

MULTI PLATFORM QUATERNION BASED

LEG GESTURE RECOGNITION

LING WEN WEN

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering

(Hons.) Electrical & Electronics Engineering

Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

May 2014

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it

has not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature :

Name : Ling Wen Wen

ID No. : 0904618

Date : 1
st
 May 2014

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “MULTI PLATFORM QUATERNION

BASED LEG GESTURE RECOGNITION” was prepared by LING WEN WEN

has met the required standard for submission in partial fulfilment of the requirements

for the award of Bachelor of Engineering (Hons.) Electrical & Electronics

Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Prof. Chong Poh Kit

Date :

Kit
Typewriter
02 May 2014

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2014, Ling Wen Wen. All right reserved.

v

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion of

this project. I would like to express my gratitude to my research supervisor, Prof.

Chong Poh Kit for his invaluable advice, guidance and his enormous patience

throughout the development of the research project.

In addition, I would also like to express my gratitude to my loving parent and

friends who had helped and given me encouragement in progression of my final year

project. Their persistent love and courage enable me to overcome any circumstances

encountered.

vi

MULTI PLATFORM QUATERNION BASED

LEG GESTURE RECOGNITION

ABSTRACT

The tracking of human motion has always been a subject of interest in many

disciplines such as sports, health, computer, and virtual applications. With the recent

advancement in Micro Electro-Mechanical Systems (MEMS), the size of inertial and

magnetic sensors has been reduced significantly. This project is motivated by the

combination of public awareness on daily activities that promotes a healthy lifestyle

and the increasing number of smart phone users. This project incorporates a system

based upon the smart phone, the inertial and magnetic sensors which are used to

recognize different leg gesture, track users foot step and distance. An Inertial

Measurement Unit (IMU) which consists of a tri-axis accelerometer and gyroscope is

attached to a microcontroller and the data is transmitted to an Android mobile device

via Bluetooth connection to allow real time tracking functions. A quaternion based

algorithm is implemented in the sensor device to monitor the orientation with respect

to the sensor’s position in the user’s body. The results are studied and evaluated to

confirm the accuracy of the method used in this project.

vii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF SYMBOLS / ABBREVIATIONS xvi

CHAPTER

1 INTRODUCTION 1

1.1 Background 1

1.2 Problem Statement and Motivation 2

1.3 Objectives 4

1.4 Outline of Project 4

2 LITERATURE REVIEW 6

2.1 Existing Products/Researches 6

2.1.1 Tri-Axis Inertial/Magnetic Package 6

2.1.2 MTx 9 DOF IMU Sensors 7

2.1.3 Jawbone Up 8

2.1.4 FitBit Flex 9

2.1.5 Nike FuelBand 10

2.1.6 Basis 11

2.2 Conclusion 12

viii

3 METHODOLOGY 14

3.1 Overview 14

3.2 Sensors 17

3.2.1 Accelerometer and Gyroscope 17

3.2.2 Initial Results 19

3.2.3 True Acceleration Accelerometer Model 22

3.2.4 Quaternions 23

4 PROJECT IMPLEMENTATION 25

4.1 Device Setup 25

4.2 Overall Detection Routine and Step Distance Calculation 28

4.2.1 Leg Gesture Detection Routine 28

4.2.2 Step Distance Calculation 29

4.3 Android App Development 30

4.3.1 Application Publication 33

5 RESULTS AND DISCUSSION 34

5.1 Motion Differentiation 34

5.1.1 Static Motion / No Movement 34

5.1.2 Forward Step Detection 35

5.1.3 Side Step Detection 38

5.1.4 Combination Differentiation 42

5.2 Distance Calculation 54

5.2.1 Forward Step Distance 54

5.2.2 Forward Step Distance Threshold and Calculation 57

5.2.3 Side Step Distance 60

5.2.4 Side Step Distance Threshold and Calculation 62

5.3 Empirical Test and Comparison with Commercial Product 66

5.3.1 Forward Step Distance 66

5.3.2 Side Step Right Distance 69

5.3.3 Side Step Left Distance 72

5.3.4 Summary of Results and Comparison 74

ix

6 CONCLUSION AND RECOMMENDATIONS 75

6.1 Conclusion 75

6.2 Future Implementation 75

6.2.1 Recognition of Other Leg Gesture Motion 75

6.2.2 Bluetooth Low Energy 76

6.2.3 Mobile Application Platform 76

REFERENCES 77

x

LIST OF TABLES

 TABLE TITLE PAGE

2.1 Comparison of Existing Products 12

5.1 Forward Step Result of 4 Different Users. 45

5.2 Side Step Result of 4 Different Users. 45

5.3 Result of Threshold Percentage and Error

Produced. 58

5.4 Result of Threshold Percentage and Error

Produced. 59

5.5 Result of Threshold Percentage and Error

Produced on Side Step. 63

5.6 Result of Threshold Percentage and Error

Produced for Side Step. 64

5.7 Result Comparison of Sensor Device against FitBit

Flex for Forward Step Distance. 66

5.8 Result Comparison of Sensor Device against FitBit

Flex for Side Step Right Distance. 69

5.9 Result Comparison of Sensor Device against FitBit

Flex for Side Step Right Distance. 72

xi

LIST OF FIGURES

 FIGURE TITLE PAGE

2.1 Block diagram of sensor package. 6

2.2 MTx Sensor. 8

2.3 Jawbone Up 9

3.1 Block Diagram of System. 14

3.2 Arduino Uno R3 16

3.3 Comparison of Wireless Communication

Technologies. 16

3.4 Concept of Accelerometer. 17

3.5 Effect of Accelerometer by Gravity. 18

3.6 Gyroscope with Vector R 18

3.7 Connection between Arduino Uno R3 and MPU-

6050. 20

3.8 Raw Sensor Values of MPU-6050. 21

3.9 Corrected Raw Sensor Values of MPU-6050 21

3.10 True Acceleration Model. 22

3.11 Relationship of the three imaginary numbers of

quaternion. 23

3.12 Before and After turning the box. 24

4.1 Sensors on prototyping board (left) & Arduino

Microcontroller (right). 25

4.2 Device in black sport band and portable battery

bank. 26

xii

4.3 Device attached to user’s leg. 27

4.4 Using Teraterm to log in results. 27

4.5 Flowchart of leg gesture detection routine. 28

4.6 Flowchart of Step Distance Calculation. 29

4.7 Data collection using SENA BTerm. 30

 4.8 Eclipse with Android Plugin. 31

 4.9 Application request Bluetooth. 4.10 Main Page 32

4.11 Manually connect device. 4.12 Data Collection. 32

4.13 Application on Google Play Store. 33

5.1 Static movement result. 35

5.2 Result collected for 7 forward steps. 36

5.3 Result of 7 forward steps with Moving Average

Filter. 37

5.4 Result of 7 forward steps with Moving Average

Filter. 38

5.5 Results of 8 side steps. 38

5.6 Result of Side Step Count. 39

5.7 Result of 8 Side Steps with False Positive Error. 40

5.8 Result of Side Step Count with False Positive

Error Forward Count. 40

5.9 Result of Side Step Data with False Positive Error

removed. 41

5.10 Result of Side Step Count with False Positive

Error removed. 42

5.11 Results of combined gestures. 43

5.12 Step Count and Side Step Count of combined

gestures. 43

5.13 Result of User 1 Forward Steps. 46

xiii

5.14 Result of User 1 Step Bit and Side Step Bit. 46

5.15 Result of User 1 Total Forward Step Count. 46

5.16 Result of User 2 Forward Steps. 47

5.17 Result of User 2 Step Bit and Side Step Bit. 47

5.18 Result of User 2 Total Forward Step Count. 47

5.19 Result of User 3 Forward Steps. 48

5.20 Result of User 2 Step Bit and Side Step Bit. 48

5.21 Result of User 3 Total Forward Step Count. 48

5.22 Result of User 4 Forward Steps. 49

5.23 Result of User 4 Step Bit and Side Step Bit. 49

5.24 Result of User 4 Total Forward Step Count. 49

5.25 Result of User 1 Side Steps. 50

5.26 Result of User 1 Step Bit and Side Step Bit. 50

5.27 Result of User 1 Total Side Step Count. 50

5.28 Result of User 2 Side Steps. 51

5.29 Result of User 2 Step Bit and Side Step Bit. 51

5.30 Result of User 2 Total Side Step Count. 51

5.31 Result of User 3 Side Steps. 52

5.32 Result of User 3 Step Bit and Side Step Bit. 52

5.33 Result of User 3 Total Side Step Count. 52

5.34 Result of User 4 Side Steps. 53

5.35 Result of User 4 Step Bit and Side Step Bit. 53

5.36 Result of User 4 Total Side Step Count. 53

5.37 Accelerometer Data of 3 Forward Steps. 55

5.38 Magnitude of Accelerometer X after conversion. 56

xiv

5.39 Graph of Magnitude X and Step Bit. 57

5.40 Graph of Error Percentage against Threshold

Percentage. 59

5.41 Graph of Error Percentage against Threshold

Percentage. 60

5.42 Accelerometer Data of 3 Side Steps. 61

5.43 Magnitude of Accelerometer Z after conversion. 61

5.44 Graph of Magnitude Z and Side Step Bit 62

5.45 Graph of Error Percentage against Threshold

Percentage for Side Steps. 63

5.46 Graph of Error Percentage against Threshold

Percentage for Side Steps. 64

5.47 Mechanism of User Side Step Left and Right 65

5.48 Forward Step Distance of User 1. 67

5.49 Forward Step Distance of User 2. 67

5.50 Forward Step Distance of User 1 before using

Fitbit Flex. 68

5.51 Forward Step Distance of User 1 after using Fitbit

Flex. 68

5.52 Forward Step Distance of User 2 before Using

Fitbit Flex. 68

5.53 Forward Step Distance of User 2 after Using Fitbit

Flex. 69

5.54 Side Step Right Distance of User 1 70

5.55 Side Step Right Distance of User 2. 70

5.56 Side Step Distance of User 1 before using FitBit

Flex 71

5.57 Side Step Right Distance of User 1 after using

FitBit Flex. 71

xv

5.58 Side Step Right Distance of User 2 before using

FitBit Flex 71

5.59 Side Step Right Distance of User 2 after using

FitBit Flex. 72

5.60 Side Step Left Distance of User 1 73

5.61 Side Step Left Distance of User 2 73

xvi

LIST OF SYMBOLS / ABBREVIATIONS

AHRS Altitude and Heading Reference System

MEMS Micro Electro-Mechanical System

IMU Inertial Measurement Unit

TWI Two Wire Interface

I2C Inter-Integrated Circuit

SDA Serial Data Line

SCL Serial Clock Line

DOF Degrees of Freedom

CHAPTER 1

1 INTRODUCTION

1.1 Background

Human motion studies, also known as kinesiology have always been a very

fascinating subject of study. The origin of the subject is derived from exercise

physiology and dates back to 384 B.C. as found in Aristotle’s book ‘De Motu

Animalium’ – On the Movement of Animals. The book explains the physiological

differences of imagining an action to be performed and actually doing it (Roternberg,

2006). Claudius Galenus (126-199 A.D.), who is known as the founder of

experimental physiology, is the first human to use experiments to probe the functions

of body. In between 776 B.C. to 393 A.D., ancient Greek physician controlled

training methods and diet plans of Olympic competitors with the work of Galen, and

many of the principles are also still used today. In the modern era, representatives of

the field include Edward Hitchcock Jr. (1828-1911), an Amherst College professor

who had co-authored 1860 texts on exercise physiology (Wikipedia, 2013).

Human motion tracking is generally applied in multiple disciplinary fields

which require the capturing of human body posture and movement. In scientific field,

scientist seeks recognising mechanisms that may be used to translate muscle

contraction into useful function and thus enabling the creation of robots with human-

like nature, and are able to perform human-like activities. Researchers have

considerable interests in understanding the relationship of the proper posture and

motion in gait analysis. In sports science, athletes seek to use human motion analysis

as a tool to improve athletic performances. In the virtual world, graphic designers

2

create human models and animate movie characters through the study of human

motion. This method of human motion analysis is known as rotoscoping which

originates from Disney Studios (Roternberg, 2006).

 The technologies used to track human motion are generally divided into two

approaches; namely the visual and non-visual tracking systems. Visual tracking

systems are divided into two categories which is visual marker based and marker-

free visual based tracking system. Visual marker based tracking system uses cameras

to track human movement whilst marker-free visual based tracking system utilizes

optical sensors to track human motion. These conventional methods are generally

limited with the problems of sensors adrift, occlusion, and the 3D model unable to be

rendered. As for non-visual based tracking systems, sensors are generally worn on a

subject’s body and the sensors are commonly categorised as mechanical, inertial,

acoustic and magnetic based. The most common example of non-visual based

tracking system is the accelerometer sensors which measures by using piezoelectric

or variable capacitive. The non-visual system is bounded by drift errors and noisy

measuring environment, but these problems can be corrected with internal offset and

pre-selective filters (Zhou and Hu, 2008).

1.2 Problem Statement and Motivation

Inertial sensors have been used in Attitude & Heading Reference System (AHRS)

application such as navigation of aircraft, ships and vehicles. With the recent

advancement of technology in Micro-electro-mechanical systems (MEMS), the size,

weight and cost of a wearable sensor has been largely reduced. Today, the smallest

accelerometer available on the market is only 1.2 mm × 1.7 mm × 1.0 mm in size

invented by MEMSIC (MEMSIC, 2011). The availability of small non-visual

tracking system opens up the possibility of real-time human motion tracking for a

longer period of time with the use of inertial and magnetic sensors that is low in

current consumption. Thus, our aim of sensors selection in this project will be

3

generally focused on wearable inertial and magnetic sensors (Altun, Bsrshan and

Tuncel, 2010).

In the earlier research works on human motion sensing, data collected is

generally processed through the use of personal computers. This gives the

disadvantage that data collected are bound to be in a certain range near the computer

and cannot be tracked for a long period due to the weight and size of personal

computers and the transmission method used. However, with the evolution of

smartphones in the recent years, processing powers of smartphones have grown

exponentially and is sufficiently equipped for computing data collected.

Comparatively, the general smartphone held in the human hand today already has

more processing power than the computer used by NASA for their first space launch

project (Robertson, 2009).

Human motion tracking has been studied thoroughly long ago and this study

provides a basic foundation of understanding how human motion is related to our

daily lives. With the turn of 21
st
 century, the public grows more educated and has

acquired the awareness of how technology can improve and propagate healthy

lifestyle. The increase in medical expenditure is among the leading factors that raise

public concern and the general consensus is that prevention is better than cure. For

example, rehabilitation for a stroke patient requires physical correction program and

it necessitates the patient to visit the hospital for a period of time. Alternatively,

technologies used for home based rehabilitation and physical therapy are available

but only through visual tracking system where the major disadvantage lies in the

detection zone being confined to a limited area in the building and the inconvenience

in mobility (Altun, Bsrshan and Tuncel, 2010). Hence, these problems have inspired

and motivated us to create a device that can track and differentiate human motion on-

the-go for a long period of time and simultaneously provides health information.

4

1.3 Objectives

The main objective of this project is to build a wearable sensor system that features

the measurement in number of footstep, estimation of the speed and distance

travelled and provides a user interface by communication through a wireless

transmission module to an android mobile device. The wearable sensor system must

be able to differentiate basic human motion such as walking, running, jumping,

sitting and climbing stairs by using appropriate algorithms.

In the interest of fulfilling the objectives, the following actions are taken:

 To study different types of inertial and magnetic system. In particular,

MEMS sensors that is wearable and small in size and to compare the

advantages and disadvantages with existing technologies.

 To study essential programming techniques such as C/C++ and Assembly

Language to process sensors data with a suitable micro-controller.

 To study different types of established wireless communication standards

such as IEEE 802.11b (Bluetooth) and IEEE 802.11g (Wi-Fi) that allows

data transmission of the wearable system to android devices in a close

distanced range and offline manner.

 To study and implement algorithms and methods that have the ability to

pre-selectively determine data and make intelligent decisions to

compensated for errors made by different sensors.

1.4 Outline of Project

This thesis will be organized as follow: In Chapter 2, a literature review will be done

to investigate all the pros and cons of the methods, design preferences, algorithms

and electronic components used in this project. Methodology is discussed in depth in

Chapter 3 to explain the functionality of the system and some initial result will be

analysed. Chapter 4 describes all the necessary procedures taken to setup the device

5

and to conduct studies and experiment. Lastly, Chapter 5 discusses the result

obtained and addresses issues arise during the development of the prototype phase.

CHAPTER 2

2 LITERATURE REVIEW

2.1 Existing Products/Researches

2.1.1 Tri-Axis Inertial/Magnetic Package

Typical tri-axis inertial and magnetic sensors are used to sense human motions. The

results collected in the sensors are then processed by a pre-selective filter in order to

obtain a more accurate result from the noisy environment. The typical diagram of tri-

axis inertial and magnetic sensors package follows by Figure 2.1.

Figure 2.1: Block diagram of sensor package.

The paper here presented by Zhu and Zhou (2004) suggest the methodology of

human motion sensing by using sensor packages interfacing with a microcontroller

and the data is collected through a RS-232 cable to the computer.

7

The inertial and magnetic sensors that are used include two two-axis accelerometers,

a single and a two axis magnetometers and also three single axis gyroscope. The

orientation of the sensor package is evaluated with the Kalman algorithm in order to

obtain the direction of the sensor package tilt and also for signal recognition in

human motion.

The paper here provides us the basic idea about how the actual sensors will

be used while we compare our objectives. Magnetometers in this system will be

unnecessary for the project because mobile phones already have in built

magnetometers. The usage of the mobile phone magnetometer is sufficient as we

only need it for directional and navigational purposes. However, actual sensors such

as accelerometer and gyroscope are still necessary although mobile phone also have

them in built because the data collected will be more accurate. The RS-232

transmission method will be eliminated as well because the prefixed length of cable

limits the mobility of the system.

2.1.2 MTx 9 DOF IMU Sensors

MTx Inertial Measurement Unit (IMU) is manufactured by Xsens Technologies and

is one of the inertial and magnetic sensors combination chipset that is currently

available in the market for motion sensing and navigation purposes. It is a digital

measurement unit that measures acceleration, rotation and earth-magnetic field. It

contains tri-axis accelerometer, gyroscope and magnetometers which is also known

as 9 Degrees of Freedom (DOF). MT9 which is a family of the MTx sensors has high

angular resolution up to 0.05° and 3° RMS dynamic accuracy. MTx sensors can be

interconnected with each other by using a 1m cable to the central processing unit

Xbus Master (Zhou and Hu, 2008).

8

Figure 2.2: MTx Sensor.

The availability of such commercially available sensors chipset allows easier

interfacing with sensors. Altun, Barshan and Tuncel (2010) introduced a method of

classifying human activities with MTx sensors. The sensors are placed on 5 different

parts of the body which is; the right arm, left arm, right leg, left leg and torso and is

interconnected to an Xbus master. Several classification methods are used to

differentiate different human activities and the most accurate classification method

can go up to 98.8%. The result shows that MTx sensors are excellent in human

motion sensing. However the cost of MTx sensors is very expensive and does not

comply with our objective of creating a sensors system that is light, small and

inexpensive.

2.1.3 Jawbone Up

One of the popular motion tracking gadgets in the market is Jawbone UP. Jawbone is

a bendable and waterproof gadget that tracks user’s health, promotes good sleeping

pattern and exercise daily. Jawbone UP contains two lithium ion batteries, a tri-axis

accelerometer, vibrating motor and a TRS plug to sync data to smartphone devices.

Jawbone UP’s most attractive feature is enabling users to track sleeping patterns, by

using sensors to register subtle movements. The sensor in Jawbone UP is similar to

9

an actimetry sensor which registers user’s movement when they rest and sleep.

Besides a well-developed sleep mode tracking function, Jawbone UP also includes

the vibrating motor to alert user from time to time to get up and exercise, or as an

alarm to wake user from sleep.

Figure 2.3: Jawbone Up

The disadvantage of Jawbone UP is where it is unable to provide wireless

syncing function. Each operation of the product requires the user to take of the

device and connect to a smartphone through the TRS plug. Besides, Jawbone does

not provide any visible display for users and only possesses one button interface for

users to manually keep track of the three of the basic functions which is

entering/leaving sleep mode, power nap mode and stopwatch mode (Ha, 2012).

2.1.4 FitBit Flex

Fitbit Flex, much alike the previous product Jawbone UP, is also a popular gadget

that tracks users movement daily. Fitbit Flex features wireless syncing function

which allows the device to upload data through a built-in wireless Bluetooth chip and

10

also a real time data tracking. Fitbit Flex includes a visible interface on the device

itself to allow users to control the functions and also to display several data. The

visible interface appears as a user tap on the device several times. Fitbit Flex also has

a 5 LED panel that displays user’s daily progress through the LED indicator.

Similarly like the technology used in Jawbone UP, Fitbit Flex also includes a tri-axis

accelerometer and also a vibrating motor to track user’s movement and alert user.

Fitbit Flex also includes sleep pattern monitoring to indicate users sleeping condition

(Goode, 2013).

2.1.5 Nike FuelBand

Another product that shows analogous traits is the Nike FuelBand which was

developed by the sports giant Nike. The Nike FuelBand as compared to other popular

products such as Fitbit and Jawbone shows more hardware inferiority as Nike

FuelBand does not include additional features such as sleeping pattern optimized

alarm. Nike’s marketing strategy on this product was not based on the hardware

feature but a different calculation algorithm which is called Nike Fuel. The basic

goal is to create users motivation in exercising. By accomplishing certain exercises,

users gain Nike Fuel points and can be updated to either their smartphone app or

users internet profile.

The FuelBand is actually made of thermoplastic rubber and has 20 LED that

shows red, yellow and green according to goals set by users. Another 100 white LED

is used to show time, Nike Fuel Points, calories and steps taken which can be

revealed by a button attached on the band. The only motion detecting sensor in the

band is a tri-axis accelerometer plus two lithium polymer batteries that can be

recharged through a USB port. The wireless transmission method that connects the

band to a smartphone is through a Bluetooth chip.

Although Nike FuelBand enjoys popularity among sports enthusiasts, several

disadvantages are presented. Like the two other previous products, the only sensor

11

found in Nike FuelBand is the accelerometer and accelerometer has the characteristic

of drifting error. Drifting error causes sensor to be inaccurate and the only way to

solve this problem is by reset sensor data, inner compensation method or pre-

selective filtering. Notably, Nike in partnership with the Arizona State University

monitors test participants oxygen consumption on several basic activities in order to

correlate with motion which the method is denoted as “oxygen kinetics”. This

compensation method is inaccurate due to the oxygen consumption results are taken

in the lab and it might vary from individual users (Fankhauser, 2013). Lastly, wrist

worn tracking gadgets are bound to create static motion errors which might need a

different algorithm to detect static motion such as standing and sitting while the arm

is still moving.

2.1.6 Basis

Basis, another similar product on the wearable sensor market, is based on the

identical concept of monitoring user’s health conditions such as sleeping, activities,

calories spent and intake and also heart rate. The Basis band includes 4 different

sensors which all have different purposes. The ECG sensor is used to sense blood

flow of user throughout the day to monitor activity intensities. Alike the existing

products, Basis also includes a tri-axis accelerometer for monitoring users step count,

body movement in day time and sleep quality in the night time. A perspiration

monitor sensor is also included to monitor user’s workout intensity by monitoring the

sweat level on user’s wrist. Lastly, the Basis includes a thermistor-like sensor to

monitor user’s skin temperature in correlation to the environmental temperature. The

Basis band also includes a Bluetooth module and also a USB connector to allow

users sync data to either a computer or a smartphone that runs on IOS or Android

operating system (Basis, 2012).

12

2.2 Conclusion

Table 2.1: Comparison of Existing Products

Product Sensors
Sensors

Position

Data

Transmission

Method

Sleep

Tracking

Tri-axis

inertial/magnetic

package

3 axis

accelerometer,

magnetometer,

gyroscope

Wrist RS-232 No

MTx

3 axis

accelerometer,

magnetometer,

gyroscope

Multiple

Positions
USB No

Jawbone Up
3 axis

accelerometer
Wrist

Bluetooth, TRS

plug
Yes

Fitbit Flex
3 axis

accelerometer
Wrist Bluetooth Yes

Nike FuelBand
3 axis

accelerometer
Wrist Bluetooth No

Basis

3 axis

accelerometer,

ECG sensor,

thermistor,

perspiration

sensor

Wrist Bluetooth, USB Yes

From all the products reviewed, the conclusion derived is to use one tri-axis

accelerometer and gyroscope to monitor user’s activity. Activities that could be

monitored through both sensors are step counts, speed, micro-movements during

sleep and also simple motions performed by user. The aspect where our project

differs and distinguishes itself from the existing products lies in the complementation

13

of the gyroscope’s measurement. Accelerometers measures the inertial force caused

by movements. However, such forces could also be affected by gravitational force

(even in steady state) as well as being sensitive to vibrations and noises. The

gyroscope complements the accelerometer as it measures angle of rotation, which in

terms is less prone to mechanical noises and small vibrations. However, the

gyroscope suffers from sensor drifts which essentially is an error value measured

when it returns to a zero-rate value (Gadget Gangster, 2010). In order to resolve the

drawback characteristics of the sensors, we will apply an algorithm to solve the

problem, precisely by using quaternion rotation as the solution to monitor user’s leg

gesture.

In order to perform heavy load calculation and raw sensor values sampling at

the same time, a micro-controller will be used to perform complex calculation to off-

load the calculations needed to be performed on the sensor chip. A Bluetooth device

will be connected to the micro-controller so we could transmit the data and result to

an Android mobile device for further data interpretation and for users to view data in

real time.

The sensors will be placed at the shank position on the human body (precisely

defined as the human body segment in between the knee and ankle). The main reason

of doing so is because the existing products position the sensor on the wrist and is

bound to static motion error such as hands movement. The shank position is also

bound to static motion error such as the action of the leg shaking. But this could be

resolved by adding a shake detection function and also a zero movement function to

detect while sitting, which we highlight, simply could not be done by placing sensors

on the wrist (as human hands are constantly moving).

14

CHAPTER 3

3 METHODOLOGY

3.1 Overview

The overview of how the project will be implemented will follow as in Figure 3.1.

MPU-6050 Arduino Uno R3 Bluetooth Module
Android Mobile

Device

I2C
Communication

IEEE Standard
Protocol

Figure 3.1: Block Diagram of System.

Firstly the sensor module chosen is MPU-6050. MPU-6050 is an Inertial

Measurement Unit (IMU) with six degrees of freedom (6DOF). Inertial Measurement

Units is differentiated by the degrees of axis that they are able to measure. The

sensor module features a tri-axis accelerometer and a tri-axis gyroscope thus the 6

degrees of freedom. The MPU-6050 has a 16-bit analog to digital converter (ADCs)

for digitizing the output of each axis of the sensors. A on chip 1024 bytes FIFO

buffer in the IMU helps to store sensor data temporary and reduces the system power

consumption. It also has a Digital Motion Processor (DMP) that is able to perform

simple calculation for the sensor fusion data to offload the responsibility of the

master processor. The MPU-6050 has different tracking range for both fast and slow

15

motion that is user-programmable in the full scale range of ±250, ±500, ±1000 and

±2000°/sec for the gyroscope and a full scale range of ±2g, ±4g, ±8g and ±16g for

the accelerometer. The MPU-6050 is chosen because of the low cost and more

functionality that is able to perform and it is compatible with the microcontroller

used in this project (Invensense, 2012).

In communication with the microcontroller the only communication method

available is the TWI/ I2C communication which is mentioned in the datasheet. Two

Wire Interface (TWI) or Inter-Integrated Circuit (I2C) communications which was

originally invented by Philips as a communication method for two or more integrated

chips. The communication only uses two bidirectional lines for the communication

between devices which are commonly known as the Serial Data Line (SDA) and

Serial Clock Line (SCL). One of the two devices which is the master device, (in this

case the Arduino Uno R3) which sends queries to the slave device (which is MPU-

6050) to obtain data. Serial Clock Line (SCL) is a clock line bus that synchronizes

the event of read/write from the master to the slave device. Serial Data Line (SDA) is

the data bus used to transfer the data but read or write can only be performed one at a

time and thus an acknowledgement signal is required from both sides to synchronize

the event (Wikipedia the free encyclopedia, 2013b).

The main processing of all the sensor data happens in the micro-controller

which will be the main component in this project. The objective of using the micro-

controller is it serves as a medium for the raw sensor values to be processed into

useful information and translated into an IEEE standard protocol for Bluetooth

before sending to the user’s Android device. The Arduino Uno R3 features an 8-bit

ATmega328P microcontroller which has a 16MHz of frequency oscillator. The

reason Arduino Uno R3 is selected to be use in this project is because Arduino is

popular for project prototyping. Arduino does not require a conventional program

loader like PIC microcontrollers (and thereby saving the cost of acquiring one) and

the program can be loaded into the chip using USB cable. The program is developed

in C++ programming languages and Arduino projects are open-sourced so that the

coding of integrated chips can be easily acquired. The diagram below shows the

physical appearances of Arduino Uno R3.

16

Figure 3.2: Arduino Uno R3

The Arduino is connected to a Bluetooth module which can be communicated

with the Android mobile device. As shown in the figure below, the comparison of

each communication technology is used to be considered in this project. Bluetooth

Low Energy as announced by Google in 2013 is compatible in Android mobile

devices (Google, 2013). Bluetooth Low Energy is selected as it meets the

requirement of the project of low power consumption. Zigbee has similar

characteristic however, though is not supported in Android devices. Bluetooth Low

Energy can be used from a range within 50m and a transfer rate of 1Mbit/s. The peak

current consumption is less that 15mA which is much lower than the other

technologies. Bluetooth Low Energy has the same spectrum range as the classic

Bluetooth technology which is 2.4GHz-2.4835GHz, and thus it can be compatible to

Android device users who do not have Bluetooth Low Energy functions (Wikipedia

the free encyclopedia, 2013c).

Figure 3.3: Comparison of Wireless Communication Technologies.

17

3.2 Sensors

3.2.1 Accelerometer and Gyroscope

In this section, we will explain the working principles of the accelerometer and

gyroscope and how to extract the raw sensors values.

 Accelerometer functions as a type of sensor that measures the acceleration of

the sensor itself. The sensor measures acceleration not in a way that is congruent

with the definition in physics (which is rate of change of velocity with respect to

time). Accelerometer measures the acceleration experienced by its weight resting at

the frame of the reference. The imaginary concept of the working principle of

accelerometer can be seen as an object resting on the point of origin of 3 axes as

shown in the figure below. The box would represent the full scale range defined by

gravity which is ±1g (1g=9.87m/s
2
) on each axis. This would be the ideal case that

this imaginary box is in outer space which all measures are zero. Thus by the effect

of gravity, accelerometer will measure an acceleration of 1g straight upwards given

the presence of gravity on earth. Figure 3.2.2 illustrates the effect on accelerometer

with gravity in presence, with notice that the accelerometer measures in the opposite

direction with respect to the gravity.

Figure 3.4: Concept of Accelerometer.

18

Figure 3.5: Effect of Accelerometer by Gravity.

Gyroscopes have similar traits as the accelerometer, except that it measures

the rotation with respect to the object’s last position. Thus in simple gyroscope

measure rate of rotation in degrees per second (°/sec).

Figure 3.6: Gyroscope with Vector R

19

As shown in Figure 3.6, we can see that:

222

222

zyyz

zxxz

RRR

RRR





222

222 ,

yzx

yxz

RRR

orRRR





Axz is the angle between Rxz and Z axis and Ayz is the angle between Ryz and Z axis.

Thus the equation that defines a gyroscope is,

)/(
01

01 s
tt

AA

t

A xzxzxz 









Assuming that we measure a rotation angle around axis Y at t0 and later at t1 we

would have the equation above.

3.2.2 Initial Results

The circuit connection between MPU-6050 and Arduino Uno R3 is connected as

shown in the figure below. The operating range of the MPU-6050 is 2.375-3.4V is as

stated in the datasheet. Thus we will directly use the ready 3.3V voltage source that

the Arduino is able to provide. The Ground (GND) and AD0 are connected to both

the ground pin on Arduino. The AD0 pin functions to defining the default I2C

address and thus we need to ground it for the default evaluation purposes. SDA and

SCL on the sensor module are then connected to the dedicated I2C communication

on the Arduino which is the A4 and A5 analogue pin. As for obtaining the raw sensor

values, the MPU-6050 outputs a digital signal from the ADC for each of the sensors.

The sensors values are represented by 16-bit 2’s complement format. Take example

for a ±2g full scale range accelerometer the bits that are able to represent the scale

20

are 2
16

-1 which is a total of 65535 bits. -2g is represented as -32767 bit and 2g is

32767 (Invensens, 2012).

Arduino Uno
R3

A
TM

ega3
2

8
P

MPU-6050

VCC3.3V

GNDGND

GND AD0

SDA

A4

A5

SCL

Figure 3.7: Connection between Arduino Uno R3 and MPU-6050.

The coding of Arduino to use MPU-6050 is as referred from open source

code by Rowberg (2011). The initial result as obtained from the Arduino sketch is

shown in the Figure 3.8. The sensor is place on a table with no movements to test the

validity of the sensors. However we noticed that there is an offset on the z-axis of the

gyroscope which might be caused by the error calibration of the hardware. Thus we

needed to offset a value of 2000-bits from it as a correction. The result after offset is

shown in Figure 3.9. The frequency is set to 115.2 kHz which is the maximum bit

rate that can be monitored on Arduino.

21

Figure 3.8: Raw Sensor Values of MPU-6050.

Figure 3.9: Corrected Raw Sensor Values of MPU-6050

22

3.2.3 True Acceleration Accelerometer Model

As mentioned earlier, the gravity component will act on the accelerometer sensor

when it is tilted towards that axis. This means that even though the device does not

experience any acceleration, the accelerometer will still output a value of 1g on either

one of the axis depending on the orientation of the accelerometer. This phenomenon

will cause an inaccurate reading when the device is trying to monitor the acceleration

produced by leg gestures. Thus, the gravity component must be removed from the

accelerometer raw values. The true acceleration model reduces the gravity

component by subtracting the original accelerometer reading by 1g when that

particular axis is titled. This removes any unwanted gravity component acting on the

accelerometer and gives the true acceleration value in “g” when the user performs

any kind of gesture in the experiment. The true accelerometer can be seen in the

figure below. The figure is an imaginative view of the starting point of the

accelerometer.

Figure 3.10: True Acceleration Model.

 The acceleration value here is represented in bits. However the system

outputs it into raw bit value with a 16 bit signed maximum thus reducing by 1g is

equals to about 8192 bits in the raw accelerometer value.

23

3.2.4 Quaternions

Quaternions are complex numbers that are used to represent the orientation of a three

dimensional rotation. They are four-dimensional that requires a division of real

numbers. They are a much more efficient representation of a rotation as compared to

methods like Euler Angles because the Euler Angle suffers from the Gimbal Lock

problem which is essentially loss of one degree of freedom during rotation.

Quaternion is often represented with one real number (in this project it is denoted as

q.w) and three imaginary number (denoted as q.x, q.y, q.z). The three imaginary

numbers are orthogonal to one another. The concept of the quaternion imaginary

numbers are shown in the figure below.

Figure 3.11: Relationship of the three imaginary numbers of quaternion.

24

 Some essential equations of quaternion are shown below.

 (3.1)

 (3.2)

The quaternions are represented by a 3 by 3 matrix during rotation as shown

in the equation below (Wikipedia, 2014a).

(

) (3.3)

The important part of understanding the quaternion lies on the equation 3.2.

The value w in the equation is a real number that shows when either one of the

imaginary number exceeds the maximum value (which is the value of 1) it will

become a negative value and either two of the imaginary numbers will exchange

values in the matrix. Take example, if you take a box faced up as shown in the figure

below and turning it 90 degrees left, the z axis has taken the value of x whilst the x

axis has taken the value of negative z. The denotation could not be changed and

therefore requires a 3 by 3 rotation to represent the figure shown below correctly.

Figure 3.12: Before and After turning the box.

CHAPTER 4

4 PROJECT IMPLEMENTATION

In this chapter, the overall progress of setting up the sensor device and the

development of the Android mobile application are discussed. Throughout

developing the prototype device each precaution are noted and shown in this chapter

too.

4.1 Device Setup

The device is setup by placing the whole circuit onto an Arduino prototyping

breadboard as shown in Figure 4.1 as the whole circuit only consist of two

components which is the Bluetooth HC-05 and also the Inertial Measurement Unit.

This allows a much more convenient testing condition when the device is attached to

the user’s ankle.

Figure 4.1: Sensors on prototyping board (left) & Arduino Microcontroller

(right).

26

The device is then placed into a sports arm band to allow attachment to the

user’s ankle. The Arduino microcontroller is then connected to a portable battery

bank with a capacity of 11200mAh with an output voltage of 5V and 1A which

matches the operating voltage level of Arduino microcontroller. As of the current

prototyping phase, the size and capacity of the power source is not an important

consideration and we will therefore relegate the address of this issue in future

development. The device is shown in Figure 4.2.

Figure 4.2: Device in black sport band and portable battery bank.

The measuring device is then placed on the right side of the user’s ankle

regardless of left or right leg of the user. The reason behind this is for the ease of

understanding the orientation of the accelerometer in such a way that positive X axis

depicts forward direction; positive Y axis depicts upwards direction and positive Z

depicts sideway direction to the right. The device attached to the user’s ankle is

shown in Figure 4.3. However, throughout the development of the device, the device

has to be placed onto the user’s left leg and right side of the ankle. This is to ensure

that the calculated side step distance is accurate according to the results. This issue is

addressed in Chapter 5.

27

Figure 4.3: Device attached to user’s leg.

The measured results of each test are logged into text file format by using the

terminal software Teraterm which allows the connection from computer to the HC-

05 Bluetooth. The software allows communication of Bluetooth devices to receive

and send data which could be recorded down and analysed through Microsoft Excel

and display data in graphs and tables. A demonstration of using Teraterm to collect

data is shown in Figure 4.4 below.

Figure 4.4: Using Teraterm to log in results.

28

4.2 Overall Detection Routine and Step Distance Calculation

4.2.1 Leg Gesture Detection Routine

The overall routine to detect user’s leg gesture is shown in the flowchart below. The

reasons of each stage are discussed in Chapter 5.1 based on the results.

Obtain

Quarternions and

Accelerometer

data

Start

User Press 1?

Calculate

Threshold Y and

Moving Average Y

Side Step

Detected?

Forward Step

Detected?

sideStepBit = 1;

Increase Side Step

High Bit;

sideStepHighBit

>10?

Increase Side Step

Count

Forward Step

Register within 30

samples?

stepBit = 0 for

next 30 samples

Reduce particular

Forward Step

Step Bit = 1;

Increase Step High

Bit;

Step High Bit >

10?

Increase Forward

Step Count

Register Forward

Step Time Sample

into buffer.

NO

NO

YES

YES

YES

YES

NO

YES

Figure 4.5: Flowchart of leg gesture detection routine.

29

4.2.2 Step Distance Calculation

The flowchart below shows the sequence of the program to determine the individual

steps distance made by user. This section is discussed in Chapter 5.2.

Start

Side Step
Detected?

Start Timer Function

Accumulate
Accelerometer Z

magnitude

Side Step
Registered?

Terminate
Accumulation of
Accelerometer

Magnitude

Calculate Individual
Side Step Distance

Reset variables for
next side step to

occur

End

Start

Forward Step
Detected?

Start Timer Function

Accumulate
Accelerometer Y

magnitude

Forward Step
Registered?

Terminate
Accumulation of
Accelerometer

Magnitude

Calculate Individual
Forward Step

Distance

Reset variables for
next forward step to

occur

End

NO NO

NO NO

YES YES

YESYES

Figure 4.6: Flowchart of Step Distance Calculation.

30

4.3 Android App Development

In order for users to receive important information such as the step counts and step

distance, an Android mobile application is created to allow users to view their results

and to sort out the information received by the Arduino microcontroller. However,

before we start to create the application, an application called SENA BTerm is used

to communicate with Arduino. The application can be found in Google Play Store.

The application is able to receive the data packets sent by Arduino correctly.

However it lacks a friendly user interface and is difficult to understand by a common

user without Bluetooth knowledge. Thus, this application gives a general direction of

how our own Android application in this project should be developed. Our

application will be developed in the sense that it provided a simple user interface.

This will ensure that anyone can use the app with the prototype without any

knowledge required. The application is shown in Figure 4.7.

Figure 4.7: Data collection using SENA BTerm.

31

 The software used to develop the mobile application is Eclipse. Android

developers have provided dedicated plugin for the software Eclipse for the ease of

development process. The overview of the software is shown in Figure 4.8.

Figure 4.8: Eclipse with Android Plugin.

 The final product of the application we have created is shown in the figures

below. Upon opening the application, the user will be prompted to turn on their

Bluetooth function in their mobile (Figure 4.9). The application then goes to the main

interface (Figure 4.10) where users can view all the information. However, users are

required to manually connect to the sensor device (Figure 4.11). The timer function

allows users to track their information in real time and upon pressing the “Start”

button in the application, it will send a signal to allow the sensor device to start

detecting user’s leg gestures with the condition that the device is paired with the

mobile’s Bluetooth (Figure 4.12).

32

 Figure 4.9: Application request Bluetooth. Figure 4.10: Main Page

Figure 4.11: Manually connect device. Figure 4.12: Data Collection.

33

4.3.1 Application Publication

The application is available in Google Play Store at

https://play.google.com/store/apps/details?id=example.walkOff is as shown in the

figure below. The application is published under the name “Walk Off” and it is free

and available for all users to download. However, this application requires the user to

have the device in order for the application to be fully functioned. Users who are

interested in this application may contact the original author to purchase or request

for the sensor device.

Figure 4.13: Application on Google Play Store.

.

https://play.google.com/store/apps/details?id=example.walkOff

34

CHAPTER 5

5 RESULTS AND DISCUSSION

In this chapter, results from different experiments are collected and analysed to allow

the device to differentiate between different leg gestures from its respective user, the

results and the challenging issues would then be discussed. The algorithm that is

used to differentiate leg gestures are then tested in an empirical experiment to show

how the result is affected by different users. The last section of this chapter illustrates

how the developed prototype is compared against a commercial product available in

the market. The advantages and disadvantages are then discussed in detail to show

the potential of the developed prototype.

5.1 Motion Differentiation

As earlier mentioned in Chapter 3.4, the method used to differentiate a user’s leg

gesture will be through the quaternion rotation of the inertial measurement unit.

Quaternions are obtained directly through the Digital Motion Processing (DMP) of

the inertial measurement unit at a rate of 50Hz and for raw accelerometer and

gyroscope data at a rate of 1000Hz. Both data are combined into a FIFO packet with

a size of 42 bytes and transferred through the I2C bus at 115200 baud rate.

5.1.1 Static Motion / No Movement

In measuring a user’s static motion which includes sitting, standing or no movement

from the leg of attached device, we can expect a flat out straight line from the entire

35

axis in the quaternion rotation as shown in Figure 5.1. The result is also used as a

reference to the initial position of the sensor to determine subsequent motions from

user.

Figure 5.1: Static movement result.

5.1.2 Forward Step Detection

The next step of the project is to detect the most basic leg gesture which is a forward

step. A simple forward step can be categorized into two motions which are lifting the

leg and extending it to a certain landing point. A simple test is conducted by walking

in a straight line for a certain amount of forward steps and analysing the data

obtained.

Figure 5.2 below presents the result obtained. The actual steps performed by

the user are 7 steps on the attached leg. It could be observed through the result that 7

peaks are obtained in particular the x, y and z axis of the quaternion rotation. An

extra observation made is the time difference of the peak of the quaternion axis y and

z. Axis y peaks are followed closely by axis z peaks which explain the motion of

lifting the leg first that give rise of axis y and landing horizontally happens right after

lifting the leg give rise to axis z. Another observation is the timing of axis x and axis

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1

2
2

4
3

6
4

8
5

1
0

6

1
2

7

1
4

8

1
6

9

1
9

0

2
1

1

2
3

2

2
5

3

2
7

4

2
9

5

3
1

6

3
3

7

3
5

8

3
7

9

4
0

0

4
2

1

4
4

2

Graph of Quaternion vs Samples

w

x

y

z

36

y peaks about the same time. This is because the lifting motion is not perfectly

vertical which involves sideway motion that forms a vector of the direction of lifting

the leg.

Figure 5.2: Result collected for 7 forward steps.

 The motion of lifting a leg gives enough information to detect a forward step

made. This can be done by drawing a threshold line across half of the sinusoidal

signal. If quaternion axis y crosses the threshold for a certain period of time then a

forward step is registered. The implementation of the threshold line can be done by

using a moving average filter of a certain sample size. A moving average filter is a

filter that determines the general trend of a particular sample size and the general

equation of the filter is shown in the equation below. In this particular problem, a

sample size of 50 is chosen such that the sample size is large enough to determine the

overall trend and small enough so that it is not affected by the noisy raw quaternion

raw data. The result is shown in Figure 5.3. We can observe that there are 7 peaks

above the moving average filter and 7 troughs below the threshold line.

   nageMovingAverageMovingAvernyqageMovingAver //.  (5.1)

where

q.y = Quaternion Axis Y

n = sample size

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

5
6

1
1

1

1
6

6

2
2

1

2
7

6

3
3

1

3
8

6

4
4

1

4
9

6

5
5

1

6
0

6

6
6

1

7
1

6

7
7

1

8
2

6

8
8

1

9
3

6

9
9

1

1
0

4
6

1
1

0
1

1
1

5
6

1
2

1
1

1
2

6
6

Quaternion Data for 7 Foward Steps

w

x

y

z

37

Figure 5.3 : Result of 7 forward steps with Moving Average Filter.

 In order to further improve the forward step detecting condition, a range of 30%

is added above the detection threshold, this can be seen in Figure 5.4. The figure

shows that the threshold is slightly higher in value than the original moving average

filter. This eliminates all the unwanted noise which might give rise to the detection of

a forward step, which is not accurate. The equation is shown in 5.2 below. A period

of 10 samples above the threshold is required for a forward step to be registered as a

valid step. This is based on the flight time of lifting the leg motion. By using the

timer functions in the program, the main loop of the program requires about 0.02s to

obtain the next sample, which means that 0.2s of time is required for a step to be

valid. The reason of selecting 10 samples as the requirement is intuitively based on

the fastest record made by the athletes 100m sprinting world record. A world record

of 9.58s made by Usain Bolt (Wikipedia, 2014) to complete 100 meter translate to a

sample size of 479 samples and the athlete only used 21 strides (22.81 samples per

step). Thus, it is a safe assumption that 10 samples is able to detect the fastest step

made and clear out negligible ones.

ageMovingAverThresholdY  3.1 (5.2)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2
1

5
4

1
0

7
1

6
0

2
1

3
2

6
6

3
1

9
3

7
2

4
2

5
4

7
8

5
3

1
5

8
4

6
3

7
6

9
0

7
4

3
7

9
6

8
4

9
9

0
2

9
5

5
1

0
0

8
1

0
6

1
1

1
1

4
1

1
6

7
1

2
2

0
1

2
7

3

Implementation of Moving Average Filter
for Quarternion Y

Y

YFilter

38

Figure 5.4: Result of 7 forward steps with Moving Average Filter.

5.1.3 Side Step Detection

 The same procedure to detect forward step motion is also applied to detect side steps.

Users performs side steps in a straight line for a certain amount of steps and the data

is collected and analysed, the figure below shows the results collected.

Figure 5.5: Results of 8 side steps.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
1

2
9

5
7

8
5

1
1

3

1
4

1

1
6

9

1
9

7

2
2

5

2
5

3

2
8

1

3
0

9

3
3

7

3
6

5

3
9

3

4
2

1

4
4

9

4
7

7

5
0

5

5
3

3

No. of Samples

Implementation of Threshold on Moving
Average Filter

Y

ThresholdY

MovingAverageFilter

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

3
6

7
1

1
0

6

1
4

1

1
7

6

2
1

1

2
4

6

2
8

1

3
1

6

3
5

1

3
8

6

4
2

1

4
5

6

4
9

1

5
2

6

5
6

1

5
9

6

6
3

1

6
6

6

7
0

1

Quaternion Data of 8 Side Steps

w

x

y

z

39

 From the data collected, the first observation we made is the peaks and

troughs of quaternion axis w and x are much more significant as compared to

forward steps. The sinusoidal waveform observed in the quaternion y and z axis is

much smaller as compared in forward steps data. This could be used as the condition

to differentiate between forward steps and side steps. By analysing from Figure 5.5,

we found that the minimum of quaternion axis w is about 0.6 and a maximum of 0.78

for axis x in forward steps. As compared to forward steps, side steps has a minimum

of 0.51 for axis w and maximum of 0.85 for axis x as presented in the figure above.

Thus a double condition of when axis w is less than 0.6 and axis x is more than 0.78

is detected, a side step is registered. A sample size of 10 is also required for a side

step to be validly registered, reason being as mentioned previously in Section 5.1.2.

By applying the algorithm above, the side step count are shown in the figure below,

which matches the actual side steps made in Figure 5.5.

Figure 5.6: Result of Side Step Count.

 However, if we look closely at the result shown in Figure 5.5 the quaternion

axis y which is used to detect forward step also presents sinusoidal waveform but not

in a big magnitude as forward steps. This may cause false positive detection of

forward steps performed at the same time with side steps. An example of the false

positive detection is shown in Figure 5.7 below. In order to simplify data collection,

0

1

2

3

4

5

6

7

8

9

1

3
8

7
5

1
1

2

1
4

9

1
8

6

2
2

3

2
6

0

2
9

7

3
3

4

3
7

1

4
0

8

4
4

5

4
8

2

5
1

9

5
5

6

5
9

3

6
3

0

6
6

7

7
0

4

Graph of Side Step Count against
Samples

SideSteps

40

a conditional variable Step Bit is assigned to be 1 when forward step condition is

detected and Side Step Bit equals to 1 when side step condition is detected.

Figure 5.7: Result of 8 Side Steps with False Positive Error.

Figure 5.8: Result of Side Step Count with False Positive Error Forward Count.

0

0.2

0.4

0.6

0.8

1

1.2

1

3
6

7
1

1
0

6

1
4

1

1
7

6

2
1

1

2
4

6

2
8

1

3
1

6

3
5

1

3
8

6

4
2

1

4
5

6

4
9

1

5
2

6

5
6

1

5
9

6

6
3

1

6
6

6

7
0

1

Graph of Step Bit & Side Step Bit against
Samples

Step Bit

Side Step Bit

0

2

4

6

8

10

12

1

4
1

8
1

1
2

1

1
6

1
2

0
1

2
4

1

2
8

1

3
2

1
3

6
1

4
0

1

4
4

1
4

8
1

5
2

1

5
6

1

6
0

1

6
4

1
6

8
1

Graph of Step Count and Side Step
Count

Side Step Count

Step Count

41

As shown in Figure 5.7, 8 side steps are performed which the condition is

able to detect it accurately as shown in Figure 5.8. However, an extra 10 steps of

forward step count is accounted for the small sinusoidal data in quaternion axis y,

which are all false positive gesture detected.

 In order to eliminate the false positive forward steps detected, a First In First

Out (FIFO) Buffer is created to register the previous 3 sample number of the forward

steps detected. We can use this information to eliminate the forward steps made

closely after a side step has occurred. The condition set here is that if any forward

steps are registered within 30 samples of the rising edge of the valid side step, the

particular forward step count is deducted from the total step count. An additional

cool down period of 30 samples is also added after a side step is registered before

any motion can be detected. The result is shown in Figure 5.9 below.

Figure 5.9: Result of Side Step Data with False Positive Error removed.

0

0.2

0.4

0.6

0.8

1

1.2

1

3
3

6
5

9
7

1
2

9

1
6

1

1
9

3

2
2

5

2
5

7

2
8

9

3
2

1

3
5

3

3
8

5

4
1

7

4
4

9

4
8

1

5
1

3

5
4

5

5
7

7

6
0

9

6
4

1

6
7

3

7
0

5

Graph of Step Bit & Side Step Bit against
Sample Number

Step Bit

Side Step Bit

42

Figure 5.10: Result of Side Step Count with False Positive Error removed.

 From the results collected, we can see that the false positive error is

eliminated as user performs 8 side steps and the device is able to give correct count

of both side steps and forward steps.

5.1.4 Combination Differentiation

Given that both conditions are able to detect individual leg gestures effectively, we

need to combine both leg gestures to ensure effective combination recognition that

does not give false positive gesture recognition. User performs either two of the

gestures in a single experiment to test the effectiveness of the condition. The results

collected are shown in Figure 5.11.

0

2

4

6

8

10
1

3
4

6
7

1
0

0

1
3

3

1
6

6

1
9

9

2
3

2
2

6
5

2
9

8

3
3

1

3
6

4

3
9

7

4
3

0

4
6

3

4
9

6

5
2

9

5
6

2

5
9

5

6
2

8

6
6

1

6
9

4

Graph of Step Count and Side Step Count
against Sample Number

Step Count

Side Step Count

43

Figure 5.11: Results of combined gestures.

Figure 5.12: Step Count and Side Step Count of combined gestures.

 In Figure 5.11, user performs 2 forward steps followed by 1 side step, 3

forward steps, 1 side step, 1 forward step and 3 side steps. Thus a total of 6 forward

steps and 5 side steps performed in mixed combination. The algorithm is able to

detect accurately as shown in Figure 5.12. Although there are mixed bits detected

before, after, and in between the Side Step Bit the algorithm is able to disregard them

and give accurate information of which gesture is actually performed.

 An empirical experiment is conducted on 4 different users to test out the

accuracy of the measurements, as different users have different leg gestures during

0

0.2

0.4

0.6

0.8

1

1.2
1

4
9

9
7

1
4

5

1
9

3

2
4

1

2
8

9

3
3

7

3
8

5

4
3

3

4
8

1

5
2

9

5
7

7

6
2

5

6
7

3

7
2

1

7
6

9

8
1

7

8
6

5

9
1

3

9
6

1

1
0

0
9

1
0

5
7

Graph of Step Bit & Side Step Bit against
Samples

StepBit

SideStepBit

0

1

2

3

4

5

6

7

1

5
1

1
0

1

1
5

1

2
0

1

2
5

1

3
0

1

3
5

1

4
0

1

4
5

1

5
0

1

5
5

1

6
0

1

6
5

1

7
0

1

7
5

1

8
0

1

8
5

1

9
0

1

9
5

1

1
0

0
1

1
0

5
1

Graph of Step Count & Side Step Count
against Samples

Step Count

Side Step Count

44

forward steps and side steps which might cause the results to vary. The results are

shown from Figure 5.13 to Figure 5.33. Table 5.1 and Table 5.2 shown below

summarizes the results of each different user.

45

Table 5.1: Forward Step Result of 4 Different Users.

User
Measured

Steps

Actual

Count

Error

Count

Error

Percentage

(%)

1 42 43 1 2.33

2 56 56 0 0

3 49 50 1 2

4 45 45 0 0

Total 192 194 2 1.03

Table 5.2: Side Step Result of 4 Different Users.

User
Measured

Steps

Actual

Count

False Positive

Error

Count

Error

Percentage

(%)

1 32 32 1 3.13

2 24 24 0 0

3 36 36 1 2.78

4 30 30 0 0

Total 122 122 2 1.64

46

Figure 5.13: Result of User 1 Forward Steps.

Figure 5.14: Result of User 1 Step Bit and Side Step Bit.

Figure 5.15: Result of User 1 Total Forward Step Count.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

1
2

0

2
3

9

3
5

8

4
7

7

5
9

6

7
1

5

8
3

4

9
5

3

1
0

7
2

1
1

9
1

1
3

1
0

1
4

2
9

1
5

4
8

1
6

6
7

1
7

8
6

1
9

0
5

2
0

2
4

2
1

4
3

2
2

6
2

2
3

8
1

2
5

0
0

2
6

1
9

2
7

3
8

2
8

5
7

2
9

7
6

User 1 Forward Step Quaternion Data

w

x

y

z

0

0.2

0.4

0.6

0.8

1

1.2

1
1

3
5

2
6

9
4

0
3

5
3

7
6

7
1

8
0

5
9

3
9

1
0

7
3

1
2

0
7

1
3

4
1

1
4

7
5

1
6

0
9

1
7

4
3

1
8

7
7

2
0

1
1

2
1

4
5

2
2

7
9

2
4

1
3

2
5

4
7

2
6

8
1

2
8

1
5

2
9

4
9

User 1 Step Bit and Side Step bit Data

Step Bit

Side Step Bit

0

10

20

30

40

50

1

1
4

1

2
8

1

4
2

1

5
6

1

7
0

1

8
4

1

9
8

1

1
1

2
1

1
2

6
1

1
4

0
1

1
5

4
1

1
6

8
1

1
8

2
1

1
9

6
1

2
1

0
1

2
2

4
1

2
3

8
1

2
5

2
1

2
6

6
1

2
8

0
1

2
9

4
1

User 1 Forward Step Count

Step Count

Side Step Count

47

Figure 5.16: Result of User 2 Forward Steps.

Figure 5.17: Result of User 2 Step Bit and Side Step Bit.

Figure 5.18: Result of User 2 Total Forward Step Count.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

1
6

1

3
2

1

4
8

1

6
4

1

8
0

1

9
6

1

1
1

2
1

1
2

8
1

1
4

4
1

1
6

0
1

1
7

6
1

1
9

2
1

2
0

8
1

2
2

4
1

2
4

0
1

2
5

6
1

2
7

2
1

2
8

8
1

3
0

4
1

3
2

0
1

3
3

6
1

3
5

2
1

3
6

8
1

3
8

4
1

4
0

0
1

User 2 Forward Step Quaternion Data

w

x

y

z

0

0.2

0.4

0.6

0.8

1

1.2

1

1
9

0

3
7

9

5
6

8

7
5

7

9
4

6

1
1

3
5

1
3

2
4

1
5

1
3

1
7

0
2

1
8

9
1

2
0

8
0

2
2

6
9

2
4

5
8

2
6

4
7

2
8

3
6

3
0

2
5

3
2

1
4

3
4

0
3

3
5

9
2

3
7

8
1

3
9

7
0

User 2 Step Bit and Side Step Bit Data

Step Bit

Side Step Bit

0

10

20

30

40

50

60

1

2
2

0

4
3

9

6
5

8

8
7

7

1
0

9
6

1
3

1
5

1
5

3
4

1
7

5
3

1
9

7
2

2
1

9
1

2
4

1
0

2
6

2
9

2
8

4
8

3
0

6
7

3
2

8
6

3
5

0
5

3
7

2
4

3
9

4
3

User 2 Forward Step Count

Step Count

Side Step Count

48

Figure 5.19: Result of User 3 Forward Steps.

Figure 5.20: Result of User 2 Step Bit and Side Step Bit.

Figure 5.21: Result of User 3 Total Forward Step Count.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

1
2

9

2
5

7

3
8

5

5
1

3

6
4

1

7
6

9

8
9

7

1
0

2
5

1
1

5
3

1
2

8
1

1
4

0
9

1
5

3
7

1
6

6
5

1
7

9
3

1
9

2
1

2
0

4
9

2
1

7
7

2
3

0
5

2
4

3
3

2
5

6
1

2
6

8
9

2
8

1
7

2
9

4
5

3
0

7
3

3
2

0
1

User 3 Forward Step Quaternion Data

w

x

y

z

0

0.2

0.4

0.6

0.8

1

1.2

1
1

3
9

2
7

7
4

1
5

5
5

3
6

9
1

8
2

9
9

6
7

1
1

0
5

1
2

4
3

1
3

8
1

1
5

1
9

1
6

5
7

1
7

9
5

1
9

3
3

2
0

7
1

2
2

0
9

2
3

4
7

2
4

8
5

2
6

2
3

2
7

6
1

2
8

9
9

3
0

3
7

3
1

7
5

User 3 Step Bit and Side Step Bit Data

Step Bit

Side Step Bit

0

10

20

30

40

50

60

1

1
5

2

3
0

3

4
5

4

6
0

5

7
5

6

9
0

7

1
0

5
8

1
2

0
9

1
3

6
0

1
5

1
1

1
6

6
2

1
8

1
3

1
9

6
4

2
1

1
5

2
2

6
6

2
4

1
7

2
5

6
8

2
7

1
9

2
8

7
0

3
0

2
1

3
1

7
2

User 3 Forward Step Count

Step Count

Side Step Count

49

Figure 5.22: Result of User 4 Forward Steps.

Figure 5.23:Result of User 4 Step Bit and Side Step Bit.

Figure 5.24: Result of User 4 Total Forward Step Count.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

1
0

9

2
1

7

3
2

5

4
3

3

5
4

1

6
4

9

7
5

7

8
6

5

9
7

3

1
0

8
1

1
1

8
9

1
2

9
7

1
4

0
5

1
5

1
3

1
6

2
1

1
7

2
9

1
8

3
7

1
9

4
5

2
0

5
3

2
1

6
1

2
2

6
9

2
3

7
7

2
4

8
5

2
5

9
3

2
7

0
1

User 4 Forward Step Quaternion Data

w

x

y

z

0

0.2

0.4

0.6

0.8

1

1.2

1

1
2

3

2
4

5
3

6
7

4
8

9

6
1

1
7

3
3

8
5

5

9
7

7
1

0
9

9
1

2
2

1

1
3

4
3

1
4

6
5

1
5

8
7

1
7

0
9

1
8

3
1

1
9

5
3

2
0

7
5

2
1

9
7

2
3

1
9

2
4

4
1

2
5

6
3

2
6

8
5

User 4 Step Bit and Side Step Bit Data

Step Bit

Side Step Bit

0

10

20

30

40

50

1
1

2
8

2
5

5

3
8

2

5
0

9

6
3

6

7
6

3

8
9

0

1
0

1
7

1
1

4
4

1
2

7
1

1
3

9
8

1
5

2
5

1
6

5
2

1
7

7
9

1
9

0
6

2
0

3
3

2
1

6
0

2
2

8
7

2
4

1
4

2
5

4
1

2
6

6
8

User 4 Forward Step Count

Step Count

Side Step Count

50

Figure 5.25: Result of User 1 Side Steps.

Figure 5.26: Result of User 1 Step Bit and Side Step Bit.

Figure 5.27: Result of User 1 Total Side Step Count.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

8
3

1
6

5

2
4

7

3
2

9

4
1

1

4
9

3

5
7

5

6
5

7

7
3

9

8
2

1

9
0

3

9
8

5

1
0

6
7

1
1

4
9

1
2

3
1

1
3

1
3

1
3

9
5

1
4

7
7

1
5

5
9

1
6

4
1

1
7

2
3

1
8

0
5

1
8

8
7

1
9

6
9

2
0

5
1

User 1 Side Steps Quaternion Data

w

x

y

z

0

0.2

0.4

0.6

0.8

1

1.2

1
9

3
1

8
5

2
7

7
3

6
9

4
6

1
5

5
3

6
4

5
7

3
7

8
2

9
9

2
1

1
0

1
3

1
1

0
5

1
1

9
7

1
2

8
9

1
3

8
1

1
4

7
3

1
5

6
5

1
6

5
7

1
7

4
9

1
8

4
1

1
9

3
3

2
0

2
5

User 1 Step Bit and Side Step Bit Data

Step Bit

Side Step Bit

0

5

10

15

20

25

30

35

1

9
7

1
9

3

2
8

9

3
8

5

4
8

1

5
7

7

6
7

3

7
6

9

8
6

5

9
6

1

1
0

5
7

1
1

5
3

1
2

4
9

1
3

4
5

1
4

4
1

1
5

3
7

1
6

3
3

1
7

2
9

1
8

2
5

1
9

2
1

2
0

1
7

User 1 Side Step Count

Step Count

Side Step Count

51

Figure 5.28: Result of User 2 Side Steps.

Figure 5.29: Result of User 2 Step Bit and Side Step Bit.

Figure 5.30: Result of User 2 Total Side Step Count.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

6
0

1
1

9

1
7

8

2
3

7

2
9

6

3
5

5

4
1

4

4
7

3

5
3

2

5
9

1

6
5

0

7
0

9

7
6

8

8
2

7

8
8

6

9
4

5

1
0

0
4

1
0

6
3

1
1

2
2

1
1

8
1

1
2

4
0

1
2

9
9

1
3

5
8

1
4

1
7

1
4

7
6

User 2 Side Step Quaternion Data

w

x

y

z

0

0.2

0.4

0.6

0.8

1

1.2

1
7

2
1

4
3

2
1

4
2

8
5

3
5

6
4

2
7

4
9

8
5

6
9

6
4

0
7

1
1

7
8

2
8

5
3

9
2

4
9

9
5

1
0

6
6

1
1

3
7

1
2

0
8

1
2

7
9

1
3

5
0

1
4

2
1

1
4

9
2

User 2 Step Bit and Side Step Bit Data

Step Bit

Side Step Bit

0

5

10

15

20

25

30

1

7
1

1
4

1

2
1

1

2
8

1

3
5

1

4
2

1

4
9

1

5
6

1

6
3

1

7
0

1

7
7

1

8
4

1

9
1

1

9
8

1

1
0

5
1

1
1

2
1

1
1

9
1

1
2

6
1

1
3

3
1

1
4

0
1

1
4

7
1

User 2 Side Step Count

Step Count

Side Step Count

52

Figure 5.31: Result of User 3 Side Steps.

Figure 5.32: Result of User 3 Step Bit and Side Step Bit.

Figure 5.33: Result of User 3 Total Side Step Count.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

8
6

1
7

1

2
5

6

3
4

1

4
2

6

5
1

1

5
9

6

6
8

1

7
6

6

8
5

1

9
3

6

1
0

2
1

1
1

0
6

1
1

9
1

1
2

7
6

1
3

6
1

1
4

4
6

1
5

3
1

1
6

1
6

1
7

0
1

1
7

8
6

1
8

7
1

1
9

5
6

2
0

4
1

2
1

2
6

User 3 Side Steps Quaternion Data

w

x

y

z

0

0.2

0.4

0.6

0.8

1

1.2

1
1

0
0

1
9

9

2
9

8
3

9
7

4
9

6

5
9

5
6

9
4

7
9

3

8
9

2
9

9
1

1
0

9
0

1
1

8
9

1
2

8
8

1
3

8
7

1
4

8
6

1
5

8
5

1
6

8
4

1
7

8
3

1
8

8
2

1
9

8
1

2
0

8
0

User 3 Step Bit and Side Step Bit

Step Bit

Side Step Bit

0

5

10

15

20

25

30

35

40

1

1
0

1

2
0

1

3
0

1

4
0

1

5
0

1

6
0

1

7
0

1

8
0

1

9
0

1

1
0

0
1

1
1

0
1

1
2

0
1

1
3

0
1

1
4

0
1

1
5

0
1

1
6

0
1

1
7

0
1

1
8

0
1

1
9

0
1

2
0

0
1

2
1

0
1

User 3 Side Step Count

Step Count

Side Step Count

53

Figure 5.34: Result of User 4 Side Steps.

Figure 5.35: Result of User 4 Step Bit and Side Step Bit.

Figure 5.36: Result of User 4 Total Side Step Count.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

8
7

1
7

3

2
5

9

3
4

5

4
3

1

5
1

7

6
0

3

6
8

9

7
7

5

8
6

1

9
4

7

1
0

3
3

1
1

1
9

1
2

0
5

1
2

9
1

1
3

7
7

1
4

6
3

1
5

4
9

1
6

3
5

1
7

2
1

1
8

0
7

1
8

9
3

1
9

7
9

2
0

6
5

2
1

5
1

User 4 Side Step Quaternion Data

w

x

y

z

0

0.2

0.4

0.6

0.8

1

1.2

1

1
0

2

2
0

3

3
0

4

4
0

5
5

0
6

6
0

7

7
0

8

8
0

9

9
1

0

1
0

1
1

1
1

1
2

1
2

1
3

1
3

1
4

1
4

1
5

1
5

1
6

1
6

1
7

1
7

1
8

1
8

1
9

1
9

2
0

2
0

2
1

2
1

2
2

User 4 Step Bit and Side Step Bit

Step Bit

Side Step Bit

0

5

10

15

20

25

30

35

1

1
0

2

2
0

3

3
0

4

4
0

5

5
0

6

6
0

7

7
0

8

8
0

9

9
1

0

1
0

1
1

1
1

1
2

1
2

1
3

1
3

1
4

1
4

1
5

1
5

1
6

1
6

1
7

1
7

1
8

1
8

1
9

1
9

2
0

2
0

2
1

2
1

2
2

User 4 Side Step Count

Step Count

Side Step Count

54

5.2 Distance Calculation

Once the device is able to differentiate between forward and side steps using

quaternion, the distance travelled for each individual leg gestures should be

calculated using the raw accelerometer. This function can also serve as an input to

offline route map tracking for navigation purposes. The quaternion measures the

change in orientation of the sensor, which can be used to detect the user’s leg gesture

while the accelerometer measures the change in gravity of the sensor itself. This

information can be used to determine the users speed and distance travelled.

5.2.1 Forward Step Distance

As mentioned earlier in Chapter 3.3, the compensated accelerometer model will be

used to determine the user’s true acceleration without gravity component. This

allows the calculation by simply obtaining the time elapsed from the start of a

forward step and the end of the step. The start of a forward step is when the user lifts

his leg vertically and the end of the step is where the foot lands on the ground.

 The distance that is measured here is the horizontal distance the foot travel,

which is also the distance travelled by the user. Thus the accelerometer axis that we

are interested in is the X axis. A sample of the data collected for the X axis is

collected from performing 3 forward steps and the result is shown in Figure 5.37.

 From the result we can see there are 3 distinguishable signals upon

performing 3 forward steps. As we analyse each individual forward step signal, we

can see that the accelerometer value (in bits) increases positively and suddenly drops

to a negative maximum and returns to a value close to zero over time. This can be

explained as when a forward step is performed, a person usually lifts the leg

vertically and moves it horizontally simultaneously, which increases the

accelerometer’s positive due to acceleration. The signal then drops to a negative

maximum is because the forward step is completed and the foot of the user has

55

landed on ground thus giving a stop to the acceleration in a short span of time. Lastly,

the signal dies off over time because no motion is performed during the period.

Figure 5.37: Accelerometer Data of 3 Forward Steps.

 However, the signal produces negative acceleration which does not make

sense in calculation of the distance, because a person can never travel in a negative

distance but only in a negative direction. Thus, the accelerometer data must be

converted into magnitude form in order to obtain the distance travelled accurately.

The equation used to convert the accelerometer axis is shown below. The converted

accelerometer data of Figure 5.37 is shown in magnitude form in Figure 5.38.

 √() (5.3)

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

1

3
2

6
3

9
4

1
2

5

1
5

6

1
8

7

2
1

8

2
4

9

2
8

0

3
1

1

3
4

2

3
7

3

4
0

4

4
3

5

4
6

6

4
9

7

5
2

8

5
5

9

5
9

0

Accelerometer X Data of 3 Forward
Steps

AccX

56

Figure 5.38: Magnitude of Accelerometer X after conversion.

 In Chapter 5.1.2 we explained that the forward step detection algorithm is

able to detect the lifting of the leg, and thus, conclude that a forward step has been

performed. This is shown in Figure 5.39 where the Step Bit is compared against the

magnitude of the accelerometer. The Step Bit is set to a value of 10000 just to show

the area it covers. The negative maximum of the accelerometer data due to landing

the foot on the ground is not under the area of the Step Bit. The maximum of the data,

which is 7240 bits is the point where the foot lands on ground where a high

deceleration occurs, we can see that the signal fluctuates for a moment and the

magnitude decreases slowly. This information can be used as a condition to

determine the point when the forward step has completed and the distance should be

calculated at this point.

0

2000

4000

6000

8000

10000

1

2
9

5
7

8
5

1
1

3

1
4

1

1
6

9

1
9

7

2
2

5

2
5

3

2
8

1

3
0

9

3
3

7

3
6

5

3
9

3

4
2

1

4
4

9

4
7

7

5
0

5

5
3

3

5
6

1

5
8

9

Graph of MagnitudeX

57

Figure 5.39: Graph of Magnitude X and Step Bit.

5.2.2 Forward Step Distance Threshold and Calculation

Since we know the condition that the accelerometer magnitude must reach a

maximum and drops below to certain point to calculate the distance, we need to

determine the threshold where the program should stop monitoring the accelerometer

magnitude and calculate the distance travelled on that individual step.

 The distance is calculated by the equation that distance equals acceleration

multiplied by time. Thus, aforementioned in Chapter 5.1.2, each collection of the

sample requires 0.02s to be collected and the time elapsed for one step will be

multiplied from 0.02s to the number of samples collected to calculated the total time

of one step. The equation of calculating the individual forward step distance is shown

below. The Accumulated Magnitude is the average sum of magnitude until the point

where the threshold percentage is reached.

 (

) ()

(5.4)

0

2000

4000

6000

8000

10000

12000

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

Graph of Magnitude X and Step Bit

MagnitudeX

Step Bit

58

 The threshold is determined by performing forward step in a straight line of

15m on different threshold percentage by the multiple of 5. This is to find out the

range where the threshold percentage gives the least error and from that range we can

continue to find the exact threshold percentage that gives the least error. The result of

using the threshold percentage by multiples of 5 is shown in the table and figure

below.

 Table 5.3: Result of Threshold Percentage and Error Produced.

Threshold

Percentage (%)

Actual Distance

(m)

Measured Distance

(m)

Error Percentage

(%)

5 15 19.64 30.93

10 15 17.05 13.66

15 15 14.68 2.13

20 15 16.44 9.6

25 15 14.07 6.2

30 15 13.65 9

59

Figure 5.40: Graph of Error Percentage against Threshold Percentage.

 From the result produced, we can see that around the threshold percentage

range of 15% produced the least error. We continue to find out the range by

performing the test for the threshold percentage from 11% till 19%. The result is

shown in the table and figure below. The result shows that the most accurate range of

the threshold percentage is in the range from 15% till 19% with 19% as the least

error of only 0.33%.

Table 5.4: Result of Threshold Percentage and Error Produced.

Threshold

Percentage (%)

Actual Distance

(m)

Measured Distance

(m)

Error Percentage

(%)

11 15 16.14 7.6

12 15 16.21 8.06

13 15 14.37 4.2

14 15 13.8 8

15 15 14.68 2.13

16 15 15.46 3.06

17 15 14.66 2.26

18 15 15.18 1.2

19 15 15.05 0.33

0

5

10

15

20

25

30

35

5 10 15 20 25 30

Graph of Error Percentage against
Threshold Percentage

Error Percentage (%)

60

Figure 5.41: Graph of Error Percentage against Threshold Percentage.

 Thus we have found out that the threshold range that should be applied in the

detection of forward steps should be between 15% to 19%. Since 19% produces the

least error percentage, this threshold will be used as the threshold percentage in the

program. The accuracy of the distance calculation will be further compared in the

empirical experiment in Chapter 5.3.1.

5.2.3 Side Step Distance

The general method of calculating a side step distance is the exact same method as in

forward step distance. Thus this subsection will be described briefly for similar

explanation.

 The accelerometer axis that we are interested in determining the side step

distance is the Z axis of the accelerometer. A result of 3 side step performed is shown

in the figure below. The principal explanation is also similar to the explanation in

forward step. The accelerometer value increases due to the leg is lifted and when it

lands in the ground it gives a negative maximum which stops the acceleration. The

only difference here as compared to the forward step is the direction of the step

which happens to be in the Z axis instead of the X axis. The accelerometer data is

then converted into magnitude by using the same equation in 5.4 for the purpose of

calculating true acceleration. The result is shown in Figure 5.43.

0

2

4

6

8

10

11 12 13 14 15 16 17 18 19

Graph of Error Percentage against
Threshold Percentage

Error Percentage (%)

61

Figure 5.42: Accelerometer Data of 3 Side Steps.

Figure 5.43: Magnitude of Accelerometer Z after conversion.

 The conversion of the negative maximum in the accelerometer data is also

not covered in the Side Step Bit period and thus by using similar method, upon

registering a valid side step, the program will monitor the Z axis of the accelerometer

to determine the maximum peak in magnitude Z and determine the individual side

step distance once the magnitude drops under the threshold percentage. Figure 5.44

shows the area covered by the side step bit and the peak that follows right after the

-15000

-10000

-5000

0

5000

10000

15000

1

2
6

5
1

7
6

1
0

1

1
2

6

1
5

1

1
7

6

2
0

1

2
2

6

2
5

1

2
7

6

3
0

1

3
2

6

3
5

1

3
7

6

Acceleromter Z Data of 3 Side Steps

AccelerometerZ

0

2000

4000

6000

8000

10000

12000

1

2
4

4
7

7
0

9
3

1
1

6

1
3

9

1
6

2

1
8

5

2
0

8

2
3

1

2
5

4

2
7

7

3
0

0

3
2

3

3
4

6

3
6

9

3
9

2

Magnitude of Accelerometer Z Data

MagnitudeZ

62

side step bit drops to zero, subsequently the signal drops to a small value after the

peak. This will be the condition used to extract the features of the signal and

calculate the distance.

Figure 5.44: Graph of Magnitude Z and Side Step Bit

5.2.4 Side Step Distance Threshold and Calculation

The equation to calculate individual side step distance is similar to forward step

distance, whereby the program starts accumulating the accelerometer magnitude

when a motion is detected, and if the motion is registered as a valid one the program

looks for a maximum peak and terminates the accumulation and calculates the

distance once the magnitude drops below a certain threshold percentage. The

equation to calculate side step distance is shown below.

 (

) ()

(5.5)

0

2000

4000

6000

8000

10000

12000

1

1
3

2
5

3
7

4
9

6
1

7
3

8
5

9
7

1
0

9

1
2

1

1
3

3

1
4

5

1
5

7

1
6

9

1
8

1

1
9

3

2
0

5

Graph of MagnitudeZ and Side Step
Bit

Side Step Bit

MagnitudeZ

63

 Thus similar tests are performed for side step distance to see which threshold

percentage produces the least error percentage and a further test is conducted to

investigate which threshold percentage will produce the least error in that range. The

table below shows side step tested on different threshold percentage.

Table 5.5: Result of Threshold Percentage and Error Produced on Side Step.

Threshold

Percentage (%)

Actual Distance

(m)

Measured Distance

(m)

Error Percentage

(%)

5 15 14.77 1.53

10 15 12.66 15.6

15 15 11.97 20.2

20 15 10.78 28.13

25 15 8.77 41.53

30 15 7.12 52.53

Figure 5.45: Graph of Error Percentage against Threshold Percentage for Side

Steps.

 From the chart shown above, we can see that the most accurate range is

within the threshold of 5% which produces only 1.53% of error and the error

percentage continues to increase as the threshold is increased. The test is further

0

10

20

30

40

50

60

5 10 15 20 25 30

Graph of Error Percentage against
Threshold Percentage

Error Percentage(%)

64

conducted to find the accuracy of the threshold from the range 2% to 9 % to see

which percentage produces the least error. The table and figure below shows the

result collected. We can see that the range from 2% to 5 % of the threshold

percentage produces less error as compared to the others in the figure with 3%

producing an error of only 0.93%. Therefore the 3% will be used as the threshold

percentage and tested by different users to confirm the accuracy and consistency in

Chapter 5.3.2.

Table 5.6: Result of Threshold Percentage and Error Produced for Side Step.

Threshold

Percentage (%)

Actual Distance

(m)

Measured Distance

(m)

Error Percentage

(%)

2 15 16.14 1.4

3 15 16.21 0.93

4 15 14.37 3.67

5 15 13.8 1.53

6 15 14.68 17.47

7 15 15.46 10.2

8 15 14.66 38.73

9 15 15.18 45.3

Figure 5.46: Graph of Error Percentage against Threshold Percentage for Side

Steps.

0

10

20

30

40

50

2 3 4 5 6 7 8 9

Graph of Error Percentage against
Threshold Percentage

Error Percentage (%)

65

5.2.4.1 Side Step Left Issue

The entire series of tests performed above are the side step to the right direction of

the user. This is because side step left produces inaccurate result. This is an

important issue that should be addressed and explained because it affects the result

obtained when user performed side step left.

 The figure below explains the phenomena when user side step left as

compared to side step right when the sensor device is attached to the users left ankle.

When side step right is performed, the right foot is lifted and landed on the ground

horizontally before the left foot is lifted and placed on the ground. During this

motion, the body weight of the user will sway towards the right foot and the right

foot is used to support the user’s body weight. This reduces the gravitational force on

the left foot when it is moved right, thus producing more acceleration as compared to

side step left. As for side step left, the body sway towards the left foot first and the

body weight is supported by the left foot before the right foot is moved left. Thus this

creates more gravitational force on the sensor device and less acceleration will be

produced because of the weight to be supported by the left foot. The results of the

side step left is shown in Chapter 5.3.3 to show that this phenomena results in the

side step distance increases by an error percentage of more than 50%.

Figure 5.47: Mechanism of User Side Step Left and Right

66

5.3 Empirical Test and Comparison with Commercial Product

In this section, the developed prototype is tested and compared against commercial

product available in the market. The commercial product we have obtained in this

project is Fitbit Flex and its function is explained in Chapter 2.1.4.

 The empirical test performed here is to request 5 male and 5 female to

perform forward steps, side steps left and side steps right for 15m. The objective here

is to confirm the threshold found in Chapter 5.2 (19% for forward step and 3 % for

side step) is accurate and consistent to be used. The results are separately shown in

the sections below.

5.3.1 Forward Step Distance

In this test, 10 users perform forward step in a straight line for 15m. They are

required to perform it the same time while wearing FitBit Flex and our sensor system.

This is to ensure that the results produced are comparable. The results are shown in

the table below. Due to large amount of data collected, it is impossible to show every

single graph. Thus only the first two users result will be shown and the rest will be

shown in the additional files in the CD.

Table 5.7: Result Comparison of Sensor Device against FitBit Flex for Forward

Step Distance.

User

MPU 6050 FitBit Flex

Measured

Steps

Measured

Distance(m)

Error

Percentage

(%)

Measured

Steps

Measured

Distance(m)

Error

Percentage

(%)

1 11 15.76 5.07 11 20 33

2 10 15.0 0 8 10 33

3 10 14.38 4.13 8 10 33

4 10 15.09 0.6 9 20 33

5 10 15.23 1.53 10 10 33

6 10 13.37 10.87 8 10 33

67

7 10 13.49 10.07 9 10 33

8 11 15.35 2.33 10 20 33

9 10 16.68 11.2 11 20 33

10 11 15.41 2.73 10 10 33

 Average Error (%) 4.86 Average Error (%) 33

Figure 5.48: Forward Step Distance of User 1.

Figure 5.49: Forward Step Distance of User 2.

0

2

4

6

8

10

12

14

16

18

1
6

2
1

2
3

1
8

4
2

4
5

3
0

6
3

6
7

4
2

8
4

8
9

5
5

0
6

1
1

6
7

2
7

3
3

7
9

4
8

5
5

9
1

6

Forward Step Distance of User 1

Forward Step Distance
(m)

0

2

4

6

8

10

12

14

16

1
5

5
1

0
9

1
6

3
2

1
7

2
7

1
3

2
5

3
7

9
4

3
3

4
8

7
5

4
1

5
9

5
6

4
9

7
0

3
7

5
7

8
1

1

Forward Step Distance of User 2

Forward Step Distance
(m)

68

Figure 5.50: Forward Step Distance of User 1 before Testing Fitbit Flex.

Figure 5.51: Forward Step Distance of User 1 after Testing Fitbit Flex.

Figure 5.52: Forward Step Distance of User 2 before Testing Fitbit Flex.

69

Figure 5.53: Forward Step Distance of User 2 after Testing Fitbit Flex.

5.3.2 Side Step Right Distance

Similar test is also performer for side step distance right and the results are shown

below.

Table 5.8: Result Comparison of Sensor Device against FitBit Flex for Side Step

Right Distance.

User

MPU 6050 FitBit Flex

Measured

Steps

Measured

Distance(m)

Error

Percentage

(%)

Measured

Steps

Measured

Distance(m)

Error

Percentage

(%)

1 23 15.32 2.09 14 20 33

2 19 15.11 0.73 14 20 33

3 22 15.65 4.15 18 30 50

4 19 15.58 3.72 16 10 33

5 21 14.94 0.40 15 10 33

6 18 15.17 1.12 14 20 33

7 17 14.8 1.35 17 10 33

8 16 15.62 3.97 18 20 33

9 20 14.98 0.13 14 20 33

10 21 15.61 3.9 14 30 50

 Average Error (%) 2.16 Average Error (%) 36.4

70

Figure 5.54: Side Step Right Distance of User 1

Figure 5.55: Side Step Right Distance of User 2.

0

2

4

6

8

10

12

14

16

18

1

1
4

1

2
8

1

4
2

1

5
6

1

7
0

1

8
4

1

9
8

1

1
1

2
1

1
2

6
1

1
4

0
1

1
5

4
1

1
6

8
1

1
8

2
1

1
9

6
1

2
1

0
1

2
2

4
1

2
3

8
1

Side Step Right Distance of User 1

Side Step Right
Distance (m)

0

2

4

6

8

10

12

14

16

1

1
2

5

2
4

9

3
7

3

4
9

7

6
2

1

7
4

5

8
6

9

9
9

3

1
1

1
7

1
2

4
1

1
3

6
5

1
4

8
9

1
6

1
3

1
7

3
7

1
8

6
1

1
9

8
5

2
1

0
9

Side Step Right Distance of User 2

Side Step Right
Distance (m)

71

Figure 5.56: Side Step Distance of User 1 before Testing FitBit Flex

Figure 5.57: Side Step Right Distance of User 1 after Testing FitBit Flex.

Figure 5.58: Side Step Right Distance of User 2 before Testing FitBit Flex

72

Figure 5.59: Side Step Right Distance of User 2 after Testing FitBit Flex.

5.3.3 Side Step Left Distance

Similar test are performed in determining the accuracy of side step left distance.

However the result will not be compared to FitBit Flex because the result already has

a large amount of error which was explained in Chapter 5.2.4.

Table 5.9: Result Comparison of Sensor Device against FitBit Flex for Side Step

Right Distance.

User Measured Steps
Measured

Distance(m)

Error Percentage

(%)

1 19 6.88 54.27

2 17 5.06 66.27

3 17 6.57 56.2

4 17 6.14 59.1

5 17 6.2 58.67

6 16 7.21 51.93

7 17 7.49 50.07

8 16 6.39 57.4

9 18 5.77 61.53

10 18 5.76 61.6

Average Error (%) 57.7

73

Figure 5.60: Side Step Left Distance of User 1

Figure 5.61: Side Step Left Distance of User 2

0

1

2

3

4

5

6

7

8
1

1
1

7

2
3

3

3
4

9

4
6

5

5
8

1

6
9

7

8
1

3

9
2

9

1
0

4
5

1
1

6
1

1
2

7
7

1
3

9
3

1
5

0
9

1
6

2
5

1
7

4
1

Side Step Left Distance of User 1

Side Step Left Distance
(m)

0

1

2

3

4

5

6

1

9
9

1
9

7

2
9

5

3
9

3

4
9

1

5
8

9

6
8

7

7
8

5

8
8

3

9
8

1

1
0

7
9

1
1

7
7

1
2

7
5

1
3

7
3

1
4

7
1

Side Step Left Distance of User 2

Side Step Left Distance
(m)

74

5.3.4 Summary of Results and Comparison

By comparing the results, we can see that the device developed is much more

accurate as compared to FitBit Flex, in terms of forward step distance and also side

step right distance. Our device shows an error of only 4.86% while Fitbit Flex shows

an error of 33%. For side step right distance, our device recorded only an average of

2.16% while FitBit recorded 36.4%. The reason for this is that FitBit Flex does not

use sensors to detect the distance travelled for each leg gesture. Fibit Flex only uses

the accelerometer to determine the step count, where the step count is synchronised

into the mobile phone and the distance travelled is based on user’s height and weight

which will be fixed. Thus if a user travels in a random distance for each step counted,

FitBit Flex will not be able to detect it but is only able to give a fixed distance by

multiplying the step counted against the fixed distance that is programmed in the

FitBit mobile application.

 The advantage of our prototype as compared with FitBit Flex is it’s ability to

differentiate two different leg gestures where FitBit cannot. The prototype is also

able to detect individual step distances that does not depend on user’s weight and

height while FitBit requires both.

 The issues regarding side step left distance which produces the large margin

of error could be solved by adding an external magnetometer sensor to the inertial

measurement unit. An external magnetometer sensor will be able to detect the

direction of the user and if it detects that a side step left has been performed, the 57.7%

error percentage in the side step left distance result could be used as a factor to

correct the distance.

CHAPTER 6

6 CONCLUSION AND RECOMMENDATIONS

6.1 Conclusion

In conclusion, the objectives of this project have been achieved. The device is able to

differentiate two basic leg gestures, namely forward step and side step. The device is

also able to calculate individual step distance and when compared with the

commercial product Fitbit Flex, the device shows a much better accuracy and

consistency when tested on 10 subjects. Different programming language and

techniques are also applied in order to make this project achievable. The main

communication method used in this project is achieved by using Bluetooth standards.

It is able to communicate with any mobile devices provided that the user has

downloaded the application Walk-Off in Google Play Store. However, the system is

not considered to be perfect and certain functions require improvement, this is further

discussed in the next section.

6.2 Future Implementation

6.2.1 Recognition of Other Leg Gesture Motion

The prototype is only able to recognize two different leg gestures, and this would not

be sufficient in real world where more leg gestures are used on a daily basis. The

next stage of this project may include gesture recognition such as vertical jumps,

76

incline walks, decline walks, climbing stairs, and many more. This would allow users

to obtain more accurate result of their daily life and travel pattern. The inclusion of

more leg gestures also means the completion of the system so that it might be used as

a foundation for researchers to study on human motion.

6.2.2 Bluetooth Low Energy

In this project, the Bluetooth module used is HC-05 which is a Bluetooth 2.0

technology. The Bluetooth LE as mentioned in the methodology could not be used

due to the high cost required to obtain one. Moreover, certain mobile phones do not

include this technology as Bluetooth LE is mainly used in the Android 4.3 operating

system and above. Thus, it can be foreseen that the prices of Bluetooth LE will drop

when the technology becomes more common in mobile devices. By then, it can be

implemented in our device. By using Bluetooth LE, the advantage is that it will allow

is to communicate with lower power consumption.

6.2.3 Mobile Application Platform

The application can be developed for other mobile operating systems which widely

used around the world such as Apple IOS and Windows Mobile Phone. This would

establish our mobile application and device so that more people would know about it

and find it useful.

77

REFERENCES

Roetenberg, D., 2006. Inertial and Magnetic Sensing of Human Motion. [online]

Available at:

www.xsens.com_images_stories_PDF_InertialandMagneticSensingofHumanMotion

[Accessed 13 June 2013].

Wikipedia the free encyclopedia, 2013a. Sport Science. Available at

www.en.wikipedia.org/wiki/Human_movement [Accessed 4 July 2013].

Altun, K., Barshan, B. and Tuncel, O., 2010. Pattern Recognition: Comparative

Study on Classifying Human Acivities with Miniature Inertial and Magnetic Sensors,

[e-journal] 43(2010) pg. 3605-3620. Available through Science Direct website

www.sciencedirect.com [Accessed 29 July 2013].

Zhou, H. and Hu, H., 2008. Human Motion Tracking for Rehabilitation – A Survey,

[e-journal] 1(18). Available through Science Direct website www.sciencedirect.com

[Accessed 29 July 2013].

MEMSIC, 2011. MEMISC Introduces World’s Smallest and Most Robust Digital

Accelerometer with Features Never before Available at This Price Point. [online]

Available at www.investor.memsic.com/releasedetail.cfm?ReleaseID=619035

[Accessed 4 July 2013].

Robertson, G., 2009. How powerful was the Apollo 11 computer? [online] Available

at www.downloadsquad.swithced.com/2009/07/20/how-powerful-was-the-apollo-11-

computer [Accessed 4 July 2013].

http://www.xsens.com_images_stories_pdf_inertialandmagneticsensingofhumanmotion/
http://www.en.wikipedia.org/wiki/Human_movement
http://www.sciencedirect.com/
http://www.sciencedirect.com/
http://www.investor.memsic.com/releasedetail.cfm?ReleaseID=619035
http://www.downloadsquad.swithced.com/2009/07/20/how-powerful-was-the-apollo-11-computer
http://www.downloadsquad.swithced.com/2009/07/20/how-powerful-was-the-apollo-11-computer

78

Zhu, R. and Zhou, Z., 2004. A Real-Time Articulated Human Motion Tracking

Using Tri-Axis Intertial/Magnetic Sensors Package, [e-journal] 12(2). Available

through: IEEE Xplore Digital Library website

http://ieeexplore.ieee.org/Xplore/home.jsp [Accessed 1 August 2013].

Ha, P., 2012. Jawbone UP (2012) Review: Still Not Fit To Buy. [online] Available at

http://gizmodo.com/5965750/jawbone-up-2012-review-still-not-fit-to-buy [Accessed

2 August 2013].

Goode, L., 2013. Comparing Wearables: Fitbit Flex vs. Jawbone Up and More.

[online] Available at http://allthingsd.com/20130715/fitbit-flex-vs-jawbone-up-and-

more-a-wearables-comparison/ [Accessed 2 August 2013].

Fankhauser, D., 2013. The Tiny, Powerful Brain Inside Nike’s FuelBand. [Online]

Available at http://mashable.com/2013/01/31/nike-fuelband/ [Accessed 2 August

2013].

Basis, 2012. What’s Inside Basis. [Online] Available at

http://www.mybasis.com/basis-healthy-habits-technology/ [Accessed 2 August 2013].

Gadget Gangster, 2010. Accelerometer & Gyro Tutorial. [Online] Available at

http://www.instructables.com/id/Accelerometer-Gyro-Tutorial/ [Accessed 18 July

2013].

Invensense, 2012. MPU-6000 and MPU-6050 Product Specification Revision 3.3.

[Online] Available at: www.invensense.com/mems/gyrp/documents/RM-MPU-

6000A.pdf [Accessed 18 July 2013].

Wikipedia the free encyclopedia, 2013b. I2C. [Online] Available at:

http://en.wikipedia.org/wiki/I%C2%B2C [Accessed 18 July 2013].

Google, 2013. Bluetooth Low energy. [Online]. Available at:

http://developer.android.com/guide/topics/connectivity/bluetooth-le.html [Accessed

24 August 2013].

http://ieeexplore.ieee.org/Xplore/home.jsp
http://gizmodo.com/5965750/jawbone-up-2012-review-still-not-fit-to-buy
http://allthingsd.com/20130715/fitbit-flex-vs-jawbone-up-and-more-a-wearables-comparison/
http://allthingsd.com/20130715/fitbit-flex-vs-jawbone-up-and-more-a-wearables-comparison/
http://mashable.com/2013/01/31/nike-fuelband/
http://www.mybasis.com/basis-healthy-habits-technology/
http://www.instructables.com/id/Accelerometer-Gyro-Tutorial/
http://www.invensense.com/mems/gyrp/documents/RM-MPU-6000A.pdf
http://www.invensense.com/mems/gyrp/documents/RM-MPU-6000A.pdf
http://en.wikipedia.org/wiki/I%C2%B2C
http://developer.android.com/guide/topics/connectivity/bluetooth-le.html

79

Wikipedia the free encyclopedia, 2013c. [Online] Available at:

http://en.wikipedia.org/wiki/Bluetooth_low_energy [Accessed 24 August 2013].

Rowberg, J., 2011. Example code for MPU-6050. [Online] Avaiable at:

https://github.com/jrowberg/i2cdevlib/blob/master/Arduino/MPU6050/Examples/

MPU6050_raw/MPU6050_raw.ino [Accessed 18 July 2013].

Wikipedia, 2014. Usain Bolt. [Online] Available at:

http://en.wikipedia.org/wiki/Usain_Bolt [Accessed 24 February 2014].

Wikipedia, 2014a. Quaternion. [Online] Available at:

http://en.wikipedia.org/wiki/Quaternion [Accessed 30 March 2014].

http://en.wikipedia.org/wiki/Bluetooth_low_energy
https://github.com/jrowberg/i2cdevlib/blob/master/Arduino/MPU6050/Examples/MPU6050_raw/MPU6050_raw.ino
https://github.com/jrowberg/i2cdevlib/blob/master/Arduino/MPU6050/Examples/MPU6050_raw/MPU6050_raw.ino
http://en.wikipedia.org/wiki/Usain_Bolt
http://en.wikipedia.org/wiki/Quaternion

