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DEVELOPMENT OF A FAST LOGO RECOGNITION  

USING GPU 

  

 

ABSTRACT 

 

 

Recently, the pattern recognition becomes more important and well developed due to 

the technology development. Many techniques and methods are proposed to improve 

and enhance the efficiency and accuracy in this field. For the logo recognition, the 

database becomes larger and the recognition system needed to be efficiency, 

accuracy and fast. Therefore, in this final year project, we used SURF (Speed up 

Robust Feature) descriptor to extract the feature points of the logo and used the 

vocabulary tree concept as our image retrieval method to search over 240 images in 

our logo database. The image retrieval system contains bag of words model and 

cosine law equation to determine the similarity of the images. GPU will be added to 

accelerate the speed in matching. 
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CHAPTER 1 

 

 

 

1 INTRODUCTION 

 

 

 

1.1 Background 

 

As the technology of the human being is fast developed, pattern recognition becomes 

a major issue to overcome the huge information in database. In the field of the 

pattern recognition, logo recognition becomes famous and important in the human 

life.  

 

At first, human can implement and know the information of each logo as well. 

In that background, the logo database was very few only compare with today. Beside 

these, the manpower was enough to do categorization based on different logo in this 

field. However, the needs in logo recognition field is lack due to the rapidly change 

in environment and technology. The raise of the manpower cost and the impact of the 

huge information because of the internet and global earth effect provided an 

environment for logo recognition. 

 

As the technology improved, logo recognition is well developed to satisfy the 

need of the environment. Nowadays, logo recognition was very useful in many areas 

such as industrial area, commercial area and residential area. Besides that, more 

methods and techniques have been proposed to perfect the application and function 

of the logo recognition. It solves the problem that rapidly increases of the logo 

database and provide an automatic and efficiency system to recognize the logo.  
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In our system, it can be divided into two stages which are training stage and 

application stages. In training stage, it includes building of vocabulary tree, KNN KD 

tree searching algorithm, weighting and normalization. The training stage generated 

the database type for the application stage. The application stage includes KNN KD 

tree searching, weighting and normalization and matching to database. Moreover, a 

graphical user interface (GUI) was designed for the application stages. Afterwards, 

the matching algorithms will be accelerated by using GPU.  

 

 

 

1.2 Aims and Objectives 

 

The objective of this title is developing a system that can recognize the logo in the 80 

classes for database and give the result to the user. One class logo has three logo 

images. In the logo recognition system, the accuracy rate and speed rate always an 

issue. So, we designed a logo recognize system that have to be robust and withstand 

variety transformation like translation, rotation and scaling. Beside these, the system 

has to be more efficiency and fast. A visualize interface is needed to be user friendly 

and easy to control. Our system is designed for detect one logo in the image. The 

logo is the main portion in the image with the less influence of the background. 
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CHAPTER 2 

 

 

 

2 LITERATURE REVIEW 

 

 

 

2.1 Application 

 

Nowadays, the logo recognition has been developed well and use in many field. As 

we mention before at the introduction, it used in residential, commercial, industrial 

purpose. 

  

 For the residential purpose, it used to help the people to get the information of 

the logo. The Google Goggles provided us to use the image that captured by hand 

phone send to its server and give the information about that logo. It lets the life 

becomes convenient when impact by the huge information.  

 

 For industrial purpose, the logo recognition helps to upgrade the warehouse 

system. By using a camera, when the container or box was put in the warehouse, the 

logo recognition system will recognize the logo on the box and put it in the right 

position automatically. It increases the efficiency of the work. Besides that, it also 

applied in the production line that checks the logo on the product. 

 

For the commercial purpose, the document logo classification system and the 

development of the E business very need the help of logo recognition to categorize 

the document. Recently, internet becomes popular in everywhere. With the growing 

of the E business, the documents related need to be categorize for convenient.   
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2.2 Feature Extraction 

 

Feature extraction and detection for logo recognition is always a very challenging 

task. In the review of the previous methods, we know that many algorithms and 

techniques have been proposed during these many years.  

 

There are two types feature extraction descriptors which are global descriptor and 

local descriptor. For the global descriptor, it can detect and discriminate the wanted 

features of the different logos from background. The methods of line segment and 

edge detector, such as Harris operator, hough transform and sobel operator are 

belong to global descriptor. However, they are insufficient in this field. For example, 

Harris edge detector cannot be used individually for the feature extraction because it 

cannot withstand the change of scaling. From here, we can conclude that good 

feature extraction methods have to invariant to rotation, scaling, and translation and 

affine transformation. Beside these, it has to give complete and pertinent information 

to do recognition. Among these methods that mention before, the geometric invariant 

methods that proposed by Doerman 1993 also cannot fulfil these condition. The 

method he used is use complex mathematic methods to know the invariants and do 

recognition. These invariants have their own limits. It cannot be used in large 

database because of the calculation problems. For Hu’s moment invariant, it just 

used in the global feature extraction because it cannot discriminate well in the local 

feature. It is a good global feature extraction method to detect the things that no 

complicated in the feature.  

 

 Now, the Fourier descriptor also developed in the field of shape descriptor. It 

provides a concept that transforms the image in Fourier transform and invariant to 

transformation. However, its limitation is also same with the moment invariant 

method. The Log polar transform methods also provide a log polar space that 

invariant to rotation. But these methods have to combine with the other to ensure its 

capability. For example, Fourier Merlin transform is the combination of the Fourier 

transform and log polar transform. The retina coding is a good idea for the artificial 

neural network purpose. However, the coding method is act as additional methods 

compare with the direct input vector of the neural network. The efficiency is low and 

not suitable used at here.  
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Local descriptor focuses on the one logo features only. For our logo 

recognition system, we need not to use global descriptor as our feature extraction 

method because the system requirement is detected one logo with less of the 

influence of the background. Therefore, the local descriptor is used for our main 

choice. In local descriptor, the SIFT and SURF descriptor are very famous 

descriptors and powerful. These two descriptors will discussed at below section.   

 

 

2.2.1 SIFT 

 

David G. Lowe (1999) proposed a new method for object recognition. It can extract 

the pertinent information and key point of the logo to do recognition. The key point 

of an image is some kinds of invariants that its properties are remains unchanged 

under variety transformation like rotation, illumination, translation, scaling. This 

method is Scale Invariant Feature Transform (SIFT), which is a scale pyramid 

approach. It detects the interest point in the image that can be invariants to variety 

transformation. This method can be said as new milestone to the pattern recognition. 

SIFT has four major stages which are scale-space extrema detection, keypoint 

localization, orientation assignment and keypoint descriptor.  

 

At the first stage, scale space extrema is known as the interest points or key 

points are detected by using difference of Gaussian image. The input image is 

successive smoothed by applying a Gaussian Kernel to the input image with certain 

increment of σ.  

 

                                                                                (2.1) 

 

Where  

G(x, y, σ) = Gaussian kernel 

σ = variance 

 

                                                                                (2.2)                         

L(x, y, σ) is the convolution of the Gaussian kernel and input image. 
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                             (2.3)                   

 

The base of the first octave is the original image, the upper layer of it is 

applied by σ=1.2 Gaussian filter. The following layer is applied by kσ Gaussian filter 

which the k value depend on how many layer being constructed in an octave. The 

image will become smoother and more blur from the bottom to top. Therefore, the 

two successive smoothed images are subtracted together to obtain the difference of 

Gaussian (DoG).. In this case, we can obtain the DoG between each level in the 

pyramid. Beside these, the scale of the image is changed to construct another 

pyramid octave by using same concept. Note that the next octave base layer is the 

layer that applied 1.2σ Gaussian filter and resampled into half size in the first octave. 

Therefore, the DoG images that calculated and constructed into pyramid form as 

shown as figure 4.1. It is known as scale space function. This DoG method is very 

efficiency and approximately approaches Laplace of Gaussian.  

 

          

Figure 2.1: Diagram showing the blurred images at different scales, and the 
computation of the difference-of-Gaussian images(Lowe 2004) 
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Figure 2.2: The operation of non maximum suppression(Lowe 2004) 

 

 

After that, maxima and minima of this scale-space function are determined by 

using the NMS, nonmaximum suppression method. This method is used to compare 

the pixel intensity in 3x3x3 neighborhood, which is 9 pixel intensity of its upper 

layer, 9 pixel intensity of its lower layer and 8 pixel intensity of its own layer around 

it. The extrema can found out in the comparison of them. Thus, the scale space 

extrema is found out and become a candidate point of SIFT key which is scale 

invariant. 

 

The second stage is key point elimination. There are two conditions to be a 

SIFT key from candidate key point which are the keypoints with low contrast are 

removed and responses along edges are eliminated. These can be achieved by using 

Taylor series and hessian matrix.   

The third stage is orientation assignment for the SIFT key. For each image 

sample, L (x, y), at this scale, the gradient magnitude, m (x, y) and orientation, θ (x, 

y) are computed by using the pixel differences. 

 

m ( x, y ) =            (2.4) 

 

where 

m(x, y ) = gradient magnitude 

 

θ (x, y) =            (2.5) 

where θ (x, y) = orientation 
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Figure 2.3: Histogram of the gradient magnitude and orientation around the key point 

(Lowe, 2004) 

 

 

In the Figure, it show that the histogram of the gradient magnitude and its 

orientation in the neighborhood of the keypoint (using the Gaussian image at the 

closest scale to the keypoint's scale). In the figure, it consists of 36 bins and each bin 

hold 10 degree. It covers 360 degree around the key point. The contribution of each 

neighboring pixel is weighted by the gradient magnitude and a Gaussian window 

with σ is 1:5 times the scale of the keypoint. Peaks in the histogram correspond to 

dominant orientations. A separate keypoint is created for the direction corresponding 

to the histogram maximum, and any other direction within 80% of the maximum 

value. All the properties of the keypoint are measured relative to the keypoint 

orientation, this provides invariance to rotation. 

 

Last stage is about the keypoint descriptor. Each key is shown as a square, 

with a line from the center to one side of the square indicating orientation. The size 

of square is 8x8s and expended from the interest point. To the main direction of the 

axis can be set up in the coordinates of each feature point, SIFT feature point 

selection in a size and scale the corresponding square area into 16 blocks, eight along 

the direction of each piece of statistical proportion, so the formation of the 128 

feature points dimensional feature vector, the normalized image intensity change is 

completed; and also the formation of 128-dimensional vector, normalized a complete 

contrast of the change and intensity change.  
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Figure 2.4:SIFT feature descriptor and 64 dimension vector (Lowe 2004) 

 

 

Figure 2.5:SIFT descriptor (Lowe, 2004) 

 

 

PCA SIFT (Yank Ke and R. Sukthankar, 2004) and GLOH are the variant of 

the SIFT have also been used for image recognition. PCA SIFT is the SIFT method 

that applied Principal Component Analysis. PCA is a standard technique for 

dimensionality reduction. As we know that SIFT technique has four major stages, the 

different of PCA SIFT and SIFT is the fourth stage. In the fourth stage of PCA SIFT, 

the input vector is created by cantenating the horizontal and vertical gradient maps 

for the 41x41 patch centered at the keypoint which has 2x39x39=3042 elements. 

Therefore, the vectors are applied with the PCA to convert the high dimension 
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samples into low dimensional (20 dimension) feature space. It required less storage 

and speed up the matching. However, the information of the feature does not be 

affected so much. Another method GLOH, is an extension of the SIFT descriptor 

designed to increase its robustness and distinctiveness. Its keypoints are detected by 

using Harris operator and its histogram is computed for 17 location and 16 

orientation bins in a log polar location grid. The log polar form has a fovea of high 

resolution and decrease when away from the center. It uses radial distance and angle 

to be variable in the polar coordinate system.  PCA is used to reduce the dimension 

to 128. By using log polar form, GLOH has rotational translation scale (RTS) 

invariant features and robust to rotation. 

 

 

 

2.2.2 SURF 

 

Speed up Robust Feature (SURF) is a descriptor that proposed by Herbert Bay 2007. 

This method is more robust and faster than SIFT according to SIFT. By using 

partially concept of SIFT, which is scale pyramid, it can perform well in logo 

recognition. It has three steps in SURF. First, the image was converted to grayscale 

and computed as integral image type. The concept of integral image is proposed by 

Viola and Jones 2001, it allow for efficient and fast computation of box –type 

convolution filters. The integral image is the sum of the block pixel intensity from 

left to right. The second step is applying a 9x9 filter box to the integral image. This 

will approximate approach the effect of σ = 1.2 Gaussian Filter.  

 

    (2.6) 

    (2.7) 
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                      (2.8) 

 

Next, the SURF use determinant of Hessian matrix to represent the DOG to 

find the extrema in local feature. The same step will be repeated by changing the 

different size filter box which is 15x15, 21x21, and 27x27 sizes. This will construct a 

four level image pyramid with different scale. The base of the pyramid is the image 

that applied by 9x9 filter box. The scale of the image will increase when the level of 

pyramid is increased. Therefore, the NMS, nonmaximum suppression method is used 

in 3x3x3 neighborhood. This step is same as the SIFT. The only different is using the 

NMS to find the maximum determinant of the Hessian matrix in 3x3x3 

neighborhood. This is known as the interest point. The last step is assigning the 

orientation and direction to make them invariant to rotation, also the illumination. 

 

 

 

 

 

 

 

 

 

Figure 2.6: Lattice points and Haar filter 

 

 

The Haar wavelet responses of size 4s in x and y direction are calculated 

within a circular neighborhood 6s around the interest point, where s is represented as 

scale that the interest point detected. The dominant orientation is the calculation of 

the sum of all responses within a sliding orientation window of size π/3.  
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Figure 2.7: Orientation Assignment(Paul, 2009) 

 

 

The sliding window will be rotate 5 degree a step and select the largest vector 

in the circular neighborhood. The direction of the largest vector is defined as its main 

direction. Therefore, construct a square region 20x20s as the interest point is act as 

its origin point. Thus, the direction of the largest vector is shown by a line from 

center to the side of the square. Its direction follows the direction of the largest 

vector and the side of the square is perpendicular to this line.  

 

 

Figure 2.8: Sliding window and its subregion (Paul, 2009) 
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The size of the square that we mention before is 20x20s size but depend on 

which scale that the interest point detected.  Then, the square region is divided into 

4x4 subregions. This preserves important spatial information.  

 

Figure 2.9: Haar filter for subregion(Paul, 2009) 

 

 

For every subregion, Haar wavelet of size 2s are calculated for 5x5 regularly 

distributed sample point and weighted by a Gaussian centred at the sampled point 

with standard deviation 3.3s to increase the robustness towards geometric 

deformations and localization error. The dx and dy are used to denote the Gaussian 

weighted Haar wavelet responses in x and y directions and aligned to the primary 

orientation.  

 

                                                      (2.9) 

 

For each of the 4 × 4 sub-regions, dx, |dx|, dy, |dy| are used to denote the 

sums of the x and y responses of all the 5×5 sampled points. And for all the 4×4 sub-

regions, each subregion contributes four values to the descriptor vector leading to an 

overall vector of length 4x4x4= 64. The wavelet responses are invariant to the 
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contrast and illumination change. Therefore, the third step is found out the rotation, 

illumination invariant for the SURF descriptor.  

 

Figure 2.10: The whole responses in the sliding window(Paul, 2009) 

 

 

Figure 2.11: SURF descriptor (internet) 

 

 

2.2.3 Comment 

 

After review the different methods of feature extraction, SIFT is a great milestone for 

the pattern recognition field. It is a feature extraction technique that nearly perfect 

compare to the others. It uses the DoG to achieve the effect of LoG. It is very fast 
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and simple. Actually, the first stage of SIFT can use the Harris operator and Sobel 

operator such as edge detector to replace the DoG. But, they are slower compare with 

the DoG. The accuracy rate and speed are the advantages of it. However, the feature 

that extracted is in high dimensional way. So, how to improve and lower down the 

dimension is an issue. Therefore, PCA SIFT and GLOH were proposed to improve 

the SIFT. Although they use PCA to lower down the dimension to increase the speed, 

the PCA SIFT decreases its discriminate ability. GLOH is very accuracy but it 

consumed much time in computational.  

 

 By using the scale pyramid concept and partially concept of SIFT, SURF was 

proposed to have more robustness to transformations. The only weakness of SURF is 

the invariant of transformation is less efficient compare to SIFT. However, its ability 

is good for the many cases. That’s why we use SURF to do the feature extraction.  

 

 There are factors that need to be careful in feature extraction. The quality of 

the image, the size of the image and the noise will affect the functionality of the 

feature extraction. If the quality of the image is not good and size of the image is too 

small, the feature that extracted and accuracy might be influence.   

 

 

 

2.3 Indexing and Matching 

 

The growing of the information in the database, indexing is more important to save 

the time in matching. Here, there are the four main methods, artificial neural network, 

SVM, KNN KD Tree search and vocabulary tree in this part. 

 

 

2.3.1 Artificial Neural Network 

 

Artificial neural network is represented as computational model that inspired by the 

structure and function of the human brain neural network. In this field, GRNN or 

BPNN usually act as main role in the artificial neural network for the pattern 

recognition. GRNN is known as Generalize Regressive Neural Network provided by 
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Specht 1991. It consists of the concept of the back propagation and radial basis 

function. The generalization and regression properties make the network can learn by 

itself. Beside these, it is a very useful tool to perform prediction and comparison. 

As we know that an artificial neural network contains three layers, which are 

input layer, hidden layer and output layer. First, the input nodes in the input layer 

receive the weights of the image (pixel intensity of the image or the feature that 

extracted). It consists of two hidden layers. The first hidden layer in the GRNN 

contains the radial units where the second hidden layer contains units that help to 

estimate the weighted average. This is a specialized procedure. Each output has a 

special unit assigned in this layer that forms the weighted sum for the corresponding 

output. The weighted sum must be divided through by the sum of the weighting 

factors to get the weighted average from the weighted sum and calculated by a single 

special unit. The output layer then performs the actual divisions (using special 

division units). Hence, the second hidden layer always has exactly one more unit 

than the output layer. In regression problems, typically only a single output is 

estimated, and so the second hidden layer usually has two units. 

 

Figure 2.12: Nueral Network 

 

The GRNN copies the training cases into the network to be used to estimate 

the response on tested points. This is its regressive properties. The output is 
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estimated using a weighted average of the outputs of the training cases, where the 

weighting is related to the distance of the point from the point being estimated (so 

that points nearby contribute most heavily to the estimate). Hence, the tested data set 

was input to the GRNN and the compare with the training data set that had been 

trained before. Therefore, through the function that calculate the error between them 

and use it to train again until obtain a optimize result. The error is calculated based 

on the Euclidean distance between tested and training data. The training set is treated 

as optimal set and regressive function and the GRNN train the tested weights to 

approach the training set. A here, the iteration, learning rate and error bound have to 

defined. Iteration is how much the loops need to be trained in the network. Error 

bound is the error between tested and training weights. After obtain the error, use it 

to change the input weights to close the optimal solution. The change is defined as 

learning rate, which means the magnitude of the change. The smaller the learning 

rate, the increase the accuracy rate because it tune the changes of the weights 

precisely.   

The GRNN can be modified by assigning radial units that represent clusters 

rather than each individual training case. This reduces the size of the network and 

increases execution speed. Centers can be assigned using any appropriate algorithm.  

 

2.3.2 SVM 

 

SVM is known as Support Vector Machine which is one of the supervised methods 

that used for recognition. It is very famous classifier that developed from the statistic 

method and learning itself but different with the artificial neural network. It helps to 

analyze the data, classified pattern and process regression of the data. Recently, SVM 

becomes a major method for pattern recognition. It solves the problems that faced by 

content based image Retrieval (CBIR), which is the full expression of the low level 

features and the link between low level content feature and high level  semantic 

content based image retrieval. Nowadays, the database that used for recognition is 

increase to very large, it is impossible to categorize manually. SVM is developed and 

can categorize the input source in the database by learning itself and its regression 

properties. This concept can be used in classification of the logo.  
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Figure 2.13: Operation of the separate line  

 

 

The concept of SVM is use a line or plane to divide the different point in the 

high dimension space.  First, the points of the different sample sets are mapped into a 

high level space. This high level space can be infinite depend on the input sources. 

Therefore, a hyperplane is found in this high dimension space to separate these 

points belong to its own set. The hyperplane might not unique. The main purpose of 

hyperplane is used for classification of the different classes from the input samples 

by using its regression properties. The hyperplanes are founded based on the 

maximum width of the margin of two different sets. The width of the margin is 

depending on the maximum distance that the points of two different sets. If the width 

of the margin is large, that means that the classification is good for the accuracy 

implementation for the future. The maximum margin also approaches the structural 

minimum risk. The larger of the margin, the lower the risk faced. It increases the 

manipulation of the generalization of the SVM.  

 

 

Figure 2.14: Scattering way in VC dimension 
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The other concept in SVM is the VC dimensions that proposed by Vapnik 

and Chervonenkis 1968. VC dimension is stand for Vapnik-Chervonenkis dimension, 

it measures the capacity of a hypothesis space. The capacity of a classification model 

is a measure of complexity and expressive power and of a set of functions by 

assessing how wiggly its member can be. It collects all the probability of the 

functions that can shatter the points. It uses 2n to show the how many way the points 

that can be shattered which n is the number of the point in this dimension. It shows 

the learning capability of the machine. The VC dimension is used for the 

minimization structural risk because it can estimate the error on future data based by 

using the training error and VC dimension. Through these concepts, the lower the 

VC dimension after learning, the structural risk can be minimized.  

 

 Thus, SVM can solve the problem of the classification of the high dimensions 

data sets by its own regressive and learning properties. It is a concept to apply this 

method in logo recognition after using SURF or SIFT because the dimension of 

feature extracted by them is very high. Once the features input to the SVM, it will 

classified it according the classes based on the similarity. SVM is very important in 

the artificial intelligent field and pattern classification.  

 

 

 

2.3.3 ANN/KNN KD Tree 

 

In the nearest neighbour method, there are two popular methods introduced here 

which are KNN KD tree method and ANN KD tree method. First, KD tree is a data 

structure for storing a finite set of points from k- dimensional space. The elements 

stored in the KD tree are high dimensional vectors. At the first level of the tree, the 

data is split into two halves by a hyper plane orthogonal to a chosen dimension at the 

threshold value. The split is made in the median according to the greater variance in 

the data set. It determines the half of the data the query vector belongs. Thus, each of 

the halves of the data split recursively in the same way to create a fully balanced 

binary tree. By using this concept, the data point can be found quickly and easily in k 

dimension space. Based on the KD structure, the ANN, Approximate nearest 
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neighbour and KNN, k nearest neighbour are used to search the data points by given 

query data points.  

 

 

Figure 2.15: KD tree 

 

 

 First, the concept of the KNN is search the k closest data point by given a 

query point. For example, if k is 1, it will search the data point that closest to the 

query point. When the k is 2, it searches the nearest data point and the second nearest 

data point that close to query point. For the nearest neighbour ratio matching method 

that introduced by Lowe 2004, he used the 2NN search to find the nearest point and 

second nearest point to the query point in the KD tree which was constructed by 

30000 feature point from 100 images. After that, the ratio of the distance of the 

nearest point and second nearest point was obtained. If the ratio was less than 0.65, 

the feature point (query point) that extracted from sample image can be said matched 

with the feature point that extracted from the training image in database. Beside these, 

Lowe also used the best bin first method to accelerate the speed in indexing. He 

found the 200 nearest neighbour feature point that close to matched point and treated 

them as candidate point to perform the matching algorithm. Therefore, nearest 

neighbour ratio method can be performed between the query point and these 

candidate points because they had high probability to be matched. This method will 

not influence the accuracy rate so much and will speed up the process. 

 

 Beside the nearest neighbour method, ANN method is similar to the KNN 

method. The difference is the way it searching. ANN will predicted and search the 

data point for the query point within the distance. That’s mean if the distance of data 
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point and the query point is within the distance range, the data point can be said close 

to the query point. It would care about this data point is the nearest one to the query 

point. It saves a lot of memory and time. Therefore, it is faster than the KNN method. 

Liangfu Xia, Feihu Qi, Qianhao Zhou, 2008 applied the ANN KD tree method and 

the nearest neighbour ratio method and combined together to achieve their target. 

This combination is more efficiency and faster than the KNN method the mentioned 

before.     

 

 

 

2.3.4 Vocabulary Tree 

 

The concept of the vocabulary tree is first introduced by Nister and Stewenius, 2006. 

They designed a CD-cover recognition system by using this concept to be their 

image retrieval system. According to nister, 2006, this system is very fast and able to 

query the database with 50000 images in 25ms only. This vocabulary tree concept 

contains four parts which are building the vocabulary tree, nearest neighbour search, 

scoring and normalized difference.  

 

 

Figure 2.16: Hierarchical k-mean cluster with branch factor 3 (Nister, 2006) 

 

 

First, they used the hierarchical k means clustering method to cluster the all 

the feature points that extracted from the database images in KD tree. The 
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hierarchical k-means cluster method will explore the centroid it found to three 

centroids when branch factor is 3. This kind of method is the more advance method 

in clustering method. After that, the centroids was obtained and treated as word. 

These centroids point in KD tree was known as vocabulary tree. Then, the feature 

points from two images were applied in nearest neighbour search and if the feature 

point was closest to the one of the centroids, this feature point can be treated as this 

centriod. Therefore, these centroids which were close to the feature points were the 

content of words for the two images.  

 

After nearest neighbour search, weighting or scoring method is processed. 

Nister used idf concept to do weighting. 

 

                                        (2.10) 

                                                                             (2.11) 

                                                                                 (2.12) 

 

  qi is query vector and di is database vector while ni and mi are indices vector 

that found in nearest neighbour search. N is number of image in database and Ni is 

the number of the same centroid found in all database image content. Therefore, the 

weight, wi was obtained ant treated as constant value. So, by using the equation 2.10 

and 2.11, the qi and di were obtained and used for checking their difference.  

 

                                                             (2.13) 

 

Therefore, the normalized difference method computed the similarity 

between two images. The value that close to zero mean’s that the two images is the 

same. This method is very efficiency in large database.  

  

 



23 

2.3.5  Comment 

 

Among these four methods, they have their own advantage points and weak points. 

For the artificial neural network, it is complicated to be constructed. A lot of 

parameters have to tune to optimal solution. Although its capability is good but the 

computational time is slow because of the computational. For SVM, a machine 

learning method is very famous in recently year. It is a very powerful technique in 

classification. It developed from the statistic theory and provided in good result. 

However, it is hard to construct the SVM system. Some of the theory inside hasn’t 

been developed well. For KNN/ANN KD Tree search, ANN is faster than KNN and 

provides a good result in the common condition. Although they gave a good 

performance and very fast and efficiency, they gave a poor result relatively when the 

k dimension is increased. The last method, vocabulary tree is suit for larger database 

system. It faster and more efficiency than the KNN/ANN KD tree method.    
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CHAPTER 3 

 

 

 

3 SYSTEM DESCRIPTION 

 

 

 

3.1 Prototyping Process 

 

 

Figure 3.1: Prototyping Process 

 

 

In our logo recognition system, we designed and upgraded our system from 

model 1 to mode 3. The SURF descriptor was used as feature extraction method 

through every model. The image retrieval system is the main changes for every 

model. The speed of indexing and matching, efficiency and accuracy rate were 

improved once the model has been upgraded. 

 

At first, in our model 1, the image retrieval system includes two main 

sections which are breadth first search and nearest neighbour ratio approach. The 

feature points for each image in database were saved in DAT file. It searched the 

DAT file that contains the feature points for the image in database. There has a lots 
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of DAT files to store the each image feature points. The way it searched and opened 

the file is breath first search. It opened the first image in the each class first. Note that 

each class have three images. The system opened the DAT file and used the nearest 

neighbour ratio to find whether this image was matched with query image or not.  

 

 In our second model, we used KNN KD Tree search as our image retrieval 

system. The feature points of all images in database were put into KD tree and the 

order of these points was set and can be specified to the image it belongs to. A query 

image is then performs the KNN search in the KD tree to find their nearest neighbour 

points. Furthermore, the nearest neighbour points found was record according from 

the nearest point to far point. Therefore, the scoring system was applied. The closest 

point was scoring the higher mark, the second closest point gained the mark that 

lower than the first and so on. After that, the highest mark gained for the image in 

database can be said the image is similar to the query image. 

 

  In our final designed system, we used vocabulary tree concept as our main 

concept in image retrieval system. The detail will be discussed in 3.2 Conceptual 

Design.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



26 

3.2 Conceptual Design 

 

 

Figure 3.2: System Overview 

 

 

 The Figure 3.2 shows that the system overview of our logo recognition 

system design. In our system, it can be divided into two stages which are training 

stage and application stage. In our system, training stage programming and 

application programming are separated. The training stage generates vocabulary tree 

and database images content for the application stage. In training stage, there is no 

graphic user interface and has to start the Visual studio C++ to activate the “Training 

Stage” program. This can be done in offline mode. However, the application stage 

which is online mode is provided graphic user interface to make the user convenient 
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and user friendly. In our design, we used OPENSURF SURF descriptor as our main 

method in feature extraction. Beside this, we also used the OPENCV 2.1 in our 

project. They are open source program and freely to use. The description will brief at 

the below.   

 

 

 

3.2.1 Training Stage 

 

For the training stage, it provided the parameter tuning for the building of vocabulary 

tree and the database images content. From the Figure 3.2, the images that treated as 

database images were input to the system.  We provided 80 classes of logos which 

240 logo images. Note that one class of logo consists of three logo images. These 

logo images were stored in a specified directory file, and then system will 

automatically run the feature extraction process for these images. The image format 

must be JPEG format or else the system cannot read them.  

  

 We used SURF descriptor from OPENSURF to extract the feature point. 

After feature extraction, all feature points was found and saved in DAT file. The 

system read this DAT file and perform hierarchical k-means cluster to find out the 

centroids of each cluster. These centroids were treated as visual words and save in 

the vocabulary tree.  

 

After that, same procedure was repeated. Each image feature points were 

extracted again and performed KNN Search for each image feature points. The 

vocabulary tree can be said like dictionary. These unknown feature points of the 

query image will find the nearest neighbour centroids that we have generated before, 

and use them to represent these unknown feature points. For example, an unknown 

word was put into dictionary and dictionary found the word for this unknown word. 

Therefore, the word found in dictionary can be represented the unknown word. This 

is how it works in the KNN searching. So, the content of each image is made up of 

these visual words (centroids) found. 
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TF-IDF (Term frequency and inverse term frequency) is a weighting method 

that used for weighting the visual words that the image has. This process emphasizes 

the feature of the image. For example, a document contains many “diamond” words 

and “the” words. The “diamond” word is rare to see in others document. However, 

“the” is very common in all the documents. Therefore, we can say that the 

“diamond” is the feature of this document and ignore the “the” word. It calculates the 

visual word that frequently occurred and rarely occur in others image. So, TF-IDF 

weighting method show how is important of the visual word in the image as its 

feature. The larger the TF-IDF value, the more important the visual word for the 

image. Afterwards, save these TF-IDF values for each image into the database.  

 

  

 

3.2.2 Application Stage 

 

In application stage, it is online mode with graphic user interface support. It will start 

to process when the matching button in GUI is pressed. When this button is pressed, 

the image that loaded will go to the feature extraction part as shown in figure 3.2. 

The process is same as training part. The TF-IDF is calculated and uses the cosine 

law equation to determine the similarity between the images in database and query 

image. This portion is accelerated with GPU, Nvidia Geforce GT 9400. So that, the 

time for image retrieval become fast. After determine the image, it will send the 

image name to the GUI. 

 

 

 

3.3 Graphic User Interface (GUI) 

 

Graphic User Interface (GUI) was designed for the application stage by using C++ 

programming. This provides the user can easily use this logo recognition system to 

recognize the unknown logo. Then, give a result to the user. It is user friendly. 

 

 In our GUI design, it has two tab, main tab and history tab to change the 

interface.  
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Figure 3.3: Graphic User Interface for logo recognition system 

 

 

In main tab interface, from figure 3.3, there has eight portions to execute the 

system and show the information. These eight portions were labelled in number. 

Portion 1 is the main tab while portion 2 is the history tab. When user starts the 

program, it shows the main tab interface first. History tab interface is record the 

history of the results.  

 

From portion 3, it provided “Load” button the let the user load the unknown 

logo image and shows the image in portion 5.  

 

 

Figure 3.4: The loaded image was shown in Portion 5  
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After that, in portion 4, user presses the “Match” button to execute the 

program in application stage.  

 

 

Figure 3.5: Result in GUI 

 

 The result is the shown in portion 6, 7 and 8. Portion 6 indicates the logo 

image found in database while portion 7 shows the name of the logo classified. 

Beside these, portion 8 shows the time consumed in the matching. After the logo is 

classified, it will show the message box to ask the user whether the result is right or 

not. Then the system will record the related information in history. The user must 

answer it or the user cannot execute the next step. 
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Figure 3.6: History interface 

 

Figure 3.6 shows the History tab interface and it consists of ten portions at 

here. Portion 7 shows the information that recorded in main tab interface. Portion 8 is 

the first column and denote as name of the logo found, portion 9 which is the second 

column indicate the time elapse for matching while portion 10 shows the correctness 

of the result that answer by the user. 1 is success to classified, vice verse. Portion 4, 

“Total” is total number of the operation, portion 5, “Fault” is the number of the logo 

incorrectly matching and “Acc” in portion 6 indicates the percentage of correct 

image matching over total operation ( logo classification).  

 

 

Figure 3.7: Sort operation 
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In Figure 3.7, when the “Sort” button in portion 1 is pressed, it will sort the 

arrangement according to their name. After that, the portion 3, “save” button is used 

for save the history so that the user can know its performance and what the program 

do in previous.  

 

 

Figure 3.8: Saving process 

 

 

Figure 3.9: Result in test file 
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Figure 3.10: Clear operation 

 

 

 

The figure 3.10 shows the clear operation when the “Clear” button is pressed. 

This operation lets the user to start over new their task.
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CHAPTER 4 

 

 

 

4 TRAINING STAGE 

 

 

 

4.1 Training Stage Overview 

 

 

Figure 4.1: Training Stage Overview 

 

In training stage, it has six sections in the whole “Training” program which are 

feature extraction, building of vocabulary tree, feature extraction & KNN KD tree 

search, TF computational, IDF computational and TFIDF Multiplication. This 

programming is running in offline mode. It used for generating the data for the 

application stage like vocabulary tree and TF-IDF score. The users can tune the 
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parameters and generate the vocabulary tree and database depends on their 

requirement.  

 

 First, the training stage was designed into six sections and each section uses 

the data that generated in previous section to process and generate the data that used 

for next section. For example, by inputting the multiple images which contain three 

logo images each class, the feature extraction section will extract the feature points 

of the images and generates the feature space and related data. Therefore, the 

building of vocabulary tree section used these data to generate the vocabulary tree. 

Then, the same images set was put in the Feature extraction & KNN KD Tree Search 

to generate the indices and related data for the next section. So, the process must start 

from first section to last section to generate the data needed for the application stage. 

 

 Note that each section has to be run one by one manually by changes the 

“PROCEDURE” number from one to six. Each number represented the 

corresponding section.  To make more convenient for the user, the images that used 

for database has to be put in together and be arranged according to their name. The 

first section will automatically search and record the specified directory file that the 

JPEG images stored. Therefore, the user can be easily built the database system 

easily. The reason to divide into six parts is because it is convenient to let the user to 

check the data file that generated.    
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4.2 Feature Extraction 

 

 

Figure 4.2: Feature Extraction Section 

 

 

In Feature Extraction section, it consists of five parts program at here which are 

image name recordation, image name loading, resize image, feature extraction and 

feature space. Image name recordation was designed to search the JPEG images and 

record their name for the loading purpose. The others four parts can be grouped into 

“Building of feature space”. The “Image Name Loading” loads the first image by 

given the name that stored in the first of the vector container in the “Image Name 

Recordation” part. Afterward, the image was resized to 520 x 400 pixels size. 

Moreover, the “Feature Extraction” part will extract the SURF feature of the image 

and store in the feature space. Noted the SURF descriptor we used is done by 

OPENSURF. This part will be processed as loop until the last image that stored at 

the last position of the vector container.  
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Figure 4.3: Data file generated at Feature Extraction section  

 

From Figure 4.3, there are four dat file was generated after this section. They were 

stored in data directory file. The “featurepoint.dat” is the feature space that includes 

all SURF feature points of all input images. “size_eachpoint.dat” indicates the 

number of SURF feature points found for each image in order to their position in the 

vector container. “size_allpoint.dat” and “no_of_image.dat” show the information 

about the number of all feature points that stored in feature space and number of 

input images. 

 

4.2.1 Image Name Recordation 

 

 

Figure 4.4: Flow chart of Image Name Recordation 
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The function “put_nameofimages_indir(filename)” is responsible to “Image 

Name Recordation” part. It searched the JPEG images in the specified directory file 

and stored into the vector “filename”.  

 

Pseudo code for the function put_nameofimages_indir(filename): 

Vector:filename 

Find the specified directory file 

Search the JPEG image 

If(.JPG) 

pushback to filename 

else 

continue seach until end  
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4.2.2 Building of Feature Space 

 

 

Figure 4.5: Flow chart for Building of Feature Space 
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The Figure 4.5 has shown the process flow of Building of Feature Space in detail. 

This part loads the image according to the name that stored in “filename” and 

standardizes the size of the input image for feature extraction. After that, it will store 

the SURF feature points to the feature space (featurepoint.dat). 

 

 Pseudo code for the Building of Feature Space 

 

 

4.3 Building of Vocabulary Tree 

 

 

Figure 4.6: Process in Building of Vocabulary Tree 

Initialize i, no_all_point =0; 

For i from 0 to the filename size 

Display image name for i position in the filename; 

Call resize_image (parameters: pointer to input image, pointer to resized image) 

 The image was resized to 520x400; 

Return (pointer to resized image); 

Load resize image; 

Call surfDetDes(parameters: pointer to resize image,pointer to ipts) 

 Extract feature point of resize image; 

no_all_point=no_all_point+size of feature point of each image 

Write the size of feature point of each image to "data/size_allpoint.dat"  

For k from 0 to size of feature point of each image 

 For j from 0 to 64 

  Write the feature point from ipts to "data/featurepoint.dat" 

 EndFor 

EndFor 

EndFor 
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As we can see in Figure 4.6, Building of Vocabulary Tree consists of four processes 

which are Information Loading, Feature Space Loading, Matrix Construction and 

Hierarchical K-means Clustering.  This section read the data that generated by 

previous section to build up the vocabulary tree. 

 

 First, it reads the feature space and uses the Hierarchical k-means clustering 

to find the centroids of each cluster. We used Hierarchical k-means clustering as our 

clustering method because it is more stable and advance compare to other clustering 

method. The centroids found are treated as a set of visual words as mentioned at 

section 3.2.1. For hierarchical k-means cluster, unlike the k-means cluster which find 

the centroids of each cluster that we set, the hierarchical k-means cluster will explore 

the centroids of cluster if the two centroids of clusters are too close by given cb index. 

Beside this, the way it explores and finds the centroids is in hierarchical way. First, 

the centroids are random generated. Then it will explore its centroids by given 

branch factor. Supposed the branch factor is 5, then the centroids will explore to 

maximum 5 centroids of clusters. However, it is not necessary the centroid has to 

explore to 5 centroids, it can explore to 4, 3, even choose not to explore the centroid. 

Thus, it is more accurate and reliable than the k-means cluster.   

 

Table 4.1: File for read and write  

Data file used for read Data file generated 

data/featurepoint.dat 

data/size_allpoint.dat 

data/no_of_image.dat 

 

data/vocabularytree.dat 

data/numberofcluster.dat  

 

 

 The data file that used for read was discussed at the section 4.2. The 

vocabulary tree was stored in “vocabularytree.dat” and the number of cluster or 

centriod (visual word) was stored in “numberofcluster.dat”. 
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4.3.1 Information Loading 

 

Figure 4.7: Flow chart of Information Loading 

 

 

The information loading loads the number of image and number of all feature 

points only.  

 

Pseudo code for load_information_no_point(number_image,number_allpo int);  

 

 

 

 

4.3.2 Feature Space Loading 

 

The Feature Space Loading loads the feature points in the feature space to IpVec ipts. 

 

Pseudo code for load_data(number_allpoint, "data/featurepoint.dat" ,ipts);  

 

Load_data (parameters: number of all feature points, "data/featurepoint.dat", ipts) 

For i from 0 to number of all feature points 

 For j from 0 to 64 

  Read the value from "data/featurepoint.dat" to ipts[i][j]  

 EndFor 

EndFor 

load_information_no_point  (parameters:pointer to number of image,pointer to number of all feature points) 

Read the number of image from data/size_allpoint.dat  

Read the number of all feature points from data/no_of_image.dat  
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Figure 4.8: Flow chart of Feature Space Loading 

 

 

 

4.3.3 Matrix Construction 

The matrix construction is used to construct opencv format type matrix to process the 

function. This function was designed to change the IpVec format to cvMat format. 

 

Pseudo code for construct_cvmatrix(feature,ipts);  

 

construct_cvmatrix ( parameters: pointer to output matrix, ipts) 

For i from rows of output matrix 

 For j from columns of output matrix 

  Read the data in ipts[i][j]  

  Write to the output matrix[i][j]  

 EndFor 

EndFor  
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Figure 4.9: Flow chart of Matrix Construction for Feature Space 

 

 

 

4.3.4 Hierarchical K-means Clustering 

 

The hierarchical k-means clustering used to cluster the feature space to find out the 

centroids of the cluster. These centroids denoted to its corresponding visual words. 

The visual word data were saved in the vocabulary tree. 

 

Pseudo code for hierarchical k-means clustering 

 

 

Parameters: number of leaf and branch factor 

Construct kmeans index by input parameters 

Construct hierarchical k-means index (parameters: feature space matrix, kmeans index) 

Perform hierarchical k-means clustering  

(Parameters: k-means index, feature space matrix, pointer to vocabulary tree matrix) 

Return (vocabulary tree matrix) 
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4.4 Feature Extraction & KNN KD Tree Search 

 

Figure 4.10: Process Flow of Feature Extraction & KNN KD Tree Search 

 

 

In this section, it determined the visual words that the image had and treated them as 

the content of an image. By using KNN KD Tree Search algorithms, the feature 

points of the input image will find the nearest neighbour visual words in vocabulary 

tree. The K of the KNN is defined that the number the nearest neighbour wanted and 

the vocabulary tree is in KD tree form. It is because the KD tree form will accelerate 

the speed of searching. Therefore, the nearest neighbour visual words are found and 

become to be the content of the image. For example, if the feature point of the image 

find three nearest neighbour visual words around it according the distance between 

them when KNN is 3, these three visual words are replaced the feature point and 

include in the content of the image. So, the content of the image is not using the 

feature point to represent them but using the visual words. Therefore, we can know 

the content of the image consists of two visual word 1, one visual word 2, zero visual 

word 3and etc. This concept is very important in our image retrieval system design. 

It standardizes the content of the image by using the visual words in vocabulary tree 

so that we can easily know the similarity of two images.  
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 After KNN algorithms, it will give an indices matrix that contains which 

centroids are nearest to the query feature points. It depends on the number of knn. If 

the KNN is 3, it will show the first three nearest centroids (visual words). This matrix 

records the visual words that near to the query points according the order of the 

query points.  

 

   Table 4.2: File for read and write  

Data file used for read Data file generated 

data/vocabularytree.dat 

data/numberofcluster.dat  

data/number_image.dat 

data/no_point_each_image.dat 

data/name.dat 

data/knnindices.dat  

 

 

 The number of cluster, or can be said number of visual word is read from 

data/vocabularytree.dat . After that, load the data in data/vocabularytree.dat 

. data/number_image.dat,data/no_point_each_image.dat and data/name.dat  

save the number of image for database, size of the feature points for each image and 

their name. 
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Pseudo code for Feature extraction & KNN KD tree searching 

 
 

 

 

4.4.1 Load Vocabulary Tree 

 

It consists of three functions which are load_numbercluster, load_data, 

construct_cvmatrix for vocabulary tree. This part loads the data needed to undergo 

this program. 

 

 

 

 

Initialize number of knn=3, number of cluster, vector : filename , IpVec: ipts and ipts1 

Call load_numbercluster (parameters: pointer to number of cluster) 

Return ( pointer to number of cluster) 

Call Load_data(parameters:number of cluster,"data/vocabularytree.dat",pointer to ipts) 

 Return (pointer to ipts) 

Call construct _cvmatrix (parameters: pointer to vocabulary tree, ipts)   

 Return (pointer to vocabulary tree) 

Change vocabulary tree format from cvmat to cv::Mat 

Call put_nameofimages_indir (parameters: pointer to filename) 

 Return (pointer to filename) 

Save number of image into data/number_image.dat 

For  i from 0 to number of image 

 Display i image  

 Save the image name in data/name.dat  

 Call resize_image(parameters: input image, pointer to resized image) 

  Resize to 520x400 

  Return (pointer to resized image) 

 Call surfDetDes (parameters: resized image, pointer to ipts1) 

  Return (pointer to ipts1) 

 Save the size of feature point to data/no_point_each_image.dat 

 Call construct _cvmatrix (parameters: pointer to query matrix, ipts1)   

 Change query matrix format from cvmat to cv::Mat 

 Call knnsearch (parameters: query matrix, vocabulary tree matrix, number of knn) 

  Return ( indices matrix) 

EndFor 
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Pseudo code for function load_numbercluster(no_cluster);  

 

 

 

 

 

Pseudo code for function 

load_data(no_cluster, "data/vocabularytree.dat" ,ipts)  

 

 

Pseudo code for function construct_cvmatrix(vocabtree,ipts); 

*  Please refer to 4.3.3 

 

4.4.2 Image Name Recordation 

 

Please refer to 4.2.1 

 

 

4.4.3 Display Current Position Image Name  

 

Please refer to 4.2.2 

 

 

4.4.4 Resize Image 

 

Please refer to 4.2.2 

 

 

 Load_data (parameters: number of cluster, "data/vocabularytree.dat", ipts) 

For i from 0 to number of cluster 

  For j from 0 to 64 

   Read the value from "data/vocabularytree.dat" to ipts[i][j]  

  EndFor 

EndFor 

 

load_numbercluster (parameters: pointer to number of cluster) 

  Read Number of cluster from data/numberofcluster.dat 

Return ( pointer to number of cluster) 
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4.4.5 SURF Feature Description 

 

Please refer to 4.2.2 

 

 

4.4.6 Data Construction 

 

Pseudo code for function construct_cvmatrix(datafeature,ipts1);  

 

 

 

 

4.4.7 KNN KD Tree Search 

 

Pseudo code for function knnsearch(query,vocabulary_tree,no_knn);  

 

 

construct_cvmatrix ( parameters: pointer to datafeature matrix, ipts1) 

For i from 0 to rows of output matrix 

 For j from 0 to columns of output matrix 

  Read the data in ipts1[i][j]  

  Write to the datafeature matrix[i][j] 

 EndFor 

EndFor  

  

 knnsearch  (parameters: query matrix, vocabulary matrix, number of knn) 

Setup Kd tree index parameter 

Setup index parameter, search parameter 

Construct resulting_indices matrix 

Construct resulting_distance matrix 

Perform knn search  

Call save_indice(parameters:  "data/knnindices.dat" ,resulting_indices) 

 For i from 0 to rows of query matrix 

  For j from 0 to number of knn 

    Read the value in resulting_indices[i][j] 

   Write to "data/knnindices.dat" 

  EndFor 

 End For 
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4.5 TF Computational 

 

 

Figure 4.11: Process Flow of Feature Extraction & KNN KD Tree Search 

 

 

 

From figure 4.11, we can know the process flow for this section. The TF-IDF 

concept was mentioned before at section 3.2.1. In TF computation, the formula we 

used is shown below. 

 

              (4.1) 

 

By using this formula, we can calculate the TF score by given knnindices file. 

Thus, TF will count the frequency of the specified visual word found in this image 

and divide by number of feature points found in this image.  
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   Table 4.3: File for read and write  

Data file used for read Data file generated 

data/knnindices.dat 

data/numberofcluster.dat 

data/number_image.dat 

data/no_point_each_image.dat  

data/tfscore.dat 

 

 

 

data/tfscore.dat store the TF score that found for each image. 

 

Pseudo code for TF computational 

 

 

 

 

 

 

 

 

 

 

 

 

 

 initialize number  of knn, number of visual words, number of images 

vector: indice, visual word, size of feature point of each image 

 

Call load_numbercluster( pointer to number of visual word) 

 Return (pointer to number of visual word) 

Call get_info_for_scoring( parameters: pointer to number of image& size of feature point of each image) 

 Return (pointer to number of image& size of feature point of each image) 

Call visual_word(parameters: pointer to visualword & numberof visual word) 

 Return (parameters: pointer to visualword & numberof visual word) 

Perform TF Computation 

Save into data/tfscore.dat 
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4.5.1 Load Data 

 

Pseudo code for function load_numbercluster(no_visualword); 
 

Please refer to section 4.4.1 
 
 
Pseudo code for function get_info_for_scoring(no_image,sizeof_each_img);  

 

 

 

4.5.2 Visual Word Initialization 

Pseudo code for function visual_word(visualword,no_visualword);  

 

 

 

 

 

 

 

 

 

 

 

visual_word  (parameters: pointer to visualword(vector) & number of visualword ) 

For i from 0 to number of visual word 

vword=0; 

 Pushback vword to the visual word 

EndFor 

 

 

get_info_for_scoring  (parameters: pointer to number of image & sizeof_each _img(vector) ) 

Read the number of image from data/number_image.dat 

For i from 0 to number of image 

Read the value from data/no_point_each_image.dat  

 Pushback value to the sizeof_each_img  

EndFor 
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4.5.3 Matrix Construction 

 

Pseudo code for construction of indices matrix  

 

 

 

 

4.5.4 TF Computational 

 

Pseudo code for TF Computational  

 

Vector: indice , sizeof_each _img 

Initialize tf 

For k from 0 to size of indice 

 For i from 0 to size of indice[k] 

  For j from 0 to number of knn 

   For m from 0 to number of visual word 

tf= value[i][j] in matrix for  indice[k]  

    If tf equal to m 

    Then visualword[m] increased by 1 

   EndFor 

  EndFor 

 EndFor 

 For m from 0 to number of visual word 

  Tfdata=visualword[m]/ sizeof_each _img[k] 

 EndFor 

EndFor 

Vector: sizeof_each _img  , indice  

For k from 0 to size of sizeof _each_img 

 Initialize d 

 For i from 0 to size of sizeof _each_img[k] 

  For j from 0 to number of knn 

Read the d from data/knnindices.dat  

   Put d into indice_data[i][j]  

  EndFor 

 EndFor 

 Push the indice_data matrix into indice[k]   

EndFor 
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Figure 4.12: Flow Chart for TF computation 
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4.6 IDF Computational 

 

 

Figure 4.13: Process flow for IDF Computational 

 

 

From figure 4.13, it includes two parts only which are Load Data and IDF 

Computational. Beside these, the TF data was used to compute IDF value. As we 

know, the idf values acts as constant for all after computed. We used the equation 

that show below to compute IDF value for each visual word. For example, 

“diamond” is occurred only in few document only, but the “the” is common occur in 

most document. IDF computation make “diamond” word has larger idf value and 

“the” is lower value. Thus we can know that if the “diamond” word occur in others 

document, it can be said that it has large probability that these two documents is very 

similar. Therefore, same concept applied in our system for image recognition.  

              (4.2) 

 

 

   Table 4.4: File for read and write  

Data file used for read Data file generated 

data/tfscore.dat 

data/numberofcluster.dat 

data/number_image.dat 

data/no_point_each_image.dat  

data/idfscore.dat  

 

After this process, idf value for each visual word is recorded in data/idfscore.dat.  
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4.6.1 Load Data 

 

Please refer to 4.5.1 

 

 

4.6.2 IDF Computation 

 

Figure 4.14: Flow Chart for IDF computation 
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Pseudo code for IDF Computational  

 

 

 

4.7 TF-IDF Computational 

 

 

Figure 4.15: Process flow of TF-IDF computational 

 

 

From figure 4.15, TF-IDF computational has five process, load data, matrix 

construction, TF-IDF score, recordation and calculation. Therefore, tf-idf values 

were stored in data/tfidf_database.dat for each image as our database type. 

Beside that the data used for cosine law equation was done in calculation. This 

Vector: indice , sizeof_each _img 

Initialize idf,no_word=0 

For j from 0 to number of visual word  

For i from 0 to number of image    

Read d from data/tfscore.dat  

  If d not equal to 0 

  Then no_word was increased by 1 

 EndFor 

 idf=number of image/no_word 

 write idf to data/idfscore.dat  

 no_word=0 

EndFor 
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calculation calculated the square root of square of sum of the tf-idf values for each 

image and stored in data/rootsquare_tfidf.dat. 

 

      (4.3) 

Where i is 0 and n is number of the images in database. 

 

   Table 4.5: File for read and write  

Data file used for read Data file generated 

data/tfscore.dat 

data/numberofcluster.dat 

data/number_image.dat 

data/no_point_each_image.dat 

data/idfscore.dat  

data/idfscore1.dat 

data/tfidf_database.dat 

data/rootsquare_tfidf.dat  

 

 

Pseudo code for TF-IDF Computational  

 

Vector: sizeof_each _img 

Cvmat Matrix:tfscore,idfscore,tfidfscore 

Initialize number of visual word,number of image 

Call load_numbercluster( parameters: pointer to number of visual word) 

 Return (pointer to number of visual word) 

Call get_info_for_scoring(parameters: pointer to number of image& size of feature point of each image) 

 Return (pointer to number of image& size of feature point of each image) 

Call tf_score(parameters: pointer to tfscore, number of image, number of visual word) 

 Return (pointer to tfscore) 

Call idf_score(parameters: pointer to idfscore, number of visual word) 

 Return (pointer to idfscore) 

Change tfscore from cvmat to cv::Mat format 

Change idfscore from cvmat to cv::Mat format 

Call tfidf_score(parameters: pointer to tfidfscore,number of image, number of visual word,tfscore,idfscore) 

 Return (tfidfscore) 

Change tfidfscore from cvmat to cv::Mat format 

Call save_tfidf (parameters: tfidfscore, number of image, number of visual word) 

 Write to data/tfidf_database.dat  

Call square_tfidf(parameters: tfidfscor, number of image, number of visual word) 

 Write to data/rootsquare_tfidf.dat  
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4.7.1 Load Data 

 

Please refer to 4.5.1 

 

4.7.2 Matrix Construction 

 

 

 

Figure 4.16: Flow Chart for TF matrix loading 
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Pseudo code for function 

tf_score(tfscoremat,number_of_image,no_visualword);  

 

 

 

 

Figure 4.17: Flow Chart for IDF computation and loading 

 

 

tf_score (parameters: pointer to tfscore, number of image, number of visual word) 

For i from 0 to number of image 

 For j from 0 to number of visual word 

  Read the tf data from data/tfscore.dat  

  Write the tf data to the tfscore matrix[i][j]  

 EndFor 

EndFor  

Return (pointer to tfscore) 
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Pseudo code for function idf_score(idfscoremat,no_visualword);  

 

 

4.7.3 TF-IDF Score 

 

Figure 4.18: Flow Chart for TF-IDF computation 

idf_score (parameters: pointer to idfscore, number of visual word) 

For i from 0 to number of visual word 

 Read the idf data from data/idfscore.dat  

 idf=log10 (idf) 

Write the idf data to the data/idfscore1.dat  

Write the idf data to the idfscore matrix[i][j]  

EndFor  

Return (pointer to idfscore) 
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Pseudo code for function 
tfidf_score(tfidfscoremat,number_of_image,no_visual word,tfmat,idfmat); 

 

 

 

tfidf_score (parameters: pointer to tfidfscore,number of image, number of visual word,tfscore,idfscore) 

For i from 0 to number of image 

 For j from 0 to number of visual word 

  Read the tf data from tfscore matrix[i][j]  

  Read the idf data from idfscore matrix[0][j] 

  Tfidf=tf x idf 

  Write the tfidf data to the tfidfscore matrix[i][j]  

 EndFor 

EndFor  

Return (pointer to tfidfscore) 
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4.7.4 Recordation 

 

Figure 4.19: Flow Chart for TF-IDF data writing 

 

 

Pseudo code for function 
save_tfidf(tfidfmat,number_of_image,no_visualword);

 

save_tfidf  (parameters: tfidfscore, number of image, number of visual word) 

For i from 0 to number of image 

 For j from 0 to number of visual word 

  Read the tfidf data from tfidfscore matrix[i][j] 

  Write the tfidf data to the data/tfidf_database.dat  

 EndFor 

EndFor  
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4.7.5 Calculation 

 

Figure 4.20: Flow Chart for calculation 
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Pseudo code for function 
square_tfidf(tfidfmat,number_of_image,no_visualword );  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

square_tfidf  (parameters: tfidfscore, number of image, number of visual word) 

For i from 0 to number of image 

 Sum of Square of tfidf=0 

 For j from 0 to number of visual word 

  Read the tfidf data from tfidfscore matrix[i][j] 

  Sum of Square of tfidf = Sum of Square of tfidf + (tfidf)^2   

 EndFor 

 Square root of sum of square of tfidf 

Write this value to the data/rootsquare_tfidf.dat  

EndFor  

 

  



66 

 

 

 

CHAPTER 5 

 

 

 

5 Application Stage 

 

 

 

5.1 Application stage overview 

 

 

Figure 5.1: Application Stage Overview 

 

 

 The overview of the application stage was shown in figure 5.1. This stage 

was provided with graphic user interface that mentioned before. Furthermore, this 

stage also can be say our image retrieval system for indexing and matching in online 

mode. First, the initialization was done once the GUI was started. Afterwards, the 

feature extraction, KNN KD tree search, TF-IDF weighting and cosine law matching 

was activated when the “Match” button in GUI was pressed. The logo image that 

loaded in GUI will pass the image to this feature extraction part, so it can process all 

the parts and give a result, logo name. The first four parts is same as training stage 

that we mentioned before at section 4. The only difference is the training stage 
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processes lots of images for the needed in database and application stage only do for 

one query image only. Beside this, the matching part, we used cosine law equation to 

implement whether the query image and images from database is match or not. 

Moreover, this part was accelerated by using GPU, Nvidia Gefore GT 9400. The 

computational of cosine law will be passed to GPU and compute it in parallel. Thus, 

the elapse time is reduced.  

 

 In table 5.1, the DAT files that generated from training stage in offline mode 

was read by application stage for further operation. 

 

  Table 5.1: Input Data File in “data” directory file  

File name Description 

featurepoint.dat Feature space  

idfscore.dat idf score without log operation 

idfscore1.dat Idf score 

knnindices.dat Indices for visual words found in each  database image 

knnindicestem.dat Indices for visual words found in query image 

no_of_image.dat Number of images in database 

no_point_each_image.dat Size of feature points for each image in database 

number_image.dat Number of images in database 

Numberofcluster.dat Number of visual words 

rootsquare_tfidf.dat Square root of sum of square of tfidf for each image in 

database 

size_allpoint.dat Size of feature space 

size_eachpoint.dat Size of feature points for each image in database 

tfidf_database.dat TF-IDF score for each image of database 

tfscore.dat TF score for each image of database 

Vocabularytree.dat Vocabulary tree (dictionary) 
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5.2 Initialization 

 

 

Figure 5.2: Overview of initialization 

 

 

In this section, all the data needed from the “data” file was read and passed into the 

application stage. The operation for load_numbercluster, load_data, get_info_for 

scoring, construct matrix (vocabulary tree loading) was mentioned at training stage. 

Thus we focus on load idf, load_database_tfidf and load_squareroot_tfidf_database. 

The pseudo codes of them were shown at below. 

 

Pseudo code for function load_idf(idfmatrix,no_cluster);  

 

Cvmat:idfscore 

load_idf  (parameters: pointer to idfscore, number of visual word) 

For i from 0 to number of visual word 

 Read the idf data from data/idfscore1.dat  

 Write the idf data to the idfscore matrix[0][i]  

EndFor  

Return (pointer to idfscore) 
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Pseudo code for function 

load_database_tfidf(number_of_image,no_cluster,data base_tfidf);

 

 

Pseudo code for function 

load_squareroot_tfidf_database(sum_sr_database,numb er_of_image);

 

 

 

 

 

 

 

 

 

 

Vector:sum_sr_database 

load_squareroot_tfidf_database  (parameters: pointer to sum_sr_database, number of image) 

For i from 0 to number of image 

 Read the value data from data/rootsquare_tfidf.dat  

 Write the value data to the sum_sr_database[i] 

EndFor  

Return (pointer to sum_sr_database) 

 

  

Cvmat: tfidfscore 

load_database_tfidf  (parameters: number of image, number of visual word, pointer to tfidfscore) 

For i from 0 to number of image 

 For j from 0 to number of visual word 

  Read the tfidf data from data/tfidf_database.dat  

  Write the tfidf data to the tfidfscore matrix[i][j] 

 EndFor 

EndFor  

Return (pointer to tfidfscore) 
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5.3 Feature Extraction 

 

 

Figure 5.3: Process flow of feature extraction 

 

The feature extraction part is same as the feature extraction part from training stage 

at chapter 4. The difference is this part is process one image only from GUI. The 

image was loaded from GUI and passed this section. Therefore, this section can be 

referring to the 4.2 section. 
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5.4 KNN KD Tree Search 

 

The process is same with section 4.3. It performs the KNN KD Tree search and save 

the indices (visual words) found in data/knnindicestem.dat. 

 

Pseudo code for function knnsearch(query,vocabulary_tree,no_knn);  

 

 

 

5.5 TF-IDF Weighting 

 

Figure 5.4: Process flow of TF-IDF weighting 

 

 knnsearch  (parameters: query matrix, vocabulary matrix, number of knn) 

Setup Kd tree index parameter 

Setup index parameter, search parameter 

Construct resulting_indices matrix 

Construct resulting_distance matrix 

Perform knn search  

Call save_indice(parameters:"data/knnindicestem.dat",resulting_indices) 

 For i from 0 to rows of query matrix 

  For j from 0 to number of knn 

    Read the value in resulting_indices[i][j] 

   Write to "data/knnindicestem.dat" 

  EndFor 

 End For 
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This part has same concept with the TF-IDF part in chapter 4. However, the data 

needed for cosine law calculation was executed in this section. The multiplication of 

square root of sum of square of tfidf for query image and Square root of sum of 

square of tfidf for database image was computed at here and represented as vector 

format. The pseudo code was shown below that different with chapter 4.  

 

Pseudo code for function load_indice( img1_indice,no_cluster); 

 

 

Pseudo code for 

tfscoring(img1_indices,tfmatrix,img1_visualword,no_ cluster,num_knn,ipts1);  

 

 

Vector: ipts1,img1_visualword 

Cvmat:img1_indices, tfmatrix 

tfscoring (parameters: img1_indice,pointer to tfmatrix,img1_visualword,number of  visual word, number of 

knn,ipts1) 

For j from 0 to number of knn 

 For m from 0 to number of visual word 

f= value [0][j] in matrix for  img1_indices 

  If f equal to m 

  Then img1_visualword[m] increased by 1 

 EndFor 

EndFor 

For j from 0 to number of visual word 

 Tfdata= img1_visualword [j]/ size of ipts1 

 Write the tfdata into tfmatrix[0][j]  

EndFor 

Return (pointer to tfmatrix) 

 

cvmat: img1_indice 

load_indice (parameters:pointer to img1_indice, number of visual word) 

For i from 0 to size of SURF poins for sample image 

 For j from 0 to number of visual word 

  Read the index data from data/knnindicestem.dat  

  Write the index data to the img1_indice matrix[i][j] 

 EndFor 

EndFor  

Return (pointer to img1_indice) 
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Pseudo code for function 
compute_img1_tfidf(img1_tf,img1_idf,img1tfidf,no_cl uster);  

  

 

Pseudo code for function 
square_root_sum_img1tfidf(img1tfidfmat,no_cluster,s um_sr_img1);  

 
 

Pseudo code for function multiplication 

  

 

 

Vector :multiplenum , sum_sr_img1, sum_sr_database 

For i from 0 to number of image 

 Value= the data from sum_sr_img1 x the data from sum_sr_database [i] 

 Write the value to multiplenum[i] 

EndFor  

 

Cvmat:img1tfidf 

Vector:sum_sr_img1 

square_root_sum_img1tfidf (parameters: img1tfidf, number of visual word, sum_sr_img1) 

Sum of Square of tfidf=0 

For j from 0 to number of visual word 

 Read the tfidf data from img1tfidf matrix[i][j] 

 Sum of Square of tfidf = Sum of Square of tfidf + (tfidf)^2   

EndFor 

sum_sr_img1=Square root of sum of square of tfidf 

Return (sum_sr_img1) 

 

Cvmat:img1_tf, img1_idf, img1tfidf 

compute_img1_tfidf (parameters: img1_tf,img1_idf pointer to img1tfidf, number of visual word) 

For i from 0 to number of image 

 For j from 0 to number of visual word 

  Read the tf data from img1_tf matrix [0][j] 

  Read the idf data from img1_idf matrix [0][j] 

  Tfidf=tf x idf 

  Write the tfidf data to the img1_tfidf matrix[i][j] 

 EndFor 

EndFor  

Return (pointer to img1_tfidf) 
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5.6 Cosine Law Matching 

  

Figure 5.5: Process flow of cosine law matching 

 

This section is the crucial part for the matching. As we know the cosine law equation 

is find out the angle θ between two vectors. The formula 5.1 is cosine law equation 

and shown at below.   

 

 

Figure 5.6: Two vectors 

 

                                       (5.1) 

 

By applied the equation 5.1, we will get the cosA value, if the cosA is 1, that means 

two lines are overlapped with each others.  

 

                                             (5.2) 

    (5.3) 

Where i is zero from query image, j is zero from database image, n is number of visual word 
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From equation 5.2, this formula is written in vector form. Thus we can conclude that 

equation 5.3 is equal to equation 5.2. So, the similarity between the images is found. 

When the value close to 1, which means θ is zero, the two vectors are overlapped. 

Therefore, the TF-IDF value from database images and query image can be treated as 

vectors in higher dimension. By using this concept, after applied the equation 5.3, the 

more the value approach to 1, the more similarity the two images have.  

 

 For determination, it is done by using switch case in c++. The variable noi 

was obtained and it indicated the position of the image in database. Besides that, we 

know there are there images in each class. Therefore, the noi divided by 3 in integer 

form pass to the switch case to select the image according to value of noi after 

division. 

 

 

Figure 5.7: Cosine law computation 
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Figure 5.8: Cosine law computation II 

 

Pseudo code for function 
cosinelaw(xy,number_of_image,no_cluster,tf_idf_data base,img1tfidfmat
,multiplenum,similaritylist,noi)

  

Cvmat: img1tfidfmat, tf_idf_database 

Vector:multiplenum 

Parameters:number of image,number of visual word,pointer to noi 

For i from 0 to number of image 

 Initialize t=0 

For j from 0 to number of visual word 

  Value= the data from img1tfidfmat [0][j]x tf_idf_database [i][j]  

  t=t+value 

 EndFor 

Write t to the xy[i]   

EndFor  

For k from 0 to size of xy 

 g= xy[k]/multiple[k] 

 If g<0.8 

 Then noi=k 

EndFor 

Return (pointer to noi) 
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Pseudo code for matching 

  

 

 

  Table 5.2: Switch case 

case  0:z= "100plus" ; break ; 
case  1:z= "acer" ; break ; 
case  2:z= "adidas" ; break ; 
case  3:z= "airasia" ; break ; 
case  4:z= "airjordan" ; break ; 
case  5:z= "amd" ; break ; 
case  6:z= "apple" ; break ;  
case  7:z= "asus" ; break ; 
case  8:z= "ati" ; break ; 
case  9:z= "avast" ; break ; 
case  10:z= "avg" ; break ; 
case  11:z= "blizzard" ; break ; 
case  12:z= "bmw" ; break ; 
case  13:z= "burgerking" ; break ; 
case  14:z= "caltex" ; break ; 
case  15:z= "capcom" ; break ; 
case  16:z= "carrefour" ; break ; 
case  17:z= "celcom" ; break ; 
case  18:z= "cocacola" ; break ; 
case  19:z= "compaq" ; break ; 
case  20:z= "dell" ; break ; 
case  21:z= "digi" ; break ; 
case  22:z= "domino" ; break ; 
case  23:z= "ea" ; break ; 
case  24:z= "esso" ; break ; 
case  25:z= "facebook" ; break ; 
case  26:z= "firefox" ; break ; 
case  27:z= "ford" ; break ; 
case  28:z= "google" ; break ; 
case  29:z= "honda" ; break ; 
case  30:z= "hp" ; break ; 
case  31:z= "hyundai" ; break ; 
case  32:z= "ibm" ; break ; 
case  33:z= "intel" ; break ; 
case  34:z= "johnwiley" ; break ; 
case  35:z= "jusco" ; break ; 
case  36:z= "kappa" ; break ; 
case  37:z= "kfc" ; break ; 
case  38:z= "lee" ; break ; 
case  39:z= "levis" ; break ; 

 

case  40:z= "LG" ; break ; 
case  41:z= "logitech" ; break ; 
case  42:z= "macfee" ; break ; 
case  43:z= "marrybrown" ; break ; 
case  44:z= "mazda" ; break ; 
case  45:z= "mcdonald" ; break ; 
case  46:z= "mcgrawhill" ; break ; 
case  47:z= "Mercedes" ; break ; 
case  48:z= "mitsubishi" ; break ; 
case  49:z= "motorola" ; break ; 
case  50:z= "munchy" ; break ; 
case  51:z= "nike" ; break ; 
case  52:z= "nintento" ; break ; 
case  53:z= "nissan" ; break ; 
case  54:z= "nokia" ; break ; 
case  55:z= "nvidia" ; break ; 
case  56:z= "pearson" ; break ; 
case  57:z= "pepsi" ; break ; 
case  58:z= "perodua" ; break ; 
case  59:z= "petronas" ; break ; 
case  60:z= "pizza" ; break ; 
case  61:z= "polo" ; break ; 
case  62:z= "pringles" ; break ; 
case  63:z= "proton" ; break ; 
case  64:z= "publicbank" ; break ; 
case  65:z= "puma" ; break ; 
case  66:z= "reebok" ; break ; 
case  67:z= "samsung" ; break ; 
case  68:z= "sega" ; break ; 
case  69:z= "shell" ; break ; 
case  70:z= "sony" ; break ; 
case  71:z= "sonyericsson" ; break ; 
case  72:z= "spritzer" ; break ; 
case  73:z= "squaresoft" ; break ; 
case  74:z= "toshiba" ; break ; 
case  75:z= "toyota" ; break ; 
case  76:z= "utar" ; break ; 
case  77:z= "vaio" ; break ; 
case  78:z= "windows" ; break ; 
case  79:z= "youtube" ; break ; 
default : cout<< "find nothing" ;  

 

 

 

 

Parameters:noi 

Initialize z 

noi=noi/3 (integer format) 

switch (noi) 
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5.7 GPU Acceleration 

 

In GPU acceleration part, we used CUDA toolkit 2.3 and NVidia GPU Computing 

SDK to setup for programming by using GT 9400. We used it to accelerate the speed 

of computation in cosine law part and return the noi to the switch case. Therefore, we 

transfer the TF-IDF data of database images and query image from CPU addresses to 

GPU addresses. It executes the multiplication process of the TF-IDF data of database 

images and query image in parallel and bring out the value to the CPU to do division. 
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CHAPTER 6 

 

 

 

6 EXPERIMENTAL RESULTS AND ANALYSIS 

 

 

 

6.1 Experiment Setup 

 

As we mentioned in previous chapter, our logo recognition system is divided into 

two mode, offline mode and online mode. In offline mode (training stage), we used 

30 classes, 170 logo images that change in rotation, illumination, and scale as our 

tested logo images. Then, we set the different parameters which are number of visual 

words and number of KNN to find out the similarity between the tested logos and 

database logos. This is our first experiment. The second experiment is use the 

different threshold value of the implementation of the logo and find out their 

performance.  

 

 

6.1.1 First Experiment Setup 

 

 First, as the previous section mentioned, 30 classes, 162 logo images have 

been used for tested images. This experiment showed out the result about the 

similarity change between tested logos and database logos in rotation, illumination, 

scale, number of KNN and number of visual words. Therefore, we can know the 

effect and changes in similarity by changing the number of visual words and number 

of KNN. Therefore, the optimize selection of the number of visual words and number 

of KNN were obtained. 
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First, 10 classes’ logo images with 5 logo images in each class are changing 

in illumination. From the figure 6.1, the first logo images is increase its brightness by 

50, second one is 25, third one is the original logo, fourth one is decreased its 

brightness by 25, the last one is decreased by 50. The 10 classes’ logo images are 

along this kind of setup as our tested images.      

  

 

 

 

Figure 6.1: Tested logo with illumination change 

 

 

Secondly, another 9 class’s logo images with 7 logo images in each class are 

changing in rotation from 0 degree to 30 degree. From the figure 6.2, the first logo is 

the original logo, after that, the logo is rotated by 5 degree, 10 degree, 15 degree, 20 

degree, 25 degree and 30 degree. The 10 classes’ logo images are along this kind of 

setup as our tested images.      

 

 

 

 

Figure 6.2: Tested logo with rotation change 
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Figure 6.3: Tested logo with scale change 

 

 

Thirdly, another 10 class’s logo images with 5 logo images in each class are 

changing in scale from 25% of the original size to 200% of the original size. From 

the figure 6.3, the first logo is 25% of the original logo, second is 50% of the original 

logo, third one is the original logo, fourth and fifth are 150% and 200% of the 

original logo. The 10 classes’ logo images are along this kind of setup as our tested 

images.      

 

 Then, these 30 classes, 162 tested images were setup. Therefore, we used 

these tested images to find out the changes of the similarity by changing the number 

of visual words and number of KNN. In addition, we also can find out the similarity 

changes between the original image in database and the images that changed in 

rotation, illumination and scale. Therefore, we set the number of visual words to 100, 

150 and 200. This parameter was changed in training stage program at part 2, 

building of vocabulary tree, “number_of_leaf” parameter. Noticed that we have to 

check out the centroids found in vocabulary tree and ignore the centroid point is zero. 

It is because, in that case, the node is choosing not to expand.  

  

 Afterwards, the KNN value was changed in part 3 and 4, 

featureextraction_knntreesearch and tf_computational, no_knn parameter to 3, 5 and 

7 at the case when number of visual words is 100, 150 and 200. Therefore, after the 

parameters were changed, the data that generated were the database of the 

application stage. The result was generated after the application stage by input the 

tested images. 



82 

6.1.2 Second Experiment Setup 

 

The objective of this experiment is finding out of the performance of the system by 

changing the threshold value. The threshold value was set up to 0.86, 0.88, 0.90 and 

0.92. Therefore, the performance and result were obtained. This setting was done in 

application stage only. The parameter of threshold value is in the tfidf.cpp, cosinelaw 

function. In this experiment, we choose KNN=5, number of Visual words =150 as 

our database. 

 

 Here, the 16 logo images that not include in database, the 47 logo images that 

not edited from database image, the 240 logo images in database and the 162 tested 

images from experiment one were combined together and become 465 tested images 

of this experiment.  After the result, the threshold value will be determined according 

to the performance after result. 

 

 

 

Figure 6.4: The logo images that not include in database 

 

 

Figure 6.5: The logo images that not edited from database image 

 

 

 

6.2 Result 

 

Because of the huge data in result, the result for experiment 1 and 2 will be shown in 

appendix A and B.  
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6.3 Effect of the Change of KNN and Visual Word 

 

In our image retrieval system, there are three parameters can be tuned and affect all 

the performance of the system. The first one is number of cluster (centroids) from the 

Hierarchical K-means Clustering function. The Hierarchical K-means Cluster was 

provided in Opencv. Therefore, this function was used to find out the number of 

centroids to construct a vocabulary tree. There are three parameters at here, however, 

in most of the time, the other two parameters is fixed. These parameters are branch 

factor which set the maximum number of the centroids can be expanded from one 

centroid while the other parameter, cb index define the distance between two 

centroids whether it needed to expand or not if too close. Therefore, we just need to 

change the number of cluster to define our visual words according to the centroids of 

the cluster. 

 

 Beside this parameter, number of k in KNN also acts a crucial parameter in 

over system. We use the KNN Search function that provided in Opencv to search the 

nearest neighbour points. These two parameters need to be tuned when the database 

and the requirement are changed. Otherwise, it will affect the accuracy and the speed 

of the system.  

 

 From the result 1 for experiment 1, we noticed that when KNN increase, the 

similarity between tested image and corresponding database image was increase. It is 

because when the KNN increase, it is more tolerance and high matching probability 

to match the similar image. However, the increase of KNN will make the irrelevant 

image match with the database image. This wrong match probability will also be 

increase.  

 

 After that the changes of the number of visual words also increase the 

distinguisher rate. It decreases the probability of the wrong match. However, the 

ability of matching with the similar image or the image that change in rotation, 

illumination and scale will be decreased.  

  

 Therefore, the overall similarity value between tested images and its 

corresponding database image that show in result 1 were obtained. Beside this result, 
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the list of the similarity value between tested image and 240 database images also 

were obtained in result 0. Note that result 1 is come from result 0 and result 0 data 

was too huge that cannot show in this report. So, we extracted the tested images and 

its corresponding images matched from result 0 to result 1. From these two results, 

we find out the average value for the similarity value between tested images and its 

corresponding database image and the similarity value between tested image and 240 

database images in different parameters (KNN and Visual word) setup.  

 

 

Table 6.1: The Average similarity value between tested images and its 

corresponding database image 

KNN value Visual word=100 Visual word=150 Visual word=200 

3 0.9029 0.8804 0.8640 

5 0.9232 0.9081 0.8850 

7 0.9411 0.92106 0.8948 

 

 

Table 6.2: The Average similarity value between tested images and all database 

image 

KNN value Visual word=100 Visual word=150 Visual word=200 

3 0.4425 0.37 0.32 

5 0.51 0.449 0.38 

7 0.56 0.50 0.43 

 

 

Table 6.3: Distinguish rate (The value in table 6.1 divide by the value in table 

6.2)  

KNN value Visual word=100 Visual word=150 Visual word=200 

3 2 2.38 2.7 

5 1.84 2 2.38 

7 1.67 1.84 2 
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The average match value was shown in Table 6.1 while the average the 

similarity value between all database images and each tested image was shown in 

Table 6.2. In Table 6.1, the increase of KNN will increase the similarity value; the 

increase of visual word will decrease the similarity value. However, the value for 

visual word =100, KNN=5 was close to the value for visual word =150, KNN=7, so 

the others value. Beside this, the table 6.2 also give same result. In conclusion, we 

can know that the if the visual word increase, the increase of KNN value will make 

this set same with the previous set that not increase in visual word and KNN. It is 

because the increase of visual word will increase the distinguish rate, the increase the 

KNN will decrease the distinguish rate and they will balance together and remains 

same. The distinguish rate is the fraction of these two table data. When the rate is 

higher, that means the similarity of other irrelevant images and the corresponding 

image to one tested image is differ so much and can be discriminated easily and 

avoids miss matching with irrelevant images. From these three table, we chose the 

set that average in result which is visual word = 150 and KNN =5 as our database 

setup parameter. 

 

  

 

6.4 Performance Measurement 

 

As the technology for the image classification and retrieval system increase, more 

and more evaluation and measurement method for the system performance was 

proposed and introduced nowadays. In addition, these measurement methods need a 

collection of the tested image to test the performance of the system. After the 

measurement is obtained, the evaluation of system can be concluded. 

 

 There are some fundamental elements for the evaluation are true positive, 

true negative, false positive and false negative. The evaluation uses these elements to 

calculate the performance of the system. These elements are obtained in 

measurement. By using this evaluation method, we can know the effect of changing 

in the threshold value. Therefore, from the evaluation, we also can de 
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 First, we need to know the concept of these elements. This concept is come 

from the confusion matrix. 

 

 

Figure 6.6: Table of Confusion Matrix 

 

As the figure 6.1 shown, true positive (TP) or hit means that the image that the 

system found is really matching in actual word. False negative (FN) or miss is the 

system found the image but the database did not contain this image actually. False 

Positive (FP) or False alarm is the image that the system found is not matching in 

actual. True negative (TN) or correct rejection is the system cannot find the image 

that it should not be found in system actually. P is the total of TP and FP while N is 

the total of FN and TN. Therefore, by measuring this value for these elements, we 

can know the evaluation of the system.  

 

From the result of the experiment 2, the TP, FP, FN and TN value were 

obtained. So, we used these elements to measure the performance of the system. 

 

  Table 6.4: The Effect of Changes of Threshold Value  

Threshold Value TP FP FN TN P N 

0.88 310 140 5 10 315 150 

0.90 333 116 0 16 333 132 

0.92 337 112 1 15 338 127 
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6.4.1 Accuracy 

 

Accuracy is the measurement that how well the system can recognize correctly.  

 

ACC = (TP + TN) / (P + N)                              (6.1) 

 

By using the equation 5.1, we obtained the accuracy for each threshold value set. 

 

Table 6.5: The Accuracy for Changes in Threshold Value 

Threshold value Accuracy 

0.88 0.68 

0.90 0.751 

0.92 0.757 

 

 

 

6.4.2 Detection Rate 

 

Detection Rate is the measurement of the performance that how the system can 

detect and distinguish the database logo images and non database logo images. 

 

             Detection Rate= TP/ (TP+FN)                                    (6.2) 

 

Table 6.6: The Detection Rate for Changes in Threshold Value 

Threshold value Detection Rate 

0.88 0.98 

0.90 1 

0.92 0.997 
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6.4.3 False Alarm Rate 

 

False alarm rate, as known as false positive rate or fall-out, it shows the probability 

of the system classified a wrong matching with other image in database.  

 

FAR = FP / FP+TN                                                       (6.3) 

 

Table 6.7: The False Alarm Rate for Changes in Threshold Value 

Threshold value False Alarm Rate 

0.88 0.93 

0.90 0.878 

0.92 0.881 

 

 

 

6.4.4 False Negative Rate 

 

False negative rate shows the probability of the system match an image that not 

occurs in database. 

 

FAR = FN / TP+FN                                                       (6.4) 

 

Table 6.8: The False Negative Rate for Changes in Threshold Value 

Threshold value False Negative Rate 

0.88 0.016 

0.90 0 

0.92 0.003 
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6.4.5 Sensitivity or True Positive Rate 

 

Sensitivity also known as hit rate or recall, is successful rate to classify the different 

images in database.  

 

Sensitivity = TP / (TP + FN)                                   (6.5) 

 

Table 6.9: The Sensitivity for Changes in Threshold Value 

Threshold value Sensitivity 

0.88 0.984 

0.90 1 

0.92 0.997 

 

 

 

6.4.6 Specificity or True Negative Rate 

 

Specificity determines the successful rate that the system can match the images in 

database correctly. The higher the specificity, the higher the probability that matches 

wrongly with the other images in database.  

 

SPC = TN / (FP + TN)                                                        (6.6) 

 

Table 6.10: The Specificity for Changes in Threshold Value 

Threshold value Specificity 

0.88 0.066 

0.90 0.1212 

0.92 0.118 
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6.4.7 Precision or Positive Predictive Value (PPV) 

 

Precision is the fraction of the image retrieved in database that is correctly matched.   

 

PPV = TP / (TP + FP)                                                       (6.7) 

 

Table 6.11: The Precision for Changes in Threshold Value 

Threshold value Precision 

0.88 0.688 

0.90 0.74 

0.92 0.75 

 

 

 

6.4.8 Negative Predictive Value (NPV) 

 

Negative Predictive value show that how the system can implement correctly that the 

non database image is not in database. 

 

NPV = TN / (TN + FN)                                                         (6.8) 

 

Table 6.12: The NPV for Changes in Threshold Value 

Threshold value NPV 

0.88 0.67 

0.90 1 

0.92 0.938 
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6.4.9 False Discovery Rate (FDR) 

 

False discovery rate shows that the probability that the system may match wrongly.   

 

FDR = FP / (FP + TP)                                                        (6.9) 

 

Table 6.13: The FDR for Changes in Threshold Value 

Threshold value FDR 

0.88 0.31 

0.90 0.258 

0.92 0.249 

 

 

 

6.4.10 Receiver Operation Characteristic (ROC) 

 

ROC is a graphical plot of sensitivity which is the graph of true positive rate versus 

false positive rate when the threshold value change. It provided us to select the 

optimize threshold value. 

 

 

Figure 6.7: ROC 

 

The coordinate (0, 1) is defined as perfect classification. Thus, the coordinate that 

close to this (0,1) can be said that close to perfect classification. At here, threshold 

value 0.90 is close to perfect classification. 
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6.4.11 F1 score 

 

F1 score is a measure of test accuracy, it consider both precision and accuracy and is 

weighted average of them. F1 reaches its best value in 1 and worst in 0. 

 

                                             (6.10) 

 

Table 6.14: The F1 Score for Changes in Threshold Value 

Threshold value F1 score 

0.88 0.677 

0.90 0.74 

0.92 0.758 

 

 

 

6.4.12 Threshold Value Selection and Analysis 

 

Table 6.15: The Performance Measurement for Each Threshold Value 

Evaluation 0.88 0.90 0.92 

Accuracy 0.68 0.75 0.757 

Detection Rate 0.98 1 0.997 

FAR 0.93 0.878 0.881 

FNR 0.016 0 0.003 

Sensitivity (Recall) 0.984 1 0.997 

Specificity 0.066 0.1212 0.198 

Precision 0.688 0.74 0.75 

NPV 0.67 1 0.938 

FDR 0.31 0.28 0.249 

F1 Score 0.677 0.74 0.738 
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From the Table 6.15, the increase the threshold value, the good effect measure such 

as accuracy rate, detection rate, recall, specificity, precision, NPV and F1 score also 

increase. When the value closer to 1, the better the performance. Moreover, the bad 

affect measure such as FAR, FNR and FDR was decrease as well. The smaller these 

value, the better the performance.  

 

 Therefore, the value of 0.88 was not concerned due to the poor evaluation. 

We added up the value for good effect measurement and obtained the sum of these 

values which are 5.35 and 5.38 for 0.90 and 0.92. The full mark is 7. They were so 

close and hard to select. However, from the ROC graph, 0.9 is better than 0.92. Thus, 

we chose the 0.90 as our threshold value. 

 

 

 

6.5 Speed Analysis 

 

From model 1 to model 3 that mentioned before in section 3, prototyping process, the 

searching speed was increase tremendously.  For table 6.12, in same condition that 

the database contains 240 logo images, the searching speed when search all images 

for each model were recorded down. This result was obtained by using intel dual 

core processor 1.73GHz and 1.5G RAM without GPU. 

 

Table 6.16: The Searching Speed for Each Model for 240 database image 

Model Searching Speed 

Model 1 36s 

Model 2 6s 

Model 3 0.25s 

 

 

The model 3 which is the final model that used the concept of vocabulary tree gives a 

remarkable result in image retrieval system. The model 1 used the nearest neighbour 

ratio which high cost in computational increase the elapse time in searching. For the 

model 2, KNN will slow down the speed as the capacity of it increase. In this case, 
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the whole feature points for 240 images are about 37000. That’s why the long time 

elapsed.    

 However, the searching speed for model 3 is very fast because of the simple 

computational. Notice that this result is record from non GPU system result. By 

using GPU to accelerate, the time elapsed will down to micro seconds for 240 images. 

 

 

 

6.6 Error Analysis 

 

From the result 1 and result 2, the failure to match correctly occurs because of some 

reason. First, is the problem of the SURF descriptor, although it is strong descriptor, 

it has its limit too. As we noticed in result 1, the change in scale and illumination 

give a pretty good result but poor in rotation. When the image is rotated up to 10 or 

15 degree, the classification rate is slow down and easily miss match with others 

image in database. Secondly, the database image should very similar with the tested 

image and less background interrupt. It is because the influence of the background 

will be extracted with its feature points and take counts in the system. This will result 

in the similarity value will small between them and database image. Beside these, the 

contour of the logo must be obvious or the feature point of it might be not extracted 

of give wrong information of the surround of the interest point.  Furthermore, the 

white background and black logo and black background and white logo which are 

same logo and contour, their similarity is close to 0 for the SURF descriptor. 

Therefore, the database images have to be increase more with different environment 

to increase the ability of the system. It is because in the result 2, the tested logo in 

different environment has less similarity with its corresponding database image and 

hard to classified it. 
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CHAPTER 7 

 

 

 

7 CONCLUSION 

 

 

 

7.1 Comment 

 

In this report, the analysis and discussion of the result were mentioned in section 6. 

In overall, our system is performed well and flexible. As the evaluation give a 5.35 

points with full mark is 7, this can be said our system is good and pass the evaluation. 

Beside this, the searching speed also very fast and can be used for video tracking 

system. This system not only recognizes the logo image only, the human face or 

other images also can recognize well. Therefore, this system can be said very flexible. 

Beside these, it is user friendly. Easy to setup and tune the system. The user can build 

up the database as they like and requirements. Moreover, GUI provided the user 

more easily uses our system to execute the program.  

 

 

 

7.2 Summary 

 

In our logo recognition system, we used 80 classes logo with 240 logo images each 

class as our database. We used the concept of vocabulary tree in our retrieval system. 

In our system, the visual word number was set to 150 and KNN value was set to 5 

after analysis and selection. This system is well performed in illumination change 

and scale change, also the logo image with less influence of the background. For 

rotation and affine change, SURF gave a relatively poor result to the previous 
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changes. Furthermore, GPU was added to accelerate the similarity function. The 

speed of the search all the database image is 270ms. The evaluation of the system is 

5.33 points over 7 points which show the system is performed nicely.  

 

 

 

7.3 Conclusion 

 

In conclusion, our system strong in recognize the logo images that changes in 

illumination, scale and similar to database image but weak in rotation and affine 

relatively.  The evaluation of the system is 5.33 points over 7 points which show the 

system is performed nicely. Our system cannot recognize the logo image that 

inverted colour but same logo contour image. The speed is tremendously fast and 

response fast also. Therefore, our system is achieved our target we set and well 

developed in retrieval system and speed acceleration. 

 

  

 

7.4 Future Work 

 

For the future work, speed and accuracy are the main issue for the whole system. In 

speed section, in our system, the feature extraction costs about 3 to 4 seconds. It is 

too long for the whole system. This section can used CUDASURF to accelerate. 

Beside this, the KNN search part also cost about 27ms to build up the indices. This 

part also can be accelerated by using GPU.  

 

 For the accuracy part, SURF descriptor has its own limit. Although SURF is 

very fast, the invariant against rotation and affine is not good with other changes like 

illumination. SIFT is believed that can give a good performance against this changes.  

 

 The storage of the data that generated in training stage (Prework) can be 

changed by store the data in line by line. It is because the DAT file has limit in width. 

As the database increase up to 400 images, the accuracy will start to decrease if the 

data is not stored line by line.     
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APPENDIX B: Result 2 
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APPENDIX C: Programming Code 
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APPENDIX D: Logo Recognition System Program 
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