

DESIGN AND IMPLEMENTATION OF WIRELESS TELEMEDICINE

SYSTEM – ELECTROCARDIOGRAPH (ECG)

NG ENG HUI

A project report submitted in partial fulfillment of the

requirements for the award of the degree of

Bachelor (Hons.) of Biomedical Engineering

Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

APRIL 2011

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it

has not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature :

Name : NG ENG HUI

ID No. : 07UEB08672

Date : 13 MAY 2011

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “DESIGN AND IMPLEMENTATION OF

WIRELESS TELEMEDICINE SYSTEM - ELECTROCARDIOGRAPH (ECG)”

was prepared by NG ENG HUI has met the required standard for submission in

partial fulfillment of the requirements for the award of Bachelor of Biomedical

Engineering (Hons.) at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Mr. Teoh Chee Hooi

Date : 13 MAY 2011

iv

 The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2011, Ng Eng Hui. All right reserved.

v

Specially dedicated to

my beloved grandmother, mother and father,

brothers and sisters,

Mr Wei Ping, Mr Cuau, Mr Teoh,

and lastly the special and only one in my life.

vi

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion of

this project. I would like to express my gratitude to my research supervisor, Mr.Teoh

Chee Hooi for his invaluable advice, guidance and his enormous patience throughout

the development of the research. Without him I could has not complete this project.

 In addition, I would also like to express my gratitude to my loving parents,

family and friends who had helped and given me encouragement throughout this

project. I am appreciate to Mr Cuau, developer of Freescale‟s TWR-MCF51MM kit

who sponsor me in this project. I would like to thank Mr Wei Ping, Freescale‟s

senior engineer who share his knowledge and give valuable advice to me in this

project.

 Lastly i would like thank my only one and special person in my life for her

continuous support and encouragement to me in this project.

vii

DESIGN AND IMPLEMENTATION OF WIRELESS TELEMEDICINE

SYSTEM – ELECTROCARDIOGRAPH (ECG)

ABSTRACTS

Heart attack is a critical disease nowadays and it kills millions of people worldwide.

Electrocardiograph is medical equipment that able to monitor the electrical activity

of heart and diagnose any possible heart abnormality. The heart condition of heart

disease high risk groups especially elderly need to be monitored from time to time to

detect any abnormality. However, to set up the conventional medical device such as

electrocardiograph is not a workable plan as it is space occupying, high cost,

complex in term of operating, need schedule maintenance, rather immobile (connect

with the cable), etc. Currently, there are many brands of blood pressure monitor and

blood glucose tester available in the market for sale but not the electrocardiograph.

There is a trend observed increasing demand for home monitoring system for

healthcare purpose. As heart disease is one of the chronic disease among the elderly,

there is a need to develop an electrocardiograph system which is cost efficient, easy

to setup, mobile, user friendly, etc. In this project, the author concentrate on develop

a wireless prototype system that able to monitor the health parameter at home.

Freescale‟s development kit, TWR-MCF51MM used to develop the prototype

system. Developed prototype system able to monitor the health status of someone in

real time without present to the hospital and it has advantages such as cost efficient,

cable less, easy to use, occupy lesser space, etc. Electrocardiogram will help to

diagnoses any heart rhythm abnormality and a GUI will be used to display the ECG

data. Wireless transmission of ECG data has been established in this project but

medical server has yet to develop. Using this prototype system, subject can capture

own ECG data in easy setting up, fast and cost efficient manner.

viii

 TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS vi

ABSTRACTS vii

TABLE OF CONTENTS viii

LIST OF TABLES xi

LIST OF FIGURES xii

LIST OF SYMBOLS / ABBREVIATIONS xvi

LIST OF APPENDICES xvii

CHAPTER

1 INTRODUCTION 1

1.1 Background 1

1.2 Aims and Objectives 2

1.3 Problem Statement 3

1.4 Outline of Report 4

1.5 Challenges 5

2 LITERATURE REVIEW 6

2.1 Telemedicine 6

2.2 Telemedicine Concepts 7

2.3 Current Situation of Telemedicine 8

2.4 Heart and Heart-Electrical Activity 9

2.5 Electrocardiograph (ECG) 12

ix

2.6 Electrocardiograph Interpretation 13

2.7 Electrocardiograph Electrode 15

2.8 Electrocardiograph Interference Source 16

2.8.1 Noise Originated from Source 17

2.8.2 Noise Originating from Patient 18

2.8.3 Noise Originating from Electrode Contact 18

2.9 Wireless ECG system (Quick Doc ECG) 19

2.10 Wireless Technology – ZigBee 22

2.11 Current Application of Wireless ECG System 24

3 METHODOLOGY 27

3.1 Scope of Works and Work Flow 27

3.2 Work Breakdown 29

3.3 Gantt Chart 30

3.3.1 Gantt Chart Semester I 30

3.3.2 Gantt Chart Semester II 31

3.4 Architecture for Project 33

3.5 Freescale‟s medical development kit (TWR-MCF51MM) 35

3.5.1 TWR-MCF51MM 35

3.5.2 TWR-SER 38

3.5.3 TWR-ELEV 38

3.5.4 MED-ECG 39

3.6 Cytron‟s SKXBee (Wireless Module) 41

3.7 MAX232IN 44

3.8 Software 45

3.8.1 CodeWarrior Development Studio for

Microcontrollers 6.3 45

3.8.2 Digi Maxstream‟s X-CTU 46

3.8.3 MED-ECG GUI 47

3.8.4 Eltima‟s RS232 Data Logger 48

4 DESIGN AND IMPLEMENTATION 49

4.1 Placement of ECG Electrodes 49

x

4.2 Programming of Freescale‟s Medical Development Kit 50

4.2.1 Programming Flow 52

4.3 Jumper Settings on Freescale‟s Medical Development Kit 56

4.4 MAX232 Circuitry 57

4.5 Wireless Transmissions using XBee 58

4.5.1 Flow of Data in Transmitter and Receiver 60

4.6 Prototype Development 62

5 RESULTS AND DISCUSSIONS 66

5.1 Results of the Prototype System 66

5.1.1 Transmitter Site of Prototype System 66

5.1.2 Receiver site of Prototype System 69

5.2 Analysis of Results 71

5.2.1 ECG waveform at Transmitter Site 71

5.2.2 Data Received at Receiver Site 73

5.3 The Effects of Different Placements of ECG Electrodes 74

5.4 Conversion Factor of ADC level to Voltage level 78

5.5 Noise issue 79

5.6 XBee Buffer Issue 82

6 CONCLUSION 84

6.1 Comments on the project 84

6.2 Possible Improvement and Recommendations for Future

Works 85

REFERENCES 86

APPENDICES 90

xi

LIST OF TABLES

 TABLE TITLE PAGE

2.1 The placement of the electrode on the three lead

ECG 12

2.2 ECG waveform 14

2.3 Comparison between ZigBee and Bluetooth 24

3.1 Function and description of SKXBee components 42

3.2 Interfacing pin of SKXBee 43

4.1 Modification of Jumper Settings 56

4.2 Address for both SKXBee 60

5.1 Summary of Different Placements of ECG

Electrode on Chest 74

xii

LIST OF FIGURES

 FIGURE TITLE PAGE

2.1 Blood circulation scheme 9

2.2 Cardiac conduction system 10

2.3 Myocardium electrical activity 10

2.4 Einthoven Triangle 11

2.5 ECG lead placement 12

2.6 Typical ECG signal 13

2.7 Electrodes construction 15

2.8 Silver/Silver Chloride electrode 16

2.9 Receiver connected to the PDA. 21

2.10 Quick Doc ECG System 22

2.11 ZigBee Protocol Stack 23

2.12 Code Blue infrastructure 25

2.13 MOLEC infrastructure 26

3.1 Scope of project 27

3.2 Work Flow of the project. 28

3.3 Work Breakdown 29

3.4 Gantt Chart Semester I 31

3.5 Gantt Chart Semester II 32

3.6 Architecture of Receiver Site 33

file:///C:/Users/Ng/Desktop/FYP%20imp/FES%20FYP%20Report%20Template%20main%20draft.docx%23_Toc290978770

xiii

3.7 Architecture of Transmitter Site 34

3.8 TWR-MCF51MM 35

3.9 TWR-MCF51MM Block Diagram 36

3.10 TWR-SER 38

3.11 Feature of TWR-ELEV 39

3.12 MED-ECG 39

3.13 MED-ECG block diagram 40

3.14 Fingertips Collocation on Slider Electrodes 41

3.15 SKXBee, Zigbee module 42

3.16 MAX232IN 44

3.17 RS232 to TTL convertor in MAX232IN. 45

3.18 Code Warriors 6.3 45

3.19 X_CTU program interface 46

3.20 MED-ECG GUI 47

3.21 Eltima‟s RS232 Data Logger 48

4.1 External Electrodes Connection 49

4.2 Silver Chloride ECG electrode 50

4.3 Flow Chart of Main Function (main.c) 52

4.4 Flow of Check USB status 53

4.5 Flow of TestApp_Task 54

4.6 Communication pipe between GUI and Prototype 55

4.7 Circuit diagram of MAX232 circuitry 57

4.8 MAX232 circuitry on breadboard 57

4.9 Data Flow from microcontroller to XBee module 58

4.10 Example Data Format of XBee (8 bits, none
parity, 1 stop bits) 59

file:///C:/Users/Ng/Desktop/FYP%20imp/FES%20FYP%20Report%20Template%20main%20draft.docx%23_Toc290978792
file:///C:/Users/Ng/Desktop/FYP%20imp/FES%20FYP%20Report%20Template%20main%20draft.docx%23_Toc290978793

xiv

4.11 Internal Data Flow Diagram 61

4.12 ECG prototype (Transmitter site) 62

4.13 Prototype system (Receiver site) 63

4.14 Reprogram the TWR-MCF51MM 64

4.15 Program microcontroller on board using CW 6.3 64

4.16 Data Flow Diagram 65

5.1 Typical ECG waveform obtained with 9x op-amp

gain 67

5.2 Movements when measuring will create noise 67

5.3 Measuring with smallest op-amp gain 2x 68

5.4 Measuring with biggest op-amp gain 17x 68

5.5 Measuring without DSC function 68

5.6 Measuring with slide electrode (unsecure, with

slight finger movement) 69

5.7 Measuring with slide electrode (secure, no finger

movement) 69

5.8 Monitoring data received at receiver site using X-

CTU 70

5.9 Data received convert from ACHII to hex form 70

5.10 Analysis of Real Time ECG data 71

5.11 Various QRS Complex Morphologic 72

5.12 ECG waveform results analysis 72

5.13 A standard rhythm stripe 73

5.14 Cardiac Axis 76

5.15 Shape of QRS complex depends on orientation of

electrode 77

5.16 Best orientation of electrodes that output closest

results to typical ECG waveform (LC- red, RC-

white, LA- black) 78

file:///C:/Users/Ng/Desktop/FYP%20imp/FES%20FYP%20Report%20Template%20main%20draft.docx%23_Toc290978804

xv

5.17 60 Hertz Noise 80

5.18 Value of ADC level during noise interference 81

5.19 Example of 60 Hertz noise 81

xvi

LIST OF SYMBOLS / ABBREVIATIONS

GUI Graphical user interface

ECG Electrocardiograph or electrocardiogram

DSC Digital Signal Conditioning

AgCl Silver Chloride

AC Alternating current

DC Direct current

MCU Microcontroller

Vsignal Voltage of ECG signal

CW Code Warriors (Program)

LC Left chest

RC Right chest

LA Left abdominal

xvii

LIST OF APPENDICES

 APPENDIX TITLE PAGE

A Pin Layout Table for Freescale‟s Medical

Development Kit 90

B Programming Files and Functions for Freescale‟s

Medical Development Kit 92

C Default Jumper Settings for Freescale‟s Medical

Development Kit 93

D txt file captured using RS232 data logger 95

E Notepad++ (convert ASCII to hex) and Analysis of

hex data 96

F Pinout for XBee and XBee Pro 98

G Programming Source Code 99

H Schematics Diagram of Freescale‟s Medical

Development Kit 119

CHAPTER 1

1 INTRODUCTION

1.1 Background

According to a World Health Organization (WHO) estimate, cardiovascular disease

kills almost seventeen million people around the world each year, with around

twenty million people at a risk of sudden heart failure. (WHO, 2004) At present, the

number of Malaysians aged 60 years and above is estimated to be 1.4 million and is

projected to increase to 3.3 million in the year 2020. Between 1990 and 2020, the

population of Malaysia is expected to increase from 18.4 million to 33.3 million (an

increase of 80%). The percentage of the population that is 60 years and over has also

increased over the years 5.2% in 1970, 5.7% in 1990 and 6.3% in the year 2000. In

the year 2020, this percentage is expected to be 9.8% of the population. (Mohamed,

2000) The population of elderly will keep increasing in the future and other countries

such as Japan and United State are facing issue of population ageing too. The elderly

are tend to have health problem compare to the youngsters, hence an increase in the

proportion of the aged group is associated with an increase in the prevalence of ill

health especially with the heart disease. The physical and social changes associated

with ageing are combined with the debilitating effects of multiple, acute and chronic

diseases.

 The average Westerner suffers a heart attack at age 66. A Malaysian gets

heart attack at age 59. Worse, there are even teenage victims of heart attack (Chai,

2008). Elderly is the group of people that more susceptible to heart attack as their

heart function and blood vessel is not as good as the youngsters. Heart attack can

2

occur everywhere especially in the home where the elderly spend most of the time. It

will be a good idea to have ECG at home to record the elderly heart rhythm and if

there is abnormality in the electrocardiograph, the system will alert with the family

members or the medical server. If there is heart attack happened on elderly especially

for the stay alone elderly, medical attention can be provided immediately to the

victims and this aids to save life.

 Heart attack results from blood vessel disease in the heart. Coronary heart

disease (CHD), sometimes referred to as coronary after disease (CAD), are general

names for heart attack (and angina). A heart attack, or myocardial infarction, occurs

when the blood supply to part of the heart muscle itself (the myocardium) is severely

reduced or stopped. This occurs when one of the coronary arteries (the arteries that

supply blood to the heart muscle) is blocked by an obstruction, such as a blood clot

that has formed on plaque due to atherosclerosis. If the blood supply is cut off

drastically or for a long time, muscle cells suffer irreversible injury and die.

Disability or death can result, depending on how much heart muscle is damaged

(Yayasan Jantung Malaysia, 2009). The electrocardiograph system able to detect

such complication and it can save life via notifying the patient, family members or

medical server even before the complication happened by detecting abnormality in

electrocardiogram (wide or missing of QRS complex in electrocardiogram).

1.2 Aims and Objectives

The main objective of this project is to develop a hardware application for home

monitoring system using Freescale‟s Medical Development Kit for MCF51MM

Family, TWR-MCF51MM kit. Secondary objective is to establish wireless

transmission between the data capturing site (transmitter) to a receiving site. In this

report, the author will aim on reporting the details working of wireless ECG

monitoring system part in the monitoring system. The author also aims to develop a

ECG prototype system at the end of the project. This product will reliably measure

3

the electrical activity around the heart and transmit this data via wireless module to a

receiver connected to a PC.

1.3 Problem Statement

As a person ages, the heart undergoes subtle physiologic changes, even in the

absence of disease. The elderly represent the fastest-growing segment of the human

population., which is people faced in the bad life style and not care about their

healthy. There are two problems predominate in elderly patients with heart disease

such as chronic coronary artery disease (CAD) and chronic congestive heart failure

(CHF). (Mohamed, 2000) The elderly heart becomes less responsive to adrenaline

and cannot increase the strength or rate of its contractions during exercise to the

same extent it could in youth. Thus, they need a monitoring system to prevent or at

least give alert during the pre and post of the complication.

 The elderly who suffering from heart disease may be have a heart attack at

any time and everywhere especially at home which is the place they spend most of

the time. The heart problems can be diagnosed using electrocardiograph and the

doctor will analyze the electrocardiogram to determine whether there is abnormality

in the rhythm of heart. However, the conventional way of healthcare need the elderly

patients need to go to hospital or clinic frequently to check their health conditions

and it is inconvenient to them who are disabled and sick. Moreover, most elderly do

not like go to hospital as they have misconception on the hospital. Elderly are the

group of patient who is more susceptible with the heart disease compared to the

children and adult due to the physiologic changes. If the heart problem didn‟t

diagnosed in early stage, treatment cannot be administrated to the patient and

complication might occur without any signs. Settings up of conventional

electrocardiograph at home is inconvenient too as it occupy spaces and attach with

multiple cable. Moreover, the operations of conventional electrocardiograph are

complex, high costs and the function of machine not easily comprehend by the public

who has no knowledge on the machine. In addition, elderly spend most of the time in

4

the home especially those who are disabled. Current type of medical devices for vital

sign monitoring use very expensive components and not design for multi patients.

Consequently, patients are unaffordable to buy that particular medical monitoring

device. There is a need to developed a easy set up, simple, effective and low cost

wireless electrocardiograph system or a comprehensive home monitoring system to

suit the market‟s needs.

1.4 Outline of Report

This documentation introduces application of Freescale‟s medical development kit to

capture the ECG signal and establish wireless transmission of ECG data between a

receiver site and a transmitter site. Following listed outline for each chapter in this

report:

 Chapter 2 provide some of literature reviews about the project such as

working principle of ECG, details about the ZigBee, current application of

wireless ECG, etc.

 Chapter 3 record down the methods and strategies implemented in this

project. It also includes the introduction of Freescale‟s medical development

kit, MAX232IN, SKXBee, software, etc implemented in this project.

 Chapter 4 includes the development and design of the project which is

mainly concentrated on receiver and transmitter site of prototype system.

Programming Flow and some project related issue will be discussed in details

too in this chapter.

 Chapter 5 is the presentation of results obtained in this project and analysis

towards the results obtained. Some designing issue during the project

development phase will be discussed in this chapter too.

 Chapter 6 is the last chapter and it sum up what the author done in this

project. Possible improvements also discussed in this chapter.

5

1.5 Challenges

The main challenge in this project is programming part of the Freescale‟s medical

development kit. As in course syllabus, programming Freescale‟s microcontroller is

not included in any subject. Working on Freescale‟s medical development kit is

totally new thing to the author and yet the development kit product is new (released

November 2010). There are not much information about the kit and not many people

has used this kit. Another challenge is the difficulties in purchasing ECG accessories

such as ECG electrode and ECG cable in Malaysia. Although there are many medical

supplier in Malaysia but they rarely sold the medical accessories in small quantity

and often offer very high price for retail buyers. The author has no choice and

chooses to purchase accessories from United State and China which offer reasonable

price even after addition of shipping. Insufficient budget also constraints author from

purchasing more useful components that help enhance the project. Due to insufficient

time and heavy work load, the author not possible to develop hardware and software

simultaneously, thus medical server is not develop yet for this project and there are

improvements to implement in the future on this prototype system. Challenges and

barriers have to overcome in order to succeed in this project.

6

CHAPTER 2

2 LITERATURE REVIEW

2.1 Telemedicine

The prefix tele derives from the Greek meaning „far‟ or „at a distance‟ or „remote‟.

Hence the word telemedicine signifies as medicine delivered at a distance (Norris,

2002). A more accurate and informative definition of telemedicine defined as the

transfer of electronic medical data from one location to another (Telemedicine

Research Centre, 1999).

 Telemedicine is a branch of e-health that uses communication networks or

information technologies (IT) for delivery of healthcare services and medical

education from one geographical location to another. It is deployed to cope with

issues like uneven distribution and shortage of infrastructural and human resources

(Sanjay and Victor, 2007). In other ways, telemedicine may be as simple as two

health professionals discussing a case related to health care over the telephone, or as

complex as using satellite technology and video-conferencing equipment to conduct

a real-time consultation between medical specialists in two different countries.

(Meystre, 2005)

7

2.2 Telemedicine Concepts

Telemedicine is practised on the basis of two concepts: real time (synchronous) and

store-and-forward (asynchronous).

 Real Time Telemedicine (synchronous) is referred to as two way interactive

television (IATV). It another meaning, it can be as simple as telephone calls or as

complex as sophisticate virtual reality (VR) robotic surgery or tele-surgery. In it

providers/patients at different locations interact with each other using communication

technology in the form of audiovisual and wireless or microwave signals. Apart from

video-conferencing, peripheral sensing devices can also be attached to the patient to

aid in interactive examination. Besides that, it can also be used for long term

monitoring for home care patients. In fact, due to the high cost constraints, quality

and continuity of care issues, mal-distribution of physicians in different geographic

regions and scarcity of the same, remote home care of chronically ill patients and of

long term care patients, is the fastest emerging use of telemedicine. Specialities for

which it is used most frequent are psychiatry, internal medicine, rehabilitation,

cardiology, paediatrics, obstetrics and gynaecology, neurology. (Meystre, 2005)

 Store and Forward (asynchronous) technology involves acquiring medical

data (images, bio-signals) and transmitting this data to a medical specialist for

consultation, evaluation or other related purposes. It does not require simultaneous

communication between both persons in real time. Tele-radiology and tele-

dermatology is the fastest emerging branches that use such kind of services. Overall

radiology, pathology and dermatology are most tending for utilizing this mechanism.

 These basic telemedicine technologies as mentioned previously are utilized

for providing various health care services that spawns numerous specialties and can

be broadly categorized as telehome Home Health Care, telepsychiarty, teleradiology,

general telemedicine, telecardiology, telemedicine consulting (teleconsultation),

teledermatology, emergency telemedicine, telepathology, teledentistry, telesurgery,

telediagnostic, telemonitoring, telecare and teleeducation. Among these specialties,

teleconsultation is one of the most significant applications as it uses multimedia

8

telecommunication through networks for medical consultation. It can either use

ordinary telephone, email, or video-conferencing equipments. Real-time

consultations use the video-conferencing technology and permit the interaction and

communication between medical experts and clients. (Meystre, 2005)

.

2.3 Current Situation of Telemedicine

Telemedicine is a growing field which has a high potential for improving

accessibility to services, quality and continuity of care and significant savings in the

overall cost of healthcare. However the use of telemedicine applications has not

spread as extensively as other as other commonly used engineering techniques, such

as medical imaging. (Shimuzu, 1999) Although telemedicine applications have

proliferated in recent years, their diffusion has remained low in terms of the volume

of consultations especially in Malaysia. This is not because telemedicine is less

important but because supporting technologies have been traditionally costly,

institutionalized and less pervasive and less capable in terms of data transfer speed

and quality. They need to develop technically feasible, medically valid, reimbursable,

and institutionally supported applications in order to justify the value of telemedicine

and engender consistent and frequent use by medical experts or physicians.

(Tanriverdi & Iacono) Fixed communication network has been used in different

telemedicine setup for some years and it has shown its values, whereas wireless

technologies within telemedicine have been developed only in the last few years.

One of the sole decisive factors that will cause a telemedicine system successful, in

urban and rural areas, is the application of modern communication technology for

information exchange between a homecare patient and the medical specialists

providing care.

9

2.4 Heart and Heart-Electrical Activity

The heart is the organ responsible for pumping blood throughout the body. It is

located in the middle of the thorax, slightly offset to the left and surrounded by the

lungs. The heart is composed of four chambers; two atriums and two ventricles. The

right atrium receives blood returning to the heart from the whole body. That blood

passes through the right ventricle and is pumped to the lungs where it is oxygenated

and goes back to the heart through the left atrium, then the blood passes through the

left ventricle and is pumped again to be distributed to the entire body through the

arteries (Carlos, Americas & Guadalajara, 2010).

Figure 2.1: Blood circulation scheme

 Electrical heart activity is based on depolarization and re-polarization of

myocardial cells. The electrical impulse starts in the sinuatrial node (natural

pacemaker) flowing through the atriums to reach the atrioventricular node and

generating the atrium contraction. The current then flows through the His Bundle

reaches the ventricles and flows through them generating the ventricular contractions.

Finally, the current reaches the Purkinje fibers and re-polarization of the heart tissue

occurs (Carlos, Americas & Guadalajara, 2010).

10

Figure 2.2: Cardiac conduction system

 The electrical potentials generated by the heart can be represented as vector

quantity. For understanding purposes, the heart is represented as a dipole located in

the thorax with a specific polarity at a certain moment, and an inverted polarity the

next moment. The potential in a specific moment is defined by the amount of charge

and the separation between charges. Figure show the list of events that occur in the

heart on each heart beat.

1) Atrium begins to depolarize

2) Atrium depolarizes

3) Ventricles begin to depolarize at apex. Atrium repolarizes

4) Ventricles depolarize

5) Ventricles begin to repolarize at apex

6) Ventricles repolarize

Figure 2.3: Myocardium electrical activity

11

 Each pair of electrodes or an electrodes combination is defined as lead. There

are three basic leads used for cardiology. Lead I is at 0°, lead II is at 60°, and lead III

is at 120°. The three basic electrode leads make-up the frontal-plane. Electrodes are

placed on the limbs; left arm (LA), right arm (RA), and left leg (LL). Those

connections are due to the legs and arms being used as a “wire” to detect the bio-

potentials that occur in the chest (Carlos, Americas & Guadalajara, 2010). The

graphic representation of each lead is shown in Figure 2.4.

Figure 2.4: Einthoven Triangle

 Einthoven's triangle is known as the "three lead" ECG, with measurements

taken from three points on the body. If two leads are connected between two points

on the body will forming vector between them, electrical voltage observed between

the two electrodes is given by the dot product of the two vectors. Another lead

connected at the body acting as ground to protect human body. (Patrick et al., 2002)

Figure show the triangle that formed around the heart which refers to as the

Einthoven‟s triangle. The top of triangle is formed by lead I, the left side is formed

by lead II and at the right side is formed by lead III (Brenda, Beasley & Michael,

2003). Table 2.1 shows the placement of the electrode on the three lead ECG. The

most significant among these is lead II because their ability to visualize p wave.

12

Table 2.1: The placement of the electrode on the three lead ECG

Leads Positive Electrode Negative Electrode

I Left arm Right arm

II Left leg Right arm

III Left leg Left arm

Figure 2.5: ECG lead placement

2.5 Electrocardiograph (ECG)

Electrocardiogram (ECG) is the recording of the heart‟s electrical activity over time

via skin electrodes. The deviations in the normal electrical patterns indicate various

cardiac disorders and abnormalities. Cardiac cells, in the normal state are electrically

polarized. Their inner sides are negatively charged relative to their outer sides. These

cardiac cells can lose their normal negativity through a process called depolarization,

which is the fundamental electrical activity of the heart. This process is propagated

from cell to cell, producing a wave of depolarization that can be transmitted across

the entire heart. This wave of depolarization produces a flow of electric current and it

can be detected by keeping the electrodes on the surface of the body (skin). Once the

depolarization is complete, the cardiac cells are able to restore their normal polarity

by another process named re-polarization. This process also sensed by the electrodes

13

(Cromwell & Weibell, 2005). In additions, ECG patient simulator is a tool that

simulates or recreates an ECG.

2.6 Electrocardiograph Interpretation

The ECG records the electrical activity of the heart over time, where each heart beat

is displayed as a series of electrical waves characterized by peaks and valleys. Any

ECG gives two kinds of information. First, the duration of the electrical wave is

crossing the heart which in turn decides whether the electrical activity is normal or

slow or irregular while the second is the amount of electrical activity passing through

the heart muscle which enables to find whether the parts of the heart are too large or

overworked. (Saritha & Sukanya, 2008) Normally, the frequency range of an ECG

signal is of 0.05C , 100 Hz and its dynamic range of 1C, 10 mV. A typical scalar

electrocardiographic lead is shown in Fig., where the significant features of the

waveform are the P, Q, R, S, and T waves, the duration of each wave, and certain

time intervals such as the P-R, S-T, and Q-T intervals.

Figure 2.6: Typical ECG signal

 In ECG signal, the heart muscles generate different voltages. The P wave

represents the atrium contraction. QRS complex and the T wave represents the

ventricles actions. Each time that this signal is present, a heart beat is generated. For

14

this reason it is important to develop analog and digital signal conditioning. First, it

is necessary to amplify the signal and filter the noise, and then extract the QRS

complex (Carlos, Americas & Guadalajara, 2010).

 Noise and interference signals acquired in this type of system are caused by

the electric installation. The small electrical signal from the heart generates a

common-mode voltage and noise in the system. The signals from the heart are too

small and it is necessary to amplify the signal and reduce the common-mode voltage

on the system. Other aspects that generate noise are muscle contractions, respiration,

electromagnetic interference, and electromagnetic emissions from electronic

components (Carlos, Americas & Guadalajara, 2010).

 In the normal sinus rhythm (normal state of the heart) the P-R interval is in

the range of 0.12 to 0.2 seconds. The QRS interval is from 0.04 to 0.12 seconds. The

Q-T interval is less than 0.42 seconds and the normal rate of the heart beat is from 60

to 100 beats per minute. So, from the recorded shape of the ECG, the author can

conclude whether the heart activity is normal or abnormal. The electrocardiogram is

a graphic recording or display of the time variant voltages produced by the

myocardium during the cardiac cycle. The P, QRS and T waves reflect the rhythmic

electrical depolarization and repolarization of the myocardium associated with the

contractions of the atria and ventricles and very useful in diagnosing various

abnormalities and conditions associated with the heart. (Saritha & Sukanya, 2008)

Table 2.2: ECG waveform

Amplitude Durations

P-wave - 0.25 mV P-R interval: 0.12 to 0.20 ss

R-wave - 1.60 mV Q-T interval: 0.35 to 0.44 s

Q-wave - 25% R wave S-T interval: 0.05 to 0.15 s

T-wave - 0.1 to 0.5 mV P-wave interval: 0.11 s

 QRS interval: 0.09 s

15

 The horizontal segment of ECG waveform preceding the P-wave is indicated

as the baseline or the isopotential line. The P-wave represents depolarization of the

atrial musculature and the QRS complex is the combined result of the repolarization

of the atria and depolarization of the ventricles, which occur almost simultaneously.

The T wave is the wave of ventricular repolarization. Consequently, the duration

amplitude and morphology of the QRS complex is useful in diagnosing cardiac

arrhythmias, conduction abnormalities, ventricular hypertrophy, myocardial infection

and other disease or abnormalities (Li & Zheng, 1995).

2.7 Electrocardiograph Electrode

Electrode is not the same concept as lead. An electrode is a physical patch which

connects to the patient. Meanwhile, a lead is a specific vector in which voltage is

measured. ECG electrodes are used for sensing bioelectric potential (electrical

activity) as caused by cardiac muscle. The electrical activity can be seen as a

constant DC electric field or a constant flux of charge-carrying particles or current.

The electrodes work as transducers converting ionic current flow from the body into

the electron flow of the metallic wire, and consequentially ECG signal can be

diagnosed after amplified and processed. A high ionic concentration gel is therefore

normally used in the skin electrode interface to increase conductivity. (Aily, 2009)

Figure 2.7: Electrodes construction

16

 The choice of material is important as well because the small electrical

charge at the skin-electrode interface vary with different electrode materials. The best

currently available are gold, platinum, stainless steel, while the most common used is

the silver chloride electrode. (Aily, 2009)

 Another sensor that was considered was the piezoelectric sensor.

Piezoelectric materials generate an electric potential when mechanically strained.

During a heart beat, the pressure in the blood vessels is higher than when the heart is

in its resting stage. This higher blood pressure causes a physical deformation in the

skin, and thus a piezoelectric sensor can produce an electic potential during every

heartbeat. The principal reason why the piezeoelectric sensor is less than ideal is that

it is pressure sensitive. (Aily, 2009) In order to pick up a signal the user (elderly,

family members, etc) would have to press the sensor hard against the patient which

could cause a permanent deformation of the piezoelectric material. Thus, the silver

chloride electrode (inert, cheap, biocompatible) is used in this project rather than the

piezoelectric electrode to give best performance of ECG waveform and avoid for

possible complications occur if the author use the piezoelectric sensor.

Figure 2.8: Silver Chloride electrode

2.8 Electrocardiograph Interference Source

In order to design an effective wireless ECG, the author have to cater the possible

interferences that might exist when the author undergo the data capturing on the

patient. The interference sources can be divided into 3 distinct groups:

17

1) Noise originating from sources external to the patient.

2) Interference originating from the patient.

3) Unwanted Potentials as well as interference originating from patient-

electrode contact.

2.8.1 Noise Originated from Source

The noise originating from source to patient generally divided into two type such as

electrostatics charges and electromagnetic induction. When a charged body is

brought up close to an uncharged one, an equal & opposite charge develops on the

uncharged body. For example if an unearthed body is close to any electronic device

that is connected to the mains supply voltage, the body will develop a surface charge

of equal & opposite potential even though no current is flowing between the two

bodies. This phenomenon is commonly known as ESD (Electrostatic Discharge).

ESD has been well documented in the recent past and extends a lot further than this

particular case. The process of electron transfer as a result of two objects coming into

contact with each other and then separating is known as 'triboelectric charging'. As

the mains potential has a frequency of 50 Hz, the induced potential will also have

this frequency. Other sources of electrostatic charge include the operating table, other

persons, electronic equipment. (Anwar, 2005)

 An interference that occurs in the vicinity of wires carrying AC currents. Due

to the generation of a magnetic field by the flow of a current, all conductors carrying

mains currents are surrounded by electromagnetic fields. The South African

Department of Public Works has published a document categorizing the

uninterrupted power supply in South Africa. The document states that mains supply

is at a frequency of 50Hz with a tolerance of 2Hz. The frequency may be anywhere

in the range of 48Hz – 52Hz. The 50 Hz mains interference is a difference in

potential, relative to ground, that is impressed upon any patient/subject in proximity

to the wire carrying alternating (50Hz) main supply current; the patient takes on a

potential that is neither that of ground, nor that of the mains, but rather, somewhere

18

in between. Since the mains current is fluctuating (AC), the induced voltage of the

subject is also fluctuating. The effect is however minimized by the fact that the

electromagnetic field generated by the live wire is to a large degree cancelled out by

the neutral cable flowing adjacent to the live cable but in the opposite direction.

(Anwar, 2005)

2.8.2 Noise Originating from Patient

An electromyogram (EMG) measures the electrical activity of muscles at rest and

during contraction. Analysis of the (EMG Brain and Nervous System Health Center,

2005) shows that the frequency (Hz) components of both the EEG & ECG both lie

within the same band. The EMG signal however is typically five times larger (up to

30mV) than that of the ECG signal. Muscular activity (especially shivering) can lead

to large interference in any ECG signal since they occupy the same frequency band.

(Anwar , 2005)

2.8.3 Noise Originating from Electrode Contact

ECG electrodes do not act as a passive non-invasive conductor. The placement of

any metal adjacent to an electrolytic solution (gel on ECG pads combined with

surface of skin) produces an electrochemical half-cell, similar to (although a lot less

complex) than that of a battery, resulting in potentials on the surface of the skin. If a

differential amplifier is connected to a pair of such electrodes it will amplify any

difference in potentials. Ideally if the cells are identical the output will be zero. If the

potentials however are not identical, any difference between the two electrodes will

be amplified. Additionally, the small current produced by the offset potential may

result in polarization. Polarization of the electrode will further distort any signal.

(Anwar, 2005)

19

2.9 Wireless ECG system (Quick Doc ECG)

Patients who have survived cardiac arrest, ventricular tachycardia or other cardiac

disease are at a higher risk of sudden cardiac death. Many of these patients are living

at home without any kind of cardiac monitoring systems. By using a wireless and

wearable monitoring system for detection of arrhythmia it is possible to alert

healthcare professional to the patient‟s condition so that the necessary action for an

emergency rescue can occur. Advanced monitoring solutions using

telecommunication systems are used for remote ECG diagnosis. Such systems can be

divided into two categories real time mode and store-and-forward mode. The systems

available today are either based on standard ECG electrodes and a wired connection

to a recording device or by pressing a recording device directly onto a patient‟s chest

when a symptom arises (Kong, Ng & Ong, 2000). Recent developments in wearable

biomedical sensors have opened up possibilities for continuous wireless ECG

monitoring systems.

 The wearable wireless ECG (Quick Doc ECG) was used to detect Respiratory

Sinus arrhythmia (RSA) in a patient. Many current ambulatory ECG recording

equipment are dependent on the patient operating them, depending on the patient‟s

condition this many not be possible. This method is also time consuming. For a

reliable monitoring system it is necessary to develop an automatic system that will

monitor the patient and send alarm conditions to a central safety alarm system. Given

the fact that time is of the essence during a cardiac arrest this device has the

possibility of increasing the survival chances of a patient. The idea is to develop a

simple smart sensor that detect critical cardiac conditions and give early alarm

signals even if the patient is unconscious or unaware of cardiac arrhythmia.

 The sensor transmits the ECG information to a device on the patient. The

Quick Doc ECG utilizes silver electrodes which acquire the signal and sent it to the

amplification and transmission stages via short shielded wires. The wires are also

twisted together to reduce noise. The Quick Doc ECG then transmits the information

wirelessly to a receiver then to a computer. The Quick Doc system performs post

processing on the ECG signal after acquisition but with some modifications can be

20

made to produce real time post processed data. In the paper (Crawford, 1999), the

patient wears an ECG sensor that employs smart electronic electrodes capable of

wireless transmission of ECG signals to a dedicated Hand Held Device (HHD). The

HHD monitors the continuously recorded ECG signal and can detect abnormal ECG

activity using an automatic arrhythmia detector. Based on this the device transmits

alarm conditions to remote Clinical Alarm Station (CAS).

 In order to perform continuous ambulatory ECG recordings a new wireless

ECG sensor has to be designed which can measure the ECG signal and transmit it

continuously to the receiver in the HHD. This means that only one lead is used for

the recording of the ECG signal. To accomplish this, the authors (Crawford) used a

compacted “double-electrode” with no wires connected (Crawford, 1999). This

electrode is equipped with a wireless transmitter and battery supply for several days

of continuous usage. The ECG sensor includes two electrical contact points with

conducting gel applied to the patient‟s skin for obtaining the signals. These points are

connected electrically to the electronic circuit that consists of an amplifier, a high

pass filter with a cut off of 0.5 Hz and a low pass filter with a cut off of 250 Hz

(Crawford, 1999).

 The Quick Doc ECG also has a power supply and wireless transmitter

thereby making it wearable and viable for continuous ECG monitoring. The power

supply in the Quick Doc ECG utilizes a 9V battery and because the power

consumption of the system is only 11mW. The electrode designed by the authors

uses a combination of real-time mode and store-and forward mode to produce a

continuous cardiac event recorder. The ECG signal is picked up by the electrode and

transmitted to an RF-receiver which is connected to a standard PDA. The Hand Held

Device (HHD) consists of the PDA and the RF receiver.

21

Figure 2.9: Receiver connected to the PDA.

 The PDA then using GPRS transmits the alarm conditions to the remote CAS

in the event of an abnormal ECG. The CAS in a hospital will give an alarm to the

operator and will display the actual recorded ECG signal from the patient. The

wireless module used in this system transmits at 434.44 MHz (Crawford, 1999). The

receiver acquires the signal and converts it back into its analog form using an ADC.

The PDA is connected to the receiver via a RS232 cable. The PDA contains a

program in Labview which analyses the data.

 The Quick Doc ECG system follows a similar model in that the ECG

acquired from the electrodes is amplified, filtered and then transmitted at 900 MHz

to the receiver when it is converted back into analog and then acquired by the DAQ

which send it via an USB cable to a computer running Matlab. The electrode design

in this paper involves placing two electrodes 3 cm apart from one another and

building them into one unit with the electronic circuits and battery supply (Thakor &

Webster, 1980). The electrodes are positioned directly on the patient‟s chest. As the

design does not use any wires from the electrodes to the amplifier there is very little

power noise. In the Quick Doc ECG system there are short leads that connect the

electrodes to the instrumentation amplifier and the electrodes are placed on the wrists.

The Quick Doc ECG system provides the user with the cardiac rate and rhythm.

22

Figure 2.10: Quick Doc ECG System

2.10 Wireless Technology – ZigBee

One of the emerging standards in the move toward a wireless world is an approach

called ZigBee (Venkat, 2002). Pioneered by Phillips, it has since formed into an

alliance of companies working together to create a wireless communication protocol.

The ZigBee stack unlike Bluetooth is relatively straightforward compared to

bluetooth. The main purpose of this standard is to provide its users with three main

features such as low data rate, low power consumption and low cost. the ZigBee

technology operates in the 2.4 GHz ISM band. The maximum data rate achievable on

this technology is 250 kbps. On top of that, it caters for a range of between 10 meters

to 75 meters depending on the power consumption required for a given application.

 The design for ZigBee took into consideration the high power consumption of

Bluetooth. For most application, the ZigBee module is capable of a battery life of 6

months to 2 years with AA batteries. This is achieved by using sleep mode functions

to allow communication only when the application deems necessary. The ZigBee

chip draws a few milliamps in sleep mode against 100 microamps or more for a

comparable Bluetooth state. Furthermore this prevents the device from interference

problems as it often won‟t be operating when other modules are using the 2.4 GHz

band. The cost of ZigBee solution also lower compare to the Bluetooth solution.

23

Figure 2.11: ZigBee Protocol Stack

 When the author determine what wireless technologies to use in this project,

the author always want to compare the available in term of range of coverage,

suitability, power consumptions, data rate, operating frequency, complexity, etc.

Bluetooth is one of the wireless technology that available now and it did come to our

consideration when the author decide what type of wireless technologies that to be

implement in this project, ZigBee chosen as the wireless technology that to be

implement due to reasons below,

a) low power

b) wireless power supply

c) efficient, reliable and lean communication protocols

d) easily accessible physical measurements

e) interaction between instruments and controllers

f) costs and availability

 The most well-suited technology for this design would be ZigBee, mainly due

to its power features and relatively simple stack. Bluetooth in contrast, has certain

unnecessary and rather complex features in its protocol. Table 2.3 summaries the

comparison between the ZigBee and Bluetooth technology.

24

Table 2.3: Comparison between ZigBee and Bluetooth

ZigBee Bluetooth

Ideally for a static network, which

comprises of a multiple devices

communicating with smaller packets

Provides an ideal ad hoc network

between capable device for transferring

audio, screen graphics, picture and file

Operates in the 2.4 GHz ISM band and

maximum data rate achievable on this

technology is maximum data rate of 250

kbps

Operating in the unlicensed 2.4 GHz

industrial scientific and medical (ISM)

band with maximum data rate of 1 Mbps

Caters for a range of between 10 meters

to 100 meters (Up to 400 meters)

Caters for range of 10 meters. (Up to 100

meters)

Long battery life. 6 months to 2 years

with AA batteries

Short battery life. May fully consume

battery within a week if vigorous usage

IEEE 802.15.4 Standard IEEE 802.15.1

Simpler than Bluetooth More complicated than the ZigBee

Network topology> ad hoc, star, mesh

hybrid

Network topology > ad hoc piconets

Very flexible Medium flexibility, depend on the profile

Number of device per networks> 2 to

65000

Number of device per networks> 8

Maximize slave power requirement Maximize ad hoc functionality

2.11 Current Application of Wireless ECG System

There are several research had been done in ECG sensor development especially that

used wireless IEEE 802.15.4 as a transmission medium. The typical application

scenarios of wireless ECG sensor are various. Smart home health monitoring

(Thakor and Webster, 1980), for example, expects to help older people or the

patients with chronic disorders to increase the chance of survival ability live. Smart

ward in the hospital reduce the time of routine check-up and its real-time monitoring

also allows emergency situation to be handled immediately. Moreover personal

25

contacts can be avoided for the nurses to reduce the possibility of infection in a

contagion ward. Wireless ECG sensor also can be utilized for athletic performance

monitoring, for example, tracking one‟s pulse and respiration rate via sensors and

sending the information to a computer for later analysis.

 For emergency medical care application CodeBlue, CodeBlue is designed to

provide routing, naming, discovery and security for wireless medical sensors, and

other devices that may be used to monitor and threat patients in a range medical

setting. CodeBlue is designed to scale across a wide range of network densities,

ranging from sparse clinic and hospital development deployments to very dense, ad

hoc deployments at a mass casualty site. Wireless ECG sensor can be used to capture

real-time vital signs from patients in a moving ambulance, relay the data to handheld

computers carried by physicians for pre-hospital diagnosis. The use of ad hoc

networking in CodeBlue will allow the “mesh” of connectivity to extend across an

entire building or between multiple, adjacent facilities. Additional coverage, if

necessary, will be possible with placement of fixed nodes in hallways, rooms, or

other areas. (Nor Syahidatul et al., 2008)

Figure 2.12: Code Blue infrastructure

26

 Another emergency medical care existing application is MOLEC. The

MOLEC Monitor is capable storing the ECG signal and embedded real-time system

that captures, processes, detects, analyzes and notifies possible dangerous

abnormalities to an alarm centres through the network from anywhere and at any

time. The MOLEC Centre is the system part that manages the communication with

all the PDA monitors and updates the MOLEC Centre‟s database with the new

information that receives from each of them. The Alarm Center receives all the risk

alarms detected into the PDA, in order to react and immediately provide proper

medical assistance. (Nor Syahidatul et al., 2008)

Figure 2.13: MOLEC infrastructure

27

CHAPTER 3

3 METHODOLOGY

3.1 Scope of Works and Work Flow

Figure 3.1: Scope of project

In order to achieve the objective of this project, the overall scope of project has been

outlined as figure above. As stated in the objective, this project generally consists of

two parts, which are hardware development and implementation of wireless module

to the prototype board. In this report the details of work on ECG implementation will

be illustrated. For the hardware development, ECG prototype board will be

developed using Freescale‟s medical development kit, TWR-MCF51MM.

Programming of TWR-MCF51MM is the most challenging task as this kit is a new

product (just released on November 2010), there are not much information and

support regarding the development kit. Implementation of ECG function on the

development kit will be the first and most important milestone before proceed to

wireless transmission of ECG data via SKXBee. After successful of implementing

ECG data capture,

Freescale„s Medical

Development Kit,

TWR-MCF51MM

Wireless

Transmission

(SKXBee)

ECG data analysis for

receiver and transceiver

site.

28

ECG data capturing, wireless receiver and transceiver site of ECG data will be

developed using Cytron‟s SKXBee. The captured ECG signal only concentrates on

normal sinus rhythm strip (normal heart beat) rather than abnormal heart beat.

Following is the main module, items and equipments using in this project.

1) Freescale‟s TWR-MCF51MM kit consists of 4 major components such as

TWR-ELEV, TWR-MCF51MM, TWR-SER and MED-ECG.

2) Cytron‟s SKXBee module.

3) Shanghai Jun Kang Medical Product‟s ECG electrode (AgCl electrode)

4) Welch Allyn‟s AHA 3 lead ECG cable (red, white and black)

5) Two computer or laptop (serve as host in wireless receiver and transceiver

site)

6) MAX232 circuitry on breadboard.

Figure 3.2: Work Flow of the project.

Presentation, Demo

and Thesis Writing

Planning on

Schedule

Literature Review

(telemedicine, ECG

sensor and ZigBee)

Literature Review of

using Freescale‟s

Medical Development

Kit and Citron SKXBee

Start

Display Data on GUI

and Capturing Sent data

Implementation of the

Freescale‟s Medical

Development Kit to

Wireless Interface

(SKXBee)

Implementation of ECG Data

Capturing Functions on

Freescale‟s Medical Development

Kit by Programming

Purchase

Freescale ECG

Development Kits

29

3.2 Work Breakdown

The main process in completing the project is basically divided as study, design and

implementation. Study is the process that continuous throughout the project, from the

beginning till the end. At the beginning of the project, a lot of study has been done

which include study on the concepts of ECG signals, analysis signal, programming

of Freescale‟s microcontroller, usage of SKXBee, etc. Meanwhile in the design

phase, the project system will be developed according system block diagram and

programming on microcontroller. In the implementation phase, the project will be

implemented with the hardware and wireless approaches. The hardware approach is

using the entire prepared component to build the system. Then for the wireless

approach is application of two SKXBee to implement the wireless transmission from

transceiver to receiver site. Then the analysis, coding and testing will be done on the

overall system to ensure the output of the system is under consideration and expected.

Finally the improvement is done to enhance the system performance.

Figure 3.3: Work Breakdown

Progress of Project

Study Design
Implementation

Concept of ECG

Concept of wireless

transmission

Concept of

Freescale‟s

microcontroller

Hardware

..

System block diagram

Programming on

microcontroller

Concept of C

programming

Wireless interface

development

Analysis,

coding and

testing.

Wireless

Improvement

30

3.3 Gantt Chart

3.3.1 Gantt Chart Semester I

Based on the project, the projects activities divided into several important milestones

where the details are shown in Gantt chart below:

 Week

Plan

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Literature

Reviews

Planning for

The Project

Study ECG and

Wireless

Interfacing

Theory

Find Journal

and Articles

Related to The

FYP

Contact

Supplier and

Vendor For

Items

Learning How

to Program

Microcontroller

Prepare Budget

Group Meeting

31

Meetings with

Supervisor

Preparing and

Writing

Progress

Report

Preparation for

Presentation

Figure 3.4: Gantt Chart Semester I

3.3.2 Gantt Chart Semester II

The planning of the project activities for the semester II is integration of Freescale‟s

medical development kit into the wireless module (SKXBee). Basically it is focused

on programming on Freescale‟s medical development kit for the ECG data capturing,

secure communication network between transceiver and receiver of the ECG data,

and displaying ECG data in Freescale‟s MED-ECG GUI. This project generally will

follow the following schedule so that the ECG prototype system manages to produce

in time.

32

 Week

Plan

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Part 1 of Project-

Implementation

of Medical

Interface

Part 2 of The

Project-

Implementation

of Wireless

Interface

Part 3 of Project-

Post Project

Improvement

Preparation of

Thesis

Writing of Thesis

Checking and

Improve Thesis

Group Meetings

Meetings With

Supervisor

Project

Demonstration

Project

Presentation

Figure 3.5: Gantt Chart Semester II

33

3.4 Architecture for Project

The ECG signal captured by the ECG silver chloride surface electrode then flow via

Welch Allyn‟s AHA 3 lead ECG cable to the Freescale‟s medical development kit to

process. Processed ECG data will be display in Freescale‟s MED-ECG GUI on a

computer or laptop via USB interface. There is another output of ECG data from

Freescale‟s medical development kit (specifically TWR-SER, DB9) via RS232

interface will be directed to MAX232 circuitry to undergo conversion of signal.

MAX232 circuitry will convert RS232 data to TTL/CMOS (5V) to enable interfacing

with the SKXBee. After signal conversion in MAX232 circuitry, the data will be

send to Rx pin of SKXBee and transmit to another SKXBee (connect with another

computer) which serve as receiver at the other site. Wireless transmission of ECG

data at receiver site monitored using X-CTU software and saved by RS232 data

logger in txt file form.

Figure 3.6: Architecture of Receiver Site

SKXBee (Receiver)

RS232 data logger X-CTU software

Computer

Data send to

Data saved by
Data monitored by

34

Figure 3.7: Architecture of Transmitter Site

ECG electrodes attached

to subject.

Freescale‟s medical

development kit

MAX232 circuitry

MED-ECG GUI

Via RS232

Via USB

Computer

Display

SKXBee (Transmitter)

5V,GND,UART

interfacing pins.

35

3.5 Freescale’s medical development kit (TWR-MCF51MM)

TWR-MCF51MM-KIT is a medical-oriented development tool for the

MCF51MM256 microcontroller and full featured modular development platform

using the Freescale Tower System that allows for quick code development and easy

prototyping. (Freescale Inc., 2010) The development kit includes the following

components:

1) TWR-MCF51MM: A standalone development board featuring the

MCF51MM256VLL microcontroller.

2) TWR-SER: A serial connectivity board to that supports both USB and

RS232.

3) TWR-ELEV: Two (2) elevator boards to connect the MCU to

additional Tower peripheral modules.

4) MED-EKG: A sensor module that detects EKG data (for use with

Flexis MM parts only)

3.5.1 TWR-MCF51MM

Figure 3.8: TWR-MCF51MM

TWR-MCF51MM is a low-cost evaluation, demonstration and development board

that features a 32-bit MCF51MM256 microcontroller. The TWR-MCF51MM can

operate stand-alone or as the main control board in a Tower System with peripheral

modules. The following list summarizes the features of the MCF51MM Tower MCU

boards:

36

 Tower compatible processor board

 Open Source BDM (OSBDM) circuit

 Analog measurement circuitry

 4 LEDs

 DIP Switches and push buttons for user input

 Potentiometer

 MMA7361L three-axis accelerometer

 RS232 transceiver and 2x5 pin header

Figure 3.9: TWR-MCF51MM Block Diagram

 There are two crystals provided on the board for clocking the MCF51MM256

device such as 16 MHz crystal connected to XTAL2 and EXTAL2 for system

clocking and 32.768kHz crystal connected to XTAL1 and EXTAL1 for TOD usage.

The TWR-MCF51MM can be powered by the Open Source BDM (OSBDM) circuit

via the Mini-B USB connector when stand-alone. When assembled with the Tower

System and the TWR-SER is configured to run USB device mode (J16 pin 3 and 4

connected), the Mini-B USB connector is no longer used as a power source and only

used for OSBDM debugging purposes. In this case, the power will be supplied from

37

the Mini-B USB from the TWR-SER. Plug in the Mini-B USB connector from

TWE-SER before plugging in the Mini-B USB connector from TWR-MCF51MM. A

standard USB A male to Mini-B male cable used to supply power from a USB host

or powered USB hub. Jumper, J11, can be used to isolate the 3.3V supply from the

microcontroller. This connection can be used to measure the power usage of the

MCF51MM256 microcontroller. (Freescale Inc., 2010)

 The TWR-MCF51MM features a 2x10 expansion connector J27 to MED-

EKG for routing the medical engine signals to external medical board so it can use

the OPAMP, TRIAMP, ADC and DAC on MCF51MM to implement the

requirement signal conditioning for medical applications. When the DSC

MC56F8006 from the MED-EKG is enabled, MCF51MM256 can choose to read the

conditioned EKG results output from the DSC via I2C transmission (pin 3 and pin 4).

To enable I2C communication, user must assemble the MEG-EKG with the Tower

System because the TWR-SER has the pulled up resistors circuit required for I
2
C

transmission. (Freescale Inc., 2010)

 The TWR-MCF51MM features two expansion card-edge connectors that

interface to elevator boards in a Tower System: the Primary and Secondary Elevator

connectors. The Primary Elevator connector, comprised of sides A and B, utilized by

the TWR-MCF51MM, while the Secondary Elevator connector only makes

connections to ground (GND). The user must ensure correct configuration of tower

system has been constructed as misplace the board with the tower will turn no results

(no activation of board). An on-board, MC9S08JM60 based OSBDM circuit

provides a debug interface to the MCF51MM256. The MC9S08JM60 is a USB-

enabled microcontroller with an 8-bit HC9S08 core. The OSBDM circuit provides a

USB-to-debug interface that allows run-control and debugging of the

MCF51MM256 target device. The USB drivers required to communicate with the

OSBDM are provided in development tools such as Freescale CodeWarrior. When

TWR-MCF51MM is used stand-alone, this single USB connection can also be used

for power. (Freescale Inc., 2010)

38

3.5.2 TWR-SER

Figure 3.10: TWR-SER

The TWR-SER Serial Module provides USB, Ethernet, CAN and RS232/485

connectivity solutions for designers developing with the Freescale Tower

System. This peripheral module is designed to be combined and used with other

microcontroller and peripheral modules in the Tower System. (Freescale Inc., 2008)

In this project, TWR-SER will route the data from TWR-MCF51MM board to

SKXBEE via DB9 (RS232) after voltage conversion at MAX232 circuitry. TWR-

SER also supplied the voltage power to the tower system via its USB port. The

feature of TWR-SER can be summarized as follow:

 10/100 Ethernet PHY with MII and RMII interface

 Ethernet connector with integrated magnetic and LEDs

 RS232 and RS485 transceivers and single DB9 connector

 CAN transceiver with 3-pin head

3.5.3 TWR-ELEV

The TWR-ELEV Elevator modules are the basic building block of the Freescale

Tower System. Designed to connect microcontroller and peripheral modules, the

Elevator modules provide the power regulation circuitry and structural integrity

http://www.freescale.com/webapp/sps/site/homepage.jsp?code=TOWER_HOME
http://www.freescale.com/webapp/sps/site/homepage.jsp?code=TOWER_HOME

39

needed for all configurations of an assembled Tower System. In this project, the USB

wall plug will connect with the TWR-ELEV to supply the voltage to this kit. There

are two elevator in the TWR-ELEV such as primary and secondary or functional and

dummy. (Freescale Inc., 2008) User must ensure correct configuration of boards to

the TWR-ELEV to allow voltage be supplied to respective board. Figure below

demonstrate the feature TWR-ELEV.

Figure 3.11: Feature of TWR-ELEV

3.5.4 MED-ECG

Figure 3.12: MED-ECG

40

The Medical EKG Module (MED-EKG) is developments board that rapid prototype

electrocardiogram (EKG/ECG) application. MED-ECG is designed to work with the

TWR-MCF51MM module. (Freescale Inc, 2010) Generally speaking, it is the sensor

board that detects and captures the ECG signal from subject via electrodes or on

board slide electrode. The following list summarizes the features of the MED-EKG

board:

 Freescale Tower System compliant and small form factor.

 External connector to TWR-MCF51MM MCU modules.

 Includes the MC56F8006 DSC used for signal conditioning.

 Electrodes embedded in development board for easy EKG signal

detection using fingertips.

 Open connector for any type of EKG electrodes for additional

precision.

 JTAG-ONCE connector for DSC programming.

 Different jumper configurations to allow various signal conditions.

 Low power.

Figure 3.13: MED-ECG block diagram

 The MED-EKG is powered by the default trough connector J1, but can be

also powered by the JTAGONCE port. Do not apply both power sources at the same

time to avoid the damage to board itself. Header J1 (2x10 pins) of MED-EKG

41

provides connectivity with either the TWR-MCF51MM through the medical

connector. It allows the use of internal OPAMPs, TRIAMPs, ADC and DAC of

Flexis MM 32-bit or 8-bit microcontrollers to implement the requirement of signal

conditioning. Table attached in the appendices A shows the signal present in each pin

of medical connector. (Freescale Inc., 2010)

 The on-board slider electrodes on MED-ECG are used when external

electrodes are not available. The user can place their fingers as is shown in Figure

below. Since the contact is not as secure as the external electrodes leads, the user

must avoid any small movement to reduce input noise. This method is not a good

method for longer period of capturing ECG signal from subject.

Figure 3.14: Fingertips Collocation on Slider Electrodes

3.6 Cytron’s SKXBee (Wireless Module)

SKXBee has been designed for 5V TTL logic interface where no extra voltage

divider is necessary. With minimum interface, it is ready to connect to

microcontroller for embedded XBee development. Furthermore, on board USB to

UART converter offer easy yet reliable communication to PC for functionality test

and as XBee dongle. SKXBee can support both XBee and XBee PRO because they

are interchangeable and pin-to-pin compatible with each other. (Cytron Technologies,

2008) On board USB to UART converter is design for easy communication with PC

42

for functionality test and as XBee dongle. The author will need this convertor at the

receiver part of our ECG wireless transmission. 5V TTL logic interface with no extra

voltage divider offer straight forward interface to microcontroller for embedded

wireless development. RS232 output from Freescale‟s tower system underwent

voltage level conversion using MAX232 (convert coltage level from RS232 to TTL,

5V) It has been designed with capabilities and features as follow:

 Support both XBee and XBee PRO modules

 USB Plug and Play UART function

 5V powered

 5V UART interface, ready for microcontroller interface

 Default baud rate of 9600bps

 Long Range Data Integrity

 Low power consumption

 Compact yet easy and reliable platform

 As serial port replacement (wireless)

 Point-to-point, point-to-multipoint and peer-to-peer topologies

supported

Figure 3.15: SKXBee, Zigbee module

Table 3.1: Function and description of SKXBee components

Label Function and description

A Connecter for either XBee or XBee-Pro module. In our project, XBee

module will be soldered on SKXBee.

B Reset button for XBee module.

C 5 ways header pin for external power supply and interface to

43

microcontroller. If this kit is connected to microcontroller board, it should be

powered with 5V. In our project, it will be powered by MAX232 circuits

(5V).

D 3.3V power indicator. This small green LED indicates the status of 3.3V

from on board voltage regulator. It should be ON if either external 5V power

or USB connection is connected to SKXBee.

E These are a pair of small LED, red and yellow in color. These LEDs are

connected to on board USB to UART converter. It indicates the receiver and

transmitter activity. It will only work if SKXbee is connected to PC or

laptop through USB cable. Red LED indicates USB‟s transmitter activity,

while yellow LED indicate USB‟s receiver activity.

F USB B type socket. If connection to PC or laptop is required, connect one

end of USB cable (B type) to this socket, while the other end to PC or laptop

USB port.

 SKXBee has its own interfacing pin instead of USB dongle. It is very

convenient to use SKXBee to interface with other microcontroller. When USB

dongle is used for SKXBee, all 5 pin connection should not be connected. In this

project, the author will connecting the MAX232 circuitry to the UART pin of

SKXBee to send the ECG data to receiver site of SKXBee whereas the USB dongle

used at the receiver site toreceive data. The table below show the function of each

interfacing pin of SKXBee:

Table 3.2: Interfacing pin of SKXBee

Label Definition Function

5V Power Input

for SKXBee

External power source for SKXBee, the typical voltage

is 5V. On board 3.3V voltage regulator will regulate the

voltage to 3.3V for XBee module. The power is not

necessary if SKXBee is connected through USB cable.

GND Ground or

negative

Ground of power and signal.

44

XB_RX XBee UART

Receive signal

This is XBee module‟s receiver pin, it should be

interfaced to 5V logic UART, no divider is necessary.

This is an input pin to SKXBee. It should be connected

to microcontroller‟s transmitter pin.

XB_TX XBee UART

Transmit

signal

This is XBee module‟s transmitter pin; it should be

interfaced to 5V logic UART. This is an output pin from

SKXBee. It should be connected to microcontroller‟s

receiver pin.

RESET XBee Reset

pin

Reset pin of XBee module. It should be connected to a

push button to Gnd, or NPN transistor.

3.7 MAX232IN

The MAX232IN is a dual driver/receiver that manufactured by Texas

Instrumentations includes a capacitive voltage generator to supply TIA/EIA-232-F

voltage levels from a single 5-V supply. Each receiver converts TIA/EIA-232-F

inputs to 5-V TTL/CMOS levels. These receivers have a typical threshold of 1.3 V, a

typical hysteresis of 0.5 V, and can accept ±30-V inputs. Each driver converts

TTL/CMOS input levels into TIA/EIA-232-F levels. (Texas Instrumentation Inc.,

2004) In this project, the author used MAX232IN to convert the signal of RS232 to

TTL, 5V (UART) to allow interfacing with SKXBee for wireless transmission

purpose.

Figure 3.16: MAX232IN

45

 There are two RS232 to TTL convertor in MAX232IN chip. Pin 11 and 10

are input UART or UART Transmit, pin 14 and 7 are output RS232 or RS232

Receive, pin 12 and 9 are output UART or UART Receive, pin 13 and 8 are input

RS232 or RS232 Transmit. RS232 signal utilized voltage level from -15V until

+15V whereas UART or TTL signal utilized voltage level from 0V until 5V.

Figure 3.17: RS232 to TTL convertor in MAX232IN.

3.8 Software

3.8.1 CodeWarrior Development Studio for Microcontrollers 6.3

Figure 3.18: Code Warriors 6.3

Freescale's CodeWarrior Development Studio for Microcontrollers v6.3 is a single,

integrated tool suite designed to fast track with RS08, HC(S)08 and ColdFire V1

members of the Freescale Controller Continuum. CodeWarrior provides optimized

tools to take full advantage of the Freescale microcontroller. (Freescale Inc.,2010) In

46

this project, CodeWarrior Development Studio for Microcontrollers 6.3 is used to

program the MCF51MM microcontroller in order to carry out the ECG signal

capturing function and transmit the data. To allow burning program into the

microcontroller, MCF51MM , the TWR-MCF51MM board must connected with the

computer with USB via on port USB port and run under OSBDM mode (two

additional LED will light on indicate activation of OSBDM mode). The

programming will be compiled and debug using Code Warrior before burning into

microcontroller.

3.8.2 Digi Maxstream’s X-CTU

Figure 3.19: X_CTU program interface

X-CTU is a Windows-based application provided by Digi. This program was

designed to interact with the firmware files found on Digi‟s RF products and to

provide a simple-to-use graphical user interface to them. (Digi Technologies, 2008)

X-CTU is important to configure the parameter such as baud rate, stop bits, parity

bits, parity, destination address, etc which is very important to secure communication

between receiver and transmitter site of SKXBee. This program used to program

XBee module and serve as monitoring software at receiver site to monitor the data

47

received. After launched, user will see four tabs across the top of the program. Each

of this tab has a different function. The four tabs are:

 PC Settings: Allows users to select the desired COM port and

configure that port to fit the radios settings.

 Range Test: Allows users to perform a range test between two radios.

 Terminal: Allows access to the computers COM port with a terminal

emulation program. This tab also allows the ability to access the

radios‟ firmware using AT commands. In this project, we using this

terminal tab to monitor the data received by the SKXBee.

 Modem Configuration: Allows the ability to program the radios‟

firmware settings via a graphical user interface. This tab also allows

customers the ability to change firmware versions.

3.8.3 MED-ECG GUI

Figure 3.20: MED-ECG GUI

MED-ECG GUI is an user friendly platform that developed by Freescale Inc. to

display the ECG signal captured using the Freescale‟s medical development kit. In

this program, there are start and on button. Before install this program to the

computer, Microsoft Framework 2.0 (up to Window XP) and Microsoft Framework

3.5 (up to Window 7) must be installed or the MED-ECG will malfunction. User can

48

display the raw ECG data by clicking the “display raw data” column. To adjust the

range of time display such as 1 second, 0.5 second, etc, adjust the x axis

correspondingly by pulling it to the right. After connecting the medical development

kit to computer, user must choose correct serial com port to correctly output the ECG

data. After the development kit connects to computer, it will be recognized as virtual

com port. The choice of com port can selected at the top right site of the program.

Heart rate of subject will be estimate by GUI by calculating QRS complex peak. At

the bottom left site, there is a status bar which indicates the current status of MED-

ECG for user reference.

3.8.4 Eltima’s RS232 Data Logger

Figure 3.21: Eltima‟s RS232 Data Logger

Eltima‟s RS232 Data Logger is the software that able to capture the data received at

specified com port and saved data in .txt file for further review. To ensure data

captured at correct com port, set the compatibility settings such as baud rate, stop bits,

parity, data bits, etc and number of com port correctly before data transmission start.

Do not open X-CTU to monitor the com port and RS232 data logger to save the data

for same com port simultaneously as there is only one action allow for one com port

at one time.

49

CHAPTER 4

4 DESIGN AND IMPLEMENTATION

4.1 Placement of ECG Electrodes

Figure 4.1: External Electrodes Connection

In this project, the author used the external electrodes connector which is labelled as

J12 on the MED-EKG module. This connection yields less noise and provides the

best way to prototype EKG application instead using the on-board sliders contact.

The author connects a 3 lead cable (2 electrodes and 1 ground) via J12 header and

use external electrodes. Red electrode will be attached to right arm, white electrode

to left arm and lastly black electrode to left abdominal in this project. Welch Allyn

ECG Lead Wires for Atlas Monitor, 3-lead AHA will be used with silver chloride

ECG electrode to capture the ECG signal and transfer the data to Freescale‟s

development kit for further data processing.

50

 Placing one tab on each arm and left abdominal, results in three unipolar

leads, called the “augmented limb leads.” These three leads are referred to as aVR

(right arm), aVL (left arm) and aVF (left leg or left abdominal). They record a

change in electric potential in the frontal plane. Although the electrodes are placed

on each arm and left adominal, they measure the electrical activity between the heart

and shoulders and heart and left abdominal. Different positioning of the ECG

electrodes will results different ECG signal‟s pattern due to different cardiac axis

measured. (Francis et. Al., 2003)

Figure 4.2: Silver Chloride ECG electrode

 The same three leads that form the augmented limb leads also form the

standard leads, usually designated as I, II, and III. (Francis et. al., 2003)They are all

bipolar (they detect a change in electric potential between 2 points) and detect an

electrical potential change in the frontal plane:

1) Lead I is between the right arm and left electrodes, the left arm being positive.

2) Lead II is between the right arm and left abdominal electrodes, the left

abdominal being positive.

3) Lead III is between the left arm and left abdominal electrodes, the left

abdominal again being positive.

4.2 Programming of Freescale’s Medical Development Kit

In this project, programming the MCF51MM is the great challenge to make

everything in this project work. Below show the overall structure of the

programming of Freescale‟s medical development kit. The TWR-MCF51MM is

51

program in such a way that initiated by MED-ECG GUI from the computer by

clicking start button. Take note that if the GUI didn‟t initiate the data capturing event,

MED-ECG board will not capture any data. The MED-ECG board then capture the

signal and transfer the raw data to the TWR-MCF51MM board via the medical

connector header (20 pins). In the TWR-MCF51MM board, the raw ECG data will

process on MCF51MM256 on-chip analog modules (TRIAMPs, OPAMPs, DAC,

and ADC) along with noise filters to condition the ECG signal. The ECG signal

condition includes the following stages:

1) Instrumentation amplification using on-chip TRIAMP1, TRIAMP2 and

OPAMP1

2) Band pass filtering

3) Amplification using on-chip OPAMP2 programmable gain

4) Notch filtering

5) Amplification using an off-chip OPAMP

6) Automatic baseline compensation using on-chip 12-bit DAC

7) Digital filtering with the pre-programmed MC56F8006 Freescale DSC

 After digital filtering tuning, the end results are sent from DSC via I
2
C

protocol back to MCF51MM256. The MCF51MM256 then uses the Freescale USB

stack to forward the results to the computer via peripheral module, TWR-SER.

(Freescale Inc, 2010) The tower system, TWR-ELEV play an important role here to

connect the TWR-MCF51MM and TWR-SER together and allow data transmission

without cabling between these two board. They are then displayed on the Freescale

MED-EKG graphical user interface (GUI). There is another data output at the TWR-

SER which is via serial communication, RS232. The serial port will output the data

that is exactly the same with the Freescale‟s USB port. This signal output from serial

port of TWR-SER is essential to be utilised in the wireless transmission via SKXBee.

 In this project, the author primarily program the TWR-MCF51MM to

sequence the capturing ECG signal from MED-ECG and process the raw ECG data

obtained on the TWR-MCF51MM. Then the process ECG data send back to the

computer‟s GUI via USB cable. The author adds another output of ECG raw data via

RS232 or DB9 on the TWR-SER board using SCI (Serial Communication Interface).

This is to utilise the RS232 signal to interface the wireless module by converting the

52

signal to TTL/CMOS (5V) using MAX232 circuitry. Refer to appendices for

programming file and source code of the project.

4.2.1 Programming Flow

Figure 4.3: Flow Chart of Main Function (main.c)

At first, initializes the system. The ADC, TPM, GPIO,MCU, MCG, KBI, RTC, and

other modules are set to system default. The USB is enabled in this process. Then the

main function enters into an infinite loop. The Check_USB_Status function controls

the transfer of the USB states between attached and suspend. The TestApp_Task is

called in the main loop after the device succeeds to enumerate. TestApp_Task is the

event of ECG signal capturing and processing. For Check USB status, it initializes

the USB BDT according to the USB RAM assignment, then initializes the USB

registers, and sets the USB state to ATTACHED at last. To set the USB registers, it

configures the USB module (pullup resistor, USB regulator in terms of the hardware

design) first, then enables the EP0 and the USB interrupt. For self-powered devices,

the USB module can be enabled when MCU detects the USB bus power, and the

USB device initial state is POWERED.

System Initiation

Check USB status

TestApp_Task

System Start

53

 After the USB is enumerated and configured successfully, a communication

pipe is created between the USB host and the device. All commands and data are

transferred into the pipes. There are five pipes are built in the data logger system

such as default pipe (control pipe), command pipe, status pipe, data out pipe and data

in pipe. The command pipe is used by the host to send the commands to USB device.

It is built on endpoint 1 of the USB device. The status pipe used to sends the

response to the host via the status pipe after it receives and executes the command.

Data out pipe is used by the host to transfer data to the device. Data in pipe sends the

data to the host via the data in pipe. (Freescale Inc., 2008)

Check USB status

USB module reset

USBCTL0_RESET = 1

Reset end?

N

Y

Initialize the BD of endpoint 0

(For BD OUT: set buffer

address EPADR, set CNT = 8,

DATA0, DTS=1, OWN = 1)

Enable EP0

(EPCTL0 = 0x0D)

Config USB module

(pullup resistor ,

regulator, PHY)

Enable USB module

and USB interrupt

Set USB state

 ATTACHED

(or POWERED)

Return

Figure 4.4: Flow of Check USB status

54

Figure 4.5: Flow of TestApp_Task

Start

 Data Acquisition

Y

Is status

response not

null?

 Is status

pipe available?

Send status

response and

clear pending

flag

Pending

the

response

Return

N

N

Y

Y

Process

ADC

command

Process

TPM

command

Process ECG

capturing

command

…..

Has stop

command

received?

N

 Data Buffer

Semaphore = 1?

Copy the data

to even buffer

of EP5

Copy the

data to odd

buffer of EP5

Y N

Deliver the data

to the host (GUI)

55

 At first, the TestApp_Task checks whether the data acquisition has started.

The data acquisition only initiated by clicking start on the MED-ECG GUI, give true

value to ADC_CHANNEL_FEEDBACK_SIGNAL,

ADC_CHANNEL_ECG_SIGNAL (via EP1) to allow ECG data acquisition. The

acquired data will undergo a series of processing such as ADC (Analog to Digital

Conversion), DSC (Digital Signal Conditioning), amplification (by op-amp), filtering

processes, etc (Freescale Inc., 2010). While the data acquisition is working according

to the status of the ADC conversion, it copies the data to the endpoint buffer of

endpoint5. Semaphore is a protected variable or abstract data type that provides a

simple but useful abstraction for controlling access by multiple processes to a

common resource in a parallel programming environment. It is useful tool in the

prevention of race conditions and deadlocks in the continuous ECG data acquisition

processes. The data then delivered to the GUI to display via EP5.

 Afterwards the program begins to check whether there is response data

needed that needs to be transferred to the host via status pipe. If there is a response

data, it is delivered. If there is no response, the program suspends and then exits

from the function (back to acquisition data until user stop or no response from host).

If the program (MED-ECG GUI) shut down during data acquisition, the control pipe

disable and EP0 deactivate. This will results ECG data‟s acquisition stop instantly.

There is another output of data (RS232) in this project. It is executing before the

semaphore function by adding a SCI commands and send it via I
2
C protocol.

Figure 4.6: Communication pipe between GUI and Prototype

http://en.wikipedia.org/wiki/Variable_(programming)
http://en.wikipedia.org/wiki/Abstract_data_type
http://en.wikipedia.org/wiki/Process_(computing)
http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Deadlock

56

4.3 Jumper Settings on Freescale’s Medical Development Kit

Settings of jumpers on Freescale‟s Medical Development Kit are essential step to

ensure proper working of the programming code and avoid errors such as additional

gain or voltage added to the data. Refer to appendices for default settings of the

Freescale‟s medical development kit. Generally the jumpers are set to output the data

via RS232, printing the ECG data to the GUI via USB port, correct op-amp gain

settings, etc. Majority of the jumpers settings set at defaults but the author make

some changes of certain jumper settings on the kit as following table on ensure

proper functioning:

Table 4.1: Modification of Jumper Settings

Board Modifications and Reasons

TWR-SER J16 on TWR-SER has pins 3 and 4 connected instead of pins 1

and 2. This selects the USB port to support device class

transmission which is required for printing the EKG signal to

the MED-EKG GUI.

TWR-MCF51MM Remove the jumpers that connect pins 1 and 2, 9 and 10, 11

and 12, and 13 and 14 from header J18.

Shunt 1-2 connects PTE7 with LED4, but PTE7 also enables

the Power Supply of Medical Connector. If this jumper is

placed, a value of about 1.2 V is present on pin PTE7 and the

power-up sequence of DSC may fault. If you are not using the

DSC, it is not important.

Shunts 9-10, 11-12 and 13-14 must be disconnected in any

case, because they connects the on-board accelerometer outputs

to ADC inputs, and they are connected to the same channels

used for ECG signals. If they are not removed, the signal will

include the added noise of the accelerometer signals.

57

4.4 MAX232 Circuitry

In this project, the author constructed MAX232 circuitry to convert the signal of

RS232 to TTL, 5V to allow interface of data with SKXBee on bread board. The

MAX232 chip that the author used was MAX232IN manufactured by Texas

Instruments. As explained earlier, SKXBee can only be interface with TTL/CMOS

signal which voltage level is 5V. Thus, the author has to construct the MAX232

circuit on the breadboard to change the RS232 signal to TTL (5V). The pins 2

(Transmit Data) and pin 3 (Receive Data) of Serial Port from TWR-SER (Freescale‟s

module) connected to pin 14 and pin 13 of MAX232 respectively. Pins 11 (UART

Transmit) and pin 12 (UART Receive) of MAX232 connected to Tx pin and Rx pin

of SKXBee respectively. Pins 5 of the DB9 connected to the ground as reference

voltage. Pins 7 and 8 of the DB9 short together to allow continuous data cleared to

send to MAX232 circuitry.

Figure 4.7: Circuit diagram of MAX232 circuitry

 Figure 4.8: MAX232 circuitry on breadboard

58

4.5 Wireless Transmissions using XBee

XBee module (mount on SKXBee) served as the most important component in

wireless transmission of project. The XBee modules interface to a host device

through a logic-level asynchronous serial port. There are two type of operation for

XBee such as transparent operation and API operation. By default, XBee Modules

operate in Transparent Mode. When operating in this mode, the modules act as a

serial line replacement - all UART data received through the DI pin is queued up for

RF transmission. (Digi Technologies, 2008) When RF data is received, the data is

sent out the DO pin. In this project, the author implements the transparent operation

to transmit the ECG data captured using Freescale‟s development kit.

Figure 4.9: Data Flow from microcontroller to XBee module

 As XBee module was solder on the SKXBee board, the author only

concentrate on interfacing the pins on SKXBee (5V, ground, TX, RX , RESET)

rather than on XBee module itself in this project. The RS232 output from Freescale‟s

module will converted to 5V TTL/CMOS signal via MAX232 circuitry. The data

then flows in to SKXBee via RX pin of the SKXBee. The flow of data occurred in

such a way from SKXBee board to the XBee module: ECG data enters the module

UART through the DI pin (pin 3) on XBee module as an asynchronous serial signal.

The signal should idle high when no data is being transmitted. Each data byte

consists of a start bit (low), 8 data bits (least significant bit first) and a stop bit (high).

In this project, 9600 baud rate, none parity, 1 stop bit and 8 bit used for XBee

settings. The module UART performs tasks, such as timing and parity checking, that

59

are needed for data communications. (Digi Technologies, 2008) Serial

communications depend on the two UARTs to be configured with compatible

settings (baud rate, parity, start bits, stop bits, data bits). To ensure the

communication between two XBee module, the author has to set both XBee module

to have same compatible settings (9600 baud rate, none parity, 1 stop bit and 8 bits).

The following figure illustrates the serial bit pattern of data passing through the

module:

Figure 4.10: Example Data Format of XBee (8 bits, none parity, 1 stop bits)

 Other than the stated compatibility settings, to ensure continuous transfer of

data between both XBee module, the author has to set the correct address for both

XBee module. Every XBee data packet sent over-the-air contains a Source Address

and Destination Address field in its header. The RF module conforms to the 802.15.4

specification and supports both short 16-bit addresses and long 64-bit addresses. 16-

bit addressing is practice in this project. To send a packet to a specific module using

16-bit addressing: Set DL (Destination Address Low) parameter to equal the MY

parameter and set the DH (Destination Address High) parameter to „0‟. The XBee

module can be configured to use short 16-bit addresses as the Source Address by

setting (MY < 0xFFFE). (Digi Technologies, 2008) Setting the DH parameter (DH =

0) will configure the Destination Address to be a short 16-bit address (if DL <

0xFFFE). For two modules to communicate using short addressing, the Destination

Address of the transmitter module must match the MY parameter of the receiver. By

default, the RF module operates in Unicast Mode. Unicast Mode is the only mode

that supports retries. While in this mode, receiving modules send an ACK

60

(acknowledgement) of RF packet reception to the transmitter. If the transmitting

module does not receive the ACK, it will re-send the packet up to three times or until

the ACK is received. Table below show the address set in this project for both XBee

module using X-CTU.

Table 4.2: Address for both SKXBee

Parameter XBee (Receiver) XBee (Transmitter)

MY (Source Address) 0x01 0x02

DH (Destination Address

High)

0 0

DL (Destination Address

Low)

0x02 0x01

4.5.1 Flow of Data in Transmitter and Receiver

The XBee at receiver site should receive ECG data continuous once the prototype

system initiated. The receiver must recognise the beginning of the start bit, and then

sample the line halfway through each of the 10 bit periods. The receiver clock runs at

16 times the baud rate, and the receiver can sample the input line once per period of

this clock. (John Foster, 2001) The sequences of operations are as following:

1) The start bit begins.

2) At its next clock cycle, the receiver detects that the start bit has begun. This

may be up to 1/16 of a bit period after the actual start.

3) After another 8 cycles, the receiver samples the line again. If the line is still at

logic 0, the start bit is confirmed. Otherwise the initial transition is dismissed

as noise.

4) After another 16 cycles the receiver samples the line. This is repeated a

further time, to get the values of the eight data bits.

5) After another 16 cycles the receiver samples the line again, expecting to see

the logic 1 level of the stop bit. If it doesn‟t see a logic 1 at that point, it

discards the data and reports a framing error.

6) After one more cycle the receiver starts sampling the line at every cycle,

waiting for the next start bit.

61

 When ECG data is sent by XBee in transparent mode at transmitter site, all

bytes are first converted to ASCII. (John Foster, 2001) Then the values are reported,

each terminated by a carriage return. Refer to appendix for pin out of XBee module.

The order is:

1) The channel indicator with a bit set for each enabled input or output. This is a

16-bit word, with the most significant byte sent first. In the high byte, bit 7 is

not used and bits 6 to 1 are set if the data will include samples from ADC5 to

ADC0 respectively. Bit 0 of the high byte is set if the data will include the

state of line D8. In the low byte, bits 7 to 0 correspond to lines DIO7 to DIO0.

2) The DIO data (line state) for each enabled digital input or output, if there are

any enabled digital inputs or outputs. This is a 16-bit quantity, with the D8

state in bit 0 of the msb and bits 7–0 in the lsb.

3) The ADC data for each enabled analogue input, in ascending order of line

number. Each is an unsigned 16-bit quantity, with the 10-bit value in the low-

order 10 bits.

4) The data is terminated by an extra carriage return.

Figure 4.11: Internal Data Flow Diagram

 For transmitter site, when the ECG data enters the XBee module through the

DI pin (pin 3), the data is stored in the DI Buffer until it can be processed. The ECG

data will be sent via transmitter. For receiver site, when ECG data is received, the

data enters the DO buffer and is sent out the serial port to a host device (computer).

Once the DO Buffer reaches capacity, any additional incoming RF data is lost. (Digi

Technologies, 2008)

62

4.6 Prototype Development

In the end of this project, the author was able to develop prototype systems which

comprise of receiver and transmitter site. The receiver site receives ECG data

transmitted from transmitter site and monitored by X-CTU. The received data then

saved by the Eltima‟s RS232data logger software. In the transmitter site, ECG data

display in MED-ECG GUI in the computer. However the data generated by MED-

ECG will not be saved automatically. To redisplay the ECG data generated in a

session, user has to check “display raw data” column before initiates the ECG

prototype. The MED-ECG GUI will then display data in that specified column. To

redisplay the ECG results, copy the generated ECG data at MED-ECG and paste it in

Microsoft Excel to construct an ECG graph. Lighting of LED on prototype board

after power supplied indicates working condition. If there was no LED lighting after

power supplied, it may caused by incorrect assemble of the tower system.

Figure 4.12: ECG prototype (Transmitter site)

63

 As seen in the figure for transmitter site, DC power supply (red and black

cable) connected to the MAX232 circuitry for 5V. The power of the Freescale‟s

medical development kit will be supplied by computer‟s USB port (black USB cable

connecting the TWR-SER board). 3 ECG cable such as white, black and red will be

connected to left hand, left abdominal and right hand respectively from MED-ECG

connector. The Freescale‟s medical development kit constructed with the TWR-

MCF51MM board in the top slot of TWR-ELEV whereas TWR-SER will be

connected at the lowest slot of the TWR-ELEV. Primary slot of the boards has to

connect to the functional block of TWR-ELEV whereas the secondary slot has to

connect to the dummy block. Incorrect connecting the board to TWR-ELEV will

results in malfunction of system. MED-ECG connected to TWR-MCF51MM board

via medical connector (20 pins). SKXBee connected with MAX232 circuitry via its

5V to source, ground to MAX232 circuitry ground, Rx and Tx pins to MAX232IN‟s

pins 12 and 11 respectively. The ECG capturing event initiated by MED-ECG GUI.

 The receiver site of the prototype system comprise of SKXBee and computer

as figure shown. The SKXBee will receive data from transmitter site and display in

X-CTU under terminal tab or saved using RS232 data logger. To ensure secure

transfer of data, set the compatibility settings and address of both XBee module

correctly as discussed in earlier section.

Figure 4.13: Prototype system (Receiver site)

64

 The prototype can be reprogram with modified source code using Code

Warrior 6.3. Compare to other microcontroller board, this prototype is more

convenient in term of burning new source code into the microcontroller, MCF51MM.

To do this, connect a mini USB to the TWR-SER board first to supply power to the

prototype system. Then connect a mini USB cable connecting the computer with the

TWR-MCF51MM board (for reprogram purpose, normally not necessary). Connect

the USB cable for TWR-SER first, never connect the USB cable to TWR-

MCF51MM before TWR-SER or it will posses damage to the prototype! The USB

port in TWR-MCF51MM is serves as reprogramming microcontroller purpose. After

connected the USB, the CW 6.3 can be initiate to begin the debug and burn tasks for

microcontroller on board.

Figure 4.14: Reprogram the TWR-MCF51MM

Figure 4.15: Program microcontroller on board using CW 6.3

65

 In this project, if DSC function need to turn off, the only way is to reprogram

the microcontroller to deactivate the DSC function. The author reprograms the

microcontroller throughout the development phase of the project for trials. The

benefit of using this development kit is the flexibility (able to reprogram) compare to

other development module which unable to reprogram. When TWR-MCF51MM

connects with computer, there are two LEDs light on indicating ready to reprogram

as figure 4.14. The captured ECG data undergo a series of data processing through

Freescale‟s medical development kit, MAX232 circuitry, SKXBee and computer as

shown in figure 4.15.

Figure 4.16: Data Flow Diagram

MED-ECG captured data and data

undergo series of data processing

(instrumentation amplifier, low pass

filter, notch filter, amplifier) on

board. Data flow out via medical

connector

Data received by XBee on board

and transmitted to computer via

USB dongle. Data monitored and

saved by software

RS232 signal converted to

TTL/CMOS (5V) by MAX232

circuitry. Data then flow to

SKXBee via UART interface

pins and transmitted by the XBee

module on board

Data flow through instrumentation

amplifier, band pass filtering,

amplification, notch filter, baseline

compensation, digital filtering, etc

on TWR-MCF51MM. Data output

via RS232 and USB

Processed data sent via USB to

computer to display in MED-ECG

GUI

66

CHAPTER 5

5 RESULTS AND DISCUSSIONS

5.1 Results of the Prototype System

5.1.1 Transmitter Site of Prototype System

ECG signal that obtained in the transmitter site will be display in MED-ECG GUI in

a real time graph. Please note that the ECG results generated in this project is based

on three external leads of ECG electrode placing on the both hands and left

abdominal other than the slide electrode on MED-EC. Different placement of ECG

electrode will output different ECG data due to different cardiac axis. If the ECG

signal generated are not in desired range (too small or big of amplitude), following

strategies can be took to obtain better ECG results:

1) Changing the op-amp gain of TWR-MCF51MM by press and release black

button (SW2, SW4 and SW1) on-board. SW2 is increase op-amp gain, SW4

is decrease op-amp gain and lastly SW1 is reset the op-amp gain. By default,

TWR-MCF51MM board has 9x op-amp gain. Each time that the gain is

reduced, LED D9 blinks; if the gain is increased, LED D10 blinks. If the

maximum or minimal gains are reached, the related LED will remain solid.

Increase the gain if amplitude of ECG too small and decrease it when

amplitude too big.

2) Deactivate the DSC function of the TWR-MCF51MM by modifying the

source code. This will disable the DSC function and obtain raw ECG data

without amplification.

67

3) Shunt J3 and J4 of the MED-ECG from 2-3 to 1-2 to increase the gain of

ECG electrode from 10x to 100x. Please note that this is not recommend

strategy as increasing the gain ten folds, it also increase the noise originated

from electrode ten folds in the same time.

ECG data display in the following with following settings unless specified by terms:

1) 3 lead ECG electrodes.

2) Shunt 2-3 at J3 and J4 MED-ECG (10x).

3) With DSC function operated.

4) Op-amp gain of TWR-MCF51MM at 9x

5) ECG electrode place on both arm and left abdominal.

Figure 5.1: Typical ECG waveform obtained with 9x op-amp gain

Figure 5.2: Movements when measuring will create noise

68

Figure 5.3: Measuring with smallest op-amp gain 2x

Figure 5.4: Measuring with biggest op-amp gain 17x

Figure 5.5: Measuring without DSC function

69

Figure 5.6: Measuring with slide electrode (unsecure, with slight finger movement)

Figure 5.7: Measuring with slide electrode (secure, no finger movement)

5.1.2 Receiver site of Prototype System

At the receiver site, there will be no real time graph of ECG display as transmitter

site. The author will show proof of wireless transmission of ECG data between

transmitter and receiver of the prototype system. Data received in the receiver site

will be monitored by X-CTU program and saved by the RS232 data logger. Only one

program allows implementing at one time as one com port cannot perform different

tasks at one time. For RS232 data logger, a .txt file will be created after one session

70

of data capturing. Please refer to the appendices for one of the sample obtained using

RS232 data logger in .txt file. As explained in earlier section, the data received is in

ASCII form and need convert to hex form for convenient of data analysis.

Figure 5.8: Monitoring data received at receiver site using X-CTU

Figure 5.9: Data received convert from ACHII to hex form

71

5.2 Analysis of Results

5.2.1 ECG waveform at Transmitter Site

The ECG data that obtained by the author is in cyclical pattern. However, it is not the

typical ECG graph that the author reviewed in earlier section of this project which

has typical P, Q, R, S and T segments. Peak observed in the graph for each beat

detected (one beat equal to range between two peaks). Apparently P, Q, R, S and T

segments can be detected in the obtained results mixed with some noise. The peak is

actually QRS complex, the P wave and T wave is detected before and after the peak

respectively which mixed with some noise. The MED-ECG GUI will estimate the

heart rate by calculating the number of QRS peak (negative or positive) as one QRS

peak will equivalent to one heart beat. After approximately 5 seconds of data

sampling, the heart rate will floating amends with the ECG waveform pattern. If

there are noises exist caused by movements or power line supply, heart rate will not

be accurate as the GUI unable to detect the heart beat correctly. Measuring without

DSC function or low op-amp gain also causes heart rate estimation fail as there was

no obvious peak or peak for GUI to detect as one heart beat.

Figure 5.10: Analysis of Real Time ECG data

QRS peak

1 Heart Beat

Heart Rate

72

 Although the ECG waveform that obtained is not the typical one as shown in

the literature review, this didn‟t mean that the ECG waveform is problematic or

abnormal. In practical, it is hard to obtain typical ECG waveform due to noises

originating from patient body, ECG circuitry, ECG electrode, power line supply

noise, etc. At figure 5.12, power line noise observed in the graph which make the line

“thick” in shape. The pattern of ECG is depends on the placements of electrode

which measure heart electrical activity from various axis. In figure below, it show

some morphologic of the QRS complex. For QRS complex #2, #3and #4, they are all

normal morphologic of QRS complex of different shape. (Tracy, 2003). The

morphologic of QRS complex in this project is fall at morphologic #2 and #3 which

are normal QRS complex according to Tracy, 2003.

Figure 5.11: Various QRS Complex Morphologic

 Figure 5.12: ECG waveform results analysis

Indications

Red: QRS complex

Blue: P wave with

noise

Brown: T wave

with noise

73

 The patterns of the ECG waveform generated using the Freescale‟s medical

development kit is similar to the clinical ECG waveform. Compared to the clinical

waveform (Francis et. al , 2003), the difference of ECG waveform generated with

Freescale‟s medical development kit is the existence of noise which disrupt the P

wave and T wave. The noise in the waveform can be cause by various factors and

will be discussed in later section.

Figure 5.13: A standard rhythm stripe

5.2.2 Data Received at Receiver Site

At the receiver site, the data monitored in X-CTU program under terminal tab

transmitted at 9600 baud rate. The data keep flow in continuously in ASCII form. To

analyze the data, the received data have to convert to hex form. The data saved using

RS232 data logger converted from ASCII to hex form using Notepad++. Notepad++

is a free and powerful software which able to convert data from ASCII to hex form.

Refer to appendix for the notepad++ screen shots. In the received data, there will be

acknowledge of start command which initiated by the GUI. After the acknowledge

code, header for ECG data will be the next code observed. The ECG capturing

process then run continuously until the stop by the GUI or interrupted (power off).

Thus, the codes after the header code are all the ECG data. Implementation of this

prototype system need to take account of the data type and the medical server need to

be able to convert the ASCII data to hex data or decimal data to allow plotting of

graph. Refer to the appendix for .txt file sample saved by RS232 data logger and the

analysis received data in hex form.

74

5.3 The Effects of Different Placements of ECG Electrodes

In this project, the author placed the 3 leads electrode to both arm and left abdominal

and took the results as the primary results to analyze. To research more on the effects

of different placement of electrode, the ECG electrode placed to the chest to obtain

the ECG data and the results will be display in this section. The author found out that

placing the electrodes on chest generate different pattern of ECG waveform depend

on the positioning of electrodes compare to place the electrode on both arm and tend

to have lesser noise (especially AC and DC noise). This is due to different placement

of ECG electrodes will create different cardiac axis. Note that the black, red and

white color circles in the table represent ECG electrodes that attached with the

specified area. The ECG results shown in the table following with settings below:

1) 3 leads ECG electrodes.

2) Shunt 2-3 at J3 and J4 MED-ECG (10x).

3) With DSC function operated.

4) Op-amp gain of TWR-MCF51MM at 9x

5) ECG electrode place on chest (Red, White, Black).

Table 5.1: Summary of Different Placements of ECG Electrode on Chest

Placements of ECG

Electrode

ECG Results

75

76

Figure 5.14: Cardiac Axis

77

 It can be observed that different orientation of electrode will generate

different pattern of ECG signal due to different cardiac axis especially the QRS

complex. The cardiac axis refers to the mean direction of the wave of ventricular

depolarisation in the vertical plane, measured from a zero reference point. The zero

reference point looks at the heart from the same viewpoint as lead I. An axis lying

above this line is given a negative number, and an axis lying below the line is given a

positive number.

 Theoretically, the cardiac axis may lie anywhere between 180 and − 180°.

The normal range for the cardiac axis is between − 30° and 90°. An axis lying

beyond − 30° is termed left axis deviation, whereas an axis > 90° is termed right axis

deviation. (Francis et. al , 2003) When the orientation of ECG electrodes changes,

the QRS complex obviously change in shape corresponding to the new cardiac axis

formed. Different orientation of electrodes will give different interelectrode distance

which affects the signal strength and determine whether can output sufficiently

reliable and strong ECG signal. (Puurtinen, Hyttinen & Malmivuo, 2005) The P

wave and T wave will change according to the orientation of electrodes too but the

changes of shape not obviously observed. The ECG waveform which is closest to the

typical one will be white electrode at the right chest, black at the left abdominal and

lastly the red at the left chest. It has clear waveform (P,QRS,T waves) with lesser

noise in the graph. If this project will be implemented into medical server, choosing

this electrode orientation will have best results compared to red electrode at right

chest, black electrode at left abdominal and white electrode at left chest.

Figure 5.15: Shape of QRS complex depends on orientation of electrode

78

Figure 5.16: Best orientation of electrodes that output closest results to typical ECG

waveform (LC- red, RC-white, LA- black)

5.4 Conversion Factor of ADC level to Voltage level

The x and y axis of the graph in MED-ECG are represented by time and ADC level

respectively. The y axis range from -30000 to 30000 whereas the x axis parameter

can be adjusted by pulling to the left by user. To convert the ADC level to the

voltage level for convenient of diagnosis, follow the equation below:

Vsignal = [(Digital Value) * (3.3 V)] / [(2
16

) * (Gain1) * (Gain2) * (Gain3)]

 Vsignal is the desired voltage output. Digital Value is the ADC results (obtain

from raw data) Gain1 is 10x and 100x, depending of position of jumpers J3 and J4 of

the MED-ECG. Gain2 range from 2x, 3x, 4x, 4.5x, 6x, 6.5x, 8.5x, 9x, 13x and 17x

depending on the push button on TWR-MCF51MM (SW1, SW2 and SW4). Default

Gain2 value is 9x. Gain3 is an optional fixed amplification block that can be

selected, adds a gain of 3.3x. To calculate the voltage output correctly, the DSC

function also has to disable by modify the source code to avoid any adding of gain

and amplification of signal. 3.3V is the operating voltage and 2
16

 is due to 16 bits

structure of ECG data. This information is not available in any literature yet and

adapted from Freescale‟s support team.

Indications

Red: QRS complex

Blue: P wave

Brown: T wave

79

5.5 Noise issue

As mentioned in earlier section, noise issue is a interference factors that hard to get

rids of. The main sources of noise are (Enrique and Hartmann, 2003):

 Power-line interference: 50–60 Hz pickup and harmonics from the power mains

 Electrode contact noise: variable contact between the electrode and the skin,

causing baseline drift

 Motion artifacts: shifts in the baseline caused by changes in the electrode-skin

impedance

 Muscle contraction: electromyogram-type signals (EMG) are generated and

mixed with the ECG signals

 Respiration, causing drift in the baseline

 Electromagnetic interference from other electronic devices, with the electrode

wires serving as antennas, and

 Noise coupled from other electronic devices, usually at high frequencies.

 The patient‟s conditions such as oily skin will prevent accurate data capturing.

To solve it, scrub the attachment site thoroughly with alcohol to clean up oil and dust

before apply the ECG electrode. ECG electrodes are optimally placed directly on dry

skin and quality of ECG signal relies greatly on the skin condition. Loose connection

of ECG electrodes will generate output with noise. Other noise such as muscle

contraction, respiration and motion artifacts rely on the patient‟s conditions. Thus,

every patient might have different ECG signal due to the stated noise factors.

 As the prototype is connecting with USB port of computer, it is unavoidable

add up some power line noise to the ECG data. The noise effect is more obviously

seen in multiple USB device connected at computer simultaneously at the time of

testing and output similar results in figure 5,14. To reduce the power line supply

noise, try to unplug all unnecessary USB devices that are connected in the time of

testing. The author also tried to use other USB port on the testing computer when

encounter such problem and normally it solve the problem. If problem persists, try to

test on other computer and laptop that has lesser power line supply noise. Sometime

the computer or laptop‟s background programs will influence the ECG results, thus

close all the unwanted programs during testing will aids obtain better ECG data.

80

 It should be no surprise that noise can be a problem in ECG analysis.

Fortunately, the signal-to-noise ratio is usually quite good in a person at rest. In an

active person, however, there can be substantial low frequency (< 15 Hz) noise due

to electrode motion, and high frequency (> 15 Hz) noise due to skeletal muscle

activity. (Enrique and Hartmann, 2003) In addition, there is the possibility of noise at

60 Hz and its harmonics due to power-line noise results output like figure 5.14.

Figure 5.17: 60 Hertz Noise

 As shown in the figure 5.17, the MED-ECG GUI record amplified noise

which has high ADC level value (up to 30000). Normal ADC level for ECG varied

from 8000 to 20000 only. No heart rate been recorded has the graph “bombarded” by

continuous noise data (high amplitude), thus the GUI unable to estimate the heart

rate. For heart beat detection, even a quarter of the standard distance , as the QRS

amplitude detected can be used as estimation of heart beat. (Puurtinen, Hyttinen &

Malmivuo, 2005) Figure 5.15 show raw data of incoming raw data with high value

ADC, the display raw data column has been selected to display raw data. Figure 5.18

show example of 60 Hz noise (Erik Cheeve, 2005), the pattern of the ECG graph

similar to figure 5.16 which justified that the captured noise is 60 Hz noise. The

author has reviewed this problem with the manufacturer‟s engineer via live chat.

They justified that the noise is generated either by the power line or ECG electrodes.

81

The author then try on purposely loosening the ECG electrodes when capturing ECG

data using MED-ECG and the results obtained was similar with figure 5.16.

Figure 5.18: Value of ADC level during noise interference

Figure 5.19: Example of 60 Hertz noise

82

5.6 XBee Buffer Issue

To ensure successful transmission of data via XBee module, the compatibility

settings of module XBee module must be complementary as mentioned earlier.

Initially the author set baud rate at 115200 instead of 9600 for wireless transmission

and unrealized any possible problem might caused due to high baud rate. The XBee

module at the receiver site stagnant (didn‟t receive any incoming data) after

approximately 30 seconds of receiving ECG data from transceiver site. The author

troubleshoots the problem and finally found out that the XBee module at the receiver

site has reached its buffer stage. As explained in earlier section, once the DO Buffer

reaches capacity (receive data), any additional incoming RF data is lost. (Digi

Technologies, 2008) This occurs due to continuous data transfer from transceiver site

at high baud rate until the memory of XBee module at the receiver site run off and

the XBee module cannot receive anymore data after all the memory consumed.

 There are two ways to solve this problem such as changing the stop bits to

two instead of one and apply flow control. (John Foster, 2001) Another way

suggested by Digi Technologies, 2008 which send data that are smaller than the DI

buffer size is not practical as changing the file size of ECG data unaccomplished.

Theory says that connect an XBee to a PC at 115,200 baud should be able to get

away with one stop bit. In practice, any element of noise or other signal degradation

is likely to lead to data loss. The baud rates are already set to the best obtainable

values, so to prevent the problem the option is to configure the PC to send two stop

bits. This can be configured using X-CTU program. Sending two stop bit slowing its

transmission rate to one that the XBee can reliably accept. (John Foster, 2001) The

first method didn‟t solve this problem perfectly as the problem still persists but the

time of buffer stage achieved in XBee module extended. This is probably due to

longer waiting period for receiver site (stop bits increment) but the baud rate is still

too fast and consumed all the memory of XBee as time progress.

 Flow control is necessary on any serial line if the rate of transmission is such

that the receiving buffer cannot always be guaranteed to be emptied at a rate which

prevents it from overflowing. There are two flow control mechanisms: hardware

83

flow control and software flow control. Hardware flow control is used between an

XBee and its host. Software flow control is used between two hosts that are

communicating via XBees. The XBees themselves do not take any notice of the

software flow control characters. (John Foster, 2001) Hardware flow control require

redesign the interfacing board as SKXBee board didn‟t support any hardware flow

control. In this case, software flow control is a better and direct method to apply flow

control. TWR-MCF51MM is the site where apply the programming modification and

control the data. There are two crystals are provided on the board for clocking the

TWR-MCF51MM256 such as 16 MHz crystal connected to XTAL2 and EXTAL2

for system clocking and 32.768kHz crystal connected to XTAL1 and EXTAL1 for

TOD usage. (Freescale Inc, 2010) 16MHz crystal on board allows the author to

modify the baud rate of the serial port to desired baud rate but involved modification

of programming code (specifically on SCI command part). As a results, slowing

down interface baud rate did help buffer overflow problem as the data is coming in

slower than the over the air transmission rate and avoid data build up in the

buffer. There is no buffer issue after software flow control applied. The baud rate

slowed to 9600 instead of applying 115200. ECG data managed to send out and

received in a continuous manner until the author stop the application.

84

CHAPTER 6

6 CONCLUSION

6.1 Comments on the project

The developed ECG prototype system was able to measure and output subject‟s ECG

data in a GUI. Wireless transmission of captured ECG data has been established but

the medical server has yet to develop. The prototype system is ready to use to

develop with medical server which was not developed in this project. Programming

the Freescale‟s medical development kit is the most challenging tasks in this project.

The ECG prototype system programmed to capture process and output the ECG data

using Code Warriors Development Studio. The author has presented the placements

of ECG electrodes influence the pattern of captured ECG data in this report. Noise

issue is another challenging aspect in ECG data capturing. Reducing the noise in

ECG prototype system such as attach ECG electrode firmly, use low power line

noise computer, clean attachment site of patient before applying electrodes, etc are

important to ensure better quality of ECG data. As a conclusion, this project was

succeeded with an ECG prototype system that able to capture ECG data and establish

wireless transmission with a receiver at the other end. Both primary and secondary

objective has been achieved! However, there are still some possible improvements

which will be discussed in next section.

85

6.2 Possible Improvement and Recommendations for Future Works

There are improvements that can be applied in this project to improve the prototype

system such introducing medical server, apply conductive gel, implement the XBee

Pro module instead of XBee module, implement validation on the prototype system,

developed wearable prototype system and construct the MAX232 circuitry on PCB

board.

 Introducing medical server at the receiver site of prototype system able to

further enhances the function of prototype system. Designed medical server will able

to diagnose possible complications of the heart via ECG results and enable alarm

settings when threshold activated. The medical server can be developed using

Labview and Visual Basic or any related development software. Once the medical

server has been developed, running prototype system validation testing on real

human might be a good way to determine the reliability of the system. No subject

testing carry out in this project as no medical server been developed. Development

of wearable ECG prototype system is another adding bonus to this system for

convenient of data measurement. Follow the best orientation of electrodes as

mentioned in discussion part to obtain ECG waveform that closest to typical one.

 To provide are more range for data transmission from transmitter to receiver

of ECG prototype system, the Xbee module need change to Xbee Pro module. ECG

data would be transmit until 1.6 km and 50mw power transmit which is can transmit

more length of data compared to Xbee that only 100m and 1.25mW for power

transmit. The author has tried to test the maximum range which the XBee can receive

and transmit data in the project too. He found out that obstacles along the

transmission pathway will disrupt the wireless transmission. He is in opinion of

changing XBee module to XBee Pro module might be a good try to improve wireless

transmission quality for development of medical server. Construct MAX232 circuitry

into PCB boards will secure the connections of components on it. There are no

conductive gels used in this project as disposable ECG electrodes already have some

conductive gel on it. The electrodes‟ connection can further enhanced if apply more

conductive gel at attachment site.

86

REFERENCES

Aily. (2009). Design and Implementation of ECG circuit. University Technology

Malaysia, 18-19.

Anwar. (2005). 3-Lead Wireless ECG, Electronic Design Project. 6-7.

Brenda, Beasley & Michael. (2003). Understanding 12-lead EKGs 2nd edition. Upper

Saddle River, New Jersey: Prentice Hall.

Carlos, Americas & Guadalajara. (2010). Heart Rate Monitor and Electrocardiograph

Fundamentals. Freescale Inc, 1-22.

Chai, M. L. (2008). Keep the arteries unclogged. National Heart Association Malaysia.

Cromwell, L. & Weibell, F. J. (2005). Design and Implementation of a Telemedicine

System Using Bluetooth Protocol and GSM/GPRS Network, for Real-Time Remote

Patient Monitoring. Technology and HealthCare Association.

Crawford, M. H. (1999). ACC/AHA Guidelines for ambulatory electrocardiography.

Journal of the American College of Cardiology, 34, 912-48.

Cytron Technologies. (2008). SKXBee User`s Manual.

Digi Technologies. (2008). Xbee datasheet.

Digi Technologies. (2008). User‟s Manual of X-CTU.

87

Enrique & Hartmann. (2003). ECG Front-End Design is simplified with microconverter.

Analog Device Inc. 1-3.

Erik, C. (2005). Fundamentals of Digital Systems. Department of Engineering

Swarthmore College. 76-77.

Francis et al (2003). ABC of clinical Electrocardiograph. BMJ book. 22-30.

Freescale Inc. (2010). User‟s Manual of TWR-MCF51MM kit.

Freescale Inc. (2008). User‟s Manual of TWR-ELEV.

Freescale Inc. (2008). User‟s Manual of TWR-SER.

Freescale Inc. (2010). User‟s Manual of MED-ECG.

Freescale Inc. (2010). Schematics Diagram of Freescale‟s Medical Development Kit.

John Foster. (2001). XBee Cookbook Issue 1.3 for Series 1 (Freescale) with 802.15.4

Firmware. Digi Technologies. 1-22.

Kong, K. Y., Ng, K.W. & Ong, K. (2000). Web-Based Monitoring of Real-Time ECG

Data. Computers in Cardiology,27, 189-192.

Li & Zheng. (1995). IEEE Trans. Biomedical Engineering. 42-43.

Meystre, (2005), The Current State of Telemonitoring: A Comment on the Literature,

Telemedicine and e-Health Association, 1-5.

Mohamed, M. (2000). The Problems and Challenges of the Aging Population.

Malaysia.Malaysian Journal of Medical Sciences, 7, 1-3

http://www.engin.swarthmore.edu/
http://www.swarthmore.edu/

88

Meystre, S. (2005). The Current State of Telemonitoring: A Comment on the Literature.

Telemedicine and e-Health. 5-7.

Norris. (2002), Essential of Telemedicine and Telecare, Department of Management

Science and Information System University of Auckland New Zealand.

Nor Syahidatul et al., (2008), TRG Wireless ECG Sensor for Medical Healthcare

Application, 2008 Student Conference on Research and Development (SCORED

2008), 26-27.

Tracy. (2003). Diagnosis and Study of the ECG Pattern, Nursecom Education

Technology. Chapter 4.

Patrick et al. (2002), Electrocardiogram (EKG) Data Acquisition and Wireless

Transmission. Southern Polytecnic State University.

Puurtinen, M., Hyttinen, J. & Malmivuo, J. (2005). Optimizing bipolar electrode

location for wireless ECG measurement – analysis of ECG signal strength and

deviation between individuals. Tampere University of Technology. 1-4.

Saritha & Sukanya. (2008). ECG Signal Analysis Using Wavelet Transforms. Bulg. J.

Phys. Chapter 35: 68–77.

Shimuzu. (2005). Telemedicine by Mobile Communication. IEEE Engineering in

Medicine and Biology.

Tanriverdi, H. & Iacono, C. S. (1999). Diffusion of Telemedicine: A Knowledge Barrier

Perspective. Telemedicine Journal. 5(3).

Thakor, N. V. & Webster, J. G. (1980). Ground-Free ECG Recording with Two

Electrodes. IEEE Trans on Biomed Eng. 27, 12, 699-704.

89

Telemedicine Research Centre. (1999). Whit is Telemedicine?, Oregon Health Sciences

University, Retrieval date on 12 August 2010 , From http://tie.telemed.org/

WhatIsTelemedicine.asp

Texas Instrumentation Inc. (2004). Datasheet for MAX232.

Venkat, B. (2002). ZigBee and Bluetooth – Competitive or Complementary. ZigBee

Alliance.

Venkat, B. (2002). ZigBee Overview. ZigBee Alliance.

WHO. (2004). Atlas of Heart Disease and Stroke.

Yayasan Jantung Malaysia (2009), Articles of Interest about your HEART, Retrieved on

11 August 2010, from

http://www.yjm.org.my/newsmaster.cfm?&menuid=31&action=view&retrieveid=3

http://tie.telemed.org/
http://www.yjm.org.my/newsmaster.cfm?&menuid=31&action=view&retrieveid=3

90

APPENDICES

Appendix A: Pin Layout Table for Freescale’s Medical Development Kit

Medical Connector 2x10 Pin Header Connections (TWR-MCF51MM)

MCF51MM256 Signal Pin Pin MCF51MM256 Signal

MOSFET Q6 (Pin 3)- Power

(3.3V)

1 2 GND

PTD4/SD4/RGPIOP10/TPM1CH2 3 4 PTD5/SD5/RGPIOP11/TPM1CH3

DADP0 5 6 DADM0

PCT4/KBIP7/CMPP0/ADP8 7 8 DAXO_E

OUT1 9 10 OUT2

INP1- 11 12 INP2-

PTA4/INP1+ 13 14 PTA7/INP2+

VINP1 15 16 VINP2

VINN1/DADM2 17 18 VINN2/DADM3

TRIOUT1/DADP2 19 20 TRIOUT2/DADP3

Medical Connector 2x10 Pin Header Connections (MED-ECG)

MED-ECG signal Pin Pin MED-ECG Signal

Vdd (3.3V) 1 2 GND

ECG_IIC_SDA 3 4 ECG_IIC_SCL

MM_AdcEcgSignal 5 6 GND

MM_AdcBaseline 7 8 MMDac

OUT1 9 10 OUT2

INP1- 11 12 INP2-

91

INP1+ 13 14 INP2+

VNP1 15 16 VINP2

VINN1 17 18 VINN2

TRIOUT1 19 20 TRIOUT2

92

Appendix B: Programming Files and Functions for Freescale’s Medical

Development Kit

Programming File Functions

tpm.c Configures Real Time Counter (RTC) for Timer

Implementation.

main.c Main function of programming.

IICV1Driver.c Address control of data and interrupt flag from MED-ECG.

OPAMP.c Control of op-amp gain on MED-ECG.

EcgDsc.c Applying of digital signal conditioning filtration on ECG

data.

Ecg.c Processing of ECG data.

ADC.c Analog to digital conversion.

AverageFilter.c Filtering of ECG file.

DAC.c Digital to Analog conversion.

Ekg.c Outputting the ECG data

Usb_descriptor.c USB standard (Freescale stack).

MCF51MM256.c standard library of MCF51MM microcontroller.

Header File USB class file and driver

IICV1Driver.h

OPAMP.h

EcgDsc.h

Ecg.h

ADC.h

AverageFilter.h

DAC.h

Ekg.h

MCF51MM256.h

Usb_framework.c

Usb_class.c

Usb_cdc.c

Usb_cdc_pstn.c

Usb_driver.c

Usb_dci.c

93

Appendix C: Default Jumper Settings for Freescale’s Medical Development Kit

TWR-MCF51MM default jumper settings

MED-ECG default jumper settings

94

TWR-SER default jumper settings

95

Appendix D: .txt file captured using RS232 data logger

Comments:

The ECG data that saved by RS232 logger is in ASCII form (7 bits). Need to further

process to readable form such as decimal or hex form for analysis.

96

Appendix E: Notepad++ (convert ASCII to hex) and Analysis of hex data

Data Analysis

Read data:

00000000: 43 12 01 00 69 14 43 00 | 00 3c 50 32 00 23 f0 37 C...i.C..<P2.#?

00000010: b0 4f 90 41 b0 19 60 11 | 00 36 60 59 a0 45 90 f0 癘怉?`..6`Y 燛愷

00000020: 80 ab 50 9e c0 c2 00 e8 | 90 0e d0 3e 90 6f 00 99 €玃灷?钀.?恛.?

00000030: 40 7c d0 46 30 18 10 1e | 80 4c 60 6e 20 5c d0 31 @|蠪 0...€L`n \?

00000040: b0 24 30 40 f0 60 10 59 | 40 00 69 14 43 00 01 35 ?0@餪.Y@.i.C..5

00000050: 90 2e 80 51 b0 71 10 5f | 50 2e a0 24 a0 4d 50 71 ?€Q 皅._P.?燤 Pq

00000060: c0 5c e0 0a 40 c9 40 bc | e0 dc 50 00 b0 05 a0 f6 繺?@葽监躊.?狏

00000070: 10 df 50 d9 80 e2 e0 f2 | d0 fb 10 f5 50 ee 50 f2 .逷賭忄蛐?鮌頟?

00000080: c0 f4 30 f5 a0 f0 a0 f1 | f0 f6 a0 f8 90 fa 80 00 吏 0 鯛馉耩鰻鴲鷢.

00000090: 69 14 43 00 02 fe 70 08 | f0 0a b0 fc a0 f1 10 f3 i.C.. .?包狇.?

000000a0: 00 00 70 05 70 f3 10 eb | 60 fa e0 3e 30 62 00 69 ..p.p? >0b.i

000000b0: a0 2d 80 f1 e0 d8 60 eb | 00 0b 90 1e 30 19 e0 0d ?€襦豟?.?0.?

000000c0: 00 0a 60 14 10 15 60 15 | 60 0e c0 0d 80 0f e0 12 ..`...`.`.?€.?

000000d0: 80 18 80 1f e0 00 69 14 | 43 00 03 28 f0 26 60 16 €.€?i.C..(?`.

ASCII form data hex form data

97

000000e0: 80 0f 00 16 90 23 90 22 | c0 0b 20 04 e0 19 90 5f €...??? .?恄

000000f0: 30 7d c0 80 c0 44 f0 0d | c0 f6 f0 07 b0 25 d0 38 0}纮繢?丽???

00000100: 40 36 10 2a 10 27 60 0b | e0 ef 30 c7 40 bd 10 c1 @6.*.'`.囡 0 茾??

00000110: 80 e3 00 f5 c0 20 70 41 | e0 51 f0 00 43 13 00 00 €?趵 pA 郠?C...

00000120: 00 00 00 00 00 00 00 00 | 00 00 00

………………………………..

………………………………..

……………………………….

Comments

Red Number is the acknowledge for Start command.

Blue Numbers is the header for ECG data.

Yellow Numbers are ECG data. They are the RAW data displayed in GUI.

For example :0x3c50 is the first data, 0x3200 is the second data…..

98

Appendix F: Pinout for XBee and XBee Pro

99

Appendix G: Programming Source Code

Only Ecg.c and Ekg.c will be display in this section. There are other source codes

like file name (.c, .h file) display in Appendix B. For others source codes, please

refer to the project CD.

Ecg.c

#include "ECG.h"

//public variables

UINT8 Ecg_HeartRate = 0;

UINT8 EcgDataBuffer[ECG_DATA_BUFFER_LENGTH];

//private

static UINT8 QRSFound = 0;

static UINT16 RealTimeHeartRate;

static UINT16 EcgHeartRateSum;

static UINT16 EcgHeartRateArray[ECG_ARRAY_LENGTH];

static UINT16 CopyOfEcgHeartRateArray[ECG_ARRAY_LENGTH];

static UINT8 EcgCurrentArrayPosition = 0;

static UINT16 EcgFirstSample = 0;

static UINT16 EcgSecondSample = 0;

static UINT16 EcgThirdSample = 0;

static UINT16 samplesBetweenPulses = 0;

static UINT8 HeartBeatOcurred;

static UINT8 IsEcgSignalReady;

/* Private functions */

static void StateIdle(void);

static void StateMeasuring(void);

static void TimerSampleAdc_Event(void);

static void PerformControlAlgorithm(void);

static void SendGraphDataToPc(void);

static void ClearAllVariables(void);

static void CalculateHeartRateMedian(void);

/* Main state machine */

void (*const EcgStateMachine[]) (void) =

{

 StateIdle,

 StateMeasuring

};

/* Private Macros */

typedef enum

{

 STATE_IDLE,

 STATE_MEASURING

} EcgStates_e;

/* Private variables */

static MovingAverage_uint16_t FeedbackSignal, EcgSignal;

static UINT8 EcgActualState = STATE_IDLE;

static TIMER_OBJECT TimerEcgSampleAdc;

static UINT8 TimerEcgSampleAdcIndex;

static UINT8 EcgActualEvent = EVENT_ECG_NONE;

static UINT8 IsHeartRateMode = FALSE;

static IsNewEcgSampleReady = FALSE;

100

static UINT16 PulseDetectedWatchDog = 0;

/*Francisco Variables */

static UINT8 n = 100;

static UINT16 PwmValue = 0;

/***/

/* Private function definitions */

static void StateIdle(void)

{

 //do nothing

}

/*------------------------ definitions and variables ---------------------*/

#define SAMPLES_NUMBER 15

#define CENTER_LOW 32768-3000 //1.45V

#define CENTER_HI 32768+3000 //1.75V

#define LOW_LIMIT_1 32768-12000 //1.0V

#define HI_LIMIT_1 32768+12000 //2.2V

#define LOW_LIMIT_2 32768-22000 //0.5V

#define HI_LIMIT_2 32768+22000 //2.7V

#define FEW_CORRECTION 19 //0.015V -> with 3.3 gain, it adds about 0.05V

#define MORE_CORRECTION 38 //0.030V -> with 3.3 gain, it adds about 0.10V

#define MUCH_CORRECTION 76 //0.060V -> with 3.3 gain, it adds about 0.20V

//#define FEW_CORRECTION 38 //0.03V -> with 3.3 gain, it adds about 0.1V

//#define MORE_CORRECTION 114 //0.09V -> with 3.3 gain, it adds about 0.3V

//#define MUCH_CORRECTION 190 //0.16V -> with 3.3 gain, it adds about 0.5V

UINT8 SampleCounter = 0, i_index, j_index;

UINT16 median_array[SAMPLES_NUMBER], temp_var, median_val;

/*--*/

static void PerformControlAlgorithm(void)

{

 if (SampleCounter < SAMPLES_NUMBER)

 {

 median_array[SampleCounter] = FeedbackSignal.Result;

 SampleCounter++;

 }

 else

 {

 SampleCounter = 0;

 //ordering the data

 for (i_index = 0; i_index <= SAMPLES_NUMBER - 2; i_index++)

 {

 for (j_index = i_index + 1; j_index <= SAMPLES_NUMBER - 1; j_index++)

 {

 if (median_array[i_index] > median_array[j_index])

 {

 temp_var = median_array[i_index];

 median_array[i_index] = median_array[j_index];

 median_array[j_index] = temp_var;

 }

101

 }

 }

 //obtaining the median

 median_val = median_array[SAMPLES_NUMBER/2];

 //compensate acording to the value of the median

 if ((median_val < CENTER_LOW) || (median_val > CENTER_HI))

 {

 if ((median_val < CENTER_LOW) &&

 (median_val > LOW_LIMIT_1) &&

 (DACDAT0 < (4094 - FEW_CORRECTION)))

 {

 DACDAT0 += FEW_CORRECTION;

 }

 if ((median_val > CENTER_HI) &&

 (median_val < HI_LIMIT_1) &&

 (DACDAT0 > (FEW_CORRECTION + 1)))

 {

 DACDAT0 -= FEW_CORRECTION;

 }

 if ((median_val < LOW_LIMIT_1) &&

 (median_val > LOW_LIMIT_2) &&

 (DACDAT0 < (4094 - MORE_CORRECTION)))

 {

 DACDAT0 += MORE_CORRECTION;

 }

 if ((median_val > HI_LIMIT_1) &&

 (median_val < HI_LIMIT_2) &&

 (DACDAT0 > (MORE_CORRECTION + 1)))

 {

 DACDAT0 -= MORE_CORRECTION;

 }

 if ((median_val < LOW_LIMIT_2) &&

 (DACDAT0 < (4094 - MUCH_CORRECTION)))

 {

 DACDAT0 += MUCH_CORRECTION;

 }

 if ((median_val > HI_LIMIT_2) &&

 (DACDAT0 > (MUCH_CORRECTION + 1)))

 {

 DACDAT0 -= MUCH_CORRECTION;

 }

 }

 //if the median are in the range, the DAC provides 1.6V

 else

 {

 DACDAT0 = 2047; //1.6V output

 }

 }

}

static void StateMeasuring(void)

{

102

 if (IsNewEcgSampleReady) //the timer is reading periodically

 {

 {

 UINT16 feedbackSignalRaw, ecgSignalRaw;

 IsNewEcgSampleReady = FALSE;

 //read ADC signals and average values

 feedbackSignalRaw = ADC_Read16b(ADC_CHANNEL_FEEDBACK_SIGNAL);

 ecgSignalRaw = ADC_Read16b(ADC_CHANNEL_ECG_SIGNAL);

 MovingAverage_PushNewValue16b(&FeedbackSignal, feedbackSignalRaw);

 MovingAverage_PushNewValue16b(&EcgSignal, ecgSignalRaw);

 TimerEcgSampleAdcIndex = AddTimerQ(&TimerEcgSampleAdc);

 }

 PerformControlAlgorithm();

#ifndef ECG_DSC

 samplesBetweenPulses++; //increment sample sampleCounter between pulses

 PulseDetectedWatchDog++; //this variable increments every

ECG_SAMPLE_PERIOD (2ms)

 if (PulseDetectedWatchDog > MAX_TIME_WITHOUT_PULSES)

 {

 Ecg_HeartRate = 0; //set HR = 0

 }

 EcgFirstSample = EcgSecondSample;

 EcgSecondSample = EcgThirdSample;

 EcgThirdSample = EcgSignal.Result;

 //If the slope of the signal is big, there is a peak

 if ((EcgThirdSample < EcgFirstSample) && ((EcgFirstSample - EcgThirdSample) >

HR_SLOPE_THRESHOLD))

 {

 //Peak detected

 QRSFound++;

 PulseDetectedWatchDog = 0;

 if (samplesBetweenPulses > 75) //check if current peak is not to

close to previous peak (Max HR = 200)

 {

 IsEcgSignalReady = TRUE;

 HeartBeatOcurred = TRUE;

 if (QRSFound > 4) //

Find 4 Pulses Before Considering Signal is Ready

 {

 UINT8 i;

 //4 pulses has been found

 RealTimeHeartRate = 60000 / (samplesBetweenPulses *

ECG_SAMPLING_PERIOD); //Calculate HR

 //Shift samples of FIFO

 for (i = OLDEST_ELEMENT; i > NEWEST_ELEMENT; i--)

 {

103

 EcgHeartRateArray[i] = EcgHeartRateArray[i-1];

 }

 //insert new sample into FIFO

 EcgHeartRateArray[NEWEST_ELEMENT] =

RealTimeHeartRate;

 //Call the function to calculate heart rate

 CalculateHeartRateMedian();

 }

 else

 {

 //less than 4 QRs

 }

 }

 else if (

 ((samplesBetweenPulses > 10) && (samplesBetweenPulses < 500)) ||

 ((EcgFirstSample - EcgSecondSample) > 400) ||

 (EcgSignal.Result > 1750)

)

 {

 //time between peaks is shorter

 IsEcgSignalReady = FALSE;

 }

 samplesBetweenPulses = 0;

 }

 //#endif

 if (!IsHeartRateMode)

 {

 SendGraphDataToPc();

 }

#endif

 }

}

#define ZERO_SIGNAL 0x00

static void SendGraphDataToPc(void)

{

 static UINT8 actualPosition = 0;

 //store data and send it when the buffer is full

 if (actualPosition < ECG_DATA_BUFFER_LENGTH)

 {

 //if (IsEcgSignalReady)

 {

 //we need to convert unsigned values to signed values to display them on GUI

 INT16 signedEcgSignal = (INT16)(EcgSignal.Result - 0x8000);

 EcgDataBuffer[actualPosition++] = (UINT8)(signedEcgSignal >> 8);

 //higher byte

 EcgDataBuffer[actualPosition++] = (UINT8)(signedEcgSignal & 0x00FF);

 //lower byte

 }/*

 else

104

 {

 EcgDataBuffer[actualPosition++] = (UINT8)(ZERO_SIGNAL >> 8);

 //higher byte

 EcgDataBuffer[actualPosition++] = (UINT8)(ZERO_SIGNAL & 0x00FF);

 //lower byte

 }*/

 }

 else

 {

 //buffer is full, call the EVENT_ECG_DATA_READY event

 EcgActualEvent = EVENT_ECG_DIAGNOSTIC_MODE_NEW_DATA_READY;

 actualPosition = 0;

 }

}

static void TimerSampleAdc_Event(void)

{

 IsNewEcgSampleReady = TRUE;

}

/*******************************

* Public functions

*********************************/

/* call this only once at the beginning of the application */

void Ecg_Init(void)

{

 TimerEcgSampleAdc.msCount = ECG_SAMPLING_PERIOD;

 TimerEcgSampleAdc.pfnTimerCallback = TimerSampleAdc_Event;

}

UINT8 Ecg_DiagnosticModeStartMeasurement(void)

{

 UINT8 status = FALSE;

 if (EcgActualState == STATE_IDLE)

 {

 ADC_Init16b(1 << ADC_CHANNEL_FEEDBACK_SIGNAL |

 1 << ADC_CHANNEL_ECG_SIGNAL);

 //TPM1_Init(); //TPM is not used in MM version, DAC is used instead

 //TO DO:

 //DAC_Init();

 //OpAmps_Init();

 ClearAllVariables();

 EcgActualState = STATE_MEASURING;

 IsHeartRateMode = FALSE;

 //start timer to sample ADC

 TimerEcgSampleAdcIndex = AddTimerQ(&TimerEcgSampleAdc);

 status = TRUE;

 }

 else

 {

 status = FALSE;

 }

105

 return status;

}

static void ClearAllVariables(void)

{

 UINT8 i;

 Ecg_HeartRate = 0;

 QRSFound = 0;

 RealTimeHeartRate = 0;

 EcgHeartRateSum = 0;

 EcgCurrentArrayPosition = 0;

 EcgFirstSample = 0;

 EcgSecondSample = 0;

 EcgThirdSample = 0;

 samplesBetweenPulses = 0;

 HeartBeatOcurred = 0;

 IsEcgSignalReady = 0;

 EcgCurrentArrayPosition = 0;

 PulseDetectedWatchDog = 0;

 //clear arrays

 for (i = 0; i < ECG_ARRAY_LENGTH; i++)

 {

 EcgHeartRateArray[i] = 0;

 }

}

void Ecg_DiagnosticModeStopMeasurement(void)

{

 RemoveTimerQ(TimerEcgSampleAdcIndex);

 EcgActualState = STATE_IDLE;

}

void Ecg_PeriodicTask(void)

{

 /* State machine handler */

 EcgStateMachine[EcgActualState]();

 /* Event handler */

 if (EcgActualEvent != EVENT_ECG_NONE)

 {

 if (Ecg_Events[EcgActualEvent] != NULL)

 {

 Ecg_Events[EcgActualEvent](); //execute registered event

 EcgActualEvent = EVENT_ECG_NONE;

 }

 }

}

106

static void CalculateHeartRateMedian(void)

//order HearRate values in array and average samples in the middle

{

 UINT8 startIndex;

 UINT8 smallestIndex;

 UINT8 currentIndex;

 UINT8 tempStoreValue;

 UINT8 i;

 static UINT16 Ecg_HeartRate_MedianSum = 0;

 static UINT8 median_counter = 0;

 //Create a copy of the arrays

 for (i = 0; i < ECG_ARRAY_LENGTH; i++)

 {

 CopyOfEcgHeartRateArray[i] = EcgHeartRateArray[i];

 }

 // Order array values in ascending order

 for (startIndex = 0; startIndex < ECG_ARRAY_LENGTH; startIndex++)

 {

 smallestIndex = startIndex;

 for (currentIndex = startIndex + 1; currentIndex < ECG_ARRAY_LENGTH; currentIndex++)

 {

 if (CopyOfEcgHeartRateArray[currentIndex] <

CopyOfEcgHeartRateArray[smallestIndex])

 {

 smallestIndex = currentIndex;

 }

 }

 tempStoreValue = (UINT8) CopyOfEcgHeartRateArray[startIndex];

 CopyOfEcgHeartRateArray[startIndex] = CopyOfEcgHeartRateArray[smallestIndex];

 CopyOfEcgHeartRateArray[smallestIndex] = tempStoreValue;

 }

 //Obtaining the median

 if (median_counter < 4)

 {

 Ecg_HeartRate_MedianSum += CopyOfEcgHeartRateArray[ECG_ARRAY_LENGTH/2];

 median_counter++;

 }

 else

 {

 Ecg_HeartRate = (UINT8)(Ecg_HeartRate_MedianSum / 4);

 median_counter = 0;

 Ecg_HeartRate_MedianSum = 0;

 }

}

ekg.c

/**

 * Includes

 ***/

#include "hidef.h" /* for EnableInterrupts macro */

#include "derivative.h" /* include peripheral declarations */

#include "types.h" /* Contains User Defined Data Types */

#include "usb_cdc.h" /* USB CDC Class Header File */

#include "ekg.h" /* Virtual COM Application Header File */

107

#include "SerialCommands.h"

#include "OPAMP.h"

#include "DAC.h"

#include "EcgDsc.h"

#include "Ecg.h"

#if (defined _MCF51MM256_H) || (defined _MCF51JE256_H)

#include "exceptions.h"

#endif

#if (defined(_MC9S08MM128_H))

#define DEBOUNCE_TIME 10000

#endif

#if (defined _MCF51MM256_H)

#define DEBOUNCE_TIME 25000

#endif

/* skip the inclusion in dependency state */

#ifndef __NO_SETJMP

 #include <stdio.h>

#endif

#include <stdlib.h>

#include <string.h>

/***

 * Local Types - None

 ***/

typedef enum

{

 NO_MEASUREMENT,

 GLU_MEASUREMENT,

 BPM_MEASUREMENT,

 BPM_LEAK_TEST,

 ECG_MEASUREMENT,

 SPR_MEASUREMENT,

 HEIGHT_MEASUREMENT,

 WEIGHT_MEASUREMENT,

 TEMPERATURE_MEASUREMENT

}EkgCommand_e;

/***

 * Local Functions Prototypes

 ***/

static void USB_App_Callback(uint_8 controller_ID,

 uint_8 event_type, void* val);

static void USB_Notify_Callback(uint_8 controller_ID,

 uint_8 event_type, void* val);

static void Virtual_Com_Recv_Serial_Data(void);

static void Virtual_Com_Send_Serial_Data(void);

static void EcgDiagnosticModeStartMeasurementReq(void);

static void EcgDiagnosticModeStopMeasurementReq(void);

static void EcgDiagnosticModeNewDataReadyInd(void);

static void SCI1_Init(void);

static void SCISendData(const byte SendData[],byte ssize);

#ifdef SEND_SINE_WAVE

static void TimerSendDummyData_Event(void);

#endif

/***

 * Constant and Macro's - None

 ***/

const pFunc_t Ecg_Events[] =

108

{

 NULL,

 //EVENT_ECG_NONE,

 NULL, //EVENT_ECG_HEART_RATE_MEASUREMENT_COMPLETE_OK,

 NULL, //EVENT_ECG_HEART_RATE_MEASUREMENT_ERROR,

 NULL, //EcgHeartBeatOccurredInd,

 //EVENT_ECG_HEART_BEAT_OCCURRED,

 EcgDiagnosticModeNewDataReadyInd

 //EVENT_ECG_DIAGNOSTIC_MODE_NEW_DATA_READY

};

const pFunc_t EcgDsc_Events[] =

{

 NULL,

 //EVENT_ECG_NONE,

 NULL, //EVENT_ECG_HEART_RATE_MEASUREMENT_COMPLETE_OK,

 NULL, //EVENT_ECG_HEART_RATE_MEASUREMENT_ERROR,

 NULL, //EcgHeartBeatOccurredInd,

 //EVENT_ECG_HEART_BEAT_OCCURRED,

 EcgDiagnosticModeNewDataReadyInd

 //EVENT_ECG_DIAGNOSTIC_MODE_NEW_DATA_READY

};

const pFunc_t ExecuteCommandReq[] =

{

 NULL, //GLU_START_MEASUREMENT,

 NULL, //GLU_ABORT_MEASUREMENT,

 NULL, //GLU_START_CALIBRATION,

 NULL,

 //GLU_BLOOD_DETECTED,

 NULL,

 //GLU_MEASUREMENT_COMPLETE_OK,

 NULL,

 //GLU_CALIBRATION_COMPLETE_OK,

 NULL, //BPM_START_MEASUREMENT,

 NULL, //BPM_ABORT_MEASUREMENT,

 NULL,

 //BPM_MEASUREMENT_COMPLETE_OK,

 NULL,

 //BPM_MEASUREMENT_ERROR,

 NULL, //BPM_START_LEAK_TEST,

 NULL, //BPM_ABORT_LEAK_TEST,

 NULL,

 //BPM_LEAK_TEST_COMPLETE,

 NULL, //ECG_HEART_RATE_START_MEASUREMENT,

 NULL, //ECG_HEART_RATE_ABORT_MEASUREMENT,

 NULL,

 //ECG_HEART_RATE_MEASUREMENT_COMPLETE_OK,

 NULL,

 //ECG_HEART_RATE_MEASUREMENT_ERROR,

 NULL,

 //ECG_HEART_BEAT_OCCURRED,

 EcgDiagnosticModeStartMeasurementReq,

 //ECG_DIAGNOSTIC_MODE_START_MEASUREMENT,

 EcgDiagnosticModeStopMeasurementReq,

 //ECG_DIAGNOSTIC_MODE_STOP_MEASUREMENT,

 EcgDiagnosticModeNewDataReadyInd,

 //ECG_DIAGNOSTIC_MODE_NEW_DATA_READY,

109

 NULL, //TMP_READ_TEMPERATURE,

 NULL, //HGT_READ_HEIGHT,

 NULL, //WGT_READ_WEIGHT,

 NULL, //SprStartMeasurementReq,

 //SPR_START_MEASUREMENT,

 NULL, //SprAbortMeasurementReq,

 //SPR_ABORT_MEASUREMENT,

 NULL,

 //SPR_MEASUREMENT_COMPLETE_OK,

 NULL,

 //SPR_MEASUREMENT_ERROR,

 NULL,

 //SPR_DIAGNOSTIC_MODE_START_MEASURMENT,

 NULL,

 //SPR_DIAGNOSTIC_MODE_STOP_MEASURMENT,

 NULL,

 //SPR_DIAGNOSTIC_MODE_NEW_DATA_READY,

 NULL,

 //SPR_DIAGNOSTIC_MODE_MEASUREMENT_COMPLETE_OK,

 NULL,

 //SPR_DIAGNOSTIC_MODE_MEASUREMENT_ERROR,

 NULL, //PoxStartMeasurementReq,

 //POX_START_MEASUREMENT,

 NULL, //PoxAbortMeasurementReq,

 //POX_ABORT_MEASURMENT,

 NULL,

 //POX_MEASURMENT_COMPLETE_OK,

 NULL,

 //POX_MEASURMENT_ERROR,

 NULL,

 //PoxDiagnosticModeStartMeasurementReq,//POX_DIAGNOSTIC_MODE_START_MEASURMEN

T,

 NULL,

 //PoxDiagnosticModeStopMeasurementReq,//POX_DIAGNOSTIC_MODE_STOP_MEASURMENT,

 NULL,

 //POX_DIAGNOSTIC_MODE_NEW_DATA_READY

 NULL, //BPM_SEND_PRESSURE_VALUE_TO_PC,

 NULL, //SYSTEM_RESTART,

 NULL //BPM_DATA_READY = 0xFF,

};

const UINT8 AmpGain[] =

{

 Gain2,

 Gain3,

 Gain4,

 Gain4half,

 Gain6,

 Gain6half,

 Gain8half,

 Gain9,

 Gain13,

 Gain17

};

/**

 * Global Variables

 **/

 /***

 * Global Functions Prototypes

 ***/

void TestApp_Init(void);

110

/***

 * Local Variables

 ***/

#ifdef _MC9S08JS16_H

#pragma DATA_SEG APP_DATA

#endif

/* Virtual COM Application start Init Flag */

static volatile boolean start_app = FALSE;

/* Virtual COM Application Carrier Activate Flag */

static volatile boolean start_transactions = FALSE;

/* Receive Buffer */

static uint_8 g_curr_recv_buf[DATA_BUFF_SIZE];

/* Send Buffer */

static uint_8 g_curr_send_buf[DATA_BUFF_SIZE];

/* Receive Data Size */

static uint_8 g_recv_size;

/* Send Data Size */

static uint_8 g_send_size;

static UINT16 PacketIdNumber = 0;

static UINT8 ActualMeasurement;

static UINT8 u8Gain_index = 7;

static UINT16 u16Debounce = 0;

#ifdef SEND_SINE_WAVE

static TIMER_OBJECT TimerSendDummyData;

static UINT8 TimerSendDummyDataIndex;

#endif

/***

 * Local Functions

 ***/

 /**

 *

 * @name TestApp_Init

 *

 * @brief This function is the entry for the Virtual COM Loopback app

 *

 * @param None

 *

 * @return None

 * This function starts the Virtual COM Loopback application

 ***/

void TestApp_Init(void)

{

 uint_8 error;

 /*******************************

 Initialize things for Ekg

 *******************************/

 DAC12_Vin_SWtrig();//set DAC to ouput 1.6 base from 3.3v reference

 opamp1_gp_mode() ;

 opamp2_noninverting_mode(Gain9);

 TRIAMP1C0_HighMode();

 TRIAMP2C0_HighMode();

 PTCDD_PTCDD6 = 0;

 PTCPE_PTCPE6 = 1;

 PTEPE_PTEPE4 = 1; //input pin on sw4

 PTED_PTED7 = 0; //active low for medical port enabling

 PTEDD_PTEDD7 = 1; //pin as output

111

 //indicator LEDs initialization

 PTFD_PTFD1 = 0;

 PTFD_PTFD2 = 0;

 PTFDD_PTFDD1 = 1;

 PTFDD_PTFDD2 = 1;

 EcgDsc_Init();

 Ecg_Init();

#ifdef SEND_SINE_WAVE

 TimerSendDummyData.msCount = 64;

 TimerSendDummyData.pfnTimerCallback = TimerSendDummyData_Event;

#endif

 /*******************************/

 g_recv_size = 0;

 g_send_size= 0;

 DisableInterrupts;

 #if (defined _MCF51MM256_H) || (defined _MCF51JE256_H)

 usb_int_dis();

 #endif

 /* Initialize the USB interface */

 error = USB_Class_CDC_Init(CONTROLLER_ID,USB_App_Callback,

 NULL,USB_Notify_Callback);

 if(error != USB_OK)

 {

 /* Error initializing USB-CDC Class */

 return;

 }

 SCI1_Init();

 EnableInterrupts;

 #if (defined _MCF51MM256_H) || (defined _MCF51JE256_H)

 usb_int_en();

 #endif

}

/**

 *

 * @name TestApp_Task

 *

 * @brief Application task function. It is called from the main loop

 *

 * @param None

 *

 * @return None

 *

 * Application task function. It is called from the main loop

 ***/

void TestApp_Task(void)

{

 /* call the periodic task function */

 USB_Class_CDC_Periodic_Task();

 EcgDsc_PeriodicTask();

 Ecg_PeriodicTask();

 /* check whether enumeration is complete or not */

 if((start_app==TRUE))// && (start_transactions==TRUE))

 {

 Virtual_Com_Recv_Serial_Data();

 Virtual_Com_Send_Serial_Data();

 }

112

 /* check if SW4 is press to reduce the gain */

 if(!PTED_PTED4 & !u16Debounce)

 {

 if (u8Gain_index) u8Gain_index--;

 PTFD_PTFD2 = 1;

 opamp2_noninverting_mode(AmpGain[u8Gain_index]);

 u16Debounce = DEBOUNCE_TIME;

 }

 /* check if SW2 is press to increase the gain */

 if(!PTCD_PTCD6 & !u16Debounce)

 {

 if (u8Gain_index<9) u8Gain_index++;

 PTFD_PTFD1 = 1;

 opamp2_noninverting_mode(AmpGain[u8Gain_index]);

 u16Debounce = DEBOUNCE_TIME;

 }

 /* check if SW2 and SW4 are released */

 if(PTED_PTED4 & PTCD_PTCD6 & u16Debounce)

 {

 if (u8Gain_index==0) PTFD_PTFD1 = 0;

 else if (u8Gain_index==9) PTFD_PTFD2 = 0;

 else

 {

 PTFD_PTFD1 = 0;

 PTFD_PTFD2 = 0;

 }

 }

 if (u16Debounce) u16Debounce--;

}

/**

 *

 * @name Virtual_Com_Recv_Serial_Data

 *

 * @brief Implements Loopback COM Port

 *

 * @param None

 *

 * @return None

 *

 * Receives data from USB Host and process it

 ***/

static void Virtual_Com_Recv_Serial_Data(void)

{

 if(g_recv_size)

 {

 //there is new data

 if (g_curr_recv_buf[PACKET_TYPE] == REQ)

 {

 if (ExecuteCommandReq[g_curr_recv_buf[COMMAND_OPCODE]] != NULL)

 {

 //check if OPCCODE is in a valid range

 if ((g_curr_recv_buf[COMMAND_OPCODE] <=

LAST_COMMAND))

 {

ExecuteCommandReq[g_curr_recv_buf[COMMAND_OPCODE]]();

 }

 }

 }

 //else

 //{

113

 //packet type is not a request

 //}

 g_recv_size = 0;

 }

 return;

}

/**

 *

 * @name Virtual_Com_Send_Serial_Data

 *

 * @brief Send serial data in g_curr_send_buf to USB port

 *

 * @param None

 *

 * @return None

 *

 * Send data to USB Host

 ***/

static void Virtual_Com_Send_Serial_Data(void)

{

 uint_8 status = 0;

 if(g_send_size)

 {

 /* Send Data to USB Host*/

 uint_8 size = g_send_size;

 g_send_size = 0;

 if(g_send_size > DATA_BUFF_SIZE)

 {

 asm (NOP);

 }

 status = USB_Class_CDC_Interface_DIC_Send_Data(CONTROLLER_ID, &g_curr_send_buf[0], size);

 SCISendData(&g_curr_send_buf[0], size);

 if(status != USB_OK)

 {

 /* Send Data Error Handling Code goes here */

 }

 }

}

/**

 *

 * @name USB_App_Callback

 *

 * @brief This function handles Class callback

 *

 * @param controller_ID : Controller ID

 * @param event_type : Value of the event

 * @param val : gives the configuration value

 *

 * @return None

 *

 * This function is called from the class layer whenever reset occurs or enum

 * is complete. After the enum is complete this function sets a variable so

 * that the application can start.

 * This function also receives DATA Send and RECEIVED Events

 ***/

static void USB_App_Callback (

 uint_8 controller_ID, /* [IN] Controller ID */

 uint_8 event_type, /* [IN] value of the event */

 void* val /* [IN] gives the configuration value */

114

)

{

 UNUSED (controller_ID)

 UNUSED (val)

 if(event_type == USB_APP_BUS_RESET)

 {

 start_app=FALSE;

 }

 else if(event_type == USB_APP_ENUM_COMPLETE)

 {

 start_app=TRUE;

 }

 else if((event_type == USB_APP_DATA_RECEIVED))

 //&& (start_transactions == TRUE))

 {

 /* Copy Received Data buffer to Application Buffer */

 USB_PACKET_SIZE BytesToBeCopied;

 APP_DATA_STRUCT* dp_rcv = (APP_DATA_STRUCT*)val;

 uint_8 index;

 BytesToBeCopied = (USB_PACKET_SIZE)((dp_rcv->data_size > DATA_BUFF_SIZE) ?

 DATA_BUFF_SIZE:dp_rcv->data_size);

 for(index = 0; index<BytesToBeCopied ; index++)

 {

 g_curr_recv_buf[index]= dp_rcv->data_ptr[index];

 }

 g_recv_size = index;

 (void)USB_Class_CDC_Interface_DIC_Recv_Data(CONTROLLER_ID, NULL, 0);

 }

 else if((event_type == USB_APP_SEND_COMPLETE)&&

 (start_transactions == TRUE))

 {

 /* Previous Send is complete. Queue next receive */

 (void)USB_Class_CDC_Interface_DIC_Recv_Data(CONTROLLER_ID, NULL, 0);

 }

 return;

}

/**

 *

 * @name USB_Notify_Callback

 *

 * @brief This function handles PSTN Sub Class callbacks

 *

 * @param controller_ID : Controller ID

 * @param event_type : PSTN Event Type

 * @param val : gives the configuration value

 *

 * @return None

 *

 * This function handles USB_APP_CDC_CARRIER_ACTIVATED and

 * USB_APP_CDC_CARRIER_DEACTIVATED PSTN Events

 ***/

static void USB_Notify_Callback (

 uint_8 controller_ID, /* [IN] Controller ID */

 uint_8 event_type, /* [IN] PSTN Event Type */

 void* val /* [IN] gives the configuration value */

)

{

 UNUSED (controller_ID)

 UNUSED (val)

 if(start_app == TRUE)

 {

 if(event_type == USB_APP_CDC_CARRIER_ACTIVATED)

115

 {

 start_transactions = TRUE;

 }

 else if(event_type == USB_APP_CDC_CARRIER_DEACTIVATED)

 {

 start_transactions = FALSE;

 }

 }

 return;

}

void EcgDiagnosticModeStartMeasurementReq(void)

{

 if (ActualMeasurement == NO_MEASUREMENT)

 {

 //execute command and send confirm

 g_curr_send_buf[g_send_size++] = CFM;

 g_curr_send_buf[g_send_size++] =

ECG_DIAGNOSTIC_MODE_START_MEASUREMENT;

 g_curr_send_buf[g_send_size++] = 1; //data bytes

#ifdef SEND_SINE_WAVE

 g_curr_send_buf[g_send_size++] = ERROR_OK;

 TimerSendDummyDataIndex = AddTimerQ(&TimerSendDummyData);

#else

 #ifdef ECG_DSC

 if ((EcgDsc_DiagnosticModeStartMeasurement() == TRUE) &&

 (Ecg_DiagnosticModeStartMeasurement() ==TRUE))

 {

 g_curr_send_buf[g_send_size++] = ERROR_OK;

 }

 else

 {

 g_curr_send_buf[g_send_size++] = ERROR_BUSY;

 }

 #else

 if (Ecg_DiagnosticModeStartMeasurement() == TRUE)

 {

 g_curr_send_buf[g_send_size++] = ERROR_OK;

 }

 else

 {

 g_curr_send_buf[g_send_size++] = ERROR_BUSY;

 }

 #endif

#endif

 Virtual_Com_Send_Serial_Data();

 ActualMeasurement = ECG_MEASUREMENT;

 }

}

void EcgDiagnosticModeStopMeasurementReq(void)

{

 if (ActualMeasurement == ECG_MEASUREMENT)

 {

#ifdef SEND_SINE_WAVE

 RemoveTimerQ(TimerSendDummyDataIndex);

#else

 #ifdef ECG_DSC

 EcgDsc_DiagnosticModeStopMeasurement();

116

 Ecg_DiagnosticModeStopMeasurement();

 #else

 Ecg_DiagnosticModeStopMeasurement();

 #endif

#endif

 g_curr_send_buf[g_send_size++] = CFM;

 g_curr_send_buf[g_send_size++] = ECG_DIAGNOSTIC_MODE_STOP_MEASUREMENT;

 g_curr_send_buf[g_send_size++] = 0; //data bytes

 Virtual_Com_Send_Serial_Data();

 ActualMeasurement = NO_MEASUREMENT;

 }

}

void EcgDiagnosticModeNewDataReadyInd(void)

{

 static UINT16 IdNumber = 0;

#ifdef ECG_DSC

 if (ActualMeasurement == ECG_MEASUREMENT)

 {

 UINT8 i=0;

 //Send indication

 g_curr_send_buf[g_send_size++] = IND;

 g_curr_send_buf[g_send_size++] = ECG_DIAGNOSTIC_MODE_NEW_DATA_READY;

 g_curr_send_buf[g_send_size++] = DATA_LENGTH_FROM_DSC-1;

 //data from DSC (64) + packetID

 g_curr_send_buf[g_send_size++] = (UINT8) (IdNumber >> 8);

 g_curr_send_buf[g_send_size++] = (UINT8) (IdNumber & 0x00FF);

 IdNumber++;

 //copy data from DSC to outbuffer

 i = DATA_START_POSITION;

 while (i<DATA_END_POSITION)

 {

 g_curr_send_buf[g_send_size++] = DataFromDsc[i+1]; //swap data bytes

 g_curr_send_buf[g_send_size++] = DataFromDsc[i];

 i+=2;

 }

 g_curr_send_buf[g_send_size++] = EcgDsc_HeartRate;

 //send data

 Virtual_Com_Send_Serial_Data();

 }

#else

 if (ActualMeasurement == ECG_MEASUREMENT)

 {

 UINT8 i=0;

 //Send indication

 g_curr_send_buf[g_send_size++] = IND;

 g_curr_send_buf[g_send_size++] = ECG_DIAGNOSTIC_MODE_NEW_DATA_READY;

 g_curr_send_buf[g_send_size++] = ECG_DATA_BUFFER_LENGTH + 2 + 1;

 //data from ECG + packetID + ECG_HeartRate

 g_curr_send_buf[g_send_size++] = (UINT8) (IdNumber >> 8);

 //add packetId for error handling

 g_curr_send_buf[g_send_size++] = (UINT8) (IdNumber & 0x00FF);

 IdNumber++;

117

 //copy data from DSC to outbuffer

 i = 0;

 while (i<ECG_DATA_BUFFER_LENGTH)

 {

 g_curr_send_buf[g_send_size++] = EcgDataBuffer[i++]; //copy ECG data to

OutBuffer

 g_curr_send_buf[g_send_size++] = EcgDataBuffer[i++];

 }

 g_curr_send_buf[g_send_size++] = Ecg_HeartRate;

 //send data

 Virtual_Com_Send_Serial_Data();

 }

#endif

}

#ifdef SEND_SINE_WAVE

//this is the timer event for sending a dummy sine wave

void TimerSendDummyData_Event(void)

{

 static const UINT16 SinX[] =

 {

 1250, 1349, 1448, 1545, 1640, 1733, 1823, 1910, 1992, 2069, 2142, 2208, 2269, 2323, 2371,

2411, 2444, 2470, 2488, 2498, 2500, 2494, 2481, 2459, 2430, 2394, 2350, 2300, 2243, 2179, 2110, 2036, 1956,

1872, 1784, 1693, 1598, 1502, 1404, 1305, 1206, 1107, 1009, 912, 818, 726, 638, 553, 473, 398, 328, 264, 206,

155, 111, 73, 44, 21, 7, 0, 2, 11, 28, 53, 85, 124, 171, 225, 284, 350, 422, 499, 581, 667, 756, 849, 944, 1041,

1140, 1239

 };

 #define SIN_X_LAST_ELEMENT 79

 static const UINT8 EcgBufferSize = 64;

 static const UINT8 SinXTimerPeriod = 64;

 if (ActualMeasurement == ECG_MEASUREMENT)

 {

 static UINT8 SinXArrayActualElement = 0;

 //Send indication

 g_curr_send_buf[g_send_size++] = IND;

 g_curr_send_buf[g_send_size++] = ECG_DIAGNOSTIC_MODE_NEW_DATA_READY;

 g_curr_send_buf[g_send_size++] = EcgBufferSize + 2;

 //data bytes

 g_curr_send_buf[g_send_size++] = (UINT8) (PacketIdNumber >> 8);

 g_curr_send_buf[g_send_size++] = (UINT8) (PacketIdNumber & 0x00FF);

 PacketIdNumber++;

 while (g_send_size < (EcgBufferSize + DATA_PACKET + 2))

 {

 g_curr_send_buf[g_send_size++] = SinX[SinXArrayActualElement] >> 8;

 g_curr_send_buf[g_send_size++] = SinX[SinXArrayActualElement] & 0x00FF;

 if (SinXArrayActualElement == SIN_X_LAST_ELEMENT)

 {

 SinXArrayActualElement = 0;

 }

 else

118

 {

 SinXArrayActualElement++;

 }

 }

 Virtual_Com_Send_Serial_Data();

 TimerSendDummyDataIndex = AddTimerQ(&TimerSendDummyData);

 }

}

#endif

void SWdelay(void)

{

 UINT16 debounce= 50000;

 while (debounce) debounce--;

}

/* add SCI1 channel to transport data */

static void SCI1_Init(void)

{

 SCI1C1 = 0x00;

 SCI1C2 = 0x00;

 SCI1C3 = 0x00;

 SCI1BD = 24000000UL/9600/16; /* 9600 bps*/

}

static void SCISendData(const byte SendData[],byte ssize)

{

 byte i;

 SCI1C2_TE = 1;

 for(i = 0;i < ssize; i++)

 {

 while(SCI1S1_TDRE == 0)

 {

 ;

 }

 SCI1D = SendData[i];

 }

 SCI1C2_TE = 0;

}

/* EOF */

119

Appendix H: Schematics Diagram of Freescale’s Medical Development Kit

