

32-bit 5-stage RISC Pipeline Processor with 2-Bit Dynamic Branch

Prediction Functionality

 By

CHANG BOON CHIAO

1200485

SUPERVISED BY

MR. MOK KAI MING

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfilment of the requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONS)

COMPUTER ENGINEERING

Faculty of Information and Communication Technology

(Perak Campus)

Jan 2015

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR i

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR ii

DECLARATION OF ORIGINALITY

I declare that this report entitled “32-bit 5-stage RISC Pipeline Processor with 2-Bit

Dynamic Branch Prediction Functionality” is my own work except as cited in the

references. The report has not been accepted for any degree and is not being

submitted concurrently in candidature for any degree or other award.

Signature : _________________________

Name : ____________________________

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR iii

ACKNOWLEDGEMENTS

I would like to say thanks lot to my final year project supervisor, Mr. Mok Kai Ming.

Thanks for his guidance throughout the project with the right direction, good patience

and also well explanation in helping me to complete my project. He had helped me a

lot to understand my project as well as making me to get really interested into it. The

project might not be completed without his guidance. Really thanks for spending so

much of precious time with me throughout the whole project.

Next, I wish to thanks my friends, who support me when I am facing problems and

help to comfort me and release my stress when I am feeling pressure and tension.

Last but not the least, a big thank you to my family for their support and

encouragement to continue to work on and complete the course.

Chang Boon Chiao

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR iv

ABSTRACT

This project is an integration of the Branch Predictor for the development of the

RISC32 processor based on RISC Architecture that previously developed in

Universiti Tunku Abdul Rahman under Faculty of Information and Communication

Technology. After reviewing the previous projects, there is a part where the

developed branch target buffer is not yet integrate into the processor and the coverage

of the control hazards is not well defined and implemented. The purpose of this

project is to integrate the branch target buffer into the processor with a branch

predictor and design the control logic to handle control hazards caused by different

instructions. All the modeling will be using Verilog which is a type of Hardware

Description Language and verification will be done to test the functionality and

compatibility.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR v

CONTENTS
DECLARATION OF ORIGINALITY.. ii

ACKNOWLEDGEMENTS ... iii

ABSTRACT ... iv

List of Figures .. viii

List of Table ... ix

List of Equation.. ix

List of Abbreviation .. x

Project Title ... 1

Chapter 1: Introduction ... 1

1.1 RISC.. 1

1.2 MIPS.. 1

1.3 Pipeline.. 2

1.4 Branch Prediction .. 4

1.5 Motivation ... 5

1.6 Problem Background... 6

1.7 Problem Statement .. 7

Chapter 2: Literature Review .. 8

2.1 Branch Target Buffer (BTB) ... 8

2.1.1 State transition of the BTB... 9

2.1.2 BTB Cache Associativity ... 11

2.2 Branch Predictor Block (BPB) .. 12

2.2.1 Operation of Branch Predictor Block (BPB)...............Error! Bookmark not defined.

2.2.2 Flowchart of the BPB... 13

Chapter 3: Project Scope and Objectives .. 14

3.1 Project Scope... 14

3.2 Project Objective ... 14

Chapter 4: Methodology.. 15

4.1 Design Methodology ... 15

4.1.1 Architecture Level Design.. 16

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR vi

4.1.2 Micro-Architecture Level Design (unit level) .. 16

4.1.3 Micro-Architecture Level Design (block level)... 16

4.2 Design Language... 18

4.3 Design Tools.. 18

4.4 Project Timeline .. 19

4.4.1 Gantt Chart for Project I ... 19

4.4.2 Gantt Chart for Project II.. 19

Chapter 5: System Specification ... 20

5.1 System Feature .. 20

5.1.1 System Functionality .. 20

5.2 Operating Procedure.. 22

5.3 Naming Convention .. 22

5.4 RISC32 Pipeline Processor and I/O pin description.. 23

5.4.1 Processor interface.. 23

5.4.2 I/O pin description.. 23

5.5 Memory Map... 24

5.6 System Register ... 26

5.6.1 General Purpose Register ... 26

5.6.2 Special Purpose Register .. 26

5.6.3 Program Counter Register .. 26

5.7 Instruction Formats and Addressing modes .. 27

5.7.1 Instruction Formats... 27

5.7.1.1 R-format .. 27

5.7.1.2 I-format.. 27

5.7.1.3 J-format ... 27

5.7.2 Addressing modes .. 28

5.8 Supported Instruction set, machine language and RTN .. 31

Chapter 6: Micro Architecture Specification... 35

6.1 Design Hierarchy and Partitioning .. 35

6.2 Micro-Architecture (block level)... 36

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR vii

6.2.1 Micro-Architecture without branch predictor... 36

6.2.2 Micro-Architecture with branch predictor.. 37

6.3 Branch Predictor Functionality.. 38

6.4 Branch Predictor Interface... 38

6.5 I/O pin description... 39

6.6 Internal Block Diagram ... 41

6.7 Internal Operation.. 42

Chapter 7: Verification.. 43

7.1 Instruction Verification Test Program... 43

7.1.1 Simulation Result ... 44

7.2 Branch Prediction Accuracy Test Program ... 51

7.2.1 FiboPrime.c .. 52

7.2.2 MIPS like FiboPrime.c ... 53

7.2.3 FiboPrime.c in MIPS.. 54

7.2.4 Simulation results ... 55

7.2.5 Branch Prediction Accuracy... 59

7.2.6 Discussion on branch prediction accuracy ... 60

7.3 CPU performance after branch predictor integration .. 61

7.3.1 Discussion on CPU performance analysis.. 62

Chapter 8: Conclusion ... 63

8.1 Conclusion... 63

8.2 Future works.. 63

REFERENCE .. 65

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR
viii

List of Figures

Figure 1 Different stages of an instruction execution ...2

Figure 2 Overlapping instruction execution ... 3

Figure 3 BTB FSM.. 1

Figure 4 data allocation in one entry of BTB ... 11

Figure 5 4-way set-associative mapping implementation ... 11

Figure 6 Flowchart of BPB.. 13

Figure 7 General Design Flow without Logic Synthesis and Physical Design 15

Figure 8 IF-ID stage of a pipeline processor without branch predictor 1

Figure 9 IF-ID stage of a pipeline processor with branch predictor 1

Figure 10 Branch predictor operation in IF stageError! Bookmark not defined.

Figure 11 Branch predictor operation in ID stage........Error! Bookmark not defined.

Figure 12 Gantt Chart for Project I .. 19

Figure 13 Gantt Chart for Project II ... 19

Figure 14 Memory map for Kuseg section, accessible without CP0 25

Figure 15 Instruction Format ... 27

Figure 16 System Micro-Architecture without branch predictor............................... 36

Figure 17 System Micro-Architecture with branch predictor.................................... 37

Figure 18 57-bits entry of SRAM. ... 38

Figure 19 Branch predictor internal block diagram .. 41

Figure 20 Branch prediction accuracy.. 1

Figure 21 Performance improvement... 1

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR ix

List of Table

Table 1 BTB update scenario......................................Error! Bookmark not defined.

Table 2 Action taken for different scenario.................Error! Bookmark not defined.

Table 3 State table of BTB prediction.........................Error! Bookmark not defined.

Table 4 RISC32 features.. 20

Table 5 Naming Convention.. 22

Table 6 RISC32 I/O pin descriptions ... 23

Table 7 Memory Map.. 24

Table 8 General Purpose Register.. 26

Table 9 Special Purpose Register... 26

Table 10 Supported Instruction set, machine language and description 33

Table 11 Design Hierarchy.. 35

Table 12 b_bp_4way I/O pin description ... 40

Table 13 Branch prediction accuracy... 59

Table 14 CPU performance analysis.. 61

List of Equation

Equation 1 Branch prediction accuracy.. 1

Equation 2 Performance improvement... 1

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR x

List of Abbreviation

BPB Branch Prediction Buffer

BTB Branch Target Buffer

CPU Central Processing Unit

EX Execute

FSM Finite State Machine

ID Instruction Decode

IF Instruction Fetch

MIPS Microprocessor without Interlocked Pipelined Stages

PC Program Counter

RISC Reduced Instructions Set Computer

RISC32 RISC 32-bit

RTL Register Transfer Level

VHDL VHSIC Hardware Description Language

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR xi

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 1

Project Title

32-bit 5-stage RISC Pipeline Processor with 2-Bit Dynamic Branch Prediction

Functionality

Chapter 1: Introduction

1.1 RISC

RISC(Reduced Instruction Set Computer) is a philosophy introduced by Cocke IBM,

Patterson, Hennessy at 1980s [2]. The main idea of this philosophy is to keep the

instruction set small with highly-optimized instructions and simple through fixed

instruction length(eg:32-bit), limiting the number of addressing modes and operations

to make the hardware simpler hence easy to build and test as compared to the other

philosophy that insists of a more specialized set of instructions like CISC(Complex

Instruction Set Computer) philosophy. In RISC, the software will do complicated

operations by separating the operations into several simple instructions instead of

adding in more complex hardware to perform the operation in one instruction.

The first RISC projects came from IBM, Stanford, and UC-Berkeley in the late 70s

and early 80s.

Example of processors implemented based on RISC philosophy are SUN’s,

UltraSparc, ARM’s ARM11, Motorola’s PowerPC, MIPS etc. We will focused on

MIPS(Microprocessor without interlocked Pipelined Stages) throughout this project.

1.2 MIPS

MIPS, which stand for Microprocessor without interlocked Pipelined Stages is

computer architecture developed by David A. Patterson based on the RISC

philosophy [3]. In the early 80s, Professor John L. Hennessy started the development

of MIPS processor with his graduate students in Standford University [3]. The

concept is to create a faster processor by using simple instruction with great compiler

for instruction scheduling and also pipelining the hardware so that each stages of the

hardware can run independently on different instructions at the same time to fully

utilize the processor time. The project is done in the year of 1984 [3].

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 2

1.3 Pipeline

Pipeline here refer to a set of registers that insert between the hardware processor to

divide them into different stages. These stages are Instruction Fetch, Instruction

Decode & Operand Fetch, Execute, Memory access and Write Back.

Figure 1 Different stages of an instruction execution

The input of the pipeline register in the current stage is the output to the next stage

and all the pipeline registers are clocked synchronously. This help in preventing loss

of information of an instruction as it go from one stage to next.

Pipelining a processor enable the processor to begin executing next instruction before

the current one is complete [5]. This enhanced the speed performance of the processor

as each stages of the processor are able to operate different parts of different

instructions independently at a single clock cycle.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 3

Figure 2 Overlapping instruction execution

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 4

1.4 Branch Prediction

Branch prediction is used to enhance the performance of pipelining or superscalar

processors especially when the number of stages is large [6]. The branch predictor

pre-fetches a limited form of data and attempt to predict the result of branch

instructions. The processor will speculatively execute instruction base on the

predicted result from the branch predictor. A processor can have a better overall

performance especially when the prediction rates are high enough to offset miss-

prediction penalties as up to 20 percent of instructions are branches [10]. Without

branch prediction, a processor must stall whenever there are unresolved branch

instructions [10].

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 5

1.5 Motivation

A 32-bit 5-stage pipeline RISC soft-core can be advantageous in creating a core–

based environment to assist research and development work in the area of developing

Intellectual Properties (IP) cores. However, there are limitations in obtaining such

workable core-based design environment.

Microchip design companies develop microprocessors cores as IP for commercial

purposes. The microprocessor IP includes information on the entire design process for

the front – end (modelling and verification) and back – end (layout and physical

design) IC design. These are trade secrets of a company and certainly not made

available in the market at an affordable price for research purposes.

Several freely available microprocessor cores are freely available from source such as

the miniMIPS (www.opencores.org), the PH processor (Leicester University), uCore,

Yellow Star (Manchester University), etc. Unfortunately, these processors do not

implement the entire MIPS Instruction Set Architecture (ISA) and lack of

comprehensive documentation. This makes them unsuitable for reuse and

customization.

Verification is vital for proving the functionality of any digital design. The

microprocessor cores mentioned above are handicapped by incomplete and poorly

developed verification specifications. This hampers the verification process, slowing

down the overall design process.

The lack of well – developed verification specifications for these microprocessor

cores will inevitably affect the physical design phase. A design needs to be

functionally proven before the physical design can proceed smoothly. Otherwise, if

the front – end design needs to be changed, the physical process also needs to be

redone.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 6

1.6 Problem Background

Pipelining can improve the performance of the processor by increase the throughput,

the average instructions completed per clock cycle. However, it also introduced

hazards to the processor.

The hazard can be categorizes three different types: structural hazard, data hazard and

control hazard. This project will only focus on control hazard.

Control hazard, which is also known as branching hazard often take place when there

is a branch occur. The problem arises when the branch is taken, the program flow will

be incorrect due to the instructions that should not be executed had been fetched into

the ID stage of the pipelined processor before the branch condition is evaluated at EX

stage.

Control hazard can be caused by the following event:

 - Conditional branch: beq, bne, blez, bgtz

 - Unconditional branch: j, jr, jal, jalr

 - Exception

There are several ways can be used to solve this problem, such as stall the next

instruction until the branch is completed, flush all the inappropriate stages in the

pipeline or through hardware implementation.

In this project, a branch predictor is aimed to integrate into the pipeline processor to

predict both the conditional and unconditional branch dynamically based on the

information stored in the BTB. The BTB is a small cache memory inside the branch

predictor that used to record and update previous information of different branch

instruction.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 7

1.7 Problem Statement

Based on the ongoing project that has been developing in the Faculty of Information

and Communication Technology of Universiti Tunku Abdul Rahman, it is consists of

RISC32 processor and branch predictor.

The current problem found:

1. The developed branch predictor is not integrated into the processor.

2. So far, only the beq instruction is tested on the non-integrated branch predictor.

Other program control instructions such as bne, blez, bgtz, j, jal, jr and jalr are

not supported.

3. The evaluation of the predictor’s accuracy has not been carried out yet.

4. The accuracy profile of the predictor has not been created and studied.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 8

Chapter 2: Literature Review

2.1 Branch Target Buffer (BTB)

A BTB is a small piece of memory use to gather and store the information related to

branch instruction. The BTB behave like a look-up table for the branch predictor to

look for information of previous branch instruction that having same tag with the

current address to perform branch prediction for the current instruction. If the branch

instruction was not found in the BTB, a new entry will be created inside the BTB to

store the information of the branch instruction. The information stored included valid

bit, tag bit, branch target address, prediction state and LRU bit.

In the previous design of the BTB, cache memory is used as the memory element for

the BTB due to the cache has shorter accessing time compare to main memory, which

can provide faster read and write operation. The cache memory also consume less

power compared to other memory design.

However, this BTB is implemented outside the branch predictor, which introduced

latency during branch prediction. A solution to this problem arise is to integrate the

BTB into the branch predictor. This will not only minimizes the latency for branch

prediction, it also increases the scalability of the processor.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 9

Figure 3 BTB FSM

2.1.1 State transition of the BTB

Figure 3 shown the FSM of the BTB used in this project. A strong state will either

remain at the same state when the evaluated condition(taken or untaken) is same at its

state, or go to weak state of the same prediction when the evaluated condition is

different.

A weak state will not remain at its own state and there is no transition between two

weak states. A weak state will go to strong state with same prediction when evaluated

condition is same or directly go to a strong state of opposite prediction when the

evaluate condition is different with the current state, instead of go to a weak state of

opposite prediction.

For example, if the current state is weakly predict untaken, the next state will be

strongly predict taken instead of weakly predict taken(opposite prediction of current

state). This applied if the current state is weakly predict taken as well.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 10

When a new entry is create in the BTB, it start with state weakly predict taken or

weakly predict not taken depend on scenario(subchapter 2.2.2).

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 11

2.1.2 BTB Cache Associativity

The BTB is implemented using 4-way set-associative mapping technique with 4K or

4096 entries. Each way will have 1k or 1024 entries. This can help to increase the

prediction rate as four locations are reserved for the branch instruction with the same

index, each data stored can have a chance to stay longer in the buffer with the cost of

extra 2 bits LRU array for each entry. The LRU bits are used to indicate which entry

within a set to be replaced when required. The LRU bits within the same set(sharing

the same index) are updated together during a read or write operation to preserve the

relational information. Beside LRU bits, a block of BTB entry also contain 1 valid bit,

20 tag bit, 32-bit branch target address and 2-bit prediction array.

Figure 4 data allocation in one entry of BTB

Figure 5 4-way set-associative mapping implementation

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 12

2.2 Branch Predictor Block (BPB)

A branch predictor perform dynamic branch prediction with the information store

inside the BTB. A branch predictor can help in speed up the processor when

prediction predicted correctly especially for pipelined processor with many stages.

However, one clock cycle will be wasted to flush away the instruction that has been

wrongly fetched into ID stage when prediction predicted wrongly. Hence, it is

important to implement a branch predictor with high prediction accuracy to tolerant

miss-prediction.

In this project, the branch prediction block is implemented between IF and ID stage of

the processor and the BTB will be integrated into the branch predictor to minimize

latency and increase overall performance. The BTB is only access for read in IF stage

to retrieve information needed for prediction and only access for write in ID stage to

update the information.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 13

2.2.2 Flowchart of the BPB

Figure 6 Flowchart of BPB

The flowchart shown in Figure 6 illustrated how the BPB work in IF and ID stage and

then evaluated into non-branch instruction or six different scenarios at EX stage. At

the beginning of the instruction, the BPB check if there is any data store in the BTB

has the same tag with the program counter. If a matched tag is found in the BTB then

there is a read hit case else there is a read miss.

Scenario 1 or 2 occurred after a read miss in IF stage. Normal program counter

address will be used to fetch an instruction from the instruction memory. The

instruction is evaluated to see if it is a branch instruction. If that is not a branch

instruction, then that is a normal non-branch instruction. If that is a branch instruction,

it will be further evaluate to scenario 1 if branch is taken else scenario 2.

Scenario 3 or 4 occurred after a read hit and predict taken in IF stage. Branch address

stored in the BTB is used to fetch instruction due to prediction taken. The prediction

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 14

is then evaluated in ID stage and the evaluation will lead to scenario 3 when that is a

correct prediction else scenario 4.

Chapter 3: Project Scope and Objectives

3.1 Project Scope
This project is aimed to repartition the internal module of the processor and integrated

a 2-bit dynamic branch predictor into the RISC32 processor. Using a branch predictor

can increase the throughput and improve the performance of the processor during

branch instructions.

The outcome of this project is focus on:

 1. Integrate branch predictor into the processor of the RISC32.

 2. Provide a well develop test program to test the initial working of the branch

 predictor.

 3. To characterize how well the branch predictor work.

3.2 Project Objective
The objectives of the project include:

1. Analyze the existing branch predictor with 2-bit BTB.

2. Integrate the branch predictor into the pipeline processor.

3. Develop the control for the branch predictor using RTL Modeling.

4. To develop the test plan and test program to verify the integration of the branch

 predictor.

5. To develop test program to characterize the accuracy of the branch predictor.

6. Analyze the performance of the CPU, and the branch predictor after integration.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 15

Chapter 4: Methodology

4.1 Design Methodology

Basically, design methodology refer to the method used in development of a system.

It provides a set of guideline that leading to complete and success of a design work.

Design methodologies ensure the following:

- Correct functionality.

- Satisfaction of performance and power goals.

- Catching bugs early

- Good documentation

This project will be implemented using Top-down design methodology.

This methodology revises the overall system design from the end of solution

backwards to the smallest part of the design and makes changes along the way. This

methodology provides advantages in functionality, performance, power consumption

and area of silicon.

Figure 7 General Design Flow without Logic Synthesis and Physical Design

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 16

4.1.1 Architecture Level Design

The specification is developed in written specification and executable specification.

- Written Specification: Function, performance, time and cost of design is written in

 English. Function specification, verification specification, development plan and

 packaging specification are included as well.

- Executable Specification: High level programming language such as Verilog or

 VHDL is used to program according to the design features and functionalities.

4.1.2 Micro-Architecture Level Design (unit level)

There are two phases included in this level of design: Micro-architecture Specification

and Micro-architecture Level Modeling & Verification. The designed system is

divided into several units to carry different functions with each of the unit describe the

algorithm and data flow of the system.

4.1.3 Micro-Architecture Level Design (block level)

RTL Modeling & Verification RTL Modeling & Verification is implemented.

In this level of design, each unit designed in previous level is further divided into

smaller partition named block to describe the interior work of the units and reduce the

complexity of design.

The RTL modeling is done with the following information:

- Overview of functional description

- I/O pin description

- Function table

- Finite-state machine (FSM) & Algorithm-state machine (ASM)

- Test plan

After the development of Micro-architecture specification is completed, the RTL

modeling with programming language can be started. Model can be simulate and

synthesize with software while verification also can be done.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 17

Figure 8 IF-ID stage of a pipeline processor without branch predictor

Figure 9 IF-ID stage of a pipeline processor with branch predictor

The integration of the branch predictor involves:

1. The development of the control logic.

2. The modification of the instruction address path.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 18

4.2 Design Language

In this project, Verilog is used as the design language. Verilog is a type of
HDL(Hardware Description Language) that is standardized as IEEE 1364, used to
model electronic systems. It is commonly used to model and verify hardware at the
RTL.
There is another famous type of HDL named VHDL standardized as IEEE 1076 but
VHDL is not chosen for this project as it is more complex and Verilog is more
readable for user.

4.3 Design Tools

Design tools is required in order to simulate and verify the RTL model.

The verification includes:

- development of test plan

- timing requirement

- system functionality

Since Verilog is used in this project, Software tools that support Verilog HDL and
provide simulation environment to verify the functional behaviors and timing design
is required. There are a lot of HDL simulators available on the market which all of
them have their own advantages and disadvantages.

Some researches had been done and the top three HDL simulators with the highest
rating and qualified for application-specific integrated circuit (ASIC) (validation)
sign-off at nearly all semiconductor fabrications which are also well-known as the
‘big 3’ simulator:

- Incisive Enterprise Simulator by Cadence Design Systems

- ModelSim by Mentor Graphic

- Verilog Compiled code Simulator (VCS) by Synopsys

The Modelsim SE 10.3a by Mentor Graphic is chosen to be the simulation tools in this
project. This is because it met the requirement of the project and it also provided
student edition for free compared to other simulation tools that required license. The
price for the license can cost up to $25,000 which is not affordable by student.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 19

4.4 Project Timeline

4.4.1 Gantt Chart for Project I

Figure 10 Gantt Chart for Project I

4.4.2 Gantt Chart for Project II

Figure 11 Gantt Chart for Project II

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 20

Chapter 5: System Specification

5.1 System Feature

Description RISC32
Dummy Instruction Cache (KB) 8
Dummy Data Cache (KB) 8
Data width (bits) 32
Instruction width (bits) 32
General Purpose Register 32
Special Purpose Register HILO, PC
Pipelined Stage 5
Data Hazard Handling Yes
Structural Hazard Handling Yes
Control Hazard Handling Yes
Interlock Handling Yes
Data Dependency Forwarding Yes
Branch Prediction Dynamic – 2bits scheme
Multiplication (size of multiplier and
multiplicand)

yes – 32 bits

Branch Delay Slot Not supported
Instruction supported 37

Table 1 RISC32 features

5.1.1 System Functionality

- Divide execution of instruction into following 5 stages, allowed up to 5

i

n

s

t

r

uctions to run concurrently:

- Resolve data hazards by data forwarding.

- Resolve load-use instructions problem by stalling.

- IF(Instruction Fetch) Fetch instruction from instruction cache into the datapath.
- ID(Instruction Decode) Decode instruction and fetch $rs & $rt registers.
- EX(Execute) Execute instruction in the ALB.
- MEM(Memory) Access data cache, load or store.
- WB(Write Back) Write back the result to the register file.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 21

- Resolve structural hazards by separating data and instruction cache.

- Resolve control hazards by branch prediction.

- Perform instructions as listed in 5.3.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 22

5.2 Operating Procedure

- Start the system.

- Porting sequence of instruction into instruction cache.

- Reset the system for at least 2 clocks.

- After the reset, the system will automatically fetch and run the program inside

instruction cache.

- Observe the waveform from the development tools (Modelsim).

5.3 Naming Convention

Module – [lvl]_[mod. name]

Instantiation – [lvl]_[abbr. mod. name]

Pin – [lvl][type]_[abbr. mod. name]_[pin name]

Signal – [type]_[abbr. mod. name]_<stage>_[pin name]

Abbreviation Description Case Available Remark
lvl level lower c : Chip

u : Unit
b : Block

mod. name Module
Name

lower all any

abbr. mod.
name

Abbreviated
module
name

lower all any maximum 3 characters

Type Pin type lower o : output
i : input
r : register
w: wire

stage Stage name lower all if, id, ex,
mem, wb

Optional

pin name Pin name lower all any Several word separate by “_”
Table 2 Naming Convention

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 23

5.4 RISC32 Pipeline Processor and I/O pin description

5.4.1 Processor interface

5.4.2 I/O pin description

c_risc
Input:
Pin name : ui_cd_clk
Pin Class : Global
Registered: Yes
Source->Destination: External � c_risc
Pin Function: Provide clock signal for the pipeline processor.
Pin name : ui_cd_rst
Pin Class : Global
Registered: Yes
Source->Destination: External � c_risc
Pin Function: Provide reset signal for the pipeline processor.
Output:
Pin name : uo_cd_ex_qvfs
Pin Class : Global
Registered: Yes
Source->Destination: c_risc � External
Pin Function: Overflow signal of the processor.

Table 3 RISC32 I/O pin descriptions

c_risc

ui_cd_clk

uo_cd_ex_qvfs

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 24

5.5 Memory Map

Purpose start address Direction Segment
Kernel module 0xC000 0000 Up Kseg2
Boot Rom Up
i/o register(if below 512MB) 0xA000 0000 Up

Kseg1

Direct view of memory to 512MB linux kernel
code and data Up

Exception Entry point 0x8000 0000 Up
Kseg0

Stack 0x7fff ffff Down
Program heap 0x1000 8000 Up
Dynamic library code and data 0x1000 0000 Up
Main program 0x0040 0000 Up
Reserved 0x0000 0000 Up

Kuseg

Table 4 Memory Map

Memory map description

Kernel module

- Accessible by kernel*

Boot Rom

- Start up ROM which keep the system configuration*

I/O registers (if below 512MB)

- External IO device register*

Direct view of memory to 512MB linux kernel code and data

- *

Exception Entry point

- Software exception handling *

Stack

- Use for argument passing

Program heap

- Dynamic memory allocation such as malloc()

Dynamic library code and data

- Data segment which is access by

Main program

- Text segment which contain the main program

Reserved

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 25

Note *: required CP0

Figure 12 Memory map for Kuseg section, accessible without CP0

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 26

5.6 System Register

5.6.1 General Purpose Register

Width : 32-bits

Size : 32 units

Retrieving method : 5-bits address as index

Table 5 General Purpose Register

5.6.2 Special Purpose Register

Width : 32-bits

Size : 2 units

Retrieving method : via instruction: MFHI, MTHI, MFLO, MTLO, MULT or MULTU

Name Definition Location in double [64:0]

HI
Most Significant
Word

Double [63:32]

LO
Least Significant
Word

Double [31:0]

Table 6 Special Purpose Register

5.6.3 Program Counter Register

Width : 32-bits

Size : 1 unit

Retrieving method : Control by instruction address generator control

Name Address Use
Preserved On
Call

$zero 0 Constant Value 0(hardwired) N.A.
$at 1 Assembler Temporary No

$v0 - $v1 2 - 3
Value for Function Results and
Expression Evaluation

No

$a0 - $a3 4 - 7 Arguments No
$t0 - $t7 8 – 15 Temporaries No
$s0 - $s7 16 - 23 Saved temporaries Yes
$t8 - $t9 24 – 25 Temporaries No
$k0 - $k1 26 -27 Reserved for OS kernel No
$gp 28 Global Pointer Yes
$sp 29 Stack Pointer Yes
$fp 30 Frame Pointer Yes
$ra 31 Return Address Yes

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 27

5.7 Instruction Formats and Addressing modes

5.7.1 Instruction Formats

Figure 13 Instruction Format

5.7.1.1 R-format

Register addressing: Perform operation on source and target register and store the

result into destination register.

5.7.1.2 I-format

Immediate addressing: Perform operation on source register and immediate and

store the result into target register.

Based displacement addressing: Perform operation on source register and

immediate, the result is then uses as address to access the data memory to load/store

data to/from target register.

PC-relative addressing: Perform operation on source and target register to determine

next PC condition, the immediate is uses as address offset for next PC.

5.7.1.3 J-format

Pseudo-direct addressing: Perform operation by concatenating the upper bits of PC

with the jump address.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 28

5.7.2 Addressing modes

a) Register addressing

b) Immediate addressing:

c) Based displacement

addressing

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 29

d) PC-relative addressing

e)Pseudo-direct addressing

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 30

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 31

5.8 Supported Instruction set, machine language and RTN

Machine Language Instruction

Format Addr. Mode
OpCod
e

Rs Rt Rd Shamt Func
Register Transfer Notation Assembly Format Over

flow

sll R Register 0x00 0 $rt $rd n 0x01 R[rd] =R[rs] << n sll $rd, $rt, n no
srl R Register 0x00 0 $rt $rd n 0x03 R[rd] =R[rs] >> n srl $rd, $rt, n no
sra R Register 0x00 0 $rt $rd n 0x04 R[rd] =R[rs] >>> n sra $rd, $rt, n no
jr R Register 0x00 $rs 0 0 0 0x0

A
PC = R[rs] jr $rs no

jalr R Register 0x00 $rs 0 0 0 0x0
B

PC = R[rs], R[31] = PC + 4 jalr $rs no

mfhi R Register 0x00 0 0 $rd 0 0x10 R[rd] = HI mfhi $rd no
mthi R Register 0x00 $rs 0 0 0 0x11 HI = R[rs] mthi $rs no
mflo R Register 0x00 0 0 $rd 0 0x12 R[rd] = LO mflo $rd no
mtlo R Register 0x00 $rs 0 0 0 0x13 LO = R[rs] mtlo $rs no
mult R Register 0x00 $rs $rt 0 0 0x24 HILO = R[rs] * R[rt] mult $rs, $rt no
multu R Register 0x00 $rs $rt 0 0 0x24 HILO = U(R[rs]) * U(R[rt]) multu $rs, $rt no
add R Register 0x00 $rs $rt $rd 0 0x20 R[rd] = R[rs] + R[rt] add $rd, $rs, $rt yes
addu R Register 0x00 $rs $rt $rd 0 0x21 R[rd] = U(R[rs]) + U(R[rt]) addu $rd, $rs, $rt no
sub R Register 0x00 $rs $rt $rd 0 0x22 R[rd] = R[rs] - R[rt] sub $rd, $rs, $rt yes
subu R Register 0x00 $rs $rt $rd 0 0x23 R[rd] = U(R[rs]) - U(R[rt]) subu $rd, $rs, $rt no
and R Register 0x00 $rs $rt $rd 0 0x24 R[rd] = R[rs] & R[rt] and $rd, $rs, $rt no
or R Register 0x00 $rs $rt $rd 0 0x25 R[rd] = R[rs] | R[rt] or $rd, $rs, $rt no
xor R Register 0x00 $rs $rt $rd 0 0x26 R[rd] = R[rs] ^ R[rt] xor $rd, $rs, $rt no
nor R Register 0x00 $rs $rt $rd 0 0x27 R[rd] = ~(R[rs] | R[rt]) nor $rd, $rs, $rt no
slt R Register 0x00 $rs $rt $rd 0 0x2

A
R[rd] = (R[rs] < R[rt]) ? 1 : 0 slt $rd, $rs, $rt no

sltu R Register 0x00 $rs $rt $rd 0 0x2 R[rd] = (U(R[rs]) < U(R[rt])) ? sltu $rd, $rs, $rt no

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 32

B 1 : 0
j J Pseudo-

Direct
0x02 JumpAddr (Label) PC = {(PC+4) [31:28],

JumpAddr, 2’b00}
j label no

jal J Pseudo-
Direct

0x03 JumpAddr (Label) PC = {(PC+4) [31:28],
JumpAddr, 2’b00}
R[31] = PC + 4

jal label no

beq I PC-Relative 0x04 $rs $rt BranchAddr
(Label)

PC = (R[rs] == R[rt]) ?
(PC + 4 +
(SE(BranchAddr)<<2)) :
(PC + 4)

beq $rs, $rt, label no

bne I PC-Relative 0x05 $rs $rt BranchAddr
(Label)

PC = (R[rs] != R[rt]) ?
(PC + 4 +
(SE(BranchAddr)<<2)) :
(PC + 4)

bne $rs, $rt, label no

blez I PC-Relative 0x06 $rs 0 BranchAddr
(Label)

PC = (R[rs] <=0) ?
(PC + 4 +
(SE(BranchAddr)<<2)) :
(PC + 4)

blez $rs, $rt, label no

bgtz I PC-Relative 0x07 $rs 0 BranchAddr
(Label)

PC = (R[rs] > 0) ?
(PC + 4 +
(SE(BranchAddr)<<2)) :
(PC + 4)

bgtz $rs, $rt, label no

addi I Immediate 0x08 $rs $rt Imm R[rt] = R[rs] + SE(Imm) addi $rt, $rs, imm yes
addiu I Immediate 0x09 $rs $rt Imm R[rt] = U(R[rs]) +

U(ZE(Imm))
addiu $rt, $rs, imm no

slti I Immediate 0x0A $rs $rt Imm R[rt] = (R[rs] < SE(Imm)) ? 1 :
0

slti $rt, $rs, imm no

sltiu I Immediate 0x0B $rs $rt Imm R[rt] = (U(R[rs]) <
U(SE(Imm))) ? 1 : 0

sltiu $rt, $rs, imm no

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 33

andi I Immediate 0x0C $rs $rt Imm R[rt] = R[rs] & ZE(Imm) andi $rt, $rs, imm no
ori I Immediate 0x0D $rs $rt Imm R[rt] = R[rs] | ZE(Imm) ori $rt, $rs, imm no
xori I Immediate 0x0E $rs $rt Imm R[rt] = R[rs] ^ ZE(Imm) xori $rt, $rs, imm no
lui I Immediate 0x0F $rs $rt Imm R[rt] = Imm << 16 lui $rt, imm no
lw I Based-

Displaceme
nt

0x23 $rs $rt Imm R[rt] = MEM[R[rs] +
SE(Imm)]

lw $rt, imm($rs) no

sw I Based-
Displaceme
nt

0x2B $rs $rt Imm MEM[R[rs] + SE(Imm)] =
R[rt]

sw $rt, imm($rs) no

Table 7 Supported Instruction set, machine language and description

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 34

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 35

c_risc
u_ctrl_path

u_data_path

b_main_ctrl b_alb_ctrl

b_alb

b_itl_ctrl b_fw_ctrl

b_rf b_mult32

b_bp

u_mem
b_dc b_ic

Chapter 6: Micro Architecture Specification

6.1 Design Hierarchy and Partitioning

Design Hierarchy:

Chip Partitioning
(Top Level) at
Architecture Level

Unit Partitioning at
Micro-
Architecture Level

Block and Functional Block Partitioning
at RTL (Micro-Architecture Level)

Branch Predictor (b_bp_4way)
Register File (b_rf)
Interlock Control (b_itl_ctrl)
Forward Control (b_fw_ctrl)
32-bit Multiplier (b_mult32)

Datapath
(u_dp)

ALB (b_alb)
Main Control (b_main_ctrl) Controlpath

(u_cp) ALB Control (b_alb_ctrl)
Instruction Cache (b_ic)

RISC32 Pipeline
Processor
(c_risc)

Memory
(u_mem) Data Cache (b_dc)

Table 8 Design Hierarchy

Design Hierarchy block partitioning:

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 36

6.2 Micro-Architecture (block level)

6.2.1 Micro-Architecture without branch predictor

Figure 14 System Micro-Architecture without branch predictor

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 37

6.2.2 Micro-Architecture with branch predictor

Figure 15 System Micro-Architecture with branch predictor

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 38

6.3 Branch Predictor Functionality

- Predict next instruction address for the processor with information provided in

the branch target buffer.

- Verify predicted address and update the branch target buffer.

- Provide correction address when miss prediction occurred.

- 4 way SRAM with 4k X 57-bits entry as shown in Figure 18.

Figure 16 57-bits entry of SRAM.

6.4 Branch Predictor Interface

 b_bp_4way

bi_bp_if_pc[31:0]
bo_bp_if_next_pc[31:0]

bi_bp_if_pc4[31:0]
bo_bp_id_nop_ifid

bi_bp_id_pc4[31:0]

bi_bp_id_br_taddr[31:0]

bi_bp_id_beq

bi_bp_id_bne

bi_bp_id_blez

bi_bp_id_bgtz

bi_bp_id_rs_equal_rt

bi_bp_id_rs_less_or_equal_zero

bi_bp_ifid_wr

bi_bp_clk

32

32

32

32

32

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 39

6.5 I/O pin description

b_bp_4way
Input:
Pin name : bi_bp_if_pc[31:0]
Pin Class : Address
Registered: No
Source->Destination: Datapath(IF) � b_bp_4way
Pin Function: Provide index for reading ram and tag for next instruction.

Pin name : bi_bp_if_pc4[31:0]
Pin Class : Address
Registered: No
Source->Destination: Datapath(IF) � b_bp_4way
Pin Function: Prediction address for case predict untaken.

Pin name : bi_bp_id_pc4[31:0]
Pin Class : Address
Registered: No
Source->Destination: Datapath(ID) � b_bp_4way
Pin Function: Correction address for case miss predict taken.
Pin name : bi_bp_id_br_taddr[31:0]
Pin Class : Address
Registered: No
Source->Destination: Datapath(ID) � b_bp_4way
Pin Function: Correction address for case miss predict untaken.

Pin name : bi_bp_id_beq
Pin Class : Data
Registered: No
Source->Destination: Datapath(ID) � b_bp_4way
Pin Function: Indicate current instruction is beq when asserted high.

Pin name : bi_bp_id_bne
Pin Class : Data
Registered: No
Source->Destination: Datapath(ID) � b_bp_4way
Pin Function: Indicate current instruction is bne when asserted high.

Pin name : bi_bp_id_blez
Pin Class : Data
Registered: No
Source->Destination: Datapath(ID) � b_bp_4way
Pin Function: Indicate current instruction is blez when asserted high.

Pin name : bi_bp_id_bgtz
Pin Class : Data
Registered: No
Source->Destination: Datapath(ID) � b_bp_4way
Pin Function: Indicate current instruction is bgtz when asserted high.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 40

Pin name : bi_bp_id_rs_equal_rt
Pin Class : Data
Registered: No
Source->Destination: Datapath(ID) � b_bp_4way
Pin Function: Use to evaluate the correctness of previous predition for beq, bne.
Pin name : bi_bp_id_rs_less_or_equal_zero
Pin Class : Data
Registered: No
Source->Destination: Datapath(ID) � b_bp_4way
Pin Function: Use to evaluate the correctness of previous predition for blez, bgtz.

Pin name : bi_bp_ifid_wr
Pin Class : Control
Registered: No
Source->Destination: b_itl_ctrl � b_bp_4way
Pin Function: Enable signal for the internal ifid pipeline of the branch predictor.

Pin name : bi_bp_clk
Pin Class : Global
Registered: No
Source->Destination: System � b_bp_4way
Pin Function: Clock signal for the branch predictor.

Pin name : bi_bp_rst
Pin Class : Global
Registered: No
Source->Destination:System � b_bp_4way
Pin Function: Reset signal for the branch predictor/

Output:
Pin name : bo_bp_if_next_pc[31:0]
Pin Class : Address
Registered: Yes
Source->Destination: b_bp_4way � u_mem � i_ic
Pin Function: Provide next PC address to fetch next instruction from instruction
cache.
Pin name : bo_id_nop_ifid
Pin Class : Control
Registered: No
Source->Destination: b_bp_4way � Datapath(ifid pipeline)
Pin Function: Insert a nop to the ifid pipeline when miss prediction happened.

Table 9 b_bp_4way I/O pin description

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 41

6.6 Internal Block Diagram

Figure 17 Branch predictor internal block diagram

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 42

6.7 Internal Operation

IF stage: BTB read

In IF stage, the branch predictor read its internal branch target buffer to perform next

instruction address prediction according to following steps:

1) Look for an entry of the BTB with the same tag and index as the PC.

2) If the specific entry is found, the branch target address store in the entry is

assigned as the next instruction address.

3) If the specific entry is not found, the branch predictor will assign the normal

PC with an increment of 4 as the instruction address.

ID stage: BTB write

In ID stage, the branch predictor will update the information of the current instruction

when the current instruction is a branch instruction in following steps:

1) Evaluate the correctness of the prediction with information get from datapath

ID stage.

2) If the prediction is incorrect, the ID stage is flushed.

3) A new entry is created to store the latest information of the instruction when

none matching entry is found previously in IF stage or the matching entry in

BTB is updated with the latest information.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 43

Chapter 7: Verification

7.1 Instruction Verification Test Program

The following program is designed to verify the correctness of both the conditional

branch and unconditional branch instructions implemented in this project.

Instruction
address

Instruction
code

Label Mnemonic
Operand

1
Operand

2
Operand

3

0x00400024 20100003 INIT: addi $s0, $zero, 3

0x00400028 08100013 j MAIN

0x0040002C 0810001D END: j EXIT

0x00400030 2A280002 LOOP1: slti $t0, $s1, 2

0x00400034 2231FFFF addi $s1, $s1, -1

0x00400038 1100FFFD beq $t0, $zero, LOOP1

0x0040003C 03E00008 jr $ra

0x00400040 014A5020 LOOP2: add $t2, $t2, $t2

0x00400044 164AFFFE bne $s2, $t2, LOOP2

0x00400048 03E00008 jr $ra

0x0040004C 1A00FFF7 MAIN: blez $s0, END

0x00400050 20110005 addi $s1, $zero, 5

0x00400054 20120008 addi $s2, $zero, 8

0x00400058 0C10000C jal LOOP1

0x0040005C 3C090040 lui $t1, 0x0040

0x00400060 35290040 ori $t1, $t1, 0x0040

0x00400064 200A0001 addi $t2, $zero, 1

0x00400068 01200009 jalr $t1

0x0040006C 2210FFFF addi $s0, $s0, -1

0x00400070 1E00FFF6 bgtz $s0, MAIN

0x00400074 00000000 EXIT:

 unconditional branch

 conditional branch

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 44

7.1.1 Simulation Result

Simulation Description:

Registers used

in this test

program.
Forwarding

control and

data.

Main signal in

datapath.

Branch

predictor I/O.

Branch predictor

internal.

Conditional

branch signal.

Unconditional

branch signal.

Register storing the return address.

Control value 0 = no forwarding, 1 = forward from EX

stage, 2 = forward from MEM stage.

id_pc = current instruction address,

id_instr = current instruction.
next instruction address.
asserted when misprediction occur, flush current instruction.

enable data to pass through ifid pipeline when asserted.

Prediction address and correction address.

indicate read hit(instruction found in BTB) when asserted, else read miss.
00=Strongly untaken, 01=weakly untaken, 10=weakly taken, 11= strongly taken

Indicate misprediction occurred when asserted.

Indicate current instruction is a conditional branch instruction when asserted.

Indicate current instruction is an unconditional branch instruction when asserted.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 45

j MAIN
blez $s0, END

Read miss

Predict untaken

Read miss

Predict untaken mispredicted

Read hit

Predict taken

Read hit

Predict taken

No op, flush id

jal LOOP1

beq $t0, $zero, LOOP1
beq $t0, $zero, LOOP1

beq $t0, $zero, LOOP1

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 46

jalr $t1
jr $ra jr $ra

beq $t0, $zero, LOOP1

beq $t0, $zero, LOOP1
bne $s2, $t2, LOOP2

bne $s2, $t2, LOOP2

bne $s2, $t2, LOOP2

Read hit

Predict taken

Read hit

Predict taken

Read miss

Predict untaken

Read hit

Predict taken

Read hit

Predict taken mispredicted

No op, flush id

mispredicted

mispredicted

No op, flush id No op, flush id

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 47

bgtz $s0, MAIN

blez $s0, END

Read hit

Predict untaken

mispredicted

Read hit

Predict taken

Read hit

Predict taken

No op, flush id

jal LOOP1

beq $t0, $zero, LOOP1

beq $t0, $zero, LOOP1

beq $t0, $zero, LOOP1

Read miss

Predict untaken

Read hit

Predict taken

Read hit

Predict taken

beq $t0, $zero, LOOP1

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 48

jalr $t1
jr $ra jr $ra

beq $t0, $zero, LOOP1
bne $s2, $t2, LOOP2

bne $s2, $t2, LOOP2

bne $s2, $t2, LOOP2

Read hit

Predict taken

Read hit

Predict taken

Read hit

Predict taken

Read hit

Predict taken
mispredicted

No op, flush id No op, flush id

mispredicted

Read hit

Predict taken

Read hit

Predict untaken

bgtz $s0, MAIN

blez $s0, END

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 49

Read hit

Predict taken

Read hit

Predict taken

jal LOOP1

beq $t0, $zero, LOOP1

beq $t0, $zero, LOOP1

beq $t0, $zero, LOOP1

Read hit

Predict taken

Read hit

Predict taken

Read hit

Predict taken

beq $t0, $zero, LOOP1

beq $t0, $zero, LOOP1

No op, flush id

mispredicted

jr $ra

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 50

jalr $t1
jr $ra

bne $s2, $t2, LOOP2

bne $s2, $t2, LOOP2

bne $s2, $t2, LOOP2

Read hit

Predict taken

Read hit

Predict taken

Read hit

Predict taken

Read hit

Predict taken

Read hit

Predict untaken

blez $s0, END

No op, flush id

mispredicted

No op, flush id

mispredicted

EXIT PROGRAM

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 51

7.2 Branch Prediction Accuracy Test Program

The branch instructions often take place in if else statement, loop or function call in a

program. The program uses to generate Fibonacci series and the program uses to

check if a number is prime number involved a number of these conditions. Hence, a

program named FiboPrime.c is used in this project to determine the accuracy of the

branch predictor. This program combine both the Fibonacci and is Prime program by

counting number of prime number out of the nth Fibonacci series.

The maximum Fibonacci number can be generated in this project is limited by the

data cache of the RISC32 processor. Since each memory in the data cache is 32-bit,

the maximum data value can be stored is equal to 232 = 4,294,967,296.

� The 47th Fibonacci number, Fibo(47) = 2,971,215,073.

� The 48th Fibonacci number, Fibo(48) = 4,807,526,976.

Since Fibo(48) is larger than 232, the maximum unsigned Fibonacci number can be

generated by this processor is the 47th Fibonacci number.

This project runs the program to compute up to the 35th Fibonacci number to

determine the prediction accuracy of the branch predictor as it is sufficient to prove

the accuracy. Each of the subsequence number will took hours to simulate in a way

that the time required is equivalent to the sum of time taken for previous two numbers.

(Tn = Tn-1 + Tn-2)

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 52

7.2.1 FiboPrime.c

//Fibonacci function, generate nth number of Fibonacci series
int fibo(int n){
 int s1 = 0, s2 = 1, s3 = 0;
 if (n == 0 || n == 1){
 return n;
 }else {
 for (int i = 1 ; i < n ; i++){
 s3 = s2 + s1;
 s1 = s2;
 s2 = s3;
 }
 return s3;
 }
}

//isPrime function, calculate the number of prime numbers within the Fibonnacci
series
int isPrime(int n){

 if (n <= 1) return 0;
 if (n == 2) return 1;
 if (n % 2 == 0) return 0;

double sq = sqrt(n);

 for (int i = 3; i < sq; i = i + 2){
 if (n%i==0){//this is not a prime
 return 0;
 }
 }
 return 1;
}

//Main Function
void main(void){
 int count = 0;
 for (int i = 0 ; i <= 35; i++){
 int fb = fibo(i);
 if (isPrime(fb)){
 count = count++;
 }
 }
}

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 53

7.2.2 MIPS like FiboPrime.c

void fibo()
{
 vector<int> arr;

 $t0 = 0, $t1 = 0, $t2 = 1;

 arr.pushback($t1);
 arr.pushback($t2);

 if($s1 == 0) return;
 if($s1 == 1) return;

 while($s1 > 0){
 $t3 = arr($t0) + arr($t0 + 1);
 arr.pushback($t3);
 $t0 = $t0 + 1;
 $s1 = $s1 - 1;
 }
 $s1 = $t3;
}

void prime()
{
 if($s1 <= 0)return;
 if($s1 < 2) return;
 if($s1 < 4) {
 $s2 = $s2 + 1;
 return;
 }

 if($s1 % 2 == 0) return;

 $t1 = 3;
 while($t1 < $s1){
 $t3 = $s1;
 do{
 $t3 = $t3 - $t1;
 if($t3 == 0) return;
 }while($t3 > 0);
 $t1 = $t1 + 2;
 }
 $s2 = $s2 + 1;
}

void main()
{
 $s0 = 48, $s2 = 1, $t8 = 0;

 do{
 $s1 = $t8;
 fibo();
 prime();
 $t8 = $t8 + 1;
 }while($t8 < n);
}

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 54

7.2.3

FiboPrime.

c in MIPS

Instruction
adress

Instruction
code

Label Mnemonic
Operand

1
Operand

2
Operand

3
0x00400024 0810002C j MAIN

0x00400028 20080000 FIBO: addi $t0, $zero, 0

0x0040002C 20090000 addi $t1, $zero, 0

0x00400030 200A0001 addi $t2, $zero, 1

0x00400034 AD090000 sw $t1, 0($t0)

0x00400038 AD0A0004 sw $t2, 4($t0)

0x0040003C 12200009 beq $s1, $zero, BACK

0x00400040 122A0008 beq $s1, $t2, BACK

0x00400044 8D090000 LOOP: lw $t1, 0($t0)

0x00400048 8D0A0004 lw $t2, 4($t0)

0x0040004C 012A5820 add $t3, $t1, $t2

0x00400050 AD0B0008 sw $t3, 8($t0)

0x00400054 21080004 addi $t0, $t0, 4

0x00400058 2231FFFF addi $s1, $s1, -1

0x0040005C 1E20FFF9 bgtz $s1, LOOP

0x00400060 000B8820 add $s1, $zero, $t3

0x00400064 03E00008 BACK: jr $ra

0x00400068 1A200010 PRIME: blez $s1, FALSE

0x0040006C 2A280002 slti $t0, $s1, 2

0x00400070 1500000E bne $t0, $zero, FALSE

0x00400074 2a280004 slti $t0, $s1, 4

0x00400078 1500000B bne $t0, $zero, TRUE

0x0040007C 32280001 andi $t0, $s1, 0x0001

0x00400080 1100000A beq $t0, $zero, FALSE

0x00400084 20090003 addi $t1, $zero, 3

0x00400088 0131502A LOOP2: slt $t2, $t1, $s1

0x0040008C 11400006 beq $t2, $zero, TRUE

0x00400090 222b0000 addi $t3, $s1, 0

0x00400094 01695822 LOOP3: sub $t3, $t3, $t1

0x00400098 11600004 beq $t3, $zero, FALSE

0x0040009C 1D60FFFD bgtz $t3, LOOP3

0x004000A0 21290002 addi $t1, $t1, 2

0x004000A4 08100022 j LOOP2

0x004000A8 22520001 TRUE: addi $s2, $s2, 1

0x004000AC 03E00008 FALSE: jr $ra

0x004000B0 20100030 MAIN: addi $s0, $zero, 48

0x004000B4 20120001 addi $s2, $zero, 0

0x004000B8 20180000 addi $t8, $zero, 0

0x004000BC 23110000 START: addi $s1, $t8, 0

0x004000C0 0C10000A jal FIBO

0x004000C4 0C10001A jal PRIME

0x004000C8 23180001 addi $t8, $t8, 1

0x004000CC 1710FFFB bne $t8, $s0, START

0x004000D0 00000000 EXIT:

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 55

7.2.4 Simulation results

Instruction memory:

Data memory:

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 56

Register File:

Tag ram:

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 57

Prediction ram:

Valid ram:

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 58

LRU ram:

Branch target address ram:

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 59

Figure 18 Branch prediction accuracy

7.2.5 Branch Prediction Accuracy

Table 10 Branch prediction accuracy

Number of miss prediction

Nth
Fibonacci
number,

N

Total
conditional

branch
instructions
(beq, bne,
blez, bgtz)

Taken Untaken Total

Total prime
number

counted by
the

program,
$s2

Branch
prediction
accuracy,

%

5 42 9 11 20 3 52.38
10 221 25 18 43 4 80.54
15 2,817 193 23 216 6 92.33
20 32,636 1,012 28 1,040 7 96.81
25 483,729 15,388 33 15,421 8 96.81
30 8,210,758 272,621 38 272,659 9 96.68
35 64,946,330 273,701 43 273,744 9 99.58

Total correct prediction = Total conditional branch instructions - Total misprediction

Branch prediction accuracy =

Average prediction accuracy

 =

Equation 1 Branch prediction accuracy

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 60

7.2.6 Discussion on branch prediction accuracy

The simulation result shows that the accuracy of branch prediction increases

logarithmically approaching 100% as the input size increases. The reason is branch

miss-prediction often take place in two cases:

� During the first prediction of a branch instruction, where there is a read
miss(instruction is not found in the buffer) and then predictor is forced to
predict untaken by default without any data reference of the instruction called
previously.

� The prediction bits of a branch instruction is trained to be strongly predict
taken or untaken within a loop but the exit of the loop made the prediction
predicted wrongly by predicted the oppose condition.

As the input sizes increased, the occurrence of the above cases can be reduced thus

improve the accuracy.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 61

Figure 19 Performance improvement

7.3 CPU performance after branch predictor integration

The FiboPrime.c is run on both the RISC32 pipeline processor with and without

branch predictor to analyse the performance of the RISC32 pipeline processor before

and after branch predictor integration.

Table 11 CPU performance analysis

Number of clock cycle used by
RISC32 Pipeline Processor

Nth Fibonacci
number, n

without branch predictor with branch predictor

Performance improvement
after branch predictor

integration, %

5 262 211 19.47
10 1,060 817 22.92
15 8,769 5,910 32.60
20 87,631 54,933 37.31
25 1,280,844 797,033 37.77
30 21,756,916 13,546,056 37.73

Performance improvement

=

Average performance improvement

 =

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 62

7.3.1 Discussion on CPU performance analysis

The simulation result shows that the performance of the branch predictor increases

logarithmically and started to saturate at about 38% as the input size increases.

The RISC32 pipeline processor without branch predictor has to stall for one clock

cycle whenever a branch instruction is detected to avoid control hazard no matter the

branch condition is taken or untaken.

The RISC32 pipeline processor with branch predictor integrated is able to perform

prediction (taken or not taken) when a branch instruction is detected. Thus, the

stalling become unnecessary. When the prediction is done correctly, one clock cycle

is saved from stalling. When a miss prediction is occurred, one clock cycle is used to

flush the incorrect instruction and fetch in the correct instruction.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 63

Chapter 8: Conclusion

8.1 Conclusion

A RISC32 pipeline processor without branch predictor required one clock cycle for

stalling whenever a conditional or unconditional branch instruction is detected. This is

expensive as research shows that about 20 percent of a program involves branch

instructions.

For unconditional branch, the condition will always be taken. Thus, the branch

predictor will branch directly to the correct instruction address based on the

instruction information when an unconditional branch instruction is detected. In this

case, the clock cycle used for stalling is not required.

For conditional branch, the branch predictor is able to save this clock cycle by

performing prediction for conditional branch instruction. Even when a miss prediction

occurred, the time used for correction is same as the time required for stalling, one

clock cycle. A branch predictor with high accuracy can minimize the occurrence of

miss prediction.

In short, the integration of branch predictor into the RISC32 pipeline processor does

not improve the processor processing speed but is able to improve the performance of

the processor in term of the number of clock cycle spent to run a program.

8.2 Future works

The tag ram of the BTB is same as the upper-bits of the branch target address store

inside its entry. Thus, the size of the BTB can be reduced at the cost of extra circuitry

to read the BTB branch target address upper-bits as tag.

The branch predictor will create new entry for both condition evaluated as taken or

untaken when read miss occur. There is a suggestion that to create new entry only for

condition evaluated as taken to save the buffer availability for more branch

instructions as the branch predictor will predict untaken for read miss case by default.

However, the side-effect has to be studied.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 64

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 65

REFERENCE

[1] K.M Mok, Computer Organization and Architecture Notes, University of Tunku

 Abdul Rahman, Faculty of Information and Communication Technology, 2014.

[2] http://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/whatis/index.html

[Accessed: 9 APRIL 2014]

[3] http://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/mips/index.html

[Accessed: 9 APRIL 2014]

[4] Stephen Bailey, Comparison of VHDL, Verilog and SystemVerilog, Techincal Marketing

 Engineer [online] Available at http://www.fpga.com.cn/advance/vhdl_14919.pdf

 [Accessed: 11 APRIL 2014]

[5] http://www.webopedia.com/TERM/P/pipelining.html [Accessed: 10 APRIL 2014]

[6] http://www.ece.unm.edu/~jimp/611/slides/chap4_5.html [Accessed: 10 APRIL 2014]

 [7] http://mail.humber.ca/~paul.michaud/Pipeline.htm [Accessed: 10 APRIL 2014]

[8] http://www.cs.iit.edu/~cs561/cs350/CPU/5stage.html [Accessed: 10 APRIL 2014]

[9] http://en.wikipedia.org/wiki/Branch_predictor [Accessed: 19 JULY 2014]

[10] Professor Ben Lee, Dynamic Branch Prediction, Oregon State University. [online]

 Available at http://web.engr.oregonstate.edu/~benl/Projects/branch_pred/ [Accessed: 8

 APRIL 2014]

[11] Patterson, David. Computer Architecture A Quantitative Approach. 2ed . s.l. :

Morgan Kaufmann.

[12] Hennessy, John L. and Patterson, David A. Computer Organization and Design :

The Hardware/Software Interface. 4th. San Francisco : Morgan Kaufmann

[13] Min Cheng, Ho, The Design And Development Of A Branch Target Buffer Based On A

2-bit Prediction Scheme For A 32-bit RISC32 Pipeline Processor, Faculty of Information and

Communication Technology, University Tunku Abdul Rahman.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR 66

[14]http://web.engr.oregonstate.edu/~benl/Projects/branch_pred/ [Accessed: 19 JULY 2014]

