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ABSTRACT

ANTICANCER PROPERTY OF SOME METAL(Il) COMPLEXES OF

1, 10-PHENANTHROLINE AND MALTOL

TAN THEAN HENG

After the discovery of the novel compound cisplatinplatinum anticancer
agent, scientists have increasing interest in tbssipilities of developing
other transition metal compound into anticancemagk this study copper,
cobalt and zinc was chosen and incorporated wiglaroc ligand matol and
1,10-phenanthroline. The three compounds that veereened from this
combination were [M(phen)(ma)Cl] (M=Cu(ll), Co(llZn(ll); phen=1,10-
phenanthroline; ma=maltolate). Two malignant breasicer cell lines, MCF-
7 and MDA-MB-231, and one non-malignant cell liMCF10A, were used.
MTT assay was done to screen for anticancer priegeof [M(phen)(ma)Cl]
with 24 hours, 48 hours and 72 hours duration. Tygotoxicity of

[Cu(phen)(ma)CI] were equally potent for malignamntd non-malignant cell
lines with 1C-50 values of MCF-7, MDA-MB-231 and NFTOA for

[Cu(phen)(ma)CI] after 24 hours incubation at 4.Qud/buM and 8.7uM
respectively. The same trend was recorded for [Zerfj(ma)Cl] recording IC-
50 values of MCF-7, MDA-MB-231 and MCF10A after A8urs incubation at
7.9uM, 6.5uM and 10.0pM respectively. There wenesaterable difference

in [Co(phen)(ma)Cl] IC-50 value after 72 hours ibation among MCF-7
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(2.9uM), MDA-MB-231 (17.8uM) and MCF10A (16.9uM). aBic

morphological study on cells that were treated Wtu(phen)(ma)CI] and
[Zn(phen)(ma)Cl] showed cytoplasmic enlargement iaupdure of the plasma
membrane indicating necrosis. Under microscope glert)(ma)Cl] showed
nuclear condensation, cytoplasmic vacoulation, nramd bebbling and
presence of apoptotic body on MCF-7 and MDA-MB-23dicating apoptosis
but has relatively low effectiveness towards MCF10¥ter preliminary

studies on [M(phen)(ma)Cl] results shown that [Gwm)(ma)Cl] and
[Zn(phen)(ma)CIl] were equally cytotoxic to both mablnt and non-
malignant cell lines so these two compounds werduded from further
testing. The morphological observation on the eéffeaf [Co(phen)(ma)Cl]
was confirmed with Annexin V-FITC/Pl apoptosis assahowing

[Co(phen)(ma)Cl] induced apoptosis dose dependemiCF-7 and MDA-

MB-231 only and the effect was not as apparent @FVDA with percentage
of viable cells >90% on 3uM, 17uM and 25uM. Celtleystudies using flow
cytometry showed slight arrest in G2/M phrased M£F-7 and significant
arrest on GO/G1 phrase for MDA-MB-231. Meanwhileaadl cycle arrest was
found on MCF10A. Proteasome-Glo™ cell-based asshgwed that
[Co(phen)(ma)CI] inhibit proteasome activity of MEMB-231 on 3uM,

17uM and 25uM in a dose dependent manner whilengawasignificant effect
on MCF-7 and MCF10A. Measurement of Reactive Oxy§pecies showed
accumulation of intracellular ROS level in MDA-MBB2 after treated with
[Co(phen)(ma)CI] on 3uM, 17uM and 25uM in a doseaielent manner.
There was no significant changes in intracellul®@3Xlevel in MCF-7 and

MCF10A after treated with [Co(phen)(ma)Cl]. Theuks showed selectivity
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on cytotoxicity of [Co(phen)(ma)CIl] towards tumagigc and non-
tumorigenic breast epithelial cells plus distindfeldence in mechanism of
action between highly invasive breast cancer aall &nd non-invasive breast
cancer cell line. Better understanding of [Co(pkma)Cl] mechanism of
action can lead to the discovery of a novel compotimt can target a

particular type of cancer cell.
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CHAPTER 1

INTRODUCTION AND OBJECTIVES

1.1 Introduction

Cancer is one of the major causes of death in Hetreloped and developing
countries (World Health Organization, 2014). Thekriof cancer is rising in
developing countries as a result of aging poputatiod growth as well as living
cancer-related lifestyle choices including smokseglentary, and unhealthy diets.
Breast cancer is by far the most common cancendseyl and cause of death in
women worldwide, ranking second in both sexes castbi(Ferlay et al., 2010).
The incidence of breast cancer has increased i coositries worldwide in the
last decades, with the most rapid increase ocauinnmany of the developing
countries (IARC, 2012). The treatment given foraarns variable and dependent
on a number of factors including the type, locatma amount of disease and the

health status of the patient.

One of the treatments is chemotherapy which ingatps a broad spectrum of
drugs used to treat cancer. These drugs typicafigtion by inducing death on
dividing cells. Since cancer cells have lost moktth® regulatory functions

available in normal cells, they will continue ty tio divide when other cells do
not. This characteristic causes cancer cells vablerto a broad spectrum of
cellular poisons. However chemotherapeutic teclesgouave a number of side-

effects that depend on the type of medication udddst of the regular



medications used affect primarily the fast-dividioglls of the body, such as
blood cells and the cells lining the intestinesnsch, and mouth. Some of the
most commonly reported side effects are nauseavamiting, alopecia, fatigue,
ototoxicity, neutropenia, thrombocytopenia, anemmcositis, loss of appetite,
cognitive problems, low libido and infertility, b@kv movement problems,
depression and also neurotoxicity (American Car®eciety). Even with such
adverse list of side effects chemotherapy are gldgwith pharmacological
deficiencies and limitations. Chemotherapy is nitags effectual, and even
when it does, it may not entirely eliminate the @an(Weeks et al., 2012). The
prevalence of cancer and all associated costs,ibdtbman and financial terms,

drives the search for new therapeutic drugs aradnrents.

Transition metals have a valued place in mediath@mistry. The initial reports
on the therapeutic exploit of transition metal ctemps in cancer and leukemia
timed back to the sixteenth century. In the 60s @h#-tumor activity of cis-
diammine-dichloroplatinum(ll) or better known assmlatin was discovered
(Rosenberg et al., 1969). Cisplatin was developéal ane of the most regularly
utilized and most efficient cytostatic drug for amment of solid carcinomas.
Cisplatin is particularly effective against testaruand ovarian cancer (Wong and
Giandomenico, 1999; Giaccone, 2000). Cisplatin Is0 aised in combination
regimens for other carcinomas, including bladdest ann small cell lung and
head and neck cancers (Weiss and Christian 1993etHa., 2003). However

there are limitations the usage of cisplatin dudeweloped resistance to cisplatin



(Wernyj and Morin 2004), had to be administeredawenously due to its
insolubility in water (Wong and Giandomenico 19%8)d also significant side
effects that comes with it (Marzaret al., 2002). The discovery of cisplatin
encouraged anticancer research on other metal easyp(Thati, et al., 2007) like
titanium (Kopf and Kopf-Maier, 1979), gold (Miralieet al., 1986), germanium
(Scheinet al., 1980), copper (Yooret al., 1990), iron (Carteret al., 1989),

ruthenium (Mirabelliet al., 1986), cobalt (Cartest al., 1989), vanadium (Larsen

et al.,1990).

The compounds that were used in this study are libtfj(ma)Cl]. Below is the

image of the molecular structure of [M(phen)(ma)Cl]

+

Cl

Figure 1.1: The molecular structure of [M(phen)(@&)with M as the metal
center flanked with 1,10-phenanthroline on the trighd maltol on the left as
ligand.



[M(phen)(ma)Cl] is a compound with a transition aleas the center. Copper,
cobalt and zinc were use as the metal center. ®hgound were flanked with

two ligands which were 1,10-phenanthroline and ohalt

Three different breast epithelial cell lines wesedi in this study. Two different
malignant cell lines that were chosen were MCF-d B{DA-MB-231. A non-
malignant cell line MCF10A was used as a comparid@F-7 cell line is one of
the commonly used breast cancer cell line as aimasive and estrogen receptor
positive while MDA-MB-231 is an invasive and esteogreceptor negative breast
cancer cell line. These three cell lines were dpady chosen so that a
comparison between malignant cell lines can alsomaele instead of just a

comparison of malignant and non-malignant celldine

The first objective of this study is to test for tiaancer properties of
[M(phen)(ma)Cl]. Cell viability test were utilized measure the 1C-50 of the cell
lines with MTT assay and changes in the morpholaiggell lines were observed
under phase-contrast inverted microscope. The gecabjective is to determine
the selectivity of the mechanism of action of [Mépfi(ma)CIl] compounds. Three
different breast epithelial cell lines were choden their distinctive attributes.
MCF-7 was chosen as a non- invasive and estrogepta positive malignant
cell line while MDA-MB-231 was chosen as an invasand estrogen receptor
negative malignant cell line. MCF10A was choseraaswn-malignant cell line.

The last objective is to find out the mechanisnaction of [M(phen)(ma)ClI]. In



order to discover the mechanism of action of [M{pima)Cl] four different
assays will be used to analyze. Annexin V-FITC/4ay will be used to find for
evidence of cell death via apoptosis. Cell cyclalysis will be used to determine
whether there is any occurrence of cell cycle &roesany anomalies in DNA
replication cycle. Proteasome-Glo™ cell-based asg#ybe used to determine
whether the proteasome activity of the cells wdldffected by [M(phen)(ma)Cl].
OxiSelect™ Intracellular ROS Assay Kit (Cell BiolgbInc.) will be used to
measure the intracellular ROS level of the cellsfitwd the difference in

measurement with and without the treatment of [M(pma)Cl].



CHAPTER 2

LITERATURE REVIEW

2.1 Development of new anticancer drugs

The center of attention of conventional anticardrelg research and development
was to discover an agent with cytotoxic propertlge paradigms of discovering

anticancer drugs are to focus on agents choseitsfaonsiderable cytostatic or

cytotoxic activity on tumor cell lines (Faber et, d1948). That is why my research
was started off with cell viability test using MTassay, a colorimetric assay that
is commonly used for measuring the activity of welt enzymes (Berridge et al.,

2005). This is to check for the cytotoxicity of [(@Phen)(mal)Cl],

[Co(phen)(mal)CI] and [Zn(phen)(mal)Cl] complexes.

Even though this conventional approach was able atain significant

achievements, the modern breakthroughs in moleduilelogy and a deeper
understanding of the pharmacology of cancer at lacuatar level have demanded
researchers to discover drugs that are target-bd@sg#dmoto and Calvo, 2008).
Numerous target-based compounds have surfacedtlsecamd one of it is

Bortezomib, a small-molecule proteasome inhibitsedi for the treatment of
multiple myeloma refractory to other treatments §Ad and Kauffman, 2004).
Anticancer agents with proteasome inhibitor prdpsrare an increasing popular

aspect to be worked on by researchers. This re&ssn prompted me to



incorporate a test into my research to measureasome activity of the cell lines

to check for any inhibition in proteasome activity.

After the chosen complex gone through the prelimyin@sting and came out with
promising results then it will go through the presef being a new drug. Each
new drug or drug combinations needs to be asséssadfety and potency prior
to be approved. The assessment of new anticanags an drug combinations
typically goes through three main phases. The phaes of clinical drug

development need to be meticulous and thoroughaels phase of analysis can
direct to permanent discontinuation of the compoohdnterest (Di Masi and

Grabowski, 2007).

2.2 Metal based anticancer drugs

Since the earliest times of human medical historgfal compounds have been
utilized successfully for treating various kinds difeases. Ancient Egyptians
physicians recognized the therapeutic prospecblaf galts (Nobili et al., 2009).
Arsenic drugs like arsenic trioxide had been usétkbly in traditional Chinese
medicine as antiseptic agents and also in thentieggt of syphilis, psoriasis and
even cancer (Dilda and Hogg, 2007; Gielen and mlek2005). Arsenic trioxide
was among the first few compounds that was recordeeerfor anticancer
treatment. Around 8and 19" century arsenic trioxide was widely used as a
primary treatment for leukemia (Zhu et al., 200@).the 1960s when Barnett

Rosenberg discovered cisplatin, a platinum(ll) cxpnarked the modern era of



metal-based anticancer drugs (Rosenberg et al.9)198& the present time
cisplatin and its successors carboplatin and obedilip are among the main
chemotherapeutics used to treated various kindgaoters (Kelland 2007).
Encouraged by the success of cisplatin, attentias also diverted to other metal-
based complexes as a viable source of developnfeanhteancer drugs like
ruthenium, gold, titanium, copper, rhodium, vanadiand cobalt (Clarke et al.,

1999; Eastman 1987; Kostova 2006; Ott and Gust ;280w 1999)

2.2.1 Copper based anticancer drugs

Copper displays significant biochemical action @itas an essential trace nutrient
or as a component of various exogenously deliveredhumans (Brewer 2009).
Present attention in copper complexes is on theospgective exploit as
antimicrobial, antiviral, anti-inflammatory, enzymehibitors and even antitumor

agents (Weder et al., 2002).

Numerous copper(ll) chelate complexes was fourghtaw evidence of cytotoxic
activity through cell apoptosis or enzyme inhihitiQr'ripathi et al., 2007). These
complexes containing bi-Schiff bases as ligandseffieient in shrinking tumor

size, slowing of metastasis and considerably deerd¢lae mortality rate of the
hosts. Copper(ll) chelates of salclaldoxime andon®daldoxime expressed
antiproliferative and strong cytotoxic effects arpof that of adriamycin by

causing cell cyle arrest and apoptosis (Elo 200A¢se complexes demonstrate a



diverse biological activity that is comparable taeoof the commonly used

platinum anticancer drugs cisplatin.

The complex 2,6-bis(benzimidazo-2-yl)pyridine coggpe chloride has proven to
show metalloprotease activity (Shrivastava et241Q2). It binds to bovine serum
abumin leading to site-specific cleavage of proteifhe complexes of
carboxamidrazones have been shown to increase@ifiéipative activity against
B16F10 mouse melanoma cells (Gokhale et al., 200k)s shows that the
combination of Cu(ll) with carboxamidrazone liganaisght cause intracellular
transportation and block estrogen receptors. Cu@dhpound of chlorophyllin
proven to induce apoptosis in human colon cancks tderough caspase-8 and
apoptosis-inducing factor activation in a cytochexsvindependent manner (Diaz

et al., 2003).

Despite the fact that copper is a crucial cofactmr tumor angiogenesis
development, numerous Cu(ll) complexes have praeeexhibit proteasome
inhibition traits and also inducing apoptosis iffetient types of human cancer
cells (Daniel et al., 2004). The metal in these plexes is incorporated with
neutral heteroatomic molecules like 1,10-phenatitigoor to anionic organic
ligands like pyrrolidine dithiocarbamate. It is adws that the ligand themselves
are not proficient inhibitors and complex formatiae fundamental for

mobilization of copper ions through the cell menmnirato cause proteasome



inhibition (Hindo et al., 2009). This is causedthg increased of lipophilicity of

metal when incorporated with ligands.

2.2.2 Cobalt based anticancer drugs

Cobalt based compounds lately drawn a sizable atafuattention as systemic
anticancer agents. Cobalamin is used in conjunctath folic acid in
chemotherapy utilize antimetabolites to bring datve adverse side effects. In
view of the fact that fast growing cells need higdesage of cobalamin than
normal cells, cobalamin-conjugates with radioise®mr cytotoxic compounds
like nitrosylcobalamin has shown to increase tumocumulation (Bauer et al.,

2007; Gupta et al., 2008; Ruiz-Sanchez et al., 011

Cobalt alkyne complexes have shown to enhanceaatiir activity bothn vitro
and in vivo especially against breast cancer cells (Jung .et1807). Small
changes on the molecule of the complexes can leatistinct variation in the
mode of action (Ott and Gust 2007). Studies onntiogle of action found that
cobalt alkyne complexes do not largely target DMAviable cells. Numerous
research shows that the activity of [{2-Acetoxy(@pynyl)benzoate}-
hexacarbonyldicobalt] may be due to the interactibthe ligand acetylsalicylic
acid with cyclooxygenase enzymes (COX-1 and COXFB)s is best suited for
targeting breast cancer cells as it is known tha hypersensitive against COX

inhibitors (Ott et al., 2005). This emerges to bpraspective approach because
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inhibition of cyclooxygenase slows tumor growthvasl as improves response to

conventional cancer therapies.

Several redox-active cobalt(ll) and cobalt(lll) qoexes have shown significant
antitumor activity and DNA damage in numerous rademor models (Vol'pin
et al., 1999; Osinsky et al., 2003; Osinsky et 2004). These redox-active
complexes by cytotoxic ligand release and or bgwothechanisms like binding of
the histidine units of polypeptide chains with mgtiglobin (Blum et al., 1998).
Furthermore, these complexes might catalyze auigatgn of ascorbic acid
involving generation of @ ,OH’, and HO, (Vol'pin et al., 1999). Consequently,
cobalt complexes that are build up in malignargugs should display increased
antitumor activity in conjunction with ascorbic d€iOsinsky et al., 2004; Vol'pin

et al., 1999).

2.2.3 Zinc based anticancer drugs

Even though with the various of physiological rotészinc(ll) ion (Thorp, 1998)
and the broad range of Zn(ll) complexes used iniouar fields like
radioprotective agents (Emami et al., 2007) tunmwotp sensitizer (Huang et al.,
2006) and antimicrobial agents (Chohan et al., it there is very limited
information on the cytotoxicity of zinc-based compds on human cancer cell
lines (Jiang et al., 2008). Zinc is a low cost,cbhimpatible metal with a large
coordinative chemistry, interesting photophysicalgerties and is very promising

for inorganic medicinal chemistry (Clarke et aR99). The use of Zn(ll) species
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as antitumour drugs is very interesting becauséiadvailability and versatile
coordination ability Zn(ll) complexes could showtdresting cytotoxic ability

with low toxicity (Benedetti et al., 2010)

Currently, zinc oxide nanoparticles have garneres lof attention for their
implication in cancer therapy (Zhang et al., 201Rgsearch have proven that
these complexes possesses cytotoxic propertieslitepecific and proliferation-
dependent manner with fast multiplying cancer cetiest vulnerable and
guiescent cells least susceptible (Hanley et &082 Ostrovsky et al., 2009;
Premanathan et al., 2011). Zinc(ll) complexes domg 4,4 dinonyl-2,2-
bipyridine as main ligand and tropolones or 1-ph&agethyl-4-R-5-
pyrazolones as ancillary ligands have shown se&kedbxicity toward prostate
cancer cells lines. Studies confirmed that the neatd the central metal ion as
well as its coordination environment induce sigrafit changes in the biological

activity of resulting complexes (Paola et al., 2010

2.3 Phenanthroline

Phenanthrolines are a group of compounds with @niqade of action (Kemp et
al., 2007). These compounds have garnered muctesttéor their prospective
properties against cancer as well as to viral, ésedt and fungal infections.
Unlike cisplatin, intercalating ligands like phetiaolines and their metal
complex derivatives binds with DNA by aromatic pating between base pairs.

This mode of action causes the helix to lengthegffels and unwind (Kemp et al.,
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2007). One of the phenanthroline derivative, ph#mafine-5,6-dione have
shown considerable anticancer activity both witld anthout metal incorporated

into it (Devereux et al., 2007).

A few phenanthroline complexes are already renowfad their excellent
cytotoxic properties. Phenanthroline itself haveovehh high potency against
neoplastic cell lines with 1C-50 values of phenaolihe in L1210, HepG2 and
A498 cell lines reported to be as low as 4.5mm {iTétaal., 2007; McFadyen et
al., 1985). However phenanthroline is less effectowards leukemia cell lines
than cisplating while in other cell lines it sho®@$- to 3.3- fold of increased
activity (Garza-Ortiz et al., 2007). Another complacorporated with 1,10-
phenanthroline have shown potent cytotoxicity agfaihuman cancer cells at low
micromolar concentrations. This complex also did cause acute or subacute

toxicity in mice at the range of practical clinichdse level (Narla et al., 2001).

2.4 Maltol

Maltol (3-hydroxy-2-methyl-4-pyrone) is one of thell known hydroxypyrones
that is widely used for flavour enhancer and als@ntioxidant properties (Gralla
et al., 1969). It is found in the bark of larchetrén pine needles, and in roasted
malt and is common added as an additive in foogettage, tobacco, brewing and
also cosmetics (Bjeldanes and Chew 1979). Maltokspsses a high
bioavailability and favourable toxicity profiles kiag it a suitable component to

incorporate into a complex to reduce its toxicitjaltol readily binds to hard
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metal centers such as’teGa™, AI**, and V3" (Liboiron et al., 2005). Due to
this property, maltol has been proven to signifigaimcrease aluminum uptake in
the body(Kaneko et al., 2004) and also increases the aravhilability of

gallium (Bernstein et al., 2000) and iron (Reféttal., 2000)

Recently, maltol was found to exhibit significamtiaeoplastic activities towards
different cancer cell lines (Hironishi et.,all996). DNA breakage due to the
generation of reactive oxygen species was deduadaetone of the probable
mode of action undertaken by maltol complexes (Wiasto et al. 2004). Besides

that, a couple of maltol-derived compounds werett®gized and tested in the
formulation of new prospective metal-based antitudhoigs that can hinder with
DNA replication came up with promising results (Ja&c and Keppler 2004;

Barve et al.2009; Kandioller et al 2009).

Hypothesizing that these compounds have good palteag anticancer agents,
[Cu(phen)(mal)CI], [Co(phen)(mal)Cl] and [Zn(phem¥l)CI] were screened for
their biological activity. Copper, cobalt and zwere chosen as the center of the
metal complex due to its low cost in synthesizimgl groven tract records on
anticancer activity. 1,10-phenanthroline was inooaed as one of the ligand to
increase the binding of the complexes to target®diA thus increasing its
potency. Maltol was used as another ligand to @ams®e the complexes
bioavailability and reducing their toxic side effecwhile at the same time

enhancing their anticancer activities.

14



2.5  Different types of breast cancer

According to National Center for Biotechnology Infaation
(www.ncbi.nlm.nih.gov) breast cancer usually stagither in the cells of the
lobules, which are the milk-producing glands, a tlucts, which is the passages
that drain the milk from the lobules to the nippfepathology report will show
whether the cancer has spread beyond the milk darctebules of the breast

where it originated.

Basically there are two types of breast cancerasive and non-invasive. Non-
invasive cancers stay within the milk ducts or lelsun the breast and they do not
grow into or invade normal tissues within or beyahe breast. Non-invasive
cancers are commonly called as carcinoma in siticti® carcinoma in situ is
breast cancer in the lining of the milk ducts thave not metastasize to adjacent
tissues. It may develop to invasive cancer if wted. However lobular
carcinoma in situ is an indicator for a heighteskrof escalating into invasive
cancer in the same or both breasts. Invasive camvedlr spread to normal and
healthy tissues. There are different regimentseztiments for invasive and non-

invasive cancers (Koutsilieris et al., 1999).

Most breast cancers are sensitive to the hormotreges. The presence of

estrogen will enhance the growth of breast cangerot. These cancers have

estrogen receptors on the surface of their celles& cancers are characterized as
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estrogen receptor positive cancer (ER+). Even thdugast cancer is linked to
exposure to estrogen however not every breast saace responsive to estrogen
and its analogs. Some cancers are lacking of tineges receptor and is classified
as estrogen receptor negative cancer (ER-). OYasgibreast cancers by ER+ or
ER- can aid in the selection of proper therapike kome ER+ cancers are
responsive positively to hormone blockers while Eg&ncers do not. Such
classification system also provides a better urtideding into the possible
pathophysiology of these tumors. Numerous studas tshown that ER+ and
ER- breast cancers have specifically different rfaktors and with that a

possibility of different etiologies (Althuis et aR004; Korde et al., 2010).

What makes metastatic breast cancer distinctiven fother solid tumors is that
ER+ breast cancer patients have a better reaaichdmotherapy and favorable
prognosis (Sherry et al., 1986; Coleman and Ruld&&Y; Diel et al., 1992).
Regrettably this is not the scenario for patierfgs Breast cancar (Anderson et al.,
2005). Facts presented by epidemiological studee® lshown that breast cancer
risk factors vary by tumor characteristic (Althesal., 2004; Yang et al., 2011).
With these in mind | have specifically chosen Jatént cell lines to represent
each type of breast cancer. MCF-7 is a non-invaancealso a ER+ breast cancer
cell line while MDA-MB-231 is an invasive and aladER- breast cancer cell line
(Nagaraja et al., 2006). While MCF10A, a non-turgenic epithelial cell line

(Nagaraja et al., 2006), is used as a comparisonddgtermine whether
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[Cu(phen)(mal)CI], [Co(phen)(mal)Cl] and [Zn(phem¥l)CI] are cytotoxic to

normal and healthy cells.

2.6  Apoptosis in cancer

There are a few ways that apoptotic cells can batified from normal healthy

cells. One of the easiest method is to observarnwphological changes of the
cells .Apoptosis was originally identified by itsorphological changes, such as
cell shrinkage, chromatin condensation, membranebdihg and nuclear

fragmentation (Kerr et al., 1972; Wyllie et al.; 80 Kerr et al., 1994). The

understanding that apoptosis is a gene-directeg@rgno has had insightful

implications for comprehending the developmentaloldgy and tissue

homeostasis, for it means that cell numbers camdmrolled by factors that

influence cell survival as well as those that managroliferation and

differentiation. Besides that, the genetic basis dpoptosis showed that cell
death, like any other metabolic or developmentagpm, can be interrupted by
mutation. In fact, flaws in apoptotic pathways arew considered to cause
numerous of human diseases, ranging from neurodegi@re disorders to

malignancy (Thompson 1995).

Among the most important advances of cancer biokgy cancer genetics is the
breakthrough is that malignant phenotype is sigaiftly influenced by apoptosis
and genes that control the pathway. The signifiedrat-2 oncogene in tumor

development was established after the cloning dadacterization of this gene
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(Tsujimoto et al., 1984; Tsujimoto et al., 1985}hé&r than that, the initial tumor
suppressor gene that was being related to apoptasig53 p53 mutations occur
in the most of human tumors and usually connectigl vgher tumor stage and

poor patient prognosis (Wallace-Brodeur and Low@9)9

Eventhough the early studies on Bcl-2 and p53 meieeg the significance of
apoptosis in carcinogenesis, it is now obvious thatations in many cancer-
related genes can interrupt apoptosis, leadingimot initiation, progression or
metastasis. For instance, the Fas/CD95 recept@llysegulates the number of
cells in the immune system by killing cells througpoptosis, and interruption of
this pathway can cause lymphoproliferative dissdard even cancers (Beltinger
et al., 1998). Besides that, a few signal transdncpathways support cell
survival in reaction to growth and/or survival fat. Signaling through PI-3
kinase is one of the significant pathway (Marte Bradvnward, 1997), which able
to be started by Ras and is down regulated by thRENPtumor suppressor
(Cantley and Neel, 1999). Ras activation and PT&d¢ lare ordinary in human

cancers.

Last but not least, apoptosis is know to be cabgdughly cytotoxic compounds,
which might suggest the possibility that flaws ipoptotic programs add to
unsuccessful treatment. Because decrease in tneateesitivity is also caused
by the similar mutation that represses apoptosiacer genetics is able to be

connected to cancer therapy. Since apoptotic pathwan be maneuvered to
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create huge alteration in cell death, the genegeautdins regulating apoptosis are
possible drug targets. A lot of empirically derivatcytotoxic drugs by now can
aim apoptosis, although not directly and non-exeklg. Those drugs are also
mutagenic and toxic to healthy tissues. In comparisirugs that directly cause
apoptosis may present fewer chances for gainingy desistance, reduce
mutagenesis and decrease toxicity. Numerous presatgies are targeting anti-
apoptotic activities (Tai et al., 1999), restoripigp-apoptotic activities (Spitz et
al., 1996; Badie et al., 1998), through death ligafWold 1993; Dong et al.,
1997), enhancing the effects of pro-apoptotic nonst (Samuelson and Lowe

1997) and chemoprotection (Komarov et al., 1999).

The understanding of apoptosis and its roll in earend cancer therapy was
highly increased in recent year. In addition, aacde picture of the molecular
mechanisms that manage and perform apoptotic asdithd was achieved.
Apoptosis opens up opportunities for cancer prognaBagnostics and therapy
with the current understanding we achieved evenghdhere is much more to be
learned. Finding out whether [Mphen)(mal)Cl] compds induce cell death via

apoptosis will be a key step in finding the mechaniof action of these

compounds.
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2.7  The cell cycle and cancer

Superficially, the correlation between the cell leyand cancer is apparent: cell
cycle machinery regulates cell proliferation, andnaer is a disease of
uncontrolled cell proliferation. Basically, all azrs allow the existence of too
many cells. However, this cell number surplus isoamted in a vicious cycle
with a decrease in sensitivity to signals that radlynsignal a cell to adhere,
differentiate, or die. This arrangement of alterpdoperties amplify the

complexity of deciphering which changes are maiatgountable for causing

cancer (Nasmyth 1996).

Unregulated cell cycle mechanism activates the mtnatbed cell propagation that
differentiates the malignant phenotype. Mitogeriddese the stops of cell cycle
development by upregulating G1-S CDK actions, irspomse causing
phosphorylation of pRB proteins, resulting in dis&nce of its interface with the
E2F family of transcription factors. In tumorigeneells, pRB regulators are
frequently faulty, ensuing in E2F-dependent Gl-®egexpression even in
without the presence of mitogens (Harbour and 2€40). This might occur as a
consequence of activating tumourigenic mutatiord tas recognized in varied
tumours at different advances in the mitogenic aigrg pathways from ligands
and receptors like HERZ2/ErbB2/neu receptor mutatioor HER2 gene

upregulation to downstream signalling pathways Ras—Raf-MAPK (Zhang et
al., 2009; Freier et al., 2003; Huang et al., 20@®normal signalling helps in

commencement of CDK-cyclin, which phosphorylate Ribd stimulate
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transcriptional repression. The idea that Rb phospétion is a convergence spot
for oncogenic signalling pathways is in accordamgth the truth that down
regulation of the RB gene by methylation is a ndrimgidence in cancer
(Malumbres and Barbacid 2001). The inactivationtwhour suppressor genes
that encode CDKIs such as p15, pl16 and p27 arecaatfioary occurrence in
diverse tumour types. This releases the brakesetincgcle progression, and
further abrogation of checkpoint control mechanigiitect to the attainment of
genomic instability, which drives tumour evolutigMalumbres and Barbacid

2009).

Cdc7 kinase has surfaced as a predominantly apgeafiti-cancer aim for DNA
duplication initiation pathway due to the reasoranh be repressed using ATP-
competitive SMIs. A number of biopharmaceuticaimsr have commence Cdc7
drug improvement ventures, a number of which haxered preliminary clinical
trials (Swords et al., 2010; Montagnoli, et al.1@ Cdc7 inhibitors contain wide
tumour range action in preclinical models, in ademice with absence of the
defensive mechanism in most tumorigenic cancer.pfqi@ cancer cell death in
retort to Cdc7 inhibition is p53-independent is ttotked through the p38MAPK
in an ATM- and Rad3-related (ATR)-dependent manfier and Lee 2008).
Fascinatingly, in conjunction to its function ingin firing, Cdc7 kinase has been
revealed to engage in a vital role in controllirge tATR-Chk1l pathway by
phosphorylating the Chk1 activator Claspin (Kimaét 2008; Matsumoto et al.,

2010). Therefore, the double consequence of CduBitors on DNA duplication
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and DNA damage reaction pathways might advancenpate cancer cell

elimination.

The cell cycle mechanism is a prospective benéfaia in cancer because it is
situated downstream at the junction of intricateagenic signalling pathways
and its deregulation is important to the abnormal growth (Williams and

Stoeber 1999; Tudzarova et al., 2010; Montagnadil.et2004; Montagnoli et al.,
2008). Furthermore, numerous mechanisms are ewparily preserved and
consequently clinical implications are probableb® suitable to varied types
tumour. It will be interesting to find whether [M{pn)(mal)Cl] compounds

mechanism of action involves the cell cycle engine.

2.8 Proteasome inhibitors in cancer therapy

The ubiquitin proteasome pathway is responsibleéatrolling a lot of activities
in the cell which are vital for tumor cell enlargemt. Inhibition of proteasome
function has become an effective approach for aariceatment. Clinical
corroboration of the proteasome to be viable thewtp aim was accomplished
with the compound bortezomib and has driven thevtiroof newer kinds of

proteasome inhibitors with enhanced anti-cancepgny.

Proteasome inhibitors were not originally developedoe utilized for clinical

application. Proteasome inhibitors were first uasdvitro probes for examining

the role of the proteasome in catalyst action. Wihenindispensable function by
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proteasome in cell activity unveiled, researcheosistlered the option of
inhibiting proteasome as a therapeutic use. Studleswvn that proteasome
inhibitors were able to induce apoptosis on leukeadll lines (Imajoh-Ohmi et
al., 1995; Drexler 1997) and in Burkitt's lymphommavivo models (Shinohara et
al., 1996). Deeper in vitro analysis confirmed thaiteasome inhibitors exhibited

a wide range anti-proliferative and pro-apoptott\aties.

Proteasome inhibition has more effect on maligraiis than non-malignant cells
in pre-clinical studies. What causes the elevatégtiveness on malignant cells
is uncertain. The most likely reason is the adwgmtaf the proteasome to contrl
propagation plus affecting apoptosis in a negatvay. Majority of cancer cells
has high growth rate and have a higher necessitgyiothesizing proteins and
cause the cells to be more susceptible to proteasohibition. A research has
established that higher proteasome activity in éewmkic cell lines is associated
with heighten sensitivity to proteasome inhibitd@Grawford et al., 2009). In
accordance with this, a research has revealed ectdeonnection between
proteasome inhibitor sensitivity and rates of ttatsn in multiple myeloma cells
(Nawrocki et al., 2008). Nonetheless, proteasontebitors displayed better
efficacies in a few malignancies than others andrethare clearly other
determinants that account for this. It is possiblat the relative significance of
the mechanisms correlates with the tumor type.bitibn of NFB activity
(Traenckner et al.,1994), altered degradation #foyele related proteins (Sherr

and Roberts 1999), altered pro-apoptotic and aguptotic protein balance
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(McConkey and Zhu, 2008), endoplasmic reticuluresstr(Morgillo et al., 2010)
and inhibition of angiogenesis (Tamura et al., 204:%d DNA repair (Motegi et
al., 2009) have all been reported to contributethe apoptotic affect of

proteasome inhibitors in tumour cells.

Even though most of these researches recognizegrtspect of proteasome
inhibitors as therapeutic compounds, due to lackftéctiveness, specificity or
stability many of these compounds were stuck inodatory studies. This
prompted scientists to go back to the drawing bdéardome up with something
different. To solve this problem more potent anttcese activity of inhibitors

was designed to compensate for these shortcomings.

The ubiquitin proteasome pathway is now highly wedldor its significant role in
regulating various cellular processes. Althoughekact mechanisms of action of
proteasome inhibitors are not yet fully definiteerte are various of pathways that
become visibly vital in the selectivity for maligma cells. Testing
[Mphen)(mal)CI] using Proteasome-Glo™ 3-Substraget&n (Promega™) will
give some important insight on whether these comgsunduce death following

this unique pathway.
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2.9 ROS and cancer therapeutics

Tumor biology has discovered that cancer cellskavn to display heightened
intrinsic oxidative stress. In contrast with themal counterparts, the majority of
cancer cells have inherently increased amountsatftive oxygen species (ROS),
for instance superoxide,,B, and the hydroxyl radicals (Kawanishi et al., 2006;
Szatrowski and Nathan 1991; Hileman et al.,, 200dyokuni et al., 1995).
Nucleic acids, proteins and lipids were found to thghly reactive to these
oxygen-containing reactive chemicals. Cancer-calbliferation, metastasis,
angiogenesis and alternation in the cellular seitgitto anticancer agents were
found to be closely connected to the high leveROIS in cancer cells. (Arnokek
al., 2001; Ishikawat al., 2008). ROS usually available in the envinent, but in
cells the main source is through the mitochondeapiratory chain (Kinget al.,
2009). However, there are other sources and exanfpleROS in cells and

especially in cancer cells (Tsaagal., 2003).

Cancer therapies are practically as toxic to hgaitills as to cancer cells and a
main objective in the development of novel therdigsuis to make use of
disparities in cancer cells so that therapies aarhilghly targeted. Heightened
ROS level could be used for therapeutic targetirigtuomor tissue. ROS
generation, as well as reduction below a threshaigacts cancer cell killing,
both strategies which are pro-oxidant and antioxidapproaches have been
employed (Trachoothaet al., 2006; Wang and Yi 2008; Alexandtteal., 2006).

The elevated level of ROS in cancer cells has leepivited for developing novel
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therapeutic strategies to preferentially kill cancells (Hilemanet al., 2004;
Tsanget al., 2003; Pelican@t al., 2003). Various drugs were designed to
eliminate cancer cells by increasing oxidant stbsdirectly produce ROS or by
inhibiting antioxidant activities (Schumacker, 2Q006get al., 1999; Miyajimaet

al., 1997). This is based on their susceptibilityatiditional ROS insults. Testing
for intracellular level of ROS after treatment witphen)(mal)Cl] compounds
will give insight on whether these compounds are-gidant, antioxidant or

follow a ROS independent pathway.
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CHAPTER 3

PRELIMINARY STUDIES AND SCREENING OF [M(phen)(ma)Cl ]

[Cu(phen)(ma)Cl], [Co(phen)(ma)Cl] and [Zn(phen)j@& are novel
compounds that had not been tested on before ley hearchers. The screening
these compounds were done using two tumorigenasbi@ncer cell lines MCF7
and MDA-MB-231 with one non-tumorigenic breast céite MCF10A. A
common cell viability test, MTT assay, was done and@onjunction with it the
morphology of the cells were also observed througktie duration of the studies.
Three different time frame 24, 48 and 72 hours wsexl to observe the effects of

[M(phen)(ma)Cl] on the cells over time.

3.1 Material and methods

3.1.1 Cellline

This study was carried out using MCF-7 (MichigannG& Foundation - 7),
MDA-MB-231 (M.D. Anderson - Metastatic Breast — 23and MCF10A
(Michigan Cancer Foundation — 10A) obtained fromCXI (American Type

Culture Collection).

3.1.2 Culture medium
MCF-7 cell line was cultured in RPMI (Roswell Pavlemorial Institute) 1640
medium (Gibc8) supplemented with 10% (v/v) FBS (Foetal Bovinau@®

(Gibcd®). MDA-MB-231 cell line was cultured in DMEM (Dullseo’s Modified
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Eagle Medium) 10% (v/v) FBS (Foetal Bovine Seru@)bgd®). MCF10A cell
line was cultured in DMEM:F-12 (Ham’'s F-12 NutrieMixture) medium

(Gibcd®) supplemented with 5% HS (Horse Serum) (Gibco

3.1.2.1 RPMI medium preparation

A pack of RPMI 1640 powder (Gib&for 1L preparation was emptied into a 1L
volumetric flask together with 2g NaHG@Sigm&) and 5.95g/25mM HEPES
(Sigm&). Deionized water was added up to 80% of the flagie packet was
rinsed with deionized water and poured into theskfland repeated until the
packet was clean. The flask was sealed and themtsmvere shook gently until
all ingredients were dissolved. The pH of the solutvas adjusted to pH7 using
filtered 1M NaOH or 1M HCI. The volumetric flask watopped up with
deionized water up to the 1L mark. The flask waairagealed and shook gently.
The solution was then filtered using a sterilizégkrf unit with 0.2um Cellulose
Nitrate Membrane Filter (Nalgefginto a 1 litre sterile Schott Duran bottle using
a positive pressure system. One millilitre of thleefed medium mixture was
pipetted into a 40 x 11 mm culture dish (Nunc™) amcubated overnight for
detection of any contamination for the stock medidrhe stock medium was
stored in 4°C. A small amount of the stock mediuasvaliquot out for weekly
usage. The medium was supplemented with 10% FB®c@i 1% of
penicillin10.0001U/streptomycin10.006/ml (Sigm&) and 1% of GlutaMAX™

(Gibcd®).
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3.1.2.2 DMEM preparation

A pack of DMEM powder (Gibc® for 1L preparation was emptied into a 1L
volumetric flask together with 2.18g NaHE(Bigm&’). Deionized water was
added up to 80% of the flask. The packet was ringild deionized water and
poured into the flask and repeated until the paslkeet clean. The volumetric flask
was topped up with deionized water up to the 1Lkm@he flask was sealed and
the contents were shook gently until all ingredsewere dissolved. The solution
was then filtered using a sterilized filter unittiwiO.2um Cellulose Nitrate
Membrane Filter (Nalgeff® into a 1 litre sterile Schott Duran bottle usiag
positive pressure system. One millilitre of theefied medium mixture was
pipetted into a 40 x 11 mm culture dish (Nunc™) amcubated overnight for
detection of any contamination for the stock medidrhe stock medium was
stored in 4°C. A smal amount of the stock mediuns akquot out for weekly
usage. The medium was supplemented with 10% FB®c@ 1% of
penicillin10.000IU/streptomycin10.000/ml (Sigma®) and 1% of GlutaMAX™

(Gibcd®).

3.1.2.3 F-12 medium preparation

A pack of F-12 powder (Gib& for 1L preparation was emptied into a 1L
volumetric flask together with 1.18g NaHE(Bigm&). Deionized water was

added up to 80% of the flask. The packet was ringild deionized water and

poured into the flask and repeated until the paslkeet clean. The volumetric flask

was topped up with deionized water up to the 1Lkm@he flask was sealed and
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the contents were shook gently until all ingredsewere dissolved. The solution
was then filtered using a sterilized filter unittiwiO.2um Cellulose Nitrate
Membrane Filter (Nalgeff¢ into a 1 litre sterile Schott Duran bottle usiag
positive pressure system. One millilitre of thetefied medium mixture was
pipetted into a 40 x 11 mm culture dish (Nunc™) amcubated overnight for
detection of any contamination for the stock medidrhe stock medium was

stored in 4°C.

3.1.24 DMEM/F-12 medium preparation

DMEM stock medium and F-12 stock medium were irdlnally prepared and
mixed together in a sterile Schott Duran bottle whesage was needed. For steps
on preparation of DMEM and F-12 stock medium pleeasker to procedure
3.1.2.3 (DMEM Preparation) and 3.2.4 (F-12 Mediureration) respectively.
The ratio of DMEM and F-12 is 1:1. Medium were @egl fresh weekly. The
medium was supplemented with 20ng/ml of human rédoamt EGF (Gibcb),
hydrocortisone  (Signfy, 10pg/ml  of insulin  (Gibc®, 1% of
penicillin10.000IU/streptomycin10.008/ml  (Sigm&), 1% of GlutaMAX™
(Gibco®) and 5% HS (Horse Serum) (GiBgoOne millilitre of the filtered
medium mixture was pipetted into a 40 x 11 mm celtdish (Nunc™) and

incubated overnight for detection of any contamarafor the stock medium.
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3.1.3 Phosphate buffered saline solution preparation

For each 200mL, 1 tablet of PBS (Phosphate Buff&adihe) (Sigm8) was used.
The PBS tablet was dissolved in deionized watea isuitable size of Schott
Duran bottle. The bottle containing PBS solutiorswizen autoclaved under 121

°C for 15 minutes.

3.1.4 Thawing the cell line

One vial of cryopreserved cell line was thawed B7aC water bath immediately
after retrieving it from the liquid nitrogen tankhe cryovial was then sprayed
with 70% ethanol after thawing in the water batheTells inside the vial were
transferred into a 90 x 15 mm tissue culture dislinc™) and cultured in 5mL of
medium specified for each cell line. The first ifithe of the DMEM medium was

added drop by drop and mixed thoroughly by gertilgkeng the T-flask. The T-

flask was gently shaked in circular motion and tedls were viewed under
inverted microscope (Olympus, Model CKX31) at lowwer to ensure even
distribution of cells on the T-flask surface. Ineatd the culture in 5% GO

humidified incubator at 37°C.

3.1.5 Maintenance of cell culture

All liquid reagents that were used in culturing Ieeihcluding medium, PBS

solution and trypsin EDTA were warmed in water batB37°C before usage.
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3.151 Medium changing

Medium changing was carried out when the cells weeconfluence and the
colour of the culture medium had changed from edrange or it has been 3
days or more since the last medium change or swiveulThe existing medium
was drained. Then same amount of fresh medium wdsdaback. The culture

was then re-incubated in the 5% Q@midified incubator at 37°C.

3.152 Subculture of confluence cells

Subculture was carried out when the cells reacloaluence. Existing medium
was drained from the culture dish. The culture disks washed with 3ml of
sterile PBS. The PBS solution was drained. The imgslprocedures were
repeated one more time. After washing, 1.5mL opsiy EDTA (Gibc&) was
added. The culture dish was then incubated in %ae&C®), humidified incubator at
37°C until all of the cells were fully suspendecheTsuspended cells were
transferred into a sterile Falcon™ tube and topppdwith 3mL of medium
solution specified for each cell line. The cenigdutube was centrifuged at
1000rpm for 5 minutes using centrifuge machineeAftentrifugation, the pellet
of cells was obtained. All supernatant was dischi®l the pellet was suspended
with medium. The cells were cultured into cultureshd or used for tests

throughout this study.
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3.1.6 Cryopreservation of cell line

The procedure 3.1.5.2 (Subculture of ConfluencdsTCe&las followed until the
pellet was obtained. The pellet was then mixedahghnly in 1mL of 5% DMSO
in medium specified for each cell line. The mixtofecells were transferred into a
sterile cryovial (Nunc™) and stored in -80°C foogtterm storage. For long term

storage, the cells were stored in liquid nitroggamkt

3.1.7 Cell count using trypan blue exclusion method

The haemocytometer (HIRSCHMANI) and cover slip was sprayed with 70%
alcohol. The alcohol was wiped off from the haemonmeter and cover slip. The
procedure 3.1.5.2 (Subculture of Confluence Celia$ followed until the pellet
was obtained. The pellet was then mixed thorougtith a known amount of
medium specified for each cell line. Ten microel#rof the cells were pipetted
into an microcentrifuge tube. The cells were thewech with 1QL of tyrphan
blue solution (Gibco™). Ten micro litres of cellsere pipetted on to the
haemocytometer and viable cells were counted. Tittere will be diluted with
medium if the cell concentration obtained is mdvant 1 x 16 cells/mL. Desired

amount of cells was cultured into culture dish dtwre plates for testing.

3.1.8 Compound solution preparation
During the course of this study, [Cu(phen)(ma)dio(phen)(ma)Cl] and
[Zn(phen)(ma)Cl] was used. These compounds wengaped fresh and was used

immediately to prevent degradation. The compoundsewmeasured in a
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microcentrifuge tube and the amount of distilledodezed water needed to be

added was calculated using this formula:

1V = n;
C;

Where G = Molarity or concentration in mol/L
Vv = volume of the mixture

mn; mole of the constituent

3.1.9 Determination of the cytotoxicity of [M(phenjma)Cl]

The optimum cell plating numbers were obtainedefach individual cell line and
each different incubation period for the test. Timibation periods for this study
were 24, 48 and 72 hours. This was obtained byirsgéide cells in 96-wells plate
in increasing number without any treatment from aagnpound. The cells were
left for 24 hours to recover from cell harvest mdere. The medium were
drained and replaced with fresh medium. The cel&sewobserved for the
condition and confluence level. The viability ofetltells were obtained using
MTT assay after incubated for designated time framestandard curve was
plotted and a pointed at the middle of the sloperetthe confluence level is
around 70% was chosen to be the optimum platingbeuarfor the specified cell
line and duration of the test. For the procedureMadiT assay, please refer to

procedure 3.9.2 (MTT assay)
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3.19.1 Preparing stock cells

The procedure 3.1.7 (Cell Count Using Trypan Bluel&sion Method) was
followed until the number of cells harvested wasaoted. Then, medium was
added to make a stock concentration of cells ofiD’cells/mL. The amount of

medium needed to add was calculated using theafmipformula:

the number of cells
Amount of medium needed inmL =

desired concentration of cells

3.1.9.2 MTT assay

The procedure 3.1.9.1 (Preparing Stock Cells) wdlovied to obtain stock
concentration of cells of 1 x iCcells/mL. Then the designated plating cell
numbers for each cell line for each incubation guémvere pipetted into 96-wells
flat-bottom plate (Nunc™) Each wells were toppedtodOQuL with medium.
The plate was incubated for 24 hours in the 5% B@nidified incubator at 37°C
for the cells to recover from harvesting procedufer the treatment of the
[M(phen)(ma)Cl] compounds, existing medium wadaegd with fresh medium
before the intended concentrations of [M(phen)(njagGmpounds were added
into each wells. For each concentration a tripicaere done to find the average
and standard deviation of the results. The celleween incubated in the 5% €O

humidified incubator at 37°C for designated incidmat period. The cell

35



confluence for the untreated was observed undeeried microscope. The
procedure will only advance if the confluence o€ thntreated cells reaches
70%~80%. The plate will be discarded if the confice level is lower or higher
than 70%~80%. After that 20 of MTT (Sigmd’) were pipetted into each well.
The plate was incubated for another 2 hours. Fon @&cubation period, the test
for all 3 cell lines were done together to reduegiables among each cell line.
Then, all supernatant was drained from the welts HduL of DMSO was added.
The plate was agitated gently to facilitate theingxof DMSO and formazan blue
crystals. Absorbance reading was taken using nhatépeader (BIO-RAD model

680). Each experiment were repeated two more timgst three sets of results.

3.1.10 Morphological study

The procedure 3.1.9.1 (Preparing Stock Cells) wdlovied to obtain stock
concentration of cells of 1 x i@ells/mL. The cells were cultured in 60 x 15 mm
culture dish (Nunc™) with cell number enough to iaeh 70%~80% cell
confluence for untreated cells at the end of tleh eesignated incubation period.
The cells were then incubated in the 5%,@®0midified incubator at 37°C for 24
hours to let it recover from harvesting procedurbe existing medium were
drained and replaced with fresh medium before wari@oncentrations of
[M(phen)(ma)Cl] compounds were added into eachucaldish. The cells were
then incubated in the 5% GQhumidified incubator at 37°C for designation
incubation period. The cells were then observedeundverted microscope

(Nikon ECLIPSE Ti-E) at 200x magnification and nuows pictures were
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capture using built-in digital microscope cameral adited using microscope
imaging software provided. The picture with thetlhepresentation of the cells

condition at that time was chosen.
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3.2 Results

3.2.1 Cell viability test using MTT assay

[Cu(phen)(ma)Cl] , [Co(phen)(ma)Cl] and [Zn(pheny)CI] were tested for
their effect on viability of malignant cell lineshich is MCF-7 and MDA-MB-
231. It was also tested on non-malignant cell M@F10A to test for selectivity
of its effect. Cells were treated with increasingecentrations of these compounds
for 24 hours, 48 hours and 72 hours and then cadpaith untreated cells. With
the absorbance reading of untreated cells sefa®nee point the percentages of

viable cells of treated cells were calculated.

For 24 hours incubation time the concentrationsl dse[Cu(phen)(ma)CIl] were
1uM, 3uM, 5uM, 7uM, 9uM and 11uM (Figure 3.1.1)tBMCF-7 and MDA-
MB-231 cell lines show a similar trend of decreagsedell viability when the
concentration of [Cu(phen)(ma)Cl] increases. Hosveat 5uM and higher the
percentage of cell viability for MCF-7 became stlgtconstant while for MDA-
MB-231 cells the trend remains and the cell vispikkontinues to pluMmet
following the increasing concentration of [Cu(ph@md)Cl] . There is no apparent
effect on MCF10A by [Cu(phen)(ma)CI] up until 7pWvhere the percentage of
cell viability dropped to 79.91%. From that poimtveards the percentage of cell
viability for MCF10A cells also plunge. The IC-50ecorded for
[Cu(phen)(ma)CI] after 24 hours treatment for MCFMDA-MB-231 and

MCF10A were 5uM, 5.5uM and 8.7uM respectively.
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Figure 3.1.1 Viable cells of MCF-7, MDA-MB-231 aMdCF10A cells treated with increasing concentratioh$Cu(phen)(ma)Cl]

for 24 hours using MTT assay.
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Concentration?uol\;)[Cu(phen)(ma)CI @Percentage of viable cells (%)

0 100

1 65.39 + 0.68
3 59.97 + 1.55
5 40.56 + 0.82
7 38.12 + 0.94
9 32.72 + 131
11 28.86 + 1.32

Table 3.1.1 Percentage of viable cells of MCF-Tscafter 24 hours of treatment

with increasing concentrations [Cu(phen)(ma)Cl].

Concentration?uo'\;)[Cu(phen)(ma)CI #Percentage of viable cells (%)

0 100

1 79.19 + 3.89
3 72.83 + 71.25
3] 58.03 + 8.45
7 23.59 + 5.34
9 7.16 + 1.86
11 3.70 + 2.00

Table 3.1.2 Percentage of viable cells of MDA-MBL2&elIs after 24 hours of

treatment with increasing concentrations [Cu(phea)Cl].

Concentration?uol\;)[Cu(phen)(ma)CI @Percentage of viable cells (%)

0 100

1 100.00 * 4.76
3 100.00 * 1.59
5 100.00 * 0.45
7 79.91 * 2.36
9 44.86 * 3.01
11 12.98 * 5.82

Table 3.1.3 Percentage of viable cells of MCF10Alscafter 24 hours of

treatment with increasing concentrations [Cu(phea)Cl].

@Percentage of viable cells is obtained from meatandard deviation values of

three independent experiments.
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MCF-7, MDA-MB-231 and MCF10A cell lines were alletited with the same
variant of concentrations of [Co(phen)(ma)Cl] &% hours which were 100uM,
200pM, 300pM, 400uM, 500uM and 600uM (Figure 3.14) three cell lines

also show similar trend of decreasing in the pdaag of cell viability when the
concentration of [Co(phen)(ma)Cl] increased. AD4M of [Co(phen)(ma)Cl]

the percentage of cell viability of MCF10A cellschdrop down to 0% while
MCF-7 and MDA-MD-231 cells still stand at 23.87%daB0.43% respectively.
The figure continued to drop until 13.83% and 1210t 600uM of

[Co(phen)(ma)CI] for MCF-7 and MDA-MB-231 cellssectively. The IC-50
value after treatment of [Co(phen)(ma)Cl] for 2duls for MCF-7 cells at

245uM, MDA-MB-231 cells at 345uM and MCF10A celts1&7uM.
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Figure 3.1.2 Viable cells of MCF-7, MDA-MB-231 aMdCF10A cells treated with increasing concentratioh$Co(phen)(ma)Cl]
for 24 hours using MTT assay.



Concentration?uol\;)[Co(phen)(ma)CI @Percentage of viable cells (%)

0 100

100 75.47 + 1.96
200 57.44 + 1.26
300 40.74 + 1.75
400 23.87 + 2.19
500 20.03 + 3.06
600 13.83 + 2.75

Table 3.2.1 Percentage of viable cells of MCF-Tscafter 24 hours of treatment

with increasing concentrations [Co(phen)(ma)Cl].

Concentration? o'\;)[Co(phen)(ma)Cl @Percentage of viable cells (%)
M

0 100

100 80.73 + 6.12

200 75.72 + 3.56

300 65.78 + 2.03

400 30.43 + 7.05

500 23.55 + 4.92

600 12.10 + 2.10

Table 3.2.2 Percentage of viable cells of MDA-MBL2&ells after 24 hours of

treatment with increasing concentrations [Co(phera)Cl].

Concentration?uol\;)[Co(phen)(ma)CI @Percentage of viable cells (%)

0 100

100 67.49 + 2.03
200 47.27 + 2.70
300 1293 + 7.89
400 0 + 361
500 0 + 4.03
600 0 + 512

Table 3.2.3 Percentage of viable cells of MCF10Alscafter 24 hours of

treatment with increasing concentrations [Co(plea)Cl].

@Percentage of viable cells is obtained from meatandard deviation values of

three independent experiments.
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A different set of varying concentrations was use[Zn(phen)(ma)CI] on MCF-
7, MDA-MB-231 and MCF10A cell lines for 24 hoursséitment period. The
concentrations were 50uM, 100uM, 150uM, 200uM. 28@Gnd 300uM (Figure
3.1.3). MCF-7 cells showed a distinct drop in patage of viable cells to 52.97%
at first concentration in the set (50uM of [Zn(p){em)CI] ) compared to MDA-
MB-231 and MCF10A cells which recorded a highercpatage of viable cells at
88.60% and 86.90% respectively. MCF10A cells showesharp decrease of
percentage of viable cells after 100uM from 82.1886100uM to 14.69% at
200uM. After this point all three cell lines showadteady drop of percentage of
cell viability up to 300uM of [Zn(phen)(ma)Cl] . €hiC-50 found for MCF-7,
MDA-MB-231 and MCF10A cell lines after treated withn(phen)(ma)Cl] for

24 hours were 65uM, 174uM and 138.5uM respectively.
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Figure 3.1.3 Viable cells of MCF-7, MDA-MB-231 amMdCF10A cells treated with increasing concentratioh$Zn(phen)(ma)Cl]
for 24 hours using MTT assay.



Concentrations of [Zn(phen)(ma)Cl] (uM) ?Percentage of viable cells (%)

0 100

50 52.97 + 0.97
100 4293 + 2.16
150 30.28 + 0.60
200 19.84 + 4.62
250 17.69 + 4.28
300 11.89 + 221

Table 3.3.1 Percentage of viable cells of MCF-Tscadter 24 hours of treatment
with increasing concentrations [Zn(phen)(ma)Cl].

Concentrations of [Zn(phen)(ma)Cl] (uM) ?Percentage of viable cells (%)

0 100

50 88.60 + 8.34
100 75.04 + 10.53
150 60.45 + 1.93
200 38.98 + 6.20
250 20.98 + 0.65
300 8.84 + 5.80

Table 3.3.2 Percentage of viable cells of MDA-MBLE2&elIs after 24 hours of
treatment with increasing concentrations [Zn(phaa)Cl].

Concentrations of [Zn(phen)(ma)CI] (uM) ?Percentage of viable cells (%)

0 100

50 86.90 + 1.73
100 82.13 + 2.88
150 40.27 + 2.60
200 1469 + 1.94
250 6.31 + 4.54
300 3.56 + 4.20

Table 3.3.3 Percentage of viable cells of MCF10Alscafter 24 hours of
treatment with increasing concentrations [Zn(phaa)Cl].

@Percentage of viable cells is obtained from meatandard deviation values of
three independent experiments.
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The concentration used on MCF-7, MDA-MB231 and MGA&ZXell lines for 48
hours treatment of [Cu(phen)(ma)Cl] were 0.25uMsp®4, 0.75uM, 1.00uM,
3.00uM and 5.00uM (Figure 3.1.4). MCF-7 cellswvgbd a sharp drop in the
percentage of viable cells from 0.25uM at 83.30%}ud at 28.97%. MDA-MB-
231 also showed the same trend from 0.25uM at %641 uM at 48.40%. From
this point onwards both MCF-7 and MDA-MB-231 per@ge of viable cells
drop gradually up to the concentration of 5uM. Trend was not observed in
MCF10A cell line. [Cu(phen)(ma)Cl] had no apparefiiect on MCF10A up
until 1uM. Even at 3uM the percentage of viabldscef MCF10A only dropped
slightly to 95.00%. From 3uM to 5uM the figure dpepl drastically to 34.86%.
The IC-50 value for MCF-7, MDA-MB-231 and MCF10Alcénes after 48
hours incubation of [Cu(phen)(ma)CI] were O0.5uM,0uiM and 4.5uM

respectively.
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Figure 3.1.4 Viable cells of of MCF-7, MDA-MB-23hd MCF10A cells treated with increasing concentratiof [Cu(phen)(ma)Cl]
for 48 hours using MTT assay.
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Concentration?uol\;)[Cu(phen)(ma)CI @Percentage of viable cells (%)

0 100

0.25 83.30 + 4.18
0.5 65.55 + 1.57
0.75 37.68 + 6.62
1.00 28.97 + 1.09
3.00 9.88 + 0.89
5.00 5.07 + 3.81

Table 3.4.1 Percentage of viable cells of MCF-Tscafter 48 hours of treatment

with increasing concentrations [Cu(phen)(ma)Cl].

Concentration? o'\;)[Cu(phen)(ma)Cl #Percentage of viable cells (%)
M

0 100

0.25 76.44 + 1.40

0.5 68.82 + 4.01

0.75 58.33 + 4.16

1.00 48.40 + 1.51

3.00 34.96 + 4.00

5.00 11.31 + 1.55

Table 3.4.2 Percentage of viable cells of MDA-MBL2&ells after 48 hours of
treatment with increasing concentrations [Cu(phera)Cl].

Concentration?uol\;)[Cu(phen)(ma)CI @Percentage of viable cells (%)
0 100
0.25 100.00 t 9.41
0.5 100.00 t 8.73
0.75 100.00 * 6.55
1.00 100.00 + 5.65
3.00 95.00 + 3.85
5.00 34.86 * 2.82

Table 3.4.3 Percentage of viable cells of MCF10Alscafter 48 hours of
treatment with increasing concentrations [Cu(phea)Cl].

@Percentage of viable cells is obtained from meatandard deviation values of

three independent experiments.
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At 48 hours incubation with [Co(phen)(ma)Cl] 10pEOuM, 30uM, 40uM,

50uM and 60uM were the concentrations used on MCHMJA-MB-231 and

MCF10A cell lines (Figure 3.1.5). A very similaetrd was obtained for MCF-7
and MDA-MB-231 cell lines with the graph for eaatldine intertwine with each
other. The percentage of viable cells can be seaduglly decreasing from
87.31% for MCF-7 cell line and 91.36% for MDA-MB-2&t 10uM to 5.40% for
MCF-7 cell line and 7.93% for MDA-MB-231 at 60uM.QF10A can be seen to
be slightly less susceptible to the effects of [@enh)(ma)Cl] . At 10uM there
was no apparent effect of [Co(phen)(ma)Cl] on MT4&Zell lines. After that the
percentage of viable cells for MCF10A gradually mesed from 79.57% at
20uM to 21.00% at 60 uM. The IC-50 value obtain@d[€o(phen)(ma)CI] 48
hours treatment were 26.5uM for MCF-7 cell line,2iM for MDA-MB-231

cell line and 32.2uM for MCF10A cell line.
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Figure 3.1.5 Viable cells of of MCF-7, MDA-MB-23hd MCF10A cells treated with increasing concentratiof [Co(phen)(ma)Cl]
for 48 hours using MTT assay.



Concentration?uol\;)[Co(phen)(ma)CI 2 percentage of viable cells (%)

0 100

10 87.31 + 2.92
20 72.00 + 2.72
30 38.47 + 6.23
40 28.64 + 0.80
50 9.62 + 0.79
60 5.40 + 3.44

Table 3.5.1 Percentage of viable cells of MCF-Tscafter 48 hours of treatment

with increasing concentrations [Co(phen)(ma)Cl].

Concentration?uo'\;)[Co(phen)(ma)CI & Percentage of viable cells (%)

0 100

10 91.36 + 3.09
20 65.47 + 5.07
30 43.96 + 4.00
40 23.84 + 2.02
50 15.96 + 4.32
60 7.93 + 3.90

Table 3.5.2 Percentage of viable cells of MDA-MBL2&elIs after 48 hours of

treatment with increasing concentrations [Co(phea)Cl].

Concentration? ol\;)[Co(phen)(ma)Cl & Percentage of viable cells (%)
u

0 100

10 100.00 + 8.41

20 79.57 + 4.28

30 51.61 + 0.96

40 45.00 + 2.31

50 32.00 + 6.27

60 21.00 + 7.35

Table 3.5.3 Percentage of viable cells of MCF10Alscafter 48 hours of

treatment with increasing concentrations [Co(phea)Cl].

@Percentage of viable cells is obtained from meatandard deviation values of

three independent experiments.
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The series of concentrations used for [Zn(phen)Qfjajreatment for 48 hours on
MCF-7, MDA-MB-231 and MCF10A cell lines were 3uMuBl, 9uM, 12uM,
15uM and 18uM (Figure 3.1.6). The pattern of trepg for MCF-7 and MDA-
MB-231 is quite similar until it nearly overlappeghch other at certain points
especially at 12uM where MCF-7 and MDA-MB-231 deiks recorded 28.64%
and 29.17% of viable cells respectively. MCF10AIl deie show relatively
resistant towards [Zn(phen)(ma)CIl] compared tonig-malignant counterpart.
This is evidently showed where MCF10A cells arel@®% cell viability while
MCF-7 and MDA-MB-231 had dropped to 83.35% and B%oleach. Besides that
MCF10A cell line also had a higher IC-50 value @i0tM compared to MCF-7

cell line at 6.5uM and MDA-MB-231 cell line at 7.8
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Figure 3.1.6 Viable cells of of MCF-7, MDA-MB-23hd MCF10A cells treated with increasing concentraiof [Zn(phen)(ma)Cl]
for 48 hours using MTT assay.



Concentration?uol\;)[Zn(phen)(ma)CI: & Percentage of viable cells (%)

0 100

3 83.35 + 2.07
6 69.56 + 4.74
9 38.06 + 5.17
12 28.64 + 0.80
15 9.30 + 0.86
18 443 + 4.25

Table 3.6.1 Percentage of viable cells of MCF-Tscafter 48 hours of treatment
with increasing concentrations [Zn(phen)(ma)Cl].

Concentration?uol\l;l)[Zn(phen)(ma)CI: & Percentage of viable cells (%)

0 100

3 66.12 + 1.02
6 51.33 + 4.04
9 43.32 + 4.90
12 29.17 + 2.02
15 14.68 + 3.49
18 9.92 + 6.00

Table 3.6.2 Percentage of viable cells of MDA-MBLE2&elIs after 48 hours of
treatment with increasing concentrations [Zn(phaa)Cl].

Concentration?uol\;)[Zn(phen)(ma)CI: & Percentage of viable cells (%)

0 100

3 100.00 + 2.86
6 86.70 + 8.32
9 52.32 + 0.92
12 45.98 + 0.67
15 34.45 + 4.25
18 31.48 + 0.55

Table 3.6.3 Percentage of viable cells of MCF10Alscafter 48 hours of
treatment with increasing concentrations [Zn(phaa)Cl].

@Percentage of viable cells is obtained from meatandard deviation values of
three independent experiments.
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MDA-MB-231 cell line showed different sensitivitpwards [Cu(phen)(ma)Cl]
compared to the other two cell lines after 72 hafrgrcubation (Figure 3.1.7).
With that reason, MDA-MB-231 cell line was treatadth a different set of
varying concentrations of [Cu(phen)(ma)CIl] . MCFRaidd MCF10A cell lines
were treated at 0.01uM, 0.025uM, 0.05uM, 0.10uM0AM and 1.00uM while
MDA-MB-231 at 0.01puM, 0.03uM, 0.07uM, 0.10uM, 0.3@u 0.70uM and

1.00uM. MCF-7 cell line showed the highest senigjtiv towards

[Cu(phen)(ma)Cl] after 72 hours with an IC-50 alof 0.05uM then followed
by MCF10A cell line with an 1C-50 of 0.1uM. MDA-MB31 cell line is the least
susceptible to the effects of [Cu(phen)(ma)CI] htlie highest IC-50 value of all

three cell lines at 0.4uM.
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Figure 3.1.7 Viable cells of of MCF-7, MDA-MB-23hd MCF10A cells treated with increasing concentratiof [Cu(phen)(ma)Cl]
for 72 hours using MTT assay.



Concentrations of [Cu(phen)(ma)Cl]

@Percentage of viable cells (%)

(LM)

0 100
0.01 99.92 + 3.80
0.025 76.67 + 3.51
0.05 46.31 + 3.24
0.10 10.81 + 3.88
0.50 6.40 + 2.29
1.00 277 + 2.19

Table 3.7.1 Percentage of viable cells of MCF-Tscafter 72 hours of treatment
with increasing concentrations [Cu(phen)(ma)Cl].

Concentration? ol\;)[Cu(phen)(ma)Cl @Percentage of viable cells (%)
U

0 100

0.01 85.80 + 4.25

0.03 73.73 + 551

0.07 63.01 + 2.64

0.10 58.17 + 3.01

0.30 51.16 + 1.24

0.70 4295 + 2.62

1.00 33.00 + 2.00

Table 3.7.2 Percentage of viable cells of MDA-MBL2&ells after 72 hours of
treatment with increasing concentrations [Cu(phea)Cl].

Concentration?uol\;)[Cu(phen)(ma)CI @Percentage of viable cells (%)
0 100
0.01 88.96 + 0.62
0.025 73.67 * 3.21
0.05 63.74 + 2.30
0.10 52.09 + 0.60
0.50 12.77 + 0.62
1.00 6.69 * 0.97

Table 3.7.3 Percentage of viable cells of MCF10Alscafter 72 hours of
treatment with increasing concentrations [Cu(phea)Cl].

@Percentage of viable cells is obtained from meatandard deviation values of
three independent experiments.
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The concentrations for [Co(phen)(ma)Cl] treatméat 72 hours period were
1uM, 5uM, 10puM, 15uM, 20uM, 25uM and 30uM (Figurd.8). MDA-MB-
231 and MCF10A cell lines had a very similar trehdere are several points that
both graphs almost merge with each other like @l iith MDA-MB-231 at
85.47% and MCF10A at 85.67% of viable cells. Besitlaat the 1C-50 value of
both of the cell lines are very closed to each rothih MDA-MB-231 IC-50
value at 17.8uM and MCF10A IC-50 value at 16.9uM. tBe contrary MCF-7
showed a less resistant trend towards [Co(phen{{tha)after 72 hours of
treatment. The IC-50 value of MCF-7 which was &u2J is much lower than the

other two cell lines.
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Figure 3.1.8 Viable cells of of MCF-7, MDA-MB-23hd MCF10A cells treated with increasing concentratiof [Co(phen)(ma)Cl]

for 72 hours using MTT assayP* 0.05




Concentration?uol\;)[Co(phen)(ma)CI & Percentage of viable cells (%)

0 100

1 59.07 + 1.21
5 39.73 + 0.74
10 32.09 + 0.26
15 11.81 + 3.83
20 6.31 + 1.94
25 340 + 2.64

Table 3.8.1 Percentage of viable cells of MCF-Tscafter 72 hours of treatment
with increasing concentrations [Co(phen)(ma)Cl].

Concentration?uo'\f/l)[Co(phen)(ma)CI & Percentage of viable cells (%)

0 100

1 85.47 + 5.06
5 72.87 + 2.01
10 62.93 + 3.00
15 56.70 + 2.14
20 44.14 + 3.67
25 35.97 + 2.95

Table 3.8.2 Percentage of viable cells of MDA-MBLE2&elIs after 72 hours of
treatment with increasing concentrations [Co(phea)Cl].

Concentration? ol\;)[Co(phen)(ma)Cl & Percentage of viable cells (%)
U

0 100

1 85.67 + 5.13

5 72.84 + 2.34

10 65.46 + 1.23

15 54.00 + 1.40

20 43.00 + 6.01

25 22.00 + 2.34

Table 3.8.3 Percentage of viable cells of MCF10Alscafter 72 hours of
treatment with increasing concentrations [Co(phea)Cl].

@Percentage of viable cells is obtained from meatandard deviation values of
three independent experiments.

61



The concentrations used for [Zn(phen)(ma)Cl] treait for 72 hours were 1uM,
3uM, 5uM, 7uM, 9uM and 11pM (Figure 3.1.9). The gemtage of MCF-7,
MDA-MB-231 and MCF10A cells were gradually droppingghen the

concentration of [Zn(phen)(ma)Cl] increases. MCE€ll line was the most
susceptible to [Zn(phen)(ma)Cl] treatment withatatell death at 11uM while
MDA-MB-231 and MCF10A cell lines still had 35.66%d8.67% of cells left
each. The IC-50 value of MCF-7, MDA-MB-231 and M@RALwere 2.7uM,

5.5uM and 7.7uM respectively.
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Figure 3.1.9 Viable cells of of MCF-7, MDA-MB-23hd MCF10A cells treated with increasing concentraiof [Zn(phen)(ma)Cl]
for 72 hours using MTT assay.



Concentration?uol\l;l)[Zn(phen)(ma)CI] 4Percentage of viable cells (%)

0 100

1 79.62 * 7.99
3 44.57 + 1.57
5 13.50 x 1.38
7 3.21 . 2.27
9 1.48 + 1.14
11 0.00 + 0.00

Table 3.9.1 Percentage of viable cells of MCF-7Iscelfter 72 hours of

treatment with increasing concentrations [Zn(phaa)Cl].

Concentrations of [Zn(phen)(ma)C

—_

2Percentage of viable cells (%)

(LM)

0 100

1 82.80 + 4.50
3 76.61 + 1.45
5 63.46 + 5.15
7 53.64 + 3.51
9 43.65 + 3.51
11 35.66 + 3.52

Table 3.9.2 Percentage of viable cells of MDA-MBE2&:lIs after 72 hours of

treatment with increasing concentrations [Zn(phea)Cl].

Concentrations of [Zn(phen)(ma)C

—_

4Percentage of viable cells (%)

(LM)

0 100

1 83.08 + 3.70
3 64.87 + 5.06
5 55.09 + 2.02
7 34.54 + 1.92
9 18.90 + 2.89
11 8.67 + 7.09

Table 3.9.3 Percentage of viable cells of MCF10Ascafter 72 hours of

treatment with increasing concentrations [Zn(phea)Cl].

@Percentage of viable cells is obtained from meatasdard deviation values

of three independent experiments.
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3.2.2 Cell morphological study

MCF-7, MDA-MB-231 and MCF10A cell lines were useadathe cells were
left untreated or treated with 0.05uM and 0.4pM@id(phen)(ma)Cl], 2.9uM
and 17.8uM of [Co(phen)(ma)Cl], 2.7uM and 7.7uM (men)(ma)Cl] for 72
hours. The concentrations chosen were taken frentotest and highest I1C-
50 value of the compound among the three cell lifd®n the cells were
viewed under phase-contrast inverted microscopmuies were taken at 200x
magnification. A part of the picture was cropped without altering its image

size to represent the condition of majority of tedls that were in.

The untreated MCF-7 cells exhibited typical growiterns and a smooth,
flattened morphology with norma nuclei. It has lofatfike structure extending
outwards connecting to neighbouring cells and gromsclusters (Figure
3.2.1a, Figure 3.2.2a and Figure 3.2.3a). When MQfells were treated
0.05uM of [Cu(phen)(ma)Cl] the first most apparesitange was the
distortion of its norma shape. The cells were tugrmound and condensation
of the chromatin was observable (Figure 3.2.1b)elvthe concentration of
[Cu(phen)(ma)CI] increased to 0.4uM most of thikscioated up detached
from the surface. This indicates that the cellsendead. Some of the cells’
cytoplasm were getting enlarged (Figure 3.2.1c).eWVIMCF-7 cells were
treated with 2.9uM [Co(phen)(ma)Cl] the shape lo¢ tcells were also
distorted and turning roundish. Nuclear condenmatvas also observable in
this condition. Besides that the cells also appk#oebe brighter around the
membrane indicating it is detaching from the swefé€igure 3.2.2b). At the

concentration of 17.8uM of [Co(phen)(ma)Cl] mosdt the cells were
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completely detached from the surface and appeaezd dFigure 3.2.2c).
When treated with 2.7uM of [Zn(phen)(ma)CI] nucleandensation was also
present. Besides that the cells also undergo vatonland some of the cells
were enlarged. The shape of the cells were gunédasito the untreated ones
though slight deformation can be seen (Figure B)2Bhe confluence level of
the cells were clearly lower than the untreated @rien the treatment
concentration of [Zn(phen)(ma)Cl] increased tquM7 More dead cells were
floating around and the size of the cells weretiadly larger compared to the

healthy ones (Figure 3.2.3c).

The untreated MDA-MB-231 cells showed norma gropdtterns in spindle
shape with norma nuclei grew near to each othgu(€i3.2.1d, Figure 3.2.2d,
Figure 3.2.3d). After treated with 0.05uM of [Cuépf(ma)CIl] the most
conspicuous change in the cell morphology includsahg the distinct spindle
shape and extensive detachment from the cultute plaface (Figure 3.2.1e).
When the concentration increased to 0.4uM of [Cexpfma)Cl] increased
dead cells were observed floating in the mediungyfé 3.2.1f). Treatment
with 2.9uM of [Co(phen)(ma)Cl] caused some of ¢tkés to detach from the
surface (Figure 3.2.2e). At 17.8uM of [Co(phen)(@ih) apoptotic bodies
were spotted indicating apoptosis was induced (Eigu2.3f). After incubated
with 2.7uM of [Zn(phen)(ma)Cl] the cells underggtaplasm enlargement
and also elongation of the cells (Figure 3.2.3ehewW the concentration
increased to 7.7uM more dead cells were spottedtlamdonfluence level

dropped (Figure 3.2.3f).
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The untreated MCF10A cells showed norma growthsh#ped in spindle like
typical epithelial cells with norma nuclei grew nea each other (Figure
3.2.1qg, Figure 3.2.2g and Figure 3.2.3g). Treathwy cells with 0.05uM of
[Cu(phen)(ma)Cl] caused the cells to lose its digirshape and enlargement
of the cytoplasm (Figure 3.2.1h). When the conediain increased to 0.4uM
widespread of cell detachment was observed witargel quantity of dead
cells floating. The confluence level was visiblywer (Figure 3.2.1i).
[Co(phen)(ma)Cl] seems to have minima effect orangng the cell
morphology. When incubated in 2.9uM of [Co(phen)@ih the confluence
level of the cells drop slightly and some cells evetongated (Figure 3.2.2h).
Even at 17.8uM the distinct spindle shape can bl seen though the
confluence level further decreased (Figure 3.2&fjer treatment 2.7uM of
[Zn(phen)(ma)Cl] the size of the cells were largad condensation of the
chromatin was apparent (Figure 3.2.3h). When theceuatration of the
treatment increased to 7.7uM the cells lose itadipishape and no longer
stick to each other. Dead cells were spotted alid skowed early signs of

detachment from the surface (Figure 3.2.3i).
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Figure 3.2.1 Morphological observations of: (a)reated MCF-7 cells (d)
untreated MDA-MB-231 cells (g) untreated MCF10Algelith cells treated
with increasing concentrations of [Cu(phen)(ma)@y} 72 hours (b) MCF-7
0.05uM (c) MCF-7 0.4 pM (e) MDA-MB-231 0.05uM (f) DA-MB-231
0.4uM (h) MCF10A 0.05uM (i) MCF10A 0.4uM. Arrow (Apoptotic body
(C) condensation of chromatin (D) dead cell (Eadement from surface (L)
elongation of cell (M) enlargement of cytoplasm (dcoulation. Images were
captured using phase-contrast inverted microscbp@0x magnification.

68



Figure 3.2.2 Morphological observations of: (a)reated MCF-7 cells (d)
untreated MDA-MB-231 cells (g) untreated MCF10Algelith cells treated
with increasing concentrations of [Co(phen)(ma)@y} 72 hours (b) MCF-7
2.9uM (c) MCF-7 17.8 pM (e) MDA-MB-231 2.9uM (f) MBMB-231
17.8uM (h) MCF10A 2.9uM (i) MCF10A 17.8uM. Arrow JAapoptotic body
(C) condensation of chromatin (D) dead cell (Eadement from surface (L)
elongation of cell (M) enlargement of cytoplasm (dcoulation. Images were
captured using phase-contrast inverted microscbp@0x magnification.
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Figure 3.2.3 Morphological observations of: (a)reated MCF-7 cells (d)
untreated MDA-MB-231 cells (g) untreated MCF10Algelith cells treated
with increasing concentrations of [Zn(phen)(ma)@r 72 hours (b) MCF-7
2.7uM (c) MCF-7 7.7 pM (e) MDA-MB-231 2.7uM (f) MDMB-231
7.7uM (h) MCF10A 2.7uM (i) MCF10A 7.7uM. Arrow (Agpoptotic body
(C) condensation of chromatin (D) dead cell (Eadement from surface (L)
elongation of cell (M) enlargement of cytoplasm (dcoulation. Images were
captured using phase-contrast inverted microscbp@0x magnification.
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3.3 Discussion

Drugs have the potential to be very harmful to lthey unless they are very
specific to cancer cells (Schwartsmann et. al.,2200hat is the reason
MCF10A cell line was used as a comparative to malg cell lines used
which were MCF-7 and MDA-MB-231. Ultimately, it fgreferable to find a
compound that has adverse effects on malignantlinel but has no effect
towards non-malignant cell line. The easiest waydétermine a compound
efficacy towards malignant cell lines is by doingjl cviability test via MTT
assay. To determine whether there is specificitheaction of the compound
the 1C-50 value of malignant cell lines were congpaith the non-malignant
one. A higher IC-50 value on non-malignant celelicompared to malignant
cell lines indicates a higher dosage of the comgdoignneeded to have an
effect on the non-malignant cells. Therefore, teatment dosage can be set at
lower concentration where it will only affect malignt cell lines but not non-

malignant ones.

For the first 24 hours of treatment the [Co(phe)@i] and

[Zn(phen)(ma)CIl] were not so reactive with IC-58lues up to the hundreds.
So the treatment period were extended up to 48 sholihere was no
selectivity for [Cu(phen)(ma)Cl] even at 24 howftreatment as it was
equally toxic to malignant and non-malignant celes. So [Cu(phen)(ma)Cl]
was not so suitable to be chosen for further studi¢ 48 hours the IC-50
values of [Co(phen)(ma)Cl] were still too highlde clinically practicable so
the treatment period was further extended to 72hddowever there was no

specificity of the action of [Zn(phen)(ma)Cl] cooynd after comparing the
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IC-50 values for the malignant cell lines with nolignant. So

[Zn(phen)(ma)Cl] was also not chosen to be furtitedied.

MTT assay has shown that [Co(phen)(ma)Cl] sigaifity suppressed the
proliferation of MCF-7, MDA-MB-231 and MCF10A cdihes in a dose and
time dependent manner. At 72 hours of treatmentetlvgas a significant
difference between the 1C-50 value of MCF-7 celelcompared to MCF10A
cell line withP < 0.05. The IC-50 value for MCF-7 cell line af& hours of
treatment with [Co(phen)(ma)CIl] was 2.9uM while tdDA-MB-231 and
MCF10A cell lines were 16.9uM and 17.8uM respedtyivEven though the
IC-50 value of MDA-MB-231 cell line, one of the ngrhant cell lines used in
this study, was not that different from the IC-5ue of MCF10A which was
the non-malignant counterpart but the vast diffeeecompared to the one of
MCEF-7 cell line indicating there might be differanbde of action undertaken
by [Co(phen)(ma)CI] compound in killing these sellf further analysis on
this compound turns to be promising then the oalgmolecular structure of
[Co(phen)(ma)CIl] may be modified to create a newpound that has higher

selectivity and competency in killing cancer cells.

Necrosis is evidenced by cytoplasmic enlargemamfure of the plasma
membrane, swelling of cytoplasmic organelles paldidy mitochondria, and
some condensation of nuclear chromatin (Galluzzalet2007). Using this
know fact and compare it with the photos takennmmrphological studies it
can be concluded that [Cu(phen)(ma)Cl] and [Znpfmea)Cl] induced cell

death on MCF-7, MDA-MB-231 and MCF10A primarily dugh necrosis.
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Cells treated with [Cu(phen)(ma)Cl] and [Zn(phem]Cl] showed signs of
cytoplasmic swelling, one of the indications of mets. The process of
rupturing plasma membrane was very hard to be egpotis it happens
spontaneously. However the presence of debris lyssah sign of cells died

from lysis process causing the cell contents todbeased (Figure 3.2.1 and

Figure 3.2.3).

Some of the features of apoptotic cells includeoghtsmic and nuclear
condensation, nuclear fragmentation, norma morghdd appearance of
cytoplasmic organelles, dynamic membrane blebbingy an intact plasma
membrane (Kerr et al. 1972; Wyllie et al. 1980; Mat et al. 2001; Galluzzi
et al. 2007). Some of these features like nuctesrdensation and intact
plasma membrane can be observed when MCF-7 and MBA31 cell lines

were treated with [Co(phen)(ma)Cl] (Figure 3.2.2he remaining features
are very hard if not impossible to be observed umdeonventional phased-
contrast inverted microscope. Cytoplasmic orgaselland nuclear
fragmentation cannot be observed clearly withoughér magnification

microscope and also without the aid of specific sdy&he presence of
apoptotic body in MDA-MB-231 cells when treated hwitl7.8uM of

[Co(phen)(ma)Cl]  clearly confirmed that [Co(phen®)Cl] induced

apoptosis on MDA-MB-231 cell line (Figure 3.2.2f)was vaguer for MCF-7
to conclude whether it undergone apoptosis under ihfluence of

[Co(phen)(ma)CI] since most of the cells were detd7.8uM. However the
way the dead cells appeared, shrunk and with im@&ehbrane, does not imply

it had undergone necrosis suggesting it may haderngone apoptosis (Figure
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3.2.2¢). [Co(phen)(ma)Cl] appeared to have rethilow effect of MCF10A
cell line. There was no distinct change in featurleserved except elongation
of the cells. The cells still maintained its spedéhape. However the
confluence of the cells decreased when the coraterirof [Co(phen)(ma)Cl]
increased. That explains the elongation of thesadl MCF10A cells usually
elongates to cover more surface area when theusde level is low (Figure

3.2.2h and Figure 3.2.2i).

Morphological study can only provide a rough estioraof what were going
on when the cell lines were treated with [M(pher@)@Il]. To provide
concrete evidence that is acceptable in the sGeobmmunity specific tests
are needed to be carried out. However after amgjytie results obtained
from the preliminary studies [Cu(phen)(ma)Cl] argh(phen)(ma)Cl] were
not suitable to be continued to be studied on. T8e50 value of
[Cu(phen)(ma)Cl] and [Zn(phen)(ma)CI] for malignamd non-malignant cell
lines were too near to each other. This only mg@&uiphen)(ma)Cl] and
[Zn(phen)(ma)Cl] were equally cytotoxic to both mgahant and non-
malignant cell lines thus it will be a waste ofoesces and time to continue on

with these two compounds.
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CHAPTER 4

FURTHER STUDIES ON [Co(phen)(ma)Cl]

After preliminary studies done [M(phen)(ma)Cl] it asw found that
[Cu(phen)(ma)Cl] and [Zn(phen)(ma)Cl] were not abie for further testing
because of high cytotoxicity towards non-maligneell line. So in this chapter
only [Co(phen)(ma)Cl] was used for testing with tigective of narrowing down
the path of which mechanism of action were takerf@Gg(phen)(ma)Cl] to kill
the malignant cell lines. Three different concetires that were used were 3uM,
17uM and 25uM. Three micro molar and 17uM were ifipally chosen to cover
the IC-50 value of [Co(phen)(ma)Cl] on all threetloé cell lines and 25uM were
used to determine the effect of [Co(phen)(ma)Cig@icentration exceeding the

IC-50 value.

4.1 Materials and methods

411 Cellline

Further studies on [Co(phen)(ma)Cl] were done usit@f-7 (Michigan Cancer
Foundation - 7), MDA-MB-231 (M.D. Anderson - Metat Breast — 231) and
MCF10A (Michigan Cancer Foundation — 10A). Cultgrimaterials and methods

can be referred back to Chapter 3.
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4.1.2 Apoptosis assay
The assay was done using FITC Annexin V Apoptosiettion Kit Il (BD
Pharmingen™) and the protocol as adapted usingrbtecol provided together

with the kit.

4121 Cell preparation and staining of the cell

A number of 1 x 1®cells/mL cells were cultured in 100 x 15 mm cuétalish
(Nunc™) with cell number enough to achieve 70%~80&8 confluence for
untreated cells at the end of the 72 hours incabagtieriod. The cells were then
incubated in the 5% COhumidified incubator at 37°C for 24 hours to let i
recover from harvesting procedure. The existing iomadwere drained and
replaced with fresh medium before various concéotra of [Co(phen)(ma)Cl]
compounds were added into each culture dish. The were then incubated in
the 5% CQ humidified incubator at 37°C for 72 hours. Thelx&lere detached
using Accutase (Sigma®) to yield cells with bettebility than trypsin. Accutase
(Sigma®) was thawed in room temperature and waratetcbom temperature
before usage and cannot be warmed in water bath.cUlure dish was then
incubated in the 5% CChumidified incubator at 37°C until all of the celvere
fully suspended. The suspended cells were traesfénto a sterile Falcon™ tube
and topped up with 3mL of medium solution speciffed each cell line. The
centrifuge tube was centrifuged at 1000rpm for Sutes using centrifuge
machine. After centrifugation, the pellet of cell®s obtained. All supernatant

was discarded and the pellet was then washed withRBS solution twice. The
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cells were then resuspend in 1X Binding Buffer atomcentration of 1 x £0

cells/ml. One hundred micro liters of the solutidnx 10 cells) were transfered
to a 12 x 75mm Falcon round-bottom tube with 33uybn mesh cell strainer
cap (BD™). Five micro liters of FITC Annexin V aigdL Pl were added to each
tube. The cells were gently vortex and incubatedom temperature for 15
minutes in the dark. Four hundred micro liters ¥f Binding buffer were added
to each tube and the solution of each tube wamsettaising the cell strainer cap.
The cells were analyzed with flow cytometry (BD FBCalibur™) as soon as
possible. For setting up compensation and quadmaritpe of untreated cells
unstained, a tube of untreated cells stained WillCFAnnexin V without Pl and a
tube of untreated cells stained with Pl without EIAnnexin V were required.
Binding buffer, FITC Annexin V and Pl were providéy FITC Annexin V

Apoptosis Detection Kit Il (BD Pharmingen™).

3.1.3 Cell cycle analysis

The protocol was adapted from the research don&ibiian (1975).

4131 Hypotonic staining buffer reagent for DNApreparation
The hypotonic staining buffer reagent was prepdeidre the hand is kept in a
tightly-sealed bottle protected from light. No apgpa loss of staining activity was

observed for several months. The contents of thgemt are:
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Sodium citrate 0.25¢g
Triton—x 100 0.75ml
Propidium iodide | 0.025¢g
Ribonuclease A | 0.005¢g
Distilled water 250 ml

Sodium citrate, triton-x 100 and ribonuclease A evebtained from Sigma®

while propidium iodide was obtained from Calbiocl@&m

4.1.3.2 Cell preparation and staining of the DNA

A number of 1 x 1®cells/mL cells were cultured in 100 x 15 mm cuétalish
(Nunc™) with cell number enough to achieve 70%~80é8 confluence for
untreated cells at the end of the 72 hours incabagtieriod. The cells were then
incubated in the 5% COhumidified incubator at 37°C for 24 hours to let i
recover from harvesting procedure. The existing iomadwere drained and
replaced with fresh medium before various concéotra of [Co(phen)(ma)Cl]
compounds were added into each culture dish. The were then incubated in
the 5% CQ humidified incubator at 37°C for 72 hours. Thelx&lere detached
using Accutase (Sigma®) to yield cells with bettebility than trypsin. Accutase
(Sigma®) was thawed in room temperature and waratecbom temperature
before usage and cannot be warmed in water bath.clhure dish was then
incubated in the 5% CgChumidified incubator at 37°C until all of the celivere
fully suspended. The suspended cells were traesfénto a sterile Falcon™ tube
and topped up with 3mL of medium solution specifiedeach cell line. Around

0.5 - 1 x 16 cells were transferred into a new tube. The tubs ventrifuged at
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1000rpm for 5 minutes and the supernatant wereadsgi without disturbing the
pellet. Five hundred micro liters of the hypotomdNA staining buffer were
added to the pellet. The cells were gently vortex imcubate in room temperature
for 10 minutes in the dark. The solution were siedi and transferred to a 12 x
75mm Falcon round-bottom tube with 33uM nylon mesh strainer cap (BD™).
The cells were analyzed with flow cytometry (BD FBCalibur™) as soon as

possible.

4.1.4 Proteasome inhibition assay
The assay was done using Proteasome-Glo™ 3-SubhSgstem (Promega™)

and the protocol as adapted using the protocoligeovogether with the kit.

41.4.1 Proteasome-Glo™ Reagent Preparation

Proteasome-Glo™ Buffer was thawed and both buffed #e lyophilized
Luciferin Detection Reagent were equilibrated immotemperature before use.
Luciferin Detection Reagent was reconstituted thevamber bottle by adding the
appropriate volume of Proteasome-Glo™ Buffer. Thprapriate substrate were
thawed and equilibrated to room temperature befiee For the Chymotrypsin-
Like Assay, Suc-LLVY-Glo™ Substrate was used; foe fTrypsin-Like Assay,
Z-LRR-Glo™ Substrate was used; and for the Casp&seAssay, Z-nLPnLD-
Glo™ Substrate was used. The solution was mixed elvortexing briefly.
Proteasome-Glo™ Reagent was prepared by addingPtioeeasome-Glo™

Substrate to the resuspended Luciferin DetecticagBet. The reagent bottle was
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labeled to identify the substrate used. ProteasGio@ Reagent was allowed to
sit at room temperature for 60 minutes before Tikeés allows the removal of any

contaminating free aminoluciferin.

41.4.2 Cell preparation and staining of the cells

A number of 1 x 10 cellssmL were plated for each cell line for 72 H®u
incubation period into white 96-well microplate it clear bottom
(PerkinElmer™). Each wells were topped up tollO@ith medium. The plate
was incubated for 24 hours in the 5% CO2 humidifiemlibator at 37°C for the
cells to recover from harvesting procedure. For ttieatment of the
[Co(phen)(ma)Cl] compounds, existing medium wadaeed with fresh medium
before the intended concentrations of [Co(phen)@ljajompounds were added
into each wells. A know inhibitor epoxomicin wasedsfor comparison with the
readings obtained from treatment of the compoud.gach sample a triplicate
were done to find the average and standard deniafithe results. The cells were
then incubated in the 5% G@umidified incubator at 37°C for 72 hours. Thd cel
condition and confluence were observed to maketbereeduction of proteasome
activity was not due to the reduction of viableseThe plate will be discarded if
the cell viability is not satisfactory. Fifty micrtiters of Proteasome-Glo™
Reagent were added to each well of a white 96-pigte containing blank,
control or test sample. Contents of wells were lgeanixed using a plate shaker at
300-500rpm for 30 seconds. The plate was inculstedom temperature for 10

minutes to 3 hours depending upon convenienceadfimg time. The sensitivity
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level will reach optimal level typically around B® minutes. The luminescence
readings were recording using EnVision® MultilabePlate Reader

(PerkinElmer™),

4.1.5 Measurement of Reactive Oxygen Species (ROS)
The assay was done using OxiSelect™ Intracellu@®Rssay Kit (Cell Biolabs,

Inc.) and the protocol as adapted using the profmowided together with the kit.

4151 Preparation of Reagents

The 20X DCFH-DA stock solution was diluted to 1Xaalture media without the

addition of serum. The 1X reagent was vortex inbonbgeneity. The reagents
were prepared fresh for every application. Hydrogeroxide was prepared using
PBS and was used as positive control in this asSaljition was prepared fresh
for every application. Due to photo-oxidation, DGBXA solutions of any

concentration were stored protected from light.

4152 Cell preparation and staining of the cells

A number of 1 x 10 cellssmL were plated for each cell line for 72ut®

incubation period into black 96-well microplate Hvit clear bottom

(PerkinElmer™). Each wells were topped up tollO@ith medium. The plate
was incubated for 24 hours in the 5% Q@midified incubator at 37°C for the
cells to recover from harvesting procedure. For ttieatment of the

[Co(phen)(ma)CIl] compounds, existing medium waaeed with fresh medium
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before the intended concentrations of [Co(phen)@fjajompounds were added
into each wells. Hydrogen peroxide solution waslueea positive control for this
assay. For each sample a triplicate were donentb the average and standard
deviation of the results. The cells were then iratet in the 5% COhumidified
incubator at 37°C for 72 hours. The cell conditeord confluence were observed
and any irregularities were noted. The plate waldiscarded if the cell viability
is not satisfactory. The medium were drain andsosttre washed with PBS. The
washing procedure was repeated and the wash wamdr&ne hundred micro
litre of 1X DCFH-DA/medium solution were added irgach well and incubated
at 37°C for 30 minutes. The solution was drained the cells were washed with
PBS two times. The wash solution was drained argiL®f fresh medium were
added into each well. The fluorescence readinge wemording using EnVision®
Multilabel Plate Reader (PerkinElmer™). Due to phokidation, the procedures

after addition of DCFH-DA solution were performeddark.
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4.2 Results

4.2.1 Apoptosis assay

MCF-7, MDA-MB-231 and MCF10A cells were left untted or treated for 72
hours with 3uM, 17uM or 25uM of [Co(phen)(ma)CIgIE were incubated with
Annexin V-FITC in a buffer containing Pl and anayzby flow cytometry.
Untreated cells were primarily Annexin V-FITC antregative, indicating that
they were viable and not undergoing apoptosis. rAfteatment, there were
primarily four populations of cells: cells that weviable and not undergoing
apoptosis (Annexin V-FITC and Pl negative), celladergoing apoptosis
(Annexin V-FITC positive and Pl negative), cellsend stage or late apoptosis
(Annexin V-FITC positive and PI positive) and dezals (Annexin V-FITC and

Pl positive).

MCF-7 cells untreated with [Co(phen)(ma)Cl] canda=n not stained by both
Annexin V-FITC and PI (Figure 4.1.1a). When treatedth 3uM of
[Co(phen)(ma)Cl] the percentage of dead cells amed to 25.86% compared to
1.52% on the untreated cells (Figure 4.1.1b). Tkecgntage of dead cells
continued to climb when the concentration increasgd 17uM (Figure 4.1.1c)
and 25uM (Figure 4.1.1d) of [Co(phen)(ma)Cl] reetd®9.52% and 46.51% of
dead cells respectively. In contrast the percentafyeapoptotic cells only
increased slightly when the concentration of [Cefplima)Cl] increased. From

untreated at 0.78% to only 6.68% at 25uM.
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Figure 4.1.1 Flow cytometric analysis of annexinFM-C/Pl double-staining:
MCEF-7 cells were left untreated or treated foho2rs with (a) 3uM (b) 17uM or
(c) 25uM of [Co(phen)(ma)Cl]. Cells were incubatedh Annexin V-FITC in a

buffer containing Pl and analyzed by flow cytomefifiey axis denotes cells

stained with Pl and theaxis represents cells stained in Annexin V-FITC.

84



Untreated MDA-MB-231 cells showed very few deadapoptotic cells (Figure

4.1.2a). After treated with 3uM of [Co(phen)(ma)@i¢ percentage of apoptotic
cells increased tremendously to 44.12% (Figure28)1 When the concentration
of [Co(phen)(ma)Cl] increased the percentage optgii cells also continued to

spike with 17uM at 57.51% (Figure 4.1.2c) and 25atM1.58% (Figure 4.1.2d).
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Figure 4.1.2 Flow cytometric analysis of annexinFM-C/Pl double-staining:

MDA-MB-231 cells were left untreated or treated #&hours with (a) 3uM (b)

17uM or (c) 25uM of [Co(phen)(ma)Cl]. Cells wereuhated with Annexin V-

FITC in a buffer containing Pl and analyzed by flaytometry. They axis

denotes cells stained with Pl and shaxis represents cells stained in Annexin V-

FITC.
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MCF10A cells untreated with [Co(phen)(ma)Cl] aldmwed to have very little
dead and apoptotic cells (Figure 4.1.3a) like MCBAtl MDA-MB-231 cells.
However the similarity ends here. At 3uM of [Co(pl{ena)Cl] incubated for 72
hours the percentage of apoptotic cells was just3% while the percentage of
dead cells 0.84% (Figure 4.1.3b). The numbers dtdntreased much when the
concentration increased to 17uM with percentagepmptotic cells at 3.18uM
and percentage of dead cells at 0.44% (Figure ¢).1.Bven when the
concentration of [Co(phen)(ma)Cl] raised up to 25kl percentage of apoptotic
cells only peaked at 3.19% while the percentagdeaid cells at 2.23% (Figure

4.1.3d).
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Figure 4.1.3 Flow cytometric analysis of annexinFM-C/P1 double-staining:
MCF10A cells were left untreated or treated fohdgrs with (a) 3uM (b) 17uM
or (c) 25uM of [Co(phen)(ma)Cl]. Cells were incudxtwith Annexin V-FITC in
a buffer containing Pl and analyzed by flow cytomeThey axis denotes cells

stained with Pl and threaxis represents cells stained in Annexin V-FITC.
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68

Degree of apoptosis after 72 hours treatment with C o(phen)(mal)Cl on MCF7, MDA-MB-231
and MCF10A
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ed 3puM 17pM 25uM Unetrdeat 3uM 17uM 251M Unet.rdeat A3uM | A17puM | A25uM
O Viable cells 97.71% | 72.33% | 68.36% | 46.81% | 98.16% | 42.26% | 26.24% | 20.92% | 97.97% | 97.83% | 96.38% | 94.58%
® Dead cells 1.52% 25.86% | 29.54% | 46.51% 1.29% 13.62% | 16.26% 7.51% 1.64% 0.84% 0.44% 2.23%
O Apoptotic cells | 0.78% 1.81% 2.09% 6.68% 0.54% 44.12% | 57.51% | 71.58% 0.39% 1.34% 3.18% 3.19%

Figure 4.1.4 Percentage of apoptotic, dead andeviails of MCF-7, MDA-MB-231 and MCF10A after tted with increasing
concentrations of [Co(phen)(ma)Cl] for 72 hourB.< 0.05
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MCE-7 Untreated 3uM 17uM 25uM
& Percentage of cells (%) ® Percentage of cells (%) @ Percentage of cells (%) @ Percentage of cells (%
Viable cells 97.71 + 0.47 72.33 £ 5.04 68.36 £+ 4.84 46.81 =+ 9.85
Dead cells 152+ 0.16 25.86 £+ 5.79 29.54 + 6.13 46.51 = 10.39
Apoptotic cells 0.78 + 0.35 181 £+ 1.65 209 £+ 131 6.68 + 6.06

Table 4.1.1 Percentage of apoptotic, dead andesiadils of MCF-7 after treated with increasing aanteations of [Co(phen)(ma)Cl]

for 72 hours.

Untreated 3uM 17uM 25uM
MDA-MB-231 3 A A
Percentage of cells (%) “ Percentage of cells (%) © Percentage of cells (%) © Percentage of cells (%
Viable cells 98.16 =+ 0.10 42.26 + 5.48 26.24 + 5.01 20.92 = 5.27
Dead cells 1.29+ 0.19 13.62 + 2.19 16.26 + 6.49 751 + 3.47
Apoptotic cells 054 + 0.25 4412 + 4.02 5751 + 6.19 7158 + 4.16

Table 4.1.2 Percentage of apoptotic, dead and evigblls of MDA-MB-231 after treated with increasimgncentrations of
[Co(phen)(ma)Cl] for 72 hours.

MCFEL0A Untreated 3uM 17uM 25uM
& Percentage of cells (%) ? Percentage of cells (%)  Percentage of cells (%) 2 Percentage of cells (%
Viable cells 97.97 =+ 0.47 9783 + 1.91 96.38 + 1.61 9458 £+ 0.61
Dead cells 164+ 0.63 0.84 £ 0.76 0.44 £+ 0.38 223 £ 3.37
Apoptotic cells 0.39+ 0.16 1.34 + 1.16 3.18 £ 1.99 3.19 + 2.76

Table 4.1.3 Percentage of apoptotic, dead and eviadlls of MCF10A after

[Co(phen)(ma)Cl] for 72 hours.

treated with increasing @amtrations of

@Percentage of apoptotic, dead and viable cellbtigimed from mean + standard deviation values i@etindependent experiments.




4.2.2 Cell cycle analysis

MCF-7, MDA-MB-231 and MCF10A cells were first serurstarved to
synchronize the cells to be in the same phaseeod¢h cycle. Then the cells were
either left untreated or treated for 72 hours wataM, 17uM and 25uM of
[Co(phen)(ma)Cl]. Cells were then incubated in aidybuffer containing PI,
strained to remove clumps and analyzed by flowrogioy. The DNA content of
cells duplicates during the S phase of the cellecgo the relative amount of cells
in the GO phase and G1 phase, in the S phasenahé iG2 phase and M phase
can be determined, as the fluorescence of cetlsils2/M phase will be twice as
high as that of cells in the GO/G1 phase. The Milsbawed the area where cells
were in GO/G1 phase and M2 bar covered the areaewtedls were in G2/M
phase (Figure 4.2.1, Figure 4.2.2 and Figure 4.713% area in between M1 and

M2 is the area where cells in S phase.

Untreated MCF-7 cells showed a low peak at G2/Msphalmost same height as
S phase (Figure 4.2.1a). When treated with 3puMCaf(phen)(ma)Cl] the G2/M

phase peak raised and became more apparent apdrt@mtage of cells in G2/M

phase raised from untreated at 0.65% to 5.95% (&ig12.1b). The G2/M phase
peak continued to rise when the concentration af(p6en)(ma)Cl] increased to
17uM with the percentage of cells at this phaseessed to 7.87% (Figure
4.2.1c). The increment percentage of cells in GRidse continued up to 9.01%

when the concentration of [Co(phen)(ma)Cl] increase25uM. The G2/M phase

91



peak at 25puM concentration of [Co(phen)(ma)Cl] weatively higher than those

at lower concentration and untreated (Figure 4)2.1d

The trend for MBA-MB-231 cell line was quite diffart from MCF-7 cell line.
Untreated MBA-MB-231 has a clear peak at G2/M phate5.64% (Figure
4.2.2a). When treated with 3uM of [Co(phen)(ma)@i peak of G2/M phase
decreased to 5.40% and cells starting to accumaat&0/G1l phase (Figure
4.2.2b). At 17uM more cells were accumulated atG30phase at 78.12%
compared to 3uM at 42.71% (Figure 4.2.2c). Thegraeage of cells continued to

increase in GO/G1 phase for 25uM at 85.29% (Figw2e2d).

[Co(phen)(ma)Cl] does not seem to affect the cgtleeprocess of MCF10A cell
line. The percentage of untreated cells at GO/Gasphwas 54.67% (Figure
4.2.3a). Then the figure drop slightly to 51.96%ewhtreated with 3uM of
[Co(phen)(ma)Cl] (Figure 4.2.3b). However the patage of cells in GO/G1
phase with 17uM of [Co(phen)(ma)Cl] increased to4686 (Figure 4.2.3c) then
dropped slightly to 56.38% when the concentration [Go(phen)(ma)Cl]
increased to 25uM (Figure 4.2.3d). The cells im8 @2/M phase also the same
going through slight increase and decrease withodiear pattern when treated

with increasing concentrations of [Co(phen)(ma)Cl].
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Figure 4.2.1 Cell cycle analysis of MCF-7 afteratedl with increasing
concentrations of [Co(phen)(ma)Cl] for 72 hoursedetd using flow cytometry
with PI staining. They axis denotes cell count and tkeaxis represents DNA
content.
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L6

MCE-7 Untreated 3uM 17uM 25uM
& Percentage of cells (%) 2 Percentage of cells (%) ?Percentage of cells (%) @ Percentage of cells (%
G0/G1 49.13 + 2.32 49.28 £ 0.96 43.31 £ 1.12 38.79 £ 0.12
G2/M 0.65 =+ 0.47 595 + 243 7.87 £+ 0.88 9.01 £ 0.63
S 50.22 + 2.38 4477 £ 2.02 48.82 £+ 1.89 52.19 + 0.63

Table 4.2.1 Percentage of MCF-7 cells in GO/G1n&@2/M phases after treated with increasing camnagons of [Co(phen)(ma)Cl]

for 72 hours.

MDA-MB-231 Untreated 3uM 17uM 25uM
@ Percentage of cells (%) 2 Percentage of cells (%) °Percentage of cells (%) @ Percentage of cells (%
G0/G1 50.80 = 0.79 4271 + 1.22 78.12 + 1.11 85.29 + 0.51
G2/M 6.64 + 1.61 540 + 0.73 1.04 + 0.06 1.59 + 0.54
S 4256 + 1.18 51.89 + 0.89 20.85 + 1.14 13.13 =+ 0.61

Table 4.2.2 Percentage of MDA-MB-231 cells in GO/@&L and G2/M phases after treated with increasimgcentrations of
[Co(phen)(ma)Cl] for 72 hours.

MCF10A Untreated 3uM 17uM 25uM
& Percentage of cells (%) 2 Percentage of cells (%) 2 Percentage of cells (%) 2 Percentage of cells (%
G0/G1 5467 + 3.43 5196 + 5.25 56.46 + 0.70 56.38 + 1.64
G2/M 944 + 3.86 12.60 = 3.70 12.88 =+ 2.19 11.67 £+ 3.67
S 3590 + 3.83 3544 + 3.17 30.67 + 2.58 3195 + 3.75

Table 4.2.3 Percentage of MCF10A cells in GO/Gl,a®l G2/M phases after treated with increasing cunagons of
[Co(phen)(ma)Cl] for 72 hours.

@Percentage of cells in GO/G1, S, G2/M phases isidd from mean + standard deviation values ofetimdependent experiments.

The percentage of cells in the GO/G1, S, and G2ikps of the cell cycle were calculated by usingiMtosoftware.




4.2.3 Proteasome inhibition assay

MCF-7, MDA-MB-231 and MCF10A cells were treated lwiBuM, 17uM and
25uM of [Co(phen)(ma)Cl] for 72 hours and compaweth the untreated cells.
Epoxomicin was used as positive control at the eotration of 5nM. After
treatment period Proteasome-Glo™ Cell-Based Ass@agadded and incubated
with the cells and medium before being analyzedgitiminescence multiplate
reader. The amount of luminescence emitted wasttir@roportional to the
proteasome activity of the cells. Considering watied cells were at the optimum
level of proteasome activity the luminescence valuentreated cells were set at
100%. The luminescence values of treated cells wengpared against untreated

cells to obtain a relative percentage value of medteasome activity.

When MCF-7 was treated with 3uM, 17uM and 25uM@b([phen)(ma)Cl] the
percentage of trypsin-like proteaseome activitywatu only minute changes with
98.62% at 3uM, 95.14% at 17uM and 92.98% at 25ubMufE 4.3.1). The
similar trend was observed on MCF10A cell lines .toAt 3uM of

[Co(phen)(ma)Cl] the trypsin-like proteasome atyivof MCF10A was at
98.19%. Then the figure dropped to 96.83% and éurttown to 92.21% when
the concentration of [Co(phen)(ma)Cl] increased 1GuM and 25uM

respectively. The effect of [Co(phen)(ma)Cl] thgpsin-like proteasome activity
of MDA-MB-231 was more apparent. The percentageygfsin-like proteaseome
activity of MDA-MB-231 plummeted to 64.57% aftereated with 3uM of

[Co(phen)(ma)Cl]. The value continue to decreasb®9% and 52.28% when
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the concentration of [Co(phen)(ma)Cl] was increased1l7uM and 25uM

respectively.

The chemotrypsin-like proteasome activity of MDA-MB1 cell line drop
66.94% when treated with 3uM of [Co(phen)(ma)Cllig(fe 4.3.2). The
percentage of chemotrypsin-like activity of MDA-MB31 cells dropped further
to 56.07% and 47.25% when the concentration of g@et)(ma)Cl] increased to
17uM and 25uM respectively. No apparent changesclemotrypsin-like
proteasome activity of MCF-7 and MCF10A were obsdrwhen treated with
[Co(phen)(ma)Cl]. For MCF-7 the percentage chenpsirylike proteasome
activity was 99.47% at 3puM, 94.60% at 17uM and B8%6at 25uM. The
percentage chemotrypsin-like proteasome activitfy@F10A were at 96.88%,
94.78% and 92.96% when treated with 3uM, 17uM anBuM of

[Co(phen)(ma)Cl] respectively.

[Co(phen)(ma)Cl] showed to have limited effects MCF-7 caspase-like
proteasomal activity (Figure 4.3.3). When treateth \8uM of [Co(phen)(ma)Cl]

the percentage of caspase-like proteasomal activitgped to 95.53%. When the
concentration of [Co(phen)(ma)Cl] increases thec@atage of caspase-like
proteasomal activity stayed almost the same witB®2 at 17uM and 90.29% at
25uM. The same trend was observed on MCF10A cek IAt 3uM of

[Co(phen)(ma)CI] the percentage of caspase-liketepsomal activity for

MCF10A cells was 97.83%. Then it dropped to 93.@48en the concentration of
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[Co(phen)(ma)Cl] increased to 17uM further decre&se91.47% when it
increased to 25uM. The caspase-like proteasomaltgdor MDA-MB-231 cells
showed bigger decline when treated with [Co(phea)@l. At 3uM the caspase-
like proteasomal activity was at 72.28%. The valugpped to 57.83% when the
concentration increased to 17uM. The number droppeither to 47.25% at

25uM.
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Figure 4.3.1 Percentage of trypsin-like proteasastwity of MCF-7, MDA-MB-231 and MCF10A cells aftéreated with increasing

concentrations of [Co(phen)(ma)Cl] for 72 hours.
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Figure 4.3.2 Percentage of chemotrypsin-like psue®e activity of MCF-7, MDA-MB-231 and MCF10A celidter treated with

increasing concentrations of [Co(phen)(ma)Cl] farmburs.
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Figure 4.3.3 Percentage of caspase-like proteascthagty of MCF-7, MDA-MB-231 and MCF10A cells aftéreated with increasing

concentrations of [Co(phen)(ma)Cl] for 72 hours.




¥0T

Trypsin-like MCF-7 MDA-MB-231 MCF10A
& Percentage of cells (%) & Percentage of cells (%) & Percentage of cells (%)
Untreated 100.00x 1.80 100.00 £ 0.38 100.00 £ 3.79
Epoxomicin 5nM 2099+ 0.47 19.43 £+ 0.45 28.98 + 0.29
3uM 98.62 £+ 2.21 64.57 + 2.83 98.19 + 4.69
17uM 95.14 =+ 1.36 59.89 + 1.42 96.83 + 0.68
25uM 92.98 =+ 457 52.28 + 4.76 92.21 + 0.68

Table 4.3.1 Percentage of trypsin-like proteasoatiwity of MCF-7, MDA-MB-231 and MCF10A cells aftéreated with increasing

concentrations of [Co(phen)(ma)Cl] for 72 hours.

MCF-7 MDA-MB-231 MCF10A
Chemotrypsin-like  Percentage of cells (%) 2 Percentage of cells (%) 2 Percentage of cells (%)
Untreated 100.00+ 4.67 100.00 £ 1.47 100.00 £ 2.96
Epoxomicin 5nM 1487+ 2.99 1716 £ 244 31.31 + 3.09
3uM 9947 £ 5.20 66.94 + 2.12 96.88 + 2.42
17uM 94.60 + 3.77 56.07 + 7.28 94.78 £+ 3.05
25uM 89.67 + 7.97 4725 + 1.42 9296 + 3.96

Table 4.3.2 Percentage of chemotrypsin-like pratees activity of MCF-7, MDA-MB-231 and MCF10A cellster treated with
increasing concentrations of [Co(phen)(ma)Cl] farmburs.




S0T

MCF-7 MDA-MB-231 MCF10A
Caspase-like
& Percentage of cells (%) & Percentage of cells (%) & Percentage of cells (%)

Untreated 100.00x 2.78 100.00 £+ 1.30 100.00 £+ 2.45
Epoxomicin 5nM 2460+ 4.11 21.74 £+ 1.89 35.80 £+ 0.66
3uM 9553 + 2.78 7228 + 4.45 97.83 £ 3.27
17uM 9295 + 5.07 57.83 + 1.32 93.04 £ 0.98
25uM 90.29 + 8.03 47.28 £+ 3.53 9147 £+ 4.58

Table 4.3.3 Percentage of caspase-like proteasonv@yaof MCF-7, MDA-MB-231 and MCF10A cells aftdreated with increasing
concentrations of [Co(phen)(ma)Cl] for 72 hours.

@Percentage of proteasomal activity is obtained fro@an + standard deviation values of three indegenekperiments.



4.2.4 Measurement of Reactive Oxygen Species (ROS)

MCF-7, MDA-MB-231 and MCF10A cells were treated vBuM, 17uM and
25uM of [Co(phen)(ma)CI] for 72 hours and compareth the untreated
cells. Treatement with 1uM hydrogen peroxide seraggositive control in
this study. The fluorescence intensity was measusadg microarray plate
reader and the results were presented in relatifferehce between the
fluorescence intensity percentage of DCF of cellscubated with

[Co(phen)(ma)CI] and untreated cells.

At 3uM of [Co(phen)(ma)Cl] on MCF-7 showed 5.97%nimial increase of
intracellular ROS. The level of intracellular RO&vél of MCF-7 increased to
8.58% and 10.93% when the concentration of [Co({neCl] was

increased to 17uM and 25uM respectively. The irsge#d intracellular ROS

level of MCF-7 for positive control was marked &t37%.

Similar trend was observed on MCF10A cell line afteeatment of
[Co(phen)(ma)Cl]. Three micro molar of [Co(phen)j@&k on MCF10A only
showed an increase of 2.02% of intracellular RG&IleThe value increased
to 4.49% at 17uM and raise to 8.54% at 25uM. THeevaf positive control

was marked at 76.30%.

The treatment of [Co(phen)(ma)Cl] MDA-MB-231 hadaterely more effect

on the level of intracellular ROS level. The lee¢lintracellular ROS level of

MDA-MB-231 increased from 33.30% at 3uM to 68.39% 1&uM and
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increased to 79.03% at 25uM. Treatment of 1uM hyeinoperoxide surged

the level of intracellular ROS level of MDA-MB-23& 82.98%.
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Figure 4.4.1 Relative DCF fluorescence percentdg®l©F-7 cells after treated with increasing concations of [Co(phen)(ma)Cl] for 72
hours.
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Figure 4.4.2 Relative DCF fluorescence percentddd@A-MB-231 cells after treated with increasingnoentrations of [Co(phen)(ma)Cl] for
72 hours.
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Figure 4.4.3 Relative DCF fluorescence percentdgd@F10A cells after treated with increasing cortcations of [Co(phen)(ma)Cl] for 72
hours.



TTT

Cell line MCF-7 MDA-MB-231 MCF10A
Treatment @ Relative DCF fluorescence (%) 2 Relative DCF fluorescence (%) 2 Relative DCF fluorescence (%
Untreated 0.00 = 0.80% 0.00 £ 0.12% 0.00 £ 1.35%
3uM 597 £ 1.21% 33.30 = 1.43% 202 + 1.36%
17uM 858 =+ 1.97% 68.39 + 2.61% 549 + 1.87%
25uM 10.93 + 2.38% 79.03 + 3.08% 8.54 + 0.87%
Hydrogen Peroxide 1uM 89.27 1.40% 8298 + 1.69% 76.30 £ 0.74%

Table 4.4.1 Relative DCF fluorescence percentagd@©F-7, MDA-MB-231 and MCF10A cells after treatedtlwincreasing concentrations of
[Co(phen)(ma)Cl] for 72 hours.

®Relative DCF fluorescence percentage is obtairad fnean + standard deviation values of three inuiggat experiments.



4.3  Discussion

The combination of annexin V-FITC and propidiumide dye is a reliable
and convenient method for quantitative apoptosisvfcytometry analysis
(Kerr et. al., 1998). The test described, discrates intact cells or healthy
cells (FITC-/PI-), cells in early apoptosis (FIT®+) cells in late apoptosis
(FITC+/PI1+) and dead cells (FITC-/PI+) (Chen et..,, aR008). The
morphological studies that were discussed earlemewnot substantial enough
to draw a definitive conclusion. That was why anneX-FITC/PI test were
done. The results obtained from this test were esponding to the
preliminary speculation drawn from the morphologis@ady. The amount of
apoptotic cells induced by [Co(phen)(ma)Cl] on MDMB-231 cell line was
increasing over the concentration (Figure 4.1.4)[&(phen)(ma)Cl] induced
apoptosis on MDA-MB-231 in a dose dependent mannlee. difference of
the percentage of apoptotic cells between MDA-MB-281d MCF10A was
significant withP < 0.05. Even though the percentage of apoptotis oé
MCF-7 increased with the concentration of [Co(pKe@)Cl] there were
substantially more dead cells compared to apoptatils (Figure 4.1.4). The
outcome here is consistent the pictures taken irphabogical study (Figure

3.2.2 b and Figure 3.2.2c).

By just looking at flow cytometry test alone it sted that [Co(phen)(ma)Cl]
mostly induce death on MCF-7 cells through necrpeisess. However when
compared back with the photos in morphological wtilé cells did not show
signs of necrosis (Figure 3.2.2 b and Figure 3)2Plte movement of the cells

from Annexin V-FITC and PI negative (viable, or neasurable apoptosis),
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to Annexin V-FITC positive and Pl negative (earlgpogtosis, membrane
integrity is present), Annexin V-FITC and Pl pogti(end stage apoptosis)
and to Annexin V-FITC negative and Pl positive @eand or necrosis)
suggest apoptosis (Koopman 1994). In contrast, rajlesi observation
indicating that cells are both Annexin V-FITC and gositive, in of itself,
reveals less information about the process by wthiehcells underwent their
demise (Koopman 1994). The recommended action wbaldtudying the
compound with varying time durations and conceranat however this was
not practical due to budget constrain. One of tla@gble explanation would

be the concentrations of the treatment used weraigh for MCF-7 cell line.

The annexin V-FITC/PI test showed that [Co(phen)@hahad limited effect

towards MCF10A cell line. Even though the perceatafjapoptotic and dead
cells increased when the concentration of [Co(plmea)Cl] increase but the
figure were minute compared to the percentage ablei cells recorded
(Figure 4.1.4). If the results of IC-50 value (FigB.1.8) and morphological
study (Figure 3.2.2h and Figure 3.2.2i) were taketo account another
conclusion can be drawn here. The IC-50 value ofFYl@A after treated for
72 hours with [Co(phen)(ma)Cl] was 16.9uM which mteanly 50% of the

cells were viable at 16.9uM. However, even at 25ha# flow cytometry test
showed that there were 94.58% of viable cells([Eftble 4.1.3). The results
may seem inconsistent with each other howeverdheltr of both test cannot
be directly be compared with each other. The rdsuit MTT was taking the

whole population of cells and compared it with eated cells. For annexin-V-

FITC/PI test only a sample of 10 000 cells was akehe morphological
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study showed that most of the cells treated witlo(pien)(ma)Cl] were
healthy (Figure 3.2.2h and Figure 3.2.2i) compdcedntreated cells (Figure
3.2.2g). The only difference was that the conflgeihevel was noticeably
lesser when the concentration of [Co(phen)(ma)@ireases. All these
showed that [Co(phen)(ma)Cl] were not competetkilimg MCF10A cells in
anyway but slowed the cells growth rate insteadcé&ithe cells treated with
[Co(phen)(ma)CI] grew slower than untreated thiplaixs the explained the
difference in the percentage of viable cells betwieeated and untreated cells

in MTT assay result.

Faulty G2/M arrest checkpoint can permit a damaggdtto go into mitosis
and undergo apoptosis, and enhancing this effegtamglify the cytotoxicity
of chemotherapy (Robert 2002). Alternatively, irmgieg G2/M phase arrest
has also been linked with enhanced apoptosis (Tgagial. 2002). The
treatment of [Co(phen)(ma)Cl] on MCF-7 cell lineshehown to have slight
arrest at G2/M phase in dose dependent manner r@igi2.4). What is
interesting is the effect of [Co(phen)(ma)Cl] on KB-231 on cell cycle
was quite different. The results of cell cycle gs& of [Co(phen)(ma)Cl] on
MCF-7 were consistent with the results of the amim&xFITC/PI test where

G2/M arrest and increment of apoptotic cells waddse dependent manner.

Cell cycle analysis indicated that after 72 hourfCo(phen)(ma)Cl] treatment
on MDA-MB-231 showed a considerable increase inG30phase arrest in a
dose dependent manner. A significant arrest in GAR5uM observed with

P < 0.01. GO/G1 phase arrest had always been exelysassociated with
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DNA damage (Linkeet al, 1996). So there is a high probability that
[Co(phen)(ma)CIl] caused DNA damage to MDA-MB-231iathin turn

caused GO/G1 arrest.

So far the cell cycle analysis test had proven[Ba{phen)(ma)Cl] causes cell
death on MCF-7 and MDA-MB-231 cell lines in a coetply different

pathway and mode of action. However the most isterg finding obtained

from this test was [Co(phen)(ma)Cl] has no effectCF10A, which was the
non-malignant cell line. This means that [Co(phe@)Cl] has a selective
mode of action that targets only cancerous celishas little effect on normal
healthy cells. Further studies on [Co(phen)(ma)Gdly lead to development

of an anticancer drug that brings lesser side &ffec

Proteasome-Glo™ cell-based assay showed that [€p)fha)Cl] induced
cell death in a different mode of action on maligneell lines while remains
relatively ineffective on non-malignant cell linéhe trend observed from the
data of this assay was compliant to results obdiafr@m previous tests. The
proteasome activity of MCF-7 and MCF10A remaineghhand unaffected
even when concentration of [Co(phen)(ma)Cl] inceglasHowever the
proteasome activity of MDA-MB-231 decreased whea toncentration of
[Co(phen)(ma)Cl] increased indicating [Co(phen)(@lh)only inhibit the
proteasome activity of MDA-MB-231 cell line amortgetthree cell lines that

were being tested.
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Similar trend was also observed in the measureofantracellular ROS level
assay where the intracellular ROS level of MDA-MB12increased when
treated with [Co(phen)(ma)Cl]. Meanwhile the ingtwglar ROS level of
MCF-7 and MCF10A remained relatively low even aftieeated with
[Co(phen)(ma)Cl]. This further strengthen the tlyetivat [Co(phen)(ma)Cl]
induced cell death in a different mode of mecharsneach of the malignant

cell lines while remained ineffective towards noahgnant cell line.

Accumulation of intracellular ROS level can induapoptosis by both the
intrinsic and extrinsic pathway (Ozben 2007). le #xtrinsic pathway, ROS
generation is connected to the Fas death signalatpway (Wanget al,
2008). Fas ligands generate ROS as an upstrean fevgghosphorolysis of
Fas to activate it. This step is imperative forldaling recruitment Fas-
associated protein with death domain and caspaas @ell as apoptosis
induction (Guptaet al, 2012). In the intrinsic pathway, ROS function to
facilitate cytochrome c release by activating adtig pore-stabilizing
proteins like Bcl-2 and Bcl-xL as well as inhibgjipore-destabilizing proteins
like Bcl-2-associated X protein, Bcl-2 homologoustagonist/killer
(Martindale and Holbrook, 2002). ROS can also irdeell death through
autophagy, which is a self-catabolic process inmglvsequestration of
cytoplasmic contents (exhausted organelles andeiproaggregates) for

degradation in lyposomes (Shrivastava et al., 2011)

Though | was still not able to pinpoint the exaada of mechanism on the

cell death induced by [Co(phen)(ma)CIl] on MCF-7 &fdA-MB-231 | was
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able to narrow down the search. Clear indications wehown that
[Co(phen)(ma)CI] was capable of inducing cell delaghtargeting more than
one pathway. Further studies are warranted to éadthe details of these

pathways.
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CHAPTER 5

FURTHER STUDIES AND CONCLUSION

5.1 Recommendations for further studies

Further studies are needed to pinpoint the exachamsm of action taken by
[Co(phen)(mal)Cl] in kiling MCF-7 and MDA-MB-231dtls. However, based on
the results obtained from this study | can narrbe $earch to a few possible
pathways. One of the most like pathways will beittiebition of NF«B. One of
the prominent features found in most breast cahg@ours is the constitutive
activation of NF«B, a family of transcription factors that play il roles in cell
survival, proliferation, inflammation and immunifjdayden and Ghosh, 2008).
The importance of the NkB pathway is well-known and documented. NB-
plays a key role in mammary epithelial proliferati@rchitecture and branching
during early post-natal development (Brantiyal, 2001; Cacet al, 2001). This

is the reason why constitutive NdB activation detected in numerous breast
tumour cell lines has weighty consequences in titeaiion and progression of
breast cancer (Sovadt al, 1997). Studies had shown that the requiremehtFof
kB is imperative for the induction and maintenantthe epithelial-mesenchymal
transition (EMT), a process that critically congrabreast cancer progression
(Chuaet al, 2004). MCF10A, an immortalized cell line which derived from
normal mammary epithelial cells, undergoes EMT WHEi an initiation step to
metastasis when overexpressing of thedBRarotein occurs (Hubeat al, 2007).

Activation of NF«xB also blocks apoptosis in different cell typescluding
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human breast cancers (Barkett and Gilmore, 199€nkad Lin, 2002; Biswast
al., 2003). So, hypothetically by inhibiting NB it will induces apoptosis and
also cause cell cycle arrest. In fact this poins weoven in a study when N&B
was selectively inhibited caused tremendous inerégashe number of apoptotic
cells and also induced GO/G1 arrest in an ER-negyditieast cancer (Biswas
al.,, 2004). NF«B can be blocked by both a signal-inducible prateses
dependent and also a constitutive proteasome-indepé¢ calpain-dependent
mechanism (Miyamot@t al, 1998). Though NkB is mostly activated in ER-
negative cell lines like MDA-MB-231 (Biswast al, 2004; Nakshatet al, 1997)

it was shown to be activated in ER-positive celés too like MCF-7 (Zhoet al,
2005). In fact inhibition of NReB has shown to induce apoptotic cell death in
MCF-7 too (Sheret al., 2001). Therefore NkB could be a potential target for

[Co(phen)(mal)CI] in killing the malignant cell ks.

There are other feasible pathways that are moeetaefé against highly invasive
cancer cells like MDA-MB-231. For instances, inhibgy Ras and RhoA
contributed to inhibition of both proliferation andvasiveness of a highly
invasive and metastatic breast cancer cell line AMIB-231 by inducing GO/G1
arrest (Denoyellet al, 2001, Denoyellet al, 2003; Pilléet al, 2005). Another
possible pathway might be upregulation of UCH-LIngewhich plays an
important role in various biological processes udahg cell proliferation, cell
cycle, apoptosis, signal transduction (Orlowski dhekes, 2003). UCH-L1 has

been acknowledged as a cancer-specific methylastke,gand silenced by
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promoter methylation in multiple tumors includingebst cancer cells (Xiargt
al., 2012). Upregulation of UCH-L1 may possibly astatumor suppressor by
inducing apoptosis and also inducing GO/G1 arfd&rn(get al, 2008; Xianget
al., 2012). CoGJ, a cobalt(ll) compound, was found to concomitanibyegulate
UCH-L1 by mimicking hypoxiain vitro (Lefebvre et al, 2010). Perhaps
[Co(phen)(mal)CI] also possesses the capabilityumfegulating UCH-L1 and

induces apoptosis and cell cycle arrest on MCFe7/MDBA-MB-231.

Though there might other pathways that maybe uakient by [Co(phen)(mal)Cl]

these are few of the most probably pathways th@vie narrowed down after
extensive analysis of studies done by other reseescand compared with the
results obtained in this study. These are the feyggective areas to look into to

further narrow down the mechanism of action of [@®n)(mal)Cl].

5.2  Conclusion

From the results obtained from this study | fouhdtt[Cu(phen)(mal)Cl] and
[Zn(phen)(mal)CI] indiscriminately target both ngalant and non-malignant
breast epithelial cells alike thus were not sugabd be further studied on.
[Co(phen)(mal)Cl] was found to reduce cell vialiltount by inducing apoptosis
in both MCF-7 and MDA-MB-231 plus causing slightrest in G2 phase on
MCF-7 and GO/G1 arrest on MDA-MB-231. However [Cuép)(mal)Cl] was

shown to be targeting a proteasome-dependent ar&tde@Pendent pathway on

MDA-MB-231 while targeting a proteasome-independand ROS-independent
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pathway on MCF-7 indicating that [Co(phen)(mal)@ljcapable of inducing cell
death with more than one mechanism of action. g8eg)(mal)Cl] has no
apparent effect on MCF10A which could lead to depilg an anticancer
compound with lesser side effects. From my stud@s(phen)(mal)Cl] has
shown great potential by discriminately killing bst epithelial cells. So | suggest
[Co(phen)(mal)Cl] to be further studied on not oaty breast cancer cell lines but
on other types of cancer cell lines too to find enon its mechanism of actions

and also its efficacy on other types of cancer.
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APPENDIX A

Anova: One way for Figure 3.1.8

Cell line IC-50 value

MCF-7 2.9 3.2 3.8

MCF10A 17.8 16.8 18.2

Anova: Single

Factor
SUMMARY
Groups Count Sum Average Variance
MCF7 3 9.89 3.296667 0.214033333
MCF10A 3 52.8 17.6 0.52
ANOVA
Source of
Variation SS df MS F P-value F crit
8.51E-
Between Groups 306.878 1 306.878 836.14191 06 7.708647
Within Groups 1.468067 4 0.367017
Total 308.3461 5
P<0.05
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APPENDIX B

Anova: One way for Figure 4.1.4

Cell line Percentage of apoptotic cells at
25uM

MDéé'\l/'B' 68.75% | 69.63% | 76.35%

MCF10A 4.51% 0.02% 5 04%

Anova: Single

Factor
SUMMARY
Groups Count Sum Average Variance
MDA-MB-231 3 2.1473 0.715767 0.001728
MCF10A 3 0.0957 0.0319 0.000761
ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 0.70151 1 0.70151 563.7105 1.87E-05 7.708647
Within Groups 0.004978 4 0.001244
Total 0.706488 5
P<0.05
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APPENDIX C

Anova: One way for Figure 4.2.4

Concentration of Percentage of MDA-MB-231 cells in G1
[Co(phen)(ma)Cl] phase
ouM 84.97% 85.01% 85.88%
25uM 50.82% 51.58% 50.00%
Anova: Single
Factor
SUMMARY
Groups Count Sum Average Variance
ouM 3 25586 0'83286 2.64E-05
25uM 3 1.524 0.508  6.24E-05
ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups ~ 0.1784 1 01784 401424 3.72E-67 (7)864
Within Groups 0'03017 4 4.44E-05
Total 0.17857 5
7
P<0.01

139



