

32-Bit Memory System design: Design of Memory Controller for

Micron SDR SDRAM

 By

CHIN CHUN LEK

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONS)

COMPUTER ENGINEERING

Faculty of Information and Communication Technology

(Perak Campus)

JAN 2015

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

DECLARATION OF ORIGINALITY

I declare that this report entitled “Design of Memory Controller for Micron SDR

SDRAM” is my own work except as cited in the references. The report has not been

accepted for any degree and is not being submitted concurrently in candidature for

any degree or other award.

Signature : _________________________

Name : Chin Chun Lek

Date : 6 APRIL 2015

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

ACKNOWLEDGEMENTS

First and foremost I would like to take this opportunity to express my gratitude to my

final year project supervisor, Mr. Mok Kai Ming, for his guidance and wisdom during

the entire course of this project. I would also like to thank my friends, Chang Boon

Chiao, Goh Dih Jian and Arthur for providing me supports. Lastly, I would like to

thank my parents for the moral, emotional and financial support they have been

providing.

By Chin Chun Lek

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

ABSTRACTS

This project focuses on the design of SDRAM Controller that is compatible with

Micron SDR SDRAM MT48LC4M32B2 (1 Meg x 32 x 4 banks). After reviewing the

previous work, the SDRAM controller is working but there are some differences with

the conventional design that makes it to become complicated. This topic will be

further discussed in the Literature Review and Design Methodology.

Currently, the interface of SDRAM controller connects to the host is not fully

determined. The bus interface within the controllers is required to redesign in order to

enable the caches to access the main memory. Therefore, this project is aiming to

provide verification to the integration between the SDRAM controller and the cache

controller.

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

Table of Contents

List of Tables..7

List of Figures ..8

List of Abbreviations ...10

Chapter 1: Introduction ..11

1.1: Background..11

1.1.2 MIPS – a RISC processor...11

1.2: Motivation..12

1.2.1: Problem Statement..13

Chapter 2: Literature Review ..14

2.1: Memory Hierarchy...14

2.2: Processor and Main Memory Interfacing...15

2.3: SDRAM Controller System Background...16

2.4: SDRAM..16

2.5: SDRAM controller...18

2.5.1: Read/Write Cycle Timing diagram...20

2.6: SDRAM Controller and Cache Controller Interfacing...21

2.7: Load Mode Register...22

2.8: Memory Arbiter..24

2.9: Protocol Controller State Diagram...25

Chapter 3: Project Scope and Objectives..26

3.1: Project Scope..26

3.2: Project Objectives..26

3.3: Significance and Impact...26

Chapter 4: Methods/Technologies Involved..28

4.1: Design Methodology..28

4.1.1 Architecture Level Design..29

4.1.2 Micro-Architecture Level Design (Unit Level)..29

4.1.3 Micro-Architecture Level Design (Block Level)...29

4.2: Protocol Controller Block Design..31

4.3: Load Mode Configuration with Multiple Cache..34

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

4.7: Timeline...46

Chapter 5: Micro-architecture of Memory System ...48

5.1: Memory System Micro-Architecture and its Partitioning ..48

5.2: Design Hierarchy ..49

Chapter 6: Microarchitecture Specification ...50

6.1: Cache Unit ..51

6.1.1: I/O Description ..51

6.2: Memory Arbiter..54

6.2.1: I/O Description ..55

6.2.2: Memory Arbiter State Diagram...57

6.3: SDRAM Controller ..58

6.4: Block partitioning of SDRAM Controller...61

6.4.1: Protocol Controller ..62

6.4.2: Open Bank and Row Tracking (OBRT) Top ..67

6.4.3: Address Multiplexer ..71

6.4.4 SDRAM Interface Block Specification ...73

Chapter 7: Test and Verification...75

7.1: SDRAM Controller ..75

7.1.1: Test Plan ..75

7.1.2: Testbench Verilog code ...79

7.1.3: Verification Result ...93

7.1.3: Simulation Result (Timing Diagram)..95

7.2: Memory System ...103

7.2.1: Test Plan ..103

7.2.2: Testbench Verilog code ...104

7.2.3: Simulation Result (Timing Diagram)..111

Chapter 8: Discussions and Conclusion..114

8.1: Discussions ...114

8.2: Conclusion ..114

8.3: Future Work ...115

References..116

Appendices..118

Appendix A: System Specification .. Error! Bookmark not defined.

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

A.1 Feature ..118

A.2 Naming Convention...118

A.3 Basic RISC32 processor..120

A.3.1 Processor Interface ..120

A.3.2 I/O Pin Description ...120

A.4 System Register...121

A.4.1 General Purpose Register...121

A.4.2 Special Purpose Register ..121

A.4.3 Program Counter Register..121

A.5 Instruction Format ..122

A.6 Addressing Mode ..123

A.7 Instruction Set and Description...124

A.8 Memory Map ..126

A.9 Operating Procedure...127

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

List of Tables

LIST OF TABLES

Table Number Title Page

Table 2.4: Truth Table - Command and DQM operation (Adapted from [14]) 17
Table 2.9.2: State Definitions (Adapted from [10]).....Error! Bookmark not defined.

Table 2.9.3: Output or Behaviors Corresponding to the States (Adapted from [10])
...Error! Bookmark not defined.

Table 4.4 Output or Behavior to the Memory Arbiter FSM.......Error! Bookmark not
defined.
Table 4.5 Comparison between ‘Big 3’ Simulators .. 36

Table 4.7.1 Gantt chart for Project I... 46
Table 4.7.2 Planning Gantt chart for Project II... 47

Table 5.1: Formation of a design hierarchy for 32-bit Memory System.................... 49

Table 6.1.1: Cache Unit I/O Descriptions .. 53

Table 6.2.1: Memory Arbiter I/O Descriptions .. 56

Table 6.2.3: State Definition.. 57
Table 6.2.4: Output or Behaviors Corresponding to the States ..Error! Bookmark not
defined.
Table 6.3.1: SDRAM I/O Descriptions .. 60

Table 6.4.1.1: Protocol Controller Input/ Output Pin Descriptions 64

Table 6.4.1.4: Output or Behaviors Corresponding to the StatesError! Bookmark not
defined.
Table 6.4.2.1: OBRT Top Input /Output Pin Descriptions.. 68

Table 6.4.2.4: OBRT Input/ Output Pins Descriptions... 70

Table 6.4.2.5: OBRT Important Registers.. 70

Table 6.4.3.1: Address Multiplexer Input/ Output Pin Descriptions 72

Table 6.4.4.1: SDRAM Interface I/ O pin descriptions... 74

Table 7.1.1: SDRAM Controller Full Chip Test Plan... 78

Table A.1 RISC32 features...118
Table A.2 Naming Convention ...119
Table A.3 Basic RISC32 Input Pins Description...120

Table A.4.1 Register file...121
Table A.4.2 HILO Register ..121
Table A.7 RISC32 Instruction set ...125
Table A.8 Memory Map ...126

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

List of Figures

LIST OF FIGURES

Figure Number Title Page

Figure 2.1: The Memory Hierarchy (Adapted from [4]) 14

Figure 2.2: Memory Organization (Adapted from [4]) 15

Figure 2.3: System block diagram (Adapted from [11]) 16

Figure 2.4: 128Mb banks SDRAM Block diagram (Adapted from [10]) 17
Figure 2.5: SDRAM Controller Block Diagram (Adapted from [10]) 18
Figure 2.5.1: Write Timing Diagram 20

Figure 2.5.2: Read Timing Diagram 21

Figure 2.6: Connection between Cache controller and SDRAM controller 21
Figure 2.7: Mode Register Definition (Adapted from [14]) 23

Figure 2.8.1: Micro-Architecture Level Design (Unit Level) 24
Figure 2.8.2: Interface of Memory Arbiter 24

Figure 2.9: Initialization Protocol FSM (Adapted from [10]) 25
Figure 4.1: General Design Flow without Logic Synthesis and Physical Design. 28

Figure 4.2.1: INIT_FSM (Adapted from [13]) 31

Figure 4.2.2: CMD_FSM (Adapted from [13]) 32

Figure 4.2.3: Timing diagram for Divide by 3 (N=2) 33

Figure 4.2.4: Divide by 3 using T Flip-flops 33

Figure 4.3: The interface of Arbiter and Two Cache units 34
Figure 4.4 State diagram of Memory Arbiter 35

Figure 4.6.F1: Initialize and Load Mode Register 38

Figure 4.6.F2: Auto Refresh Mode 38

Figure 4.6.F3: Self-Refresh Mode 39

Figure 4.6.F4: Single Read- Without Auto Precharge 39

Figure 4.6.F5: Read- With Auto Precharge 40

Figure 4.6.F6: Alternating Bank Read Accesses 40

Figure 4.6.F7: Read – Full page Burst 41

Figure 4.6.F8: Read – DQM operation 41

Figure 4.6.F9: Single Write 42

Figure 4.6.F10: Write – With Auto Precharge 42

Figure 4.6.F11: Write – Without Auto Precharge 43

Figure 4.6.F12: Alternating Bank Write Accesses 43

Figure 4.6.F13: Write – Full Page Burst 44

Figure 4.6.F14: Write – DQM Operation 44

Figure 4.6.F15: Consecutive Read Burst 45

Figure 4.6.F16: Terminating a Read Burst 45

Figure 5.0: Memory System Micro-Architecture and its Partitioning 48

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

Figure 6: Unit Partitioning of Memory System 50

Figure 6.1: Cache Unit Block Diagram 51

Figure 6.2: Memory Arbiter Block Diagram 54

Figure 6.2.2: Memory Arbiter State Diagram 57

Figure 6.3: SDRAM Controller Block Diagram 58

Figure 6.4: The Micro-Architecture of the SDRAM Controller 61

Figure 6.4.1: Protocol Controller Block Diagram 62

Figure 6.4.1.2.F1: A simplified view on the Protocol Block 64

Figure 6.4.1.2.F2: Initialization Protocol FSM 65

Figure 6.4.1.2.F3: Conceptual Model of Command Protocol FSM Error! Bookmark
not defined.
Figure 6.4.1.2.F4: Auto-Refresh Control sub-FSM Error! Bookmark not defined.

Figure 6.4.1.2.F5: Load Mode Control sub-FSM Error! Bookmark not defined.

Figure 6.4.1.2.F6: Open Bank and Row Tracking Control sub-FSM 66
Figure 6.4.2: OBRT Top Block diagram 67

Figure 6.4.2.2: OBRT Top Internal Block diagram Error! Bookmark not defined.

Figure 6.4.2.3: OBRT Sub-block Diagram 69

Figure 6.4.2.6: OBRT Internal Block diagram Error! Bookmark not defined.

Figure 6.4.3: Address Multiplexer Block Diagram 71

Figure 6.4.3.2: Address Multiplexer Internal Block diagram Error! Bookmark not
defined.
Figure 6.4.4: SDRAM Interface Block Diagram 73

Figure 6.4.4.2: SDRAM Interfaces Internal Block diagram Error! Bookmark not
defined.
Figure A.3 Block diagram for RISC32-basic processor 120

Table A.5 Instruction Type 122

Figure A.6 RISC32 Addressing Mode. 123

Figure A.8 Memory map for Kuseg section, accessible without CP0 127

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

List of Abbreviations

ASIC Application-Specific Integrated Circuit

CPU Central Processing Unit

DRAM Dynamic Random-Access Memory

FSM Finite State Machine

HDL Hardware Description Language

ISA Instruction Set Architecture

Inc Incorporated

I/O Input /Output

MIPS Microprocessor without Interlocked Pipeline Stages

MMU Memory Management Unit

PSP Sony Playstation Portable

RISC Reduced Instruction Set Computer

RTL Register Transfer Level

SoC System-on-Chip

SDRAM Synchronous Dynamic Random-Access Memory

SRAM Static Random-Access Memory

TLB Translation Lookaside Buffer

VCS Verilog Compiled code Simulator

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

Chapter 1: Introduction

1.1: Background

 With the widening gap between processor and memory speeds, system

performance has become gradually more reliant upon the efficient use of memory

hierarchy [1]. Many computations executed on current machine are often than not

limited by the response of the memory system rather than the speed of the processor

[2]. The introduction of high speed cache into the memory hierarchy is to bridge this

speed gap. However, this introduction is not perfectly without flaw. By organizing

memory system into hierarchy, it also indicate more complex analysis have to be done

on the performance of the memory system. Nevertheless, since the benefit brought

forward by implementing hierarchical ordering in memory design outshone its flaws

[3-4], it is unavoidable to use this method in our memory system which is recently

compiled and interfaced using Verilog [5]. Therefore, our project will be focused on

the design and the implementation of a 32-Bit Memory System in particular the

integration of caches, cache controllers, Translation Lookaside Buffer (TLB),

Memory Management Unit (MMU), SDRAM and SDRAM controllers, and the

verification for the memory system integrated to a Reduced Instruction Set Computers

32-bit (RISC32) processor. RISC32 is a 32-bit processor which is compatible to the

MIPS ISA compatible. It runs a subset of MIPS instructions set, which uses small and

highly-optimized set of instructions.

1.1.2 MIPS – a RISC processor

MIPS (Microprocessor without Interlocked Pipelined Stage) is a RISC

(Reduced Instruction Set Computers) processor which use hardware implementation

to directly execute instructions, without microprogrammed control. MIPS is widely

used in digital consumer, home networking, personal entertainment, communications

and business applications, such as Sony Playstation Portable (PSP), Smart Tab 1

(Karbonn Mobiles) and Linksys wireless router which primarily used in MIPS

implementations. MIPS can be develop using Verilog – a hardware description

language (HDL).

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

1.2: Motivation

The motivations to initiate the project are due to the following limitation:

• Microchip design companies develop microprocessors cores as Intellectual

Property or IP for commercial purposes. The microprocessor IP includes

information on the entire design process for the front-end (modeling and

verification) and back-end (physical design) integrated circuit (IC) design.

These are trade secrets of a company and certainly not made available in the

market at an affordable price for research purposes.

• The microprocessor cores that are freely available from source such as the

miniMIPS (www.opencores.org), the PH processor (Leicester University),

uCore (www.opencores.org), Yellow Star (Manchester University), etc are

incomplete in documentation and therefore do not provide good support for

reuse. It is difficult to modify and extent the design for a specific applications

under research. Apart from that, the cores are not well modeled and developed.

• The verification specification for a freely available RISC microprocessor core

that is available on the Internet is not well developed and complete. Therefore,

without a good verification specification, the verification process will be slow

and hence, will slow down the overall design process.

• Since the freely available microprocessor cores and the verification are not

well developed, this has affected the physical design phase. The physical

design of the microprocessor cores is not well developed and complete.

The RISC32 project will look into the above problems, to create a 32-bit RISC core-

based development environment to assist research work in the area of application

specific hardware modeling. The RISC32 processor is a MIP-compatible ISA

processor. In the RISC32 project, it is divided into several units based on the MIPS

architecture. Up to date, a basic central processing unit (CPU) has been modeled at

Register Transfer Level (RTL) using Verilog HDL (VHDL) and verified using a bus

functional model. During the verification process, a high -level memory system unit

model was developed and temporarily used. So currently, an RTL memory system

unit model is not available.

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

1.2.1: Problem Statement

At present, a basic central 32-bit memory system that has been modeled at RTL using

VHDL is the SDRAM controller design that compatible with Micron SDR SDRAM

MT48LC4M32B2. However, the protocol controller block of SDRAM controller

design is rather complicated and need to be resolved. Another problem has been

encountered is the SDRAM controller can currently support a single cache, but

typically RISC32 processor design has separated caches. Those caches are i-cache, d-

cache, i-TLB, d-TLB, which will need to access to the SDRAM. This implies the

limitation of the SDRAM controller interfaces and its redesigning is needed. Hence,

the design of memory arbiter is also required to allow the shared bus for multiple

caches.

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

Chapter 2: Literature Review

2.1: Memory Hierarchy

Computer memory is implemented with hierarchy (memory hierarchy) to take the

advantage of principle of locality. There are three primary technologies used in

building memory hierarchies. Main memory is implemented from DRAM, levels

closer to processor (cache) use SRAM. The third technology is magnetic disk which is

used to implement largest and slowest in the hierarchy. The price per bit and access

time of these technologies vary widely. Therefore, we can take advantage by

implementing memory hierarchy. Figure below shows the faster memory is close to

the processor, while the slower memory is below it. This helps to present the user

with more memory as is available in cheapest technology while it also provides the

speed from the fast memory.

Higher Cost

Lesser Cost

1ns→2ns

3ns→10ns

25ns→50ns

30ns→90ns

5ms→20ms

100ms→5s *

10s→3m *

* if volume is mounted

Figure 2.1: The Memory Hierarchy (Adapted from [4])

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

2.2: Processor and Main Memory Interfacing

 The processor is connected to the main memory by a bus system [4] and the

bandwidth of the bus system has a significant impact on miss penalty. This is due to

the clock rate for the bus is always slower than the processor as much as a factor of 10.

Therefore, the selection of memory organization to be use in processor is important in

deciding the performance of the processor.

 Figure 2.2 below shows three types of available memory organizations which

are one-word-wide memory, wide memory and interleaved memory organization. If a

cache block of four words and in a) one-wide memory organization, it only can fetch

one word per time. That is the main memory have to access 4 times to fetch all data

require from the cache. In b) wide memory organization allows the require data fetch

with parallel access in a widening bandwidth of bus system between memory and the

processor. If a cache block of four words and c) interleaved memory organization, it is

capable to fetch four words to access the main memory at once.

CPU

Cache

Memory

CPU

Cache

Multiplexer

Memory

CPU

Cache

Memory

Bank 0

Memory

Bank 1

Memory

Bank 2

Memory

Bank 3

a. One-word-wide

 memory organization

b. Wide memory organization

C. Interleaved memory organization

Figure 2.2: Memory Organization (Adapted from [4])

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

2.3: SDRAM Controller System Background

The overall figure of SDR SDRAM controller system is shown in the figure 2.3 below,

which is describing a brief on how SDRAM controller can communicate with

processor each other and interface with the SDRAM.

 Figure 2.3: System block diagram (Adapted from [11])

2.4: SDRAM

Synchronous Dynamic Random Access Memory (SDRAM) is a type of DRAM that

has a synchronous interface. There are two major types of SDRAM which can be

distinguished by their data transfer rate. Single data rate (SDR) SDRAM transfers

data on the rising edge of the clock, and double data rate (DDR) SDRAM transfers

data on both rising and falling edge.

Figure 2.4 shows the pins for a conventional 1M x 32-bit x 4 banks SDRAM which is

referring to the Micron. Pin ba(1:0) is used to select the 4 internal memory banks

within the SDRAM while adr(11:0) is used as an input to send column address, row

address and configuration setting to the SDRAM. The SDRAM has adopted

bidirectional data line, dq, for write transfer and read transfer. This is because the

SDRAM can only do one of the operations at a time. The granularity of a bus is

defined as the smallest transfer can be done by that bus. According to [12], the

granularity of a SDRAM is 8-bit. This is accomplished using the data masking

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

pin,dqm(3:0). The data masking pin is used to select which byte of the 32-bit

bidirectional data line, dq, is valid.

For example, if dqm = 0001 (binary), the valid 8-bit data is located at dq(7:0). Here is

another example, if dqm = 1100 (binary), the valid 16-bit data is located at dq(31:16).

As mentioned, since the smallest transfer is 8-bit, the granularity of this SDRAM is 8-

bit. As a comparison, the customized SDRAM [11] has a granularity of 32-bit for its

32-bit write data line and 256-bit granularity for its 256-bit read data line. This also

means that the customized SDRAM cannot support byte addressing.

Figure 2.4: 128Mb banks SDRAM Block diagram (Adapted from [10])

To select the SDRAM, the cs (active low) pin is used. Meanwhile active low

command signals (we, cas and ras) are used to request operations from the SDRAM.

The list of commands available in SDRAM is shown in Table 2.4.

Table 2.4: Truth Table - Command and DQM operation (Adapted from [14])

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

2.5: SDRAM controller

The SDRAM Controller is located between SDRAM and the host, provide proper

commands for SDRAM initialization, read/write accesses and memory refresh. The

host can be either a microprocessor or a user’s proprietary module interface. The

SDRAM Controller has been previously modele\d based on industry standard

WISHBONE SoC interface [10].

Figure 2.5: SDRAM Controller Block Diagram (Adapted from [10])

Pin name: ip_wb_clk
Path: Memory Bus Clock -> SDRAM Controller
Description: Wishbone Clock Input
Pin name: ip_wb_rst
Path: System Reset -> SDRAM Controller
Description: Wishbone Synchronous reset
Pin name: ip_wb_cyc
Path: Host -> SDRAM Controller
Description: When asserted, this pin indicates that a valid bus cycle is in progress.
Pin name: ip_wb_stb
Path: Host -> SDRAM Controller
Description: When asserted, this pin indicates that the SDRAM controller is selected.
Pin name: ip_wb_we
Path: Host -> SDRAM Controller
Description: When asserted, this pin indicates that the current cycle is READ.
When deasserted, it indicates WRITE.
Pin name: op_wb_ack
Path: SDRAM Controller -> Host
Description: When asserted, it indicates that the current READ or WRITE is
successful.
Pin name: ip_wb_sel
Path: Host -> SDRAM Controller
Description: This signal indicates where valid data is placed on the input data line

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

(ip_wb_dat) during WRITE cycle and where it should present on the output data line
(op_wb_dat) during READ cycle. The array boundaries are determined by the
granularity of a port. In this SDRAM controller, 8-bits granularity is used and all the
data ports are 32-bits. Therefore, there would be 4 select signals with the boundaries
of ip_wb_sel(3:0). Each individual select signal correlates to one of 4 active bytes on
the 32-bits data port.
Pin name: ip_wb_addr
Path: Host -> SDRAM Controller
Description: The address input is used to pass the memory address from the host.
Pin name: ip_wb_dat
Path: Host-> SDRAM Controller
Description: This pin is used to pass WRITE data from the host.
Pin name: op_wb_dat
Path: SDRAM Controller -> Host
Description: This pin is used to output READ data from the SDRAM.
Pin name: ip_host_ld_mode
Path: SDRAM Controller -> Host
Description: This pin is asserted to load a new mode into the SDRAM.
Pin name: op_sdr_cs_n
Path: Host -> SDRAM
Description: SDRAM chip select
Pin name: op_sdr_ras_n
Path: Host -> SDRAM
Description: SDRAM row address select
Pin name: op_sdr_cas_n
Path: Host -> SDRAM
Description: SDRAM column address select
Pin name: op_sdr_we_n
Path: Host -> SDRAM
Description: SDRAM write enable.
Pin name: op_sdr_addr
Path: Host -> SDRAM
Description: This pin is used as an address output to the SDRAM. The address will
be segmented into row, column and bank before being sent out through this pin.
Pin name: op_sdr_ba
Path: Host -> SDRAM
Description: This pin is used to select the bank within the SDRAM. There are a total
of 4 banks within the SDRAM and each of them operates independently.
Pin name: op_sdr_dqm
Path: Host -> SDRAM
Description: This pin is used to select which bits of the data line (io_sdr_dq) to be
masked.
Pin name: io_sdr_dq
Path: Host -> SDRAM
Description: This data line is a bidirectional line to receive READ data or send
WRITE data.

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

2.5.1: Read/Write Cycle Timing diagram

Figure 2.5.1 indicates the timing diagram for writing a burst of four data words to the

SDRAM. The wb_dat indicates the command received from host is in the idle state at

the begining. At T1, the system places Address on the bus continue until T3. After

SDRAM detects ACTIVE command and row address at T2 and after RAS-to-CAS

delay (tRCD), SDRAM receives the WRITE command and the first data comes in.

The four words burst write is done at T8.

Figure 2.5.1: Write Timing Diagram

Figure 2.5.2 indicates the timing diagram for reading a burst of four data words to the

SDRAM. At T1, the system places Address on the bus until T3. After SDRAM

detects the ACTIVE command and row address at T2, and after RAS-to-CAS delay,

SDRAM receives the READ command and the column address at T4. After CAS

latency delay, the SDRAM starts to receive first data at T6. The four words burst read

are completed in T9.

wb_clk

wb_addr

wb_dat

sdr_cmd

sdr_dqm

sdr_addr [9:0]

sdr_addr [11]

sdr_addr [10]

sdr_addr [1:0]

sdr_dq

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

 Figure 2.5.2: Read Timing Diagram

2.6: SDRAM Controller and Cache Controller Interfacing

The following figure 2.6 shows the interface of SDRAM controller to the cache unit.

Figure 2.6: Connection between Cache controller and SDRAM controller

ip_host_ld_mode indicates as an enable pin to load new mode by passing write data

from the host (ip_wb_dat). If the current load mode register (LMR) command is same

with the previous mode, the register will retain the same configuration and not going

to load any new mode to the SDRAM. But if both modes are differences, the

wb_clk

wb_addr

wb_dat

sdr_cmd

sdr_dqm

sdr_addr [9:0]

sdr_addr [11]

sdr_addr [10]

sdr_addr [1:0]

sdr_dq

Cache controller

SDRAM controller

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

ip_host_ld_mode will be asserted high to allow a new mode load to the SDRAM. This

feature is required in order to reduce LMR time delayed whenever the same mode is

appeared in the next stage.

2.7: Load Mode Register

The pins of the SDRAM adr[11:0]and command signals (cs, we, cas and ras) are used

to configure the mode register which can define the specific mode of operation for

SDRAM via the LOAD MODE REGISTER (LMR) command and the information

stored will be retain until it has been reprogrammed or the device has been powered

off. The definition includes the selection of burst length, burst type, CAS latency,

operating mode and write burst mode. Burst indicates the technique used as

continuous read or continuous write the data. An example of read operation with burst

is when the burst length is set to be 4; the data will be read 4 times continuously. And

the sequence of data will be read or write operation and either in a sequential or

interleaved order. The figure 2.7 will show the data status to be configured.

The description of each Mode Register definition from figure 2.4.2 is listed as below:

Burst Length

To determine the maximum number of column locations that can be accessed for a

given READ or WRITE command.

Burst Type

Access within a given burst can be programmed to be either sequential burst or

interleaved burst to be adopted by SDRAM. The ordering of accesses within a burst is

determined by burst length, burst type, and the starting column address.

CAS Latency

Delay in clock cycles between registration of a READ command and the availability

of the first piece of output data. It can only be set to 2 or 3 clock cycles.

Operating Mode

To select the operating mode should be used in the SDRAM. Currently there is only

normal operating mode is available for use.

Write Burst Mode

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

When the mode is asserted high, the burst length is programmed as READ burst or

WRITE burst. If it is asserted low, the programmed burst length applies to READ

burst, but WRITE access are single-location access (non-burst). The burst length that

mentioned is referred to the M0-M2.

Figure 2.7: Mode Register Definition (Adapted from [14])

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

2.8: Memory Arbiter

The Figure 2.6 interface that shows in previously is merely an explanation on how

SDRAM controller is connected with a cache. If there are independent requesting

processor units connecting to the SDRAM, we required a memory arbiter to resolve

the shared bus conflict. The memory arbiter allows one MASTER to access SDRAM

controller at single time while the other MASTERs have to be waiting. It is given a

pattern or ordering for each of the MASTER to access first. The shared bus usually

uses a priority or a round robin arbiter. These grant the shared bus on a priority or

equal basis. And a timeout is given to ensure that the bus does not remain locked at

particular MASTER for duration greater than the time out period.

Figure 2.8.1: Micro-Architecture Level Design (Unit Level)

Figure 2.8.2: Interface of Memory Arbiter

output read data

from SDRAM

i-cache

controller

d-cache

controller

i-TLB

controller

d-TLB

controller

Arbiter

SDRAM

Controller

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

2.9: Protocol Controller State Diagram

A 32-Bit Memory System of SDRAM controller was integrated by the previous work

[10]. However there was an attempt to integrate this SDRAM controller, the design

has its own readability issue.

The SDRAM controller was designed in the previous work has consequently leads to

the difficulty of understanding how the design protocol works in SDRAM controller.

The design has a combination of SDRAM initialization and SDRAM command in the

finite state machine (FSM). Therefore this project is initiated to create a better and

easier analyzing SDRAM controller. In the figure below shows the FSM of SDRAM

protocol in previous work.

Figure 2.9: Initialization Protocol FSM (Adapted from [10])

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

Chapter 3: Project Scope and Objectives

3.1: Project Scope

This project is to redesign the existing interface of memory system and processor. A

completed 32-bit memory system will be delivered. There are two parts of works

required to be improved, which are the design of SDRAM controller compatible with

Micron SDRAM and compatible with current memory system design.

3.2: Project Objectives

The project’s objectives include:

• Analyze the 32-Bit Memory System organization for examining the scope of

the integration done thus far. In addition, an appropriate test and testbench will

be constructed to assist test analysis.

• Redesign the sub module of SDRAM controller Protocol Controller block

Finite State Machine (PCB FSM) that compatible with Micron SDR SDRAM.

• Redesign the SDRAM controller to support multiple cached load mode

configurations.

• Design of Memory Arbiter to allow the connection of differing caches to

SDRAM controller.

• Verify the integration of the RISC32 processor and memory system by

construct an appropriate test cases for direct test, integration test and random

test.

3.3: Significance and Impact

As a synopsis to the problem statement, there is a lack of well-developed and well-

founded 32-bit RISC microprocessor core-based development environment. The

development environment refers to the availability of the following:

• A well-developed design document, which includes the chip specification,

architecture specification and micro-architecture specification.

• A fully functional well-developed 32-bit RISC architecture core in the form of

synthesis-ready RTL written in Verilog.

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

• A well-developed verification environment for the 32-bit RISC core. The

verification specification should contain suitable verification methodology,

verification techniques, test plans, testbench architectures etc.

• A complete physical design in FPGA with documented timing and resource

usage information.

The project is an effort to develop the environment mentioned above: to be used as a

multi-cycle pipelined RISC microprocessor core-based platform to support hardware

modeling research work.

With the existing well-developed basic RTL model (which has been fully functionally

verified), the verification environment and the design documents, a researcher can

develop his research specific RTL model as part of the environment (whether directly

modifying the internals of the processor or interface to the processor) and can quickly

verify his model to obtain results, without having to worry about the development of

the verification environment and the modeling environment. This can hasten the

research work significantly. Relating exclusively to this project, the availability of a

good methodology to help support memory system analysis makes it easier for any

future improvement on the existing system.

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

Chapter 4: Methods/Technologies Involved

4.1: Design Methodology

Design Methodology basically refers to the method of development of a system. It

provides us with a set of guidelines to successfully carry out the design work. A good

design methodology needs to ensure the following [8]:

• Correct Functionality

• Satisfaction of performance and power goals

• Catching bugs early

• Good documentation

The ideal design flow for this project would be the top-down methodology as shown

in figure 4.1:

Executable Specification

Written Specification

Micro-Architecture Specification

RTL Modeling and Verification

Micro-Architecture Level Modeling
and Verification

Logic Synthesis for FPGA

Physical Design

Architecture Level
Design

Micro-Architecture
Level Design
 (Unit Level)

Micro-Architecture
Level Design
 (Block Level)

Figure 4.1: General Design Flow without Logic Synthesis and Physical Design.

Source: K.M. MOK [8]

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

4.1.1 Architecture Level Design

Architecture Level Design is level where chip specifications are being developed. The

level design includes the following two types, written specification and executable

specification, which carry (refer to Appendix A):

• functionality / features

• Operating procedures and application

• Naming convention

• Pipeline chip interface and I/O description

• Memory map

• System register

• Supported instruction set (machine language)

• Instruction formats

• Addressing modes

4.1.2 Micro-Architecture Level Design (Unit Level)

Micro-Architecture Level Design can categorize into 2 phases, Micro-Architecture

specification and Micro-Architecture Level Modeling and Verification. In the content

of this level of design includes (refer to Appendix B):

• Design hierarchy

• Unit level functional partitioning (Datapath Unit, Instruction Fetch Unit,

Control Unit, Instruction Memory Unit and Data Memory Unit)

• Worst case timing

• Full chip Verilog model

• Test plan

• Testbench

4.1.3 Micro-Architecture Level Design (Block Level)

In this level, RTL (Register Transfer Level) is developed. A micro-architecture

specification of each unit, which used to describe the internal design of architecture

block module. Micro-architecture specification may include information of:

• functionality / feature

• datapath unit interface and I/O pin description,

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

• internal operation, block / sub-block level functional partitioning (Register

File Block, ALU Block, etc)

• Verilog model is later inserted

• Testbench and simulation result

After developed Micro-architecture Specification, RTL modeling with programming

language can be start. Model can be simulate and verified with software. Verification

includes development of test plan, timing verification and functionality verification.

Hence designer can verify and modify the design to meet the chip specification.

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

4.2: Protocol Controller Block Design

Instead of the design protocol discussed in the previous work from [10], the FSM also

can be separated into two by using one-hot encoding FSM, which shows in the

following figure 4.2.1 and figure 4.2.2.

The INIT_FSM state machine from Figure 4.3.1 handles the SDRAM initialization.

This initialization states begin with a NOP state, continued with PRECHARGE state,

followed by AUTO REFRESH states, and then LOAD MODE REGISTER (LMR)

states to configure SDRAM specific mode of operation. In each state consists of its

delay time, and will be done by the timer. The auto refresh state use repeatedly [10]

can be separated into two auto refresh to simplify the logic and state.

Figure 4.2.1: INIT_FSM (Adapted from [13])

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

The CMD_FSM state machine from Figure 4.2.2 handles commands such as read,

write, and refresh of the SDRAM. The command FSM has its own auto refresh state,

since the initialization and command FSM has been separated away. Other than that,

the rest of the states are not much different with the previous work [10].

Figure 4.2.2: CMD_FSM (Adapted from [13])

The signal sys_DLY_100US from Figure 4.2.1 indicates the system clock delayed for

100 µs, which can be generated by the internal Phase-Locked Loop (PLL) by setting

the proper PLL attributes (clock multiplication and division). An example of Clock

divider with a 50% duty cycle can be generated as according to the following steps.

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

Firstly, the counts from N-1 to 0 count down counter must be created and always on

the rising edge of input system clock. Secondly, toggle flip-flops TFFs are used and

generate their enables. For an example the clock signal is divided by 3, TFF1 enable

when count value is 1, TFF2 enable when count value is 2. Thirdly, the output of

TFF1 (div1) triggered on rising edge of input clock whereas the output of TFF2 (div2)

triggered on falling edge of input clock. Lastly, the final output signal is generated by

the two clocks (div1 and div2) at half desired output frequency by undergoes XOR

operation of the two waveforms together.

Figure 4.2.3: Timing diagram for Divide by 3 (N=2)

Figure 4.2.4: Divide by 3 using T Flip-flops

We can use the timer to create the exact delay time required for the SDRAM clock.

To create the 50% duty cycle output clock delayed signal, we need to double up the

input clock frequency use as referencing clock and perform the equation below:

 .

For an example, the system clock speed has 100 KHz (10µs per clock), thus count

value will count down from 9 to 0. Each round of count, the output delayed clock

signal will toggle its previous state, in order to obtain a half clock cycle of the output.

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

4.3: Load Mode Configuration with Multiple Cache

There is a problem that needs to resolve, which is to redesign the SDRAM controller

so it can support Load Mode configuration and allow multiple caches to access. The

ip_host_ld_mode is an enable pin to load new mode to the SDRAM. Caches need to

share this pin. However, we can use one-hot method to separate the enable pin into

individual pins and four individual load mode registers to store the configuration. For

example if there are four caches, four ip_host_ld_mode enable pins are connected to

the caches respectively, and each enable pin is controlling its own load mode register.

The i-cache load mode enable pin will be controlling the i-cache load mode register.

Thus there will be four registers need to be created. But this method will rather

increasing the hardware complexity.

A more efficient way is using only one enable pin and the register just keep its

previous configuration. To decide whether to load a new mode to the SDRAM, the

SDRAM controller need to check out for the current data and the previous one is

either same or not. From the figure below aids to architecture view of how multiple

caches can be connected to SDRAM controller.

Figure 4.3: The interface of Arbiter and Two Cache units

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

4.4: Design of Memory Arbiter

There are four independent caches that need to access to the SDRAM. And the

priority can be given in the order d-tlb > i-tlb > d-cache > i-cache. If four of those

caches sent a miss signal at the same time, the d-tlb will first to access SDRAM, then

i-tlb will take turn, and followed by the d-cache, and the i-cache will come to the end.

The state diagram of memory arbiter can be designed as figure below:

Figure 4.4 State diagram of Memory Arbiter

miss0’

miss3.miss2’.miss1’.miss

miss3’

miss2’ miss2.miss1’.miss0’

miss1.miss0’

miss1’

miss0

dtlb

idle itlb icache

dcache

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

4.5: Designing Tools

Since this project is using Verilog, which is a Hardware Description Language (HDL).

Simulations tools that support Verilog HDL is required, tools that provide simulation

environment to verify the functional and timing models of the design, and the HDL

source code. There are a lot HDL simulator created by different company, which has

their own advantages and disadvantages. In order to choose most appropriate design

tools for this project, some researches had been done and the choices has been narrow

into three choices, which are the best HDL simulation tools available on the market,

they are also known as the ‘Big 3’ simulators, three major signoff-grade simulators

which qualified for application-specific integrated circuit (ASIC) (validation) sign-

off at nearly all semiconductor fabrications. They are:

1. Incisive Enterprise Simulator by Cadence Design Systems

2. ModelSim by Mentor Graphic

3. Verilog Compiled code Simulator (VCS) by Synopsys

Simulator Incisive Enterprise
Simulator

ModelSim VCS

Performance &
functionality

high moderate High

Language Supported VHDL-2002
V2001
SV2005

VHDL-2002
V2001
SV2005

VHDL-2002
V2001
SV2005

Simulation run speed fastest moderate faster

Price Expensive Cost Saving and
available for free

SE edition

Expensive

Table 4.5 Comparison between ‘Big 3’ Simulators

Due to the availability, affordability, platform supported and performance

requirement, the suitable simulator for this project is Modelsim SE 10.3a which is a

freeware of student edition and is enough for the designing requirement. Other

simulators may offer good features too, but no free license is provided to the students

and the cost of each license is normally about $25000 and above which is

unaffordable for a student.

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

4.6: Requirement Specification

This SDRAM controller is designed depends on Micron SDRAM MT48LC4M32B2

(1 Meg x 32 x 4 Banks). The entire design of SDRAM controller will need to fulfill

the following requirements, which able to perform:

• Auto-refresh , 4096-cycles refresh (15.6µs/row)

• Auto-precharge, includes read, write and auto refresh mode

• Bank and row tracking for 4 banks

• Programmable burst length: 1,2,4,8 or full page

• Addressing controls

• I/O data buffer for read and write

• Supports CAS Latency (CL) of 1,2 and 3

• Self-refresh mode

• Command Generator to SDRAM

•

The SDRAM Controller design must provide input data for the Micron SDRAM as

shown in the below:

Dq
Ba
Dqm
Addr
Cs_n
Ras_n
Cas_n
We_n
Cke
Clk SDRAM

12

4

2

32

Figure 4.6.1: Micron SDRAM Block diagram

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

Additional timing diagram appear in the following requirement specification section;

these timing diagrams provide better information for SDRAM controller design.

Initialize and Load Mode Register:

Figure 4.6.F1: Initialize and Load Mode Register

Auto Refresh Mode:

Figure 4.6.F2: Auto Refresh Mode

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

Self-Refresh Mode:

Figure 4.6.F3: Self-Refresh Mode

Single Read- Without Auto Precharge:

Figure 4.6.F4: Single Read- Without Auto Precharge

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

Read-With Auto Precharge:

Figure 4.6.F5: Read- With Auto Precharge

Alternating Bank Read Accesses:

Figure 4.6.F6: Alternating Bank Read Accesses

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

Read – Full page Burst:

Figure 4.6.F7: Read – Full page Burst

Read – DQM operation:

Figure 4.6.F8: Read – DQM operation

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

Single Write:

Figure 4.6.F9: Single Write

Write – With Auto Precharge:

Figure 4.6.F10: Write – With Auto Precharge

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

Write – Without Auto Precharge:

Figure 4.6.F11: Write – Without Auto Precharge

Alternating Bank Write Accesses:

Figure 4.6.F12: Alternating Bank Write Accesses

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

Write – Full Page Burst:

Figure 4.6.F13: Write – Full Page Burst

Write – DQM Operation:

Figure 4.6.F14: Write – DQM Operation

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

Consecutive Read Burst:

Figure 4.6.F15: Consecutive Read Burst

Terminating a Read Burst:

Figure 4.6.F16: Terminating a Read Burst

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

4.7: Timeline

Table 4.7.1 Gantt chart for Project I

Task Name Duration

Start

Date

End

Date

week

 (weeks) 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Study the existing work that being

developed 2 2/6/14 14/6/14

Develop test for the existing RISC

32 pipeline processor 4 9/6/14 3/7/14

Review the previous work of

SDRAM controller 3 16/6/14 6/7/14

Perform a deeper Literature

Reviews 2 30/6/14 9/7/14

Research and Fact Findings

*analyze the interface of SDRAM

and Cache 3 9/7/14 25/7/14

Develop a Methodology and

provide solutions

*Protocol Controller Block design 2 26/7/14 3/7/14

*improve SDRAM controller to

support multiple cache 3 27/7/14 5/8/14

 Verify the integration of the

controller of cache and SDRAM by

*Develop an appropriate test 3 28/7/14 18/8/14

Meet with Supervisor weekly 14 26/5/14 25/8/14

Submission of proposal report 11/8/14

Project I presentation 25/8/14

End of Project I 29/8/14

According to

schedule

Completed

Completed

beyond time

Planning

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

Task Name Duration week

 (weeks) 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Specification and development

i) Develop Architecture

Specification
1

ii) Develop Microarchitecture

Specification
2

iii) Develop Verification

Specification
2

Develop Test case and

Verification
2

Documentation Report Writing 1

Meet with Supervisor weekly 14

Submission of proposal report

Project II presentation

End of Project II

Table 4.7.2 Planning Gantt chart for Project II

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

Chapter 5: Micro-architecture of Memory System

5.1: Memory System Micro-Architecture and its Partitioning

Figure 5.0: Memory System Micro-Architecture and its Partitioning

cache_2 (u_cache)

cache_3 (u_cache)

Cache Memory

Memory Arbiter

mem_arbiter (u_mem_arbiter)

 SDRAM Controller
sdram_controller (u_sdram_controller)

cache_0 (u_cache)

b_sdc_fsm

cache_1 (u_cache)

b_sdc_obrt_top

b_sdc_addr_mux

b_sdc_sdram_if

Physical Memory

sdram (mt48lc4m32b2)

Memory System

 bank[0] tracker
(b_sdc_obrt)

bank[1] tracker
(b_sdc_obrt)

bank[2] tracker
(b_sdc_obrt)

 TLB

i_tlb (u_tlb)

d_tlb (u_tlb)

bank[3] tracker
(b_sdc_obrt)

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

5.2: Design Hierarchy

Cache is involved for the project purpose, to verify the compatibility of memory

system and SDRAM controller. However, the Translation Lookaside Buffer (TLB) is

not included in this design since memory initialization can be done by the testbench.

Chip Partitioning at
Architecture level

Unit Partitioning at Micro-
Architecture Level

Block and Functional Block
Partitioning at RTL level

(Micro-Architecture level)
u_cache (for instruction) b_cache_ctrl

u_cache (for data) b_cache_ctrl

u_mem_arbiter -

b_sdc_fsm

b_sdc_sdram_if

b_sdc_addr_mux

u_sdram_controller

b_sdc_obrt_top

Memory System unit

sdram (mt48lc4m32b2) -

Table 5.1: Formation of a design hierarchy for 32-bit Memory System

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 50

Chapter 6: Microarchitecture Specification
Unit Partitioning of Memory System

CPU

ui_ma_sdc_data

ui_ma_sdc_ack

uo_ma_sdc_read

uo_ma_sdc_write

uo_ma_sdc_host_ld_mode
uo_ma_sdc_sel

uo_ma_sdc_addr

uo_ma_sdc_data

u_mem_arbiter

32

32

32

4

32

32

4

32

4

32

32

32

32

4

32

32

32

4

32

32

ui_ma_cac_read3

ui_ma_cac_write3
ui_ma_cac_host_ld_mode3

ui_ma_cac_sel3

ui_ma_cac_addr3

ui_ma_cac_data3

ui_ma_cac_miss3

uo_ma_cac_ack3
uo_ma_cac_data3

ui_ma_cac_read2

ui_ma_cac_write2
ui_ma_cac_host_ld_mode2

ui_ma_cac_sel2

ui_ma_cac_addr2

ui_ma_cac_data2

ui_ma_cac_miss2
uo_ma_cac_ack2

uo_ma_cac_data2

ui_ma_cac_read1

ui_ma_cac_write1

ui_ma_cac_host_ld_mode1

ui_ma_cac_sel1
ui_ma_cac_addr1

ui_ma_cac_data1

ui_ma_cac_miss1

uo_ma_cac_ack1

uo_ma_cac_data1

ui_ma_cac_read0

ui_ma_cac_write0

ui_ma_cac_host_ld_mode0
ui_ma_cac_sel0

ui_ma_cac_addr0

ui_ma_cac_data0

ui_ma_cac_miss0

uo_ma_cac_ack0

uo_ma_cac_data0

32

ui_sdc_read

ui_sdc_write

ui_host_ld_mode

ui_sdc_sel
ui_sdc_addr

ui_sdc_dat

ui_sdc_clk

ui_sdc_rst

uo_wb_dat
uo_wb_ack
uio_sdr_dq
uo_sdr_ba

uo_sdr_dqm
uo_sdr_addr
uo_sdr_cs_n

uo_sdr_ras_n
uo_sdr_cas_n

uo_sdr_we_n

u_sdram_controller

4

32

32

2

4

12

32

128

128

128

4

4

u_cache

32

32

32

uo_cac_cpu_data

ui_cac_cpu_addr

ui_cac_cpu_data

ui_cac_cpu_read

ui_cac_cpu_write

ui_cac_rst
ui_cac_clk

32

4

32

32

uo_cac_mem_strobe

uo_cac_mem_cycle

uo_cac_mem_rw
uo_cac_mem_host_ld_mode

uo_cac_mem_sel

uo_cac_mem_addr

uo_cac_mem_data

uo_cac_miss

ui_cac_mem_ack
ui_cac_mem_data

u_cache

32

32

32

uo_cac_cpu_data

ui_cac_cpu_addr

ui_cac_cpu_data

ui_cac_cpu_read

ui_cac_cpu_write
ui_cac_rst

ui_cac_clk

32

4

32

32

uo_cac_mem_strobe

uo_cac_mem_cycle

uo_cac_mem_rw
uo_cac_mem_host_ld_mode

uo_cac_mem_sel

uo_cac_mem_addr

uo_cac_mem_data

uo_cac_miss
ui_cac_mem_ack

ui_cac_mem_data

u_cache

32

32

32

uo_cac_cpu_data

ui_cac_cpu_addr

ui_cac_cpu_data

ui_cac_cpu_read
ui_cac_cpu_write

ui_cac_rst

ui_cac_clk

32

4

32

32

uo_cac_mem_strobe

uo_cac_mem_cycle
uo_cac_mem_rw

uo_cac_mem_host_ld_mode

uo_cac_mem_sel

uo_cac_mem_addr

uo_cac_mem_data

uo_cac_miss
ui_cac_mem_ack

ui_cac_mem_data

u_cache

32

32

32

uo_cac_cpu_data

ui_cac_cpu_addr

ui_cac_cpu_data
ui_cac_cpu_read

ui_cac_cpu_write

ui_cac_rst

ui_cac_clk

32

4

32

32

uo_cac_mem_strobe
uo_cac_mem_cycle

uo_cac_mem_rw

uo_cac_mem_host_ld_mode

uo_cac_mem_sel

uo_cac_mem_addr

uo_cac_mem_data
uo_cac_miss

ui_cac_mem_ack

ui_cac_mem_data

1'b1

Dq
Ba
Dqm
Addr
Cs_n
Ras_n
Cas_n
We_n
Cke
Clk SDRAM

12

4

2

32

Figure 6: Unit Partitioning of Memory System

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

6.1: Cache Unit

This is a 2-way set associative cache. Functionalities of Cache Unit:

1. Store a small fraction of data (for D-Cache) or instructions (for I-Cache) of

main memory.

2. Output desired data or instruction to CPU when it issues a READ.

3. Write data into desired location as instructed by CPU (D-Cache only).

4. Send signal to stall the CPU when read miss or write miss.

5. Communicate with SDRAM Controller to write back ‘dirty’ block of data

back into SDRAM and fetch new block of data from it.

u_cache

32

32

32

uo_cac_cpu_data

ui_cac_cpu_addr

ui_cac_cpu_data

ui_cac_cpu_read

ui_cac_cpu_write

ui_cac_rst

ui_cac_clk

32

4

32

32

uo_cac_mem_strobe

uo_cac_mem_cycle

uo_cac_mem_rw

uo_cac_mem_host_ld_mode

uo_cac_mem_sel

uo_cac_mem_addr

uo_cac_mem_data

uo_cac_miss

ui_cac_mem_ack

ui_cac_mem_data

Source name:

CPU

destination name:

CPU

Destination name:

u_mem_arbiter

Source name:

u_mem_arbiter

Figure 6.1: Cache Unit Block Diagram

This design includes Wishbone bus output signals, which are strobe and cycle,

indicate that a valid bus cycle in progress and chip selected. However, the SDRAM

controller does not use any Wishbone interfaces. The design is unnecessary for the

cache and should be removed in future development. And yet it uses to test for the

compatibility of new SDRAM controller only.

6.1.1: I/O Description

Pin name: ui_cac_clk
Pin class: Global
Path: External � Cache
Description: System clock signal.

Pin name: ui_cac_rst
Pin class: Global
Path: External � Cache
Description: System reset signal.

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

Pin name: ui_cac_cpu_data
Pin class: Data
Path: CPU� Cache
Description: 32-bits data from CPU that to be written into the cache.
Pin name: ui_cac_cpu_addr
Pin class: Address
Path: CPU� Cache
Description: 32-bits address from CPU that indicates a certain location that to be
accessed.

Pin name: ui_cac_cpu_read
Pin class: Control
Path: CPU� Cache
Description: A control signal that enables the read from cache from given address
when it is asserted (HIGH).
Pin name: ui_cac_cpu_write
Pin class: Control
Path: CPU� Cache
Description: A control signal that enables the write of data into a certain location in
cache when it is asserted (HIGH).
Pin name: uo_cac_cpu_data
Pin class: Data
Path: Cache� CPU
Description: 32-bits data that to be output to CPU.

Pin name: uo_cac_mem_strobe
Pin class: Control
Path: Cache� Memory Arbiter
Description: Strobe signal that goes into SDRAM Controller.
Pin name: uo_cac_mem_cycle
Pin class: Control
Path: Cache� Memory Arbiter
Description: Cycle signal that goes into SDRAM Controller.
Pin name: uo_cac_mem_rw
Pin class: Control
Path: Cache� Memory Arbiter
Description: A read or write signal that goes into SDRAM Controller.
When ‘1’, write.
When ‘0’, read.
Pin name: uo_cac_mem_host_ld_mode
Pin class: Control
Path: Cache� Memory Arbiter
Description: Assert (HIGH) this signal to configure the operating mode of SDRAM
Pin name: uo_cac_mem_sel
Pin class: Control
Path: Cache� Memory Arbiter
Description: 4-bits control signals to mask which byte of the 4 bytes (32-bits) data
goes in or comes out from SDRAM.

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

When it is ‘1’, the corresponding byte will enable.
When it is ‘0’, the corresponding byte will be masked and the output becomes ‘z’.
Pin name: uo_cac_mem_addr
Pin class: Address
Path: Cache� Memory Arbiter
Description: 32-bits address that indicates which location in the SDRAM to be
accessed.

Pin name: uo_cac_mem_data
Pin class: Data
Path: Cache� Memory Arbiter
Description: 32-bits data that to be written in to the SDRAM.
When in host load mode, it contains the valid mode value for configuration.

Pin name: uo_cac_miss
Pin class: Control
Path: Cache� Memory Arbiter
Description: A status signal indicates cache miss. It is to stall the pipelines.
Pin name: ui_cac_mem_ack
Pin class: Control
Path: Memory Arbiter � Cache
Description: Acknowledge signal (active HIGH) to indicate read or write to SDRAM
is done.
Pin name: ui_cac_mem_data
Pin class: Data
Path: Memory Arbiter � Cache
Description: 32-bits data that is read from SDRAM.

Table 6.1.1: Cache Unit I/O Descriptions

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

6.2: Memory Arbiter

The memory arbiter allows multiple caches or TLB to access single SDRAM. In order

to do that, different priorities are given to d_TLB, i_TLB, d_Cache and i_Cache. The

block diagram below shows a memory arbiter that can support up to 4 caches.

ui_ma_sdc_data

ui_ma_sdc_ack

uo_ma_sdc_read

uo_ma_sdc_write

uo_ma_sdc_host_ld_mode

uo_ma_sdc_sel

uo_ma_sdc_addr

uo_ma_sdc_data

u_mem_arbiter

32 32

32

4

32

32

4

32

4

32

32

32

32

4

32

32

32

4

32

32

ui_ma_cac_read3

ui_ma_cac_write3

ui_ma_cac_host_ld_mode3

ui_ma_cac_sel3

ui_ma_cac_addr3

ui_ma_cac_data3

ui_ma_cac_miss3

uo_ma_cac_ack3

uo_ma_cac_data3

ui_ma_cac_read2

ui_ma_cac_write2

ui_ma_cac_host_ld_mode2

ui_ma_cac_sel2

ui_ma_cac_addr2

ui_ma_cac_data2

ui_ma_cac_miss2

uo_ma_cac_ack2

uo_ma_cac_data2

ui_ma_cac_read1

ui_ma_cac_write1

ui_ma_cac_host_ld_mode1

ui_ma_cac_sel1

ui_ma_cac_addr1

ui_ma_cac_data1

ui_ma_cac_miss1

uo_ma_cac_ack1

uo_ma_cac_data1

ui_ma_cac_read0

ui_ma_cac_write0

ui_ma_cac_host_ld_mode0

ui_ma_cac_sel0

ui_ma_cac_addr0

ui_ma_cac_data0

ui_ma_cac_miss0

uo_ma_cac_ack0

uo_ma_cac_data0

Destination name:

u_sdram_controller

Source name:

u_sdram_controller

Destination name:

cache3

Source name:

cache3

Destination name:

cache2

Source name:

cache2

Destination name:

cache1

Source name:

cache1

Destination name:

cache0

Source name:

cache0

Figure 6.2: Memory Arbiter Block Diagram

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

6.2.1: I/O Description

Pin name: ui_ma_cac_read
Pin class: Control
Path: TLB or Cache � Memory Arbiter
Description: read signals from the TLBs and Caches.
Pin name: ui_ma_cac_write
Pin class: Control
Path: TLB or Cache � Memory Arbiter
Description: write signal from the TLBs and Caches.

Pin name: ui_ma_cac_host_ld_mode
Pin class: Control
Path: TLB or Cache � Memory Arbiter
Description: Host Load Mode signals from the TLBs and Caches.

Pin name: ui_ma_cac_sel
Pin class: Control
Path: TLB or Cache � Memory Arbiter
Description: Byte Select signals from the TLBs and Caches.
Pin name: ui_ma_cac_addr
Pin class: Address
Path: TLB or Cache � Memory Arbiter
Description: Addresses from the TLBs and Caches.
Pin name: ui_ma_cac_data
Pin class: Data
Path: TLB or Cache � Memory Arbiter
Description: Data from the TLBs and Caches.

Pin name: ui_ma_cac_miss
Pin class: Control
Path: TLB or Cache � Memory Arbiter
Description: Miss signals from the TLBs and Caches.

Pin name: uo_ma_cac_ack
Pin class: Control
Path: Memory Arbiter � TLB or Cache
Description: Acknowledge signal (active HIGH) to indicate read or write to SDRAM
is done, and send to Caches or TLB.
Pin name: uo_ma_cac_data
Pin class: Data
Path: Memory Arbiter � TLB or Cache
Description: 32-bits data that goes to Cache or TLB.
Pin name: ui_ma_sdc_data
Pin class: Data
Path: Memory Arbiter � SDRAM Controller
Description: 32-bits data that comes from SDRAM.
Pin name: ui_ma_sdc_ack
Pin class: control
Path: Memory Arbiter � SDRAM Controller

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

Description: Acknowledge signal (active HIGH) to indicate read or write to SDRAM
is done.
Pin name: uo_ma_sdc_host_ld_mode
Pin class: control
Path: Memory Arbiter � SDRAM Controller
Description: Host Load Mode signals that send to SDRAM Controller.
Pin name: uo_ma_sdc_read
Pin class: control
Path: Memory Arbiter � SDRAM Controller
Description: read signal that goes to SDRAM Controller
Pin name: uo_ma_sdc_write
Pin class: control
Path: Memory Arbiter � SDRAM Controller
Description: Write signal that goes to SDRAM Controller.
Pin name: uo_ma_sdc_sel
Pin class: control
Path: Memory Arbiter � SDRAM Controller
Description: 4-bits control signals to mask which byte of the 4 bytes (32-bits) data
goes in or comes out from SDRAM.
When it is ‘1’, the corresponding byte will enable.
When it is ‘0’, the corresponding byte will be masked and the output becomes ‘z’.
Pin name: uo_ma_sdc_addr
Pin class: control
Path: SDRAM Controller � Memory Arbiter
Description: 32-bits address to indicate which location in the SDRAM to be
accessed.
Pin name: uo_ma_sdc_data
Pin class: control
Path: SDRAM Controller � Memory Arbiter
Description: 32-bits data that goes into the SDRAM.
When wants to configure the operating mode of the SDRAM, the configuration values
goes into SDRAM via this port too.

Table 6.2.1: Memory Arbiter I/O Descriptions

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

6.2.2: Memory Arbiter State Diagram

Figure 6.2.2: Memory Arbiter State Diagram

6.2.3 State Definition

 State Name Definition
cache3 First priority cache given to perform operation
cache2 Second priority cache given to perform operation
cache1 Third priority cache given to perform operation
cache0 Last priority cache given to perform operation

Memory
Arbiter

idle Wait for new operation
Table 6.2.3: State Definition

miss3’.miss2’.miss1’.miss0

miss3’.miss2’.miss1

miss3’.miss2

miss3

cache3

idle cache2 cache0

cache1

miss3

miss2
miss0

miss1

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

6.3: SDRAM Controller

The SDRAM controller acts as an intermediary between the SDRAM and the host. It

handles SDRAM operations using the protocols which will be explained section 6.4.1

Protocol Controller. And it has no longer been modeled based on Industry standard

HOST SoC interface due to the current design needs.

Some of the main features are:

1) Burst transfers and burst termination

2) SDRAM initialization support

3) Performance optimization by leaving active rows open

4) Load mode control

32

ui_sdc_read

ui_sdc_write

ui_host_ld_mode

ui_sdc_sel

ui_sdc_addr

ui_sdc_dat

ui_sdc_clk

ui_sdc_rst

uo_sdc_dat
uo_sdc_ack
uio_sdc_dq
uo_sdc_ba

uo_sdc_dqm
uo_sdc_addr
uo_sdc_cs_n

uo_sdc_ras_n
uo_sdc_cas_n

uo_sdc_we_n

u_sdram_controller

4

32

32

2

4

12

32

Destination name:

SDRAM

Source name:

u_mem_arbiter

Destination name:

u_mem_arbiter

Figure 6.3: SDRAM Controller Block Diagram

6.3.1: I/O Pin Descriptions

Pin name: ui_sdc_clk
Pin class: Global
Path: Memory Bus Clock � SDRAM Controller
Description: SDRAM Controller Clock Input

Pin name: ui_sdc_rst
Pin class: Global
Path: System Reset � SDRAM Controller
Description: SDRAM Controller Reset

Pin name: ui_sdc_read
Pin class: Control
Path: Memory Arbiter � SDRAM Controller
Description: This pin indicates that the current cycle is READ when it asserted high.

Pin name: ui_sdc_we
Pin class: Control
Path: Memory Arbiter � SDRAM Controller
Description: This pin indicates that the current cycle is WRITE when it asserted high.

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

Pin name: uo_sdc_ack
Pin class: Control
Path: SDRAM Controller � Memory Arbiter
Description: When asserted high, it indicates that the current READ or WRITE is
successful. When asserted low, it indicates the operation is not completed yet or no
operation is processing now.

Pin name: ui_sdc_sel
Pin class: Control
Path: Memory Arbiter � SDRAM Controller
Description: This signal indicates where valid data is placed on the input data line
(ui_wb_dat) during WRITE cycle and where it should present on the output data line
(uo_wb_dat) during READ cycle. The array boundaries are determined by the
granularity of a port. In this SDRAM controller, 8-bits granularity is used and all the
data ports are 32-bits. Therefore, there would be 4 select signals with the boundaries
of ui_wb_sel(3:0). Each individual select signal correlates to one of 4 active bytes on
the 32-bits data port.
Pin name: ui_sdc_addr
Pin class: Address
Path: Memory Arbiter � SDRAM Controller
Description: The address input is used to pass the memory address from the host.

Pin name: ui_sdc_dat
Pin class: Data
Path: Memory Arbiter � SDRAM Controller
Description: This pin is used to pass WRITE data from the host.

Pin name: uo_sdc_dat
Pin class: Data
Path: SDRAM Controller � Memory Arbiter
Description: This pin is used to output READ data from the SDRAM.
Pin name: ui_host_ld_mode
Pin class: Control
Path: SDRAM Controller � Memory Arbiter
Description: This pin is asserted to load a new mode into the SDRAM.
Pin name: uo_sdc_cs_n
Pin class: Control
Path: Memory Arbiter � SDRAM
Description: SDRAM chip select
Pin name: uo_sdc_ras_n
Pin class: Control
Path: Memory Arbiter � SDRAM
Description: SDRAM row address select

Pin name: uo_sdc_cas_n

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR

Pin class: Control
Path: Memory Arbiter � SDRAM
Description: SDRAM column address select
Pin name: uo_sdc_we_n
Pin class: Control
Path: Memory Arbiter � SDRAM
Description: SDRAM write enable.

Pin name: uo_sdc_addr
Pin class: Address
Path: Memory Arbiter � SDRAM
Description: This pin is used as an address output to the SDRAM. The address will
be segmented into row, column and bank before being sent out through this pin.

Pin name: uo_sdc_ba
Pin class: Control
Path: Memory Arbiter � SDRAM
Description: This pin is used to select the bank within the SDRAM. There are a total
of 4 banks within the SDRAM and each of them operates independently.

Pin name: uo_sdc_dqm
Pin class: Control
Path: Memory Arbiter � SDRAM
Description: This pin is used to select which bits of the data line (uio_sdr_dq) to be
masked.
Pin name: uio_sdc_dq
Pin class: Data
Path: Memory Arbiter � SDRAM
Description: This data line is a bidirectional line to receive READ data or send
WRITE data.

Table 6.3.1: SDRAM I/O Descriptions

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 61

6.4: Block partitioning of SDRAM Controller

ui_sdc_sel

uo_sdc_ack

uo_sdc_cs_n

uo_sdc_ras_n

uo_sdc_cas_n

uo_sdc_we_n

uo_sdc_dqm

uo_sdc_ba

uo_sdc_addr

uo_sdc_dat

uio_sdc_dq

[11:10]

[23:12]

bi_obrt_bank_act
bi_obrt_bank_clr
bi_obrt_bank_clr_all
bi_obrt_row_addr
bi_obrt_bank_addr
bi_sdc_clk
bi_sdc_rst

bo_obrt_bank_open
bo_obrt_any_bank_open

bo_obrt_row_same
12

b_sdc_obrt_top

2

bi_amx_addr
bi_amx_sel
bi_amx_cfg_mode
bi_amx_a10_cmd
bi_amx_lmr_sel
bi_amx_row_sel

bo_amx_dqm
bo_amx_ba

bo_amx_addr

32

b_sdc_addr_mux

4

12

4

2

14

ui_sdc_clk

ui_sdc_rst

ui_sdc_dat

ui_sdc_ld_mode
ui_sdc_read

ui_sdc_write

ui_sdc_addr

bi_sdif_dqm
bi_sdif_ba
bi_sdif_addr
bi_sdif_cmd
bi_sdif_woe
bi_sdif_roe
bi_sdif_dat
bi_sdc_clk
bi_sdc_rst

bo_sdif_cs_n
bo_sdif_ras_n
bo_sdif_cas_n
bo_sdif_we_n
bo_sdif_dqm

bo_sdif_ba
bo_sdif_addr
bo_sdif_dat
bio_sdif_dq

b_sdc_sdram_if

4

2

14

4
4

2

12
32

32

32

bi_fsm_newcfg
bi_fsm_ld_mode
bi_fsm_read
bi_fsm_write
bi_fsm_bank_open
bi_fsm_any_bank_open
bi_fsm_row_same
bi_sdc_rst
bi_sdc_clk

[11:0]

4

bo_fsm_cfg_mode
bo_fsm_bank_act
bo_fsm_bank_clr

bo_fsm_bank_clr_all
bo_fsm_a10_cmd

bo_fsm_lmr_sel
bo_fsm_row_sel

bo_fsm_woe
bo_fsm_roe

bo_fsm_cmd
bo_fsm_ack

12

b_sdc_fsm

12

Figure 6.4: The Micro-Architecture of the SDRAM Controller

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 62

6.4.1: Protocol Controller

This block handles the timing and the state changes that forms the protocols of the

SDRAM. It decides which protocol to be executed and what commands to be sent to

the SDRAM. This block performs simple decoding on the HOST signals and uses

them as input controls for the states.

bi_fsm_bank_open
bi_fsm_any_bank_open
bi_fsm_row_same
bi_fsm_ld_mode
bi_fsm_newcfg
bi_fsm_read
bi_fsm_write
bi_sdc_rst
bi_sdc_clk 4

bo_fsm_bank_act
bo_fsm_bank_clr

bo_fsm_bank_clr_all
bo_fsm_cfg_mode
bo_fsm_a10_cmd

bo_fsm_lmr_sel
bo_fsm_row_sel

bo_fsm_woe
bo_fsm_roe

bo_fsm_cmd
bo_fsm_ack

12

b_sdc_fsm

12

Source name:

b_sdc_obrt_top

Source name:

Host

Destination name:

b_sdc_obrt_top

Destination name:

b_sdc_addr_mux

Destination name:

b_sdc_sdram_if

Destination name:

SDRAM

Figure 6.4.1: Protocol Controller Block Diagram

6.4.1.1: I/O Pin Descriptions

Pin Name : bi_sdc_clk
Pin class: Global
Path: Host � Protocol Controller
Description: Clock Input

Pin Name : bi_sdc_rst
Pin class: Global
Path: Host � Protocol Controller
Description: Synchronous reset

Pin Name : bi_fsm_read
Pin class: Control
Path: Host � Protocol Controller
Description: When asserted high, this pin indicates that the current cycle is READ.

Pin Name : bi_fsm_write
Pin class: Control
Path: Host � Protocol Controller
Description: When asserted high, this pin indicates that the current cycle is WRITE.
Pin Name : bi_fsm_ack
Pin class: Control
Path: Host � Protocol Controller
Description: Acknowledge signal is activated after read or write is done.

Pin Name : bi_fsm_ld_mode
Pin class: Control
Path: Host � Protocol Controller
Description: This pin is asserted to request for load mode.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 63

Pin Name : bi_ fsm_newcfg
Pin class: Control
Path: Host � Protocol Controller
Description: 12-bits mode configuration status

Pin Name : bi_fsm_bank_open
Pin class: Control
Path: OBRT � Protocol Controller
Description: If deasserted, row status is “row closed”.
If asserted, row status is “row opened”.

Pin Name : bi_fsm_any_bank_open
Pin class: Control
Path: OBRT � Protocol Controller
Description: If deasserted, the row status for all banks is “row closed”.
If asserted, there is at least one bank with the status of “row opened”.

Pin Name : bi_fsm_row_same
Pin class: Data
Path: OBRT � Protocol Controller
Description: If asserted, the existing row is the same as the opened row in the selected
bank.

Pin Name : bo_fsm_bank_act
Pin class: Control
Path: Protocol Controller � OBRT
Description: If asserted, Protocol Controller requests OBRT to update the bank status of
the selected bank to “row opened”.

Pin Name : bo_fsm_bank_clr
Pin class: Control
Path: Protocol Controller � OBRT
Description: If asserted, Protocol Controller requests OBRT to update the bank status of
the selected bank to “row closed”.

Pin Name : bo_fsm_bank_clr_all
Pin class: Control
Path: Protocol Controller � OBRT
Description: Asserted to set all the bank statuses in OBRT to “row clear”.

Pin Name : bo_ fsm_cfg_mode
Pin class: Control
Path: Protocol Controller � Address Multiplexer
Description: 12-bits mode configuration status

Pin Name : bo_fsm_a10_cmd
Pin class: Control
Path: Protocol Controller � Address Multiplexer
Description: Signal to be sent out to the address (10) of the SDRAM. During a row
precharge, the assertion of this pin indicates precharge all banks.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 64

Pin Name : bo_fsm_lmr_sel
Pin class: Control
Path: Protocol Controller � Address Multiplexer
Description: Select load mode configuration.

Pin Name : bo_fsm_row_sel
Pin class: Control
Path: Protocol Controller � Address Multiplexer
Description: Select row address

Pin Name : bo_fsm_woe
Pin class: Control
Path: Protocol Controller � Data Buffer
Description: Write output buffer enable.

Pin Name : bo_fsm_roe
Pin class: Control
Path: Protocol Controller � Data Buffer
Description: Read output buffer enable.

Pin Name : bo_fsm_cmd
Pin class: Control
Path: Protocol Controller � SDRAM Interface
Description: Output SDRAM commands

Table 6.4.1.1: Protocol Controller Input/ Output Pin Descriptions

6.4.1.2: Protocol Controller State Diagram

This section details the state diagram of the Protocol Controller block. Figure

6.4.1.2.F1 shows the simplified view of the Protocol Controller FSM model, followed

by the state diagram shown in Figure 6.4.1.2.F2 and Figure 6.4.1.2.F3.

Register Mealy

FSM Model

Input

Load Mode Status

Open Row Status

R/W output gating control

Load Mode Register control

SDRAM Command Generator

Host ACK Generator

Open Bank and Row Tracking

Address Decoder Control

Burst Counter

Refresh Interval Timer

Timer

 Figure 6.4.1.2.F1: A simplified view on the Protocol Block

The Protocol Controller is designed using a registered mealy model. There are 9

different output generators driven by the same FSM. Each of this output generators

serves different micro functions at different state.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 65

 Initialization of SDRAM controller occurred when asynchronous reset signal is

asserted high. SDRAM needs to perform power and clock stabilization. Before

issuing read or write command, it has to go through at least 100µs delay during

initialization wait state (INIT_W). The default timer value in INIT_W, b_tmr_done is

set to 150µs, but the value has been scaled down for the testing purpose. The system

is then throughout the wait states of pre-charge, reset, and load mode according to

specific timing values. These delays can be modified by designer and decided by

referring to the SDRAM types that has been chosen. After the initialization, state

machine go directly to idle command state.

Figure 6.4.1.2.F2: Initialization Protocol FSM

INIT INIT _ W

I _ PRE I _ PREW

I _ AR 1 I _ ARW 1

I _ AR 2 I _ ARW 2

I _ LMR I _ TMRD

C _ IDLE

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 66

If the chosen bank is not open during the read or write cycle time, the active

command (C_ACT) will be issued to close the particular bank and open the chosen

bank. If the chosen row is different, pre-charge will took place. Otherwise, read or

write can be executed directly.

Figure 6.4.1.2.F6: Open Bank and Row Tracking Control sub-FSM

C _ IDLE

C _ ACT

C _ PRE

C _ PREW

_

C _ TRCD

C _ WRITE

C _ IDLE 0

C _ READ

C _ WDATA C _ CL

C _ RDATA C _ BT

!

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 67

bi_obrt_bank_act
bi_obrt_bank_clr
bi_obrt_bank_clr_all
bi_obrt_row_addr
bi_obrt_bank_addr
bi_sdc_clk
bi_sdc_rst

bo_obrt_bank_open
bo_obrt_any_bank_open

bo_obrt_row_same
12

b_sdc_obrt_top

2

Source name:

b_sdc_fsm

Source name:

Host

Destination name:

b_sdc_fsm

6.4.2: Open Bank and Row Tracking (OBRT) Top

This block is used to keep track of the row statuses for all the banks. It has 4 sub-

blocks of OBRT instantiated within it to store and compare the row status (activated

or precharged) of each bank. This block will select which sub-blocks row statuses to

be updated. It also selects which sub-block’s row statuses to be output to the protocol

controller block.

Figure 6.4.2: OBRT Top Block diagram

6.4.2.1: I/O Pin Descriptions

Pin Name : bi_sdc_clk
Pin class: Global
Path: Host � OBRT
Description: Clock Input

Pin Name : bi_sdc_rst
Pin class: Global
Path: Host � OBRT
Description: Synchronous reset

Pin Name : bi_ obrt_bank_addr
Pin class: Address
Path: Host � OBRT
Description: Input of bank address to select which bank’s status to be updated or
checked.

Pin Name : bi_ obrt_row_addr
Pin class: Address
Path: Host � OBRT
Description: Input row address to be compared with the activated row of the selected
bank.

Pin Name : bi_obrt_bank_act
Pin class: Control
Path: Protocol Controller � OBRT
Description: Set the status of the selected bank as “Row Active”

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 68

Pin Name : bi_ obrt_bank_clr
Pin class: Control
Path: Protocol Controller � OBRT
Description: Clear the status of the selected bank to indicate “Row Closed”

Pin Name : bi_obrt_bank_clr_all
Pin class: Control
Path: Protocol Controller � OBRT
Description: Clear the status of all banks

Pin Name : bo_obrt_bank_open
Pin class: Control
Path: OBRT � Protocol Controller
Description: Indicates “Row Active” status if asserted and “Row Closed” if de-
asserted.

Pin Name : bo_obrt_any_bank_open
Pin class: Control
Path: OBRT � Protocol Controller
Description: When asserted, it indicates if there is any bank with “Row Active”
status.

Pin Name : bo_ obrt_row_same
Pin class: Control
Path: OBRT � Protocol Controller
Description: Indicate “Row Same” status when the currently accessed row is the
same as the activated row.

Table 6.4.2.1: OBRT Top Input /Output Pin Descriptions

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 69

bi_cs
bi_bank_act
bi_bank_clr
bi_row_addr
bi_rst
bi_clk

bo_bank_rdy
bo_row_same

12

b_sdc_obrt

6.4.2.3: Block Partitioning of OBRT Top

This sub-block is generated 4 times within the OBRT_Top Block. Each of these sub-

blocks stores the row status (precharged, activated) of each bank.

Figure 6.4.2.3: OBRT Sub-block Diagram

6.4.2.4: I/O Pin Descriptions

Pin Name : bi_clk
Pin class: System
Path: OBRT_Top � OBRT
Description: Clock Input

Pin Name : bi_ rst
Pin class: System
Path: OBRT_Top � OBRT
Description: Synchronous reset

Pin Name : bi_cs
Pin class: Control
Path: OBRT_Top � OBRT
Description: Chip select. This sub-block will not react to all input signals, with the
exception of bi_rst, if this pin is not asserted.

Pin Name : bi_ bank_act
Pin class: Control
Path: OBRT_Top � OBRT
Description: If asserted, set bank status as “row active”

Pin Name : bi_ bank_clr
Pin class: Control
Path: OBRT_Top � OBRT
Description: If deasserted, set bank status as “row closed”.

Pin Name : bi_row_addr
Pin class: Address
Path: OBRT_Top � OBRT
Description: Input row address to be compared with stored activated row address.

Pin Name : bo_bank_rdy

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 70

Pin class: Control
Path: OBRT � OBRT _Top
Description: Row active status. Indicate the row stored in the selected bank is ready.
At reset, this register is initialized to 0. If asserted, indicates “row active”.
If deasserted, indicates “row closed”.

Pin Name : bo_row_same
Pin class: Control
Path: OBRT � OBRT _Top
Description: If asserted, indicates the input address is same as the stored address.

Table 6.4.2.4: OBRT Input/ Output Pins Descriptions

6.4.2.5 Important Registers in OBRT

There are a total of 4 trackers to track the row status of each bank. Within each tracker,

there are 2 important registers used to track the row address and its activation status.

Table 6.4.2.5: OBRT Important Registers

Pin Name : b_row_previous
Pin class: Register
Description: Stores the activated row to be compared with the input row address
from bi_wb_row_addr. At reset, this register is initialized to 0.

Pin Name : bo_bank_rdy
Pin class: Register
Description: Indicate the row stored in the selected bank is ready. At reset, this
register is initialized to 0.
If asserted, it indicates “row active”.If deasserted, it indicates “row closed”.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 71

6.4.3: Address Multiplexer

The address multiplexer (MUX) partitions the HOST address input line into row

address, bank address and column address. Then, it multiplexes the configuration

mode, row address and column address. It also decodes the HOST Select input pin

and converts it to equivalent masking output.

Figure 6.4.3: Address Multiplexer Block Diagram

6.4.3.1: I/O Descriptions

Pin Name : bi_amx_addr
Pin class: Address
Path: Host � Address Multiplexer
Description: Host address input. This input line is used to get the address of the host
connected to the SDRAM controller
Pin Name : bi_amx_sel
Pin class: Control
Path: Host � Address Multiplexer
Description: Host Select Input. This input line is used to select which data on the 32-
bit data line is valid. Can be used for the purpose of byte access, half-word access or
word access.

Pin Name : bi_amx_cfg_mode
Pin class: Control
Path: CSR � Address Multiplexer
Description: This input is used to read the status of the configured mode. The status
will be used as the value to configure the SDRAM when load mode protocol is
executed.

Pin Name : bi_amx_a10_cmd
Pin class: Control
Path: Protocol Controller � Address Multiplexer
Description: Address bit-10 control signal

Pin Name : bi_amx_lmr_sel
Pin class: Control

bi_amx_addr
bi_amx_sel
bi_amx_cfg_mode
bi_amx_a10_cmd
bi_amx_lmr_sel
bi_amx_row_sel

bo_amx_dqm
bo_amx_ba

bo_amx_addr

32

b_sdc_addr_mux

4

12

4

2

14

Source name:

Host

Source name:

b_sdc_fsm

Source name:

b_sdc_ms_reg

Destination name:

b_sdc_sdram_if

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 72

Path: Protocol Controller � Address Multiplexer
Description: Load mode select input

Pin Name : bi_amx_row_sel
Pin class: Control
Path: Protocol Controller � Address Multiplexer
Description: Row address select input

Pin Name : bo_amx_dqm
Pin class: Control
Path: Address Multiplexer � SDRAM Interface
Description: Masking output. Used to select which data line of the SDRAM to be
masked. Refer to [12] for further details.

Pin Name : bo_amx_ba
Pin class: Control
Path: Address Multiplexer � SDRAM Interface
Description: Bank address output

Pin Name : bo_amx_addr
Pin class: Address
Path: Address Multiplexer � SDRAM Interface
Description: Multiplexer address output

Table 6.4.3.1: Address Multiplexer Input/ Output Pin Descriptions

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 73

6.4.4 SDRAM Interface Block Specification

The SDRAM Interface Block synchronizes all the signals to negative edge for the

write cycle and positive edge for the read cycle, before sending them out the SDRAM.

Within the host and SDRAM, there are two tri-states buffers used as the gating

mechanism to enable the data to flow in or out.

bi_sdif_dqm
bi_sdif_ba
bi_sdif_addr
bi_sdif_cmd
bi_sdif_woe
bi_sdif_roe
bi_sdif_dat
bi_sdc_clk
bi_sdc_rst

bo_sdif_cs_n
bo_sdif_ras_n
bo_sdif_cas_n
bo_sdif_we_n
bo_sdif_dqm

bo_sdif_ba
bo_sdif_addr
bio_sdif_dq
bo_sdif_dat

b_sdc_sdram_if

4

2

14

4

4

2

12
32

32

32

Source name:

b_sdc_addr_mux

Source name:

b_sdc_fsm

Source name:

Host

Destination name:

SDRAM

Destination name:

Host

Figure 6.4.4: SDRAM Interface Block Diagram

6.4.4.1: I/O pin descriptions

Pin Name : bi_sdc_clk
Pin class: Global
Path: Host � SDRAM Interface
Description: Clock Input

Pin Name : bi_sdc_rst
Pin class: Global
Path: Host � SDRAM Interface
Description: Synchronous reset

Pin Name : bi_sdif_cmd
Pin class: Control
Path: Protocol Controller � SDRAM Interface
Description: This pin receives the command sent out by the Protocol Controller.

Pin Name : bi_sdif_dqm
Pin class: Control
Path: Address Multiplexer � SDRAM Interface
Description: This pin receives the data mask from the address multiplexer so that it
can be passed to the SDRAM at the next negative edge of the clock through
bo_sdr_dqm.

Pin Name : bi_sdif_ba
Pin class: Control
Path: Address Multiplexer � SDRAM Interface
Description: This pin receives the bank address.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 74

Pin Name : bi_sdif_addr
Pin class: Address
Path: Address Multiplexer � SDRAM Interface
Description: This pin receives the multiplexed SDRAM address.

Pin Name : bi_sdif_dat
Pin class: Data
Path: Host � SDRAM Interface
Description: Host input data bus

Pin Name : bi_sdif_woe
Pin class: Control
Path: Protocol Controller � SDRAM Interface
Description: Write output enable

Pin Name : bi_sdif_roe
Pin class: Control
Path: Protocol Controller � SDRAM Interface
Description: Read output enable
Pin Name : bio_sdif_dq
Pin class: data
Path: SDRAM Interface � SDRAM
 SDRAM � SDRAM Interface
Description: SDRAM bidirectional data bus
Pin Name : bo_sdif_we_n
Pin class: Control
Path: SDRAM Interface � SDRAM
Description: This pin outputs the SDRAM write enable signal.
Pin Name : bo_sdif_dqm
Pin class: Control
Path: SDRAM Interface � SDRAM
Description: This pin sends out the data line mask.

Pin Name : bo_sdif_ba
Pin class: Control
Path: SDRAM Interface � SDRAM
Description: This pin sends out the SDRAM bank address.

Pin Name : bo_sdif_addr
Pin class: Address
Path: SDRAM Interface � SDRAM
Description: This pin sends out the multiplexed address to the SDRAM
Pin Name : bo_sdif_dat
Pin class: Data
Path: SDRAM Interface �Host
Description: SDRAM output data bus

Table 6.4.4.1: SDRAM Interface I/ O pin descriptions

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 75

Chapter 7: Test and Verification

7.1: SDRAM Controller

7.1.1: Test Plan

Function To be Tested Test Case

Test 1: Reset and Initialization ui_wb_rst is asserted to high at least one clock
cycle

Test 2: Single WRITE (inactive
banks)

for (i = 0; i < 4; i = i + 1)begin
- load row address = 2
- load bank address = i
- load column address = 15
- load select = 4’b1111
- load data = 2001 + i
- execute “write”
- execute “idle”

end
Test 3 : Force Pre-charging Reset ui_wb_rst is asserted to high at least one clock

cycle after read or write.
Test 4: Single READ (inactive
banks)

- execute “reset”  to deactivate all
activated banks

for (i = 0; i < 4; i = i + 1)begin
- load row address = 2
- load bank address = i
- load column address = 15
- load select = 4’b1111
- load data = Hi-Z
- execute “read”
- execute “idle”

end
Test 5: Single Write (active bank/
same row)

for (i = 0; i < 4; i = i + 1)begin
- load row address = 2
- load bank address = i
- load column address = 15
- load select = 4’b1111
- load data = 4000 + i
- execute “write”
- execute “idle”

end
Test 6: Single READ (active bank/
same row)

for (i = 0; i < 4; i = i + 1)begin
- load row address = 2
- load bank address = i
- load column address = 15
- load select = 4’b1111
- load data = Hi-Z
- execute “read”
- execute “idle”

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 76

end
Test 7: Single WRITE (active bank/
row differs)

for (i = 0; i < 4; i = i + 1)begin
- load row address = 0
- load bank address = i
- load column address = 4
- load select = 4’b1111
- load data = 6000 + i
- execute “write”
- execute “idle”

end
Test 8: Programming Mode Register
(Burst Length 8)

- load data = {22’d0, `WR_BRST,
`OPMODE, `CAS_2, `BT_0, `BL_8}

- execute “change mode”
Test 9: Burst Write 8 for(i = 0; i < 8; i= i+1)begin

- load row address = 8;
- load bank address = 1;
- load column address = 9;
- load select = 4'b1111;
- load data = 32'd900 + i;
- execute “write”

end
execute “idle”

Test 10: Same Programming Mode
Register (Burst Length 8)

- execute “reset”
- load data = {22’d0, `WR_BRST,

`OPMODE, `CAS_2, `BT_0, `BL_8}
- execute “change mode”

Test 11: Burst Read 8 for(i = 0; i < 8; i= i+1)begin
- load row address = 8;
- load bank address = 1;
- load column address = 9;
- load select = 4'b1111;
- load data = Hi-Z
- execute “read”

 end
- execute “idle”

Test 12: Programming Mode
Register (Burst Length 4)

- load data = {22’d0, `WR_BRST,
`OPMODE, `CAS_2, `BT_0, `BL_4}

- execute “change mode”
Test 13: Burst Read 4 for(i = 0; i < 4; i= i+1)begin

- load row address = 4;
- load bank address = 1;
- load column address = 5;
- load select = 4'b1111;
- load data = Hi-Z
- execute “read”

 end
- execute “idle”

Test 14: Programming Mode
Register (Burst Length 2)

- execute “reset”
- load data = {22’d0, `WR_BRST,

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 77

`OPMODE, `CAS_2, `BT_0, `BL_2}
- execute “change mode”

Test 15: Burst Read 2 for(i = 0; i < 2; i= i+1)begin
- load row address = 2;
- load bank address = 1;
- load column address = 3;
- load select = 4'b1111;
- load data = Hi-Z
- execute “read”
end
- execute “idle”

Test 16: Programming Mode
Register (Burst Length 1)

- load data = {22’d0, `WR_BRST,
`OPMODE, `CAS_2, `BT_0, `BL_1}

- execute “change mode”
Test 17: Burst Read 1 - load row address = 1;

- load bank address = 1;
- load column address = 2;
- load select = 4'b1111;
- load data = Hi-Z
- execute “read”
- execute “idle”

Test 18: Programming Mode
Register (Default)

- load data = `DEFAULT_MODE
- execute “change mode”

Test 19: Single READ (active bank/
row differs)

for (i = 0; i < 4; i = i + 1)begin
- load row address = 2
- load bank address = i
- load column address = 15
- load select = 4’b1111
- load data = Hi-Z
- execute “read”
- execute “idle”

end
Test 20: Programming Mode
Register (Burst Length 8)

- load data = {22’d0, `WR_BRST,
`OPMODE, `CAS_2, `BT_0, `BL_8}

- execute “change mode”
Test 21: Bus Termination (Write) for(i = 0; i < 2; i= i+1)begin

- load row address = 0;
- load bank address = 0;
- load column address = 11;
- load select = 4’b1111;
- load data = 11000

end
- execute “idle”

Test 22: Bus Termination (Read) for(i = 0; i < 2; i= i+1)begin
- load row address = 8;
- load bank address = 1;
- load column address = 9;
- load select = 4'b1111;
- load data = 32'hz;

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 78

- execute “read”
end

- execute “idle”
Test 23a: Data Masking
Simulate “store byte”

for(i = 0 ; i < 5; i = i+1)begin
- load row address = 8;
- load bank address = 3;
- load column address = 8;
- load select = 4'b1111;
- load data = 32'hffffffff;
- execute “write”
- load select = 4'h0;
- if(i < 4) load select[i] = 1'b1;
- load data = 0
- execute “write”

end
Test 23b: Data Masking
Simulate “store half”

for(i = 0 ; i < 2; i = i+1)begin
- load row address = 8;
- load bank address = 3;
- load column address = 8;
- load select = 4'b1111;
- load data = 32'hffffffff;
- execute “write”
- load select = 0;
if(i === 0) load select[1:0] = 2’b11
else if (i === 1) load select[3:2] = 3’b11
else load select = 0;
- load data = 0;
- execute “write”
- execute “idle”

Test 24: Auto-Refresh - execute “idle”
- do nothing until Auto-refresh is

requested
Table 7.1.1: SDRAM Controller Full Chip Test Plan

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 79

7.1.2: Testbench Verilog code

//##
/*
Module : tb_u_sdc_sdram
File name : tb_u_sdc_sdram.v
Date Created : 21.1.2015
Author : Chin Chun Lek
Code Type : Verilog
Description : Testbench for sdram controller and sdram
*/
//##
`include "././util/sdc_macro.v"
`timescale 1ns / 10ps

module tb_u_sdc_sdram;

//SDRAM to CPU
reg tb_ui_clk;
reg tb_ui_rst;
reg tb_ui_host_ld_mode;
reg tb_ui_write,
 tb_ui_read;
reg [3:0] tb_ui_sel;
reg [31:0] tb_ui_addr;
reg [31:0] tb_ui_data;
wire [31:0] tb_uo_data;
wire tb_uo_ack;

//between sdram controller and sdram
wire [31:0] u_sdc_dq;
wire [11:0] u_sdc_addr;
wire [1:0] u_sdc_ba;
wire u_sdc_cs_n;
wire u_sdc_ras_n;
wire u_sdc_cas_n;
wire u_sdc_we_n;
wire [3:0] u_sdc_dqm;

//display test status
reg [255:0] status;
integer i;

//To generate ASCII value in the waveform to ease debugging
bfm_wave_monitor bfm_monitor();

 u_sdram_controller u_sdram_controller
 (.ui_sdc_clk(tb_ui_clk),
 .ui_sdc_rst(tb_ui_rst),
 .ui_host_ld_mode(tb_ui_host_ld_mode),
 .ui_sdc_write(tb_ui_write),
 .ui_sdc_read(tb_ui_read),
 .ui_sdc_sel(tb_ui_sel),
 .ui_sdc_addr(tb_ui_addr),
 .ui_sdc_dat(tb_ui_data),
 .uo_sdc_dat(tb_uo_data),
 .uo_sdc_ack(tb_uo_ack),

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 80

 .uio_sdc_dq(u_sdc_dq),
 .uo_sdc_ba(u_sdc_ba),
 .uo_sdc_dqm(u_sdc_dqm),
 .uo_sdc_addr(u_sdc_addr),
 .uo_sdc_cs_n(u_sdc_cs_n),
 .uo_sdc_ras_n(u_sdc_ras_n),
 .uo_sdc_cas_n(u_sdc_cas_n),
 .uo_sdc_we_n(u_sdc_we_n)) ;

 //MICRON SDRAM Instantiation
 mt48lc4m32b2 sdram(
 .Dq(u_sdc_dq),
 .Addr(u_sdc_addr),
 .Ba(u_sdc_ba),
 .Clk(tb_ui_clk),
 .Cke(1'b1), //cke always activated
 .Cs_n(u_sdc_cs_n),
 .Ras_n(u_sdc_ras_n),
 .Cas_n(u_sdc_cas_n),
 .We_n(u_sdc_we_n),
 .Dqm(u_sdc_dqm));

 //initialize clock signal
 initial tb_ui_clk = 1;
 always #10 tb_ui_clk = ~tb_ui_clk;

 initial begin
//**********Test 1: Reset and Initialization**********
$display("Test 1: Reset and Initialization");
//do idle
tb_ui_rst = 0;
tb_ui_write = 0;
tb_ui_read = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;
status = "TEST 1: INIT";

//do reset
tb_ui_addr = 32'b0;
tb_ui_data = 32'b0;
tb_ui_sel = 4'b1111;
tb_ui_rst = 1;
@(posedge tb_ui_clk)#1;

//do idle
tb_ui_rst = 0;
tb_ui_write = 0;
tb_ui_read = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;
 while(!u_sdram_controller.b_sdc_fsm.b_present[10])@(posedge tb_ui_clk);

//**********Test 2: Single WRITE into inactive banks**********
$display("Test 2: Single WRITE into inactive banks");
status = "TEST 2: SWRITE - !BANK";
for(i = 0; i < 4; i= i+1)begin
 tb_ui_addr = 0;
 tb_ui_addr[23:12] = 2;
 tb_ui_addr[11:10] = i;

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 81

 tb_ui_addr[9:2] = 15;
 tb_ui_sel = 4'b1111;
 tb_ui_data = 32'd2001 + i;

 //do write
 tb_ui_write = 1;

 //wait acknowledge
 while(~tb_uo_ack) @(posedge tb_ui_clk);

 //do idle
 tb_ui_rst = 0;
 tb_ui_write = 0;
 tb_ui_read = 0;
 tb_ui_host_ld_mode = 0;
 @(posedge tb_ui_clk)#1;
end
//do idle
tb_ui_rst = 0;
tb_ui_write = 0;
tb_ui_read = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;
repeat(5) @(posedge tb_ui_clk);

//**********Test 3: Force Precharging Using Reset**********
$display("Test 3: Force Precharging Using Reset");
status = "Test 3: Force Precharging Reset";
//do reset
tb_ui_addr = 32'b0;
tb_ui_data = 32'b0;
tb_ui_sel = 4'b1111;
tb_ui_rst = 1;
@(posedge tb_ui_clk)#1;

//do idle
tb_ui_rst = 0;
tb_ui_write = 0;
tb_ui_read = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;

while(!u_sdram_controller.b_sdc_fsm.b_present[10])@(posedge tb_ui_clk);

//********Test 4: Single READ from inactive banks********
$display("Test 4: Single READ from inactive banks");
 status = "TEST 4: SREAD - !BANK";
for(i = 0; i < 4; i= i+1)begin
 tb_ui_addr = 0;
 tb_ui_addr[23:12] = 2;
 tb_ui_addr[11:10] = i;
 tb_ui_addr[9:2] = 15;
 tb_ui_sel = 4'b1111;
 tb_ui_data = 32'hz;

 //do read
 tb_ui_read = 1;

 //wait acknowledge

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 82

 while(~tb_uo_ack) @(posedge tb_ui_clk);

 //do idle
 tb_ui_rst = 0;
 tb_ui_read = 0;
 tb_ui_host_ld_mode = 0;
 @(posedge tb_ui_clk)#1;
end
//do idle
tb_ui_rst = 0;
tb_ui_read = 0;
tb_ui_write = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;
repeat(5) @(posedge tb_ui_clk);

//****Test 5: Single WRITE into active banks (same row)*****
$display("Test 5: Single WRITE into active banks (same row)");
 status = "TEST 5: SWRITE - BANK ROW";
for(i = 0; i < 4; i= i+1)begin
 tb_ui_addr = 0;
 tb_ui_addr[23:12] = 2;
 tb_ui_addr[11:10] = i;
 tb_ui_addr[9:2] = 15;
 tb_ui_sel = 4'b1111;
 tb_ui_data = 32'd4000 + i;

 //do write
 tb_ui_write = 1;

 //wait acknowledge
 while(~tb_uo_ack) @(posedge tb_ui_clk);
 //$display("ACK detected");

 //do idle
tb_ui_rst = 0;
tb_ui_write = 0;
tb_ui_read = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;
end
//do idle
tb_ui_rst = 0;
tb_ui_read = 0;
tb_ui_write = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;

//****Test 6: Single READ from active banks (same row)******
$display("Test 6: Single READ from active banks (same row)");
 status = "TEST 6: SREAD - BANK ROW";
for(i = 0; i < 4; i= i+1)begin
 tb_ui_addr = 0;
 tb_ui_addr[23:12] = 2;
 tb_ui_addr[11:10] = i;
 tb_ui_addr[9:2] = 15;
 tb_ui_sel = 4'b1111;
 tb_ui_data = 32'hz;

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 83

 //do read
 tb_ui_read = 1;

 //wait acknowledge
 while(~tb_uo_ack)@(posedge tb_ui_clk);

//do idle
tb_ui_rst = 0;
tb_ui_read = 0;
tb_ui_write = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;
end
//do idle
tb_ui_rst = 0;
tb_ui_read = 0;
tb_ui_write = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;

//******Test 7: Single WRITE into active banks (row differs)*******
$display("Test 7: Single WRITE into active banks (row differs)");
 status = "TEST 7: SWRITE - BANK !ROW";
for(i = 0; i < 4; i= i+1)begin
 tb_ui_addr = 0;
 tb_ui_addr[23:12] = 3;
 tb_ui_addr[11:10] = i;
 tb_ui_addr[9:2] = 4;
 tb_ui_sel = 4'b1111;
 tb_ui_data = 32'h6000+i;

 //do write
 tb_ui_write = 1;

 //wait acknowledge
 while(~tb_uo_ack) @(posedge tb_ui_clk);

//do idle
tb_ui_rst = 0;
tb_ui_read = 0;
tb_ui_write = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;
end
//do idle
tb_ui_rst = 0;
tb_ui_read = 0;
tb_ui_write = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;
repeat(5) @(posedge tb_ui_clk);

//*******Test 8: Programming Mode Register BL8**************
$display("Test 8: Programming Mode Register BL8");
 status = "TEST 8: LMR BL8";
tb_ui_data = {20'b0, 2'b00,`WB_BRST, `OPMODE, `CAS_2, `BT_0, `BL_8};

//change mode
@(posedge tb_ui_clk)#1;

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 84

tb_ui_host_ld_mode = 1'b1;

//wait acknowledge
while(~tb_uo_ack)@(posedge tb_ui_clk);

//do idle
tb_ui_rst = 0;
tb_ui_read = 0;
tb_ui_write = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;

//do idle
tb_ui_rst = 0;
tb_ui_read = 0;
tb_ui_write = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;
repeat(5) @(posedge tb_ui_clk);

//****************Test 9: Burst Write********************
$display("Test 9: Burst Write");
 status = "TEST 9: BURST WRITE";
for(i = 0; i < 8; i= i+1)begin
 tb_ui_addr = 0;
 tb_ui_addr[23:12] = 8;
 tb_ui_addr[11:10] = 1;
 tb_ui_addr[9:2] = 9;
 tb_ui_sel = 4'b1111;
 tb_ui_data = 32'd900+i;

 //do write
 tb_ui_write = 1;

 //wait acknowledge
 @(posedge tb_ui_clk);
 while(~tb_uo_ack) @(posedge tb_ui_clk);
end
//do idle
tb_ui_rst = 0;
tb_ui_read = 0;
tb_ui_write = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;
repeat(5) @(posedge tb_ui_clk);

//*******Test 10: Programming Mode Register BL8 same************ *
$display("Test 10: Programming Mode Register BL8 same");
 status = "TEST 10: LMR BL8 (same)";
tb_ui_data = {20'b0, 2'b00,`WB_BRST, `OPMODE, `CAS_2, `BT_0, `BL_8};

//change mode
@(posedge tb_ui_clk)#1;
tb_ui_host_ld_mode = 1'b1;

//wait acknowledge
while(~tb_uo_ack)@(posedge tb_ui_clk);

//do idle

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 85

tb_ui_rst = 0;
tb_ui_read = 0;
tb_ui_write = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;

//do idle
tb_ui_rst = 0;
tb_ui_read = 0;
tb_ui_write = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;
repeat(5) @(posedge tb_ui_clk);

//******************Test 11: Burst READ 8****************
$display("Test 11: Burst READ 8");
 status = "TEST 11: BURST READ 8";
for(i = 0; i < 8; i= i+1)begin
 tb_ui_addr = 0;
 tb_ui_addr[23:12] = 8;
 tb_ui_addr[11:10] = 1;
 tb_ui_addr[9:2] = 9;
 tb_ui_sel = 4'b1111;
 tb_ui_data = 32'hz;

 //do read
 tb_ui_read = 1;

 //wait acknowledge
 @(posedge tb_ui_clk);
 while(~tb_uo_ack)@(posedge tb_ui_clk);
end
//do idle
tb_ui_rst = 0;
tb_ui_read = 0;
tb_ui_write = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;
repeat(5) @(posedge tb_ui_clk);

//*******Test 12: Programming Mode Register BL4******************
$display("Test 12: Programming Mode Register BL4");
 status = "TEST 12: LMR BL4";
tb_ui_data = {20'b0, 2'b00,`WB_BRST, `OPMODE, `CAS_2, `BT_0, `BL_4};

//change mode
@(posedge tb_ui_clk)#1;
tb_ui_host_ld_mode = 1'b1;

//wait acknowledge
while(~tb_uo_ack)@(posedge tb_ui_clk);

//do idle
tb_ui_rst = 0;
tb_ui_read = 0;
tb_ui_write = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 86

//do idle
tb_ui_rst = 0;
tb_ui_read = 0;
tb_ui_write = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;
repeat(5) @(posedge tb_ui_clk);

//******************Test 13: Burst READ 4*******************
$display("Test 13: Burst READ 4");
 status = "TEST 13: BURST READ 4";
for(i = 0; i < 4; i= i+1) begin
 tb_ui_addr = 0;
 tb_ui_addr[23:12] = 8;
 tb_ui_addr[11:10] = 1;

tb_ui_addr[9:2] = 9;
tb_ui_sel = 4'b1111;

 tb_ui_data = 32'hz;

 //do read
 tb_ui_read = 1;

 //wait acknowledge
 @(posedge tb_ui_clk);
 while(~tb_uo_ack)@(posedge tb_ui_clk);
end
//do idle
tb_ui_rst = 0;
tb_ui_read = 0;
tb_ui_write = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;
repeat(5) @(posedge tb_ui_clk);

//*******Test 14: Programming Mode Register BL2******************
$display("Test 14: Programming Mode Register BL2");
 status = "TEST 14: LMR BL2";
tb_ui_data = {20'b0, 2'b00,`WB_BRST, `OPMODE, `CAS_2, `BT_0, `BL_2};

//change mode
@(posedge tb_ui_clk)#1;
tb_ui_host_ld_mode = 1'b1;

//wait acknowledge
while(~tb_uo_ack)@(posedge tb_ui_clk);

//do idle
tb_ui_rst = 0;
tb_ui_read = 0;
tb_ui_write = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;

//do idle
tb_ui_rst = 0;
tb_ui_read = 0;
tb_ui_write = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 87

repeat(5) @(posedge tb_ui_clk);

 //******************Test 15: Burst READ 2*******************
$display("Test 15: Burst READ 2");
 status = "TEST 15: BURST READ 2";
for(i = 0; i < 2; i= i+1)begin
 tb_ui_addr = 0;
 tb_ui_addr[23:12] = 8;
 tb_ui_addr[11:10] = 1;
 tb_ui_addr[9:2] = 9;
 tb_ui_sel = 4'b1111;
 tb_ui_data = 32'hz;

 //do read
 tb_ui_read = 1;

 //wait acknowledge
 @(posedge tb_ui_clk);
 while(~tb_uo_ack)@(posedge tb_ui_clk);
end
//do idle
tb_ui_rst = 0;
tb_ui_read = 0;
tb_ui_write = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;
repeat(5) @(posedge tb_ui_clk);

//*******Test 16: Programming Mode Register BL1******************
$display("Test 16: Programming Mode Register BL1");
 status = "TEST 16: LMR BL1";
tb_ui_data = {20'b0, 2'b00,`WB_BRST, `OPMODE, `CAS_2, `BT_0, `BL_1};

//change mode
@(posedge tb_ui_clk)#1;
tb_ui_host_ld_mode = 1'b1;

//wait acknowledge
while(~tb_uo_ack) @(posedge tb_ui_clk);

//do idle
tb_ui_rst = 0;
tb_ui_read = 0;
tb_ui_write = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;

//do idle
tb_ui_rst = 0;
tb_ui_read = 0;
tb_ui_write = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;
repeat(5) @(posedge tb_ui_clk);

//******************Test 17: Burst READ 1*******************
$display("Test 17: Burst READ 1");
 status = "TEST 17: BURST READ 1";
tb_ui_addr = 0;

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 88

tb_ui_addr[23:12] = 8;
tb_ui_addr[11:10] = 1;
tb_ui_addr[9:2] = 9;
tb_ui_sel = 4'b1111;
tb_ui_data = 32'hz;

//do read
tb_ui_read = 1;

//wait acknowledge
@(posedge tb_ui_clk);
while(~tb_uo_ack)@(posedge tb_ui_clk);

//do idle
tb_ui_rst = 0;
tb_ui_read = 0;
tb_ui_write = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;
repeat(5) @(posedge tb_ui_clk);

//**********Test 18: Programming Mode Register default**********
$display("Test 18: Programming Mode Register to default");
 status = "TEST 18: LMR default";
tb_ui_data = `DEFAULT_MODE;

//change mode
@(posedge tb_ui_clk)#1;
tb_ui_host_ld_mode = 1'b1;

//wait acknowledge
while(~tb_uo_ack) @(posedge tb_ui_clk);

//do idle
tb_ui_rst = 0;
tb_ui_read = 0;
tb_ui_write = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;

//do idle
tb_ui_rst = 0;
tb_ui_read = 0;
tb_ui_write = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;
repeat(5) @(posedge tb_ui_clk);

//****Test 19: Single READ from active bank (row differs)********
$display("Test 19: Single READ from active bank (row differs)");
 status = "TEST 19: SREAD - BANK !ROW";
for(i = 0; i < 4; i= i+1)begin
 tb_ui_addr = 0;
 tb_ui_addr[23:12] = 2;
 tb_ui_addr[11:10] = i;
 tb_ui_addr[9:2] = 15;
 tb_ui_sel = 4'b1111;
 tb_ui_data = 32'hz;

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 89

 //do read
 tb_ui_read = 1;

 //wait acknowledge
 while(~tb_uo_ack) @(posedge tb_ui_clk);

//do idle
tb_ui_rst = 0;
tb_ui_read = 0;
tb_ui_write = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;
end
//do idle
tb_ui_rst = 0;
tb_ui_read = 0;
tb_ui_write = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;
repeat(5) @(posedge tb_ui_clk);

//*******Test 20: Programming Mode Register BL8**********
$display("Test 20: Programming Mode Register BL8");
 status = "TEST 20: LMR BL8";
tb_ui_data = {20'b0, 2'b00,`WB_BRST, `OPMODE, `CAS_2, `BT_0, `BL_8};

//change mode
@(posedge tb_ui_clk)#1;
tb_ui_host_ld_mode = 1'b1;

//wait acknowledge
while(~tb_uo_ack) @(posedge tb_ui_clk);

//do idle
tb_ui_rst = 0;
tb_ui_read = 0;
tb_ui_write = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;

//do idle
tb_ui_rst = 0;
tb_ui_read = 0;
tb_ui_write = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;
repeat(5) @(posedge tb_ui_clk);

//*****Test 21: Bus Termination for Write Cycle********
$display("Test 21: Bus Termination for Write Cycle");
 status = "TEST 21: BT WRITE";
for(i = 0; i < 2; i= i+1)begin
 tb_ui_addr = 0;
 tb_ui_addr[23:12] = 0;
 tb_ui_addr[11:10] = 0;
 tb_ui_addr[9:2] = 11;
 tb_ui_sel = 4'b1111;
 tb_ui_data = 32'd11000;

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 90

 //do write
 tb_ui_write = 1;

 //wait acknowledge
 @(posedge tb_ui_clk);
 while(~tb_uo_ack) @(posedge tb_ui_clk);
end
//do idle
tb_ui_rst = 0;
tb_ui_read = 0;
tb_ui_write = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;
repeat(5) @(posedge tb_ui_clk);

//*********Test 22: Bus Termination for Read Cycle**********
$display("Test 22: Bus Termination for Read Cycle");
 status = "TEST 22: BT READ";
for(i = 0; i < 2; i= i+1)begin
 tb_ui_addr = 0;
 tb_ui_addr[23:12] = 8;
 tb_ui_addr[11:10] = 1;
 tb_ui_addr[9:2] = 9;
 tb_ui_sel = 4'b1111;
 tb_ui_data = 32'hz;

 //do read
 tb_ui_read = 1;

 //wait acknowledge
 @(posedge tb_ui_clk);
 while(~tb_uo_ack) @(posedge tb_ui_clk);
end
//do idle
tb_ui_rst = 0;
tb_ui_read = 0;
tb_ui_write = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;
@(posedge tb_ui_clk);

//Normally, masking is only used for single direct read or write. Since read is executed in block (burst)
to the cache, single write is used to simulate write through without buffer.

//do reset
tb_ui_addr = 32'b0;
tb_ui_data = 32'b0;
tb_ui_sel = 4'b1111;
tb_ui_rst = 1;
@(posedge tb_ui_clk)#1;

//do idle
tb_ui_rst = 0;
tb_ui_read = 0;
tb_ui_write = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;
while(!u_sdram_controller.b_sdc_fsm.b_present[10])@(posedge tb_ui_clk);

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 91

//****************Test 23: Data Masking********************
$display("Test 23a: Data Masking");
 status = "TEST 23a: MASK Simulating Store Byte";
for(i = 0; i < 5; i= i+1)begin
 tb_ui_addr = 0;
 tb_ui_addr[23:12] = 8;
 tb_ui_addr[11:10] = 3;
 tb_ui_addr[9:2] = 8;
 tb_ui_sel = 4'b1111;
 tb_ui_data = 32'hffffffff;

 //do write
 tb_ui_write = 1;

 //wait acknowledge
 @(posedge tb_ui_clk);
 while(~tb_uo_ack)@(posedge tb_ui_clk);
 @(posedge tb_ui_clk);

 tb_ui_addr = 0;
 tb_ui_addr[23:12] = 8;
 tb_ui_addr[11:10] = 3;
 tb_ui_addr[9:2] = 8;
 tb_ui_sel = 4'h0;
 if(i < 4)
 tb_ui_sel[i] = 1'b1;
 else
 tb_ui_sel = 4'h0;
 tb_ui_data = 32'd0;

 //do write
 tb_ui_write = 1;

 //wait acknowledge
 @(posedge tb_ui_clk);
 while(~tb_uo_ack)@(posedge tb_ui_clk);
 @(posedge tb_ui_clk);
end

$display("Test 23b: Simulating Store Half");
 status = "Test 23b: Simulating Store Half";
for(i = 0; i < 2; i= i+1)begin
 tb_ui_addr = 0;
 tb_ui_addr[23:12] = 8;
 tb_ui_addr[11:10] = 3;
 tb_ui_addr[9:2] = 8;
 tb_ui_sel = 4'b1111;
 tb_ui_data = 32'hffffffff;

 //do write
 tb_ui_write = 1;

 //wait acknowledge
 @(posedge tb_ui_clk);
 while(~tb_uo_ack)@(posedge tb_ui_clk);
 @(posedge tb_ui_clk);

 tb_ui_addr = 0;
 tb_ui_addr[23:12] = 8;

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 92

 tb_ui_addr[11:10] = 3;
 tb_ui_addr[9:2] = 8;
 tb_ui_sel = 4'h0;
 if(i === 0)
 tb_ui_sel[1:0] = 2'b11;
 else if(i === 1)
 tb_ui_sel[3:2] = 2'b11;
 else
 tb_ui_sel = 4'h0;
 tb_ui_data = 32'd0;

 //do write
 tb_ui_write = 1;

 //wait acknowledge
 @(posedge tb_ui_clk);
 while(~tb_uo_ack)@(posedge tb_ui_clk);
 @(posedge tb_ui_clk);
end
//do idle
tb_ui_rst = 0;
tb_ui_read = 0;
tb_ui_write = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;

//****************Test 24: Auto-Refresh********************
$display("Test 24: Auto-Refresh");
status = "TEST 24: AREF";
//do idle
tb_ui_rst = 0;
tb_ui_read = 0;
tb_ui_write = 0;
tb_ui_host_ld_mode = 0;
@(posedge tb_ui_clk)#1;
while(!u_sdram_controller.b_sdc_fsm.b_present[11])@(posedge tb_ui_clk);
repeat(10) @(posedge tb_ui_clk);

$stop;
 end

endmodule

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 93

7.1.3: Verification Result

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 94

Figure 7.1.2 SDRAM Controller Verification Result

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 95

7.1.3: Simulation Result (Timing Diagram)

Result 1: Initialization and Reset

Result 2: Single Write and inactive Bank

Result 3: Force Pre-charging reset

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 96

Result 4: Single Read and inactive Bank

Result 5: Single Write and Active Bank (Same Row)

Result 6: Single Read and Active Bank (Same Row)

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 97

Result 7: Single Write and Active Bank (Different Row)

Result 8: Programming Load Mode Register (Burst length 8)

Result 9: Burst Write

Result 10: Programming Load Mode Register Same (Burst length 8)

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 98

Result 11: Burst

Read

Result 12: Programming Load Mode Register (Burst length 4)

Result 13: Burst

Read

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 99

Result 14: Programming Load Mode Register (Burst length

2)

Result 15: Burst

Read

Result 16: Programming Load Mode Register (Burst length 1)

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 100

Result 17: Burst

Read

Result 18: Programming Load Mode Register (Default)

Result 19: Single Read and Active Bank (Different row) read 4 times

Result 20: Programming Load Mode Register (Burst length 8)

Result 21: Burst Terminal (Write)

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 101

Result 22: Burst Terminal (Read)

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 102

Result 23a: Mask Simulating Store Byte

Result 23b: Mask Simulating Store Half
Byte

Result 24: Wait for Auto Refresh

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 103

7.2: Memory System

The following test is to make sure that SDRAM Controller and Memory Arbiter that

implemented can be support four caches, two i-caches and two d-cache. And this

memory arbiter will allow caches to access SDRAM accordingly to the priority given.

Since this test does not involve any TLB, plus the cache only have a fixed 8 burst

length mode, an appropriate test for this different load mode configuration are not

able to carry out.

Thus tb_r_BL_sel is assigned to change the cache output into different burst length

(acts like TLB) for testing. If the SDRAM is able to receive the load mode

configuration from cache and the read address, SDRAM should be sending back the

data according to the address from cache.

7.2.1: Test Plan

Function To be Tested Test Case

Different load mode configuration
with burst length 1, 2, 4 and 8.

tb_r_BL_sel[3] = 3'd3;//burst length = 8
tb_r_BL_sel[2] = 3'd2; ;//burst length = 4
tb_r_BL_sel[1] = 3'd1; ;//burst length = 2
tb_r_BL_sel[0] = 3'd1; ;//burst length = 2
tb_r_cpu_cac_addr3 = 32'h00567000 ;
tb_r_cpu_cac_addr2 = 32'h00567000 ;
tb_r_cpu_cac_addr1 = 32'h00567000 ;
tb_r_cpu_cac_addr0 = 32'h00567000

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 104

7.2.2: Testbench Verilog code

`include "././util/sdc_macro.v"
`timescale 1ns / 10ps
module tb_cac_ma_sc();
//CPU to 4 caches
//cache3
wire [31:0] tb_w_cpu_cac_data3;
reg [31:0] tb_r_cpu_cac_addr3,
 tb_r_cpu_cac_data3;
reg tb_r_cpu_cac_read3,
 tb_r_cpu_cac_write3;
//cache2
wire [31:0] tb_w_cpu_cac_data2;
reg [31:0] tb_r_cpu_cac_addr2,
 tb_r_cpu_cac_data2;
reg tb_r_cpu_cac_read2,
 tb_r_cpu_cac_write2;
//cache1
wire [31:0] tb_w_cpu_cac_data1;
reg [31:0] tb_r_cpu_cac_addr1,
 tb_r_cpu_cac_data1;
reg tb_r_cpu_cac_read1,
 tb_r_cpu_cac_write1;
//cache0
wire [31:0] tb_w_cpu_cac_data0;
reg [31:0] tb_r_cpu_cac_addr0,
 tb_r_cpu_cac_data0;
reg tb_r_cpu_cac_read0,
 tb_r_cpu_cac_write0;
reg tb_r_clk;
reg tb_r_rst;

//between caches and memory arbiter
//4 caches
//cache3
wire w_ma_cac_read3,
 w_ma_cac_write3,
 w_ma_cac_host_ld_mode3,
 w_ma_cac_miss3;
wire [3:0] w_ma_cac_sel3;
wire [31:0] w_ma_cac_addr3,
 w_ma_cac_o_data3;
reg [31:0] r_ma_cac_i_data3;
wire w_ma_cac_ack3;
//cache2
wire w_ma_cac_read2,
 w_ma_cac_write2,
 w_ma_cac_host_ld_mode2,
 w_ma_cac_miss2;
wire [3:0] w_ma_cac_sel2;
wire [31:0] w_ma_cac_addr2,
 w_ma_cac_o_data2;
reg [31:0] r_ma_cac_i_data2;
wire w_ma_cac_ack2;
//cache1
wire w_ma_cac_read1,

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 105

 w_ma_cac_write1,
 w_ma_cac_host_ld_mode1,
 w_ma_cac_miss1;
wire [3:0] w_ma_cac_sel1;
wire [31:0] w_ma_cac_addr1,
 w_ma_cac_o_data1;
reg [31:0] r_ma_cac_i_data1;
wire w_ma_cac_ack1;
//cache0
wire w_ma_cac_read0,
 w_ma_cac_write0,
 w_ma_cac_host_ld_mode0,
 w_ma_cac_miss0;
wire [3:0] w_ma_cac_sel0;
wire [31:0] w_ma_cac_addr0,
 w_ma_cac_o_data0;
reg [31:0] r_ma_cac_i_data0;
wire w_ma_cac_ack0;

//between memory arbiter and sdram controller
wire w_ma_sdc_host_ld_mode,
 w_ma_sdc_read,
 w_ma_sdc_write;
wire [3:0] w_ma_sdc_sel;
wire [31:0] w_ma_sdc_addr,
 w_ma_sdc_i_data,
 w_ma_sdc_o_data;
wire w_ma_sdc_ack;

//between sdram controller and sdram
wire [31:0] w_sc_sdc_dq;
wire [11:0] w_sc_sdc_addr;
wire [1:0] w_sc_sdc_ba;
wire w_sc_sdc_cs_n;
wire w_sc_sdc_ras_n;
wire w_sc_sdc_cas_n;
wire w_sc_sdc_we_n;
wire [3:0] w_sc_sdc_dqm;

//wishbone standard signal from caches output
wire [3:0] w_cycle,
 w_strobe;

//Change burst length of caches to test different mode configuration
reg [2:0] tb_r_BL_sel[0:3];
wire [31:0] w_i_data3,
 w_i_data2,
 w_i_data1,
 w_i_data0;

//indicates current test status in waveform
reg [255:0] status;

u_cache cache_3
 (//memory arbiter connection
 .uo_cac_mem_addr(w_ma_cac_addr3),
 .uo_cac_mem_data(w_i_data3),
 .uo_cac_miss(w_ma_cac_miss3),
 .uo_cac_mem_cycle(w_cycle[3]),

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 106

 .uo_cac_mem_strobe(w_strobe[3]),
 .uo_cac_mem_rw(w_ma_cac_we3),
 .uo_cac_mem_host_ld_mode(w_ma_cac_host_ld_mode3),
 .uo_cac_mem_sel(w_ma_cac_sel3),
 .ui_cac_mem_data(w_ma_cac_o_data3),
 .ui_cac_mem_ack(w_ma_cac_ack3),
 // CPU connection
 .uo_cac_cpu_data(tb_w_cpu_cac_data3),
 .ui_cac_cpu_addr(tb_r_cpu_cac_addr3),
 .ui_cac_cpu_data(tb_r_cpu_cac_data3),
 .ui_cac_cpu_read(tb_r_cpu_cac_read3),
 .ui_cac_cpu_write(tb_r_cpu_cac_write3),
 .ui_cac_rst(tb_r_rst),
 .ui_cac_clk(tb_r_clk)) ;

 u_cache cache_2
 (//memory arbiter connection
 .uo_cac_mem_addr(w_ma_cac_addr2),
 .uo_cac_mem_data(w_i_data2),
 .uo_cac_miss(w_ma_cac_miss2),
 .uo_cac_mem_cycle(w_cycle[2]),
 .uo_cac_mem_strobe(w_strobe[2]),
 .uo_cac_mem_rw(w_ma_cac_we2),
 .uo_cac_mem_host_ld_mode(w_ma_cac_host_ld_mode2),
 .uo_cac_mem_sel(w_ma_cac_sel2),
 .ui_cac_mem_data(w_ma_cac_o_data2),
 .ui_cac_mem_ack(w_ma_cac_ack2),
 // CPU connection
 .uo_cac_cpu_data(tb_w_cpu_cac_data2),
 .ui_cac_cpu_addr(tb_r_cpu_cac_addr2),
 .ui_cac_cpu_data(tb_r_cpu_cac_data2),
 .ui_cac_cpu_read(tb_r_cpu_cac_read2),
 .ui_cac_cpu_write(tb_r_cpu_cac_write2),
 .ui_cac_rst(tb_r_rst),
 .ui_cac_clk(tb_r_clk)) ;

u_cache cache_1
 (//memory arbiter connection
 .uo_cac_mem_addr(w_ma_cac_addr1),
 .uo_cac_mem_data(w_i_data1),
 .uo_cac_miss(w_ma_cac_miss1),
 .uo_cac_mem_cycle(w_cycle[1]),
 .uo_cac_mem_strobe(w_strobe[1]),
 .uo_cac_mem_rw(w_ma_cac_we1),
 .uo_cac_mem_host_ld_mode(w_ma_cac_host_ld_mode1),
 .uo_cac_mem_sel(w_ma_cac_sel1),
 .ui_cac_mem_data(w_ma_cac_o_data1),
 .ui_cac_mem_ack(w_ma_cac_ack1),
 // CPU connection
 .uo_cac_cpu_data(tb_w_cpu_cac_data1),
 .ui_cac_cpu_addr(tb_r_cpu_cac_addr1),
 .ui_cac_cpu_data(tb_r_cpu_cac_data1),
 .ui_cac_cpu_read(tb_r_cpu_cac_read1),
 .ui_cac_cpu_write(tb_r_cpu_cac_write1),
 .ui_cac_rst(tb_r_rst),
 .ui_cac_clk(tb_r_clk)) ;

 u_cache cache_0
 (//memory arbiter connection

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 107

 .uo_cac_mem_addr(w_ma_cac_addr0),
 .uo_cac_mem_data(w_i_data0),
 .uo_cac_miss(w_ma_cac_miss0),
 .uo_cac_mem_cycle(w_cycle[0]),
 .uo_cac_mem_strobe(w_strobe[0]),
 .uo_cac_mem_rw(w_ma_cac_we0),
 .uo_cac_mem_host_ld_mode(w_ma_cac_host_ld_mode0),
 .uo_cac_mem_sel(w_ma_cac_sel0),
 .ui_cac_mem_data(w_ma_cac_o_data0),
 .ui_cac_mem_ack(w_ma_cac_ack0),
 // CPU connection
 .uo_cac_cpu_data(tb_w_cpu_cac_data0),
 .ui_cac_cpu_addr(tb_r_cpu_cac_addr0),
 .ui_cac_cpu_data(tb_r_cpu_cac_data0),
 .ui_cac_cpu_read(tb_r_cpu_cac_read0),
 .ui_cac_cpu_write(tb_r_cpu_cac_write0),
 .ui_cac_rst(tb_r_rst),
 .ui_cac_clk(tb_r_clk)) ;

 u_mem_arbiter mem_arbiter
 (//caches connection
 //cache3
 .ui_ma_cac_read3(w_ma_cac_read3),
 .ui_ma_cac_write3(w_ma_cac_write3),
 .ui_ma_cac_host_ld_mode3(w_ma_cac_host_ld_mode3),
 .ui_ma_cac_sel3(w_ma_cac_sel3),
 .ui_ma_cac_addr3(w_ma_cac_addr3),
 .ui_ma_cac_data3(r_ma_cac_i_data3),
 .ui_ma_cac_miss3(w_ma_cac_miss3),
 .uo_ma_cac_ack3(w_ma_cac_ack3),
 .uo_ma_cac_data3(w_ma_cac_o_data3),
 //cache2
 .ui_ma_cac_read2(w_ma_cac_read2),
 .ui_ma_cac_write2(w_ma_cac_write2),
 .ui_ma_cac_host_ld_mode2(w_ma_cac_host_ld_mode2),
 .ui_ma_cac_sel2(w_ma_cac_sel2),
 .ui_ma_cac_addr2(w_ma_cac_addr2),
 .ui_ma_cac_data2(r_ma_cac_i_data2),
 .ui_ma_cac_miss2(w_ma_cac_miss2),
 .uo_ma_cac_ack2(w_ma_cac_ack2),
 .uo_ma_cac_data2(w_ma_cac_o_data2),
 //cache1
 .ui_ma_cac_read1(w_ma_cac_read1),
 .ui_ma_cac_write1(w_ma_cac_write1),
 .ui_ma_cac_host_ld_mode1(w_ma_cac_host_ld_mode1),
 .ui_ma_cac_sel1(w_ma_cac_sel1),
 .ui_ma_cac_addr1(w_ma_cac_addr1),
 .ui_ma_cac_data1(r_ma_cac_i_data1),
 .ui_ma_cac_miss1(w_ma_cac_miss1),
 .uo_ma_cac_ack1(w_ma_cac_ack1),
 .uo_ma_cac_data1(w_ma_cac_o_data1),
 //cache0
 .ui_ma_cac_read0(w_ma_cac_read0),
 .ui_ma_cac_write0(w_ma_cac_write0),
 .ui_ma_cac_host_ld_mode0(w_ma_cac_host_ld_mode0),
 .ui_ma_cac_sel0(w_ma_cac_sel0),
 .ui_ma_cac_addr0(w_ma_cac_addr0),
 .ui_ma_cac_data0(r_ma_cac_i_data0),
 .ui_ma_cac_miss0(w_ma_cac_miss0),

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 108

 .uo_ma_cac_ack0(w_ma_cac_ack0),
 .uo_ma_cac_data0(w_ma_cac_o_data0),

 //sdram controller connection
 .ui_ma_sdc_ack(w_ma_sdc_ack),
 .ui_ma_sdc_data(w_ma_sdc_i_data),
 .uo_ma_sdc_read(w_ma_sdc_read),
 .uo_ma_sdc_write(w_ma_sdc_write),
 .uo_ma_sdc_host_ld_mode(w_ma_sdc_host_ld_mode),
 .uo_ma_sdc_sel(w_ma_sdc_sel),
 .uo_ma_sdc_addr(w_ma_sdc_addr),
 .uo_ma_sdc_data(w_ma_sdc_o_data));

 u_sdram_controller sdram_controller
 (.ui_sdc_clk(tb_r_clk),
 .ui_sdc_rst(tb_r_rst),
 //memory arbiter connection
 .ui_host_ld_mode(w_ma_sdc_host_ld_mode),
 .ui_sdc_read(w_ma_sdc_read),
 .ui_sdc_write(w_ma_sdc_write),
 .ui_sdc_sel(w_ma_sdc_sel),
 .ui_sdc_addr(w_ma_sdc_addr),
 .ui_sdc_dat(w_ma_sdc_o_data),
 .uo_sdc_dat(w_ma_sdc_i_data),
 .uo_sdc_ack(w_ma_sdc_ack),
 //sdram connection
 .uio_sdc_dq(w_sc_sdc_dq),
 .uo_sdc_ba(w_sc_sdc_ba),
 .uo_sdc_dqm(w_sc_sdc_dqm),
 .uo_sdc_addr(w_sc_sdc_addr),
 .uo_sdc_cs_n(w_sc_sdc_cs_n),
 .uo_sdc_ras_n(w_sc_sdc_ras_n),
 .uo_sdc_cas_n(w_sc_sdc_cas_n),
 .uo_sdc_we_n(w_sc_sdc_we_n)) ;

 //MICRON SDRAM Instantiation
 mt48lc4m32b2 sdram(
 .Dq(w_sc_sdc_dq),
 .Addr(w_sc_sdc_addr),
 .Ba(w_sc_sdc_ba),
 .Clk(tb_r_clk),
 .Cke(1'b1), //cke always activated
 .Cs_n(w_sc_sdc_cs_n),
 .Ras_n(w_sc_sdc_ras_n),
 .Cas_n(w_sc_sdc_cas_n),
 .We_n(w_sc_sdc_we_n),
 .Dqm(w_sc_sdc_dqm));

//generate READ enable signal from caches to memory arbiter
assign w_ma_cac_read3 = w_cycle[3]&w_strobe[3];
assign w_ma_cac_read2 = w_cycle[2]&w_strobe[2];
assign w_ma_cac_read1 = w_cycle[1]&w_strobe[1];
assign w_ma_cac_read0 = w_cycle[0]&w_strobe[0];

//self LMR programable test
always@(*)begin

if(w_ma_cac_host_ld_mode3)
 r_ma_cac_i_data3 = {w_i_data3[31:3],tb_r_BL_sel[3]};

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 109

else
 r_ma_cac_i_data3 = w_i_data3;

if(w_ma_cac_host_ld_mode2)
 r_ma_cac_i_data2 = {w_i_data2[31:3],tb_r_BL_sel[2]};
else
 r_ma_cac_i_data2 = w_i_data2;

if(w_ma_cac_host_ld_mode1)
 r_ma_cac_i_data1 = {w_i_data1[31:3],tb_r_BL_sel[1]};
else
 r_ma_cac_i_data1 = w_i_data1;

if(w_ma_cac_host_ld_mode0)
 r_ma_cac_i_data0 = {w_i_data0[31:3],tb_r_BL_sel[0]};
else
 r_ma_cac_i_data0 = w_i_data0;

end

 //initialize clock signal
 initial tb_r_clk = 1;
 always #10 tb_r_clk = ~tb_r_clk;

initial begin
//~~
//Signals initialization
//~~
 status = "Signals initialization";
 tb_r_cpu_cac_addr3 = 32'b0;
 tb_r_cpu_cac_data3 = 32'b0;
 tb_r_cpu_cac_write3 = 1'b0;
 tb_r_cpu_cac_read3 = 1'b0;

 tb_r_cpu_cac_addr2 = 32'b0;
 tb_r_cpu_cac_data2 = 32'b0;
 tb_r_cpu_cac_write2 = 1'b0;
 tb_r_cpu_cac_read2 = 1'b0;

 tb_r_cpu_cac_addr1 = 32'b0;
 tb_r_cpu_cac_data1 = 32'b0;
 tb_r_cpu_cac_write1 = 1'b0;
 tb_r_cpu_cac_read1 = 1'b0;

 tb_r_cpu_cac_addr0 = 32'b0;
 tb_r_cpu_cac_data0 = 32'b0;
 tb_r_cpu_cac_write0 = 1'b0;
 tb_r_cpu_cac_read0 = 1'b0;
 tb_r_rst = 0;
 repeat(2) @(posedge tb_r_clk);

 //~~
 //System Reset
 //~~
 status = "System Reset";
 tb_r_rst = 1;
 repeat(1) @(posedge tb_r_clk);

 tb_r_rst = 0;

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 110

 repeat(20) @(posedge tb_r_clk);

 //~~
 // Prepare data in sdram
 $readmemh("micron SDRAM/sdram_bank0_data.txt", sdram.Bank0) ;

status = "Read data";
// MEM stage
 //select brust length 0,1,2,3 = 1,2,4,8
 tb_r_BL_sel[3] = 3'd3;
 tb_r_BL_sel[2] = 3'd2;
 tb_r_BL_sel[1] = 3'd1;
 tb_r_BL_sel[0] = 3'd1;

 //NOTED: burst length 1 test failed
 // Read a data from 0x1000_000
 tb_r_cpu_cac_data3 = 0;
 tb_r_cpu_cac_data2 = 0;
 tb_r_cpu_cac_data1 = 0;
 tb_r_cpu_cac_data0 = 0;

 tb_r_cpu_cac_addr3 = 32'h00567000 ;
 tb_r_cpu_cac_addr2 = 32'h00567000 ;
 tb_r_cpu_cac_addr1 = 32'h00567000 ;
 tb_r_cpu_cac_addr0 = 32'h00567000 ;

 tb_r_cpu_cac_read3 = 1 ;
 tb_r_cpu_cac_write3 = 0;
 tb_r_cpu_cac_read2 = 1 ;
 tb_r_cpu_cac_write2 = 0;
 tb_r_cpu_cac_read1 = 1 ;
 tb_r_cpu_cac_write1 = 0;
 tb_r_cpu_cac_read0 = 1 ;
 tb_r_cpu_cac_write0 = 0;

 @(posedge tb_r_clk) ;
 // Expecting dtlb and dcache misses
// Wait until they are done
 while(w_ma_cac_miss3||w_ma_cac_miss2||w_ma_cac_miss1||w_ma_cac_miss0) @(posedge
tb_r_clk) ;

 repeat(15) @(posedge tb_r_clk);
 $stop;

 end

endmodule

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 111

7.2.3: Simulation Result (Timing Diagram)

Overall Test Timing Diagram

Signal Initialization and System Reset

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 112

Priority given to cache_3 to run first according to the pin assigned in Memory Arbiter.

tb_r_BL_sel assigned to burst length =8, indicates burst length of SDRAM is set to

eight.

Next, the priority is given to cache_2 and tb_r_BL_sel assigned to burst length =4,

indicates that burst length of SDRAM is set to four.

Next, the priority is given to cache_1 and tb_r_BL_sel assigned to burst length =2,

indicates that burst length of SDRAM is set to

Performing

Load mode

Performing read burst

miss signal of cache_3 set to 0

after read burst is done

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 113

two.

tb_r_BL_sel assigned to burst length =2, indicates that burst length of SDRAM is set

to two same with the previous programmable mode.

Do not require to perform load mode, if the configuration same with previous one

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 114

Chapter 8: Discussions and Conclusion

8.1: Discussions

SDRAM controller can be directly connected to the processor but accessing SDRAM

once can take up 40 to 50 clock cycles. Read or write from cache or TLB is only

required 2 to 3 clock cycles. Thus cache or TLB is implemented to increase the

performance of memory system. The memory arbiter is then come by to support

multiple caches accessing to the DRAM.

The SDRAM controller is successfully redesigned from the previous work [10]. The

memory controller is no longer in wishbone standards. Since the strobe and cycle

signal are removed, write and read cannot using a share pin. A read signal is added to

enable read operation. In addition, the protocol controller block is modified to a

simplified form of FSM. In other parts of sub-modules, the power up control has been

removed since it is not strictly necessary to functioning in the system. And some of

the sub-modules are combined to eliminate unnecessary circuitry that may cause

performance redundancy.

The memory arbiter is implemented and worked nicely. SDRAM is now allowed

multiple cached interfacing with the presence of memory arbiter. In the Chapter 7 has

shown the memory arbiter has been tested and it is working fine.

On the other hand, the SDRAM controller now has better support in different load

mode control. Normally, it takes up to 7 clock cycles or more to perform load mode

cycles. But it spends 2 to 3 clock cycles only when same configuration is detected as

previous one. And no configuration will be loaded to the SDRAM in this time. Hence,

the overall performance is improved due to the reducing time of load mode cycle.

At the end, a series of test cases has been carried to justify the SDRAM controller

design is either compatible with the memory system or not. And no flaws are found

from the result. All the expected results are obtained.

8.2: Conclusion

The SDRAM controller is successfully redesigned from the previous work [10]. Next,

more detailed tests also have been provided and been verified that the SDRAM

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 115

Controller is compatible with the MICRON MT48LC4M32B2 SDRAM. After that,

the SDRAM controller design was further developed to allow more caches to access

to SDRAM by using memory shared bus arbiter and with an improved version of load

mode configurations control. Now, a more thorough analysis for the test integration of

memory system is provided which can be determined from Chapter 7. The

implemented tests are able to obtain with the desired results.

8.3: Future Work

A more thorough analysis needs to be done on the cache interfacing, exception

handling (to handle delay caused by miss) and the address distribution. Besides, it is

crucial for the future designer to keep byte addressability and half-word addressability

in mind when building future memory module for the MIPS unit. Apart from that, a

study needs to be conducted to see how the SDRAM controller and the MIPS

Processor are connected. Last but not least, this SDR SDRAM controller design can

also be modified for DDR SDRAM controller due to its similarities. Other than the

data transfer phase, the different power-on initialization and mode register definitions;

these two SDRAMs share same command sets and basic design concepts. The future

designer can obtain the idea to implement DDR memory controller from this design

and thus reduce the overall time of implementation.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 116

References

[1] John L. Hennessy , David A. Patterson, “Computer architecture (2nd ed.): a

quantitative approach”, Morgan Kaufmann Publishers Inc., San Francisco, CA,

1996

[2] Mittra, S. (1995) IEEE Xplore/IEL. A Virtual Memory Management Scheme

For Simulation Enviroment, 1 (2012), p.114,115,116.

[3] John L. Hennessy , David A. Patterson, “Computer architecture (2nd ed.): a

quantitative approach”, Morgan Kaufmann Publishers Inc., San Francisco, CA,

1996

[4] David A. Patterson and John L. Hennessy, “Computer Organization and

Design the hardware/software interface, 3rd edition”, India: Morgan Kaufman

Publishers, 2004.

[5] Awang Aizzuddin Sulong B Awang Sabli,”Modelling and verification of 32

Megabyte synchronous dynamic random access memory using verilog,”

University of Tunku Abdul Rahman, Faculty of Information and

Communication Technology, 2008.

[6] Kim Yuh Chang, “Design and Development of Memory System for 32 bits 5-

stage Pipelined Processor: Main Memory (DRAM) Integration” University of

Tunku Abdul Rahman, Faculty of Information and Communication

Technology, 2012.

[7] Ruchir P. and Jun Gu, “An Efficient Algorithm to Search for Minimal Closed

Covers in Sequential Machines”. [online] Available at:

http://www.research.ibm.com/da/publications/pap1.pdf [Accessed: 18

AUGUST 2013].

[8] K.M Mok, Digital System Design Notes, University of Tunku Abdul Rahman,

Faculty of Information and Communication Technology, 2013.

[9] Herveille, R. (2010) Wishbone B4 . 4th ed. United State: OpenCores

Organization.

[10] Zhi Kang Oon, “SDRAM Enhancement: Design of a SDRAM Controller

WISHBONE Industrial Standard” University of Tunku Abdul Rahman,

Faculty of Information and Communication Technology, 2008.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 117

[11] Lattice Semiconductor (2014) SDR SDRAM Controller Reference Design

RD1174 [online] Available at :

http://www.latticesemi.com/~/media/Documents/ReferenceDesigns/SZ/SDRS

SDRSDRAMContro-Documentation.pdf?document_id=49626 [Accessed: 21

July 2014]

[12] Xilinx (2000) Synthesizable High Performance SDRAM Controller [online]

Available at: http://wenku.baidu.com/view/a25cfd7002768e9951e73851.html

[Accessed : 21 July 2014]

[13] Lattice Semiconductor (2014) SDR SDRAM Controller Reference Design

RD1010 [online] Available at :

http://www.latticesemi.com/~/media/Documents/ReferenceDesigns/1D/Advan

cedSDRSDRAMController-DesignDocumentation.pdf?document_id=3467

[Accessed: 21 July 2014]

[14] Micron (n.d) 128Mb x 32 Synchronous DRAM [online] Available at:

http://pdf1.alldatasheet.com/datasheet-

pdf/view/75877/MICRON/MT48LC4M32B2.html [Accessed: 21 July 2014]

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 118

Appendices

Appendix A: System Specification

Chip level design: RISC32 processor

A.1 Feature

 Basic RISC32 Full RISC32

Dummy Instruction Cache (KB) 16 16

Dummy Data Cache (KB) 16 16

Data width (bits) 32 32

Instruction width (bits) 32 32

General Purpose Register 32 32

Special Purpose Register HILO, PC HILO, PC

Pipelined Stage 5 5

Hazard Handling No Yes

Interlock Handling No Yes

Data Dependency Forwarding No Yes

Branch Prediction Fixed – always invalid Dynamic – 2bits scheme

Multiplication (size of multiplier

and multiplicand)

yes – 32bits yes – 32 bits

Branch Delay Slot Not supported Not supported

Instruction supported 38 38

Table A.1 RISC32 features

A.2 Naming Convention

Module – [lvl]_[mod. name]

Instantiation – [lvl]_[abbr. mod. name]

Pin – [lvl] [Type] _[abbr. mod. name] _ [pin name]

 – [lvl]_[abbr. mod. name]_[Type]_[stage]_[pin name]

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 119

Abbreviation:

 Description Case Available Remark

lvl level lower c : Chip

u : Unit

b : Block

tb: Test Bench

mod. name Module

Name

lower all any

abbr. mod.

name

Abbreviated

module

name

lower all any maximum 3 characters

Type Pin type lower o : output

i : input

r : register

w : wire

f- :function

stage Stage name lower all if, id, ex,

mem, wb

pin name Pin name lower all any Several word separate by “_”

Table A.2 Naming Convention

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 120

A.3 Basic RISC32 processor

A.3.1 Processor Interface

Figure A.3 Block diagram for RISC32-basic processor

A.3.2 I/O Pin Description

Pin Name:

c_r32_i_reset

Source � Destination:

External Source � RISC32 processor

Registered:

No

Pin Function:

System reset for the RISC32 microprocessor. It is synchronous to the system clock.

Pin Name:

c_r32_i_clk

Source � Destination:

External Source � RISC32 processor

Registered:

No

Pin Function:

System clock for the RISC32 microprocessor.

Table A.3 Basic RISC32 Input Pins Description

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 121

A.4 System Register

A.4.1 General Purpose Register

Width : 32-bits

Size : 32 units

Retrieving method : 5-bits address as index

Name Address Use Preserved Across A Call?

$zero 0 Constant Value 0 N.A.

$at 1 Assembler Temporary No

$v0 - $v1 2 - 3
Value for Function Results and

Expression Evaluation
No

$a0 - $a3 4 - 7 Arguments No

$t0 - $t7 8 – 15 Temporaries No

$s0 - $s7 16 - 23 Saved temporaries Yes

$t8 - $t9 24 – 25 Temporaries No

$k0 - $k1 26 -27 Reserved for OS kernel No

$gp 28 Global Pointer Yes

$sp 29 Stack Pointer Yes

$fp 30 Frame Pointer Yes

$ra 31 Return Address Yes

Table A.4.1 Register file

A.4.2 Special Purpose Register

Width : 32-bits

 Size : 2-units

Retrieving method : access using MFHI, MTHI, MFLO, MTLO, MULT and

 MULTU instructions

Name definition location in double [64:0]

HI Most Significant Word Double [63:32]

LO Least Significant Word Double [31:0]

Table A.4.2 HILO Register

A.4.3 Program Counter Register

Width : 32-bits

Size : 1 unit

Retrieving method : Control by instruction address generator control

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 122

A.5 Instruction Format

R-type (Register)

Op [31:26] Rs [25:21] Rt [20:16] Rd [15:11] Shamt [10:6] Funct [5:0]

I-type (Immediate)

Op [31:26] Rs [25:21] Rt [20:16] Immediate [15:0]

J-type (Jump)

Op [31:26] Target [25:0]

Table A.5 Instruction Type

Abbreviation:

 Definition width

op Operation code (instruction) 6

rs Source register 5

rt Target(source/destination) or branch 5

immediate Immediate, branch displacement or address displacement 16

target Jump target address 26

rd Destination register 5

shamt Shift amount 5

funct Function field 6

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 Page 123

A.6 Addressing Mode

Figure A.6 RISC32 Addressing Mode.

1. Immediate Addressing, where operand is constant within the instruction itself

2. Register Addressing, where operand is a register

3. Based Displacement Addressing, where operand is at the memory location whose

address is the sum of a register and a constant in the instruction

4. PC-relative Addressing, where branch address s the sum of the PC and a constant

in the instruction

5. Pseudodirect Addressing, where the jump address is the 26-bits of the instruction

concatenated with the upper bits of the PC.

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 124

A.7 Instruction Set and Description

Machine Language Instruction /

Assembly

Format Addr. Mode

OpCode Rs Rt Rd Shamt Func

Register Transfer Notation Assembly Format Overflow

nop R Register 0x00 0 0 0 0 0x00 NOP sll $zero, $zero, 0 no

sll R Register 0x00 0 $rt $rd n 0x01 R[rd] =R[rs] << n sll $rd, $rt, n no

srl R Register 0x00 0 $rt $rd n 0x03 R[rd] =R[rs] >> n srl $rd, $rt, n no

sra R Register 0x00 0 $rt $rd n 0x04 R[rd] =R[rs] >>> n sra $rd, $rt, n no

jr R Register 0x00 $rs 0 0 0 0x0A PC = R[rs] jr $rs no

jalr R Register 0x00 $rs 0 0 0 0x0B PC = R[rs]

R[31] = PC + 4

jalr $rs no

mfhi R Register 0x00 0 0 $rd 0 0x10 R[rd] = HI mfhi $rd no

mthi R Register 0x00 $rs 0 0 0 0x11 HI = R[rs] mthi $rs no

mflo R Register 0x00 0 0 $rd 0 0x12 R[rd] = LO mflo $rd no

mtlo R Register 0x00 $rs 0 0 0 0x13 LO = R[rs] mtlo $rs no

mult R Register 0x00 $rs $rt 0 0 0x24 HILO = R[rs] * R[rt] mult $rs, $rt no

multu R Register 0x00 $rs $rt 0 0 0x24 HILO = U(R[rs]) * U(R[rt]) multu $rs, $rt no

add R Register 0x00 $rs $rt $rd 0 0x20 R[rd] = R[rs] + R[rt] add $rd, $rs, $rt yes

addu R Register 0x00 $rs $rt $rd 0 0x21 R[rd] = U(R[rs]) + U(R[rt]) addu $rd, $rs, $rt no

sub R Register 0x00 $rs $rt $rd 0 0x22 R[rd] = R[rs] - R[rt] sub $rd, $rs, $rt yes

subu R Register 0x00 $rs $rt $rd 0 0x23 R[rd] = U(R[rs]) - U(R[rt]) subu $rd, $rs, $rt no

and R Register 0x00 $rs $rt $rd 0 0x24 R[rd] = R[rs] & R[rt] and $rd, $rs, $rt no

or R Register 0x00 $rs $rt $rd 0 0x25 R[rd] = R[rs] | R[rt] or $rd, $rs, $rt no

xor R Register 0x00 $rs $rt $rd 0 0x26 R[rd] = R[rs] ^ R[rt] xor $rd, $rs, $rt no

nor R Register 0x00 $rs $rt $rd 0 0x27 R[rd] = ~(R[rs] | R[rt]) nor $rd, $rs, $rt no

slt R Register 0x00 $rs $rt $rd 0 0x2A R[rd] = (R[rs] < R[rt]) ? 1 : 0 slt $rd, $rs, $rt no

sltu R Register 0x00 $rs $rt $rd 0 0x2B R[rd] = (U(R[rs]) < U(R[rt])) ? 1 : 0 sltu $rd, $rs, $rt no

j J Pseudo-Direct 0x02 JumpAddr (Label) PC = {(PC+4) [31:28], JumpAddr,

2’b00}

j label no

jal J Pseudo-Direct 0x03 JumpAddr (Label) PC = {(PC+4) [31:28], JumpAddr,

2’b00}

R[31] = PC + 4

jal label no

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 125

beq I PC-Relative 0x04 $rs $rt BranchAddr (Label) PC = (R[rs] == R[rt]) ?

(PC + 4 + (SE(BranchAddr)<<2)) :

(PC + 4)

beq $rs, $rt, label no

bne I PC-Relative 0x05 $rs $rt BranchAddr (Label) PC = (R[rs] != R[rt]) ?

(PC + 4 + (SE(BranchAddr)<<2)) :

(PC + 4)

bne $rs, $rt, label no

blez I PC-Relative 0x06 $rs 0 BranchAddr (Label) PC = (R[rs] <=0) ?

(PC + 4 + (SE(BranchAddr)<<2)) :

(PC + 4)

blez $rs, $rt, label no

bgtz I PC-Relative 0x07 $rs 0 BranchAddr (Label) PC = (R[rs] > 0) ?

(PC + 4 + (SE(BranchAddr)<<2)) :

(PC + 4)

bgtz $rs, $rt, label no

addi I Immediate 0x08 $rs $rt Imm R[rt] = R[rs] + SE(Imm) addi $rt, $rs, imm yes

addiu I Immediate 0x09 $rs $rt Imm R[rt] = U(R[rs]) + U(ZE(Imm)) addiu $rt, $rs, imm no

slti I Immediate 0x0A $rs $rt Imm R[rt] = (R[rs] < SE(Imm)) ? 1 : 0 slti $rt, $rs, imm no

sltiu I Immediate 0x0B $rs $rt Imm R[rt] = (U(R[rs]) < U(SE(Imm))) ? 1 : 0 sltiu $rt, $rs, imm no

andi I Immediate 0x0C $rs $rt Imm R[rt] = R[rs] & ZE(Imm) andi $rt, $rs, imm no

ori I Immediate 0x0D $rs $rt Imm R[rt] = R[rs] | ZE(Imm) ori $rt, $rs, imm no

xori I Immediate 0x0E $rs $rt Imm R[rt] = R[rs] ^ ZE(Imm) xori $rt, $rs, imm no

lui I Immediate 0x0F $rs $rt Imm R[rt] = Imm << 16 lui $rt, imm no

lw I Based-

Displacement

0x23 $rs $rt Imm R[rt] = MEM[R[rs] + SE(Imm)] lw $rt, imm($rs) no

sw I Based-

Displacement

0x2B $rs $rt Imm MEM[R[rs] + SE(Imm)] = R[rt] sw $rt, imm($rs) no

Table A.7 RISC32 Instruction set

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 126

A.8 Memory Map

Purpose start address Direction Segment

Kernel module 0xC000 0000 Up Kseg2

Boot Rom Up

i/o register(if below 512MB) 0xA000 0000 Up
Kseg1

Direct view of memory to 512MB linux kernel code

and data
 Up

Exception Entry point 0x8000 0000 Up

Kseg0

Stack 0x7fff ffff Down

Program heap 0x1000 8000 Up

Dynamic library code and data 0x1000 0000 Up

Main program 0x0040 0000 Up

Reserved 0x0000 0000 Up

Kuseg

Table A.8 Memory Map

Memory map description

Kernel module

- Accessible by kernel*

Boot Rom

- Start up ROM which keep the system configuration*

I/O registers (if below 512MB)

- External IO device register*

Direct view of memory to 512MB linux kernel code and data

- *

Exception Entry point

- Software exception handling *

Stack

- Use for argument passing

Program heap

- Dynamic memory allocation such as malloc()

Dynamic library code and data

- Data segment which is access by

Main program

- Text segment which contain the main program

Reserved

Note *: required CP0

BIT (Hons) Computer Engineering

Faculty of Information and Communication Technology, UTAR Page 127

Figure A.8 Memory map for Kuseg section, accessible without CP0

A.9 Operating Procedure

• Start the system

• Porting sequence of instruction into cache (instruction or data)

• Reset the system for at least 2 clocks

• While release the reset, the system will automatically run the program inside

instruction cache

• Observe the waveform from the development tools.

