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ABSTRACT 

 

 

Electroencephalogram based Brain-Computer Interfaces (BCIs) enable 

stroke and motor neuron disease patients to communicate and control devices. 

Mindfulness meditation has been claimed to enhance metacognitive regulation. 

The current study explores whether mindfulness meditation training can thus 

improve the performance of BCI users. To eliminate the possibility of 

expectation of improvement influencing the results, we introduced a music 

training condition. A norming study found that both meditation and music 

interventions elicited clear expectations for improvement on the BCI task, with 

the strength of expectation being closely matched. In the main 12-week 

intervention study, seventy-six healthy volunteers were randomly assigned to 

three groups: a meditation training group; a music training group; and a no- 

treatment control group. The mindfulness meditation training group obtained a 

significantly higher BCI accuracy compared to both the music training and no-

treatment control groups after the intervention, indicating effects of meditation 

above and beyond expectancy effects. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

A Brain-Computer Interface (BCI) captures the electrical activities of the brain 

and translates them into commands that can be understood by output devices. 

The BCI allows the users to control external devices without using their normal 

neuromuscular output pathways (Wolpaw et al., 2000). It therefore provides a 

new interaction channel to individuals who have little or no voluntary control 

over their bodies but yet retain a certain level of normal brain functions.  

The term of “brain-computer interface” was first introduced in the work 

by Dr. Vidal in the early 1970s in which a human-computer interaction based on 

electroencephalogram (EEG) was proposed (Vidal, 1973). Over the past few 

decades, many BCI systems have been developed to provide various applications 

to the users. It is estimated that more than 100 million potential users around the 

world could benefit from the BCI technology, with the majority being stroke and 

motor neuron disease patients (Guger, 2008). Such individuals could use the BCI 

to communicate with others and to perform different daily tasks. 

The BCI interprets the user’s intent through direct measures of brain 

activity, most commonly via EEG because the application of EEG electrodes on 

the scalp is non-invasive. The operation of the BCI is dependent on the effective 

interaction between the user who provides the input signals and the system that 

interprets the input signals (Wolpaw et al., 2000). Different techniques of 

temporal and spatial filtering (Dornhege et al., 2006) as well as signal processing 
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algorithms (Bashashati et al., 2007) had been used in BCIs to improve the signal-

to-noise ratio of the input signals. For the users, one of the biggest challenges is 

to produce consistent and reliable EEG patterns when they operate the BCIs. The 

brain signals as a measure of physiological responses are very much dependent 

on the ability of the individuals to regulate their mental states. 

BCI research has focused primarily on the possible benefits to the 

disabled users. Any means of improving the effectiveness with which people can 

use BCI devices could dramatically improve their lives. In this context, a related 

question is whether people with mental training background and skills might 

control the BCI better. A candidate of mental training is mindfulness meditation 

because of its claimed ability to lead to better self-regulation (Cahn and Polich, 

2006; Sedlmeier et al., 2012), though relatively few studies have compared its 

effects to an active control treatment of equivalent plausibility. 

The aim of the present study is to investigate the effect of mindfulness 

meditation intervention on a group of BCI users, through a random-controlled 

design. The BCI performance of the meditators was compared to a no-treatment 

control group and an additional active control group (a group that underwent 

another type of mental training). To examine whether expectation could account 

for the effect of treatment, a survey on people’s expectations towards 

mindfulness meditation and the active control treatment was conducted prior to 

the main BCI study. The overall study thus explored the use of mindfulness 

meditation in gaining better control of BCI devices, above and beyond 

expectation effects. It also addressed the theoretical issues concerning the nature 
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of mindfulness meditation by way of exploring, for the first time, this possible 

practical benefit. 

The rest of thesis is structured as follows: 

Chapter 2 provides a literature review regarding the BCI, meditation, and 

the active control (musical training). 

Chapter 3 emphasizes on the designs and operating principles of our 

present BCI system. The montage, experimental protocol, and processing 

method of the offline and the online BCI experiments are described. A BCI 

sequence test was developed for the purpose of the present study. 

Chapter 4 describes the methodology of the randomized controlled trial 

study. It started with a questionnaire survey that measures the expectancy effect 

and followed by a randomized controlled BCI experiment that measures the 

effectiveness of mindfulness meditation on BCI performance. To perform the 

Bayesian statistical analysis, a computer program to calculate Bayes factor was 

created. The assumptions and algorithms used in the program are explained in 

this chapter. 

Chapter 5 presents the results obtained from the statistical analyses using 

conventional non-significance hypothesis test and Bayesian approach. The 

results are discussed in Chapter 6. 
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Chapter 7 concludes the thesis with a summary of findings from the study. 

Some suggestions for future work are also proposed and discussed here. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

2.1 Brain-computer interface (BCI) 

The term “brain-computer interface” was first used in the work of Dr. Vidal 

(Vidal, 1973) in which a human-computer interface that used brain signals was 

proposed. The BCI is defined as “a direct communication system that does not 

rely on the brain’s normal output pathways of peripheral nerves and muscles” 

(Wolpaw et al., 2000). In other words, a BCI depends solely on mental activity 

to enable a user to communicate and to control a device such as a motorized 

wheelchair. This technology is especially useful for individuals who are 

paralyzed or suffer from severe movement deficits. Other human-computer 

interface systems that utilized signals from muscle control (Chen et al., 2007) or 

eye movement (Lv et al., 2008) are available and easier to operate by users but 

such system may not be beneficial for patients with more severe motor 

disabilities, such as late-stage amyotrophic lateral sclerosis (ALS), severe 

cerebral palsy, and brainstem strokes (Daly and Wolpaw, 2008). 

The BCIs can be categorized into two groups according to the placement 

of the sensors used to detect and acquire the brain signals: invasive BCIs and 

non-invasive BCIs. In invasive BCIs, electrodes are placed directly on the 

exposed surface of the brain or directly implanted into the brain tissue to capture 

electrical activity from the cerebral cortex (Kennedy et al., 2000; Leuthardt et 

al., 2004). These BCIs provide much better spatial resolution than the non-
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invasive one. However, some issues have been raised regarding their use such as 

biocompatibility of the implant, disruptive effects on the surrounding brain tissue, 

cost, difficulty and risk of the surgery, as well as the ethical concerns on the 

subjects (Wolpaw et al., 2006). For these reasons, non-invasive BCIs, are often 

preferred over the invasive BCIs. In a non-invasive manner, EEG electrodes are 

placed on the scalp to monitor electric brain activity. This is the most widely 

used method in BCIs.  

All the BCI systems, regardless of the definitions, methods of acquiring 

input signals, and purposes of application, have the same major elements. Figure 

2.1 shows a typical design of BCI systems. It comprises a data acquisition 

module that performs the recording, amplification, and digitization of the brain 

signals; a signal processing unit that completes all the processing including 

artifact rejection, filter, feature extraction, and classification of the data. After 

classification and a decision is made, an execute command is sent to the output 

device to perform the desired task. The output device could be simply a computer 

screen to present the user with a selection of targets or characters (Schalk et al., 

2004), or a more advanced virtual reality environment (Leeb et al., 2007). The 

output device could also be a prosthesis hand (Muller-Putz and Pfurtscheller, 

2008), a wheelchair (Tan et al., 2008), or a certain home appliance (Wang et al., 

2006). 

 

 
 
 

Figure 2.1 The typical components in a BCI system.  
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EEG from several kinds of mental activities can be used to operate a BCI 

system (Wolpaw et al., 2002), and they can be basically divided into evoked 

potential and spontaneous signals. Evoked potential are brain potentials that can 

be evoked by specific stimulus (e.g., visual evoke potential, P-300) while 

spontaneous EEG signals are those that occur during normal brain functions (e.g., 

sensorimotor rhythm, slow cortical potentials, non-motor cognitive tasks). Each 

type of input brain signal has its advantages and is used to fit into different BCI 

applications. For the BCI systems that use spontaneous EEG signals, the subjects 

have to be trained to control the system by developing an automated skill of 

controlling certain EEG components or performing certain mental tasks (in the 

present study, subjects perform motor imagery of left hand movement, right hand 

movement, as well as foot movement). Changes in EEG patterns, due to mu and 

beta rhythm desynchronization and synchronization, are distinguishable 

(Pfurtscheller and Lopes da Silva, 1999) and therefore can be used as input to 

the BCI system. Examples of successful motor imagery driven BCI systems are 

Graz (Pfurtscheller et al., 2003), Berlin (Blankertz et al., 2008), and Wadsworth 

(Jeffreys, 1961) BCIs. 

As mentioned earlier, a BCI is a direct communication between two 

adaptive controllers, which are the computer and the user’s brain. A successful 

operation of the BCI necessitates effective interaction between the user and the 

system itself (Wolpaw et al., 2000). One of the biggest challenges faced by BCI 

users is to produce consistent and reliable EEG patterns when they operate the 

BCIs and this is much dependent on the ability of the users to regulate their 

mental states. A number of factors could affect their EEG patterns. Unstable 



 

8 

mental states due to anxiety, fatigue, frustration, or loss of concentration may 

cause inconsistent EEG patterns. Distraction during the experiment, for instance, 

caused by feedback presented by BCIs, can also modify the EEG and introduce 

noise to the system (Pfurtscheller and Neuper, 2001; Guger et al., 2003). 

Researchers have been trying to apply different signal processing techniques for 

BCIs in an attempt to improve the signal-to-noise ratio of the input signal 

(Bashashati et al., 2007; Tangermann et al., 2012). Other studies trained users to 

control their EEG patterns through extensive and resource demanding neuro-

/biofeedback training (Neuper et al., 1999; Hwang et al., 2009). Although the 

efforts are useful, the processes are laborious and time consuming. Moreover, 

the processes, if conducted before actual use on a BCI, will cause fatigue on the 

subject and reduce the valuable remaining time of the subject for controlling the 

system. 

I am not aware of any previous randomized controlled trial study in the 

field of BCI, except an earlier pilot study conducted by myself (Tan et al., 2009). 

BCI experiments are invariably laborious. The present study is an attempt to use 

a randomized controlled trial design to examine the effects of mindfulness 

meditation on the BCI performance among a group of meditation-naïve 

participants. 

2.2 Mindfulness meditation 

In general, meditation can be categorized into two basic approaches based on 

how the attentional mental processes are associated: concentrative-based 

meditation and mindfulness-based meditation (Cahn and Polich, 2006). While 
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concentration-based meditation focuses the attention on a single stimulus, 

mindfulness meditation associates with non-reactive observation of continually 

ongoing internal and external stimuli (Baer, 2003). Both types of meditation in 

fact involve mindfulness in the sense of non-judgmental acceptance, but the term 

“mindfulness meditation” is often used as a contrast to concentration meditation 

to indicate the difference in emphasis. Mindfulness meditation practice involves 

non-judgmental observation of sensations, thoughts, feelings, emotions, and 

environmental stimuli. It is a metacognitive process as it requires both 

mechanisms of attentional self-regulation and consciousness monitoring (Bishop 

et al., 2004; Semmens-Wheeler and Dienes, 2012). 

A large body of research has explored the effect of mindfulness 

meditation training on cognitive abilities. Carter et al. (2005) found that 

individuals trained in meditation could measurably alter their experience of 

perceptual rivalry. Furthermore, long-term meditators show higher performance 

in the domains of sustained attention (Valentine and Sweet, 1999), executive 

attention (Chan and Woollacott, 2007; van den Hurk et al., 2010), and attention 

switching (Hodgins and Adair, 2010) as compared to matched controls. Studies 

investigating the effect of a 10-day and a 4-day short-term mindfulness 

meditation trainings respectively (Chambers et al., 2008; Zeidan et al., 2010) 

revealed improvement in working memory capacity in meditators following the 

mindfulness trainings. The latter study also observed that the meditators 

increased mindfulness levels over an active control group (Zeidan et al., 2010). 

Moreover, Tang et al. (2007) observed that the people who underwent a 5-day 

intensive mindfulness meditation retreat showed greater improvement in 
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executive attention, better mood, and decreased stress-related cortisol compared 

with a control group. Higher attentional control and cognitive flexibility in 

experienced meditators are correlated with higher self-reported levels of 

mindfulness (Moore and Malinowski, 2009).  

Recent research employing functional magnetic resonance imaging 

(fMRI) techniques suggests meditation-induced plasticity in the brain areas 

associated with cognitive control and emotional regulation. Lazar et al. (2005) 

demonstrated that long-term meditators had thicker cortices than non-meditators 

in the regions involved in sensory, cognitive, and emotional processing. Hölzel 

et al. (2011) found that an 8-week Mindfulness-Based Stress Reduction (MBSR) 

program led to an increase in gray matter concentration within the hippocampus, 

a domain involved in emotional regulation and response control (Fanselow and 

Dong, 2010). 

The current study aims to examine the effect of mindfulness meditation 

training on the ability to control a BCI using motor imagery. Previous cross-

sectional studies investigating EEG during hand motor imagery tasks 

demonstrated that experienced meditators had more distinguishable EEG 

patterns than untrained subjects (Lo et al., 2004; Eskandari and Erfanian, 2008). 

Thus, mindfulness meditation training may help to reduce “neural noise” and 

enhance signal-to-noise ratios and speed up the learning process in the use of 

BCIs (Davidson and Lutz, 2008). 

Many previous studies on mindfulness meditation (Baer, 2003; Chiesa et 

al., 2011; Keng et al., 2011) utilized a randomized two-group design in which a 
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mindfulness meditation intervention group is compared to a no-treatment or 

wait-listed control group. Such a design is limited in that it does not allow the 

researcher to control for nonspecific treatment effects such as expectancy and 

demand characteristics. The issues of expectancy and demand characteristic 

have been explored in consciousness research (Paskewitz and Orne, 1973; 

Plotkin, 1980) but they have not been clearly addressed in studies involving 

meditation interventions. 

A recent paper (Zeidan et al., 2010) showed that mindfulness meditation 

increases performance on cognitive tasks. They used the "active control" of 

listening to the Hobbit being read to them. However, such a control may not 

elicit the same expectations of improvement in cognitive functioning as 

meditation. Jensen et al. (2012) found mindfulness based stress reduction 

compared with non-mindfulness based stress reduction improved selective 

attention, but it is also not clear whether expectations could account for these 

results although the control condition is closely matched to the treatment 

condition. To draw causal conclusions about the effectiveness of an intervention, 

researchers must compare the treatment condition with an active control and test 

whether both conditions shared the same expectations (Boot et al., 2013). The 

present study addressed this concern. 

The present study used a three-group design, similar to Jensen et al. 

(2012), in which mindfulness meditation is compared not only against a no-

treatment control condition but to another mental training condition. For the 

mental training condition participants received instructions in how to play a 

classical guitar. This novel control condition is designed on the theoretical basis 
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that learning a musical instrument, like meditation, can be considered as a form 

of mental training that may be thought by subjects to be as likely to induce 

neuroplasticity and cognitive transfer among practitioners as meditation 

(Rabipour and Raz, 2012). 

2.3 Musical training 

Playing a musical instrument is a process that necessitate a highly sophisticated, 

multimodal coordination of sensory, motor, and cognitive processing. Activities 

that are continuously practiced by the musicians, e.g., pitch perception, attentive 

listening, musical sight-reading, synchronization between music and movement, 

composition, emotive transference, manual dexterity, remembering, learning, 

performing, and receiving multi-sensory feedback activate multiple core brain 

regions (Janata et al., 2002; Levitin and Tirovolas, 2009).  

Previous studies comparing musicians with matched non-musicians have 

found brain structural and functional dissimilarities in musically related domains, 

including the auditory cortex (Pantev et al., 1998; Schneider et al., 2002; 

Bermudez and Zatorre, 2005), the sensorimotor cortex (Hund-Georgiadis and 

Von Cramon, 1999; Gaser and Schlaug, 2003) and multimodal integration areas 

(Gaser and Schlaug, 2003; Bangert and Schlaug, 2006; Sluming et al., 2007; Li 

et al., 2011). Studies also found that musicians performed better than non-

musicians on auditory processing (Chartrand and Belin, 2006; Špajdel et al., 

2007; Strait et al., 2010) and fine motor abilities (Amunts et al., 1997; Hughes 

and Franz, 2007; Spilka et al., 2010). 
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The effects on musical related domains (near transfer) are relatively 

common. Posner et al. (2008) proposed that art training may influence other 

cognitive processes and bring about far transfer effects through the underlying 

mechanism of attention. Moreover, studies conducted by Rueda et al. (2005) 

showed that attention training can lead to generalized improvement on other 

untrained domains. Along with the observations on music related domains, 

studies also revealed that musicians have greater abilities as compared to non-

musicians on more distant domains, such as visual-spatial (Brochard et al., 2004; 

Sluming et al., 2007) and verbal working memory (Chan et al., 1998; Brandler 

and Rammsayer, 2003; Franklin et al., 2008). In addition, several experimental 

studies conducted on pre-school children and primary school children had 

demonstrated the effect of music training on spatial (Bilhartz et al., 1999), verbal 

(Ho et al., 2003), mathematical performances (Graziano et al., 1999), as well as 

general IQ (Schellenberg, 2004).  Importantly, not only does music training have 

effects on cognitive functioning, people may believe that it does. Thus, we may 

be able to show that expectations are roughly the same for music and meditation 

trainings for enhancing BCI performance. Then meditation rather than music 

training leading to superior BCI performance would be particularly strong 

evidence for the claim that the effect of meditation training on BCI performance 

involves more than an expectancy effect. 
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CHAPTER 3 

 

METHODOLOGY: THE PRESENT BCI SYSTEM 

 

 

3.1 Introduction 

The design and the operating principles of the present BCI system are presented 

in this chapter. The system uses spontaneous EEG signals produced during 

motor imagery of the right hand, the left hand or the feet movement as input. 

Output of the system can be used to control a motorized wheelchair, a prosthetic 

hand, and other devices. To investigate the effectiveness of the mindfulness 

meditation intervention, a BCI test was developed. The test examines the BCI 

control, also defined as “BCI performance” of an individual through a sequence 

of selection tasks.  

3.2 The designs of the present BCI system 

The components of the present BCI system are illustrated in Figure 3.1. The 

system consists of a data acquisition unit and a laptop computer as the processing 

unit. EEG signals associated with motor imagery are captured by electrodes as 

the input signals to the BCI. The analog input signals are amplified in a bipolar 

amplifier, digitized by a 16-bit analog-to-digital converter at the sampling rate 

of 256 Hz for each channel. Next, the digital data are sent to the computer batch-

by-batch via a RS-232 interface or a Bluetooth communication module. The 

system supports 4 bipolar channels, that are 2 EEG channels, 1 electrooculogram 

(EOG) channel, and 1 electromyogram (EMG) channel. 
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Figure 3.1 The components of the present BCI system. 

 

The computer processes the digital data acquired by using a program 

written in visual C++ MFC language. First, the EEG data are checked for 

artifacts (for the training phase only, not applicable to the test and application 

phase) and filtered through a 5 - 40 Hz elliptic band pass filter to improve signal-

to-noise ratio. Next, the coefficients of autoregressive (AR) modelling that 

represent the properties of the signals are estimated using Burg’s method for 

every 1 second data with no overlap (Yong, 2005). The mathematical equation 

of AR process is shown by Equation 3.1. 

                

 

(3.1) 

 

where y[n] is the current output; w[n] is the white noise with mean zero, 2 is the 

variance;  ak is the AR coefficients; and p is the AR model order. 
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The Burg’s method minimizes the predicted errors and estimates the 

reflection coefficients directly with a recursive algorithm. For each recursion 

step, a single reflection coefficient is estimated. The reflection coefficients 

estimated are then applied in Levinson-Durbin algorithm to estimate the AR 

coefficients.  

Linear discriminant analysis (LDA) is used as the classifier. The LDA 

output is used to provide feedback to the users and to generate control signals 

for output devices. 

3.3 Offline EEG Experiment 

The EEG signals during imagery of motor tasks are most strongly observed at 

the sensorimotor cortex region. However, the optimum locations of the EEG 

electrode that provide the most distinguishable EEG patterns from two different 

types of motor imagery task are subject-specific. Hence, a prior EEG scan with 

offline analysis was conducted to identify the optimum locations of the EEG 

electrodes and the best combination of the mental tasks for the each of the BCI 

users. 

(a) Procedures 

A commercial EEG system, the Nicolet 64-channel EEG acquisition system was 

used in the experiment. Nine electrodes were placed over the sensorimotor 

cortex area, as shown in Figure 3.2. All electrodes are referenced to an electrode 

placed on the forehead. These 9 common-referenced electrodes forms 9 bipolar 
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EEG channels as described in Appendix A. Non-EEG signals such as EOG and 

EMG were recorded along with the EEG signals to detect artifacts.  

 
 

Figure 3.2 Montage used in the offline experiment. 

 

 

The experiment recorded the EEG signals produced from 3 types of 

mental tasks: imagine left hand movement (LEFT), imagine right hand 

movement (RIGHT) and imagine both feet movement (FOOT). The subjects 

performed repetitive trials of 2 mental tasks (LEFT and RIGHT, LEFT and 

FOOT, or RIGHT and FOOT) in every session by following the commands 

displayed on the computer screen. Examples of the graphical user interface (GUI) 

for the experiment are shown in Figure 3.3. The order of the mental tasks in each 

session was randomized by the computer to avoid adaptation.  

The experiment consisted of 6 sessions. Each session consisted of 40 

trials (20 trials for each mental task) and lasted for about 10 minutes. Each trial 

lasted for 8 seconds. A trial started off with the command of READY LEFT, 

READY RIGHT, or READY FOOT for 3 seconds. This command allows the 

subject to get ready for the particular mental task and prepare to imagine. It also 

helps to prevent the subject from performing the wrong task. The command of 

2.5 cm 

2.5 cm 
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LEFT, RIGHT, or FOOT followed and continued for 5 seconds. During this 

duration, subjects imagined the motor movement repetitively. They were 

advised to engage in kinaesthetic imagery in addition to visual imagery. After 5 

seconds, the command of REST was displayed. The resting interval between two 

consecutive imagery trials varied randomly between 5 to 10 seconds to avoid 

adaptation. The paradigm for a trial is shown in Figure 3.4.  

 

(a) 

 

 

(b) 

 
 

(c) 

 

 

 
 

 

Figure 3.3 Examples of GUI in the offline EEG experiment: commands of 

READY LEFT, LEFT, and REST are displayed in (a), (b), and (c) respectively. 

 

 

 

 

Figure 3.4 The paradigm of a trial. 

 



 

19 

(b) Offline analysis 

 

The EEG signals recorded from the experiment were amplified in a bipolar 

amplifier and processed offline. The signal processing included artifact rejection, 

filtering, AR modelling, and LDA classification.  

Analysis was carried out on each of the possible combinations of mental 

tasks and bipolar EEG channels. Three combinations of mental tasks were 

formed from the experiment, i.e., LEFT and RIGHT, LEFT and FOOT, and 

RIGHT and FOOT. Also, from the 9 bipolar EEG channels described in 

Appendix A, 36 possible bipolar EEG channel combinations (as shown in 

Appendix B) were derived for every mental task combination  (Yong, 2005).  

The average accuracy of the LDA 10 x 10 fold cross validation for each 

combination was calculated for each subject. The combination that gave the 

highest averaged accuracy was selected to be used in the subsequent online BCI 

experiment. 

3.4 Online BCI experiment 

The online BCI experiment involved repetitive trials of 2 types of mental tasks. 

It consists of a training phase and an application phase. The purpose of the 

training phase is to set-up the classifier. Artifact rejection algorithm was applied. 

Therefore only non-contaminated EEG trials were recorded for processing and 

to set-up the LDA classifier.  
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In the application phase, the classifier set up from the training phase was 

used to classify the ongoing EEG signals. Subjects could decide when to activate 

the desired control device by selecting the options from the selection menu 

displayed at the GUI. Feedback was provided to the subjects every second. 

(a) Training phase 

The experimental paradigm for the online training phase is similar to the one 

used in the offline EEG scanning except that fewer EEG channels were used and 

only 2 types of mental tasks were performed by the subjects. The combination 

of the EEG channels and mental tasks were selected based on the results of data 

analysis from the prior offline experiment (explained in Section 3.2 (b)).  The 

training phase consisted of 3 sessions. Each session recorded data from 40 non-

contaminated EEG trials (20 trials for each mental task) for processing. The 

duration of one session was about 10 minutes. It could be longer if the recorded 

data are contaminated with artifacts. The resting period between the 2 

consecutive sessions was 5 minutes or longer if the user requested. The paradigm 

for a single trial is shown in Figure 3.4 (Section 3.2 (a)). Similar to the offline 

experiment, the duration for one EEG trial is 8 seconds in which 3 seconds are 

for ready and 5 seconds for actual motor imagery.  
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(a) 

 

 

 

(b) 

 

 
 

(c) 

 

 

 

(d)  

 

 
 

 

Figure 3.5 Examples of GUI in the BCI training phase: commands of READY FOOT, READY RIGHT, FOOT, and RIGHT are displayed in (a), 

(b), (c), and (d) respectively. For combination of mental tasks RIGHT and FOOT, cursor moving towards the left during FOOT (as shown in (c)) 

and towards right during RIGHT (as shown in (d)).

  2
1
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Figure 3.5 shows the examples of GUI used in the training phase. A 

horizontal cursor slider was presented to the user during the training phase. A 

cursor that was originally located at the center of the slider would automatically 

move towards the left or the right, a step every second for continuously 5 seconds 

according to the command given by the computer. The cursor would reach the 

end of the slider at the 5th second and it would move back to the center position 

when the command REST started. The direction of motion of the cursor that 

corresponds to different commands when different mental task combinations are 

used is described in Table 3.1. 

Table 3.1 Direction of cursor movement corresponds to different commands 

for different mental task combinations. 

 

Combination of  

mental tasks 
Command 

Direction of cursor 

movement 

LEFT and RIGHT 
LEFT 

RIGHT 
Left 

Right 

LEFT and FOOT 
LEFT 
FOOT 

Left 
Right 

RIGHT and FOOT 
RIGHT 
FOOT 

Right 
Left 

 

 

Artifact rejection algorithm using threshold method was applied during 

the training phase. Whenever artifacts were detected by the system from the non-

EEG channels (EOG and EMG), the text of “BLINK” (indicating that the 

amplitude of the EOG was over the threshold) or “ARTIFACTS” (indicating that 

the amplitude of the EMG of chin was over the threshold) was displayed on the 

screen. At the completion of the experiment, all artifact-free EEG trials recorded 

were processed immediately by the computer and a classifier based on LDA 

weight vector was set up. 
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Next, the subject was required to rest for 2 minutes. The LDA classifier 

was used to classify the resting EEG samples, which were different from the two 

classes of EEG trials used to set up the LDA. If the number of samples classified 

as mental task 1 in the 2 minutes was more than the other class, the LDA was 

considered bias to mental task 1. The mental task used in the application phase 

to make a selection during selection time (IM1) is dependent on the LDA bias 

class as shown in Table 3.2. In the case if no bias class is identified, either one 

of the mental tasks can be used as IM1. 

 

Table 3.2 Mental tasks to be used in the application phase. 

 

Bias Class 

Mental task to be used 

during selection time 

(IM1) 

Mental task to be used 

during non-selection time 

(IM2) 

Mental task 1 Mental task 2 Mental task 1 

Mental task 2 Mental task 1 Mental task 2 

None 
Either one of mental task 

1 and mental task 2 
The alternative mental task 

 

 

 

(b) Application phase 

In the application phase, the system processed and classified the on-going EEG 

signals real-time. No artifact rejection algorithm was applied. The GUI as shown 

in Figure 3.5 was used but with an additional selection menu. Subjects could 

decide when to activate the desired control device by selecting the options from 

the selection menu. Feedback was presented to the subject in the form of cursor 

movement on the slider at every second. The step size of the moving cursor 

varied from ¼ to 1 step per second dependent on the magnitude of the LDA 

classification output. The cursor would not move if the output was ambiguous. 
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At every 5 second, the cursor would move back to the center position of the 

slider. The detailed LDA classification rules and algorithm of the present BCI 

system were explained in Yong (2005). Feedback was also presented in the form 

of text on the top of the selection box to indicate the classification result. 

3.5 Applications of the present BCI system 

Feasibility of the present BCI system was demonstrated by interfacing the 

system with external devices. The system had been used to operate a prosthetic 

hand that could produce 4 types of hand  movements (grasp, tripod, key pinch, 

and pulp-to-pulp pinch) and a 4-LED setting that represents 4 different remote 

devices (Goh et al., 2005; Yong, 2005).  

 

 
 

 

Figure 3.6 The BCI-wheelchair in an indoor environment. 

 

The system was also used to interface with an intelligent distributed-

controlled wheelchair in an indoor environment, as presented in Figure 3.6 (Tan 

et al., 2008; Ng, 2011). For this application, the selection menu provided the 

users with 4 options of selection that represent 4 different locations in an indoor 
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environment. Subjects used motor imagery to operate a binary switch in the BCI 

system (to select one of the predefined locations). The result of the selection was 

transmitted to the distributed controller of the motorized wheelchair. The 

wheelchair that was equipped with various kinds of sensors and a camera then 

self-navigated itself, past obstacles to reach the desired destination. Along the 

way to the destination, the subject did not have to exert any control over the 

movement of the wheelchair. They could free their mind and rest until the next 

selection. Seven healthy volunteers successfully completed the navigation test 

with varying completion times. 

3.6 The BCI test 

A BCI test was developed to measure how well the users could control the BCI 

continuously over a period of time. Figure 3.7 shows a GUI that was used in the 

BCI test. GUI-1 (Figure 3.7(a)) was designed for the selection of 4 options – “A”, 

“B”, “C”, “D”. The 4 selection options can be customized to represent any 4 

types of selections, e.g., hand movements of a prosthetic hand (Goh et al., 2005) 

or different locations for a wheelchair (Tan et al., 2008). 

 

The options “A”, “B”, “C” and “D” scroll from left to right. To select a 

particular option, the subject waits for the desired option to scroll into the grey 

selection box. By imagining the appropriate mental task, the subject moves the 

cursor to the right (or left depending on the mental task) of the cursor bar. The 

cursor has to be maintained to the right (or left) during 5 consecutive seconds 

and repeated a second time for another 5 seconds to confirm and to activate the 

selection of the desired option. If the subject failed to select the desired option 
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in the grey selection box, he will have to wait for 15 seconds for the option to 

return to the selection box after it has scrolled through the next cycle. During the 

waiting period, no selection should be made.  

In GUI-2 (Figure 3.7(b)), the text “RESET” is displayed at the selection 

box. GUI-2 was designed for the subject to ‘reset’ the menu each time after an 

option in GUI-1 is activated. Once “RESET” is activated, GUI-1 is displayed 

again to the subject for making the next selection. 

(a)

 

(b)                        

              
 

 

Figure 3.7 GUI used in the BCI test: (a) GUI-1 and (b) GUI-2. 
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For the purposes of the BCI test, a randomized sequence of selections 

was provided. Participants were required to make a selection according to the 

instruction given at the top left corner of the screen. An example of a randomized 

sequence of selections is as follows: 

Select A  Reset  Select D  Reset  Select C  Reset  Select B  Rest for 30 

seconds  Reset  Select C  Reset  Select A  Reset  Select B  Reset  

Select D  Rest for 30 seconds  Reset  Select B  Reset  Select C  Reset  

Select D  Reset  Select A  Rest for 30 seconds  Reset 
 

 

 

The process flow of the test sequence is demonstrated in Figure 3.8. The 

operation principle for different conditions in the test sequence is illustrated in 

Figure 3.9. The optimum time to complete a test sequence of selections is 7 

minutes.  

  



 

 

28 

 

 
 

 

Figure 3.8 The process flow of an example of BCI test sequences. 
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Condition 1: 

 

Condition 2: 

   

 

Figure 3.9 The operating principles of different conditions in the BCI test. 
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Condition 3: 

 
 

 

Figure 3.9 The operating principles of different conditions in the BCI test. 

(continued) 

 

 

Table 3.3 shows the combinations of instruction given and the text 

displayed at the selection box in the GUI that describe the conditions for 

selection time and non-selection time. Participants should perform IM1 during 

the selection time and perform IM2 during the non-selection time.  
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Table 3.3 Conditions for selection time and non-selection time in the BCI test. 

GUI Instruction 
Text displayed in 

the selection box 

Selection 

Time 

Non-

selection 

time 

GUI-1 

Select A 
A   

B / C / D   
 

  

Select B 
B   

A / C / D   
 

  

Select C 
C   

A / B / D   
 

  

Select D 
D   

A / B / C   
 

  

GUI-2 
RESET RESET 

RESET 
  

Rest for 30 seconds   
 

 

Table 3.4 Confusion matrix formed from different classification conditions in 

the BCI test. 

 

 Selection time Non-selection time 

Correct response True positive (TP) True negative (TN) 

Incorrect response False negative (FN) False positive (FP) 

 

 

 

The four types of classification from the BCI test are True Positive (TP), 

False Negative (FN), True Negative (TN), and False Positive (FP) making a 

confusion matrix as shown in Table 3.4. The BCI performance is measured by 

the accuracy (Wolpaw and Wolpaw, 2012) which is defined  as follow: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

 

(3.2) 
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CHAPTER 4 

 

METHODOLOGY: THE RANDOMIZED CONTROLLED TRIAL 

STUDY 

 

 

4.1 Introduction 

A survey study was conducted prior to the main study. The purpose of the survey 

is to compare the people’s expectations on mindfulness meditation and music 

interventions. More specifically, it was to know whether both interventions 

shared the same expectations. Then, the main study was conducted to investigate 

and compare the effect of the mindfulness meditation and music trainings on the 

BCI users. Data collected from both studies were analyzed using statistical 

methods. 

4.2 Survey study 

(a) Participants 

A questionnaire norming study was conducted on 40 undergraduates who were 

randomly recruited from a Malaysian university to measure how expectations 

for mindfulness meditation and music training would affect BCI performance. 

All participants were engineering students between 18 and 22 years old. They 

were Chinese males and had never taken part in any formal meditation or music 

training. They were informed that no incentives of any kind would be given for 

their participation in the study.   
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(b) Design and procedure 

Participants were asked to read the paragraphs that describe the scenarios of a) a 

12-week mindfulness meditation training and b) a 12-week training on learning 

to play classical guitar. The order of both scenarios was counterbalanced across 

participants. In each scenario, the BCI test was explained to the participants. 

Participants then indicated whether they expect the training would improve, 

degrade, or cause no change to BCI performance. Participants also rated on a 1 

to 10 scale to indicate the strength of their expectation (e.g., How strongly did 

they believe that the meditation training would make them improve on the BCI 

test? They were to give an answer on a 1 to 10 scale, where 1 indicated just 

guessing and 10 indicated certainty). A sample of the questionnaire is shown in 

Table 4.1. 

Table 4.1 A sample of questionnaire in the survey study. 

 

Instructions: Please imagine the following scenarios and indicate your answer 

to the following questions by rating on a 1 to 10 scale. 

Scenario 1  

Imagine a group of people attend a meditation training program for 12 weeks, 

attending a one hour session each week. They are taught some formal 

meditation skills, such as sitting, walking and lying down meditation by a 

highly qualified meditation instructor.   
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Table 4.1 A sample of questionnaire in the survey study. (continued) 

 

 

Questions: 

 

These days scientists can pick up brain waves and use them to control devices. 

By asking a person to imagine one thing to move a device to the left and 

another thing to move the device to the right, people can by "thought power" 

move the device because the scientist can distinguish the different brain 

waves. But a person must concentrate hard to be able to do this; if they are 

distracted they cause either no movement or the wrong movement. 

(a) What do you expect the meditation training would make them on this 

task? [ improve /  degrade / cause no change] 

 

(b) How strongly do you believe that the meditation training would make 

them (improve / degrade / cause no change) on this task?  

Give your answer on a 1 to 10 scale, where 1 means you are just 

guessing and 10 means you are certain that there will be some 

improvements. 
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4.3 BCI Study 

The study started with a recruitment drive around the campus. Then baseline 

assessment, randomization of participants, post-intervention assessment, and 

statistical analyses on the measures followed. Details of each process are 

explained in the following sections. 

(a) Participants 

Participants for the main BCI study were independent from the participants for 

the survey study although both studies were conducted in the same campus. 

Participants were recruited through in campus advertisements and 

announcements. A total of 76 participants were recruited into the study.  

Prior to the enrolment of the study, the eligibility of the interested 

participants was screened through the use of a demographic form (showed in 

Appendix C) and a phone interview. The eligible participants were those who 

had no previous experience in a formal practice related to mindfulness 

meditation and had no more music training than the obligatory musical education 

at primary school. They also did not have any existing or prior history of 

neurological or psychological disorders and brain injury or brain-related trauma.  

All the participants recruited were given detailed explanations on the 

study procedures and were required to complete a written informed consent form 

(Appendix D) before the beginning of the baseline assessment. Participants were 

randomly assigned to study groups according to a computer-generated random 

number list. Randomization was conducted after they completed the baseline 
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assessment in order to avoid any of the participants dropping out from the study 

before the assessment causing unequal sample size between groups. The 

experimenter was aware of the group allocation of the participants. 

(b) Design and procedure 

The programs of the study were scheduled according to the university semester 

timetable. The baseline assessment was conducted before the beginning of the 

semester. Participants attended an EEG scanning (explained in Section 3.2) 

followed by a BCI test on another day. Each session was about 2 hours. 

Participants were allowed to choose the timeslots from a list given based on their 

available time. Participants were told to make certain preparations for each test 

session, for instance having enough sleep (not less than 5 hours), not consuming 

caffeine or alcoholic beverages, and not performing active exercise for 12 hours 

prior to the test session. Participants were paid 25 Malaysian Ringgit (equivalent 

to approximately 8 US Dollars) for completion of each test session. 

Following baseline assessment, participants were randomly assigned into 

3 study groups: a meditation group, a music group, and a control group. 

Intervention programs were started at the beginning of the new semester and 

ended 12 weeks later. The intervention groups must fulfill 80% attendance to the 

programs. The instructors for mindfulness meditation and music trainings were 

blind to the content of the assessment. 

Participants in the meditation group attended a mindfulness meditation 

intervention training that was delivered by a mindfulness meditation instructor 
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who had twenty years of experience of teaching meditation. The training 

sessions were held once a week for 12 weeks. The duration for each training 

session is 1 hour. Each session was conducted with groups of 6 to 10 participants. 

The participants were taught the concepts and skills of how to practice 

mindfulness meditation without any spiritual element and religious emphasis. 

They were also taught on how to be always mindful in their daily activities. Each 

training session included a 20-minute sitting meditation. Participants were 

guided by the instructor to sit quietly and focus on the flow of their natural breath, 

with their eyes closed. The participants started by learning to feel the physical 

sensation of the air flowing in and out from the body. Then they were guided to 

become aware of and have non-reactive observation on their thoughts, senses, 

and feelings as they arise. They were told to not look for any thought or remain 

alert waiting for any thought to come but to notice the content of each thought 

when it arises, accept it, and allow it to go. They were also told to gently focus 

back on the breath when they noticed that their mind had wandered. As the 

intervention progressed, the participants were guided with more instructions and 

details about mindfulness practice. For instance, they were taught to calm down 

the mind by remaining focused on their breath and to perform a “body scan” – 

bringing awareness to the physical sensations throughout the whole body 

(experience each individual parts of the body in more detail, e.g., elbow, lower 

arm, wrist, palm, fingers, etc.) while nonjudgementally allowing the random 

discursive thoughts to simply arrive and go. Sometimes, the participants had 

additional walking or lying down meditation exercises. Before and after each 

practice session, participants were given time for discussions. They were 

encouraged to share their experience and to ask questions about difficulties and 
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doubts during meditating. In addition, participants were assigned to perform 20 

minutes home practice per day of mindfulness meditation. They were also 

encouraged to be aware of the body and mind processes throughout their daily 

activities.  

Participants in the music group learned to play a classical guitar under 

the guidance of a professional instructor from a local music center. The training 

sessions were held once a week for 12 weeks. Each training session was 

conducted in groups consisted of 5 to 7 participants and continued for 1 hour. 

The participants learned various basic techniques of playing a classical guitar, 

such as understanding the notes, positioning the fingers, pressing strings, tuning, 

plucking, strumming, and playing the chords and melody. The lesson was 

conducted based on the syllabus designed by Yamaha Music Foundation 

(Foundation, 2007). Participants were assigned to perform 20 minutes home 

practice each day.  

Participants in the control group were told to not participate in any 

activities that relate to the meditation training or learning a musical instrument 

during the intervention period.  

Each participant was required to submit a log book. Participants from the 

meditation group and the music group were required to record and described 

their daily practices. The participants from the control group have to record and 

confirm every week that they were not involved in activities that were related to 

the intervention program. 
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4.4 Statistical analyses 

Data obtained from both the survey study and the BCI study were analyzed 

statistically using conventional hypothesis testing approach and the Bayesian 

approach.  

(a) Conventional hypothesis testing approach 

The conventional hypothesis testing analyses were carried out using Statistical 

Package for the Social Sciences (SPSS) program. A significance level of p = .05 

was used. For any non-significant finding, confidence interval was calculated to 

access the sensitivity of the null result.  

For the survey study, descriptive statistics for the measures of 

expectation on the two training programmes were generated. The expectations 

on two training programmes were compared by their odds ratio and using a chi-

squared test of independence for categorical variables and an independence-

samples t test for continuous variables. 

For the BCI study, descriptive statistics for the BCI performance of 

completers from the three treatment conditions were generated. The between-

group differences before intervention were assessed with a one-way analysis of 

variance (ANOVA) using the intervention condition as independent variable and 

the baseline BCI score as outcome variable. Then the main effect of between-

group differences after intervention was evaluated with a one-way analysis of 

covariance (ANCOVA) using the intervention condition as independent variable, 

the post-test BCI score as outcome variable, and the baseline BCI score as 
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covariate. The post hoc tests with sequential Bonferroni correction procedure 

(Hochberg, 1988) is followed if a significant main effect is found. 

(b) Bayesian approach 

In the Bayesian analyses, the Bayes factor was calculated using a Bayes factor 

calculator programme developed with Microsoft Visual C# language. A brief 

description of the Bayes factor is given below. 

In an experiment that consists of 2 particular hypotheses, with 𝐻1the 

experimental hypothesis and 𝐻0 the null, the Bayes factor, B10 is defined as 

𝐵10 =
𝑝(𝐷|𝐻1)

𝑝(𝐷|𝐻0)
 

 

 

 

(4.1) 

 

where 𝑝(𝐷|𝐻1) is the probability of obtaining the data, given the experimental 

hypothesis 𝐻1 and 𝑝(𝐷|𝐻0) is the probability of obtaining the data, given the 

null hypothesis 𝐻0. A derivation of the Bayes factor is shown in Appendix E. 

The marginal likelihood, 𝑝(𝐷|𝐻𝑘)(𝑘 = 0, 1)  can be obtained by 

integrating over the parameter space and computed using numerical methods. 

𝑝(𝐷|𝐻𝑘) = ∫ 𝑝(𝐷|𝜃𝑘, 𝐻𝑘)𝜋(𝜃𝑘, 𝐻𝑘)𝑑𝜃𝑘 , k = 0, 1 

 

 

(4.2) 

 

where 𝜃𝑘 is the parameter under hypothesis 𝐻𝑘; 𝜋(𝜃𝑘|𝐻𝑘) is the prior density of 

𝐻𝑘 ; 𝑝(𝐷|𝜃𝑘 , 𝐻𝑘) is the probability density of 𝐷 given the value of 𝜃𝑘, which is 

also called the likelihood function of 𝜃𝑘.  
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Therefore 

𝐵10 =
∫ 𝑝(𝐷|𝜃1, 𝐻1)

𝜃1∈1
𝜋(𝜃1|𝐻1)𝑑𝜃1

∫ 𝑝(𝐷|𝜃0, 𝐻0)
𝜃0∈0

𝜋(𝜃0|𝐻0)𝑑𝜃0

 

 

(4.3) 

 

A simple Bayes factor calculator programme was developed based on the 

assumptions (Dienes, 2008) as described in Table 4.2. The program codes of the 

calculator are displayed in Appendix F. The calculator gives a B value after the 

user enters the sample mean difference and the associated standard error (SE) 

and defines the characteristics of the prior distribution of the experimental 

hypothesis. The output computed from the calculator programme was confirmed 

with the values obtained from Dienes’s online Bayes factor calculator (Dienes, 

2008). 

Bayes factors suggest three different conclusions: strong evidence for the 

alternative; strong evidence for the null; and insensitive result. More specifically, 

Jeffreys (1961) proposed that Bayes factor larger than 3 or less than 1/3 indicates 

strong evidence; conversely, anything between 1/3 and 3 represents weak or 

“anecdotal” evidence (also discussed in (Dienes, 2014). A rule of thumb for 

interpreting the confidence level of Bayes factor is depicted in Figure 4.1.  

 

 

Figure 4.1 A rule of thumb for interpreting the confidence level of Bayes 

factor. 
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Table 4.2 Assumptions used in developing the Bayes factor calculator. 

 

 

1. It is assumed that the data  𝐷 is normally distributed around the population 

mean 𝑥 with a known variance 𝜎2, 

𝐷 ~ N (𝑥 , 𝜎) 

𝑝(𝐷|𝜃𝑘 , 𝐻𝑘) =
1

√2𝜋𝜎
𝑒

−(𝑥−𝜃𝑘)
2

2𝜎2  

 

2. For null hypothesis 𝐻0 :  

𝜃0 = 0, 𝜋(𝜃0|𝐻0) = 1 

𝑝(𝐷|𝐻0) = 𝑝(𝐷|𝜃0 = 0) =
1

√2𝜋𝜎
𝑒

−
𝑥2

2𝜎2 

 

3. For experimental hypothesis 𝐻1 : 

(i) If we approximate the plot of plausibility against different possible 

population mean differences 𝜃1 by a uniform distribution from a lower limit 

𝜃𝐿 and upper limit 𝜃𝑈,  

𝜃1 ~ uniform (𝜃𝐿 , 𝜃𝑈) 

𝜋(𝜃1|𝐻1) =
1

𝜃𝑈−𝜃𝐿
 , 𝜃𝐿 ≤ 𝜃1 ≤ 𝜃𝑈 

𝑝(𝐷|𝐻1) ≈ ∑ [
1

√2𝜋𝜎
𝑒

−(𝑥−[𝜃𝐿+𝑖∆])
2

2𝜎2 ×
1

𝜃𝑈−𝜃𝐿
× ∆]𝑚

𝑖=0 , where ∆ =  
𝜃𝑈−𝜃𝐿

𝑚
 and m is 

the number of step. 
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Table 4.2 Assumptions used in developing the Bayes factor calculator. 

(continued) 

 

 

(ii) If we approximate the plot of plausibility against different possible 

population mean differences 𝜃1  by a normal distribution with mean 𝜇  and 

standard deviation 𝜎1, 

𝜃1 ~ 𝑁(𝜇 , 𝜎1) 

𝜋(𝜃1|𝐻1) =
1

√2𝜋𝜎1
𝑒

−
(𝜃1−𝜇)2

2𝜎1
2

, −∞ < 𝜃1 < ∞ 

𝑝(𝐷|𝐻1) ≈ ∑ [
1

√2𝜋𝜎
𝑒

−(𝑥−[𝜃𝐿+𝑖∆])
2

2𝜎2 ×
1

√2𝜋𝜎1
𝑒

−([𝜃𝐿+𝑖∆]−𝜇)
2

2𝜎1
2 × ∆]𝑚

𝑖=0 , 

∆ =  
10𝜎1

𝑚
 , 𝜃𝐿 = 𝜇 − 5𝜎1 

 

(iii) If we approximate the plot of plausibility against different possible 

population mean differences 𝜃1 by a half normal distribution with mean 𝜇 and 

standard deviation 𝜎1 (we assume the predicted difference is in the positive 

direction), 

𝜃1 ~ 
1

2
𝑁(𝜇 , 𝜎1) 

𝜋(𝜃1|𝐻1) =
2

√2𝜋𝜎1
𝑒

−
(𝜃1−𝜇)2

2𝜎1
2

 , 0 ≤ 𝜃1 < ∞ 

𝑝(𝐷|𝐻1) ≈ 2 ∑ [
1

√2𝜋𝜎
𝑒

−(𝑥−[𝜃𝐿+𝑖∆])
2

2𝜎2 ×
1

√2𝜋𝜎1
𝑒

−([𝜃𝐿+𝑖∆]−𝜇)
2

2𝜎1
2 × ∆]𝑚

𝑖=0 ,  

∆ =  
10𝜎1

𝑚
 , 𝜃𝐿 = 𝜇 
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CHAPTER 5 

 

RESULTS 

 

 

5.1 Analyses on EEG spectrum 

An example of the EEG spectrum of one of the participants is presented in Figure 

5.1. Graphs (a) and (b) are for baseline and (c) and (d) are for post-test. The 

power spectral density of the EEG was estimated via autoregressive (AR) 

analysis using Burg’s method. The EEG signals of the participant were acquired 

from channel ac_C3 and channel ac_CZ during the trials of motor imagery of 

feet movement (FOOT) and right hand movement (RIGHT) in the BCI test. Note 

that C3 and CZ are the active representation areas for motor imagery of right 

hand and foot respectively. The mental tasks used are FOOT and RIGHT. As 

shown in the graph, the participant achieved highest power spectral density 

within frequency domain of mu rhythm (peak at 12 Hz) at channel ac_CZ during 

imaginary FOOT for both baseline and post-test. 
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(a) 
 

 
 

 

(b) 
 

 
 

 

Figure 5.1 Mean AR spectra of a participant in the BCI test at: (a) channel 

ac_C3 during baseline, (b) channel ac_CZ during baseline, (c) channel ac_C3 

during post-test, and (d) channel ac_CZ during post-test. The power spectral 

density was normalized to the highest peak of the mean spectrum in the 

session. 

 

  

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Normalized AR spectra for FOOT and RIGHT at channel ac
-
C3

Frequency (Hz)

P
S

D

 

 

FOOT

RIGHT

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Normalized AR spectra for FOOT and RIGHT at channel ac
-
CZ

Frequency (Hz)

P
S

D

 

 

FOOT

RIGHT



 

 

46 

 

(c) 
 

 
 

 

(d) 
 

 

Note: 

Mental task used: FOOT and RIGHT 

Mental strategy used: FOOT - Imagine the feeling of moving the leg upwards 

and downwards repetitively (kinaesthetic imagery), RIGHT - Imagine the 

feeling to move the right hand when the hand was not allowed to move 

(kinaesthetic imagery) 

 

Figure 5.1 Mean AR spectra of a participant in the BCI test at: (a) channel 

ac_C3 during baseline, (b) channel ac_CZ during baseline, (c) channel ac_C3 

during post-test, and (d) channel ac_CZ during post-test. The power spectral 

density was normalized to the highest peak of the mean spectrum in the 

session. (continued) 
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Figure 5.2 shows the R2 spectral analysis at channel ac_C3 and ac_CZ 

for the same participant in both baseline and post-test. The R2 spectral analysis 

provides us the general view on the EEG discriminating features in the frequency 

domain at different EEG channels for discrimination of two mental tasks. A 

higher value of the R2 indicates a better discrimination of the two mental tasks 

and a better EEG control in the BCI test. The R2 spectra of the participant 

indicated that channel ac_CZ provides better discrimination for FOOT and 

RIGHT when compared with channel ac_C3, in both sessions. The participant 

scored an accuracy of 54% in the baseline BCI test and 82% after 12-week 

meditation training. This may be explained by the R2 distribution between the 

frequency range of 18 Hz to 23 Hz for post-test that is significantly higher than 

those at the baseline and, as a result, provides a better classification accuracy at 

the post-test. 

The above description is a demonstration of an analysis of the EEG data 

of a particular participant. The recorded EEG signals are very subject sensitive 

and can depend on many other factors. A full analysis of the EEG data of all the 

participants will be a subject for a future study. The strategy in the present study 

is to use a randomized controlled trial on a large enough sample to arrive at a 

conclusion.   
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(a) 

 
 

(b)  

  

 

Figure 5.2 The R2 spectra of channel ac_C3 and channel ac_CZ for 

discrimination of imaginary feet movement (FOOT) and imaginary right hand 

movement (RIGHT) at (a) baseline and (b) post-test. 
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5.2 Results of the survey study 

Forty participants completed the questionnaire survey. Table 5.1 summaries the 

data of the survey study. Results showed that the majority of participants 

expected that both meditation training and music training would improve the 

BCI performance; a minority thought they would have no effect. Specifically   

80% of the participants thought meditation would improve BCI performance 

rather than not and 78% of the participants thought music training would 

improve BCI performance rather than not. The odds ratio for the probabilities of 

expectation was calculated as follows: 

𝑂𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜 =  
𝑝(𝑚𝑒𝑑)/(1 − 𝑝(𝑚𝑒𝑑))

𝑝(𝑚𝑢𝑠)/(1 − 𝑝(𝑚𝑢𝑠))
 

(5.1) 

where p(med) is the probability that people think meditation will improve BCI 

performance, and p(mus) is the same for music training. 

If p(med) and p(mus) were the same, then the odds ratio would be 1 (i.e., 

no association between expectation and training). For the data, p(med) = .80 and 

p(mus) = .775, so odds ratio for these probabilities was ( .80/.20 * .225/ .775) = 

1.16. Results from chi-squared test of independence showed that there was no 

significant association between expectation and training, χ2(1) = .07, p = .78. The 

90% confidence interval for the odds ratio was [.47, 2.86]. The interval includes 

1, indicating no significant association between expectation of change and type 

of training even at the 10% significance level.
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Table 5.1 Mean (standard deviation) of the expectations from the norming study on 40 participants' expectations that meditation training and 

music training would affect the BCI performance. 

 

 Sample 1  Sample 2  
 n  t  P 

  n1 Mean (SD)  n2 Mean (SD)  

Expectation for meditation training:          

Improve 17 6.76 (1.72)  15 6.60 (2.06)    32   .25   .81 

No Change 3 7.00 (1.73)  4 5.75 (3.86)  } 8   .51   .63 

Degrade 0 -  1 -  - - 

           

Expectation for music training:          

Improve 15 6.93 (2.02)  16 7.00 (1.63)    31 - .10   .92 

No Change 5 5.00 (2.55)  4 5.00 (1.63)  } 9    .00 1.00 

Degrade 0 -  0 -  - - 

 

Note: Participants in Sample 1 were presented with paragraphs that described the meditation training as the first scenario and the music training 

as the second scenario. The order for the scenarios was counterbalanced on Sample 2. Odds ratio = (32*9) / (31*8) = 1.16; test of independence 

χ2(1) = .07, p = .78. 

 

 5
0
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Further, the upper limit of the interval indicates that odds ratio in favor 

of meditation over music could be at most 2.9; e.g., if the probability for 

expecting a positive change with music training was 72% it would be 88% for 

meditation training. Given this is the upper end of the confidence interval, 

similar expectations of positive change to a high degree of sensitivity have been 

established. Putting a confidence interval on an odds ratio allows one to assess 

the sensitivity of the null result; contrast simply obtaining a non-significant chi-

squared test of association. Note the confidence interval assumes independence 

of observations, whereas each respondent gave an answer for both training 

conditions. 

Table 5.2 Summary of counts showing relation between expecting change from 

meditation training and expecting change from music training. 

 

Expectation for meditation 

training: 

Expectation for music training: 

Improve Not improve 

Improve 26 6 

Not improve 5 3 

 

From the data summarized in Table 5.2, no correlation between the 

answers for music and for meditation was detected, odds ratio = (26*3)/(5*6) = 

2.60; test of independence χ2(1) = 1.29, p = .26. The 90% CI for odds ratio is 

[0.64, 10.64], indicating the assumption of independence was true within broad 

limits. 

A more sensitive demonstration of the equivalence of expectations was 

obtained by looking at the continuous strength of expectation, as shown in Figure 

5.3. There was no significant difference in the strength of expectation for 

meditation (M = 6.69, SD = 1.86) and music (M = 6.97, SD = 1.80) trainings; 
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t(61) = - .61, p = .55, 95% CI on the difference [-1.2, .6]. That is, the strength of 

expectation could only be greater for meditation than music by .6 of a scale point, 

where the scale is from 1 (guessing) to 10 (certainty). It means that the data allow 

only a tiny difference in strength of expectation between the two training 

conditions.  

 

 
 

 

Figure 5.3 Results of norming study measured the expectation on meditation 

and music trainings to BCI performance. Participants rated on a 1 to 10 scale to 

show the strength of their expectation on meditation and music trainings to 

improve BCI performance.  Bar chart shows the mean scale of people’s 

expectation on meditation and music trainings. Error bars indicate 95% CI. 

 

Another way of assessing the sensitivity of a non-significant result is with 

a Bayes factor, which compares a theory that there is an association with the null. 

For the current data with a 2 x 2 table with cell counts A, B, C, D, as presented 

in Table 5.2, the natural log of the odds ratio is normally distributed with squared 

standard error (SE) that is derived from 1/A + 1/B + 1/C +1/D. The log odds ratio 

obtained was .1495 with a SE of .547. The theory of an association was 

represented by a half normal distribution assuming a “unit information prior” for 

each of p(med) and p(mus). The standard deviation of the half-normal 

distribution was calculated by assuming one observation worth of knowledge for 
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p(med) and one for p(mus) (i.e., .5 observations in each cell); that is, the standard 

deviation was set to 2.828 (the square root of 1/0.5 + 1/0.5 + 1/0.5 + 1/0.5). The 

Bayes factor calculator gave the value of .24 (Figure 5.4), indicating strong 

evidence for the null hypothesis. 

 
 

Figure 5.4 Bayes factor calculation for the survey study. The Bayes factor 

obtained from sample mean .1495, SE = .547, in favor of the null hypothesis 

against the experimental hypothesis (represented by a half normal distribution 

with mean 0 and standard deviation 2.828 is .24. 
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5.3 Results of the main study 

Originally 32 participants were recruited into the main study. Eight participants 

dropped out of the study at different times. Twenty-four participants completed 

the study, n = 8 in each group. The completers’ age ranged between 18 and 22 

years old (M = 19.75; SD = 1.05). Means and standard deviations of the BCI 

accuracy scores across the three groups at baseline and post-test are presented in 

Table 5.3.  

One-way analysis of variance (ANOVA) test did not show a significant 

difference on the baseline BCI accuracy for the three groups, F(2,21) =  .682, p 

= .516 (see Table 5.4). 

One-way analysis of covariance (ANCOVA) using baseline BCI 

accuracy as covariate showed that the covariate was not significantly related to 

the baseline BCI scores, F(1,20) = .296, p = .59 (Table 5.5). The between-group 

effect was also not significant, F(2,20) = 1.164, p = .33.  
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Table 5.3 Mean (standard deviation) of BCI accuracy measured at baseline and after 12-week intervention for meditation, music, and control 

groups (24 completers). 

 

 n Baseline 
After 

12-week 
Score Change t p 

Meditation 8 .613 ( .082) .597 ( .052) - .016 ( .104)   .445 .670 

Music 8 .564 ( .074) .575 ( .075)   .011 ( .112) - .279 .788 

Control 8 .603 ( .108) .533 ( .114) - .070 ( .128) 1.550 .165 

 

Note: Within group comparisons using paired-samples t-test did not detect a significant effect for any of the groups, 95% CI [-.071, .104], 

t(7) = .45, p = .67; 95% CI [-.105, .083], t(7) = - .28, p = .79; and 95% CI [-.037, .177], t(7) = 1.55, p = .17 for meditation, music, and control 

groups respectively. 

 

 

Table 5.4 SPSS output of ANOVA test on baseline BCI accuracy (24 completers). 

 
 

 
 

 

ANOVAa

Baseline_accurracy

.011 2 .005 .682 .516

.167 21 .008

.178 23

Between Groups

Within Groups

Total

Sum of

Squares df Mean Square F Sig.

batch = 1a. 

 5
5
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Table 5.5 SPSS output of ANCOVA test on post-test BCI accuracy using baseline score as covariate (24 completers). 

 

 

 
 

 

 

Tests of Between-Subjects Effectsb

Dependent  Variable: Posttest_accuracy

.019a 3 .006 .872 .472 .116

.117 1 .117 15.795 .001 .441

.002 1 .002 .296 .592 .015

.017 2 .009 1.164 .332 .104

.148 20 .007

7.925 24

.167 23

Source

Corrected Model

Intercept

Baseline_accurracy

Group

Error

Total

Corrected Total

Type I II Sum

of  Squares df Mean Square F Sig.

Part ial Eta

Squared

R Squared = .116 (Adjusted R Squared = -.017)a. 

batch = 1b. 

 5
6
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A Bayesian analysis on the adjusted values of group means of post-test 

BCI accuracy (obtained from the ANCOVA analysis) was then used to access 

the sensitivity of the experiment. Given that the purpose of the study was to 

compare the effect of meditation training to the no-treatment control as well as 

the active control, the alternative hypothesis (prior) was set-up with the 

assumption that the effect of meditation compared to no-treatment control is 

larger than the effect of meditation compared to the active control. A uniform 

distribution from 0 to .063 (mean difference between the meditation and control 

is .063) was used. For a sample difference between meditation and music of .016 

with SE .044, the Bayes factor is .93 (Figure 5.5), which is close to 1, indicating 

that the test is insensitive and the result did not support either the null or 

alternative hypothesis. Therefore, to gain more sensitivity in distinguishing the 

groups, another run involving 44 participants was held the following year. 

 
 

Figure 5.5 Bayes factor calculation for the BCI study based on data from 24 

completers. The Bayes factor calculated is .93. 
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Based now on a total of 76 participants who started, the participant flow 

is shown in Figure 5.6.  The participant were randomized to either mindfulness 

meditation training, music training, or a no-treatment control group. Thirteen 

participants dropped out of the study. The reasons given for dropping out were 

problems in attending the weekly training sessions or the post-tests due to busy 

personal schedules and inability to continue to commit to the study. 

The remaining participants consisting of 23 in the mindfulness 

meditation group, 20 in the music training group, and 20 in the control group 

completed the post-test. All were Chinese undergraduates with 58 males and 5 

females (2 in the meditation training group, 1 in the music training group, and 2 

in the control group) majoring in various engineering courses. Their age ranged 

between 18 and 24 years old (M = 20.10; SD = 1.52) and self-identified as 

Buddhists (n = 56), Christian (n = 4), free thinker (n = 2) and a Chinese folk 

religion follower (n = 1). Fifty-nine were right-handed and four were left-handed.  

Means and standard deviations of the BCI accuracy scores across the 

three groups at baseline and post-test are presented in Table 5.6.  
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Figure 5.6 Study flow chart showing number of participants recruited, randomized, withdrawn, and completed the post-test. 

 5
9
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Table 5.6 Mean (standard deviation) of BCI accuracy measured at baseline and after 12-week intervention for meditation, music, and control 

groups (63 completers). 

 

 n Baseline 
After  

12-week 
Score Change t p 

Meditation 23 .580 ( .081) .640 ( .095)    .060 ( .125)       - 2.279   .033* 

Music 20 .619 ( .100) .549 ( .142) - .070 ( .200) 1.568 .133 

Control 20 .564 ( .119) .520 ( .104) - .044 ( .143) 1.361 .190 

* p < .05   

Note: The participants who underwent meditation training improved their BCI accuracy significantly, t(22) = -2.28, p < .05, r = .44 while both 

the music training and no-treatment control groups had poorer BCI accuracy at the post-test compared to their baseline scores but the effects 

were not statistically significant: t(19) = 1.57, p = .13 and t(19) = 1.36, p = .19 respectively. 

 

 

 

Table 5.7 SPSS output of ANOVA test on baseline BCI accuracy (63 completers). 

 

 

ANOVA

Baseline_accurracy

.032 2 .016 1.577 .215

.604 60 .010

.635 62

Between Groups

Within Groups

Total

Sum of

Squares df Mean Square F Sig.

 6
0
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An ANOVA was conducted on baseline BCI accuracy between the 

participants from the three groups (Table 5.7). In general, the music training 

group had a slightly higher mean value of BCI accuracy compared to the other 

two groups but the ANOVA test did not show a significant difference on the 

baseline BCI accuracy for the three groups, F(2,60) = 1.577, p = .215. 

An ANCOVA was conducted to compare the between-group effect on 

the post-test BCI accuracy, with baseline BCI scores as covariate. Results of 

ANCOVA indicated that the covariate, baseline BCI accuracy was not 

significantly related to the post-test BCI scores, F(1,59) = .29, p = .60. There 

was a significant between-group effect (Figure 5.7) after controlling for the 

effect of the covariate, F(2,59) = 6.30, p < .005. The SPSS outputs of ANCOVA 

test is displayed in Table 5.8. 

 

 
 

 

Figure 5.7 Comparisons of BCI accuracy between meditation group, music 

group, and control group at baseline and after intervention. 

* p < .05, ** p < .01.  Error Bars indicate 95% CI. 
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Table 5.8 SPSS output of ANCOVA test on post-test BCI accuracy using baseline score as covariate: (a) between group-effects (b) post-hoc 

comparisons. 

 

 

(a) 

 

  
 

 

 

  

Tests of Between-Subjects Effects

Dependent Variable: Posttest_accuracy

.172a 3 .057 4.300 .008 .179

.646 1 .646 48.355 .000 .450

.004 1 .004 .285 .595 .005

.168 2 .084 6.301 .003 .176

.788 59 .013

21.651 63

.961 62

Source

Corrected Model

Intercept

Baseline_accurracy

Group

Error

Total

Corrected Total

Type I II Sum

of  Squares df Mean Square F Sig.

Part ial Eta

Squared

R Squared = .179 (Adjusted R Squared = .138)a. 

 6
2
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Table 5.8 SPSS output of ANCOVA test on post-test BCI accuracy using baseline score as covariate: (a) between group-effects (b) post-hoc 

comparisons. (continued) 

 

 

(b) 

 

   
 

 

  

Pairwise Comparisons

Dependent  Variable: Posttest_accuracy

.088* .036 .017 .016 .159

.120* .035 .001 .049 .191

-.088* .036 .017 -.159 -.016

.032 .037 .390 -.043 .107

-.120* .035 .001 -.191 -.049

-.032 .037 .390 -.107 .043

(J) Group

Music

Control

Meditation

Control

Meditation

Music

(I) Group

Meditation

Music

Control

Mean

Dif f erence

(I-J) Std.  Error Sig.
a

Lower Bound Upper Bound

95% Conf idence Interv al for

Dif f erence
a

Based on estimated marginal means

The mean dif f erence is signif icant at the .05 lev el.*. 

Adjustment f or multiple comparisons: Least Signif icant Dif f erence (equivalent to no

adjustments).

a. a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no  
    adjustments) followed by sequential Bonferroni procedure. 

 6
3
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Post-hoc comparisons (Table 5.8(b)) showed that the participants who 

underwent the meditation training (M = .64, SD =.10) had significantly higher 

BCI accuracy scores than no-treatment controls (M = .52, SD = .10), t(59) = 3.39, 

p < .005, r = .40 and the participants who underwent music training (M = .55, 

SD = .14), t(59) = 2.45, p < .05/2, after controlling Type I error using sequential 

Bonferroni procedure, r = .30. Participants who underwent the music training 

did not perform any better than the controls, (95% CI [- .043, .107], t(59) = .87, 

p = .39), though the data are consistent with the music group being better than 

the control group by up to 10%.  

A Bayes factor calculation was conducted on the difference between 

meditation training and music training; this difference, should it exist, was 

presumed to be plausibly no larger than the difference between meditation 

training and passive control (a difference of .12). Thus to represent the 

alternative hypothesis (of a difference between meditation and music), a uniform 

distribution was used between 0 and .12. The Bayes factor for a sample 

difference between meditation and music of .09 with a SE of .037 was 11.67 

(output of calculation shown in Figure 5.8), which is greater than 3 and indicates 

strong evidence for the alternative hypothesis over the null hypothesis.  
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Figure 5.8 Bayes factor calculation for the difference between meditation 

training and music training. The Bayes factor obtained from sample mean .09, 

SE = .037, in favor of the experimental hypothesis (represented by a uniform 

distribution between 0 and .12) against the null hypothesis is 11.67. 

 

On the other hand, Bayes factor was calculated on the contrast between 

music training and control (with sample mean difference of .032 with a SE 

of .037). The alternative hypothesis predicted that the contrast, should it exist, 

would be equal to or smaller than the contrast between meditation training and 

control (which is represented by a uniform distribution between 0 and .12). The 

Bayes factor calculated is .90 (Figure 5.9), which provided very weak evidence 

for the null hypothesis over the alternative one. In other words, the contrast 

between music and control was not sensitively detected. This is also implied by 

the confidence interval (95% CI of the contrast between music and control is 
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[- .043, .107]), where both the zero value and the interesting difference value 

were contained within the interval.  

 
 

Figure 5.9 Bayes factor calculation for the difference between music training 

and control. The Bayes factor obtained from sample mean .032, SE = .037, in 

favor of the null hypothesis against the experimental hypothesis (represented 

by a uniform distribution between 0 and .12)  is .90. 
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CHAPTER 6 

 

DISCUSSION 

 

 

6.1 Discussion 

The study had demonstrated the Bayes factor calculations based on the 

experimental hypotheses represented by a half-normal distribution (in the survey 

study) and a uniform distribution (in the BCI study). It is to point out that in the 

analysis of the survey study, the prior distribution was represented by a half 

normal scaled distribution assuming a “unit information prior” for each of p(med) 

and p(mus). This assumption is arbitrary but the equivalent of one  unit  of 

information is often used as a default for the variance of Bayesian priors in the 

absence of any other relevant knowledge (see e.g. Kass and Raftery, 1995). In 

this case the prior amounts to assuming that if there was an association between 

expectation and training method, in our ignorance we are 95% sure that the odds 

are between  a vanishingly small amount above 1 (no association) up to as large 

as exp(2*2.828) = 286, i.e., p(med) about 0.95 and p(mus) about .05. The 

distribution thus reflects our ignorance about the true value of the odds, but 

allowing for a wide range, while effectively ruling out very extreme values; it 

also indicates that odds closer to 1 are more likely than larger values, consistent 

with the prior notion that music and meditation would both be plausible training 

methods. The relevance of this calculated Bayes factor needs to be taken only 

provisionally as the theory was determined not by relevant data but an arbitrary 

default (Dienes, 2008). Contrast this with Rouder et al. (2009) who argue for use 

of default priors. The relevant data for fixing an adequate theory would be those 
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indicating the relation between expectation and BCI performance, which could 

be used to determine for the BCI improvements and see what expectation 

differences would be required to account for that difference. Unfortunately we 

do not have those data because the participants in BCI study were independent 

from those who participated in the survey study even though both samples were 

recruited from the same campus and had a high degree of similarity in the 

demographic characteristics such as age, education level, ratio of genders, and 

ratio of ethnics. Nonetheless, the confidence intervals for both the categorical 

and the continuous strength of expectation ratings also demonstrated the 

equivalence of expectations for meditation and music training to a high degree 

of sensitivity.  

The results of the survey study on 40 participants found 80% of the 

participants thought meditation would improve BCI performance rather than not 

and 78% of the participants thought music training would improve BCI 

performance rather than not. Our conventional statistical and Bayesian analyses 

confirmed that both meditation and music interventions elicited clear 

expectations for improvement on the BCI task, with the strength of expectation 

being closely matched. In the first phase of the main 12-week intervention study 

on 32 participants, we found that there was no significant change in BCI 

performance for within and between group comparisons for meditation, music, 

and control groups. To test for sensitivity, we introduced a Bayesian analysis of 

the results where the Bayes factor would indicate the relative strength of 

evidence for the theory over the null. It would give a three-way distinction 

between difference, equivalence and insensitivity, and also obviated the need to 
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consider the stopping rule, i.e., for the Bayesian analysis, it is perfectly legitimate 

to top up subjects until sensitivity is reached (Dienes, 2011).  The Bayes factor 

computed from the results of the 32 participants showed that the test is 

insensitive. Hence an additional 44 participants was recruited the following year 

to bring the total number of participants to 76. Based on a total of 76 participants, 

the conventional statistical and Bayesian analysis both showed that the 

mindfulness meditation training group obtained a significantly higher BCI 

accuracy compared to both the music training and no-treatment control groups 

after the intervention. This study has demonstrated a situation where the Bayes 

factor is especially useful. Note also that the main effect of mindfulness 

meditation intervention reported is significant by the orthodox methods after 

correction for double testing, i.e., using .025 as the criterion for a p-value to 

indicate 5% significance. We have shown that expectations are roughly the same 

for music and meditation training for enhancing BCI performance. Then we also 

demonstrated that meditation rather than music training led to superior BCI 

performance providing strong evidence that the effect of meditation training on 

BCI performance involves more than an expectancy effect. 

The advantage of the meditation over the music group is one of the first 

demonstrations of the effectiveness of mindfulness meditation in metacognitive 

regulation above and beyond an expectancy effect. The randomized control 

setting had ruled out the possibility that the observed treatment effects are caused 

by pre-existing differences between the samples, i.e., experts versus novices. 

Considering that many previous studies on music training found 

plasticity in brain functions, and learning music must involve training in 



 

 

70 

 

attentional regulation to some degree (Posner et al., 2008), the advantage of 

meditation is all the more impressive. But it does raise the question of why 

meditation was so superior.  

A possible explanation is that a 12-week music training intervention may 

not have been sufficient to result in domain transfers that are related to the skills 

required for operating a BCI. Previous studies comparing musicians to non-

musicians recruited professional musicians. This population began their practice 

in childhood and thereafter practised intensely for many years. Researchers have 

suggested that the differences observed between musicians and non-musicians 

were related to long-term and intensive practice on a musical instrument (Gaser 

and Schlaug, 2003; Norton et al., 2005) and early commencement of practice 

(Amunts et al., 1997; Watanabe et al., 2007).  

There may be also another explanation. Previous studies have reported 

that unstable mental states due to anxiety, fatigue, frustration, or loss of 

concentration can affect BCI performance (Pfurtscheller and Neuper, 2001; 

Guger et al., 2003). In our current study, the baseline tests were carried out at the 

beginning of the university semester while the post-tests were carried out 

towards the end of the semester when the students experienced greater stress as 

they were required to submit their course assignments, and to prepare for their 

semester tests and examinations. The stress and anxiety levels experienced by 

the participants during the period of post-tests may have been higher compared 

to the period during the baseline tests. On the other hand, mindfulness meditation 

may have enhanced emotion regulation in a way music training did not. The 

meditators were taught how to non-judgmentally observe their sensations, 
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thoughts, feelings, emotions, and environmental stimuli. This requires both 

cognitive processes of attentional self-regulation and consciousness states 

monitoring (Bishop et al., 2004). Self-regulation is associated with the ability to 

control the response to stress and unpleasant stimuli, to sustained focused 

attention, and to the monitoring and interpreting of the mental states (Fonagy 

and Target, 2002). Such abilities are particularly important for BCI users to 

remain focused, calm, and produce consistent EEG patterns. Previous studies 

have suggested that long-term meditation leads to changes in brain regions that 

are important to both cognitive control and emotional regulation (Lazar et al., 

2005; Hölzel et al., 2011). People who underwent a short-term meditation 

training reported better moods and reduced stress response (Tang et al., 2007).  

6.2 Limitation of the study 

The current study was not a blind design. The experimenter was aware of the 

participants’ group allocation. Experimenter bias may thus be a possible factor. 

The participants in the current study were also aware of their group assignment. 

Of course, it is not possible to blind the participants from their particular group 

assignment. However, as both intervention groups hold similar expectations for 

improvement, any discrepancy found between the two groups on the outcome 

measure may be credited to the effect of the treatment. 

Since the study consisted of entirely Malaysian undergraduate students, 

it thus limits the generalizability of the findings. Replication with a different 

population will be valuable to explore the impact of the meditation training on 

other BCI users. 
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CHAPTER 7 

 

CONCLUSION 

 

 

7.1 Conclusion 

We found in a 12-week intervention study that a mindfulness meditation training 

group significantly improved their BCI performance compared to a music 

training group (learning to play a classical guitar) and a no-treatment control 

group. Both the mindfulness meditation training and music training groups had 

positive expectation and beliefs of improvement in BCI performance, and the 

strength of expectation was about the same for both. The results showed that we 

have eliminated expectancy effects as an explanation of an objective and useful 

effect of mindfulness meditation.  

7.2 Future direction 

Future research could disentangle the contributions of attentional and emotional 

regulation to the ability of mindfulness training to enhance BCI performance. A 

randomized control trial exploring the effect of mindfulness meditation on BCI 

performance using concentrative meditation as an active control would show 

whether the two forms of meditation have a different effect on BCI performance. 

As explained earlier in the discussion section above, one would expect that 

mindfulness meditation may have a more useful effect on BCI performance than 

concentrative meditation because the regulation of stress and anxiety levels 

associated with mindfulness plays an important role in ensuring consistent EEG 

patterns required for good BCI performance. 
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Further studies in the form of a more detailed analysis of the EEG data 

as described in Section 5.1 may also reveal how mindfulness meditation training 

causes changes in brain activity that can improve BCI performance. 
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APPENDIX A 

 

BIPOLAR EEG CHANNELS USED IN THE STUDY 

 

Brain region EEG channel Electrode position 

C3 

Channel ac_C3 

Channel ap_C3 

Channel pc_C3 

aC3, C3 

aC3, pC3 

C3, pC3 

CZ 

Channel ac_CZ 

Channel ap_CZ 

Channel pc_CZ 

aCZ, CZ 

aCZ, pCZ 

CZ, pCZ 

C4 

Channel ac_C4 

Channel ap_C4 

Channel pc_C4 

aC4, C4 

aC4, pC4 

C4, pC4 
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APPENDIX B 

 

COMBINATIONS OF BIPOLAR EEG CHANNELS 

 

No. Combination  No. Combination 

1. ac_C3  19. pc_C3, ac_CZ 

2. ac_C3, ac_C4  20. pc_C3, ap_CZ 

3. ac_C3, ap_C4  21. pc_C3, pc_CZ 

4. ac_C3, pc_C4  22. ac_C4 

5. ac_C3, ac_CZ  23. ac_C4, ac_CZ 

6. ac_C3, ap_CZ  24. ac_C4, ap_CZ 

7. ac_C3, pc_CZ  25. ac_C4, pc_CZ 

8. ap_C3  26. ap_C4 

9. ap_C3, ac_C4  27. ap_C4, ac_CZ 

10. ap_C3, ap_C4  28. ap_C4, ap_CZ 

11. ap_C3, pc_C4  29. ap_C4, pc_CZ 

12. ap_C3, ac_CZ  30. pc_C4 

13. ap_C3, ap_CZ  31. pc_C4, ac_CZ 

14. ap_C3, pc_CZ  32. pc_C4, ap_CZ 

15. pc_C3  33. pc_C4, pc_CZ 

16. pc_C3, ac_C4  34. ac_CZ 

17. pc_C3, ap_C4  35. ap_CZ 

18. pc_C3, pc_C4  36. pc_CZ 
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APPENDIX C 

 

DEMOGRAPHIC FORM 

 

 

Participation Form 

Universiti Tunku Abdul Rahman 

Faculty of Engineering & Science 

Brain Science Research Group 

Project: Effect of Mental Training on BCI Performance 

 

Name: _______________________________________________________  

Gender: (Male/ Female)     Ethnic: ____________     Religion: __________ 

Age: ______   Date of Birth: ____DD____MM______YY  

Student ID: ______________ Course: _________________ (Year__Sem__) 

Contact No.: _________________ Email: ___________________________ 

Address: _____________________________________________________ 

_____________________________________________________________ 

 

 

Please answer the following questions: 

 

1. What is your native language? _____________________ 

2. List the language(s) you use in your daily life.    

_____________________________________________________________ 

3. What is your dominant hand? (Left/ Right/ Ambidextrous) 

4. Do you wear glasses/lenses during reading? (Yes/ No)  

5. Do you have any history of colour blindness? (Yes/ No) 

6. Have you ever had a head injury with the loss of consciousness? (Yes/ No) 

7. Have you ever been diagnosed with a psychological or mental disorder? (Yes/ No) 

8. Have you ever been diagnosed with a neurological disorder? (Yes/ No) 

9. Have you ever been diagnosed with an attention deficit? (Yes/ No) 

10. Have you ever been treated for or thought you might need treatment for an alcohol or 

drug addiction? (Yes/ No) 

 

11. Have you ever had a serious illness, an accident or an operation? (Yes/ No) 

12.  Have you ever had formal or informal meditation practice or mental training?     

e.g. meditation class, yoga, self-help tapes or books… (Yes/ No) 

 

If “Yes”, please describe the activity, the amount of time you spent for this 

activity (hours per day or per week) in past or current, as well as the length of 

the activity (e.g. “I practice breathing exercises once a week for 2 hours since 

January 2005.”). 

 

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________ 

Ref No.: 
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___________________________________________________________________

___________________________________________________________________ 

___________________________________________________________________ 

 

13.    Do you practice playing any musical instrument? (Yes/ No) 

 

If “Yes”, please describe the activity, the amount of time you spent for this activity 

(hours per day or per week) in past or current, as well as the length of the activity.  

 

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________ 

 

 

** The eligible participants will be contacted. 
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APPENDIX D 

 

INFORMED CONSENT 

 

 

RESEARCH PARTICIPANT INFORMED CONSENT 

UniversitiTunku Abdul Rahman 

Faculty of Engineering & Science  

Brain Science Research Group 

 

 

I. Title of Study: Effect of Mental Training on BCI Performance 

 

II. Investigator: Ms Tan Lee Fan 

 

III. Purpose of the Study:  

The purpose of this study is to investigate the effect of mental training such as meditation and 

learning a musical instrument on the BCI performance. 

 

IV. Study Procedures: 

If you participate in this study, you will undergo the following tasks at the beginning of the 

study: 

 

a) EEG experiment 

An EEG experiment will be carried out to analyze the brain activities of the participants. 

The investigator will place some sensors on certain locations of your scalp and face. You 

will undergo a number of trials of mental tasks in a seated position. The duration of the 

experiment is about 120 minutes including the process of setting up the sensors. 

 

(b) BCI Test 

In another laboratory visit, you will have to complete a BCI test. From this test, you will 

know how well you can control a BCI using your brain waves. Sensors will be placed on 

your scalp and face also. The whole process of the test is between 60 - 120 minutes 

depending on the participant’s performance. 

 

Tasks (b) will be repeated at 3 months after the beginning of the study.  

 

During the 3-month period, selected participants will be invited to attend a mindfulness 

meditation programme or a guitar learning programme. Both programmes will be conducted 

by professional teachers and provided free of charge to the participants. 

 

V. Potential Risks: 

There may be some discomfort experienced by attaching the sensors on the scalp and face 

with electro-gel and secured with stickers. Under rare circumstances, people with very 

sensitive skin may have some minor irritation or redness on the skin in reaction to the 

application of electro-gel.  

Additionally, because of the duration of the tests and the fact that you are asked to remain as 

still as possible, some people may find the experiment to be uncomfortable and unpleasant. 

The investigator will check with you to determine if you are having any such negative 

sensations. 

 

VI. Benefits: 

There will be no direct benefit to you for participating in these brain science experiments but 

the results of these experiments may lead to understanding of the brain and help to improve 

the Brain-Computer Interface (BCI) system.  
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Selected participants will have the opportunity to learn the skills of meditation or skills of 

playing guitar. 

 

VII. Costs: 

All participation fees for meditation class or musical class or any other expenses in the 

experiments which will be performed as a part of this study are provided at no cost to you. 

 

VIII. Compensation: 

You will receive a cash payment of RM25.00 after every test session. Payment will be 

discontinued if you decide to withdraw your participation. 

 

IX. Alternative: 

You may choose not to take part in this study. 

 

X. Confidentiality: 

Information obtained for this study will be stored in the investigator’s research files and will 

be identified only by codes instead of the participants’ name.  

Information gathered in this study may be published or presented in public forums. However 

your name and other identifying information will not be used or revealed.  

 

XI. Voluntary Participation: 

Your decision to take part in this study is entirely voluntary. You may choose to or not to 

participate in this study. You may also withdraw from this study at any time with any reason, 

without any penalty. 

 

XII. Questions: 

For enquiry please contact the investigator, Ms Tan Lee Fan at: 

Mobile: ___________, E-mail: ___________________________,  

Office: _____________________________ 

 

XIII. Statement of Consent: 

I have read and understood the above information. I have had the opportunity to discuss this 

research study with the investigator, Ms Tan Lee Fan and/or her research partners, and I have 

had my questions answered by them in a language that I understand. I take part in this study 

voluntarily, and I understand that I may withdraw my consent and discontinue my 

participation in this study at any time without any penalty. My consent to participate in this 

study does not waive any of my legal rights in the event of negligence or carelessness of 

anyone working on this project. A copy of this consent form has been given to me. 

 

I agree to take part and give full commitment to this study. 

 

Subject’s Name: 

IC no.: 

Date: 

 

 

__________________ 

Signature 

 
-------------------------------------------------------------------------------------------------------------------- 

 

Witness’s Name: 

IC no.: 

Date: 

 

 

__________________ 

Signature 

 
-------------------------------------------------------------------------------------------------------------------- 

 

Investigator’s Name: 

IC no.: 

Date: 

 

 

__________________ 

Signature 

 
 

Investigator’s copy 
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APPENDIX E 

 

DERIVATION OF BAYES FACTOR EQUATION 

 

 

The Bayes’ theorem says that 

 

𝑃(𝐻|𝐷) = 𝑃(𝐷|𝐻) × 𝑃(𝐻) 𝑃(𝐷)⁄  
 

(D.1) 

where 𝑃(𝐻) is the prior, the probability of one’s thought the hypothesis was 

prior to data collection; 𝑃(𝐻|𝐷)  is the posterior, the probability of the 

hypothesis given the data; 𝑃(𝐷|𝐻) is the likelihood of the hypothesis, that is 

the probability of obtaining the data, given one’s hypothesis. 

 

In order words, the posterior is proportional to the likelihood times the prior. 

 

𝑃(𝐻|𝐷) is proportional to 𝑃(𝐷|𝐻) × 𝑃(𝐻) 

 

 

An experiment usually consists of 2 particular hypotheses, with 𝐻1  is the 

experimental hypothesis and 𝐻0 is the null. So 

 

𝑃(𝐻1|𝐷) is propotional to 𝑃(𝐷|𝐻1) × 𝑃(𝐻1) (D.2) 

And 𝑃(𝐻0|𝐷) is propotional to 𝑃(𝐷|𝐻0) × 𝑃(𝐻0) (D.3) 

 

Dividing (D.2) by (D.3), 

 

𝑃(𝐻1|𝐷)/𝑃(𝐻0|𝐷) = 𝑃(𝐷|𝐻1)/𝑃(𝐷|𝐻0) × 𝑃(𝐻1) 𝑃(𝐻0)⁄  

 

That is  

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑜𝑑𝑑𝑠 = 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑟𝑎𝑡𝑖𝑜 × 𝑝𝑟𝑖𝑜𝑟 𝑜𝑑𝑑𝑠 
 

where the likelihood ratio is called the Bayes factor, B in favor of the 

experimental hypothesis. 

 (Dienes, 2008) 
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APPENDIX F 

 

C# PROGRAM SOURCE CODE FOR BAYES FACTOR 

CALCULATOR 

 

 
namespaceBayesFactorCalculator 
{ 
classBayesFactor 
    { 
publicenumPrior { Uniform, OneTailed, TwoTailed }; 
Prior distribution = Prior.Uniform; 
publicdoubleLikelihoodtheory, Likelihoodnull, Bayesfactor; 
double area = 0; 
double theta = 0; 
double sd2 = 0; 
double omega = 0; 
doubleincr = 0; 
doublelowerBound, upperBound; 
doublemeanOfTheory; 
double obtained; 
 
publicBayesFactor(doubleSampleMean, doubleSampleSD, doubleLowerBound, 
doubleUpperBound) 
        { 
            obtained = SampleMean; 
            sd2 = SampleSD * SampleSD; 
            theta = LowerBound; 
lowerBound = LowerBound; 
upperBound = UpperBound; 
incr = (UpperBound - LowerBound) / 2000; 
        } 
 
publicBayesFactor(doubleSampleMean, doubleSampleSD, doubleTheoryMean, 
doubleTheorySD, Prior Distribution) 
        { 
            obtained = SampleMean; 
            sd2 = SampleSD * SampleSD; 
meanOfTheory = TheoryMean; 
            omega = TheorySD * TheorySD; 
            theta = TheoryMean - 5 * Math.Pow(omega, 0.5); 
incr = Math.Pow((omega), 0.5) / 200; 
            distribution = Distribution; 
        } 
 
privatedoubleNormaly(double mean, double variance, double x) 
        { 
returnMath.Pow(2.718283, (-(x - mean) * (x - mean) / (2 * variance))) / 
(Math.Sqrt(2 * Math.PI * variance));  
        } 
 
publicList<double>chartX, chartThetaY, chartLikelihoodTheoryY; 
publicList<double>chartTheta { get; set; } 
 
publicvoidCalculateBayesFactor() 
        { 
            area = 0; 
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chartX = newList<double>(); 
chartThetaY = newList<double>(); 
chartLikelihoodTheoryY = newList<double>(); 
for (inti = -1000; i<= 1000; i++) 
            { 
                theta = theta + incr; 
chartX.Add(theta); 
doubledist_theta = 0; 
doubledist_theta_nextstep = 0; 
switch (distribution) 
                { 
casePrior.Uniform: 
if (theta >= lowerBound&& theta <= upperBound) 
                        { 
dist_theta = 1 / (upperBound - lowerBound);  
                        } 
if (theta + incr>= lowerBound&& theta + incr<= upperBound) 
                        { 
dist_theta_nextstep = 1 / (upperBound - lowerBound); 
                        } 
break; 
casePrior.OneTailed: 
if (theta > 0) 
                        { 
dist_theta = 2 * Normaly(meanOfTheory, omega, theta); 
                        } 
if (theta + incr> 0) 
                        { 
dist_theta_nextstep = 2 * Normaly(meanOfTheory, omega, theta + incr); 
                        } 
break; 
casePrior.TwoTailed: 
dist_theta = Normaly(meanOfTheory, omega, theta); 
dist_theta_nextstep = Normaly(meanOfTheory, omega, theta+incr); 
break; 
                } 
 
double height = (dist_theta * Normaly(theta, sd2, obtained) + 
dist_theta_nextstep * Normaly(theta + incr, sd2, obtained)) * .5; 
                area = area + height * incr; 
chartThetaY.Add(dist_theta); 
chartLikelihoodTheoryY.Add(height); 
            } 
Likelihoodtheory = area; 
Likelihoodnull = Normaly(0, sd2, obtained);           
Bayesfactor = Likelihoodtheory / Likelihoodnull; 
        } 
    } 
} 

 

 


