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MULTI PLATFORM QUATERNION BASED 

LEG GESTURE RECOGNITION 

 

ABSTRACT 

 

 

The tracking of human motion has always been a subject of interest in many 

disciplines such as sports, health, computer, and virtual applications. With the recent 

advancement in Micro Electro-Mechanical Systems (MEMS), the size of inertial and 

magnetic sensors has been reduced significantly. This project is motivated by the 

combination of public awareness on daily activities that promotes a healthy lifestyle 

and the increasing number of smart phone users. This project incorporates a system 

based upon the smart phone, the inertial and magnetic sensors which are used to 

recognize different leg gesture, track users foot step and distance. An Inertial 

Measurement Unit (IMU) which consists of a tri-axis accelerometer and gyroscope is 

attached to a microcontroller and the data is transmitted to an Android mobile device 

via Bluetooth connection to allow real time tracking functions. A quaternion based 

algorithm is implemented in the sensor device to monitor the orientation with respect 

to the sensor’s position in the user’s body. The results are studied and evaluated to 

confirm the accuracy of the method used in this project. 
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CHAPTER 1 

 

 

 

1 INTRODUCTION 

 

 

 

1.1 Background 

 

Human motion studies, also known as kinesiology have always been a very 

fascinating subject of study. The origin of the subject is derived from exercise 

physiology and dates back to 384 B.C. as found in Aristotle’s book ‘De Motu 

Animalium’ – On the Movement of Animals. The book explains the physiological 

differences of imagining an action to be performed and actually doing it (Roternberg, 

2006). Claudius Galenus (126-199 A.D.), who is known as the founder of 

experimental physiology, is the first human to use experiments to probe the functions 

of body. In between 776 B.C. to 393 A.D., ancient Greek physician controlled 

training methods and diet plans of Olympic competitors with the work of Galen, and 

many of the principles are also still used today. In the modern era, representatives of 

the field include Edward Hitchcock Jr. (1828-1911), an Amherst College professor 

who had co-authored 1860 texts on exercise physiology (Wikipedia, 2013). 

 

Human motion tracking is generally applied in multiple disciplinary fields 

which require the capturing of human body posture and movement. In scientific field, 

scientist seeks recognising mechanisms that may be used to translate muscle 

contraction into useful function and thus enabling the creation of robots with human-

like nature, and are able to perform human-like activities. Researchers have 

considerable interests in understanding the relationship of the proper posture and 

motion in gait analysis. In sports science, athletes seek to use human motion analysis 

as a tool to improve athletic performances. In the virtual world, graphic designers 
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create human models and animate movie characters through the study of human 

motion. This method of human motion analysis is known as rotoscoping which 

originates from Disney Studios (Roternberg, 2006). 

 

 The technologies used to track human motion are generally divided into two 

approaches; namely the visual and non-visual tracking systems. Visual tracking 

systems are divided into two categories which is visual marker based and marker-

free visual based tracking system. Visual marker based tracking system uses cameras 

to track human movement whilst marker-free visual based tracking system utilizes 

optical sensors to track human motion. These conventional methods are generally 

limited with the problems of sensors adrift, occlusion, and the 3D model unable to be 

rendered. As for non-visual based tracking systems, sensors are generally worn on a 

subject’s body and the sensors are commonly categorised as mechanical, inertial, 

acoustic and magnetic based. The most common example of non-visual based 

tracking system is the accelerometer sensors which measures by using piezoelectric 

or variable capacitive. The non-visual system is bounded by drift errors and noisy 

measuring environment, but these problems can be corrected with internal offset and 

pre-selective filters (Zhou and Hu, 2008). 

 

 

 

1.2 Problem Statement and Motivation 

 

Inertial sensors have been used in Attitude & Heading Reference System (AHRS) 

application such as navigation of aircraft, ships and vehicles. With the recent 

advancement of technology in Micro-electro-mechanical systems (MEMS), the size, 

weight and cost of a wearable sensor has been largely reduced. Today, the smallest 

accelerometer available on the market is only 1.2 mm × 1.7 mm × 1.0 mm in size 

invented by MEMSIC (MEMSIC, 2011). The availability of small non-visual 

tracking system opens up the possibility of real-time human motion tracking for a 

longer period of time with the use of inertial and magnetic sensors that is low in 

current consumption. Thus, our aim of sensors selection in this project will be 
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generally focused on wearable inertial and magnetic sensors (Altun, Bsrshan and 

Tuncel, 2010). 

 

In the earlier research works on human motion sensing, data collected is 

generally processed through the use of personal computers. This gives the 

disadvantage that data collected are bound to be in a certain range near the computer 

and cannot be tracked for a long period due to the weight and size of personal 

computers and the transmission method used. However, with the evolution of 

smartphones in the recent years, processing powers of smartphones have grown 

exponentially and is sufficiently equipped for computing data collected. 

Comparatively, the general smartphone held in the human hand today already has 

more processing power than the computer used by NASA for their first space launch 

project (Robertson, 2009). 

 

Human motion tracking has been studied thoroughly long ago and this study 

provides a basic foundation of understanding how human motion is related to our 

daily lives. With the turn of 21
st
 century, the public grows more educated and has 

acquired the awareness of how technology can improve and propagate healthy 

lifestyle. The increase in medical expenditure is among the leading factors that raise 

public concern and the general consensus is that prevention is better than cure. For 

example, rehabilitation for a stroke patient requires physical correction program and 

it necessitates the patient to visit the hospital for a period of time. Alternatively, 

technologies used for home based rehabilitation and physical therapy are available 

but only through visual tracking system where the major disadvantage lies in the 

detection zone being confined to a limited area in the building and the inconvenience 

in mobility (Altun, Bsrshan and Tuncel, 2010). Hence, these problems have inspired 

and motivated us to create a device that can track and differentiate human motion on-

the-go for a long period of time and simultaneously provides health information. 
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1.3 Objectives 

The main objective of this project is to build a wearable sensor system that features 

the measurement in number of footstep, estimation of the speed and distance 

travelled and provides a user interface by communication through a wireless 

transmission module to an android mobile device. The wearable sensor system must 

be able to differentiate basic human motion such as walking, running, jumping, 

sitting and climbing stairs by using appropriate algorithms.  

  

In the interest of fulfilling the objectives, the following actions are taken:  

 To study different types of inertial and magnetic system. In particular, 

MEMS sensors that is wearable and small in size and to compare the 

advantages and disadvantages with existing technologies. 

 To study essential programming techniques such as C/C++ and Assembly 

Language to process sensors data with a suitable micro-controller. 

 To study different types of established wireless communication standards 

such as IEEE 802.11b (Bluetooth) and IEEE 802.11g (Wi-Fi) that allows 

data transmission of the wearable system to android devices in a close 

distanced range and offline manner. 

 To study and implement algorithms and methods that have the ability to 

pre-selectively determine data and make intelligent decisions to 

compensated for errors made by different sensors. 

 

 

 

1.4 Outline of Project 

 

This thesis will be organized as follow: In Chapter 2, a literature review will be done 

to investigate all the pros and cons of the methods, design preferences, algorithms 

and electronic components used in this project. Methodology is discussed in depth in 

Chapter 3 to explain the functionality of the system and some initial result will be 

analysed. Chapter 4 describes all the necessary procedures taken to setup the device 
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and to conduct studies and experiment. Lastly, Chapter 5 discusses the result 

obtained and addresses issues arise during the development of the prototype phase. 



 

 

 

CHAPTER 2 

 

 

 

2 LITERATURE REVIEW 

 

 

 

2.1 Existing Products/Researches 

 

2.1.1 Tri-Axis Inertial/Magnetic Package 

 

Typical tri-axis inertial and magnetic sensors are used to sense human motions. The 

results collected in the sensors are then processed by a pre-selective filter in order to 

obtain a more accurate result from the noisy environment. The typical diagram of tri-

axis inertial and magnetic sensors package follows by Figure 2.1. 

 

 

Figure 2.1: Block diagram of sensor package. 

 

 

The paper here presented by Zhu and Zhou (2004) suggest the methodology of 

human motion sensing by using sensor packages interfacing with a microcontroller 

and the data is collected through a RS-232 cable to the computer. 
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The inertial and magnetic sensors that are used include two two-axis accelerometers, 

a single and a two axis magnetometers and also three single axis gyroscope. The 

orientation of the sensor package is evaluated with the Kalman algorithm in order to 

obtain the direction of the sensor package tilt and also for signal recognition in 

human motion. 

 

The paper here provides us the basic idea about how the actual sensors will 

be used while we compare our objectives. Magnetometers in this system will be 

unnecessary for the project because mobile phones already have in built 

magnetometers. The usage of the mobile phone magnetometer is sufficient as we 

only need it for directional and navigational purposes. However, actual sensors such 

as accelerometer and gyroscope are still necessary although mobile phone also have 

them in built because the data collected will be more accurate. The RS-232 

transmission method will be eliminated as well because the prefixed length of cable 

limits the mobility of the system. 

 

 

 

2.1.2 MTx 9 DOF IMU Sensors 

 

MTx Inertial Measurement Unit (IMU) is manufactured by Xsens Technologies and 

is one of the inertial and magnetic sensors combination chipset that is currently 

available in the market for motion sensing and navigation purposes. It is a digital 

measurement unit that measures acceleration, rotation and earth-magnetic field. It 

contains tri-axis accelerometer, gyroscope and magnetometers which is also known 

as 9 Degrees of Freedom (DOF). MT9 which is a family of the MTx sensors has high 

angular resolution up to 0.05° and 3° RMS dynamic accuracy. MTx sensors can be 

interconnected with each other by using a 1m cable to the central processing unit 

Xbus Master (Zhou and Hu, 2008). 
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Figure 2.2: MTx Sensor. 

 

 

The availability of such commercially available sensors chipset allows easier 

interfacing with sensors. Altun, Barshan and Tuncel (2010) introduced a method of 

classifying human activities with MTx sensors. The sensors are placed on 5 different 

parts of the body which is; the right arm, left arm, right leg, left leg and torso and is 

interconnected to an Xbus master. Several classification methods are used to 

differentiate different human activities and the most accurate classification method 

can go up to 98.8%. The result shows that MTx sensors are excellent in human 

motion sensing. However the cost of MTx sensors is very expensive and does not 

comply with our objective of creating a sensors system that is light, small and 

inexpensive.  

 

 

 

2.1.3 Jawbone Up 

 

One of the popular motion tracking gadgets in the market is Jawbone UP. Jawbone is 

a bendable and waterproof gadget that tracks user’s health, promotes good sleeping 

pattern and exercise daily. Jawbone UP contains two lithium ion batteries, a tri-axis 

accelerometer, vibrating motor and a TRS plug to sync data to smartphone devices. 

Jawbone UP’s most attractive feature is enabling users to track sleeping patterns, by 

using sensors to register subtle movements. The sensor in Jawbone UP is similar to 
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an actimetry sensor which registers user’s movement when they rest and sleep. 

Besides a well-developed sleep mode tracking function, Jawbone UP also includes 

the vibrating motor to alert user from time to time to get up and exercise, or as an 

alarm to wake user from sleep. 

 

 

Figure 2.3: Jawbone Up 

 

 

The disadvantage of Jawbone UP is where it is unable to provide wireless 

syncing function. Each operation of the product requires the user to take of the 

device and connect to a smartphone through the TRS plug. Besides, Jawbone does 

not provide any visible display for users and only possesses one button interface for 

users to manually keep track of the three of the basic functions which is 

entering/leaving sleep mode, power nap mode and stopwatch mode (Ha, 2012). 

 

 

 

2.1.4 FitBit Flex 

 

Fitbit Flex, much alike the previous product Jawbone UP, is also a popular gadget 

that tracks users movement daily. Fitbit Flex features wireless syncing function 

which allows the device to upload data through a built-in wireless Bluetooth chip and 
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also a real time data tracking. Fitbit Flex includes a visible interface on the device 

itself to allow users to control the functions and also to display several data. The 

visible interface appears as a user tap on the device several times. Fitbit Flex also has 

a 5 LED panel that displays user’s daily progress through the LED indicator. 

Similarly like the technology used in Jawbone UP, Fitbit Flex also includes a tri-axis 

accelerometer and also a vibrating motor to track user’s movement and alert user. 

Fitbit Flex also includes sleep pattern monitoring to indicate users sleeping condition 

(Goode, 2013). 

 

 

 

2.1.5 Nike FuelBand 

 

Another product that shows analogous traits is the Nike FuelBand which was 

developed by the sports giant Nike. The Nike FuelBand as compared to other popular 

products such as Fitbit and Jawbone shows more hardware inferiority as Nike 

FuelBand does not include additional features such as sleeping pattern optimized 

alarm. Nike’s marketing strategy on this product was not based on the hardware 

feature but a different calculation algorithm which is called Nike Fuel. The basic 

goal is to create users motivation in exercising. By accomplishing certain exercises, 

users gain Nike Fuel points and can be updated to either their smartphone app or 

users internet profile.  

 

The FuelBand is actually made of thermoplastic rubber and has 20 LED that 

shows red, yellow and green according to goals set by users. Another 100 white LED 

is used to show time, Nike Fuel Points, calories and steps taken which can be 

revealed by a button attached on the band. The only motion detecting sensor in the 

band is a tri-axis accelerometer plus two lithium polymer batteries that can be 

recharged through a USB port. The wireless transmission method that connects the 

band to a smartphone is through a Bluetooth chip.  

 

Although Nike FuelBand enjoys popularity among sports enthusiasts, several 

disadvantages are presented. Like the two other previous products, the only sensor 
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found in Nike FuelBand is the accelerometer and accelerometer has the characteristic 

of drifting error. Drifting error causes sensor to be inaccurate and the only way to 

solve this problem is by reset sensor data, inner compensation method or pre-

selective filtering. Notably, Nike in partnership with the Arizona State University 

monitors test participants oxygen consumption on several basic activities in order to 

correlate with motion which the method is denoted as “oxygen kinetics”. This 

compensation method is inaccurate due to the oxygen consumption results are taken 

in the lab and it might vary from individual users (Fankhauser, 2013). Lastly, wrist 

worn tracking gadgets are bound to create static motion errors which might need a 

different algorithm to detect static motion such as standing and sitting while the arm 

is still moving.  

 

 

 

2.1.6 Basis 

 

Basis, another similar product on the wearable sensor market, is based on the 

identical concept of monitoring user’s health conditions such as sleeping, activities, 

calories spent and intake and also heart rate. The Basis band includes 4 different 

sensors which all have different purposes. The ECG sensor is used to sense blood 

flow of user throughout the day to monitor activity intensities. Alike the existing 

products, Basis also includes a tri-axis accelerometer for monitoring users step count, 

body movement in day time and sleep quality in the night time. A perspiration 

monitor sensor is also included to monitor user’s workout intensity by monitoring the 

sweat level on user’s wrist. Lastly, the Basis includes a thermistor-like sensor to 

monitor user’s skin temperature in correlation to the environmental temperature. The 

Basis band also includes a Bluetooth module and also a USB connector to allow 

users sync data to either a computer or a smartphone that runs on IOS or Android 

operating system (Basis, 2012). 
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2.2 Conclusion 

 

Table 2.1: Comparison of Existing Products 

Product Sensors 
Sensors 

Position 

Data 

Transmission 

Method 

Sleep 

Tracking 

Tri-axis 

inertial/magnetic 

package 

3 axis 

accelerometer, 

magnetometer, 

gyroscope 

Wrist RS-232 No 

MTx 

3 axis 

accelerometer, 

magnetometer, 

gyroscope 

Multiple 

Positions 
USB No 

Jawbone Up 
3 axis 

accelerometer 
Wrist 

Bluetooth, TRS 

plug 
Yes 

Fitbit Flex 
3 axis 

accelerometer 
Wrist Bluetooth Yes 

Nike FuelBand 
3 axis 

accelerometer 
Wrist Bluetooth No 

Basis 

3 axis 

accelerometer, 

ECG sensor, 

thermistor, 

perspiration 

sensor 

Wrist Bluetooth, USB Yes 

 

 

From all the products reviewed, the conclusion derived is to use one tri-axis 

accelerometer and gyroscope to monitor user’s activity. Activities that could be 

monitored through both sensors are step counts, speed, micro-movements during 

sleep and also simple motions performed by user. The aspect where our project 

differs and distinguishes itself from the existing products lies in the complementation 
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of the gyroscope’s measurement. Accelerometers measures the inertial force caused 

by movements. However, such forces could also be affected by gravitational force 

(even in steady state) as well as being sensitive to vibrations and noises. The 

gyroscope complements the accelerometer as it measures angle of rotation, which in 

terms is less prone to mechanical noises and small vibrations. However, the 

gyroscope suffers from sensor drifts which essentially is an error value measured 

when it returns to a zero-rate value (Gadget Gangster, 2010). In order to resolve the 

drawback characteristics of the sensors, we will apply an algorithm to solve the 

problem, precisely by using quaternion rotation as the solution to monitor user’s leg 

gesture.  

 

In order to perform heavy load calculation and raw sensor values sampling at 

the same time, a micro-controller will be used to perform complex calculation to off-

load the calculations needed to be performed on the sensor chip. A Bluetooth device 

will be connected to the micro-controller so we could transmit the data and result to 

an Android mobile device for further data interpretation and for users to view data in 

real time. 

 

The sensors will be placed at the shank position on the human body (precisely 

defined as the human body segment in between the knee and ankle). The main reason 

of doing so is because the existing products position the sensor on the wrist and is 

bound to static motion error such as hands movement. The shank position is also 

bound to static motion error such as the action of the leg shaking. But this could be 

resolved by adding a shake detection function and also a zero movement function to 

detect while sitting, which we highlight, simply could not be done by placing sensors 

on the wrist (as human hands are constantly moving). 
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CHAPTER 3 

 

 

 

3 METHODOLOGY 

 

 

 

3.1 Overview 

 

The overview of how the project will be implemented will follow as in Figure 3.1.  

 

MPU-6050 Arduino Uno R3 Bluetooth Module
Android Mobile 

Device

I2C 
Communication

IEEE Standard 
Protocol

 

Figure 3.1: Block Diagram of System. 

 

 

Firstly the sensor module chosen is MPU-6050. MPU-6050 is an Inertial 

Measurement Unit (IMU) with six degrees of freedom (6DOF). Inertial Measurement 

Units is differentiated by the degrees of axis that they are able to measure. The 

sensor module features a tri-axis accelerometer and a tri-axis gyroscope thus the 6 

degrees of freedom. The MPU-6050 has a 16-bit analog to digital converter (ADCs) 

for digitizing the output of each axis of the sensors. A on chip 1024 bytes FIFO 

buffer in the IMU helps to store sensor data temporary and reduces the system power 

consumption. It also has a Digital Motion Processor (DMP) that is able to perform 

simple calculation for the sensor fusion data to offload the responsibility of the 

master processor. The MPU-6050 has different tracking range for both fast and slow 
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motion that is user-programmable in the full scale range of ±250, ±500, ±1000 and 

±2000°/sec for the gyroscope and a full scale range of ±2g, ±4g, ±8g and ±16g for 

the accelerometer. The MPU-6050 is chosen because of the low cost and more 

functionality that is able to perform and it is compatible with the microcontroller 

used in this project (Invensense, 2012). 

 

In communication with the microcontroller the only communication method 

available is the TWI/ I2C communication which is mentioned in the datasheet. Two 

Wire Interface (TWI) or Inter-Integrated Circuit (I2C) communications which was 

originally invented by Philips as a communication method for two or more integrated 

chips. The communication only uses two bidirectional lines for the communication 

between devices which are commonly known as the Serial Data Line (SDA) and 

Serial Clock Line (SCL). One of the two devices which is the master device, (in this 

case the Arduino Uno R3) which sends queries to the slave device (which is MPU-

6050) to obtain data. Serial Clock Line (SCL) is a clock line bus that synchronizes 

the event of read/write from the master to the slave device. Serial Data Line (SDA) is 

the data bus used to transfer the data but read or write can only be performed one at a 

time and thus an acknowledgement signal is required from both sides to synchronize 

the event (Wikipedia the free encyclopedia, 2013b). 

 

The main processing of all the sensor data happens in the micro-controller 

which will be the main component in this project. The objective of using the micro-

controller is it serves as a medium for the raw sensor values to be processed into 

useful information and translated into an IEEE standard protocol for Bluetooth 

before sending to the user’s Android device. The Arduino Uno R3 features an 8-bit 

ATmega328P microcontroller which has a 16MHz of frequency oscillator. The 

reason Arduino Uno R3 is selected to be use in this project is because Arduino is 

popular for project prototyping. Arduino does not require a conventional program 

loader like PIC microcontrollers ( and thereby saving the cost of acquiring one) and 

the program can be loaded into the chip using USB cable. The program is developed 

in C++ programming languages and Arduino projects are open-sourced so that the 

coding of integrated chips can be easily acquired. The diagram below shows the 

physical appearances of Arduino Uno R3. 
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Figure 3.2: Arduino Uno R3 

 

 

The Arduino is connected to a Bluetooth module which can be communicated 

with the Android mobile device. As shown in the figure below, the comparison of 

each communication technology is used to be considered in this project. Bluetooth 

Low Energy as announced by Google in 2013 is compatible in Android mobile 

devices (Google, 2013). Bluetooth Low Energy is selected as it meets the 

requirement of the project of low power consumption. Zigbee has similar 

characteristic however, though is not supported in Android devices. Bluetooth Low 

Energy can be used from a range within 50m and a transfer rate of 1Mbit/s. The peak 

current consumption is less that 15mA which is much lower than the other 

technologies. Bluetooth Low Energy has the same spectrum range as the classic 

Bluetooth technology which is 2.4GHz-2.4835GHz, and thus it can be compatible to 

Android device users who do not have Bluetooth Low Energy functions (Wikipedia 

the free encyclopedia, 2013c). 

 

 

Figure 3.3: Comparison of Wireless Communication Technologies. 
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3.2 Sensors 

 

3.2.1 Accelerometer and Gyroscope 

 

In this section, we will explain the working principles of the accelerometer and 

gyroscope and how to extract the raw sensors values. 

 

 Accelerometer functions as a type of sensor that measures the acceleration of 

the sensor itself. The sensor measures acceleration not in a way that is congruent 

with the definition in physics (which is rate of change of velocity with respect to 

time). Accelerometer measures the acceleration experienced by its weight resting at 

the frame of the reference. The imaginary concept of the working principle of 

accelerometer can be seen as an object resting on the point of origin of 3 axes as 

shown in the figure below. The box would represent the full scale range defined by 

gravity which is ±1g (1g=9.87m/s
2
) on each axis. This would be the ideal case that 

this imaginary box is in outer space which all measures are zero. Thus by the effect 

of gravity, accelerometer will measure an acceleration of 1g straight upwards given 

the presence of gravity on earth. Figure 3.2.2 illustrates the effect on accelerometer 

with gravity in presence, with notice that the accelerometer measures in the opposite 

direction with respect to the gravity. 

 

 

 

Figure 3.4: Concept of Accelerometer. 
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Figure 3.5: Effect of Accelerometer by Gravity. 

 

 

Gyroscopes have similar traits as the accelerometer, except that it measures 

the rotation with respect to the object’s last position. Thus in simple gyroscope 

measure rate of rotation in degrees per second (°/sec).  

 

 

Figure 3.6: Gyroscope with Vector R 
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As shown in Figure 3.6, we can see that: 
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Axz is the angle between Rxz and Z axis and Ayz is the angle between Ryz and Z axis. 

 

Thus the equation that defines a gyroscope is, 
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Assuming that we measure a rotation angle around axis Y at t0 and later at t1 we 

would have the equation above. 

 

 

 

3.2.2 Initial Results 

 

The circuit connection between MPU-6050 and Arduino Uno R3 is connected as 

shown in the figure below. The operating range of the MPU-6050 is 2.375-3.4V is as 

stated in the datasheet. Thus we will directly use the ready 3.3V voltage source that 

the Arduino is able to provide. The Ground (GND) and AD0 are connected to both 

the ground pin on Arduino. The AD0 pin functions to defining the default I2C 

address and thus we need to ground it for the default evaluation purposes. SDA and 

SCL on the sensor module are then connected to the dedicated I2C communication 

on the Arduino which is the A4 and A5 analogue pin. As for obtaining the raw sensor 

values, the MPU-6050 outputs a digital signal from the ADC for each of the sensors. 

The sensors values are represented by 16-bit 2’s complement format. Take example 

for a ±2g full scale range accelerometer the bits that are able to represent the scale 
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are 2
16

-1 which is a total of 65535 bits. -2g is represented as -32767 bit and 2g is 

32767 (Invensens, 2012). 

 

Arduino Uno
R3

A
TM

ega3
2

8
P

MPU-6050

VCC3.3V

GNDGND

GND AD0

SDA

A4

A5

SCL

 

Figure 3.7: Connection between Arduino Uno R3 and MPU-6050. 

 

 

The coding of Arduino to use MPU-6050 is as referred from open source 

code by Rowberg (2011). The initial result as obtained from the Arduino sketch is 

shown in the Figure 3.8. The sensor is place on a table with no movements to test the 

validity of the sensors. However we noticed that there is an offset on the z-axis of the 

gyroscope which might be caused by the error calibration of the hardware. Thus we 

needed to offset a value of 2000-bits from it as a correction. The result after offset is 

shown in Figure 3.9. The frequency is set to 115.2 kHz which is the maximum bit 

rate that can be monitored on Arduino. 
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Figure 3.8: Raw Sensor Values of MPU-6050. 

 

 

 

Figure 3.9: Corrected Raw Sensor Values of MPU-6050
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3.2.3 True Acceleration Accelerometer Model 

 

As mentioned earlier, the gravity component will act on the accelerometer sensor 

when it is tilted towards that axis. This means that even though the device does not 

experience any acceleration, the accelerometer will still output a value of 1g on either 

one of the axis depending on the orientation of the accelerometer. This phenomenon 

will cause an inaccurate reading when the device is trying to monitor the acceleration 

produced by leg gestures. Thus, the gravity component must be removed from the 

accelerometer raw values. The true acceleration model reduces the gravity 

component by subtracting the original accelerometer reading by 1g when that 

particular axis is titled. This removes any unwanted gravity component acting on the 

accelerometer and gives the true acceleration value in “g” when the user performs 

any kind of gesture in the experiment. The true accelerometer can be seen in the 

figure below. The figure is an imaginative view of the starting point of the 

accelerometer. 

 

 

Figure 3.10: True Acceleration Model. 

 

 

 

 The acceleration value here is represented in bits. However the system 

outputs it into raw bit value with a 16 bit signed maximum thus reducing by 1g is 

equals to about 8192 bits in the raw accelerometer value.  
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3.2.4 Quaternions 

 

Quaternions are complex numbers that are used to represent the orientation of a three 

dimensional rotation. They are four-dimensional that requires a division of real 

numbers. They are a much more efficient representation of a rotation as compared to 

methods like Euler Angles because the Euler Angle suffers from the Gimbal Lock 

problem which is essentially loss of one degree of freedom during rotation. 

Quaternion is often represented with one real number (in this project it is denoted as 

q.w) and three imaginary number (denoted as q.x, q.y, q.z). The three imaginary 

numbers are orthogonal to one another. The concept of the quaternion imaginary 

numbers are shown in the figure below.  

 

  

 

 

Figure 3.11: Relationship of the three imaginary numbers of quaternion. 
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 Some essential equations of quaternion are shown below. 

 

 

                (3.1) 

 

                     (3.2) 

 

 

The quaternions are represented by a 3 by 3 matrix during rotation as shown 

in the equation below (Wikipedia, 2014a).  

 

(

                            

                            

                            
) (3.3) 

 

The important part of understanding the quaternion lies on the equation 3.2. 

The value w in the equation is a real number that shows when either one of the 

imaginary number exceeds the maximum value (which is the value of 1) it will 

become a negative value and either two of the imaginary numbers will exchange 

values in the matrix. Take example, if you take a box faced up as shown in the figure 

below and turning it 90 degrees left, the z axis has taken the value of x whilst the x 

axis has taken the value of negative z. The denotation could not be changed and 

therefore requires a 3 by 3 rotation to represent the figure shown below correctly.  

 

 

 

Figure 3.12: Before and After turning the box. 



 

 

 

CHAPTER 4 

 

 

 

4 PROJECT IMPLEMENTATION 

 

 

In this chapter, the overall progress of setting up the sensor device and the 

development of the Android mobile application are discussed. Throughout 

developing the prototype device each precaution are noted and shown in this chapter 

too. 

 

4.1 Device Setup 

 

The device is setup by placing the whole circuit onto an Arduino prototyping 

breadboard as shown in Figure 4.1 as the whole circuit only consist of two 

components which is the Bluetooth HC-05 and also the Inertial Measurement Unit. 

This allows a much more convenient testing condition when the device is attached to 

the user’s ankle.  

 

 

Figure 4.1: Sensors on prototyping board (left) & Arduino Microcontroller 

(right). 
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The device is then placed into a sports arm band to allow attachment to the 

user’s ankle. The Arduino microcontroller is then connected to a portable battery 

bank with a capacity of 11200mAh with an output voltage of 5V and 1A which 

matches the operating voltage level of Arduino microcontroller. As of the current 

prototyping phase, the size and capacity of the power source is not an important 

consideration and we will therefore relegate the address of this issue in future 

development. The device is shown in Figure 4.2. 

 

 

Figure 4.2: Device in black sport band and portable battery bank. 

 

 

The measuring device is then placed on the right side of the user’s ankle 

regardless of left or right leg of the user. The reason behind this is for the ease of 

understanding the orientation of the accelerometer in such a way that positive X axis 

depicts forward direction; positive Y axis depicts upwards direction and positive Z 

depicts sideway direction to the right. The device attached to the user’s ankle is 

shown in Figure 4.3. However, throughout the development of the device, the device 

has to be placed onto the user’s left leg and right side of the ankle. This is to ensure 

that the calculated side step distance is accurate according to the results. This issue is 

addressed in Chapter 5. 
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Figure 4.3: Device attached to user’s leg. 

 

 

The measured results of each test are logged into text file format by using the 

terminal software Teraterm which allows the connection from computer to the HC-

05 Bluetooth. The software allows communication of Bluetooth devices to receive 

and send data which could be recorded down and analysed through Microsoft Excel 

and display data in graphs and tables. A demonstration of using Teraterm to collect 

data is shown in Figure 4.4 below. 

 

 

Figure 4.4: Using Teraterm to log in results. 
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4.2 Overall Detection Routine and Step Distance Calculation 

 

4.2.1 Leg Gesture Detection Routine 

 

The overall routine to detect user’s leg gesture is shown in the flowchart below. The 

reasons of each stage are discussed in Chapter 5.1 based on the results. 

 

Obtain 

Quarternions and 

Accelerometer 

data

Start

User Press 1?

Calculate 

Threshold Y and 
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Side Step 
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Forward Step 
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sideStepHighBit 

>10?

Increase Side Step 
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Forward Step 

Register within 30 
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stepBit = 0 for 

next 30 samples

Reduce particular 

Forward Step

Step Bit = 1;
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Bit;

Step High Bit > 

10?

Increase Forward 

Step Count

Register Forward 

Step Time Sample 

into buffer.

NO

NO

YES

YES

YES

YES

NO

YES

 

Figure 4.5: Flowchart of leg gesture detection routine. 
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4.2.2 Step Distance Calculation 

 

The flowchart below shows the sequence of the program to determine the individual 

steps distance made by user. This section is discussed in Chapter 5.2.  

 

Start

Side Step 
Detected?

Start Timer Function

Accumulate 
Accelerometer Z 
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Side Step 
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Terminate 
Accumulation of 
Accelerometer 

Magnitude

Calculate Individual 
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End
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Forward Step 
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Forward Step 
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Accelerometer 

Magnitude

Calculate Individual 
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Reset variables for 
next forward step to 

occur

End

NO NO

NO NO

YES YES

YESYES

 

Figure 4.6: Flowchart of Step Distance Calculation. 
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4.3 Android App Development 

 

In order for users to receive important information such as the step counts and step 

distance, an Android mobile application is created to allow users to view their results 

and to sort out the information received by the Arduino microcontroller. However, 

before we start to create the application, an application called SENA BTerm is used 

to communicate with Arduino. The application can be found in Google Play Store. 

The application is able to receive the data packets sent by Arduino correctly.  

However it lacks a friendly user interface and is difficult to understand by a common 

user without Bluetooth knowledge. Thus, this application gives a general direction of 

how our own Android application in this project should be developed. Our 

application will be developed in the sense that it provided a simple user interface. 

This will ensure that anyone can use the app with the prototype without any 

knowledge required. The application is shown in Figure 4.7. 

 

 

Figure 4.7: Data collection using SENA BTerm. 
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 The software used to develop the mobile application is Eclipse. Android 

developers have provided dedicated plugin for the software Eclipse for the ease of 

development process. The overview of the software is shown in Figure 4.8. 

 

 

Figure 4.8: Eclipse with Android Plugin. 

 

 

 The final product of the application we have created is shown in the figures 

below. Upon opening the application, the user will be prompted to turn on their 

Bluetooth function in their mobile (Figure 4.9). The application then goes to the main 

interface (Figure 4.10) where users can view all the information. However, users are 

required to manually connect to the sensor device (Figure 4.11). The timer function 

allows users to track their information in real time and upon pressing the “Start” 

button in the application, it will send a signal to allow the sensor device to start 

detecting user’s leg gestures with the condition that the device is paired with the 

mobile’s Bluetooth (Figure 4.12).  
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 Figure 4.9: Application request Bluetooth. Figure 4.10: Main Page 

 

Figure 4.11: Manually connect device.  Figure 4.12: Data Collection. 
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4.3.1 Application Publication 

 

The application is available in Google Play Store at 

https://play.google.com/store/apps/details?id=example.walkOff is as shown in the 

figure below. The application is published under the name “Walk Off” and it is free 

and available for all users to download. However, this application requires the user to 

have the device in order for the application to be fully functioned. Users who are 

interested in this application may contact the original author to purchase or request 

for the sensor device. 

 

 

Figure 4.13: Application on Google Play Store. 

 

. 

 

https://play.google.com/store/apps/details?id=example.walkOff
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CHAPTER 5 

 

 

 

5 RESULTS AND DISCUSSION 

 

 

In this chapter, results from different experiments are collected and analysed to allow 

the device to differentiate between different leg gestures from its respective user, the 

results and the challenging issues would then be discussed. The algorithm that is 

used to differentiate leg gestures are then tested in an empirical experiment to show 

how the result is affected by different users. The last section of this chapter illustrates 

how the developed prototype is compared against a commercial product available in 

the market. The advantages and disadvantages are then discussed in detail to show 

the potential of the developed prototype. 

  

5.1 Motion Differentiation 

 

As earlier mentioned in Chapter 3.4, the method used to differentiate a user’s leg 

gesture will be through the quaternion rotation of the inertial measurement unit. 

Quaternions are obtained directly through the Digital Motion Processing (DMP) of 

the inertial measurement unit at a rate of 50Hz and for raw accelerometer and 

gyroscope data at a rate of 1000Hz. Both data are combined into a FIFO packet with 

a size of 42 bytes and transferred through the I2C bus at 115200 baud rate. 

 

 

 

5.1.1 Static Motion / No Movement 

 

In measuring a user’s static motion which includes sitting, standing or no movement 

from the leg of attached device, we can expect a flat out straight line from the entire 



35 

axis in the quaternion rotation as shown in Figure 5.1. The result is also used as a 

reference to the initial position of the sensor to determine subsequent motions from 

user. 

 

 

Figure 5.1: Static movement result. 

 

 

 

5.1.2 Forward Step Detection 

 

The next step of the project is to detect the most basic leg gesture which is a forward 

step. A simple forward step can be categorized into two motions which are lifting the 

leg and extending it to a certain landing point. A simple test is conducted by walking 

in a straight line for a certain amount of forward steps and analysing the data 

obtained.  

 

Figure 5.2 below presents the result obtained. The actual steps performed by 

the user are 7 steps on the attached leg. It could be observed through the result that 7 

peaks are obtained in particular the x, y and z axis of the quaternion rotation. An 

extra observation made is the time difference of the peak of the quaternion axis y and 

z. Axis y peaks are followed closely by axis z peaks which explain the motion of 

lifting the leg first that give rise of axis y and landing horizontally happens right after 

lifting the leg give rise to axis z.  Another observation is the timing of axis x and axis 
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y peaks about the same time. This is because the lifting motion is not perfectly 

vertical which involves sideway motion that forms a vector of the direction of lifting 

the leg. 

 

 

Figure 5.2: Result collected for 7 forward steps. 

 

 

 The motion of lifting a leg gives enough information to detect a forward step 

made. This can be done by drawing a threshold line across half of the sinusoidal 

signal. If quaternion axis y crosses the threshold for a certain period of time then a 

forward step is registered. The implementation of the threshold line can be done by 

using a moving average filter of a certain sample size. A moving average filter is a 

filter that determines the general trend of a particular sample size and the general 

equation of the filter is shown in the equation below. In this particular problem, a 

sample size of 50 is chosen such that the sample size is large enough to determine the 

overall trend and small enough so that it is not affected by the noisy raw quaternion 

raw data. The result is shown in Figure 5.3. We can observe that there are 7 peaks 

above the moving average filter and 7 troughs below the threshold line. 

 

   nageMovingAverageMovingAvernyqageMovingAver //.   (5.1) 
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Figure 5.3 : Result of 7 forward steps with Moving Average Filter. 

 

 

 In order to further improve the forward step detecting condition, a range of 30% 

is added above the detection threshold, this can be seen in Figure 5.4. The figure 

shows that the threshold is slightly higher in value than the original moving average 

filter. This eliminates all the unwanted noise which might give rise to the detection of 

a forward step, which is not accurate. The equation is shown in 5.2 below. A period 

of 10 samples above the threshold is required for a forward step to be registered as a 

valid step. This is based on the flight time of lifting the leg motion. By using the 

timer functions in the program, the main loop of the program requires about 0.02s to 

obtain the next sample, which means that 0.2s of time is required for a step to be 

valid. The reason of selecting 10 samples as the requirement is intuitively based on 

the fastest record made by the athletes 100m sprinting world record. A world record 

of 9.58s made by Usain Bolt (Wikipedia, 2014) to complete 100 meter translate to a 

sample size of 479 samples and the athlete only used 21 strides (22.81 samples per 

step). Thus, it is a safe assumption that 10 samples is able to detect the fastest step 

made and clear out negligible ones.  
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Figure 5.4: Result of 7 forward steps with Moving Average Filter. 

 

 

 

5.1.3 Side Step Detection 

 

 The same procedure to detect forward step motion is also applied to detect side steps. 

Users performs side steps in a straight line for a certain amount of steps and the data 

is collected and analysed, the figure below shows the results collected.  

 

 

Figure 5.5: Results of 8 side steps. 
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 From the data collected, the first observation we made is the peaks and 

troughs of quaternion axis w and x are much more significant as compared to 

forward steps. The sinusoidal waveform observed in the quaternion y and z axis is 

much smaller as compared in forward steps data. This could be used as the condition 

to differentiate between forward steps and side steps. By analysing from Figure 5.5, 

we found that the minimum of quaternion axis w is about 0.6 and a maximum of 0.78 

for axis x in forward steps. As compared to forward steps, side steps has a minimum 

of 0.51 for axis w and maximum of 0.85 for axis x as presented in the figure above. 

Thus a double condition of when axis w is less than 0.6 and axis x is more than 0.78 

is detected, a side step is registered. A sample size of 10 is also required for a side 

step to be validly registered, reason being as mentioned previously in Section 5.1.2.  

By applying the algorithm above, the side step count are shown in the figure below, 

which matches the actual side steps made in Figure 5.5. 

 

 

Figure 5.6: Result of Side Step Count. 

 

 

 However, if we look closely at the result shown in Figure 5.5 the quaternion 

axis y which is used to detect forward step also presents sinusoidal waveform but not 

in a big magnitude as forward steps. This may cause false positive detection of 
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a conditional variable Step Bit is assigned to be 1 when forward step condition is 

detected and Side Step Bit equals to 1 when side step condition is detected.  

 

 

Figure 5.7: Result of 8 Side Steps with False Positive Error. 

 

 

 

Figure 5.8: Result of Side Step Count with False Positive Error Forward Count. 
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As shown in Figure 5.7, 8 side steps are performed which the condition is 

able to detect it accurately as shown in Figure 5.8. However, an extra 10 steps of 

forward step count is accounted for the small sinusoidal data in quaternion axis y, 

which are all false positive gesture detected.  

 

 In order to eliminate the false positive forward steps detected, a First In First 

Out (FIFO) Buffer is created to register the previous 3 sample number of the forward 

steps detected. We can use this information to eliminate the forward steps made 

closely after a side step has occurred. The condition set here is that if any forward 

steps are registered within 30 samples of the rising edge of the valid side step, the 

particular forward step count is deducted from the total step count. An additional 

cool down period of 30 samples is also added after a side step is registered before 

any motion can be detected. The result is shown in Figure 5.9 below. 

 

 

Figure 5.9: Result of Side Step Data with False Positive Error removed. 
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Figure 5.10: Result of Side Step Count with False Positive Error removed. 

 

 

 From the results collected, we can see that the false positive error is 

eliminated as user performs 8 side steps and the device is able to give correct count 

of both side steps and forward steps.  

 

 

  

5.1.4 Combination Differentiation 

 

Given that both conditions are able to detect individual leg gestures effectively, we 

need to combine both leg gestures to ensure effective combination recognition that 

does not give false positive gesture recognition. User performs either two of the 

gestures in a single experiment to test the effectiveness of the condition. The results 

collected are shown in Figure 5.11. 
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Figure 5.11: Results of combined gestures. 

 

 

Figure 5.12: Step Count and Side Step Count of combined gestures. 
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forward steps and side steps which might cause the results to vary. The results are 

shown from Figure 5.13 to Figure 5.33. Table 5.1 and Table 5.2 shown below 

summarizes the results of each different user.  
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Table 5.1: Forward Step Result of 4 Different Users. 

User 
Measured 

Steps 

Actual 

Count 

Error 

Count 

Error 

Percentage 

(%) 

1 42 43 1 2.33 

2 56 56 0 0 

3 49 50 1 2 

4 45 45 0 0 

Total 192 194 2 1.03 

 

 

 

Table 5.2: Side Step Result of 4 Different Users. 

User 
Measured 

Steps 

Actual 

Count 

False Positive 

Error 

Count 

Error 

Percentage 

(%) 

1 32 32 1 3.13 

2 24 24 0 0 

3 36 36 1 2.78 

4 30 30 0 0 

Total 122 122 2 1.64 
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Figure 5.13: Result of User 1 Forward Steps. 

 

 

Figure 5.14: Result of User 1 Step Bit and Side Step Bit. 

 

 

Figure 5.15: Result of User 1 Total Forward Step Count. 
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Figure 5.16: Result of User 2 Forward Steps. 

 

 

Figure 5.17: Result of User 2 Step Bit and Side Step Bit. 

 

 

Figure 5.18: Result of User 2 Total Forward Step Count. 
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Figure 5.19: Result of User 3 Forward Steps. 

 

 

Figure 5.20: Result of User 2 Step Bit and Side Step Bit. 

 

 

Figure 5.21: Result of User 3 Total Forward Step Count. 
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Figure 5.22: Result of User 4 Forward Steps. 

 

 

Figure 5.23:Result of User 4 Step Bit and Side Step Bit. 

 

 

Figure 5.24: Result of User 4 Total Forward Step Count. 
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Figure 5.25: Result of User 1 Side Steps. 

 

 

Figure 5.26: Result of User 1 Step Bit and Side Step Bit. 

 

 

Figure 5.27: Result of User 1 Total Side Step Count. 
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Figure 5.28: Result of User 2 Side Steps. 

 

 

Figure 5.29: Result of User 2 Step Bit and Side Step Bit. 

 

 

Figure 5.30: Result of User 2 Total Side Step Count.  
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Figure 5.31: Result of User 3 Side Steps. 

 

  

Figure 5.32: Result of User 3 Step Bit and Side Step Bit. 

 

 

Figure 5.33: Result of User 3 Total Side Step Count. 
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Figure 5.34: Result of User 4 Side Steps. 

  

 

Figure 5.35: Result of User 4 Step Bit and Side Step Bit. 

 

 

Figure 5.36: Result of User 4 Total Side Step Count.  
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5.2 Distance Calculation 

 

Once the device is able to differentiate between forward and side steps using 

quaternion, the distance travelled for each individual leg gestures should be 

calculated using the raw accelerometer. This function can also serve as an input to 

offline route map tracking for navigation purposes. The quaternion measures the 

change in orientation of the sensor, which can be used to detect the user’s leg gesture 

while the accelerometer measures the change in gravity of the sensor itself. This 

information can be used to determine the users speed and distance travelled. 

 

 

 

5.2.1 Forward Step Distance 

 

As mentioned earlier in Chapter 3.3, the compensated accelerometer model will be 

used to determine the user’s true acceleration without gravity component. This 

allows the calculation by simply obtaining the time elapsed from the start of a 

forward step and the end of the step. The start of a forward step is when the user lifts 

his leg vertically and the end of the step is where the foot lands on the ground. 

 

 The distance that is measured here is the horizontal distance the foot travel, 

which is also the distance travelled by the user. Thus the accelerometer axis that we 

are interested in is the X axis. A sample of the data collected for the X axis is 

collected from performing 3 forward steps and the result is shown in Figure 5.37. 

 

 From the result we can see there are 3 distinguishable signals upon 

performing 3 forward steps. As we analyse each individual forward step signal, we 

can see that the accelerometer value (in bits) increases positively and suddenly drops 

to a negative maximum and returns to a value close to zero over time. This can be 

explained as when a forward step is performed, a person usually lifts the leg 

vertically and moves it horizontally simultaneously, which increases the 

accelerometer’s positive due to acceleration. The signal then drops to a negative 

maximum is because the forward step is completed and the foot of the user has 
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landed on ground thus giving a stop to the acceleration in a short span of time. Lastly, 

the signal dies off over time because no motion is performed during the period. 

 

 

Figure 5.37: Accelerometer Data of 3 Forward Steps. 

 

 

 However, the signal produces negative acceleration which does not make 

sense in calculation of the distance, because a person can never travel in a negative 

distance but only in a negative direction. Thus, the accelerometer data must be 

converted into magnitude form in order to obtain the distance travelled accurately. 

The equation used to convert the accelerometer axis is shown below. The converted 

accelerometer data of Figure 5.37 is shown in magnitude form in Figure 5.38. 
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Figure 5.38: Magnitude of Accelerometer X after conversion. 

 

 

 In Chapter 5.1.2 we explained that the forward step detection algorithm is 

able to detect the lifting of the leg, and thus, conclude that a forward step has been 

performed. This is shown in Figure 5.39 where the Step Bit is compared against the 

magnitude of the accelerometer. The Step Bit is set to a value of 10000 just to show 

the area it covers. The negative maximum of the accelerometer data due to landing 

the foot on the ground is not under the area of the Step Bit. The maximum of the data, 

which is 7240 bits is the point where the foot lands on ground where a high 

deceleration occurs, we can see that the signal fluctuates for a moment and the 

magnitude decreases slowly. This information can be used as a condition to 

determine the point when the forward step has completed and the distance should be 

calculated at this point.  
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Figure 5.39: Graph of Magnitude X and Step Bit. 

 

 

 

5.2.2 Forward Step Distance Threshold and Calculation 

 

Since we know the condition that the accelerometer magnitude must reach a 

maximum and drops below to certain point to calculate the distance, we need to 

determine the threshold where the program should stop monitoring the accelerometer 

magnitude and calculate the distance travelled on that individual step. 

 

 The distance is calculated by the equation that distance equals acceleration 

multiplied by time. Thus, aforementioned in Chapter 5.1.2, each collection of the 

sample requires 0.02s to be collected and the time elapsed for one step will be 

multiplied from 0.02s to the number of samples collected to calculated the total time 

of one step. The equation of calculating the individual forward step distance is shown 

below. The Accumulated Magnitude is the average sum of magnitude until the point 

where the threshold percentage is reached. 
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 The threshold is determined by performing forward step in a straight line of 

15m on different threshold percentage by the multiple of 5. This is to find out the 

range where the threshold percentage gives the least error and from that range we can 

continue to find the exact threshold percentage that gives the least error. The result of 

using the threshold percentage by multiples of 5 is shown in the table and figure 

below. 

 

 Table 5.3: Result of Threshold Percentage and Error Produced. 

Threshold 

Percentage (%) 

Actual Distance 

(m) 

Measured Distance 

(m) 

Error Percentage 

(%) 

5 15 19.64 30.93 

10 15 17.05 13.66 

15 15 14.68 2.13 

20 15 16.44 9.6 

25 15 14.07 6.2 

30 15 13.65 9 
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Figure 5.40: Graph of Error Percentage against Threshold Percentage. 

 

 

 From the result produced, we can see that around the threshold percentage 

range of 15% produced the least error. We continue to find out the range by 

performing the test for the threshold percentage from 11% till 19%. The result is 

shown in the table and figure below. The result shows that the most accurate range of 

the threshold percentage is in the range from 15% till 19% with 19% as the least 

error of only 0.33%. 

 

Table 5.4: Result of Threshold Percentage and Error Produced. 

Threshold 

Percentage (%) 

Actual Distance 

(m) 

Measured Distance 

(m) 

Error Percentage 

(%) 

11 15 16.14 7.6 

12 15 16.21 8.06 

13 15 14.37 4.2 

14 15 13.8 8 

15 15 14.68 2.13 

16 15 15.46 3.06 

17 15 14.66 2.26 

18 15 15.18 1.2 

19 15 15.05 0.33 

 

0

5

10

15

20

25

30

35

5 10 15 20 25 30

Graph of Error Percentage against 
Threshold Percentage 

Error Percentage (%)



60 

 

Figure 5.41: Graph of Error Percentage against Threshold Percentage.  

 

 Thus we have found out that the threshold range that should be applied in the 

detection of forward steps should be between 15% to 19%. Since 19% produces the 

least error percentage, this threshold will be used as the threshold percentage in the 

program. The accuracy of the distance calculation will be further compared in the 

empirical experiment in Chapter 5.3.1. 

 

 

5.2.3 Side Step Distance 

 

The general method of calculating a side step distance is the exact same method as in 

forward step distance. Thus this subsection will be described briefly for similar 

explanation. 

 

 The accelerometer axis that we are interested in determining the side step 

distance is the Z axis of the accelerometer. A result of 3 side step performed is shown 

in the figure below. The principal explanation is also similar to the explanation in 

forward step. The accelerometer value increases due to the leg is lifted and when it 

lands in the ground it gives a negative maximum which stops the acceleration. The 

only difference here as compared to the forward step is the direction of the step 

which happens to be in the Z axis instead of the X axis. The accelerometer data is 

then converted into magnitude by using the same equation in 5.4 for the purpose of 

calculating true acceleration. The result is shown in Figure 5.43. 
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Figure 5.42: Accelerometer Data of 3 Side Steps. 

 

 

 

Figure 5.43: Magnitude of Accelerometer Z after conversion. 
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side step bit drops to zero, subsequently the signal drops to a small value after the 

peak. This will be the condition used to extract the features of the signal and 

calculate the distance. 

 

 

Figure 5.44: Graph of Magnitude Z and Side Step Bit 

 

 

 

5.2.4 Side Step Distance Threshold and Calculation 

 

The equation to calculate individual side step distance is similar to forward step 

distance, whereby the program starts accumulating the accelerometer magnitude 

when a motion is detected, and if the motion is registered as a valid one the program 

looks for a maximum peak and terminates the accumulation and calculates the 

distance once the magnitude drops below a certain threshold percentage. The 

equation to calculate side step distance is shown below. 
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 Thus similar tests are performed for side step distance to see which threshold 

percentage produces the least error percentage and a further test is conducted to 

investigate which threshold percentage will produce the least error in that range. The 

table below shows side step tested on different threshold percentage. 

 

Table 5.5: Result of Threshold Percentage and Error Produced on Side Step. 

Threshold 

Percentage (%) 

Actual Distance 

(m) 

Measured Distance 

(m) 

Error Percentage 

(%) 

5 15 14.77 1.53 

10 15 12.66 15.6 

15 15 11.97 20.2 

20 15 10.78 28.13 

25 15 8.77 41.53 

30 15 7.12 52.53 

 

 

 

Figure 5.45: Graph of Error Percentage against Threshold Percentage for Side 

Steps. 
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conducted to find the accuracy of the threshold from the range 2% to 9 % to see 

which percentage produces the least error. The table and figure below shows the 

result collected. We can see that the range from 2% to 5 % of the threshold 

percentage produces less error as compared to the others in the figure with 3% 

producing an error of only 0.93%. Therefore the 3% will be used as the threshold 

percentage and tested by different users to confirm the accuracy and consistency in 

Chapter 5.3.2. 

 

Table 5.6: Result of Threshold Percentage and Error Produced for Side Step. 

Threshold 

Percentage (%) 

Actual Distance 

(m) 

Measured Distance 

(m) 

Error Percentage 

(%) 

2 15 16.14 1.4 

3 15 16.21 0.93 

4 15 14.37 3.67 

5 15 13.8 1.53 

6 15 14.68 17.47 

7 15 15.46 10.2 

8 15 14.66 38.73 

9 15 15.18 45.3 

 

 

 

Figure 5.46: Graph of Error Percentage against Threshold Percentage for Side 

Steps. 
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5.2.4.1 Side Step Left Issue 

 

The entire series of tests performed above are the side step to the right direction of 

the user. This is because side step left produces inaccurate result. This is an 

important issue that should be addressed and explained because it affects the result 

obtained when user performed side step left. 

 

 The figure below explains the phenomena when user side step left as 

compared to side step right when the sensor device is attached to the users left ankle. 

When side step right is performed, the right foot is lifted and landed on the ground 

horizontally before the left foot is lifted and placed on the ground. During this 

motion, the body weight of the user will sway towards the right foot and the right 

foot is used to support the user’s body weight. This reduces the gravitational force on 

the left foot when it is moved right, thus producing more acceleration as compared to 

side step left. As for side step left, the body sway towards the left foot first and the 

body weight is supported by the left foot before the right foot is moved left. Thus this 

creates more gravitational force on the sensor device and less acceleration will be 

produced because of the weight to be supported by the left foot. The results of the 

side step left is shown in Chapter 5.3.3 to show that this phenomena results in the 

side step distance increases by an error percentage of more than 50%. 

 

 

Figure 5.47: Mechanism of User Side Step Left and Right 
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5.3 Empirical Test and Comparison with Commercial Product 

 

In this section, the developed prototype is tested and compared against commercial 

product available in the market. The commercial product we have obtained in this 

project is Fitbit Flex and its function is explained in Chapter 2.1.4. 

 

 The empirical test performed here is to request 5 male and 5 female to 

perform forward steps, side steps left and side steps right for 15m. The objective here 

is to confirm the threshold found in Chapter 5.2 (19% for forward step and 3 % for 

side step) is accurate and consistent to be used. The results are separately shown in 

the sections below. 

 

5.3.1 Forward Step Distance 

 

In this test, 10 users perform forward step in a straight line for 15m. They are 

required to perform it the same time while wearing FitBit Flex and our sensor system. 

This is to ensure that the results produced are comparable. The results are shown in 

the table below. Due to large amount of data collected, it is impossible to show every 

single graph. Thus only the first two users result will be shown and the rest will be 

shown in the additional files in the CD. 

 

Table 5.7: Result Comparison of Sensor Device against FitBit Flex for Forward 

Step Distance. 

User 

MPU 6050 FitBit Flex 

Measured 

Steps 

Measured 

Distance(m) 

Error 

Percentage 

(%) 

Measured 

Steps 

Measured 

Distance(m) 

Error 

Percentage 

(%) 

 

1 11 15.76 5.07 11 20 33 

2 10 15.0 0 8 10 33 

3 10 14.38 4.13 8 10 33 

4 10 15.09 0.6 9 20 33 

5 10 15.23 1.53 10 10 33 

6 10 13.37 10.87 8 10 33 
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7 10 13.49 10.07 9 10 33 

8 11 15.35 2.33 10 20 33 

9 10 16.68 11.2 11 20 33 

10 11 15.41 2.73 10 10 33 

 Average Error (%) 4.86 Average Error (%) 33 

 

 

 

 

Figure 5.48: Forward Step Distance of User 1. 

 

 

 

Figure 5.49: Forward Step Distance of User 2. 
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Figure 5.50: Forward Step Distance of User 1 before Testing Fitbit Flex. 

 

 

 

Figure 5.51: Forward Step Distance of User 1 after Testing Fitbit Flex. 

 

 

 

Figure 5.52: Forward Step Distance of User 2 before Testing Fitbit Flex. 
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Figure 5.53: Forward Step Distance of User 2 after Testing Fitbit Flex. 

 

 

 

 

5.3.2 Side Step Right Distance 

 

Similar test is also performer for side step distance right and the results are shown 

below. 

 

Table 5.8: Result Comparison of Sensor Device against FitBit Flex for Side Step 

Right Distance. 

User 

MPU 6050 FitBit Flex 

Measured 

Steps 

Measured 

Distance(m) 

Error 

Percentage 

(%) 

Measured 

Steps 

Measured 

Distance(m) 

Error 

Percentage 

(%) 

 

1 23 15.32 2.09 14 20 33 

2 19 15.11 0.73 14 20 33 

3 22 15.65 4.15 18 30 50 

4 19 15.58 3.72 16 10 33 

5 21 14.94 0.40 15 10 33 

6 18 15.17 1.12 14 20 33 

7 17 14.8 1.35 17 10 33 

8 16 15.62 3.97 18 20 33 

9 20 14.98 0.13 14 20 33 

10 21 15.61 3.9 14 30 50 

 Average Error (%) 2.16 Average Error (%) 36.4 
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Figure 5.54: Side Step Right Distance of User 1 

 

 

 

Figure 5.55: Side Step Right Distance of User 2. 
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Figure 5.56: Side Step Distance of User 1 before Testing FitBit Flex 

 

 

 

Figure 5.57: Side Step Right Distance of User 1 after Testing FitBit Flex. 

 

 

 

Figure 5.58: Side Step Right Distance of User 2 before Testing FitBit Flex 
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Figure 5.59: Side Step Right Distance of User 2 after Testing FitBit Flex. 

 

 

 

5.3.3 Side Step Left Distance 

 

Similar test are performed in determining the accuracy of side step left distance. 

However the result will not be compared to FitBit Flex because the result already has 

a large amount of error which was explained in Chapter 5.2.4. 

 

Table 5.9: Result Comparison of Sensor Device against FitBit Flex for Side Step 

Right Distance. 

User Measured Steps 
Measured 

Distance(m) 

Error Percentage 

(%) 

1 19 6.88 54.27 

2 17 5.06 66.27 

3 17 6.57 56.2 

4 17 6.14 59.1 

5 17 6.2 58.67 

6 16 7.21 51.93 

7 17 7.49 50.07 

8 16 6.39 57.4 

9 18 5.77 61.53 

10 18 5.76 61.6 

Average Error (%) 57.7 
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Figure 5.60: Side Step Left Distance of User 1 

 

 

 

Figure 5.61: Side Step Left Distance of User 2 
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5.3.4 Summary of Results and Comparison 

 

By comparing the results, we can see that the device developed is much more 

accurate as compared to FitBit Flex, in terms of forward step distance and also side 

step right distance. Our device shows an error of only 4.86% while Fitbit Flex shows 

an error of 33%. For side step right distance, our device recorded only an average of 

2.16% while FitBit recorded 36.4%. The reason for this is that FitBit Flex does not 

use sensors to detect the distance travelled for each leg gesture. Fibit Flex only uses 

the accelerometer to determine the step count, where the step count is synchronised 

into the mobile phone and the distance travelled is based on user’s height and weight 

which will be fixed. Thus if a user travels in a random distance for each step counted, 

FitBit Flex will not be able to detect it but is only able to give a fixed distance by 

multiplying the step counted against the fixed distance that is programmed in the 

FitBit mobile application. 

 

 The advantage of our prototype as compared with FitBit Flex is it’s ability to 

differentiate two different leg gestures where FitBit cannot. The prototype is also 

able to detect individual step distances that does not depend on user’s weight and 

height while FitBit requires both. 

   

 The issues regarding side step left distance which produces the large margin 

of error could be solved by adding an external magnetometer sensor to the inertial 

measurement unit. An external magnetometer sensor will be able to detect the 

direction of the user and if it detects that a side step left has been performed, the 57.7% 

error percentage in the side step left distance result could be used as a factor to 

correct the distance. 

  



 

 

 

CHAPTER 6 

 

 

 

6 CONCLUSION AND RECOMMENDATIONS 

 

 

 

6.1 Conclusion 

 

In conclusion, the objectives of this project have been achieved. The device is able to 

differentiate two basic leg gestures, namely forward step and side step. The device is 

also able to calculate individual step distance and when compared with the 

commercial product Fitbit Flex, the device shows a much better accuracy and 

consistency when tested on 10 subjects. Different programming language and 

techniques are also applied in order to make this project achievable. The main 

communication method used in this project is achieved by using Bluetooth standards. 

It is able to communicate with any mobile devices provided that the user has 

downloaded the application Walk-Off in Google Play Store. However, the system is 

not considered to be perfect and certain functions require improvement, this is further 

discussed in the next section. 

 

 

 

6.2 Future Implementation 

 

6.2.1 Recognition of Other Leg Gesture Motion 

 

The prototype is only able to recognize two different leg gestures, and this would not 

be sufficient in real world where more leg gestures are used on a daily basis. The 

next stage of this project may include gesture recognition such as vertical jumps, 



76 

incline walks, decline walks, climbing stairs, and many more. This would allow users 

to obtain more accurate result of their daily life and travel pattern. The inclusion of 

more leg gestures also means the completion of the system so that it might be used as 

a foundation for researchers to study on human motion. 

 

 

 

6.2.2 Bluetooth Low Energy 

 

In this project, the Bluetooth module used is HC-05 which is a Bluetooth 2.0 

technology. The Bluetooth LE as mentioned in the methodology could not be used 

due to the high cost required to obtain one. Moreover, certain mobile phones do not 

include this technology as Bluetooth LE is mainly used in the Android 4.3 operating 

system and above.  Thus, it can be foreseen that the prices of Bluetooth LE will drop 

when the technology becomes more common in mobile devices. By then, it can be 

implemented in our device. By using Bluetooth LE, the advantage is that it will allow 

is to communicate with lower power consumption. 

 

 

 

6.2.3 Mobile Application Platform  

 

The application can be developed for other mobile operating systems which widely 

used around the world such as Apple IOS and Windows Mobile Phone. This would 

establish our mobile application and device so that more people would know about it 

and find it useful. 



77 

 

 

 

REFERENCES 

 

 

 

Roetenberg, D., 2006. Inertial and Magnetic Sensing of Human Motion. [online] 

Available at: 

www.xsens.com_images_stories_PDF_InertialandMagneticSensingofHumanMotion 

[Accessed 13 June 2013]. 

 

Wikipedia the free encyclopedia, 2013a. Sport Science. Available at 

www.en.wikipedia.org/wiki/Human_movement [Accessed 4 July 2013]. 

 

Altun, K., Barshan, B. and Tuncel, O., 2010. Pattern Recognition: Comparative 

Study on Classifying Human Acivities with Miniature Inertial and Magnetic Sensors, 

[e-journal] 43(2010) pg. 3605-3620. Available through Science Direct website 

www.sciencedirect.com [Accessed 29 July 2013]. 

 

Zhou, H. and Hu, H., 2008. Human Motion Tracking for Rehabilitation – A Survey, 

[e-journal] 1(18). Available through Science Direct website www.sciencedirect.com 

[Accessed 29 July 2013]. 

 

MEMSIC, 2011. MEMISC Introduces World’s Smallest and Most Robust Digital 

Accelerometer with Features Never before Available at This Price Point. [online] 

Available at www.investor.memsic.com/releasedetail.cfm?ReleaseID=619035 

[Accessed 4 July 2013]. 

 

Robertson, G., 2009. How powerful was the Apollo 11 computer? [online] Available 

at www.downloadsquad.swithced.com/2009/07/20/how-powerful-was-the-apollo-11-

computer [Accessed 4 July 2013]. 

 

http://www.xsens.com_images_stories_pdf_inertialandmagneticsensingofhumanmotion/
http://www.en.wikipedia.org/wiki/Human_movement
http://www.sciencedirect.com/
http://www.sciencedirect.com/
http://www.investor.memsic.com/releasedetail.cfm?ReleaseID=619035
http://www.downloadsquad.swithced.com/2009/07/20/how-powerful-was-the-apollo-11-computer
http://www.downloadsquad.swithced.com/2009/07/20/how-powerful-was-the-apollo-11-computer


78 

Zhu, R. and Zhou, Z., 2004. A Real-Time Articulated Human Motion Tracking 

Using Tri-Axis Intertial/Magnetic Sensors Package, [e-journal] 12(2). Available 

through: IEEE Xplore Digital Library website 

http://ieeexplore.ieee.org/Xplore/home.jsp  [Accessed 1 August 2013]. 

 

Ha, P., 2012. Jawbone UP (2012) Review: Still Not Fit To Buy. [online] Available at 

http://gizmodo.com/5965750/jawbone-up-2012-review-still-not-fit-to-buy [Accessed 

2 August 2013]. 

 

Goode, L., 2013. Comparing Wearables: Fitbit Flex vs. Jawbone Up and More. 

[online] Available at http://allthingsd.com/20130715/fitbit-flex-vs-jawbone-up-and-

more-a-wearables-comparison/ [Accessed 2 August 2013]. 

 

Fankhauser, D., 2013. The Tiny, Powerful Brain Inside Nike’s FuelBand. [Online] 

Available at http://mashable.com/2013/01/31/nike-fuelband/ [Accessed 2 August 

2013]. 

 

Basis, 2012. What’s Inside Basis. [Online] Available at 

http://www.mybasis.com/basis-healthy-habits-technology/ [Accessed 2 August 2013]. 

 

Gadget Gangster, 2010. Accelerometer & Gyro Tutorial. [Online] Available at 

http://www.instructables.com/id/Accelerometer-Gyro-Tutorial/ [Accessed 18 July 

2013]. 

 

Invensense, 2012. MPU-6000 and MPU-6050 Product Specification Revision 3.3. 

[Online] Available at: www.invensense.com/mems/gyrp/documents/RM-MPU-

6000A.pdf [Accessed 18 July 2013]. 

 

Wikipedia the free encyclopedia, 2013b. I2C. [Online] Available at: 

http://en.wikipedia.org/wiki/I%C2%B2C [Accessed 18 July 2013]. 

 

Google, 2013. Bluetooth Low energy. [Online]. Available at: 

http://developer.android.com/guide/topics/connectivity/bluetooth-le.html [Accessed 

24 August 2013]. 

http://ieeexplore.ieee.org/Xplore/home.jsp
http://gizmodo.com/5965750/jawbone-up-2012-review-still-not-fit-to-buy
http://allthingsd.com/20130715/fitbit-flex-vs-jawbone-up-and-more-a-wearables-comparison/
http://allthingsd.com/20130715/fitbit-flex-vs-jawbone-up-and-more-a-wearables-comparison/
http://mashable.com/2013/01/31/nike-fuelband/
http://www.mybasis.com/basis-healthy-habits-technology/
http://www.instructables.com/id/Accelerometer-Gyro-Tutorial/
http://www.invensense.com/mems/gyrp/documents/RM-MPU-6000A.pdf
http://www.invensense.com/mems/gyrp/documents/RM-MPU-6000A.pdf
http://en.wikipedia.org/wiki/I%C2%B2C
http://developer.android.com/guide/topics/connectivity/bluetooth-le.html


79 

Wikipedia the free encyclopedia, 2013c. [Online] Available at: 

http://en.wikipedia.org/wiki/Bluetooth_low_energy [Accessed 24 August 2013]. 

 

Rowberg, J., 2011. Example code for MPU-6050. [Online] Avaiable at: 

https://github.com/jrowberg/i2cdevlib/blob/master/Arduino/MPU6050/Examples/

MPU6050_raw/MPU6050_raw.ino [Accessed 18 July 2013]. 

Wikipedia, 2014. Usain Bolt. [Online] Available at: 

http://en.wikipedia.org/wiki/Usain_Bolt [Accessed 24 February 2014]. 

Wikipedia, 2014a. Quaternion. [Online] Available at:  

http://en.wikipedia.org/wiki/Quaternion [Accessed 30 March 2014]. 

http://en.wikipedia.org/wiki/Bluetooth_low_energy
https://github.com/jrowberg/i2cdevlib/blob/master/Arduino/MPU6050/Examples/MPU6050_raw/MPU6050_raw.ino
https://github.com/jrowberg/i2cdevlib/blob/master/Arduino/MPU6050/Examples/MPU6050_raw/MPU6050_raw.ino
http://en.wikipedia.org/wiki/Usain_Bolt
http://en.wikipedia.org/wiki/Quaternion



