE%20B

ASED%20ON%20LITHIUM-ION%20TECHNOLOGY.pdf

http://www.uniten.edu.my/newhome/uploaded/coe_civil/mutrfc2010/020%20CASE%20STUDY%20OF%20EV%20CONTROLLER%20AND%20POWER%20MANAGEMENT%20SYSTEM.pdf
http://www.uniten.edu.my/newhome/uploaded/coe_civil/mutrfc2010/020%20CASE%20STUDY%20OF%20EV%20CONTROLLER%20AND%20POWER%20MANAGEMENT%20SYSTEM.pdf
http://www.uniten.edu.my/newhome/uploaded/coe_civil/mutrfc2010/020%20CASE%20STUDY%20OF%20EV%20CONTROLLER%20AND%20POWER%20MANAGEMENT%20SYSTEM.pdf
http://www.uniten.edu.my/newhome/uploaded/coe_civil/mutrfc2010/021%20UG.pdf
http://www.uniten.edu.my/newhome/uploaded/coe_civil/mutrfc2010/014%20DESIGN%20OF%20BATTERY%20PACK%20fOR%20ELECTRIC%20VEHICLE%20BASED%20ON%20LITHIUM-ION%20TECHNOLOGY.pdf
http://www.uniten.edu.my/newhome/uploaded/coe_civil/mutrfc2010/014%20DESIGN%20OF%20BATTERY%20PACK%20fOR%20ELECTRIC%20VEHICLE%20BASED%20ON%20LITHIUM-ION%20TECHNOLOGY.pdf
http://www.uniten.edu.my/newhome/uploaded/coe_civil/mutrfc2010/014%20DESIGN%20OF%20BATTERY%20PACK%20fOR%20ELECTRIC%20VEHICLE%20BASED%20ON%20LITHIUM-ION%20TECHNOLOGY.pdf

46

 G.D Gan*, B.K Cheah, Y.H Gan, Z.Y Phuan, M.K Yoong, C.K.Leong. K.W Chew,

“Studies of Electric Motors For Light-Weight Electric Vehicle”, Malaysian

Universities Transportation Research Forum and Conference (MUTRFC), 21

December 2010, Uniten

Website:

http://www.uniten.edu.my/newhome/uploaded/coe_civil/mutrfc2010/016%20STUDI

ES%20OF%20ELECTRIC%20MOTORS%20FOR%20LIGHT-

WEIGHT%20ELECTRIC%20VEHICLE.pdf

 Y.H Gan*, B.K Cheah, G.D Gan, Z.Y Phuan, M.K Yoong, C.K.Leong. K.W Chew, “A

Study on Electric Car Chassis and Design Principle”, Malaysian Universities

Transportation Research Forum and Conference (MUTRFC), 21 December 2010,

Uniten

Website:

http://www.uniten.edu.my/newhome/uploaded/coe_civil/mutrfc2010/021%20A%20S

TUDY%20ON%20ELECTRIC%20CAR%20CHASSIS%20AND%20DESIGN%20

PRINCIPLE.pdf

 C.K.Leong *, B.K Cheah, G.D Gan, Y.H Gan, Z.Y Phuan, M.K Yoong. K.W Chew,

“Ultra-Fast Charging System On Lithium Ion Battery”, IEEE (Sustainable Utilization

and Development in Engineering and Technology), 20 – 21 November 2010, UTAR

 M.K Yoong*, B.K Cheah, G.D Gan, Y.H Gan, Z.Y Phuan, C.K.Leong. K.W Chew,

“Studies of Regenerative Braking In Electric Vehicle”, IEEE (Sustainable Utilization

and Development in Engineering and Technology), 20 – 21 November 2010, UTAR

http://www.uniten.edu.my/newhome/uploaded/coe_civil/mutrfc2010/016%20STUDIES%20OF%20ELECTRIC%20MOTORS%20FOR%20LIGHT-WEIGHT%20ELECTRIC%20VEHICLE.pdf
http://www.uniten.edu.my/newhome/uploaded/coe_civil/mutrfc2010/016%20STUDIES%20OF%20ELECTRIC%20MOTORS%20FOR%20LIGHT-WEIGHT%20ELECTRIC%20VEHICLE.pdf
http://www.uniten.edu.my/newhome/uploaded/coe_civil/mutrfc2010/016%20STUDIES%20OF%20ELECTRIC%20MOTORS%20FOR%20LIGHT-WEIGHT%20ELECTRIC%20VEHICLE.pdf
http://www.uniten.edu.my/newhome/uploaded/coe_civil/mutrfc2010/021%20A%20STUDY%20ON%20ELECTRIC%20CAR%20CHASSIS%20AND%20DESIGN%20PRINCIPLE.pdf
http://www.uniten.edu.my/newhome/uploaded/coe_civil/mutrfc2010/021%20A%20STUDY%20ON%20ELECTRIC%20CAR%20CHASSIS%20AND%20DESIGN%20PRINCIPLE.pdf
http://www.uniten.edu.my/newhome/uploaded/coe_civil/mutrfc2010/021%20A%20STUDY%20ON%20ELECTRIC%20CAR%20CHASSIS%20AND%20DESIGN%20PRINCIPLE.pdf

47

5.1.1 Book Publications

 Green Transportation for Future Generation (ISBN: 978-967-5770-08-1)

o Perpustakaan Negara Malaysia: Cataloguing-in-Publication Data

Figure 5-1 MUTRFC publication

48

 IEEE Student 2010 Project Exhibition

Figure 5-2 IEEE Student Exhibition

5.2 Innovate Malaysia Design Competition 2011 (Intel track)

For this project, three of members of our UTAR EV team, Gan Guo Dong, Gan Yu

Han and I had participated in the Innovate Malaysia Design Competition 2011 Intel

Track during May 2010 by making our final year project as part of the competition.

Through this competition we have gained a lot of experience. Some of these

experiences may include the Intel platform training at DreamCatcher, Penang in

October 2010 for three days and the Preliminary Stage and Hardware Presentation at

MSC Malaysia Innovation Centre, Cyberjaya in April 2011. Apart from that, our

Utar EV team has also been shortlisted as one of the top 5 teams that made it to the

grand finale.

49

Figure 5-3 Intel platform training October 2010

Figure 5-4 Preliminary Stage and Hardware Presentation April 2011

50

CHAPTER 6

6 CONCLUSION AND RECOMMENDATIONS

6.1 Recommendations

Figure 6-1 webcam application written in action script

 In this project, there are lots of rooms for improvements. Webcam application

can easily be used to be interfaced to the Intel board for reversed parking utility. On

top of that with distance measurement devices, users are not only able to determine

how close in terms of visual but more importantly knowing it on the display itself.

 Besides that creating a LAN connection for the technicians as a mean to

trouble shoot a vehicle effectively and efficiently, one must not only stop over here.

Developers should the system connected through the internet. Of course, the

51

information must be security enable to avoid hackers. Through this idea, technicians

from different area are able to provide their suggestion on how to improve the system

once they have received a real time data. Apart from that, future developers should

also a data logger to keep all the dangerous state information that takes place within

the vehicle. With some of these additional features, I believe technicians are able to

develop trouble shoot the vehicle better.

Next GPS module can also be integrated into the Intel atom board to improve

one‟s life style. With this, users do not only able to know where they are but more

importantly, they are able to determine where is the nearest charging station when

they really need one. Besides that, with advancement of technology in the IT area,

developers can also look into smart system embedded in vehicle. In this case, the

developers can design their system such that the system is able to provide real time

information which then enables users to make decision effectively. Those types of

information include, parking space availability, LRT expected arrival time, weather

forecast, and many more.

6.2 Conclusion

 In this project, EVICS at this current stage, it is designed to handle power

management system of the vehicle by integrating all those monitoring system

together and at the same time perform necessary action once the system detects

dangerous area. These monitoring systems include voltage monitoring, current

monitoring, temperature monitoring and speedometer. Since this quite is an

enormous project, I will be the one fully take charge in software architecture design.

In this design, various programming languages had been used as a mean to integrate

all the system together. These languages include mcc18 (C programming -PIC), shell

script, JavaScript, CSS, HTML and action script. Note that the programming flow in

this design is very critical in order to ensure that the system is fully functional.

52

REFERENCES

Battery Management Systems (BMS) [Battery Management System for EV]. (n.d.). Retrieved

July 8, 2010,from Woodbank Communications.Batteries and Energy Storage Magazine

(BESTMAG) website: http://www.mpoweruk.com/bms.htm

Dallas Semiconductor. (n.d.). DS2751 Multichemistry Battery Fuel Gauge [Data Sheet

Specification on DS2751]. Retrieved July 20, 2010, from

http://www.alldatasheet.net/datasheet-pdf/pdf/114374/ MAXIM/DS2751.html

Guokai Xu, Xiuchun Zhao, Hang Su, & Zhenqiang Yang. (2008, June 1). [Review of the

controller main and control circuit]. A Pulse-width Modulation Based DC-DC Converter

for Electric Propulsion, 6(1), 1-3.

LITHIUM BALANCE A/ S. (n.d.). Case Study High speed Electric Vehicle [Lithium Battery

Management System]. Retrieved July 17, 2010, from

http://www.lithiumbalance.com/attachments/article/88/CaseStudyHighspeedElectricVehi

Cas.pdf

M J Schofield. (n.d.). The Controller Area Network (CAN) [key feature of CAN]. Retrieved

July 15, 2010, from http://www.mjschofield.com/

Microchip Technology Inc., T. C., & Microchip Technology Inc., S. D. (n.d.). "Developing

Affordable Mixed-Signal Power Systems for Battery Charger Applications" [Lithium Ion

Charging Profile].

Retrieved July 21, 2010, from

http://www.microchip.com/stellent/groups/designcenter_sg/documents/market_communi

cation/en027883.pdf

Mr PenyuBiru ·. (2009, July 20). Proton Saga Ev concept [Online forum message]. Retrieved

from http://carca-marba.blogspot.com/2009/07/proton-saga-ev-concept.html

Sandeep Dhameja. (2002). ELECTRIC VEHICLE BATTERY PERFORMANCE. In

ELECTRIC VEHICLE BATTERY SYSTEMS (p. 133) [Afterword]. (Original work

53

published 2002) Retrieved from http://www.pdfoo.com/ ebook-16617/electric-vehicle-

battery-systems.html

Zanthic Technologies Inc., S. D. L. (2008, June 25). A low cost Lithium Ion battery

management system for a multi-cell, high voltage battery pack [Low Cost Lithium

Battery Management]. Retrieved July 20, 2010, from http://www.zanthic.com/images/

A%20low%20cost%20Lithium%20Ion%20batter %20management%20system.pdf

54

APPENDICES

APPENDIX A: EVICS Design

55

56

APPENDIX B: AS 3.0 GUI Source code

/**

Title: time and date for the top bar

***/

var myTimer:Timer = new Timer(500);

myTimer.addEventListener(TimerEvent.TIMER,tick);

myTimer.start();

updateTimer();

var daylight:String="AM";

import mdm.*;

mdm.Application.init(this);

function tick(event:TimerEvent):void {

 updateTimer();

 var myXMLLoader:URLLoader = new URLLoader();

 myXMLLoader.load(new URLRequest("playlist.xml"));

 myXMLLoader.addEventListener(Event.COMPLETE, processXML);

 var urlLDR:URLLoader=new URLLoader();

 var urlR:URLRequest=new URLRequest("com.txt");

 urlLDR.addEventListener(Event.COMPLETE,f);

 urlLDR.load(urlR);

 /**

 var myXMLLoader:URLLoader = new URLLoader();

 myXMLLoader.load(new URLRequest("dev.xml"));

 myXMLLoader.addEventListener(Event.COMPLETE, devXML);

57

 **/

}

function updateTimer():void{

 var date = new Date();

 /*vince test module 2011*/

 var secs:uint = date.getSeconds();

 var mins:uint = date.getMinutes();

 var hours:uint = date.getHours();

 var day:String = date.getDate();

 var month:String = date.getMonth();

 var year:String = date.getFullYear();

 timetxt.text = hours_check(hours) + ":" + pad(mins)+ ":" + pad(secs) + " "

+daylight;

 //datetxt.text = day + " " + monthconvert(month) + " " + year;

 datetxt.text = monthconvert(month) + " " + day + ", " + year;

}

function hours_check(hours_num:Number){

 var new_num:String;

 if (hours_num > 12){

 hours_num=hours_num-12;

 daylight="PM"

 }

 else

 daylight="AM"

 if (hours_num == 0)

 hours_num=12;

 new_num=pad(hours_num);

 return new_num;

}

/*converting number into string*/

58

function pad(number:Number){

 var new_num:String = String(number);

 if(new_num.length < 2){

 new_num = "0" + new_num;

 }

 return new_num;

}

function monthconvert(month_num:String){

 var month_name;

 switch(month_num){

 case "0" : month_name = "Jan"; break;

 case "1" : month_name = "Feb"; break;

 case "2" : month_name = "March"; break;

 case "3" : month_name = "April"; break;

 case "4" : month_name = "May"; break;

 case "5" : month_name = "June"; break;

 case "6" : month_name = "July"; break;

 case "7" : month_name = "August"; break;

 case "8" : month_name = "Sept"; break;

 case "9" : month_name = "Oct"; break;

 case "10" : month_name = "Nov"; break;

 case "11" : month_name = "Dec"; break;

 default: month_name = "ERROR";

 }

 return month_name;

}

/**

Title: Time and Date generation

***/

59

var my_songs:XMLList;

var my_total:Number;

var my_sound:Sound;

var my_channel:SoundChannel;

var current_song:Number = 0

var song_position:Number;

var song_paused:Boolean;

var init:Boolean=true;

var my_data:XMLList;// drive <dev>

var dev_total: Number;

var str:String;

function playSong(mySong:Number):void{

var myTitle = my_songs[mySong].@TITLE;

var myArtist = my_songs[mySong].@ARTIST;

var myURL = my_songs[mySong].@URL;

/* songs metadata

title_txt.text = myTitle;

artist_txt.text = myArtist;

*/

if (my_channel){

my_channel.stop();

my_channel.removeEventListener(Event.SOUND_COMPLETE, onNext);/*remove

listener*/

}

my_sound = new Sound();

my_sound.load(new URLRequest(myURL));

my_channel = my_sound.play();

my_channel.addEventListener(Event.SOUND_COMPLETE, onNext); //jump to next

songs...

}

60

pause_btn.addEventListener(MouseEvent.CLICK, onPause);

function onPause(e:MouseEvent):void{

if(my_channel){/*checking channel before exe...20110114*/

song_position = my_channel.position;

my_channel.stop();

song_paused=true;

}

}

next_btn.addEventListener(MouseEvent.CLICK, onNext);

//function onNext(e:MouseEvent):void{

function onNext(e:Event):void{ /*This used to have MouseEvent, change it to

Event*/

current_song++;

if (current_song>=my_total){

current_song=0;

}

playSong(current_song);

}

prev_btn.addEventListener(MouseEvent.CLICK, onPrev);

function onPrev(e:MouseEvent):void{

current_song--;

if (current_song<0){

current_song = my_total-1;

}

playSong(current_song);

61

}

play_btn.addEventListener(MouseEvent.CLICK, onPlay);

function onPlay(e:MouseEvent):void{

if (song_paused){

my_channel = my_sound.play(song_position);

song_paused=false;

}else if(init){

 playSong(current_song);

 init=false;

}

}

function processXML(e:Event):void {

var myXML:XML = new XML(e.target.data);

my_songs = myXML.SONG;

my_total = my_songs.length();

my_data = myXML.DEV;

//str=my_data[0].@URL;//read from file

//trace(str);

dev_total = my_data.length();

 if (dev_total == 0){

 drive.visible = false;

 gotoAndStop("two");

 save_info.visible=false;

 save_txt.text=""

 }

 else {

 drive.visible = true;

62

 save_txt.text="Save info"

 save_info.visible=true;

 save_info.addEventListener(MouseEvent.CLICK,

function(){gotoAndStop("three");

 switch (dev_total){

 case 1 : obj1.visible=true;

 obj2.visible=true;

 obj3.visible=false;

 obj4.visible=false;

 str=my_data[0].@URL

 nav1.text=str;

 nav2.text="Back"

 obj1.addEventListener(MouseEvent.CLICK,

function(){mdm.FileSystem.saveFile("drive.txt", my_data[0].@URL);});

 obj2.addEventListener(MouseEvent.CLICK,

function(){gotoAndStop("one")});

 break;

 case 2 : obj1.visible=true;

 obj2.visible=true;

 obj3.visible=true;

 obj4.visible=false;

 str=my_data[0].@URL

 nav1.text=str;

 str=my_data[1].@URL

 nav2.text=str;

 nav3.text="Back"

 obj1.addEventListener(MouseEvent.CLICK,

function(){mdm.FileSystem.saveFile("drive.txt", my_data[0].@URL);});

 obj2.addEventListener(MouseEvent.CLICK, function()

{mdm.FileSystem.saveFile("drive.txt", my_data[1].@URL);});

 obj3.addEventListener(MouseEvent.CLICK,

function(){gotoAndStop("one")});

 break;

 case 3 : obj1.visible=true;

63

 obj2.visible=true;

 obj3.visible=true;

 obj4.visible=true;

 str=my_data[0].@URL

 nav1.text=str;

 str=my_data[1].@URL

 nav2.text=str;

 str=my_data[2].@URL

 nav3.text=str;

 nav4.text="Back"

 obj1.addEventListener(MouseEvent.CLICK,

function(){mdm.FileSystem.saveFile("drive.txt", my_data[0].@URL);});

 obj2.addEventListener(MouseEvent.CLICK,

function(){mdm.FileSystem.saveFile("drive.txt", my_data[1].@URL);});

 obj3.addEventListener(MouseEvent.CLICK,

function(){mdm.FileSystem.saveFile("drive.txt", my_data[2].@URL);});

 obj4.addEventListener(MouseEvent.CLICK,

function(){gotoAndStop("one")});

 break;

 }

 })

 }//end if

}

/**

Title: scroll bar control

Module: This module reads file that written in a staright line..

***/

function f(e:Event){

var info:String;

var i:Number;

64

var str_status:String;

var str_vehicle:String;

var str_sensor:String;

var str_current:String;

var str_temp:String;

var str_rpm:String;

/*new modifiaction made*/

var temp_1:Number;

var new_result:Number;

/*

string uder modification to suit one needs

bkcheah 20110219

*/

info=e.target.data;

str_status=info.substring(0,1);

str_current=info.substring(1,2);

str_temp=info.substring(2,3);

str_rpm=info.substring(3,5); //2 numbers

//str_current=info.substring(5,7);

//str_temp=info.substring(7,9);

//str_char=info.substring(10,info.length);

//trace(str_status); //disp str;

 /*volatage status and volatge monitoring system*/

 switch(str_status){

 case "1" : movieClip_2.visible = false;

 movieClip_3.visible = false;

 movieClip_4.visible = false;

 movieClip_5.visible = false;

 movieClip_6.visible = false;

 batt.text="0%";

65

 vol.text="9.5V";

 bat.text="0hr"

 vehicle.text="OK"

 temp_1=0;

 break;

 case "2" : movieClip_2.visible = true;

 movieClip_3.visible = false;

 movieClip_4.visible = false;

 movieClip_5.visible = false;

 movieClip_6.visible = false;

 batt.text="20%";

 vol.text="10.5V";

 bat.text="10hrs"

 vehicle.text="OK"

 temp_1=10;

 break;

 case "3" : movieClip_2.visible = true;

 movieClip_3.visible = true;

 movieClip_4.visible = false;

 movieClip_5.visible = false;

 movieClip_6.visible = false;

 batt.text="40%";

 vol.text="11.4V";

 bat.text="20hrs"

 vehicle.text="OK"

 temp_1=20;

 break;

 case "4" : movieClip_2.visible = true;

 movieClip_3.visible = true;

 movieClip_4.visible = true;

 movieClip_5.visible = false;

 movieClip_6.visible = false;

 batt.text="60%";

66

 vol.text="12.8V";

 bat.text="35hrs"

 vehicle.text="OK"

 temp_1=35;

 break;

 case "5" : movieClip_2.visible = true;

 movieClip_3.visible = true;

 movieClip_4.visible = true;

 movieClip_5.visible = true;

 movieClip_6.visible = false;

 batt.text="80%";

 vol.text="14.8V";

 bat.text="55hrs"

 vehicle.text="OK"

 temp_1=55;

 break;

 case "6" : movieClip_2.visible = true;

 movieClip_3.visible = true;

 movieClip_4.visible = true;

 movieClip_5.visible = true;

 movieClip_6.visible = true;

 batt.text="100%";

 vol.text="15.8V";

 bat.text="65hrs"

 vehicle.text="OK"

 temp_1=65;

 break;

 /*bkcheah special condition*/

 case "0" : movieClip_2.visible = false;

 movieClip_3.visible = false;

 movieClip_4.visible = false;

 movieClip_5.visible = false;

 movieClip_6.visible = false;

67

 batt.text="0%";

 vol.text="<9.0V";

 bat.text="0hr"

 vehicle.text="Dangerous"

 temp_1=0;

 break;

 case "7" : movieClip_2.visible = true;

 movieClip_3.visible = true;

 movieClip_4.visible = true;

 movieClip_5.visible = true;

 movieClip_6.visible = true;

 batt.text="100%";

 vol.text=">17V";

 bat.text="75hrs"

 vehicle.text="Dangerous"

 temp_1=75;

 break

 }

 /*sensor monitoring system*/

 /*

 switch(str_sensor){

 case "0" : sensor.text="OK"

 break;

 case "1" : sensor.text="System Error" //yet to be modified

 vehicle.text="Dangerous"

 break;

 }

 */

68

 /*current monitoring system */

 switch(str_current){

 case "0" : cur.text="0.0A"

 break;

 case "1" : cur.text="0.2A"

 break;

 case "2" : cur.text="0.3A"

 break;

 case "3" : cur.text="0.4A"

 break;

 case "4" : cur.text="0.5A"

 break;

 case "5" : cur.text="0.6A"

 break;

 case "6" : cur.text="0.7A"

 break;

 case "7" : cur.text="0.8A"

 break;

 case "8" : cur.text="0.9A"

 break;

 case "9" : cur.text=">1.0A"

 vehicle.text="Dangerous"

 break;

 }

 /*temperature monitoring system*/

 switch(str_temp){

 case "0" : temp.text="<20"

 break;

 case "1" : temp.text=" 22"

 break;

 case "2" : temp.text=" 27"

 break;

 case "3" : temp.text=" 32"

69

 break;

 case "4" : temp.text=" 37"

 break;

 case "5" : temp.text=" 40"

 vehicle.text="Critical Temp"

 break;

 case "6" : temp.text=">41"

 vehicle.text="Dangerous"

 break;

 }

 /*temperature monitoring system*/

 switch(str_rpm){

 case "00" : rpm.text="0 RPM"

 speed.text="0 Km/Hr"

 new_result=temp_1 * 0;

 dist.text=pad_str(new_result);

 break;

 case "01" : rpm.text="1030 RPM"

 speed.text="1.3 Km/Hr"

 new_result=temp_1 * 1;

 dist.text=pad_str(new_result);

 break;

 case "02" : rpm.text="3284 RPM"

 speed.text="4.2 Km/Hr"

 new_result=temp_1 * 4;

 dist.text=pad_str(new_result);

 break;

 case "03" : rpm.text="5744 RPM"

 speed.text="7.4 Km/Hr"

 new_result=temp_1 * 8;

 dist.text=pad_str(new_result);

 break;

 case "04" : rpm.text="8279 RPM"

70

 speed.text="10.7 Km/Hr"

 new_result=temp_1 * 11;

 dist.text=pad_str(new_result);

 break;

 case "05" : rpm.text="10915 RPM"

 speed.text="14.1 Km/Hr"

 new_result=temp_1 * 14;

 dist.text=pad_str(new_result);

 break;

 case "06" : rpm.text="13427 RPM"

 speed.text="17.4 Km/Hr"

 new_result=temp_1 * 17;

 dist.text=pad_str(new_result);

 break;

 case "07" : rpm.text="15920 RPM"

 speed.text="20.5 Km/Hr"

 new_result=temp_1 * 21;

 dist.text=pad_str(new_result);

 break;

 case "08" : rpm.text="18510 RPM"

 speed.text="23.9 Km/hr"

 new_result=temp_1 * 24;

 dist.text=pad_str(new_result);

 break;

 case "09" : rpm.text="21213 RPM"

 speed.text="27.3 Km/hr"

 new_result=temp_1 * 30;

 dist.text=pad_str(new_result);

 break;

 case "10" : rpm.text="23942 RPM"

 speed.text="30.9 Km/hr"

 new_result=temp_1 * 40;

 dist.text=pad_str(new_result);

 break;

71

 case "11" : rpm.text="26614 RPM"

 speed.text="34.3 Km/hr"

 new_result=temp_1 * 34;

 dist.text=pad_str(new_result);

 break;

 case "12" : rpm.text="29102 RPM"

 speed.text="37.5 Km/hr"

 new_result=temp_1 * 38;

 dist.text=pad_str(new_result);

 break;

 }

}

/*converting number into string*/

function pad_str(number:Number){

 var new_num:String = String(number);

 new_num = new_num + " "+ "Km";

 return new_num;

}

stop();

xml_player.addEventListener(MouseEvent.CLICK,

function(){gotoAndStop("one")});

xml_exit.addEventListener(MouseEvent.CLICK, function(){gotoAndStop("two")});

72

APPENDIX C: Mplab serial communication source code

#include <p18f2550.h>

#include <string.h>

#include <usart.h>

#pragma config WDT = OFF //watchdog timer off

#pragma config FOSC = HS

#pragma config USBDIV = 2

void send(char);

void init(void);

void main (void)

{

 char data;

 unsigned char battery='a';

 unsigned char current='k';

 unsigned char temp='s';

 unsigned int i,j,k;

 init();

 while(1)

 {

/***

MODULE : VOLATGE INDICATOR

CTRL : AN0 [INPUT] RB0 [OUT]

**/

 ADCON0=0b00000001; //AN0

 ADCON0bits.GO_DONE = 1;

 while(ADCON0bits.GO_DONE != 0);/

73

 if (ADRESL < 0xE0 && ADRESH==0b00){

 //PORTBbits.RB0=0x00;

 i=0;

//***

/* [PROGRAMMING SAMPLING] <USING RB2 TEMP OUTPUT> */

 if (ADRESL >= 204 && ADRESL < 224)//1.0

 battery='q'; //100%

 else if (ADRESL >= 183 && ADRESL < 204)//1.0

 battery='p'; //80%

 else if (ADRESL >= 163 && ADRESL < 183)//0.9

 battery='o'; //60%

 else if (ADRESL >= 149 && ADRESL < 163)//0.8

 battery='n'; //40%

 else if (ADRESL >=137 && ADRESL < 149)//0.73

 battery='m'; //20%

 else if (ADRESL >=122 && ADRESL < 137)//0.67

 battery='l'; //0%

 else{

 /*PROTECTION CIRCUIT FOR LESS THAN 9V*/

 if (ADRESL < 122){

 //PORTBbits.RB0=0xFF;

 i=1;

 battery='k';

 }

 else

 i=0;

 //PORTBbits.RB0=0x00;

 }////endif

 }

 else {

 //PORTBbits.RB0=0xFF;

 battery='r';

74

 i=1;

 }

/***

MODULE : CURRENT MONITORING SYSTEM

CTRL : AN1 [INPUT] OUTPUT RB1

**/

 ADCON0=0b00000101; //AN1

 ADCON0bits.GO_DONE = 1;

 while(ADCON0bits.GO_DONE != 0);//Loop here until A/D

conversion completes

 if (ADRESL < 0x14 && ADRESH==0b00){

 //PORTBbits.RB1=0x00;

 j=0;

 if (ADRESL >=0 && ADRESL <3)

 current='a';

 else if (ADRESL >=3 && ADRESL <5)

 current='b';

 else if (ADRESL >=5 && ADRESL <7)

 current='c';

 else if (ADRESL >=7 && ADRESL <9)

 current='d';

 else if (ADRESL >=9 && ADRESL <11)

 current='e';

 else if (ADRESL >=11 && ADRESL <13)

 current='f';

 else if (ADRESL >=13 && ADRESL <15)

 current='g';

 else if (ADRESL >=17 && ADRESL <19)

 current='h';

 else

 current='i';

75

 }//endif

 else {

 //PORTBbits.RB1=0xFF;

 j=1;

 current='j';

 }

/***

MODULE : TEMPERATURE MONITORING SYSTEM

CTRL : AN2 [INPUT] RB2 [OUT]

**/

 ADCON0=0b00001001; //AN2

 ADCON0bits.GO_DONE = 1;

 while(ADCON0bits.GO_DONE != 0);//Loop here until A/D

conversion completes

 if (ADRESL < 0x54 && ADRESH==0b00){

 //PORTBbits.RB2=0x00;

 k=0;

 if (ADRESL >= 0 && ADRESL < 41)

 temp='s';

 else if (ADRESL >= 41 && ADRESL < 51)

 temp='t';

 else if (ADRESL >= 51 && ADRESL < 61)

 temp='u';

 else if (ADRESL >= 61 && ADRESL < 72)

 temp='v';

 else if (ADRESL >= 72 && ADRESL < 82)

 temp='w';

 else

 temp='x';

 }

 else {

 temp='y';

 k=1;

76

 //PORTBbits.RB2=0xFF;

 }

/***

MODULE : ACTION CONTROL MODULE

**/

 if (i==1 || j==1 || k==1)

 PORTBbits.RB0=0xFF;

 else

 PORTBbits.RB0=0x00;

/***

MODULE : COMMUNICATION PROTOCOL

**/

 while (PIR1bits.RCIF==0);

 data = RCREG;

 if (data == 'A')

 send(battery);

 else if (data == 'B')

 send(current);

 else if (data == 'C')

 send(temp);

 else

 TXREG = data ;

 };

}

void init(void){

 TRISAbits.TRISA0=1;

 TRISAbits.TRISA1=1;

 TRISAbits.TRISA2=1;

 TRISAbits.TRISA3=1;

77

 /////////////////////////////////////

 TRISAbits.TRISA4=1;

 TRISAbits.TRISA5=1;

 /////////////////////////////////////

 TRISB=0x0;

 TXSTA = 0x22;

 RCSTA = 0x90;

 SPBRG = 15;

 TXSTAbits.TXEN = 1;

 RCSTAbits.SPEN = 1;

 ADCON1=0b00001010;

 ADCON2=0b10100110;

}

void send(char c){

 while (PIR1bits.TXIF == 0);

 TXREG = c;

}

78

APPENDIX D: Bash Shell script

#Author: bkcheah

#Module: obtain flash drive name and song content to be written in playlist.xml

#File name: active.sh

#!/bin/bash

#XML generator

#!/bin/bash

#COLOR CONFIG MODULE ################################

color(){

if [$1 -eq 1];then

echo -en '\E[;32m'"\033[1m$2\033[0m" #GREEN

elif [$1 -eq 2];then

echo -en '\E[;33m'"\033[1m$2\033[0m" #YELLOW

elif [$1 -eq 3];then

echo -en '\E[;31m'"\033[1m$2\033[0m" #RED

fi

}

#DEBUG MESSAGE MODULE ###############################

debecho () {

 if [$2 -eq 1];then

 # echo "$1" >&2

 echo -en '\E[;35m'"\033[1m$1\n\033[0m" >&2

 fi

}

count=0

flag=0

79

#SOURCE CODE STARTS HERE

declare -r deb=1 #SETTING FOR DBG_DEBUG

declare -r red=3 yellow=2 green=1

while [1]

do

 echo `pwd`

 #let count++

 #echo "count: $count"

 dev=`df -h | wc -l`

 let dev-=6

 echo "dev: $dev"

 if [$dev -eq 0];then

 tmp=$dev

 elif ["$dev" -ne "$tmp"];then

 #`$HOME/Desktop/xml_generator.sh`

 #echo "test"

: > $HOME/playlist.xml

#`cd /media`

song_name=`find /media . -name "*.mp3"`

rows=`find /media . -name "*.mp3" | wc -l `

#song_name=`find media/ -name "*.mp3" -type f -print`

#rows=`find media/ -name "*.mp3" -type f -print | wc -l`

#echo $song_name

for ((i=0; i<$rows; i++))

do

 tmp=`expr $i + 1`

 TEMP[$i]=` echo -e "$song_name" | cut -d$'\x0a' -f$tmp`

done

80

---------------------display test

for ((i=0; i<$rows; i++))

do

echo "${TEMP[$i]}"

 color $green "${TEMP[$i]}"

debecho "${TEMP[$i]}" $deb

done

#DESIGN TO BE WRITTEN IN XML FORMAT

echo "<?xml version=\"1.0\" encoding=\"utf-8\"?>" > $HOME/playlist.xml

echo "<PLAYLIST>" >> $HOME/playlist.xml

for ((i=0; i<$rows; i++))

do

 echo "<SONG URL= \"${TEMP[$i]}\">" >> $HOME/playlist.xml

 echo "</SONG>" >> $HOME/playlist.xml

debecho "${TEMP[$i]}" $deb

done

############## PROGRAM ENDS HERE #####################

echo

color $red "program completed written to:"

tput sgr0

color $yellow " $HOME/playlist.xml"

file_name=`ls /media`

rows=`ls /media | wc -l`

81

debecho "$file_name" $deb

for ((i=0; i<$rows; i++))

do

 tmp=`expr $i + 1`

 TEMP[$i]=` echo -e "$file_name" | cut -d$'\x0a' -f$tmp`

done

---------------------display test

for ((i=0; i<$rows; i++))

do

 #echo "${TEMP[$i]}" >> $HOME/dev.txt

 echo "<DEV URL= \"${TEMP[$i]}\">" >> $HOME/playlist.xml

 echo "</DEV>" >> $HOME/playlist.xml

done

echo "</PLAYLIST>" >> $HOME/playlist.xml

 flag=1

 tmp=$dev

 fi

 if [$dev -eq 0 -a $flag -eq 1];then

: > $HOME/playlist.xml

 flag=0

 fi

 sleep 0.25

done

82

#Author: bkcheah

#Module: run active.sh file as an application file

#File name: a.sh

xterm -e "bash $HOME/activate.sh; bash"

#Author: bkcheah

#Module: communicate with serial communication [send]

#File name: send.sh

while [1];

do

#xterm -e "echo "hello" /dev/ttyS0 > com_data.txt; bash"

echo "A" > /dev/ttyS1 #current monitoring

sleep 0.25

echo "B" > /dev/ttyS1 #voltage monitoring

sleep 0.25

echo "C" > /dev/ttyS1#temperature monitoring

sleep 0.25

echo "D" > /dev/ttyS1#speedometer

sleep 0.25

done

#Author: bkcheah

#Module: communicate with serial communication [receive]

#File name: com_serial.sh

: > $HOME/com_data.txt #erase the content of com_data.txt

sleep 1 # delay upon reading module starts up

xterm -e "cat /dev/ttyS1 > com_data.txt; bash"

83

#Author: bkcheah

#Module: decode serial for GUI, webserver, and user content (pic_data.txt)

#File name: serial.sh

#File generated: com.txt, pic_data.txt,web.txt

while [1] #main controller

do

info=`cat com_data.txt`

info_line=`cat com_data.txt | wc -l`

for ((i=0; i<$info_line; i++))

do

 tmp=`expr $i + 1`

 TEMP[$i]=` echo -e "$info" | cut -d$'\x0a' -f$tmp`

done

#debug display verificaton test [bkcheah]

for ((i=0; i<$info_line; i++))

do

 echo "temp_data[$i]: ${TEMP[$i]}"

done

#grap the most recent data... [bkcheah 2011]

#echo "${TEMP[(($info_line-1))]}"

module: modification status

if [$info_line -gt 3];then

 : > com_data.txt #clean file

 echo "${TEMP[(($info_line-1))]}" > com_data.txt

fi

case "${TEMP[(($info_line-1))]}" in

 a)

 current=0

84

 cur=0.0A

 ;;

 b)

 current=1

 cur=0.2A

 ;;

 c)

 current=2

 cur=0.3A

 ;;

 d)

 current=3

 cur=0.4A

 ;;

 e)

 current=4

 cur=0.5A

 ;;

 f)

 current=5

 cur=0.6A

 ;;

 g)

 current=6

 cur=0.7A

 ;;

 h)

 current=7

 cur=0.8A

 ;;

 i)

 current=8

 cur=0.9A

 ;;

85

 j)

 current=9 #protective system sctivated

 cur=">1.0A"

 ;;

 k)

 voltage=0

 vol="<9.0V"

 ;;

 l)

 voltage=1

 vol=9.5V

 ;;

 m)

 voltage=2

 vol=10.5V

 ;;

 n)

 voltage=3

 vol=11.4V

 ;;

 o)

 voltage=4

 vol=12.8V

 ;;

 p)

 voltage=5

 vol=14.8V

 ;;

 q)

 voltage=6

 vol=15.8V

 ;;

 r)

86

 voltage=7

 vol=">16V"

 ;;

 s)

 temperature=0

 temp="<20"

 ;;

 t) temperature=1

 temp=22

 ;;

 u)

 temperature=2

 temp=27

 ;;

 v)

 temperature=3

 temp=32

 ;;

 w)

 temperature=4

 temp=37

 ;;

 x)

 temperature=5

 temp=40

 ;;

 y) temperature=6

 temp=">41"

87

 ;;

 #Speedometer starts here..

 K) rpm=00

 rpm_t="0 rpm"

 speed="0 Km/Hr"

 ;;

 L) rpm=01

 rpm_t="1030 rpm"

 speed="1.3 Km/Hr"

 ;;

 M) rpm=02

 rpm_t="3284 rpm"

 speed="4.2 Km/Hr"

 ;;

 N) rpm=03

 rpm_t="5744 rpm"

 speed="7.4 Km/Hr"

 ;;

 O) rpm=04

 rpm_t="8279 rpm"

 speed="10.7 Km/Hr"

 ;;

 P) rpm=05

 rpm_t="10915 rpm"

 speed="14.1 Km/Hr"

 ;;

 Q) rpm=06

 rpm_t="13427 rpm"

 speed="17.4 Km/Hr"

 ;;

 R) rpm=07

 rpm_t="15920 rpm"

88

 speed="20.5 Km/Hr"

 ;;

 S) rpm=08

 rpm_t="18510 rpm"

 speed="23.9 Km/Hr"

 ;;

 T) rpm=09

 rpm_t="21213 rpm"

 speed="27.3 Km/Hr"

 ;;

 U) rpm=10

 rpm_t="23942 rpm"

 speed="30.9 Km/Hr"

 ;;

 V) rpm=11

 rpm_t="26614 rpm"

 speed="34.3 Km/Hr"

 ;;

 W) rpm=12

 rpm_t="29102 rpm"

 speed="37.5 Km/Hr"

 ;;

 *)

 echo "Error coding" #bkcheah statement

 ;;

 esac

 ###

 # MODULE: WRITE TO PIC_DATA.TXT [SYSTEM INFORMATION]

 ##

 echo "voltage $voltage current: $current"

 : > pic_data.txt #clear pic data file <bkcheah>

 echo "Battery Management system" > pic_data.txt

 echo "----------------------------" >> pic_data.txt

89

 echo "voltage: $vol" >> pic_data.txt

 echo "current: $cur" >> pic_data.txt

 echo "temperature: $temp" >> pic_data.txt

 echo -e "\n" >> pic_data.txt

 echo "Speedometer" >> pic_data.txt

 echo "----------------------------" >> pic_data.txt

 echo "motor rpm: $rpm_t" >> pic_data.txt

 echo "vehicle speed: $speed" >> pic_data.txt

 #REGENERATION OF THE SYSTEM

 : > $HOME/awhttpd/default/evteam/web.txt

 echo "$vol" > $HOME/awhttpd/default/evteam/web.txt

 echo "$cur" >> $HOME/awhttpd/default/evteam/web.txt

 echo "$temp" >> $HOME/awhttpd/default/evteam/web.txt

 ###

 # MODULE: WRITE TO A FILE UNDERSTOOD BY AS 3.0

 ##

 #voltage=3

 echo $voltage$current$temperature$rpm > com.txt

 #echo $voltage > com.txt

`sleep 0.25` #quater of a second ...

done

#Author: bkcheah

#Module: as an application file to start up webserver application after rebooting

#File name: web.sh

xterm -e "cd $HOME/awhttpd/; ./awhttpd . ; bash"

#xterm -e "./awhttpd .; bash"

90

#Author: bkcheah

#Module: copy utility behind the scene of BMS GUI

#File name: drive_reader.sh

while [1]

do

 name=`cat drive.txt`

 name="$name/"

 char_num_check=`cat drive.txt | wc -m`

 if [$char_num_check -ne 0];then

 #echo "copied to $name"

 #data manipulation starts here

 num=$((`echo $name |sed 's/[^]//g'|wc -m`-1)) #space counter

 echo "[@@] $name | num of space : $num"

 let num++

 for ((i=0; i<$num; i++))

 do

 tmp0=`expr $i + 1`

 TEMP[$i]=`echo "$name" | cut -d\ -f$tmp0 `

 done

 # vince dislay module

 ###

 for ((i=0; i<$num; i++))

 do

 echo "vince_test_value[$i]: ${TEMP[$i]}"

 done

 ##

91

 str=""

 str_1="" #original string

 ((rev=$num-1))

 #echo "rev : $rev"

 for((i=0;i<$rev;i++))

 do

 str_1="${TEMP[$i]}"

 str="strstr_1\ "

 done

 str="str{TEMP[$rev]}"

 ## display module to check for the link

 echo "final test [@@@] /media/$str"

 echo "test: $((`echo $str |sed 's/[^]//g'|wc -m`-1))"

 #ready to be sent to the module and modified

 `cp $HOME/pic_data.txt /media/$str`

 : > drive.txt

 fi

 sleep 0.25

done

92

APPENDIX E: Webserver application

#Author: bkcheah

#Module: obtain vehicle information every 1 second

#File name: ev.cgi

File location: /home/bkcheah/awhttpd/default/evteam

echo "Content-type: text/html"

echo -e "\r\n"

webserver application starts here

url="http://192.168.0.102:8384/evteam/ev.cgi"

system specification

name="Cheah Beng Keat"

ic="880423-22-1133"

num_plate="PGC 2147"

h_phone="016-4220005"

cat << 'EOF'

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

EOF

echo "<SCRIPT LANGUAGE=\"JavaScript\">"

echo "myPopup = '';"

echo "function openPopup(url) {"

93

echo "myPopup = window.open(url,'popupWindow','width=640,height=480');"

echo "if (!myPopup.opener)"

echo "myPopup.opener = self;"

echo "}"

echo "</SCRIPT>"

echo "<meta http-equiv=\"refresh\" content=\"1;url=$url\" />"

cat << 'EOF'

<title>Smart Management System</title>

</head>

<body>

<h1>vehicle profile:</h1><table width="305" border="1">

 <tr>

 <td width="84">Name </td>

EOF

 echo "<td width=\"205\">$name</td>"

cat << 'EOF'

 </tr>

 <tr>

 <td>IC</td>

EOF

 echo "<td>$ic</td>"

cat << 'EOF'

 </tr>

 <tr>

 <td>Num plate</td>

EOF

 echo "<td>$num_plate</td>"

94

cat << 'EOF'

 </tr>

 <tr>

 <td>H/P</td>

EOF

echo "<td>$h_phone</td>"

cat << 'EOF'

 </tr>

</table>

<p> </p>

<h1>Battery monitoring status:</h1>

EOF

#power management system starts over here

info=`cat $HOME/awhttpd/default/evteam/web.txt`

info_line=`cat $HOME/awhttpd/default/evteam/web.txt | wc -l`

for((i=0;i<$info_line;i++))

do

 #tmp= `expr $i +1`

 ((tmp = i + 1))

 TEMP[$i]=` echo -e "$info" | cut -d$'\x0a' -f$tmp`

done

#disp test

#for((i=0;i<$info_line;i++))

#do

echo "temp_data[$i]: ${TEMP[$i]}"

#done

Table Generation

95

echo "<table border=1>"

 echo "<tr>"

 echo "<td align=center width=200><font face=Georgia

color=blue>Date</td>"

 echo "<td align=center width=100><font face=Georgia

color=blue>voltage</td>"

 echo "<td align=center width=100><font face=Georgia

color=blue>Current</td>"

 echo "<td align=center width=100><font face=Georgia

color=blue>Temperature</td>"

 echo "</tr>"

2nd row

echo "<tr>"

 echo "<td align=center width=200><font face=Georgia

color=black>`date +%c`</td>"

 echo "<td align=center width=100>

${TEMP[0]}</td>"

 echo "<td align=center width=100>

${TEMP[1]}</td>"

 echo "<td align=center width=100>

${TEMP[2]}</td>"

echo "</table>"

echo "</tr>"

echo "
"

cat << 'EOF'

 <style type="text/css">

 input {

 font-size: 18pt;

 }

</style>

EOF

96

echo "</body>"

echo "<FORM>"

echo "<INPUT TYPE=\"BUTTON\" VALUE=\"vehicle past status\"

onClick=\"openPopup('ev_1.cgi')\">"

echo "</FORM>"

echo "</html>"

#Author: bkcheah

#Module: obtain vehicle past records

#File name: ev_1.cgi

File location: /home/bkcheah/awhttpd/default/evteam

#!/bin/bash

author: bkcheah

echo "Content-type: text/html"

echo -e "\r\n"

#define absolute path

path="$HOME/awhttpd/default/evteam/intel.txt"

url="http://192.168.0.102:8384/evteam/ev_1.cgi"

cat << 'EOF'

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Untitled Document</title>

</head>

<body>

97

<h1>Vehicle record:</h1>

<FORM NAME="myform" action="ev_1.cgi" method="get">

EOF

#control element

#echo "
"

#echo "\$@ = $@"

#echo "
"

#echo "\$? = $?"

#echo "
"

#echo "QUERY_STRING = $QUERY_STRING"

#echo "
"

#echo "QUERY_STRING_POST = $QUERY_STRING_POST"

#echo "
"

#echo "REMOTE_ADDR = $REMOTE_ADDR"

#echo "
"

#echo "HTTP_HOST = $HTTP_HOST"

#echo "
"

#echo "SERVER_PORT = $SERVER_PORT"

#echo "
"

#echo "SCRIPT_NAME = $SCRIPT_NAME"

#echo "
"

#echo "REQUEST_METHOD = ${REQUEST_METHOD}"

#echo "
"

#echo "CONTENT_LENGTH = ${CONTENT_LENGTH}"

#echo "
"

rows=`cat $path| wc -l`

data=`cat $path`

#num_rows=$((`echo $data|sed 's/[^&]//g'|wc -m`-1)) #And Counter

#((num_data = num_rows + rows))

((t_row=rows/4))

98

for((i=0;i<$rows;i++))

do

 tmp=`expr $i + 1`

 TEMP[$i]=` echo -e "$data" | cut -d$'\x0a' -f$tmp`

 #TEMP[$i]=` echo -e "$data" | cut -d$\& -f$tmp`

done

#for((i=0;i<$rows;i++))

#do

echo "LINE ${TEMP[$i]}"

echo "
"

#done

echo "<table border=1>"

 echo "<tr>"

echo "<td align=center width=100>check to

delete</td>"

echo "<td align=center width=100><font face=Georgia

color=blue>Date</td>"

 echo "<td align=center width=300><font face=Georgia

color=blue>Name</td>"

 echo "<td align=center width=300>Company's

name</td>"

echo "<td align=center width=500><font face=Georgia

color=blue>Comment</td>"

echo "</tr>"

 new1=3

 tmp1=0

 for((i=0;i<$t_row;i++))

 do

 echo "<tr>"

99

 echo "<td><input type=\"checkbox\" name=\"checkbox\"

value=\"$i\"></td>"

 for ((j=$tmp1; j<=$new1; j++))

 do

 if ["${#TEMP[$j]}" -ne 0]; then

 echo "<td align=center>

"${TEMP[$j]}" </td>"

 else

 echo "<td><font face=\"Courier

New\">"""${TEMP[$j]}"
""</td>"

 fi

 done

 ((tmp1+=4))

 ((new1+=4))

 echo "</tr>"

 done

 echo "</table>"

additional feature

num=$((`echo $QUERY_STRING|sed 's/[^&]//g'|wc -m`-1)) #And Counter

data_num=`expr $num + 1`

#----------------------------cut the '&' and '=' --------------------

for ((i=0; i<$data_num; i++))

do

 tmp0=`expr $i + 1`

 TE[$i]=`echo "$QUERY_STRING" | cut -d\& -f$tmp0 `

done

100

for ((i=0; i<$data_num; i++))

do

 tmp0=`expr $i * 2`

 for ((j=1; j<3; j++))

 do

 data_arr[$tmp0]=`echo "${TE[$i]}" | cut -d= -f$j`

 tmp0=`expr $tmp0 + 1`

 done

done

k=0

for ((i=0; i<$data_num; i++))

do

 let j=2*i+1

 arr[$k]="${data_arr[$j]}"

 let k++

done

disp control logics ##

#echo "
"

#for((i=0;i<$k;i++))

#do

echo "${arr[$i]}"

echo "
"

#done

########################

flag2=1

for ((i=0; i<$t_row; i++))

do

 for ((k=0; k<$data_num && $flag2; k++))

 do

101

 if ["${arr[$k]}" = "$i"]; then

 #echo "vince : ${arr[$k]}, $i
"

 flag=1

 flag2=0

 else

 #echo "test: ${arr[$k]}, $i
"

 flag=0

 fi

 done

 flag2=1

 if [$flag -eq 1]; then

 #echo "no print for $i "

 :

 else

 #echo "print for $i"

 #temp=`expr $i + 4`

 a[$n]=$i

 #b[$n]=$temp

 let n++

 fi

done

echo "
"

################################

#for((i=0;i<$n;i++))

#do

echo "[!!!] ${b[$i]} | ${a[$i]}"

echo "
"

#done

first="${arr[0]}"

if [${#first} -ne 0]; then

: > $path

102

for((i=0;i<$n;i++))

do

 temp=${a[$i]}

 ((low = 4*temp))

 ((upper = low+3))

 #echo "$low | $upper"

 #echo "
"

 for((j=$low;j<=$upper;j++))

 do

 echo "${TEMP[$j]}" >> $path

 done

done

 echo "<meta http-equiv=refresh content=\"0;url=$url\">"

fi

#############################

echo "
"

cat << 'EOF'

<style>

 input {

 font-size: 18pt;

 }

</style>

<INPUT TYPE="submit" VALUE="Delete" style="height: 3em; width: 5em" >

</form>

<form method="link" action="ev_2.cgi">

<input type="submit" value="Add remark to vehicle record">

</form>

</body>

</html>

EOF

103

#Author: bkcheah

#Module: Inserting vehicle records

#File name: ev_2.cgi

File location: /home/bkcheah/awhttpd/default/evteam

#!/bin/bash

echo "Content-type: text/html"

echo -e "\r\n"

path=$HOME/awhttpd/default/evteam/intel.txt

#echo "
"

#echo "\$@ = $@"

#echo "
"

#echo "\$? = $?"

#echo "
"

#echo "QUERY_STRING = $QUERY_STRING"

#echo "
"

#echo "QUERY_STRING_POST = $QUERY_STRING_POST"

#echo "
"

#echo "REMOTE_ADDR = $REMOTE_ADDR"

#echo "
"

#echo "HTTP_HOST = $HTTP_HOST"

#echo "
"

#echo "SERVER_PORT = $SERVER_PORT"

#echo "
"

#echo "SCRIPT_NAME = $SCRIPT_NAME"

#echo "
"

#echo "REQUEST_METHOD = ${REQUEST_METHOD}"

#echo "
"

#echo "CONTENT_LENGTH = ${CONTENT_LENGTH}"

#echo "
"

cat << 'EOF

104

<html>

<head>

<SCRIPT LANGUAGE="JavaScript">

//controlling textbox

function textCounter(field,cntfield,maxlimit) {

if (field.value.length > maxlimit)

field.value = field.value.substring(0, maxlimit);

else

cntfield.value = maxlimit - field.value.length;

a}

function check (a)

{

 if (a != 0)

 {

 var message="Error message";

 var count="\nplease fill in all the text fields";

 display=message+count

 alert(display);

 }

}

function call(){

 alert("File Successfully written");

}

</script>

<meta http-equiv="Content-Type" content="text/html; charset=windows-1252" />

105

<title>vehicle content</title></head>

<body>

<script type=text/javascript>

check(0,0,0,0);

</script>

<script type=text/javascript>

file(0,);

</script>

<h1>vehicle profile</h1>

EOF

string_length=${#QUERY_STRING}

num=$((`echo $QUERY_STRING|sed 's/[^&]//g'|wc -m`-1)) #And Counter

data_num=`expr $num + 1`

#cut the '&' and '='

for ((i=0; i<$data_num; i++))

do

 tmp0=`expr $i + 1`

 TEMP[$i]=`echo "$QUERY_STRING" | cut -d\& -f$tmp0 `

done

for ((i=0; i<$data_num; i++))

do

 tmp0=`expr $i * 2`

 for ((j=1; j<3; j++))

 do

 data_arr[$tmp0]=`echo "${TEMP[$i]}" | cut -d= -f$j`

 tmp0=`expr $tmp0 + 1`

 done

done

106

#----------display the result --------------------------------

#for ((i=0; i<`expr $data_num * 2`; i++))

#do

echo "
"

echo "vince_test_value: ${data_arr[$i]}"

#done

#--

((total=$data_num*2))

counter=0

if [$string_length -ne 0]; then

 for ((i=1; i<=3; i++))

 do

 ((j=2*i+1))

 temp="${data_arr[$j]}"

 if [${#temp} -eq 0]; then

 let counter++

 fi

 done

fi

echo "<script type="text/javascript">"

echo "check($counter);"

echo "</script>"

#condition to be check

t_name="${data_arr[1]}"

t_name=`echo ${t_name//+/ }`

107

date_day=`date +%e`

date_month=`date +%m`

date_year=`date +%y`

t_date="$date_day-$date_month-$date_year"

company name

t_company="${data_arr[3]}"

t_company=`echo ${t_company//+/ }`

#echo "company_name: $t_company"

#echo "
"

comment statement

t_word="${data_arr[5]}"

t_word=`echo ${t_word//'%0D%0A'/ }`

t_word=`echo ${t_word//+/ }`

#echo "mesg: $t_word"

if [${#t_name} -ne 0 -a ${#t_company} -ne 0 -a ${#t_word} -ne 0]; then

 echo "<script type="text/javascript">"

 echo "call();"

 echo "</script>"

 echo "$t_date" >> $path

 echo "$t_name" >> $path

 echo "$t_company" >> $path

 echo "$t_word" >> $path

fi

cat << 'EOF'

<form name="myForm"

action="ev_2.cgi"

method="get">

108

 <table width="312" border="0">

 <tr>

 <th width="83" scope="row">Name:</th>

 <td width="219">

<input type="text" name="textfield1" value="" />

</td>

 </tr>

</table>

<table border="0">

 <tr>

 <th scope="row">Company's name:</th>

 <td ><input type="text" name="textfield2" /></td>

 </tr>

</table>

<table width="312" border="0">

 <tr>

<th scope="row">Comment:</th>

 <td width="240" rowspan="2"><textarea name="message1" wrap="physical"

cols="28" rows="5"

onKeyDown="textCounter(document.myForm.message1,document.myForm.remLen

1,125)"

onKeyUp="textCounter(document.myForm.message1,document.myForm.remLen1,1

25)"></textarea>

 <input readonly type="text" name="remLen1" size="3" maxlength="3"

value="125">

characters left
</td>

 </tr>

 <tr>

 <th width="89" scope="row"><p> </p>

 <p> </p></th>

 </tr>

</table>

109

<table border="0">

 <tr>

 <th scope="row">Dated Event:</th>

EOF

 echo "<th scope=\"row\">$t_date</th>"

cat << 'EOF'

 </tr>

</table>

 <style type="text/css">

 input {

 font-size: 18pt;

 }

</style>

<input type="Submit" name="Submit" value="Submit">

</form>

<form action="ev_1.cgi">

<input type="Submit" value="back to the vehicle record ">

</form>

</body>

</html>

EOF

