MOLECULAR CLONING OF

TWO VIRULENCE GENES FROM

Agrobacterium tumefaciens

By

GOH HUI TING

A project report submitted to Department of Biological Science

Faculty of Science

Universiti Tunku Abdul Rahman

In partial fulfillment of the requirements for the degree of

Bachelor of Science (HONS) Biotechnology

April 2015

ABSTRACT

MOLECULAR CLONING OF TWO VIRULENCE GENES

FROM Agrobacterium tumefaciens

GOH HUI TING

Agrobacterium tumefaciens causes tumour formation, known as crown gall, in plants. This is due to the ability of the bacterium in transferring a portion, known as T-DNA, from the tumour-inducing (Ti) plasmid, to the host cell nucleus. Hence, A. tumefaciens has been widely used as a genetic transformation tool. The virulence (vir) genes encode the Vir proteins, which are responsible for the translocation of the T-DNA. VirE2 and VirD2 proteins are involved in the cleavage of T-DNA from the Ti plasmid and translocation of the T-DNA-protein complex to the host cell nucleus. Therefore, the VirE2 and VirD2 proteins play key roles in determining the efficiency of the genetic transformation process. The main objective of this study is to separately clone virD2 and a non-translational fusion virD2 and virE2 genes into an expression vector pING2, thereby increasing the efficiency of the Agrobacterium-mediated transformation by increasing the expression of the key virulence genes. The virD2 gene was successfully subcloned from the cloning vector into the Agrobacterium expression vector pING2. The virE2-virD2 fusion gene construct contains an intervening ribosomal-binding site (RBS), to facilitate efficient translation of *vir*D2. For generating the fusion gene construct, first, the two *vir* genes were separately amplified by polymerase chain reaction (PCR). The RBS sequence in the PCR-amplified *vir*D2 was generated by including the RBS sequence in the 5' primer. A complementary sequence was inserted to the 3' end of *vir*E2 and 5' end of *vir*D2 to facilitate the fusion of PCR-amplified *vir*E2 and *vir*D2 fragments. The Gibson assembly method produced the desired fusion gene construct DNA fragment, but the yield was insufficient for further cloning experiment. This fusion fragment requires further amplification. For future studies, the expression vector pING2 carrying *vir*E2, *vir*D2 and *vir*E2-*vir*D2 will be transferred into *A. tumefaciens*, where their effects on *Agrobacterium*-mediated transformation efficiency can be evaluated.

ACKNOWLEDGEMENTS

There were several difficulties faced while I was doing this project. However, I received the help from many people. First of all, I would like to express my gratitude to my project supervisor, Dr. Wong Hann Ling for his patience, guidance and encouragement thoughout this project. I would not able to complete my project without his advice. Furthermore, I would also like to convey my appreciation towards Mr. Toh Wai Keat from postgraduate lab for his efforts to help me in solving problems. Last but not least, I would like to thank all my lab mates who always offered me with their help whenever they could. I enjoyed the company of my lab mates and appreciate the great time we have been together.

DECLARATION

I hereby declare that the project is based on my original work except for quotations and citations which have been duty acknowledged. I also declare that it has not been previously or oncurrently submitted for any other degree at UTAR or other institutions.

GOH HUI TING

APPROVAL SHEET

This project report entitled <u>"MOLECULAR CLONING OF TWO</u> <u>VIRULENCE GENES FROM Agrobacterium tumefaciens"</u> was prepared by GOH HUI TING and submitted as partial fulfillment of the requirements for the degree of Bachelor of Science (HONS) Biotechnology at Universiti Tunku Abdul Rahman.

Approved by:

(Assoc. Prof. Dr. WONG HANN LING)

Date:....

Supervisor

Department of Biological Science

Faculty of Science

Universiti Tunku Abdul Rahman

FACULTY OF SCIENCE

UNIVERSITI TUNKU ABDUL RAHMAN

Date: _____

PERMISSION SHEET

It is hereby certified that <u>GOH HUI TING</u> (ID: <u>11ADB04063</u>) has completed this final year project entitled "MOLECULAR CLONING OF TWO VIRULENCE GENES FROM *Agrobacterium tumefaciens*" supervised by Assoc. Prof. Dr. Wong Hann Ling from the Department of Biological Science, Faculty of Science.

I hereby give permission to the University to upload the softcopy of my final year project in pdf format into the UTAR Institutional Repository, which may be made accessible to the UTAR community and public.

Yours truly,

(GOH HUI TING)

TABLE OF CONTENT

	Page
ABSTRACT	ii
ACKNOWLEDGEMENTS	iv
DECLARATION	V
APPROVAL SHEET	vi
PERMISSION SHEET	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xi
LIST OF FIGURES	xiii
LIST OF ABBREVIATIONS	XV

CHAPTERS

1	INTRO	INTRODUCTION		
	1.1 1.2	Agroba	acterium genus acterium-mediated Transformation	1 2 4
	1.3	Signifi	cance and Objectives of the Project	4
2	LITER	ATURE R	EVIEW	5
	2.1	Tumou	r Inducing (Ti) Plasmid	5
	2.2	Viruler	nce (Vir) Proteins	7
		2.2.1 V	/irA and VirG	7
		2.2.2 V	/irD2 and VirE2	8
	2.3	Polyme	erase Chain Reaction (PCR)	9
		2.3.1 C	Overlap Extension PCR	11
	2.4		ay® Cloning Technology	13
	2.5		Assembly Cloning	14
	2.6		acteium Expression Vector, pING2	16
3	METHODS AND MATERIALS			18
	3.1	List of	Materials and Apparatus Used	19
	3.2		e Medium and Solution Preparation	21
		3.2.1	Preparation of 2x Yeast Extract and Tryptone (YT) Medium	21
		3.2.2	Preparation of 10x Tris/acetate/EDTA (TAE) Buffer	21

		3.2.3 Preparation of TE Buffer	21
	3.3	Preparation of Antibiotics Stock	22
	3.4	Preparation of Electrocompetent Cells	22
	3.5	Extraction of Plasmid Using Miniprep Kit	23
	3.6	Recovery of Bacterial Strain <i>Escherichia coli</i> DH5α	24
	3.7	Gel Electrophoresis	24
	3.8	Modification of <i>vir</i> D2 and <i>vir</i> E2 Genes	25
		3.8.1 Addition of Ribosomal Binding Site onto <i>vir</i> D2 and <i>vir</i> E2 Genes	25
		3.8.2 Overlap Extension PCR to fuse <i>vir</i> D2 and <i>vir</i> E2 genes	27
		3.8.3 Gibson Assembly Master Mix Method	29
	3.9	LR Recombination to Clone virD2 into pING2	30
	3.10	Screening for Transformed Colonies	31
4	RESUL	LTS	33
	4.1	Electrocompetent Cells Competency Analysis	33
	4.2	Extraction of Plasmid pENTR- <i>vir</i> D2 and pENTR - <i>vir</i> E2	34
	1.2	Excludion of Flashing per (FR VIDE and per (FR VIEE	51
	4.3	RBS Insertion into virE2 gene and virD2 genes	36
	4.4	Overlap Extension PCR	38
	4.5	Fusion of Two Fragments by Using Gibson Assembly Method	39
	4.6	Propagation and Extraction of vector pING2	40
	4.7	Screening for Plasmid of Interest by Colony PCR	41
5	DISCU	SSION	43
	5.1	Electrocompetent cells Escherichia coli TOP10	43
	5.2	Isolation of Plasmid DNA	44
	5.3	RBS Insertion and Amplification of <i>vir</i> D2 and <i>vir</i> E2 Genes	45
	5.4	Overlap Extension PCR	47
	5.5	Gibson Assembly to Fuse virE2-RBS and RBS-virD2	48
	5.6	Propagation of Expression Vector, pING2	50
	5.7	Subcloning of virD2 gene into pING2	51
	5.8	Screening of Plasmid Containing virD2 Gene	53
	5.9	Future Studies	54
6	CONCI	LUSION	55
REFI	ERENCES		56

APPENDICES

Appendix A	62
* *	
Appendix B	63
Appendix C	64
Appendix D	65
Appendix E	66

62

LIST OF TABLES

Table		Page
3.1	List of apparatus and equipments and their respective	19
	manufacturers used in this project	
3.2	List of chemicals used and their respective manufacturers	20
3.3	The concentration of antibiotics	22
3.4	Primers set for RBS insertion onto virD2	25
3.5	Primers set for RBS insertion onto virE2	25
3.6	Components for PCR mixture for virD2 and virE2	
	amplification	26
3.7	PCR condition for virD2 and virE2 amplification	26
3.8	Components for first stage of OE-PCR	27
3.9	Condition for first stage OE-PCR	28
3.10	Components for second stage of OE-PCR	28
3.11	Condition for second stage OE-PCR	29
3.12	Reaction mixture of Gibson assembly master mix method	29
3.13	Reaction mixture for LR recombination	30
3.14	Primers set used in colony PCR	31
3.15	Components for colony PCR	31
3.16	Conditions for colony PCR	32
4.1	Data of extracted pENTR-virD2	35
4.2	Data of extracted pENTR-virE2	35

4.3	Data of purified RBS-virD2	37
4.4	Data of purified virE2-RBS	37
4.5	Data of extracted pING2	41

LIST OF FIGURES

Figure		Page
2.1	The Ti plasmid structures	6
2.2	Agrobacterium-mediated transformation process	9
2.3	PCR process	10
2.4	Illustration of the overlap extension PCR	12
2.5	BP and LR reaction	14
2.6	One-step assembly of DNA fragments	15
2.7	The expression vector, pING2	17
3.1	Experimental workflow	18
4.1	Tha agar plate with transformed E. coli	33
4.2	Gel image of extracted plasmid pENTR-wild type-virD2 and	35
	pENTR-wild type-virE2 after agarose gel electrophoresis	
4.3	Electrophoresis gel image of amplified RBS inserted virE2	37
	and <i>vir</i> D2	
4.4	Electrophoresis gel image of overlap extension (OE) PCR	38
	during stage 1	
4.5	Electrophoresis gel image of gene fusion by Gibson assembly	39
	mix	
4.6	Electrophoresis gel image of extracted pING2	40
4.7	Electrophoresis gel image of colony PCR for pING2-virD2	42

xiii

transformed E. coli TOP10

5.1	Schematic diagram of RBS insertion onto virE2 and virD2	46
	genes	
5.2	Schematic diagram of overlap extension PCR or virE2-RBS	47
	and RBS-virD2 gene constructs	
5.3	Schematic diagram of Gibson assembly to construct virE2-	50
	RBS-virD2	
5.4	Schematic diagram showing the LR cloning reaction between	51
	pENTR-virD2 and pING2	