
SNAKE-LIKE ROBOT

(Programming Part)

WONG CHO GIAP

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Bachelor (Hons.) of Mechatronics Engineering

Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

April 2011

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it

has not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature : _________________________

Name : ____WONG CHO GIAP_____

ID No. : _______07UEB06710_______

Date : _______15 APRIL 2011_____

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “SNAKE-LIKE ROBOT” was prepared by

WONG CHO GIAP has met the required standard for submission in partial

fulfilment of the requirements for the award of Bachelor (Hons.) of Mechatronics

Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature : _________________________

Supervisor : Prof. Dr. Wang Xin

Date : _________________________

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of University Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© Year 2011, Wong Cho Giap. All right reserved.

v

SNAKE-LIKE ROBOT

ABSTRACT

This Project is to design a snake-like robot that can provide the locomotion as the

real biological snake, and possessed the ability to cross over the obstacles with a

certain height’s limit, or find another alternative ways instead of climb over it if the

height of the obstacles is over the limit. Snake-like robot is a biomorphic hyper-

redundant robot that resembles a snake. The shape and sizes of the snake-like robot is

depend on its own application, different application may required different sizes and

shapes, since this project mainly target is to design a snake-like robot that can avoid

the obstacles, so the snake-like robot is design to a moderate size with 8 segments, so

that the snake-like robot can move flexible in the terrain that have a lot of obstacle.

In order to make the snake-like robot function and move like a real biological snake,

snake-like robot may construct of multiple joints which enable the snake-like robot

to have multiple degree of freedom, which give it the ability to flex, reach and

approach a huge volume in its workspace with infinite number of configurations.

This mobility can enable the robot to move around in more complex environments.

So, the application for this snake-like robot could be very useful in hard to reach

places or hazardous environments. For the locomotion of this snake-like robot, it is

move in a specific gait, which is a periodic of sine wave motion, just like a lateral

undulation motion. Lastly, the special feature such as snake-like locomotion, ability

to climb over obstacles or stair, estimate the height, making decisions, and able to

remotely control are applied to the design.

vi

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS / ABBREVIATIONS xii

LIST OF APPENDICES xiii

CHAPTER

1 INTRODUCTION 1

1.1 Background 1

1.2 Aims and Objectives 3

2 LITERATURE REVIEW 5

2.1 Design and research of a new structure rescue snake robot with all

body drive (rope drive system) 5

2.2 Locomotion mechanism of snake-like robot 7

2.3 Toroidal skin drive for snake robot locomotion 9

2.4 Pulse Width Modulation for programming servo motor. 10

2.5 Summary for literature reviews. 11

3 METHODOLOGY 13

3.1 Project Overview 13

vii

3.2 Flow chart 15

3.2.1 Flow chart for the control of snake-like robot. 15

3.2.2 Flow chart for main flow of the snake-like robot

(Automatically). 17

3.2.3 Flow chart for High-priority and Low-priority

interrupt in the program. 19

3.3 Programming language and microcontroller 20

3.4 The snake equation 21

3.5 The polling and interrupt method 23

3.5.1 The high priority interrupts (received interrupt). 25

3.5.2 The low priority interrupts (Timer 1 interrupt). 25

3.6 Serial data communication for remotely control (via wireless

device). 26

3.7 Snake movement programming (with assist of timers) 28

3.7.1 Timer 1 programming 28

3.8 Sensor programming 30

3.8.1 ADC programming 31

3.8.2 Calculation of the digital value (converted from

analog) for the desired range. 34

3.9 Method of snake-like robot used to avoid obstacle 35

3.9.1 First method for obstacle avoidance 35

3.9.2 Second method for obstacle avoidance 36

3.9.3 Timer 0 programming 38

3.9.4 Comparison of both methods 39

3.10 Method of snake-like robot used in climbing. 40

3.10.1 Automatically climbing process (1st method) 40

3.10.2 Manual climbing process (2nd method) 41

3.10.3 Comparison of both climbing method 42

3.11 DC motor programming 43

4 RESULTS AND DISCUSSIONS 45

4.1 Results 45

4.1.1 The waveforms of each joint. 45

viii

4.1.2 The waveforms of different value of a. 47

4.1.3 The waveforms of different value of c. 48

4.1.4 The results of ultrasonic sensor in different distance

(output voltage). 49

4.2 Discussion 50

5 CONCLUSION AND RECOMMENDATIONS 53

5.1 Conclusion 53

5.2 Recommendation and future development 53

REFERENCES 55

APPENDICES 57

ix

LIST OF TABLES

TABLE TITLE PAGE

2.1 Summary of literature reviews. 11

3.1 Input and Output pins used in snake like robot. 21

3.2 Comparison of both methods for obstacle
avoidance. 39

3.3 Comparison of both methods for obstacle
avoidance. 42

4.1 Results of ultrasonic sensor in different
distance 49

4.2 Comparison between measured value and
calculated value 50

x

LIST OF FIGURES

FIGURE TITLE PAGE

2.1 Rope drive system on each segment. 6

2.2 The control configuration of the snake robot. 7

2.3 The locomotion mechanism of moving forward
and backward. 8

2.4 The toroidal skin drive mechanism. 9

2.5 The chart of time vs angle for PWM control. 10

3.1 The flow graph for the snake-like robot design
project. 14

3.2 The flow graph for the control of snake-like
robot. 16

3.3 The main flow of snake-like robot.
(Automatically) 18

3.4 The flow chart for the interrupt service routine
of the robot. 19

3.5 The data acquisition and conversion cycle.
(Microchip, 2008) 32

3.6 First method of obstacle avoidance. 36

3.7 Second method of obstacle avoidance. 38

3.8 The method to sense the height of obstacle. 40

3.9 The automatically climbing process. 41

4.1 The waveform for 1st joint. 45

4.2 The waveform for 2nd joint. 46

4.3 The waveform for 3rd joint. 46

xi

4.4 The waveform for a=1.047 47

4.5 The waveform for a=1.309 47

4.6 The waveform for c=π/2 48

4.7 The waveform for c=-π/2 48

xii

LIST OF SYMBOLS / ABBREVIATIONS

cp specific heat capacity, J/(kgK)

h height, m

Kd discharge coefficient

M mass flow rate, kg/s

P pressure, kPa

Pb back pressure, kPa

R mass flow rate ratio

T temperature, K

v specific volume, m3

 homogeneous void fraction

 pressure ratio

 density, kg/m3

 compressible flow parameter

ID inner diameter, m

MAP maximum allowable pressure, kPa

MAWP maximum allowable working pressure, kPa

OD outer diameter, m

RV relief valve

xiii

LIST OF APPENDICES

APPENDIX TITLE PAGE

 A C Programming Code 57

1

CHAPTER 1

1INTRODUCTION

1.1 Background

Snake-like robot is a biomorphic hyper-redundant robot that resembles a snake. The

shape and sizes of the snake-like robot is depend on its own application, different

application may required different sizes and shapes, for example, for research and

rescue purposed snake-like robot may required as thin as possible to enable it to do

the tasks at narrow place. In order to make the snake-like robot function and move

like a real biological snake, snake-like robot may construct of multiple joints which

enable the snake-like robot to have multiple degree of freedom, which give it the

ability to flex, reach and approach a huge volume in its workspace with infinite

number of configurations.

For the locomotion of the snake-like robot, there still don’t have any snake-like

robot can completely mimic the locomotion of real snake, most of the snake-like

robot moves by refer to a specific gait, where a gait is a periodic mode of locomotion,

for example a gait maybe side winding. There have several type of locomotion for a

snake-like robot, which included the movement using the wheels, ‘legs’, or without

both of the wheels and leg but just slide, glide, and slither. Below show the

advantages of the serpentine locomotion over the locomotion using wheels or legs:-

 Stability- where the serpentine locomotion have a better stability than wheels

and legs, this because the serpentine robot will never fall, even if a free fall

occurs, the serpentine robot will survive better than most mobile devices,

2

because the potential failure points like the connections between the body and

wheels or leg do not exist.

 Terrainability- means the ability of moving in a rough terrain, if compare the

serpentine robot to the robot using wheels or legs, the serpentine robot have

better terrainability than the latter, for example, wheels or legs will stuck at a

hole but this won’t happen to a serpentine robot.

However, there also have several disadvantages of the serpentine robot over the

locomotion of the wheeled or legged devices:-

 Degree of freedom- a large number of actuators is required if compare with

the wheeled or legged device to help the serpentine robot to subtend the

various curves, this means the serpentine robot may have a large number of

degree of freedom, where this will introduce reliability problems, that is if

failure occur on one of the actuators, then the robot with large number of

units have a higher chance of having any unit fail.

 Speed- The speed for a serpentine locomotion robot is fairly slow if compare

to the real snake.

For the application of the snake-like robot, it may include several fields such as

the medical, exploration, routing, and military. For medical, people had applied the

snake-like robot technologies into the surgery, for example, the snake-like robot is

operating in the narrow throat region, to make incisions and tie sutures with greater

dexterity and precision.

In exploration, the snake-like robot is suitable to explore the unpredictable

environment, this may due to the ability of snake-like robot to distribute its mass

over a large area for support so that if the footing is gives way, self-support between

secure points enables continued operation.

3

For routing purpose, such as wiring through passages behind existing walls or

through the pipes, these tasks involve long reaches and awkward position through the

pipes, so the flexible snake-like robot will be required to make the work easy by

maneuver through crowded plenums and pull the initial light weight tapes which will

use to pull the actual cables.

In military, one of the example maybe the snake-like robot manufacture by

Isareal, where the robot can sneak through cracks and into buildings to send back

sound and video of enemy movements or even plant explosives.

1.2 Aims and Objectives

The objective of this project is to design a snake-like robot, which can either move

by making decision itself in an unknown terrain (inspection) or move remotely with

the assist of camera. Besides that, we are also required to program the snake-like

robot so that it can move similar as the biological snake. The project is classified,

which are the:-

 Mechanical part

For mechanical part, the body or other mechanical parts can suit to the

locomotion of the snake-like robot have to be ensure, so that it can move in 2-

axis (the xy-plane), able to overcome the obstacle and move on uneven

surface, and the weight of the chosen material is important for the locomotion

as well.

 Electronics part

For electronics part, the effective voltage regulator for supplying efficient

power to the motor and microprocessor have to be ensure, and solving the

battery life issue being considered inefficient when supplying different power

ratings by using linear voltage regulator.

4

 Programming part

For programming part, programming on the snake-like movement for the

snake-like robot need to be done, and with the vision assist of the camera, the

snake-like robot will able to decide the possible solutions to overcome the

obstacle that it face, and also able to respond to the feedback of the

controlling sensors like angle sensor.

In Programming part, the scopes are set as below:-

-The snake-like robot able to provide snake-like locomotion.

-The snake-like robot can make the decisions itself when facing problems

(obstacles).

-The distance can be detect with the assist of sensors.

-The snake-like robot can lift at a certain height so that it can climb stair or

climb over the obstacles.

-The snake-like robot can remotely control by the user.

5

CHAPTER 2

2LITERATURE REVIEW

Snake-like robots are multi-segmented devices. Based on their physical

structure and design, these robots could have great mobility in their movements. This

mobility can enable the robot to move around in more complex environments. The

application of these kind of robots could be very useful in hard to reach places or

hazardous environments, this is one of the reason that make the snake-like robots

playing important role in our life and had been utilized in many fields like research

and rescue, military, inspection and others.

2.1 Design and research of a new structure rescue snake robot with all

body drive (rope drive system)

After earthquake, many people are buried under ruins. Rescue is very

important in the first 48 hours, most survive are dead after 48hours. Snake robot has

slime body and can reach the narrow crevices that people can’t do, so is a very useful

tool in climbing into ruins to detect people.(GAO etc, 2008)

This kind of snake robot is using the rope drive system to move like a snake.

The snake robot have 11 bodies and 10 joints, with the head and tail body have

camera and communicator but without the drive system, where the drive systems are

on the middle parts of the snake robot, which contain 9 segments. (GAO etc, 2008)

Each segment contain a CPU, where the main CPU is located at the tail, so that the

data such as velocity, forces, and angle value can send to the main CPU to process

since the head and middle parts are move first. The main material for the body part is

6

using the engineering plastic, which diminish the total weight, and increase the

mobility of the snake robot.

Each segments in the middle part have a rope drive system, and fixed with

many of directive wheels on the edge of the segment body, which used to move the

rope that surrounding the segment body, below show the construction of the rope

drive system:-

Figure 2.1: Rope drive system on each segment.

The rope is drive by the drive friction wheel with a press friction wheel

contact on the rope, where the drive friction wheel is drive by the motor in each

segment.

The advantage the all body drive robot with rope drive system over the other

snake robot is the ability to move the robot with any segment/s which touches on the

ground, this is because the drive force on each segment of the snake robot.

7

One of the disadvantages of the rope drive system is that, the maintenances of

the snake robot will be complicated, this is because the construction of this system

contains of many ropes and directive wheels, which malfunction of one segment will

lead to a long time in troubleshooting and repair. Besides that, the wheels may also

require the lubrication as well.

2.2 Locomotion mechanism of snake-like robot

Snake move by pushing their body against environment. In order to achieve

the real snake’s locomotion, the snake robot must generate a lateral undulation,

where lateral undulation is a sequence of left-right wave movements. Besides that,

the co-coordinate between the adjacent segments and the robot performance in case

there have any segment of the snake robot is failure are the important issues in

designing the locomotion for the snake robot. (Hua etc ,2001)

Snake robot is driven in a close circuit, which means the processor in the

snake robot will receive any feedback signals from the sensors and respond to the

feedback by making a new decision for the snake robot. Below show the control

configuration of the snake robot:-

Figure 2.2: The control configuration of the snake robot.

The locomotion mechanism of the snake robot can be analyzed in moving

forward, backward and steering. For moving forward and backward, a mathematical

model can be used to analyze the locomotion mechanism:-

8

Figure 2.3: The locomotion mechanism of moving forward and backward.

From the figure 2.3, the small circles represent the motor and the big circles

represent the big gear, where the straight lines represent the segments for snake robot.

The wave is produced at first phase by moving the gear 1 and 2, at the same time, the

end of the snake robot had been move forward with the distance equals to ∆x. The

wave will then continue propagate to the gear 3 and 4 and last to the gear 5 which

will push the head of the snake robot forward with the same distance ∆x.

The locomotion mechanism of moving forward and backward can be used as

the reference in design the snake like robot, but the direction of the gears can be

change from moving upward and downward to left and right to produce the lateral

undulation, where the motors and big gears in the figure2.3 can be replaced by the

servo motor, and the left right locomotion concept can be achieved by programming

the servo motor.

9

2.3 Toroidal skin drive for snake robot locomotion

Most robotic snake designs have fallen into one of two categories, which are

those that use undulation of the internal structure (the spine) to move the body along

and those that use some sort of surface mounted wheels or tracks to move the body,

where toroidal skin drive is an alternative approach for snake robot

locomotion.(McKenna etc, 2008) The toroidal skin drive system is actually the

system that locomote the snake robot by moving the skin of the robot with assist of

the drive unit on the skin. Below show the constructions of the toroidal skin drive

system:-

Figure 2.4: The toroidal skin drive mechanism.

From the figure, the A represent the motor, B represent the worm, C represent

the worm gears which also act as the drive wheels, D is the tension ring captured

inside the skin in order to maintain pressure between the skin and the gear sets,

where the skin is represented by the E. The skin have divided into inner part and

outer part, but they are wraps together at the end, where the motion of the skin is

control by the gear sets which power by the motor, as the inner part is moving, the

outer part is moved as well but is in opposite direction, and this may propel the snake

robot to move forward or backward due to the friction between the ground surface

and the outer skin of the snake robot. However, the skin drive system only provide

the rectilinear motion, so the angular actuator is required to help the snake robot to

maintain body configuration. This may help in simplify the kinematics of motion as

well. The angular actuator consists of the gears and motors.

10

The main advantage of this kind of drive system is that similar with the rope

drive system with every point on the surface of the robot provides forward

locomotion. (McKenna etc, 2008)

2.4 Pulse Width Modulation for programming servo motor.

Pulse width modulation (PWM) can be very useful for controlling analog circuits

with a processor’s digital outputs. PWM is employed in a wide variety of

applications, ranging from measurement and communications to power control and

conversion. The PWM also very useful in programming the servo motor, because the

PWM can position the shaft of the motor to a specific angle, this may achieve by

send an ordinary logic square wave to the servo at a specific wave length. Below

show the time vs angle graph:-

Figure 2.5: The chart of time vs angle for PWM control.

From the example show above, the angle is on 0 ۫when the input pulse width

is on 1ms, and change to 90۫ when there is HI or LOW all the time in the interval of

20ms, this is the neutral position for the servo, but there also have another condition

that can make the servo motor to stop at this neutral position, that is when the input

pulse width is equals to 1.5ms which is the value at middle of the pulse width for 0۫

and 180 ۫, where a 2ms pulse width is needed to turn it from any angle to the 180.۫

11

This PWM method may be very useful in design the locomotion of snake-like

robot, this is because the sine wave motion can be produce by programme the servo

motor to turn at specific angle at specific time.

2.5 Summary for literature reviews.

Table 2.1: Summary of literature reviews.

Year of

publish

Author/Journal Technology Analysis

2008 Junyao Gao;

Xueshan Gao;

Wei Zhu;

Jianguo Zhu;

Boyu Wei; ,

"Design and

research of a

new structure

rescue snake

robot with all

body drive

system,"

 Each segment contain

one CPU

 Main CPU locate at

the tail.

 Many directive

wheels fixed at both

ends of each segment

and surrounded with

the rope.

 Use the friction

between the rope and

the ground to move

when the motor move

the rope.

 Advantage: The drive

force on every

segment.

 Disadvantages:

maintenances of the

snake robot will be

complicated.

2001 Hua Liu;

Guozheng

Yan; Guoqing

Ding; ,

"Research on

the locomotion

 Closed loop, means

response to the

feedbacks from the

sensors.

 Moving forward and

backward mechanism.

 The method of

moving forward and

backward can change

from moving upward

to a sine waveform,

just right and left.

12

mechanism of

snake-like

robot,"

2008 McKenna,

J.C.; Anhalt,

D.J.; Bronson,

F.M.; Brown,

H.B.;

Schwerin, M.;

Shammas, E.;

Choset, H.; ,

"Toroidal skin

drive for snake

robot

locomotion,"

 Toroidal skins drive

system.

 The inner part of skin

is wraps together with

the outer part at the

end of the snake

robot.

 The tension rings

captured inside the

skin to give the

pressure between the

skin and the gear.

 Once gears rotate, it

rotates the skin as

well.

 Advantages: simplify

the kinematics of

motion.

 Drive force at every

segment.

 Disadvantage: only

provide the rectilinear

motion, unless angular

actuator is used.

2010 Website

information:

http://mcu-

programming.

blogspot.com/

2006/09/servo-

motor-

control.htm

“Pulse Width

Modulation for

controlling

servo motor.”

 Position the servo

motor shaft by send

the pulse with certain

width to a certain

angle position.

 Can be apply to the

locomotion of snake-

like robot, so that the

robot can provide a

sine wave motion by

keep changing the

angle position of the

motor shaft.

13

CHAPTER 3

3METHODOLOGY

3.1 Project Overview

The snake-like robot will be separated into three different parts of tasks, namely the

mechanical part, the electronics and electrical part, and the programming part. Thus,

a team is formed of three person with each person takes a part.

This report takes the tasks of programming part. The programming part will

include the control for locomotion of the snake-like robot by programming the servo

motor, response to the sensors feedback, response to user command, and able to lift

the body in particular applications like stair climbing and cross over the abstacles.

Below is the flow graph for the overview of snake-like robot design project:-

14

Figure 3.1: The flow graph for the snake-like robot design project.

Programming part

(Wong Cho Giap)

Electronics part

(Yeoh Chern Yi)

Mechanical part

(Lee Yit Fung)

Snake-like robot

control, snake-like

locomotion design

Electrical wiring,

Electronics circuit

design

Robot body design,

Snake-like robot

joint design

Snake-like Robot Design

Testing and troubleshooting

Snake-like robot

construction

Is the snake-like

robot complete and

fulfil the objectives?

Objectives complete; Snake-

like robot completed.

15

3.2 Flow chart

3.2.1 Flow chart for the control of snake-like robot.

Start

Prompt the user for input

input== “1”?
Start the robot (with

sensor ON)

input== “2”?
Start the robot (with

sensor OFF)

input== “s”? Stop the robot

input== “d”? Turn the robot to right

input== “a”? Turn the robot to left

input== “y”?

input== “h”?

input== “u”?

input== “j”?

input== “i”?

input== “k”?

A

1st segment move up one

step

1st segment move down

one step

2nd segment move up one

step

2nd segment move down

one step

3rd segment move up one

step

3rd segment move down

one step

BC

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

No

No

No

No

No

16

Figure 3.2: The flow graph for the control of snake-like robot.

The figure above has shown control flow of the snake-like robot. Once the

snake-like robot is power up, the PIC will send the signal to the computer via Xbee

wireless to prompt inputs from the user. There consist of 19 cases for the switch

command, where the snake is initially stop and all servos are move to center to get

ready for the command. For 19 of the cases, only the inputs “1” and “2” can start the

snake-like robot to move in snake locomotion, while “s” is to stop the snake like

robot, “d” and “a” are to change the robot direction to the right and left respectively,

“r” is the input command for the robot to command the DC motor move forward to

A B

input== “Y”?

input== “H”?

input== “U”?

input== “J”?

input== “I”?

input== “K”?

1st segment turn right one

step

1st segment turn left one

step

2nd segment turn right

one step

2nd segment turn left one

step

3rd segment turn right one

step

3rd segment turn left one

step

input== “r”?

input== “R”?

Move the DC motor

foward

Reset

C

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

No

No

17

the direction that the robot positioning, where the “R” is the reset button for the robot

to initialize all the data . Other than those general control’s inputs, the command’s

inputs to move each segment of the robot to up, down, right and left are introduce to

the robot as well, so that the movement of the robot can manually control by the user.

The flow is keep repeat until the power is off.

3.2.2 Flow chart for main flow of the snake-like robot (Automatically).

Start

Prompt the input

n == “1”?

stop = 0

Read data from ADC

result < 29?

Save the current angle

of servo 1(temp_ang)

Set timer 0 to zero

result < 29?

TMR0IF == 1 ?
Read data

from ADC

D

E

No

Yes

Yes

Yes

No

No

18

Figure 3.3: The main flow of snake-like robot. (Automatically)

The figure above is the main flow of the snake-like robot with the range

finder sensor activated, so that the robot can make the decision itself to avoid the

obstacles. This mode is activated when the user send the input “1”, where most of the

time in the flow, the PIC keep getting the data from the ADC, which convert the info

of the sensor from voltage (analogue) to binary number (digital). With the

information (distance) from the sensor, the robot can differentiate the obstacle, and

determine the direction to move in the next step. The method that the robot used to

Read data from ADC

result > 29?

ang1 <

temp_ang?

c -= 1000
ang1 >

temp_ang?

D

c += 1000

ang1 < 3950? c -= 1000

c += 1000

E

stop = 1

No

No

No

No

Yes

Yes

Yes

Yes

19

determine will be discussed in below. In order to make the robot to be controlled in

semi-auto mode, the sonar (range finder) sensor can be turn off by switching the

mode to “2”, so that the differentiate method can be ignore by the PIC

3.2.3 Flow chart for High-priority and Low-priority interrupt in the

program.

Figure 3.4: The flow chart for the interrupt service routine of the robot.

The control command.

(Figure 3.2)

Start

Any interrupt

from Rx_pin?

Any interrupt

from Timer1?

The main flow.

(Figure 3.3)

stop = 1 ?

Snake locomotion

program.

A

A

Centred all the servos

and stop them.

B

B

Yes

Yes
Yes

No

No

No

20

Figure above are the flow chart for the interrupt service routine in the

program of the snake-like robot. The interrupts had divided into high priority and

low priority for the microcontroller to differentiate which interrupt service routine to

process first once there have two interrupts arise in the same time. From the flow

chart, it shows that the interrupt for receive pin of the serial communication (Rx_pin)

is set to high priority interrupt, while the Timer 1 is set to low priority.

3.3 Programming language and microcontroller

In this project, the C language is chosen as the programming language instead of

Assembly language due to the several major reasons:

- Much easier and less time consuming to write program using C than using

Assembly.

- C is easier to modify and update.

- Can use the code available in function libraries.

- C code is portable to other microcontrollers with little or no modification.

However, the hex file produced by using C is much larger than using

Assembly language. Due to this problem, the 40-pins microcontroller PIC 18F4520

has been chosen. The PIC 18F4520 allowed the program memory up to 32 kilobytes,

which are more than enough to load the command program of the snake like robot in

this project. Besides that, the features of this PIC such as provided 36 inputs/ outputs

pin, 13 channels of analog-to-digital converter, 2 CCP modules, and 3 timers. This

project using 40-pins PIC instead of other, because the snake robot required a lot of

input and output pins, the table below shows the I/O pins used in the snake like robot:

21

Table 3.1: Input and Output pins used in snake like robot.

Inputs/Outputs Pin Description

RA5 (AN4) Used as the analog-to-digital converter channel (sensor).

RA7 (OSC1) For the external clock source (20 Mhz crystal is used).

RA6 (OSC2) For the external clock source (20 Mhz crystal is used).

RC2 (CCP1) PWM output for DC motor.

RD1 The output indicator LED for sensor.

RB1-7 The output signals (duty cycle) for servo 1-7 respectively.

RD7 The output signals (duty cycle) for servo 8.

RB0 For switch (To start the robot without using wireless device).

RC7 (RX) Receive information from user through wireless device.

RC6 (TX) Transmit information to user through wireless device.

3.4 The snake equation

There are four types of movement for snake, which are the serpentine movement,

rectilinear movement, concertina movement, and side-winding movement. However,

for this project, only the serpentine movement is applied as it is the most frequently

used form of snake locomotion by most of the snake.

For the serpenoid curve analysis, it is introduced by Hirose. In this project,

the serpenoid curve is used as the basic body movement of the snake robot. While,

the serpenoid curve can be modeled with the following equations (Chang & Chen

2008):

 (3.1)

 (3.2)

22

ζσ = acos (bσ) + cσ (3.3)

Where the parameter a, b, and c are the variables to determine the shape of

the serpentine motion. The variable a determines the degree of the serpentine motion,

b determines the number of phase of the serpentine motion, and c determines the

direction of the serpentine motion.

The serpentine curve can be applied into the snake like robot by changing the

relative angles between the segments using the following formula with the number of

segments (n=4):

 (3.4)

Where α, β, and γ are the parameters depend to the variables a, b, and c

respectively. The relationships are shows below:

 (3.5)

 (3.6)

 (3.7)

The equations (3.3), (3.4), (3.5), and (3.6) are applied into the programming

code, where the default values of each variable are set as below:

a = 45 degree (3.8)

b = 3π (3.9)

c = 0 (3.10)

23

n = 4 (3.11)

With the values of each variable show above, the parameters α, β, and γ can

be calculated by the microcontroller as well. Since the snake like robot in this project

only has 4 segments, hence, it only requires three equations for the joints (three

joints). Below shows the equations for the angle of each joint of the snake like robot

in programming code:

ang1=(alpha*sin(t)+gamma+3950);

ang2=(alpha*sin(t+1*beta)+gamma+3950);

ang3=(alpha*sin(t+2*beta)+gamma+3950);

The number 3950 in the equations represent the decimal value for timer to

produce the duty cycle that position the servo motor to 90 degree. In order to make

the reference axis centred at 90 degree, the number 3950 is added into the equations.

Besides that, the gamma in the equations is used to determine the direction of snake

like robot. If gamma is decreasing, the snake will turn to the left direction, or turn to

the right direction when the gamma is increasing.

3.5 The polling and interrupt method

In this project, both polling and interrupts method are applied. The polling method is

used to transmit data to the user, while the interrupts method is used by the timer

(Timer 1) to produce the particular duty cycle for servo motors and to receive data

from user via serial communication. In polling method, the microcontroller will

continuously monitors the status of the TXIF, when the transmit interrupt’s flag is

low, means the data in TXREG already transmitted to the user via the wireless device,

so it will insert the next data to the TXREG again, and the polling will keep repeated

until all of the data are transmitted to the user. In interrupt method, whenever the

wireless device (to receive data from user) or servo motors needs the

microcontroller’s service, they will notify it by sending an interrupt signal. Upon

receiving the interrupt signal, the microcontroller stops whatever it is doing and

serves the device. The interrupt service routine (ISR) are required in interrupts

24

method, because the microcontroller will go to the particular ISR with respect to

which interrupt signal it received, and process the command inside the ISR. Below is

the program to tell the microcontroller where to go when it receives the interrupt

signal either from received interrupt (serial communication) or Timer 1 interrupt:

#pragma code Rx_int=0x0008 //interrupt vector for high-priority interrupt
void Rx_int(void)
{

_asm
GOTO chk_rx_isr //position the microcontroller to service the

_endasm // receive's ISR
}

#pragma code Timer_int=0x0018 //interrupt vector for low-priority interrupt
void Timer_int(void)
{

_asm
GOTO chk_timer_isr //position the microcontroller to service the

_endasm // timer's ISR
}

#pragma interruptlow chk_timer_isr
void chk_timer_isr(void) //timer ISR
{

if (PIR1bits.TMR1IF==1)
{

if (stop == 1)
stop_isr();

else
T1_isr();

}
}

#pragma interrupt chk_rx_isr
void chk_rx_isr(void) //receive's ISR
{

if(PIR1bits.RCIF==1)
Rx_isr();

}

As the programming code shows above, the snake robot is a two-level

priority interrupt system with the IPEN (interrupt priority enable) bit is set to high.

The purpose to classified the interrupts into high and low priority is to helps the

microcontroller to determine which ISR to process first when there have two or more

interrupts activated at the same time, or when the microcontroller is executing an ISR

25

of an interrupt and another interrupt is activated. In such case, the microcontroller

will choose to process the high-priority interrupt first. Below is the setting code for

interrupts:

PIE1bits.RCIE=1; //enable the receive interrupt bit

RCONbits.IPEN=1; //enable the interrupt priority

IPR1bits.TMR1IP=0; //set timer1 interrupt to low priority

PIR1bits.TMR1IF=0; //clear the timer1 interrupt flag

PIE1bits.TMR1IE=1; //enable the timer1 interrupt bit

INTCONbits.GIEH=1; //enable all high priority interrupt

INTCONbits.GIEL=1; //enable all low priority interrupt

From the code, both interrupts for Timer 1 and received interrupt are enabled,

and the received interrupt (serial communication) is set to high-priority, while the

Timer 1 is set to low-priority.

3.5.1 The high priority interrupts (received interrupt).

The received interrupt (serial communication) is set to high-priority interrupts. Thus,

when the interrupt flag of the received interrupt, RCIF is raised after the entire frame

of data, including the stop bit, is received, the microcontroller will be directed to the

rom location at 0x0008 and process the ISR of the received interrupt. As high-

priority interrupt, the microcontroller will process the data received from the user

first and stop executing the current program even for the ISR of timer (low-priority).

The received interrupt is used to process the information from the user via the

wireless device, so that the user can remotely control the snake like robot by sending

the data to the microcontroller. The details of the process for serial communication

will be discussed on the sub-chapter for serial communication.

3.5.2 The low priority interrupts (Timer 1 interrupt).

26

The Timer 1 interrupt is low-priority interrupt, it will direct the microcontroller to the

ISR for low priority interrupts once the TMR1IF is raised to indicate that the Timer 1

is overflowed. However, the timer’s interrupt will not be process until the finish

process of ISR for high-priority interrupts by the microcontroller, due to the lower

priority. Timer 1 is used to determine the duty cycle of the signal to servo motors

over time. The details of using Timer 1 to control the position of servo motors will be

discussed on the sub-chapter for timers.

3.6 Serial data communication for remotely control (via wireless device).

In order to manually or semi-automatically control of snake-like robot with the assist

of user command, a wireless device is used to communicate between the

microcontroller and computer (user interface). The wireless device used in this

project is two modules of xbee starter kit, where one module will be installed to

computer via USB communication, and another will be installed to the

microcontroller board. Both modules provided the function as transmitter or receiver,

which means if one of the modules acts as the transmitter, then another one will

become the receiver to receive the data sent by the module, so it is a duplex

transmission. The communication between both modules is serial data

communication, since the communication is between PIC microcontroller and PC, so

the asynchronous method is used, which means the data transfer one byte at a time.

Besides that, several registers are important in serial port programming, which are

the SPBGR (serial port baud rate generator), TXREG (transfer register), RCREG

(receive register), TXSTA (transmit status and control register), RCSTA (receive

status and control register), and PIR 1 (peripheral interrupt request register 1).[?]

In order to make both wireless modules to recognize each other, the baud rate

for both modules must be the same, where the baud rate is 9600 in this project. The

baud rate also defined as the data transfer rate between two modules, and the baud

rate in PIC microcontroller is programmable. This is done with the help of the

SPBRG register. [?] The value to be load into the SPBRG register is depended to the

27

crystal frequency, Fosc, the value loaded into SPBRG can be calculated using the

following equations (McKinlay et al., 2007):

Desired Baud Rate = Fosc /(64X + 64) = Fosc /64 (X +1) (3.12)

Where X is the value loaded into the SPBRG register. Since the crystal

frequency, Fosc = 20 MHz is used in this project, the equation (3.11) will become:

Desired Baud Rate = 312500 Hz /(X + 1) (3.13)

With the desired baud rate equals to 9600, then the value X is equals to:

 X = (312500 / 9600) – 1 (3.14)

 X = 31.55 (take as 32) (3.15)

Thus, the value to be loaded in the SPBRG register will be 32 in decimal or

20h in hexadecimal, with the BRGH = 0 (the register for high baud rate setting).

TXREG is another 8-bit register used for serial communication in the PIC

microcontroller. For a byte of data to be transferred via the TX pin, it must be placed

in the TXREG register. The moment a byte is written into TXREG, it is fetched into

a register called TSR (transmit shift register). The TSR frames the 8-bit data with the

start and stop bits and the 10-bit data is transferred serially via the TX pin. It is

similar for RXREG, when the bits are received serially via the RX pin, the PIC

microcontroller deframes them by eliminating the stop and start bits, making a byte

out of the data received, and then placing it in the RCREG register. (McKinlay et al.,

2007)

The TXSTA register is an 8-bit register used to select the synchronous/

asynchronous modes and data framing size, among other things. (McKinlay et al.,

2007) In this project, the TXSTA register is loaded with the binary value equals to

0b00100000, to select the 8bit transmission, enabled the transmit, asynchronous

28

mode, and low baud rate. For RCSTA register, it is an 8-bit register used to enable

the serial port receive data, among other things. A binary value of 0b10010000 is

loaded to RCSTA register in order to enable the serial port, select 8-bit reception,

and enable continuous receive.

The TXIF and RCIF bits that locate in the PIR1 register are the important bits

in serial communication programming, because both are the interrupt flags for the

transmit pin and receive pin. For TXIF flag bit, it will rise when there is a data inside

the TXREG register, and indicate the transmit pin is ready to transmit another data

when the flag bit goes low. For RCIF flag bit, it indicate the received data is stored in

the RCREG, however if fail to copy data in RCREG into a safe place, the data may

be loss due to receiving the next data, so checking RCIF flag bit is important to

acquire data.

The flow for the serial communication between microcontroller and user

(computer) had shown in figure 3.2 and the programming code can refer to Appendix

A.

3.7 Snake movement programming (with assist of timers)

As stated at section 3.4, the snake locomotion for this project is serpentine movement.

Thus, in order to program the microcontroller to move the servo motors in serpentine

curve, the equations (3.3), (3.4), (3.5), and (3.6) are used in the snake movement

programming. In order to provide the serpentine curve by the servo motors, the

particular duty cycle PWM signals are required to send to the servo motors in every

20ms. Thus, the method of using the timer interrupt is applied to this project, and

Timer 1 is used for this method. Besides the Timer 1, the Timer 0 is used in this

project as well, the purpose of using Timer 0 is to help the snake like robot in

differentiate the obstacle and make the decision to overcome it.

3.7.1 Timer 1 programming

29

Since the servo motors get the pulse at every 20ms, so Timer 1 is program to count

the time and interrupt the microcontroller in every 20ms. Timer 1 is a 16-bit timer,

and it consist of two bytes, which referred to as TMR1L (Timer 1 low byte) and

TMR1H (Timer1 high byte). (McKinlay et al., 2007) T1CON register is introduced

to select the option for Timer 1. In this project, a binary value of 0b00010000 is

loaded into T1CON register to set Timer 1 to have 1:2 prescale, and using internal

clock source (crystal frequency). After setting up the Timer 1, the initial count values

are required for TMR1L and TMR1H. In order to have a count time equals to 20ms,

the values to load into both TMR1L and TMR1H registers are calculated as below

with crystal frequency equals to 20MHz, and 1:2 prescale:

 Timer frequency = 20MHz /4 /2

 = 2.5MHz (3.16)

Step time = (1/2.5MHz)

 = 0.4μs (3.17)

x = 20ms/ 0.4μs

= 50000 (3.18)

Decimal value for timer = 65536 – x

 = 15536d or 3CB0h (3.19)

Because both registers TMR1H and TMR1L are 8-bits register and the

calculated value at above is a 16-bits number, so the hexadecimal value above must

divided into two bytes, in which the higher byte (3Ch) loaded to TMR1H and lower

byte (B0h) loaded to TMR1L. After both registers are loaded, then the TMR1ON bit

in T1CON register will set high in order to start the count. Once the Timer 1 is

overflowed, the interrupt flag bits, TMRIF will rise, and direct the microcontroller to

process the timer’s ISR for snake movement as stated in section 3.5.2.

30

Besides of interrupt function, Timer 1 also used to generate a particular duty

cycle PWM signal for servo positioning. For example, in order to position the servo

motor to 90 degree (centre), a 1.5ms signal is required, where this can generate by

turn on the servo output and turn it off after 1.5ms, the microcontroller is

programmed to monitor the value in Timer 1, when the timer had count until 1.5ms,

the microcontroller will turn off the servo output. Below is the programming code for

microcontroller to determine the time for the pulse width of PWM signal:

while (time<T_17point75) // quit after 2.25ms

{

if (time>int_time+ang1) // compare the value in Timer 1 with the

// required pulse width.

servo1=0; // turn off servo if pulse width is

// reached.

if (time>int_time+ang2)

servo2=0;

if (time>int_time+ang3)

servo3=0;

get_time(); // get the value in Timer 1

}

3.8 Sensor programming

Sensor is important for automation of a robot, in order to let the snake like robot has

the ability to make decision itself, a sensor is installed on it. Currently, there is only

one sensor is used in this project, which is the ultrasonic sensor: MaxSonar- EZ1

sonar range finder, it can sense the object from 0 inch to 254 inches, with two

sensing resolution, which is 1 inch resolution at range from 6 inch to 254 inches and

6 inches resolution from 0 inch to 6 inch. Besides that, the interface output format for

this sensor can be in pulse width output, analog voltage output, and serial digital

output (serial communication). However, the only output format used in this project

is analog voltage output, in which the output voltage is range from 0 volt to 2.55

31

volts with the scaling factor of 10mV per inches. (Maxbotix) In this project, the

snake like robot is required to make decision when it senses an object or obstacle

within the range of 35cm from the robot, which is the optimize range to let the robot

to respond. Since the output format for the sensor is in analog voltage form, and the

PIC microcontroller will not respond well to the variation of the analog voltage input,

so this project will take concern at the ADC programming as well. The ADC

programming will explain in section 3.8.1 and calculation of digital value for desired

range will show in section 3.8.2. Where the flow for the snake like robot to respond

to the sensor is show in figure 3.3 and the programming code can refer to Appendix

A.

3.8.1 ADC programming

In the ADC programming, some of the major characteristics of the ADC are as

follows:

- Resolution

The ADC has n-bit resolution, where n can be 8, 10, 12, 16, or even 24 bits. The

higher-resolution ADC provides a smaller step size, where step size is the

smallest change that can be discerned by an ADC. (McKinlay et al., 2007)

However, the ADC in PIC18F microcontroller is 10-bit ADC, so the number of

steps is equal to 1024.

- Conversion time

In addition to resolution, conversion time is another major factor in judging an

ADC. Conversion time is defined as the time it takes the ADC to convert the

analog input to a digital (binary) number. For the ADC in PIC18F

microcontroller, the conversion time is dictated by the internal clock source

(crystal frequency). (McKinlay et al., 2007)

- Reference voltage

Reference voltage is one of the important factors that determine the step size of

the ADC output. Since the ADC in PIC18F microcontroller is 10-bit resolution,

so the step size of the output can calculate if the Vdd of PIC18 is used as the

reference voltage (5V). The step size for ADC with 10-bit resolution and used 5V

as reference voltage is equals to:

32

Step size = 5/ 1024

 = 4.88mV (3.20)

For PIC18F4520 microcontroller, the ADC is control by three registers, which are

the ADCON0, ADCON1, and ADCON2. The ADCON0 is the register to choose

which analog channels to use, to on the ADC, and start the conversion. ADCON1 is

used to select the reference voltage source, and set the pin from AN0 to AN12 either

as digital input port or analog input port. ADCON2 is used to set the acquisition time

and the conversion clock. Thus, in this project the values ‘0b00010001’,

‘0b00001010’, and ‘0b10101010’ are loaded to the ADCON0, ADCON1, and

ADCON2 respectively in order to let ADC to service the data at channel 4 (AN4),

turn on the ADC, set the reference voltage as Vdd (5V), set AN4 as the analog input

port, set the acquisition time to 12 TAD, and the conversion clock as Fosc/ 32.

Besides the ADCON0 value stated above, another binary number ‘0b00010000’ for

ADCON0 register is defined in the programming code as well in order to switch off

the ADC and so turned off the sensor, and both binary numbers for ADCON0 is

defined in programming language as below:

#define adc_on 0b00010001 \\ channel to turn on the sensor

#define adc_off 0b00010000 \\ channel to turn off the sensor

Figure 3.2 show the method of switching the channel with respect to the input

from user, where ‘1’ is to turn on the ADC, and ‘2’ is to turn off the ADC.

Figure 3.5: The data acquisition and conversion cycle. (Microchip, 2008)

33

Figure above show the data acquisition and conversion cycle for ADC, where

the TAD is defined as the conversion time per bit and TACQT is defined as the

acquisition time. The TACQT show above is equals to 4 TAD, and the conversion time

for a byte is equals to 12 TAD as well. However, for this project, the acquisition time

is set to 12 TAD to make sure all the data can acquire by the ADC. The TAD can be

calculated by knowing the conversion clock, so for conversion clock as Fosc/ 32, the

TAD is equals to:

TAD = 1/ (Fosc/ 32)

 = 1.6μs (3.21)

Conversion time for 1 byte = 12 TAD

 = 19.2μs (3.22)

Thus, the minimum conversion time of one byte data is set as 19.2μs, because the

1.6μs is minimum time for TAD. By using the polling method on GO bit in ADCON0,

the done of conversion process can be known when the GO bit turn low. After that,

the value in ADRESL and ADRESH registers will transfer to a 16-bit variable (result)

as shown in the programming code below:

ADCON0 = config; //config will be adc_on or adc_off

delay(10000); //delay after changing configuration

ADGO = 1; //ADGO is the bit 2 of the ADCON0 register

while(ADGO==1); //ADC start, ADGO=0 after finish ADC progress

result=ADRESH; //load the value inside ADRESH to result

result=result<<8; //shift to left for 8 bit

result=result|ADRESL; //10 bit result from ADC

ADON = 0; //adc module is shut off

34

The programming code above also shows the method to read the value in

both ADRESL and ADRESH 8-bit register to a 16-bit variable (result) by applied the

left switch (<<) and OR(|) operator. The result will then used by the microcontroller

to determine the distance of the obstacle.

3.8.2 Calculation of the digital value (converted from analog) for the desired

range.

The desired distance in this project is set to 35cm, so that the snake like robot can

respond to the obstacle and avoid it. Since the resolution of the sensor used in this

project is one inch, so the desired distance will convert to inch first:

 1cm = 0.3937 inch (3.23)

Desired distance (inch) = 35 x 0.3937

 = 13.78 inch (3.24)

With the desired distance in term of inch, the output voltage of the sensor can

be calculated:

Output voltage = desired distance (inch) x step size (volt per inch)

= 13.78 inch x 10mV/ inch

= 138 mV or 0.138 V (3.25)

With the output voltage from sensor (3.25) and step size (3.19) of the ADC,

the digital value can be calculated:

Result (in decimal) = 138mV / 4.88 mV

 = 28.28 (take it as 29) (3.26)

35

Thus, the result that gets from ADC will then compare to the decimal value in

(3.24) to help the snake like robot to determine whether there have any obstacle

within the desired range or not, if got, the snake will try to avoid it.

3.9 Method of snake-like robot used to avoid obstacle

There are two methods for snake like robot to avoid obstacle proposed in this project,

where the first method is to stop and centre the snake like robot, then sense the

obstacle form, where the second method is to sense the way without obstacle, then

move to the particular direction.

3.9.1 First method for obstacle avoidance

For the 1st method, the snake-like robot will stop and centre all the segments once the

sensor detects any obstacle within the desired range. After a certain delay, the head

of the snake-like robot (1st segment) will turn to end of left (45 degree to the left).

Then, the 1st segment will move step by step with a certain step size of angle, until it

reaches the end of right. At the same time, the microcontroller will remember the

angle once the sensor detects the obstacle, and then accumulate the steps that the

obstacle still within the range (obstacle form) to calculate the size of obstacle, and

determine the end of the obstacle, then the snake-like robot will determine the

direction to move. If there is no outside path for snake-like robot, then the robot will

go to the climbing stage to overcome the obstacle (with the height of the obstacle is

reachable by the robot).

36

Figure 3.6: First method of obstacle avoidance.

3.9.2 Second method for obstacle avoidance

The 2nd method for obstacle avoidance is less time consuming, because the snake-

like robot will not stop and have delay as 1st method do, the snake-like robot will

sense the solution path while it is moving. Once there is a space after an obstacle,

then the snake-like robot will turn to the direction. Below is the programming code

for the snake-like robot to decide which direction to move, where the increase and

decrease of the value for variable ‘c’ is to change the direction to either left or right

as stated in section 3.4:

if (result<29) // got obstacle within the range

{

temp_ang=ang1; // save the current angle for servo1

TMR0H=0; //Timer 0 = 0

TMR0L=0;

T0CONbits.TMR0ON=1; // on Timer 0

Obstacle
The robot will

decide to move

to right

direction in

this case, due

to the space on

right side is

more than left

side

37

while (result<29) // check whether have solution path

{ // quit the loop after space is found

if (INTCONbits.TMR0IF==1) // Timer 0 overflowed

break; // no solution path is found, quit

else

read_adc(channel); // get the new result

}

read_adc(channel); //get the current result from sensor

T0CONbits.TMR0ON=0; // off the timer

if (result>29) // if there have solution path

{

if (ang1<temp_ang) // if the angle for servo1 is less than the

c+=1000; // saved angle, then turn left

else if (ang1>temp_ang) // if the angle for servo1 is more than

c-=1000; // the saved angle, then turn right

else

{

if (ang1<3950)

c-=1000;

else

c+=1000;

}

}

else // if there have no solution path

stop = 1; // then stop and wait for user command

}

The Timer 0 is used in the 2nd method as shown in the programming code

above to determine whether there have any solution path within a certain time, if

don’t have, then the program will lead to stop instruction. The Timer 0 programming

will discuss on below.

38

Figure 3.7: Second method of obstacle avoidance.

3.9.3 Timer 0 programming

Since the Timer 0 is just used to helps the snake like robot to make decision, so the

interrupt for Timer 0 is disable. The polling method is used for Timer 0, the

microcontroller will keep monitor the interrupt flag bit of Timer 0, and break the

loop if Timer 0 overflowed before the snake-like robot can sense the solution way to

avoid the obstacle. Same as the Timer 1 programming in section 3.7.1, Timer 0 also

has the TMR0L and TMR0H registers, and is control by the T0CON register. A

binary value ‘0b00000111’ is loaded into the T0CON register to configure the Timer

0 as a 16-bit timer, using internal clock source, and with a prescale of 1:256. Since

the Timer 0 is start the count from 0, so the count time is equals to:

Obstacle Obstacle

The snake-like robot will move the

right direction in this case, because

there is a space on right side.

39

Timer frequency = 20MHz /4 /256

 = 19.53 kHz (3.27)

Step time = (1/19.53 kHz)

 = 51.2μs (3.28)

Count time = 65536 x 51.2μs

= 3.36 s (3.29)

This means, if the snake-like robot cannot find the solution path in 3.36

second, then the snake-like robot will stop and centre all segments, and wait for the

command from user.

3.9.4 Comparison of both methods

Table 3.2: Comparison of both methods for obstacle avoidance.

1st Method 2nd Method

Time consuming Take long time to make

decision.

Less time consuming

Accuracy (of making the

right decision)

Better accuracy Good accuracy

Simplicity Complex Simple

From the table above, the 2nd method is chosen due to it less time consuming, good

accuracy (although not better as 1st method), and simple in programming.

40

3.10 Method of snake-like robot used in climbing.

In order to overcome the obstacle, climbing ability is required for the snake-like

robot. There have two methods of climbing process proposed to this project, which

are the automatically climbing process, and manually control climbing process.

3.10.1 Automatically climbing process (1st method)

For 1st method, the snake-like robot is able to climb over the obstacle by itself. Once

the program is enter to the climbing process, the snake-like robot will in the situation

that all segments are centred, and then the 1st and 2nd segments of the robot will raise

in the form shown in figure below to sense the height for the obstacle:

Figure 3.8: The method to sense the height of obstacle.

After get the height of the obstacle, the snake-like robot will start the

climbing process as shown in the figure below:

obstacle

1st segment

2nd segment

41

Figure 3.9: The automatically climbing process.

From the figure above, the snake-like robot will raise the 1st and 2nd segment

in the 1st process, and power the motor to let the snake-like robot to move forward,

and so the 1st segment will pass through the obstacle, then the 3rd segment will raise

and power the motor again to let 2nd segment to pass through the obstacle, for the 3rd

and 4th segment, both will raise together, and the 1st and 2nd segment will move

forward so that all the segments will pass through the obstacle.

3.10.2 Manual climbing process (2nd method)

In this method, the snake-like robot will climb over the obstacle with the assist of

user command, the user will send the command to raise or lower each segment step

by step. Below is part of the programming code for the snake-like robot to respond to

user command in climbing method:

case 'y': // to raise 1st segment

if (stop ==1)

center_ang5+=400;

Obstacle

Obstacle

Obstacle

1st process:

1st segment pass

through.

2nd process:

1st and 2nd segments

pass through.

3rd process:

All the segments

pass through.

42

break;

case 'h': // to lower 1st segment

if (stop ==1)

center_ang5-=400;

break;

case 'u': // to raise 2nd segment

if (stop ==1)

center_ang6+=400;

break;

case 'j': // to lower 2nd segment

if (stop ==1)

center_ang6-=400;

break;

case 'i': // to raise 3rd segment

if (stop ==1)

center_ang7+=400;

break;

case 'k': // to lower 3rd segment

if (stop ==1)

center_ang7-=400;

break;

The reasons of using manual climbing process are the flexibility of the

climbing process, ease to determine the form of climbing, and stability of the snake-

like robot can be control.

3.10.3 Comparison of both climbing method

Table 3.3: Comparison of both methods for obstacle avoidance.

Automatic climbing Manual climbing

Flexibility Fixed Can be change to adapt in

different environment

43

Stability Hard to control since the

weight of snake-like robot

is not uniform.

Can be control by the user

in command the climbing

process.

The table above show the comparison between the automatic climbing

method and manual climbing method. From the table, the manual climbing seems to

have more advantageous in flexibility and stability, this also the reason manual

climbing is used in this project. However, this may limit the ability of snake-like

robot when it is in the closed environment without the monitor of the user.

3.11 DC motor programming

DC motor is used to provide the driving force for the snake-like robot in this project.

Although the snake-like robot can generate the driving force by itself with snake-like

locomotion, but a DC motor is used to improve the speed of the snake-like robot.

Thus, the DC motor programming is required to order the motor to stop or move.

Since the DC motor that used in this project is not a high speed motor, so this section

will not take consideration on the variation of speed, which means the duty cycle

used to power the DC motor is either 0% or 100%.

In the DC motor programming, the CCP (Compare Capture Pulse-Width-

Modulation) of PIC18F4520 is used to generate the PWM of certain duty cycle to

control the motor. There are several registers that must take consideration in PWM

programming using CCP, which are the PR2 register, T2CON register, CCP1CON

register, and CCPR1L register. PR2 register is used to set the period of the PWM,

where T2CON is used to configure and ON Timer 2, CCP1CON is used to select the

mode to PWM and CCPR1L is some percentage of PR2 register, because the value

loaded into this register is to determine the percentage of duty cycle.

In this project, the value for CCPR1L may either be 0 or the same as value in

PR2 register in order to generate 0% or 100% duty cycle, as the PR2 in this project is

set to 255, so the CCPR1L will have a value of 255. The Timer 2 is set to no

44

prescaler and postscaler, where the use of Timer 2 is to count the period for value in

PR2, and the Timer 2 will reset once the value is same as PR2.

45

CHAPTER 4

4RESULTS AND DISCUSSIONS

4.1 Results

There are two important factors to examine in design the snake-like robot, which are

the serpentine curve of the snake-like robot, and the accuracy of the ultrasonic sensor.

As stated at section 3.4, the serpentine curve is depend on the three variables, a, b,

and c. Thus, the analysis on the waveform of each joint with different values of the

three variables is required.

4.1.1 The waveforms of each joint. (a=0.7854, b=3π, c=0)

Figure 4.1: The waveform for 1st joint.

Figure above is the waveform for 1st joint, where the variables: a=0.7854rad

(45degree), b=3π, c=0. The waveform above shows that the maximum amplitude is

46

approximately to 0.58 rad, the time for each cycle is around 6.3t, and start at 0degree

when t=0. The 0.58 rad equals to:

 (0.58/ π)*180 = 33.23 degree (4.1)

Figure 4.2: The waveform for 2nd joint.

Figure above is the waveform for 2nd joint, where the variables: a=0.7854rad

(45degree), b=3π, c=0. Where the amplitude at t=0 is calculated below:

 (0.39/ π)*180 = 22.35 degree (4.2)

Figure 4.3: The waveform for 3rd joint.

47

Figure above is the waveform for 3rd joint, where the variables: a=0.7854rad

(45degree), b=3π, c=0.

4.1.2 The waveforms of 1st joint with different value of a.

Figure 4.4: The waveform for a=1.047

Figure above are the waveform of 1st joint, where the variables: a=1.047rad

(60degree), b=3π, c=0.

Figure 4.5: The waveform for a=1.309

48

Figure above are the waveform of 1st joint, where the variables: a=1.309rad

(75degree), b=3π, c=0.

4.1.3 The waveforms of 1st joint with different value of c.

Figure 4.6: The waveform for c=π/2

Figure above are the waveform of 1st joint, where the variables: a=0.7854rad

(45degree), b=3π, c=π/2.

Figure 4.7: The waveform for c=-π/2

49

Figure above are the waveform of 1st joint, where the variables: a=0.7854rad

(45degree), b=3π, c=-π/2.

4.1.4 The results of ultrasonic sensor in different distance (output voltage).

Table 4.1: Results of ultrasonic sensor in different distance

Output Volt-

age

Distances

1st result

(mV)

2nd result

(mV)

3rd result

(mV)

Average

(mV)

4inch 64.5 64.8 64.7 64.67

8inch 75.1 74.2 73.9 74.40

12inch 112.8 112.7 112.6 112.70

16inch 151.0 150.8 151.2 151.00

The output voltage of each distance can be calculated by using equation

(3.25):

Output voltage (4 inch) = 4 inch x 10mV/ inch

 = 40 mV (4.3)

Output voltage (8 inch) = 8 inch x 10mV/ inch

 = 80 mV (4.4)

Output voltage (12 inch) = 12 inch x 10mV/ inch

 = 120 mV (4.5)

Output voltage (16 inch) = 16 inch x 10mV/ inch

 = 160 mV (4.6)

50

The % error is calculated as well at below:

% error(4 inch) = |(64.67 – 40)/ 40| * 100%

 = 61.68% (4.7)

% error(8 inch) = |(74.4 – 80)/ 80| * 100%

 = 7% (4.8)

% error(12 inch) = |(112.7 – 120)/ 120| * 100%

 = 6.08% (4.9)

% error(16 inch) = |(151 – 160)/ 160| * 100%

 = 5.63%

(4.10)

Table 4.2: Comparison between measured value and calculated value

Distances

(inch)

Measured Output

Voltage (mV)

Calculated Output

Voltage (mV)

Percentage Error

(%)

4 64.67 40 61.68

8 74.40 80 7.00

12 112.70 120 6.08

16 151.00 160 5.63

4.2 Discussion

In the project, the waveforms of each joint are plotted and examined. Figure 4.1

shows the waveform for 1st joint, where the variables: a=0.7854rad (45degree), b=3π,

51

c=0. The waveform above shows that the maximum amplitude is approximately to

0.58 rad, the time for each cycle is around 6.3t, and start at 0degree when t=0.

Figure 4.2 shows the waveform for 2nd joint, where the variables:

a=0.7854rad (45degree), b=3π, c=0. Same as 1st joint, the maximum amplitude is

about 0.58rad (33.23 degree), and having the cycle time approximately to 6.3t.

However, the direction of the 2nd joint is opposite to the 1st joint, and the angle is on

0.39rad when t=0.

Figure 4.3 shows the waveform for 3rd joint, where the variables:

a=0.7854rad (45degree), b=3π, c=0. Same as 1st joint, the maximum amplitude is

about 0.58rad (33.23 degree), having the cycle time approximately to 6.3t, and same

direction as 1st joint but starting at -0.58rad, which equals to minimum amplitude of

the waveform.

From the waveforms, we can know that the maximum degree that each joint

can reach is about 33.23 degree, however, the maximum degree that the snake-like

robot can reach is 45degree, due to the relative angle between each joint. Besides that,

the direction for 2nd joint is different with the direction for 1st joint and 3rd joint, so

the serpentine curve can be form.

Besides the waveforms of each joint are examined, the waveform for

different values of variable is examined as well. For different value of a, the

amplitude of each waveform will increase as the value of a is increased, and decrease

the amplitude as a is decrease. For different value of c, will shift the waveform either

to upward direction or downward direction depend on the sign of value c, shift

upward when the c is negative, and shift downward when c is positive.

The accuracy of the ultrasonic sensor is examined. The percentage errors

between the measured output voltage and calculated output voltage of the sensor are

low except the percentage errors of output voltage for distance at 4inch, this may due

to the different step resolution of the sensor. As stated in section 3.8, the ultrasonic

sensor used in this project has a 6 inches resolution from 0 inch to 6 inch, so the

measured output voltage at 4 inch is actually the output voltage for 6 inch:

52

Output voltage (6 inch) = 6 inch x 10mV/ inch

 = 60 mV (4.11)

% error(6 inch) = |(64.67– 60)/ 60| * 100%

 = 7.78% (4.12)

Thus, the actual percentage error is 7.78%. Therefore, the accuracy of the

ultrasonic sensor can consider high due to the small percentage errors of output

voltage at different distances.

53

CHAPTER 5

5CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

As a conclusion for programming part, the programming of serpentine movement on

the snake-like robot is done, the snake-like robot able to make decision to overcome

the obstacle, and able to respond to the user command. In generally, all of the

objectives stated are achieved in this project:

-The snake-like robot able to provide snake-like locomotion.

-The snake-like robot can make the decisions itself when facing problems (obstacles).

-The distance can be detected with the assist of sensors.

-The snake-like robot can lift at a certain height so that it can climb stair or climb

over the obstacles.

-The snake-like robot can remotely control by the user.

5.2 Recommendation and future development

Firstly, a camera is recommended to install to the snake-like robot in order to let the

snake-like robot have high level of decision making instead of just using the

ultrasonic sensor, because the surface form of the obstacles is impossible to get by

just using the ultrasonic sensor. With a camera, the user can monitor the movement

of the snake-like robot even in the closed environment where human cannot be inside.

Besides that, the image processing technology like machine vision can program to

54

the snake-like robot, so that the robot can make decision based on the processed

image.

Secondly, more sensors could be added to the snake-like robot, to allow it to

know its position and the environment that surround it. The gyroscope can be added,

so that the snake-like robot can stabilize itself in the climbing process.

Lastly, the additional features such as sense for fire, detect human breathing,

and other useful features can be added to the snake-like robot, so that it can help

human to perform rescue services in the environment that human can’t reach.

55

REFERENCES

Junyao Gao; Xueshan Gao; Wei Zhu; Jianguo Zhu; Boyu Wei; , "Design and

research of a new structure rescue snake robot with all body drive system,"

Mechatronics and Automation, 2008. ICMA 2008. IEEE International Conference

on , vol., no., pp.119-124, 5-8 Aug. 2008

Hua Liu; Guozheng Yan; Guoqing Ding; , "Research on the locomotion mechanism

of snake-like robot," Micromechatronics and Human Science, 2001. MHS 2001.

Proceedings of 2001 International Symposium on , vol., no., pp.183-188, 2001

McKenna, J.C.; Anhalt, D.J.; Bronson, F.M.; Brown, H.B.; Schwerin, M.; Shammas,

E.; Choset, H.; , "Toroidal skin drive for snake robot locomotion," Robotics and

Automation, 2008. ICRA 2008. IEEE International Conference on , vol., no.,

pp.1150-1155, 19-23 May 2008

http://mcu-programming.blogspot.com/2006/09/servo-motor-control.htm

Muhammad Ali Mazidi, Rolin McKinlay, Danny Causey (2007). PIC

Microcontroller and Embedded Systems: Using Assembly and C for PIC18 (2th ed.).

DeVry University: Prentice Hall.

56

Maxbotix. (2005). Retrieved Jan 2005, from MaxSonar EZ-1 Data Sheet:

http://www.cytron.com.my/datasheet/sensor/LVEZ1.pdf

Kai-Hsiang Chang; Yung-Yaw Chen; , " Efficiency on Snake Robot Locomotion

with Constant and Variable Bending Angles" IEEE International Conference on

Advanced Robotics and its Social Impacts, vol., no., pp., 23-25 Aug. 2008

57

APPENDICES

APPENDIX A: C Programming Code

#include <P18f4520.h>
#include "delays.h"
#include "usart.h"
#include "math.h"
#include "stdlib.h"
#include "stdio.h"

#pragma config OSC = HS

#define pi 3.142
#define A_default 1000
#define B_default 3*pi
#define C_default 0
#define seg 4
#define led PORTDbits.RD1
#define sw1 PORTBbits.RB0
#define servo1 PORTBbits.RB1
#define servo2 PORTBbits.RB2
#define servo3 PORTBbits.RB3
#define servo4 PORTBbits.RB4
#define servo5 PORTBbits.RB5
#define servo8 PORTBbits.RB7
#define servo7 PORTBbits.RB6
#define servo6 PORTDbits.RD7
#define ADGO ADCON0bits.GO
#define ADON ADCON0bits.ADON
#define adc_on 0b00010001
#define adc_off 0b00010000
#define motor_spd CCPR1L

volatile float a=A_default;
volatile float b=B_default;
volatile float c=C_default;

volatile float alpha;
volatile float beta;

58

volatile float gamma;
volatile float t=0;

volatile unsigned int channel;
volatile int center_ang1=3950;
volatile int center_ang2=3950;
volatile int center_ang3=3950;
volatile int center_ang4=3950;
volatile int center_ang5=3950;
volatile int center_ang6=3950;
volatile int center_ang7=3750;
volatile int center_ang8=4150;
volatile int temp_ang;
volatile int ang1,ang2,ang3,ang4,ang5;
volatile int ang6,ang7,ang8,ang9,ang10;
volatile int time;

volatile float z;
volatile float func;
volatile float height;
volatile float speed=0.01*pi;

volatile unsigned int T_17point75;
volatile unsigned int int_time;

unsigned char on;
unsigned char start;
unsigned int distance;
unsigned int result;

void chk_rx_isr(void);
void chk_timer_isr(void);
void T1_isr(void);
void Rx_isr(void);
void get_time(void);
void read_adc(char config);
void delay(unsigned long data);
void stop_isr(void);

#pragma code Rx_int=0x0008 //High-priority interrupt
void Rx_int(void) //Rx-pin interrupt
{

_asm
GOTO chk_rx_isr

_endasm
}

59

#pragma code Timer_int=0x0018 //Low priority interrupt
void Timer_int(void) //Timer interrupt
{

_asm
GOTO chk_timer_isr

_endasm
}

#pragma interruptlow chk_timer_isr
void chk_timer_isr(void)
{

if (PIR1bits.TMR1IF==1)
{

if (distance==2000)
stop_isr();

else
T1_isr();

}

}

#pragma interrupt chk_rx_isr
void chk_rx_isr(void)
{

if(PIR1bits.RCIF==1)
Rx_isr();

}

void Rx_isr() // Rx ISR
{

int input;
while(PIR1bits.RCIF==0); //wait until RCIF become 1
input=RCREG; //read input from RCREG
switch(input) //cases for user's command
{

case '1': //start the robot with sensor ON
distance=0;
channel=adc_on;
break;

case '2': //start the robot with sensor OFF
distance=0;
channel=adc_off;
break;

case 's': //stop the robot
distance=2000;
break;

case 'd': //turn right
c += 1000;

 gamma=-c/seg;
break;

60

case 'a': //turn left
c -= 1000;
gamma=-c/seg;
break;

case 'y': //1st segment move upward
if (distance==2000)

center_ang6+=400;
break;

case 'h': //1st segment move downward
if (distance==2000)

center_ang6-=400;
break;

case 'u': //2nd segment move upward
if (distance==2000)

center_ang4+=400;
center_ang5-=400;

break;
case 'j': //2nd segment move downward

if (distance==2000)
center_ang4-=400;
center_ang5+=400;

break;
case 'i': //3rd segment move upward

if (distance==2000)
center_ang7+=400;
center_ang8-=400;

break;
case 'k': //3rd segment move downward

if (distance==2000)
center_ang7-=400;
center_ang8+=400;

break;
case 'Y': //1st segment move to right

if (distance==2000)
center_ang1+=400;

break;
case 'H': //1st segment move to left

if (distance==2000)
center_ang1-=400;

break;
case 'U': //2nd segment move to right

if (distance==2000)
center_ang2+=400;

break;
case 'J': //2nd segment move to left

if (distance==2000)
center_ang2-=400;

break;
case 'I': //3rd segment move to right

if (distance==2000)

61

center_ang3+=400;
break;

case 'K': //3rd segment move to left
if (distance==2000)

center_ang3-=400;
break;

case 'R': //reset data to default
c=0;
center_ang1=3950;

 center_ang2=3950;
 center_ang3=3950;
 center_ang4=3950;
 center_ang5=3950;
 center_ang6=3950;
 center_ang7=3950;
 center_ang8=3950;

break;
case 'r':

motor_spd=102; //move the motor
break;

case 'f':
motor_spd=0; //stop the motor
break;

default:
break;

}
}

void T1_isr()
{

TMR1H=0x3C; //20ms for Timer1
TMR1L=0xB0;

servo1=1; //Start the duty cycle for servo motors
servo2=1;
servo3=1;

get_time(); //take current time
int_time=time; //save to variable 'int_time'
T_17point75=0x52A9; //value=17.75ms

T1CONbits.TMR1ON=1; //On Timer1
while (time<T_17point75)
{

if (time>int_time+ang1) //if time reach
servo1=0; //end of the duty cycle for servo motors

if (time>int_time+ang2)
servo2=0;

62

if (time>int_time+ang3)
servo3=0;

get_time(); //get the current time
}

ang1=(alpha*sin(t)+gamma+3950); //snake equations
ang2=(alpha*sin(t+1*beta)+gamma+3950);
ang3=(alpha*sin(t+2*beta)+gamma+3950);

t+=speed;
if (t >= 2*pi){

 t = 0;
 }
 else if (t < 0){
 t = 2*pi;
 }

PIR1bits.TMR1IF=0; //clear the interrupt flag for Timer 1
}

void stop_isr()
{

TMR1H=0x3C; //2.25ms=5625H
TMR1L=0xB0;

servo1=1;

servo2=1;

servo3=1;

servo4=1;

servo5=1;

servo6=1;

servo7=1;

servo8=1;

get_time();
int_time=time;
T_17point75=0x52A9;

63

T1CONbits.TMR1ON=1;

while (time<T_17point75)
{

if (time>int_time+ang1)
servo1=0;

if (time>int_time+ang2)
servo2=0;

if (time>int_time+ang3)
servo3=0;

if (time>int_time+ang4)
servo4=0;

if (time>int_time+ang5)
servo5=0;

if (time>int_time+ang6)
servo6=0;

if (time>int_time+ang7)
servo7=0;

if (time>int_time+ang8)
servo8=0;

get_time();
}

ang1=center_ang1; //set all servo motors to center position
ang2=center_ang2;
ang3=center_ang3;
ang4=center_ang4;
ang5=center_ang5;
ang6=center_ang6;
ang7=center_ang7;
ang8=center_ang8;

PIR1bits.TMR1IF=0;
t=0; //reset the value for t

}

void main(void)
{

while(1)
{

unsigned char n;
unsigned char Prompt[]="Select Environment Mode:1)Flat surface

2)Uneven surface";

distance=2000; //stop the robot initially

64

TRISB=0b00000001; //set portB as output except RB0
TRISDbits.TRISD7 = 0; //RD7 as output
TRISDbits.TRISD1 = 0; //RD1 as output
TRISAbits.TRISA5 = 1; //RA5 as input
TRISC=0b10000000; //RC7 as input, and other pin for PortC are output

PR2=255; //the period of PWM at 19.53kHz
T2CON=0b00000100; //start the Timer2 with no prescaler and postscaler

CCP1CON=0b00001100; //set the CCP to PWM mode
motor_spd=0; //stop the motor

ADCON1 = 0b00001010; //reference voltage=Vdd, AN4 as analog input port

ADCON2 = 0b10101010; //Tacqt=12Tad, conversion clock=Fosc/32

T1CON=0b00010000; //with prescaler= 1:2
T0CON=0b00000111; //with prescaler= 1:256
TMR1H=0x3C;
TMR1L=0xB0; //3CB0H=20ms

SPBRG = 0x20; //baud rate=9600
TXSTA=0b00100000; //TXEN=1
RCSTA=0b10010000; //SPEN=1,CREN=1
PIE1bits.RCIE=1; //enable the receive interrupt bit
RCONbits.IPEN=1; //enable for different priority interrupt
IPR1bits.TMR1IP=0; //Timer 1 as low priority interrupt
INTCONbits.TMR0IF=0; //clear Timer0's interrupt flag
PIR1bits.TMR1IF=0; //clear the timer1 interrupt flag
PIE1bits.TMR1IE=1; //enable the timer1 interrupt flag
INTCONbits.GIEH=1; //enable all high priority interrupt
INTCONbits.GIEL=1; //low priority interrupt enable
T1CONbits.TMR1ON=1; //On Timer1

delay(100000);

for(n=0;n<55;n++) //send text
{

while(PIR1bits.TXIF==0);
TXREG=Prompt[n]; //loaded data to send

}

while(1)
{

if (distance==0) //on by user input
break;

if (sw1==0) //on by switch
distance=0;

channel=adc_on;
break;

65

}

while(1)
{

gamma=-c/seg;
beta=b/seg;
z=(sin(beta));

if (z<0)
func=z-(2*z);

else
func=z;

alpha=a*func;

read_adc(channel);

if (result<29)
{

temp_ang=ang1;

TMR0H=0;
TMR0L=0;
T0CONbits.TMR0ON=1;

while (result<29)
{

if (INTCONbits.TMR0IF==1)
break;

else
read_adc(channel);

}
read_adc(channel);
T0CONbits.TMR0ON=0;
if (result>29)
{

if (ang1<temp_ang)

c+=1000;

else if (ang1>temp_ang)

c-=1000;

else
{

66

if (ang1<3950)
c-=1000;

else
c+=1000;

}
}
else

{
distance=2000;

}

}

}

}
}

void get_time() //get value in 16-bit
Timer1
{

time=TMR1H;
time=time<<8; //shift to left for 8 bit
time=time|TMR1L; //16-bit result from Timer1

}

void read_adc(char config)
{

unsigned long result_temp=0;

ADCON0 = config;
delay(10000); // delay after changing configuration

ADGO = 1; //ADGO is the bit 2 of the ADCON0 register
while(ADGO==1);//ADC start, ADGO=0 after finish ADC progress

67

result=ADRESH;
result=result<<8; //shift to left for 8 bit
result=result|ADRESL; //10 bit result from ADC

ADON = 0; //adc module is shut off

if(result<29)
led=1;

else
led=0;

}

void delay(unsigned long data) //delay function, the delay time
{ //depend on the given value

for(;data>0;data-=1);
}

