

3D OBJECT RECONSTRUCTION USING MULTIPLE VIEW GEOMETRY:

CONSTRUCT MODEL WITH ALL THE GIVEN POINTS

LEOW TZYY SHYUAN

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Bachelor (Hons.) of Mechatronics Engineering

Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

May 2010

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it

has not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature : _________________________

Name : Leow Tzyy Shyuan

ID No. : 07UEB06711

Date : 15 April 2011

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “3D OBJECT RECONSTRUCTION

USING MULTIPLE VIEW GEOMETRY: CONSTRUCT MODEL WITH ALL

THE GIVEN POINTS” was prepared by LEOW TZYY SHYUAN has met the

required standard for submission in partial fulfilment of the requirements for the

award of Bachelor of Engineering (Hons.) Mechatronics Engineering at Universiti

Tunku Abdul Rahman.

Approved by,

Signature : _________________________

Supervisor : Dr. Tay Yong Haur

Date : _________________________

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of University Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2011, Leow Tzyy Shyuan. All right reserved.

v

Specially dedicated to

my beloved grandmother, mother and father

vi

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion of

this project. I would like to express my gratitude to my research supervisor, Dr. Tay

Yong Haur for his invaluable advice, guidance and his enormous patience throughout

the development of the research.

In addition, I would also like to express my gratitude to my loving parent and friends

who had helped and given me encouragement.

vii

3D OBJECT RECONSTRUCTION USING MULTIPLE VIEW GEOMETRY:

CONSTRUCT MODEL WITH ALL THE GIVEN POINTS

ABSTRACT

In this project, the main objective is to construct 3D model with all the given point

obtained from SIFT detection. The proposed reconstruction of the 3D model starts

from detection and matching of the interest point based on the similarity of the

appearance. Combination of Hessian-Affine detector is used for wide baseline and

3D scene. Next, epipolar geometry is being computed. RANSAC is used for robust

estimation to deal with outliers caused by occlusion. Derivation of extended

Kruppa‟s equation which are responsible for describing the epipolar constrain of two

projections of a general algebraic curves is used. Later on, the two-view

reconstruction can be done from two selected view or key frames obtained from

initial camera frames and reconstruct it. Two canonical camera matrices are obtained.

The two-view matches are being triangulate to obtain initial 3D points. Optimal

triangulation is chosen. From two key frames, we increasingly add another frame to

the original to form key frame set. It is then being imposed with the previous key

frame set by using camera pose from 3D to 2D points. Again, RANSAC is used to

eliminate false features. The intrinsic parameters of camera are obtained to construct

a final metric reconstruction of 3D model. Auto-calibration of the camera can also be

used. In this case it will bypass the need of finding intrinsic parameter of the camera.

For additional steps, dense stereo and texture mapping can be done by backprojecting

the image intensities onto the 3D model for better appearance.

viii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS vi

ABSTRACT vii

TABLE OF CONTENTS viii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF SYMBOLS / ABBREVIATIONS xiii

LIST OF APPENDICES xiv

CHAPTER

1 INTRODUCTION 1

1.1 Aim 1

1.2 Background and Motivation 1

1.3 Objectives 2

1.4 Scope Of Work 3

2 LITERATURE REVIEW 4

2.1 Review of Journals and Articles on the Existing Method 4

3 METHODOLOGY AND SYSTEM DESCRIPTION 9

3.1 System Overview 9

3.2 Random Sample Consensus (RANSAC) 13

3.2.1 Overview of RANSAC algorithm 13

ix

3.2.2 Implementation of RANSAC algorithm 19

3.3 Triangulation 19

3.3.1 Overview of Triangulation method 19

3.3.2 Implementation of Triangulation method 22

3.4 Bundle Adjustment 23

3.4.1 Overview of Bundle Adjustment algorithm 23

3.4.2 Implementation of Bundle Adjustment algorithm 25

3.5 Building 3Dmap 26

4 RESULTS AND DISCUSSION 27

4.1 Overview of the Experiment conducted in the system 27

4.2 Experiments on the system 28

4.2.1 Experiment 1: Different Texture 28

4.2.2 Experiment 2: Number of frames 32

4.2.3 Experiment 3: Number of feature points 35

4.2.4 Experiment 4: RANSAC iteration 38

4.2.5 Experiment 5: Number of plane 41

5 CONCLUSION AND RECOMMENDATIONS 45

5.1 Conclusion 45

5.2 Contributions 45

5.3 Future Work 46

REFERENCES 48

APPENDICES 50

x

LIST OF TABLES

 TABLE TITLE PAGE

Table 4.1: Parameters involved in the 3D model

reconstruction 30

Table 4.2: Parameters involved in the 3D model

reconstruction 34

Table 4.3: Parameters involved in the 3D model

reconstruction 37

Table 4.4: Parameters involved in the 3D model

reconstruction 40

Table 4.5: Parameters involved in the 3D model

reconstruction 43

xi

LIST OF FIGURES

 FIGURE TITLE PAGE

Figure 1.1: Examples of 3D reconstruction of image 2

Figure 2.1: Procedure of the proposed method from

(Ebrahimnezhad1 et al. 2008) 8

Figure 3.1: Five major steps in 3D modeling process 10

Figure 3.2: Brief Flowchart of the implemented 2D to 3D

conversion system 12

Figure 3.3: Point correspondence geometry between two views

(R. I. Hartley 2003) 20

Figure 3.4: Illustration of bundle ajustement (R. I. Hartley 2003) 24

Figure 4.1: Image data set1 28

Figure 4.2: Image data set2 29

Figure 4.3: Image data set3 29

Figure 4.4: 3D model for data set1 29

Figure 4.5: 3D model for data set2 30

Figure 4.6: 3D model for data set3 30

Figure 4.7: Image data set1 32

Figure 4.8: Image data set2 32

Figure 4.9: 3D model for data se1 33

Figure 4.10: 3D model for data set2 33

Figure 4.11: Image of data set of interest 35

xii

Figure 4.12: 3D model 1 with smaller number of feature points 36

Figure 4.13: 3D model 2 with larger number of feature points 36

Figure 4.14: Image of data set of interest 38

Figure 4.15: 3D model 1 with 150 iteration 39

Figure 4.16: 3D model 2 with 200 iteration 39

Figure 4.17: Image of data set of interest 41

Figure 4.18: 3D model 1 with number of plane = 200 42

Figure 4.19: 3D model 2 with number of plane = 500 42

xiii

LIST OF SYMBOLS / ABBREVIATIONS

cp specific heat capacity, J/(kgK)

h height, m

Kd discharge coefficient

M mass flow rate, kg/s

P pressure, kPa

Pb back pressure, kPa

R mass flow rate ratio

T temperature, K

v specific volume, m
3

 homogeneous void fraction

 pressure ratio

 density, kg/m
3

 compressible flow parameter

ID inner diameter, m

MAP maximum allowable pressure, kPa

MAWP maximum allowable working pressure, kPa

OD outer diameter, m

RV relief valve

xiv

LIST OF APPENDICES

 APPENDIX TITLE PAGE

APPENDIX A: Computer Programming Listing 50

1

CHAPTER 1

1 INTRODUCTION

1.1 Aim

The aim of this project is to learn the necessary programming skills as well as

familiarize with some existing software toolbox in order to achieve the objective of

the project. Besides that, there is also a need to sharpen analyzing skill and also

management skill to get this project done.

1.2 Background and Motivation

The word reconstruction means „rebuilding‟ of something that has been torn apart. In

some situation, for example in machine inspection context, it is necessary to acquire

data one piece at a time in order to be able to view what is inside the body of a

machine where the machine is not convenient for a person to reach for it. One of the

big advantages of reconstruction of 3D object is that it allows a person to view or

visualize all the data once it is been put back together again.

The creation of 3D models from multiple view geometry is one of the

fundamental problems in computer vision and image –based modeling. A large body

of research has been devoted to the problem of analyzing the 3D structure of a scene

from multiple views. It is the process of capturing the shape and appearance of real

objects. The multi-view theory is well understood when the scene consists of point

2

and line features. This project is more about the combination of Mechatronics system

as well as Computer Graphic Vision system. The programming algorithm of the 3D

reconstruction by multiple view geometry is learned from computer vision system

whereas the application of it can be related to Mechatronics filed.

 The most important factor for the completion of this project is our interest in

this topic. Without any interest in this topic, there is no way we can manage to

achieve the results today. Besides, with some programming background learned from

previous subjects, we are able to catch up with the software and programming

introduced by others. This is also one of the factor to motivate us in the completion

of this project Furthermore, knowing the powerful application of this topic in future

is also one of the motivations.

Figure 1.1: Examples of 3D reconstruction of image

1.3 Objectives

o To reconstruct 3D model using multiple view geometry

o To reconstruct 3D model in a more robust way

o To achieve the reconstruction results with higher percentage of similarity as

possible

3

1.4 Scope Of Work

In order to achieve the objectives of this project, the following scope of work have

been identified:

o Identify the elements involve in 3D reconstruction

o Identify the process flow of 3D reconstruction

o Identify the available software toolbox and algorithm developed, understand,

analyzed and try to make improvement on the existing

4

CHAPTER 2

2 LITERATURE REVIEW

2.1 Review of Journals and Articles on the Existing Method

Reconstruction of surface model for a rigid scene using a moving camera through a

sequence of photo images is a challenging problem. Up until today, it is still an

active research topic especially in computer vision. In recent years, there has been

extensive focus in the literature to recover the 3D structure from image sequence.

The multi-view theory is by now well understood when the scene consists of points

and line features.

In (S.D. Ma 1996), recovery of the 3D position of a conic section from two and

three views is done given that we know the projection matrices. However, the

method introduced is not so effective. In (C. Schmid 1998), they introduce a new

method to recover the homographic matrix of the conic plane. Besides, the

reconstruction of higher-order curves was introduced in the paper from (R.

Berthilson 1999). In this paper, the matching curves are represented parametrically

where the objective is to find a parameterization of each matching curves so that in

the new parameterization, the points traced on each curve are the matching points.

However, because the optimization is over a discrete parameterization, thus, for a

planar algebraic curve with x degree, we will need x(x+3) minimal number of

parameters to solve the non-linear bundle adjustment machinery with some initial

guess. Furthermore, the problems of recovering the camera projection matrices from

matching projections of algebraic curves are growing. In order to solve this problem,

5

(J. Y. Kaminski 2000) show how to recover the fundamental matrix from matching

conics with the result that at least 4 matching conics are required for a unique

solution. Although the method used in this paper was able to generalize the results to

higher order curves, it only considers planar curves.

 Based on the research from (Kaminski et al. 2001), they introduced a number

of new results in the context of multi-view geometry from the general algebraic

curves without the restriction to the planar curves. The multi-view theory mentioned

above will be fragmented when it comes to curve features, especially in the case of

non-polar algebraic curves of general degree. Derivation of the extended Kruppa‟s

equations for the recovery of epipolar geometry from two projections of algebraic

curves is one of the methods introduced. The advantage of this system is that it

required only minimal number of algebraic curves for a solution of the epipolar

geometry as a function of their degree and genus. New results on the reconstruction

of general algebraic curves from multiple views are being established. There are

three different representation of curves proposed:

i. Regular point representation where the reconstruction from two views of a

curve of degree d has two solutions. One with degree d and another with

degree d(d-1)

ii. The dual space representation (tangents) for which a lower bound for the

number of views necessary for reconstruction is derived as a function of

curve degree d and genus

iii. New representation based on the set of lines meeting the curve which does

not require any curve fitting in image space. A lower bound for the number of

views necessary for reconstruction is derived but this time, is just as a

function of degree alone, without the genus

In the paper of (Heuel and Forstner 2001) they introduced a geometric method

for matching 2D line segments from multiple oriented images, optimally

reconstructing 3D line segments and grouping the 3D line segments to corners. They

present a calculus of projective geometric entities containing:

i. Representation of projective entities with its uncertainties

6

ii. Rules of constructing entities include both redundant and non-redundant

projective entities

iii. Hypothesis test of relations between projective entities

This uses two developments in combining projective geometry and statistics. The

geometric entities lines, points, and planes in 2D and 3D together with their

uncertainties were represented in homogeneous coordinates. New entities including

their propagated uncertainty can be constructed either directly or as estimation.

Relations like incidence, parallelism, equality and orthogonality between lines,

points and planes can be tested statistically based on a given significant level. An

algorithm which exploits only the geometric constrain in multiple view is introduced.

It is used to solve:

i. Matching 2D line segments under multiple views

ii. Optimally reconstruct 3D line from matched 2D lines

iii. Group the line segments to higher aggregates (for example, the 3D corners

that consists of a corner point and two 3D line segments)

Using this method, matching of 2D line segments in multiple views are possible

and 3D line segments were optimally reconstructed using ML-type estimation

scheme. One of the advantages of the proposed method is that it gives straight

forward and reasonable results. Besides, the result does not use any image intensity.

It is based on geometrical constrains with error propagation and statistical test, driven

by estimated precision of the image features. There is no need of threshold other than

a significant value for the hypotheses test when we want to match the 3D lines.

 Improvements can be done where the estimation method using GauB-Helmert

model to estimate unknown entities can be extended to a more robust estimation such

that a feature within a match can be identified as an outlier. Besides, for the matching

and grouping of 3D lines, adding other cues will help stabilize the solution.

Furthermore, the addition of the cues can improve the speed of the program since a

good match hypothesis is found earlier that with only geometric cues. One of the

suggestion is that we can make use of the 2D neighborhood relationship of points,

lines and image regions to infer a 3D neighborhood relationship of 3D line segments.

7

 Similar method can also be found in (Kanatani cf 1996) where they used

monograph to presents techniques for statistical geometric reasoning. The

homogeneous representations were used but they do not fully make use of the elegant

projective formulations and thus, lead to more complex expressions. Besides

Kanatani, (Criminisi 2001) uses covariance matrices of homogeneous entities and

analyze the neglible effects of second order terms for mean and variance. However,

these two methods do not perform as powerful as the method proposed by Heuel and

Forstne.

 According to (Ebrahimnezhad1 et al. 2008), different algorithm are used

because of the wide range of options, for examples, the image projection model,

number of cameras and available views availability of camera calibration, feature

types and model of the scene. For a static, fixed object with moving camera, the

shape and motion recovery problem can be formulated by finding out the six motion

parameters of the object. For example, the orientation displacement and position

together with the accurate 3D world coordinates for each point. Based on (Hartley

2003) the standard method of rigid motion recovery has been developed in the last

decade based on sparse feature points. This method typically assumes that

correspondences between scene features like corners or surface creases have been

established by tracking technique. The disadvantage of this method is that it only

reconstructs sparsely distributed 3D point. Generally, motion estimation method will

suffer from instability due to quantization noise, measurement errors and outliers in

input data. In order to overcome this problem, a different robust estimation technique

known as RANSAC (RANdom SAmple Consensus) is introduced. This is a

successful method to deal with outliers.

In (Ebrahimnezhad1 et al. 2008), a constructive method is proposed to

moderate the bias problem using curve based stereo matching and robust motion

estimation by tracking the projection of the space curves in perpendicular double

stereo images. The advantage of this method is it not only can increase the motion

estimation accuracy but also can reduce the problem of statistical bias. Besides, this

method is more robust against the perturbation of the edge points. Any large error in

depth direction of stereo rig 1 is restricted by minimizing the error in parallel

8

direction of stereo rig 2 and vice versa. The curve matching scheme proposed is also

robust against color maladjustment of cameras and shading problem during object

motion. Although this method is robust in the curve reconstruction and matching, the

method used needed calibrated camera to perform the function.

Figure 2.1: Procedure of the proposed method from (Ebrahimnezhad1 et al. 2008)

As the conclusion in this section, all method proposed by the papers and

journals have their own advantage and disadvantage. Some of the technique are

powerful, for example method used in (Ebrahimnezhad1 et al. 2008) but it is

performed with calibrated camera, which is not what we want in our case. The

extended Kruppa‟s Equations used in (Kaminski et al. 2001) can be considered for

describing the epipolar constraint of two geometry projections. In order to minimize

occlusion, RANSAC can be included into the algorithm. Method from (Heuel and

Forstner 2001) can be used for matching 2D line segments from multiple oriented

images. It also optimally reconstructs 3D line segments and grouping the 3D line

segments to corners.

9

CHAPTER 3

3 METHODOLOGY AND SYSTEM DESCRIPTION

3.1 System Overview

This chapter mainly describes the implemented steps for the multiple-view

reconstruction of 2D image to 3D image. There are total of five major steps in the 3D

modeling process that have been implemented: image feature detection and

registration using scale invariant feature transform (SIFT), removing the outlier by

exploiting the two-view geometry using the random sample consensus (RANSAC),

estimating the projective 3D structures through a process called triangulation, bundle

adjustment, constructing a 3D map and finally converts into file that can be view in

OpenSceneGraph. Choosing OpenSceneGraph as a toolkit to view the built 3D

model is because it is an open source high performance 3D graphics toolkit

especially useful for visual simulation, games, virtual reality, scientific visualization

and modeling. Figure 3.1 is shown to briefly describe the process flow of the steps to

create a 3D model.

In each section later, a more detailed graph will be shown. In this work, 4

views, 6 views and 8 views from different viewpoints are processed. They are found

that using more views will have a better 3D reconstruction results. Results will be

discussed in Chapter 4.

10

Figure 3.1: Five major steps in 3D modeling process

 Refer to Figure 3.2, it shows the implementation of 2D image to 3D model

overall process flowchart. Firstly, the multiple view images were being captured

from the video. All the images will then being process through an algorithm called

scale invariant feature transform (SIFT) for key point detection, extraction, and

matching purposes. At this point, feature detection and matching is implemented

between the reference view and one of the other views at each time. The chosen

image to be the reference of the system is the front view of the object. Later on, two-

view geometry is estimated for each pair of views using the corresponding feature

points in the two views used. The detailed of this step were discussed and done by

the author‟s partner.

 For removing the outliers in the feature matching, a robust algorithm is being

implemented. The implemented algorithm is called random sample consensus

(RANSAC) for matching features. In this step, the projection matrices between the

reference views are estimated from the inliers of the feature points. All the common

points between all the views were determined from the set of inliers. Later on, the

structure of the 3D object and the positions of the multiple cameras were retrieved

11

using the common feature points and geometries of all views. Triangulation is being

implemented to produce the projective reconstruction of the 3D object. Besides,

bundle adjustment is being applied for refinement of the projection matrices. After

that, the refined common 3D feature points were being back-projected to multiple 2D

views in order to calculate the average reprojection errors of the 2D points. From this

point, if the average reprojection error is found to be smaller than a threshold value

preset by the author, the projective reconstruction is then being computed into a

matrix form. On the other hand, if the error is larger than the threshold value, the

procedure is being repeated starting from the RANSAC step to re-estimate the

geometry and structure from new sample sets of feature points. The process is being

repeated until all the points of interest were being evaluated. Followed by this, sparse

depth maps were estimated and all the points were being plotted onto the 3D map

plane. A 3D model was then being constructed.

 The details of RANSAC, triangulation, bundle adjustment and metric upgrade,

building the 3D map plane and 3D model will be discussed in the following sections.

12

Figure 3.2: Brief Flowchart of the implemented 2D to 3D conversion system

13

3.2 Random Sample Consensus (RANSAC)

3.2.1 Overview of RANSAC algorithm

Since the descriptor of feature points were used for feature matching in multiple

views, the feature detection and matching steps were determined with respect to the

local sub-region around the feature points. However, there might be cases where the

matching points between the feature points were inaccurate. All these mismatch

points were called outliers. So, RANSAC was being introduced in this step for

outlier elimination and model estimation (M. A. Fischler 1981). This method was

being introduced long time ago but it is still widely used until now due to the

effectiveness of this method. It is popular for the effectiveness of eliminating the

outliers and to estimate the two-view geometry using the inlier feature points.

RANSAC is being chosen over conventional smoothing techniques such as Least

Square Optimization (P. Torr 1997) because it is a robust estimation algorithm which

operates in an opposite manner. Instead of using a large data set to obtain an initial

solution followed by removing the invalid data, RANSAC uses small initial data set

to calculate the solution model. The accuracy of the solution was being determined

according to the applicability of the solution to other data points with respect to

certain prerequisites.

 Here, a brief procedure of RANSAC algorithm was being described. For

example, a data set S is being used. In order to robustly fit data set S into a model and

remove the outliers, a relatively small set of s samples is randomly chosen from input

data set S. The initial solution model is calculated using this small sample set. Later

on, the whole data set of S is being fitted into this solution to calculate the distance

from the original data value. Data samples which the distance is within the threshold

value t are the inliers data set Si. Si is also called the consensus data set which

contains only inliers. If the ratio of data in Si over S is larger than previous trials, the

sample trial number N is re-estimated using this ratio of inliers. Besides, if the

current trial count is larger than N, the solution model is re-estimated using all the

14

inliers in Si and the procedure is being terminated. On the contrary, if the current trial

count is less than the estimated trial number N, a new set of s samples is selected and

the calculation is repeated from the first steps. In the end, the largest consensus set Si

is selected after a number of N trials and the model is re-estimated using all sample

points in Si.

 It is not necessary to compute every possible sample set s from all points. The

number of iteration N can be determined using the following estimation method.

With probability p (taking p as 0.99), at least one of the selection is a sample set of s

data points that are free from outliers. Let ω to be the probability that a selected

sample point is an inlier. It gives the equation

 (3.1)

1 – p denotes the probability that all selected sample sets are not free from outliers,

and each set contains at least one outlier. The probability can also be represented as

 (3.2)

where the is the probability that, in one sample set, there is at least one

outlier. The number of sample sets N can be determined as follows:

 (3.3)

The interest here is in applying RANSAC to estimate the two-view geometry by

finding the fundamental matrix F and removing outliers. According to (R. I. Hartley

2003) the sum of Sampson distances of each pairs of the corresponding points is used

to represent the error for the fundamental matrix estimation. The error is denoted as

Ferror

 (3.4)

15

where is the feature point of the i
th

 pair of correspondences in the j
th

 view (j = 1,2)

and dsampson(x1,x2) is the Sampson Distance between x1 and x2 and is given by the

formula below

 (3.5)

Where (Fxj)n is the n
th

 element in the product of F and xj. The fundamental matrix

estimation error Ferror needs to be small to ensure the reliability of the estimated

fundamental matrix.

 Another thing that needed to be take note was that the 3D points

corresponding to the randomly selected set of 2D feature points should not be lying

in the same plane in the 3D space. This is because if all lie on the same plane in 3D

space, the estimated geometry model is not general to estimate the depth information

for all the 3D points. To avoid that, a homogeneous matrix H between each pairs of

corresponding 2D feature points in two views,

 (3.6)

was computed using Single Value Decomposition (SVD) method. SVD is a very

powerful set of technique dealing with sets of equations or matrices that are either

singular or numerically very close to singular. From the equation, we know that the

cross product of and is zero. According to (R. I. Hartley 2003), suppose

 (3.7)

and can be expressed as

16

 (3.8)

where hj(j = 1,2,3) is the j
th

column of H. In (3.8), the matrix A has a rank of 2 and

only two of the three equations are linearly independent. For eight pair of

correspondences, by taking the first two equations in (3.8), a 16 x 9 matrix can be

formed as

 (3.9)

After the computation of SVD of B, the right-singular column vector that corresponds

to the smallest singular value is the solution for h. By making h back to a 3 x 3

matrix, the homography matrix H can be generated. In order to compute the error in

the estimation of the homography matrix H, the sum of the reprojection errors

between the corresponding 2D feature points is

 (3.10)

The Herror will be large if the 3D points corresponding to the pairs of the 2D feature

points do not lie on the same plane.

 The RANSAC procedure introduced by (R. I. Hartley 2003) can be

summarized as follows,

1. Initial values are set as s = 8, ω = 0.01, p = 0.99, tHF = 4000 and t = 0.002.

Where s is the size of random sample set, ω is the probability that a sample is

inlier, p is the probability that all selected sample sets are inliers, tHF is the

threshold for the ratio of the Ferror and Herror and t is the threshold to select the

inliers.

17

2. The N value is calculated using (3.3)

3. A random sample set of 8 correspondences (s = 8) is chosen and fundamental

matrix F is calculated using the 8-point algorithm.

4. The ratio R = Herror / Ferror is used to evaluate the accuracy of the obtained

solution of the fundamental matrix. If R > tHF, the solution is satisfactory and

the procedure proceeds to next step. On the other hand, if R < tHF, the

procedure is repeated from step 3 by randomly selecting another eight pairs

of corresponding feature points.

5. For all the corresponding pairs of points x1 and x2, the Sampson distance

dsampson(x1, x2) in (3.5) is calculated. The inliers that are consistent with F are

determined to be the feature points whose Sampson distance is smaller than

the selected threshold t.

6. The ratio of the number of inliers to the number of the whole set of feature

points is calculated and is denoted as probability ω that a data point is an

inlier. If ω is larger than the previous computed ω value, the sample trial

number N is re-estimated using (3.3). If the current trial count exceeds the

estimated N, the procedure will continue to next step. Otherwise, step 3 is

repeated.

7. After N trials, F is re-estimated using the largest set of inliers.

Based on the fundamental matrix F, the projection matrices P1 and P2 for two pairs

of view can be calculated. As stated in (R. I. Hartley 1992), the two 2D points x1 and

x2 corresponding each to the projection of the 3D point X into two different views,

are related as:

 (3.11)

and

 (3.12)

From (3.11) and (3.12), the fundamental matrices, F12 and F21 can be related as

 (3.13)

18

For simplicity, the fundamental matrix is denotes as F. Supposing F is the

fundamental matrix between view 1 and view 2, it satisfy (3.11). The projection

matrices P1 and P2 are determined as describe below. According to (R. I. Hartley

2003), given fundamental matrix F, the pair of camera projection matrices can be

defined as

 (3.14)

 (3.15)

where S is and skew-symmetric matrix, and is the epipole in the second view and

satisfy

 (3.16)

The skew-symmetric matrix is a square matrix where its transpose is equal to its

negative, represented as

 (3.17)

The projection matrices P’1 = K [I|0] and P’2 = K [A + a ·v T | λ a], where λ is a

scalar , a is a 3x 1 vector, and v is a 3 x 1 vector, have the same fundamental matrix

as the canonical pair P1 = K [I|0] and P2 = K [A|a]. By assigning S in (3.17) to be

[e2]x where [e2]x is being defined as

 (3.18)

The general form of the camera projection matrices can be expressed as follows (R. I.

Hartley 2003):

 (3.19)

 (3.20)

Where v is 3 x 1 vector, λ can be any scalar value and the epipole e2 is the left

singular vector corresponding to the smallest singular value of the SVD of the

fundamental matrix F.

19

3.2.2 Implementation of RANSAC algorithm

Referring to the discussion above, RANSAC algorithm is implemented to remove the

outliers from the matching points that are calculated from SIFT. It can also used to

estimate the fundamental matrix F between the reference view and other view. The

„ransacfitplane.m‟ function is used for RANSAC. In each loop, two cells of the 2D

corresponding feature points, with the first cell corresponding to the reference view,

are taken out of the SIFT cell array to be used as the input for this function. The first

input element to this function is the set of 2D feature points in the reference view

after SIFT and the second input element is the set of 2D feature points in the i
th

 view

after SIFT. Output of this is the fundamental matrix F as well as the 2D feature point

indices of the inliers between the reference view and the i
th

 view. For each RANSAC

operation, the inliers between two views are calculated. This procedure is

implemented between the reference view and each of other views for seven times

(taking 8 views for evaluation). In the system, usually the number of inliers will

decrease as the number of views increases.

 After RANSAC, the common 2D inliers feature points which are common in

all the eight views are the output. The projection matrices for all the views are being

calculated. The RANSAC toolbox is provided by Peter Koversi from The University

of Western Australia (RANSAC code). The code is being modified by adding step4

in the RANSAC procedure mention in section 3.2.1.

3.3 Triangulation

3.3.1 Overview of Triangulation method

From the RANSAC algorithm in the previous step, the inliers among the

corresponding 2D feature points as well as the projection matrices are calculated for

the multiple views. Triangulation method is implemented to estimate the 3D

geometry with respect to the common 2D feature points in all views.

20

 Ideally, the intersection of the two lines that are formed by connecting each

of the matching 2D points and their corresponding camera centres can be easily

computed to get the corresponding 3D point in space. However, due to noise and

digitization errors, it is possible that the intersection of these two rays does not exist

in 3D space. So, triangulation is being used for 3D point estimation.

 The geometry between two views of the same scene can be represented by

using the epipolar geometry. The epipolar geometry is illustrated in Figure 3.3

Figure 3.3: Point correspondence geometry between two views (R. I. Hartley 2003)

The 3D points are reconstructed using a simple SVD-based algorithm similar to the

one shown in Figure 3.3. For each 2D feature point,

 (3.21)

is used to relate the 2D point x and the corresponding 3D point X. The cross product

of the 2D point x and PX is calculated for the corresponding 2D points in 8 views, xi

(i = 1,2,…,8), as

 (3.22)

21

Suppose xi = (ai, bi, ci)
T
 (i = 1,2, …, 8). Choosing the first two equations from (3.22)

for the corresponding 8 points, 16 equations are computed as shown below

 (3.23)

Where represent the i
th

 column of Pj (i =1,2,…,8). This can also be expressed in

the form of

 (3.24)

Where A is a 16 x 4 matrix represented as

 (3.25)

To solve for the 3D coordinates of X, the SVD of A is computed as

 (3.26)

If the singular values in Σ are arranged in descending order, the solution for X

is the last column of V. All the triangulation procedure above assumes no noise in

estimated 2D points. If there are noise occurs, according to work done by (Hartley

and Sturm 1994), a constrained MSE-based triangulation method is used to find the

corresponding coordinates of 2D feature points. The correct matching feature points

are localized by minimizing the Euclidean distance algorithm

22

 (3.27)

with the epipolar constraint

 (3.28)

Any pair of the corresponding points must lie on a pair of corresponding epipolar

lines l1 and l2 in two views and any pair of matching points lying on these two lines

will satisfy the epipolar constrains. The optimal 2D points and , which are the

points that are closest to the original matching points, will lie on a pair of epipolar

lines l1 and l2 respectively. So, the equation in (3.27) can be represented using the

distance of the noisy points to the epipolar lines:

 (3.29)

Where the perpendicular distance from point xi to line l’ (i = 1.2) are represented by

the term d(xi, l’i). As mentioned before, correct matching 2D points and lie on

these two epipolar lines and can be found by representing the epipolar line in the

first image by a parameter t become , With the fundamental matrix F, the other

epipolar line is related to . Thus, equation (3.29) can be represented as

polynomial function of t. Another parameter tmin is introduced to minimize the

polynomial function. By evaluating the distance function at each of the real roots, the

corrected 2D points and on these lines at tmin can be calculated. The corrected

2D points and are used to compute the corresponding 3D point X using SVD.

At the end of the triangulation, the projective 3D structure is reconstructed.

3.3.2 Implementation of Triangulation method

By using the common matching 2D feature points x and projection matrices P for all

views, the 3D feature points can be calculated through triangulation. Triangulation

function is performed using „vgg_X from xP_lin‟ by making the assumption that no

23

noise occurs in the system. The inputs of the system include 2 matrices. One input

matrix stores the matching points coordinates in each view corresponding to the

same 3D point. The second matrix is a 3D matrix storing the projection matrices P of

all views. This function uses SVD method to calculate the 3D points as describe in

section 3.3.1. The toolbox for triangulation is provided by Tomas Werver from the

University of Oxford (Triangulation toolbox).

3.4 Bundle Adjustment

3.4.1 Overview of Bundle Adjustment algorithm

After obtaining the 3D points and projection matrices from all views, refinement of

the 3D structure is needed through a global minimization step. This is because both

the 3D points and the projection matrices which are derived from fundamental

matrices might be affected by noise. Bundle adjustment algorithm introduced by

(Lourakis and Argyros 2009) was used to solve this problem. The main objective of

using the algorithm was to find the projective structures P of multiple views and the

3D points X so that the mean square distances between the observed 2D image

feature points x and reprojected 2D points P(X) are minimized. Figure 3.4 illustrate

the bundle adjustment.

24

Figure 3.4: Illustration of bundle adjustment (R. I. Hartley 2003)

The rays back-projected from the corresponding 2D feature points in different views

to a single 3D point, constitute a bundle. Through bundle adjustment, given m

number of views, a new set of projection matrix (i = 1,…,m) and 3D space

points (j = 1,…,n) will be calculated so that reprojection 2D points

 (3.30)

become stable. The reprojected 2D points need to minimize the following

Euclidean distances from the initial 2D feature points :

 (3.31)

The typical method of sparse bundle adjustment uses Levenberg-Marquardt (LM)

algorithm (D. Marquardt 1963) to do the non-linear minimization of the reprojection

error. The LM algorithm is an iterative procedure that calculates the minimum of

non-linear least square problem. According to (D. Marquardt 1963), in order to use

25

the LM algorithm for bundle adjustment, the initial measurement vector w consists of

observed common 2D feature points in all views and by the 3D points, and the

functional relation f can be calculated using the projection relationship between

corresponding 2D and 3D points. w can be represented as

 (3.32)

where m is the number of views, n is the number of common feature points in each

view, is the i
th

 2D point in the j
th

 view. The measurement vector v can be

represent as

 (3.33)

where the pk is the unwrapped vector representation of the projection matrix

corresponding to the k
th

 view, and Xs is the s
th

 3D point.

3.4.2 Implementation of Bundle Adjustment algorithm

The function „findtriangulationLM‟ is used to implement the bundle adjustment for

the refinement of the projective reconstruction so that the reprojection distance

function (3.31) is minimized using Levenberg-Marquardt algorithm. The 2D feature

points in all views, the projection matrices of all views and the 3D points estimated

from triangulation are used as the input for this function. The output of the

„findtriangulationLM‟ consists of the refined projection matrices of all views and the

coordinates of the 3D points. The projection matrix of the reference view was fixed

so that the coordinate of the reference camera will remain the same as the world

coordinates. If the average deviation is larger than a threshold, the reconstructed 3D

scene is not accurate enough and contains a lot of noise. So, the program needs to go

back to RANSAC and implement the triangulation and bundle adjustment again. The

toolbox is called Vincent toolbox provides by Vincent Rabaud from UCSD (Bundle

Adjustment toolbox).

26

3.5 Building 3Dmap

After the 3D points was being computed, all the points are being transform onto a 3D

plane to construct a 3D model. All the points and matrices were being saved in a .3dc

file format. The 3D model built is then being view in another open source program

called OpenSceneGraph. It is an open source 3D graphical application programming

interface used by many developers in fields like visual simulation, computer games,

virtual reality, and scientific visualization and modelling.

27

CHAPTER 4

4 RESULTS AND DISCUSSION

4.1 Overview of the Experiment conducted in the system

Based on the system that has been implemented, some experiments were being

carried out in order to test the performance of the system. The author has come out

with the list of the area of focus on the performance of the system. The objectives of

conducting all these experiments were as listed below:

1. To evaluate the effectiveness of the system when constructing the 3D model

2. To evaluate the similarity of the constructed model compared to the desired

model

3. To evaluate the robustness of the system react to the feature points obtained

from the author‟s partner

In order to achieve the objectives above, there are total of 5 experiments that have

been carried out:

1. Experiment 1: Effect of the using different texture of the object on the

computed 3D model

2. Experiment 2: Effect of the number of frame used on the computed 3D

model

3. Experiment 3: Effect of the number of point detected on the computed 3D

model

28

4. Experiment 4: Effect of number of RANSAC iteration on the computed 3D

model

5. Experiment 5: Effect of the number of plane obtained on the computed 3D

model

For each of the experiment carried out, the author was evaluating different type of

parameters that might affect the robustness of the 3D reconstruction system. All the

results obtained were valid results from the system. For further details on the

programming code can refer to the appendix behind.

4.2 Experiments on the system

4.2.1 Experiment 1: Different Texture

Objectives:

 To evaluate the effect of using different object with different type of texture

on the computed 3D model

 To observe the similarity of the reconstructed model compared to the

expected model

Setup and procedure:

1. There are total of 3 different data that is being evaluated. The three sets of

images chosen for evaluation are shown in Figure 4.1, 4.2 and 4.3

2. The number of frame is set to 4, and all the other parameter is constant, the

3D model constructed is being captured and being evaluated.

Figure 4.1: Image data set1

29

Figure 4.2: Image data set2

Figure 4.3: Image data set3

Results:

After computing the experiment, the reconstructed 3D models for each of the

different object were shown in Figure 4.4, 4.5 and 4.6.

Figure 4.4: 3D model for data set1

30

Figure 4.5: 3D model for data set2

Figure 4.6: 3D model for data set3

Table 4.1: Parameters involved in the 3D model reconstruction

Image set Set 1 Set 2 Set3

Type of texture smooth rough geometry

Total time used (s) 36.25 294.76 137.35

Number of planes 100 100 100

RANSAC iteration 200 200 200

Distance from camera 1 1 1

Maximum distance 0.5 0.5 0.5

31

Discussion:

Based on the 3D model constructed above, we can see that all three reconstructed

model gives only portion of the original expected model. By comparing the three

different texture models, we can see that object with rough surface, which is the data

set2 gives the worse result compare to the two objects. The object with geometry

shape gives a clearer result. The reconstruction 3D object was much closer to the

expected shape in data set3. And for the data set1, the texture of the model is not

really visible compared to data set3 but it at least gives a rough 3D structure on the

object compared to data set2. Besides, by comparing the processing time for the three

different texture data, we can see that the object with rough surface takes the longest

time for the processing followed by the geometrical object and the smooth surface.

This is because a object with rough surface have more feature points detected, so, it

needs longer time for processing. On the contrary, the object with smooth surface

will give the least point detection, which explains why the processing time is the

fastest.

Conclusion:

Based on the results above, it shows that object with rough surface give the worse

reconstructing results whereas the object with the geometry type surface will gives

the best results in the 3D reconstruction. So, different type of the surface of the

object will affect the similarity of the 3D reconstruction.

32

4.2.2 Experiment 2: Number of frames

Objectives:

 To evaluate the effect of using changing the number of frame used to build

the 3D model

 To observe the similarity of the reconstructed model compared to the

expected model

Setup and procedure:

1. Two sets of data are being prepared. The two data sets are shown in Figure

4.7 and 4.8.

2. For data set1, the number of frames used is set to 4 frames whereas for data

set2, the number of frames used is set to 8frames.

3. Other parameters remained constant.

4. The built 3D model is being created and evaluated

Figure 4.7: Image data set1

Figure 4.8: Image data set2

33

Results:

After computing the experiment, the reconstructed 3D models for each of the case

were shown in Figure 4.9 and 4.10.

Figure 4.9: 3D model for data se1

Figure 4.10: 3D model for data set2

34

Table 4.2: Parameters involved in the 3D model reconstruction

Image set Set 1 Set 2

Number of frames 4 8

Total time used (s) 158.97 357.13

Number of planes 100 100

RANSAC iteration 200 200

Distance from camera 2 2

Maximum distance 0.75 0.75

PointCloud 1919 5104

Discussion:

From Experiment1, the author and her partner have made a conclusion that object

with geometry shape gives better results compared to the smooth and rough surface

object for 3D reconstruction. So, in the second experiment, the author decided to take

a rectangular object for evaluation. Refer to the 3D model constructed above, we

notice that for data set1, the constructed image have 3section whereas for data set2,

the constructed image have 7 section. The number of section shown in the results

represents the number of pairs taken. For each pairs chosen, matching, RANSAC,

triangulation followed by 3D model reconstruction is being done for better

reprojection matrices. Based on the results we notice that with the increasing of the

number of frames, the reconstructed 3D models are relatively more detailed. More

point clouds are being plotted with the increasing number of frame. The more point

cloud plotted, the better 3D model the system can produced and thus, the similarity

of the reconstructed 3D model compared to the expected model increased. By

referring to the processing time, it is obvious that the time taken to process the data

with more frames will be longer if compared to the case for smaller number of

frames. However, in the ideal case, the expected results from the system are

supposed to be showing only one frame in the system. Instead of that, the results

obtained are having multiple frames in the final 3D model. This might due to the

mismatch between the point clouds of each plane during the triangulation steps.

Refer to equation (3.27) as well as (3.29) these are the Euclidean distance algorithm

35

used for correct matching feature. Minimizing the distance between the feature

points might help to solve this problem.

Conclusion:

In conclusion, in order to get a better 3D reconstruction model, using more frames

are the better choice. This is because from the results obtained, data set2 with 8

frames gives a better 3D model compared to data set1 with 4 frames.

4.2.3 Experiment 3: Number of feature points

Objectives:

 To evaluate the effect of using changing the number of feature points

detected to build the 3D model

 To observe the similarity of the reconstructed model compared to the

expected model

Setup and procedure:

1. Refer to Figure 4.11, one set of image data set is being prepared. The number

of frames to be observed is set to 6.

2. Using the same data set, the number of feature points obtained is being

altered by controlling the threshold of the SIFT detection and matching.

3. Other parameters remained constant.

4. The built 3D model is being created and evaluated

Figure 4.11: Image of data set of interest

36

Results:

After computing the experiment, the reconstructed 3D models for each of the case

were shown in Figure 4.12 and 4.13.

Figure 4.12: 3D model 1 with smaller number of feature points

Figure 4.13: 3D model 2 with larger number of feature points

37

Table 4.3: Parameters involved in the 3D model reconstruction

Case 1 2

Number of frames 6 6

Total time used (s) 1472.91 3189.53

Number of planes 100 100

RANSAC iteration 200 200

Distance from camera 10 2

Maximum distance 2 0.75

Feature points 588 1255

Discussion:

In the third experiment, the author is trying to compare the difference in the results if

we are using different amount of feature points. In case 1, the number of feature

points is 588 whereas for case 2, the number of feature points is 1255. Here, the

object of interest in our experiment is a watch. Refer to the results obtained, we can

clearly see that the 3D model constructed in case 1 have less concentrated points

compared to the situation in case 2. The reconstruction model of the watch in case 1

is significantly not very obvious if compared to case 2. So, we can see that case 2

will have higher percentage of similarity compared to the expected image. In this

case, we also noticed that both the results obtained do not carried the same colour

texture as what we expected. Supposing the model constructed should have a

metallic texture but from our results, we get is a white colour model of the object.

This might due to the mismatch between the retrieval of the colour pixels when

performing the matching algorithm.

Conclusion:

In conclusion, the higher number of the feature points taken will gives a better results

in 3D model reconstruction.

38

4.2.4 Experiment 4: RANSAC iteration

Objectives:

 To evaluate the effect of variation in RANSAC iteration on the 3D object

reconstruction

 To observe the similarity of the reconstructed model compared to the

expected model

Setup and procedure:

1. Refer to Figure 4.14, a set of images on a building is being used for

evaluation. Total of 8 frames of the building is being captured.

2. Using the same data set, the number of RANSAC iteration is being altered by

controlling the threshold of the RANSAC inliers and outliers parameters.

3. For case 1, the number of iteration is set to 150 and for case 2, the number of

iteration is set to 200

4. Other parameters remained constant.

5. The built 3D model is being created and evaluated

Figure 4.14: Image of data set of interest

39

Results:

After computing the experiment, the reconstructed 3D models for each of the case

were shown in Figure 4.15 and 4.16.

Figure 4.15: 3D model 1 with 150 iteration

Figure 4.16: 3D model 2 with 200 iteration

40

Table 4.4: Parameters involved in the 3D model reconstruction

Case 1 2

Number of frames 8 8

Total time used (s) 771.421 965.22

Number of planes 100 100

RANSAC iteration 150 250

Distance from camera 30 30

Maximum distance 10 10

MAP points 10597 13646

Discussion:

In the fourth experiment, the author is trying to compare the difference in the results

if we are altering the number of RANSAC iteration when performing the RANSAC

algorithm to eliminate the inliers. In case 1, the number of MAP points is 10597

whereas for case 2, the number of MAP points is 13646. Here, the object of interest

in our experiment is a building. The picture of building is obtained from the internet

source (FIT3D.com). Refer to the results obtained, we can clearly see that the 3D

model constructed in case 1 have less MAP points compared to the situation in case 2.

Although for both case, the 3D building model constructed have significantly higher

percentage of similarity compared to the results obtain in the previous experiment,

there are difference between the two cases. The reconstruction model of the building

in case 1 is less accurate compared to the model created in case 2. As we can see

from the results obtained, Figure 4.16 has plotted more points and it thus created

better 3D model. For the case 2, there are less reprojection error compared to case 1

as the increasing number of iteration eliminate the probability of the mismatch in the

system. However, there are some drawbacks to obtain a better 3D model. By

comparing the number of time needed to compute the 3D model, case 2 takes longer

processing time is compared to case 1 with less iteration. In order to obtain better

results in the 3D reconstruction, scarification of the time for computation is needed.

41

Conclusion:

In conclusion, the higher number of the RANSAC iteration give higher accuracy of

the results. Case 2 give the higher similarity of 3D model compared to case 1.

4.2.5 Experiment 5: Number of plane

Objectives:

 To evaluate the effect of variation in number of plane on the 3D object

reconstruction

 To observe the similarity of the reconstructed model compared to the

expected model

Setup and procedure:

1. Refer to Figure 4.17, a set of images on a building is being used for

evaluation. Total of 8 frames of the building is being captured.

2. Using the same data set, the number of plotting image plane is being altered

to evaluate the differences between the results.

3. For case 1, the number of plane is set to 200 and for case 2, the number of

plane is set to 500

4. Other parameters remained constant.

5. The built 3D model is being created and evaluated

Figure 4.17: Image of data set of interest

42

Results:

After computing the experiment, the reconstructed 3D models for each of the case

were shown in Figure 4.18 and 4.19.

Figure 4.18: 3D model 1 with number of plane = 200

Figure 4.19: 3D model 2 with number of plane = 500

43

Table 4.5: Parameters involved in the 3D model reconstruction

Case 1 2

Number of frames 8 8

Total time used (s) 923.76 2559.44

Number of planes 200 500

RANSAC iteration 150 150

Distance from camera 30 30

Maximum distance 10 10

MAP points 14402 22376

Discussion:

In the fifth experiment, the author is trying to compare the difference in the results if

we are altering the number of plane needed to plotting and estimating the point cloud

in the 3D reconstruction process. In case 1, the number of MAP points is 14402

whereas for case 2, the number of MAP points is 22376. Here, the author used back

the image data set in experiment4, which are the pictures of building obtained from

the internet source (FIT3D.com). Refer to the results obtained, we can clearly see

that the 3D model constructed in case 1 with fewer number of plane create less

detailed, less concentrated points in the constructed model. Thus, we can say that the

reconstruction model of the building in case 1 has lower similarity with the expected

3D building model compared to the model created in case 2. As we can see from the

results obtained, Figure 4.19 has plotted more points due to the additional plane

created for estimating the reprojection matrices and it thus created better 3D model.

However, same as the problem in experiment 4 above, there are some drawbacks to

obtain a better 3D model. By comparing the number of time needed to compute the

3D model, case 2 takes longer processing time is compared to case 1 with fewer

number of planes. The amount of time needed for computing the 3D model with 500

number of plane is almost triple the time of computing a 3D model with number of

plane equals to 200. In order to obtain better results in the 3D reconstruction,

scarification of the time for computation is needed.

44

Conclusion:

In conclusion, the higher number of plane needed to compute a 3D model give higher

accuracy of the results. Case 2 give the higher similarity of 3D model compared to

case 1. However, the drawback is that longer time is needed for computation.

45

CHAPTER 5

5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

This report implements a 3D modelling system that utilizes multiple views of a scene

to reconstruct the 3D model from the given feature points obtained from the author‟s

partner. This works contributes to the field of 3D imaging and 2D to 3D video

conversion. In this chapter, the author summarizes the contribution of the thesis in

section 6.2 and also discuss about the future works in section 6.3.

5.2 Contributions

In this thesis, the objectives of this project were being covered. A system to

reconstruct a 3D modelling using multiple view geometry method is being created.

Although this work does not really perform in a more robust way, the basic

requirement for the 3D reconstruction is met. A further improvement on this works

will be mentioned in the following section for a more robust system. Besides, the

similarities between the constructed 3D models are made to be as close as possible to

the expected model. The contribution of the thesis can be summarized as follows:

 Outlier removal and two-view geometry computation are implemented in this

thesis. A robust algorithm called random sample consensus or widely known

as RANSAC is used for the refinement of the feature matching between two

46

views. The refinement is done by removing the outliers of the feature points.

The geometry between two views is estimated using the inliers of feature

points.

 Projective reconstruction of 3D scene is implemented in this thesis. Two-

view geometry and correspondences of the feature points are used in

conjunction with triangulation to reconstruct the projective structure of the

3D object. Besides, Bundle adjustment is included in the triangulation to

refine the projective reconstruction of the 3D model.

 Different image sets with variety of four, six and eight multiple views are

used to test the 2D to 3D conversion system. The result shows that the

optimum number of views for reconstructing a model is eight. Objects with

different texture will gives different results. From the results obtained above,

object with a geometry shape and texture gives the best results. Altering the

number of feature points, number of planes and the RANSAC iteration will

also gives different results on the 3D model.

5.3 Future Work

There are quite a lot of issues left to be further studied and implemented in this thesis

in order to make the 3D modelling system more robust and stable for various

applications.

 The triangulation can be improved by implementing the method that corrects

the positions of 2D points under the existence of noise.

 Ideally, this system is planned to rebuild the 3D model from pictures to ease

the engineers in constructing 3D model of machine and parts. However, the

time taken for the processing image as well as the accuracy and the detailed

of the 3D model constructed is not so optimum. The implementation time for

the system can be further reduced as well as increasing the accuracy and

detailing of the 3D model is needed in order to make this system suitable for

image processing and video sequences in real time.

47

 It is also possible to implement the 3D modelling based on a pre-designed

model with enough prior information about the 3D scene. This is greatly

reduced the complexity and computation of the system.

 The conversion between the 2D to 3D in this thesis can be further extended

for video sequences instead of images. Multiple images will be capture from

the given video sequences. This will involve a further study of object and

camera motion estimation.

 The projective reconstruction of the 3D scene can be upgraded to a metric

transformation through auto-calibration. The intrinsic camera parameters can

be estimated using auto-calibration.

 Introduction to sparse depth map for feature points can be used to generate a

dense depth map for all the pixels in the image. The techniques of image

rectification and image segmentation need to be integrated in the system to

generate dense depth map.

48

REFERENCES

S.D. Ma and L.Li. 1996 Ellipsoid Reconstruction from Three Perspective Views. In

Proceedings International Conferences of Pattern Recognition.

C. Schmid and A. Zisserman. 1998 The Geometry and Matching of Curves in

Multiple Views. In Proceedings European Conference on Computer Vision

R. I. Hartley and A. Zisserman. 2003 Multiple View Geometry, second ed.

Cambridge University Press.

R. Berthilson K. Astrom and A. Heyden. February 1999 Reconstruction of curves in

R
3
, using Factorization and Bundle Adjustment. In IEEE Transactions on Pattern

Analysis and Machine Intelligence, 21(2)

J. Y. Kaminski and A. Shashua. 2000. On Calibration and Reconstruction from

Planar Curves. In Proceedings European Conference on Computer Vision

K. Kanatani. 1996 Statistical Optimization for Geometric Computation: Theory and

Practice. Elsevier Science

A. Criminisi. August 2001 Accurate Visual Metrology from Single and Multiple

Uncalibrated Images. Springer-Verlag London Ltd.

Ebrahimnezhad1, H., a, H. Ghassemian & a (2008) Robust motion from space curves

and 3D reconstruction from multiviews using perpendicular double stereo rigs.

Image and Vision Computing, 26.

Heuel, S. & W. Forstner. 2001. Matching, reconstructing and grouping 3D lines from

multiple views using uncertain projective geometry. In Computer Vision and

Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer

Society Conference on, II-517-II-524 vol.2.

Kaminski, J. Y., M. Fryers, A. Shashua & M. Teicher. 2001. Multiple view geometry

of non-planar algebraic curves. In Computer Vision, 2001. ICCV 2001.

Proceedings. Eighth IEEE International Conference on, 181-186 vol.2.

49

M. A. Fischler and R. C. Bolles, “Random Sample Consensus: A Paradigm for

Model Fitting with Applications to Image Analysis and Automated

Cartography,” Communications of the ACM, vol. 24, No. 6, pp. 381–395, June

1981.

P. Torr and D. Murray, “The Development and Comparison of Robust Methods for

Estimating the Fundamental Matrix,” International Journal of Computer Vision,

vol. 24, no. 3, pp. 271-300, September 1997.

R. I. Hartley, “Estimation of Relative Camera Positions for Uncalibrated Cameras,”

Proceedings of the European Conference on Computer Vision, pp. 579-587, May

1992.

RANSAC code available online at:

http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/

R. I. Hartley and P. Sturm, “Triangulation,” Proceedings of the ARPA Image

Understanding Workshop, pp. 957-966, November 1994.

Triangulation toolbox code available at:

http://www.robots.ox.ac.uk/~vgg/

M. I. A. Lourakis and A. A. Argyros, “SBA: A Software Package for Generic Sparse

Bundle Adjustment,” ACM Transactions on Mathematical Software, vol. 36, no.

1, pp. 1-30, March 2009.

D. Marquardt, “An Algorithm for the Least-squares Estimation of Nonlinear

Parameters,” Journal of the Society for Industrial and Applied Mathematics, vol.

11, no. 2, pp. 431-441, June 1963.

Bundle Adjustment toolbox code available at:

http://vision.usdc.edu/~vrabaud/toolbox/doc/

Issac Esteban, FIT3D toolbox, IAS, University of Amsterdam, TNO Defense,

Security and Safety, April 2010, http://www.fit3d.info/

OpenSceneGraph 3D graphics programming interface available at:

http://www.openscenegraph.org

M.A. Fishler and R.C. Boles. "Random sample concensus: A paradigm for model

fitting with applications to image analysis and automated cartography". Comm.

Assoc. Comp, Mach., Vol 24, No 6, pp 381-395, 1981

50

APPENDICES

APPENDIX A: Computer Programming Listing

Build3Dmodel.m

%% SCRIPT TO OBTAIN 3D STRUCTURE

%clear workspace and command window

clear;

clc;

%% PRODUCE 3D MODEL USING RECONSTRUCTED STRUCTURE

% The images is plotted in space

% The images is approximated using plannar patches

%% LOAD DATA

% run the FIT_setup.mat file from fit3d toolbox

run('C:\Users\SunGoku\Documents\MATLAB\FIT3D\FIT3D_setup.m');

% Load camera motion data PcamScaled.mat

load(strcat(install_path,'/Tryout/reconstruction/.mat file/original/PcamScaled.mat'));

% Load image features FplusExtra.mat

load(strcat(install_path,'/Tryout/reconstruction/.mat file/original/FplusExtra.mat'));

% Load camera calibration matrix K.mat

load(strcat(install_path,'/Tryout/reconstruction/.mat file/original/K.mat'));

% Load Files structure for retrieving the images Files.mat

load(strcat(install_path,'/Tryout/reconstruction/.mat file/original/Files.mat'));

% Fix image location

Files.dir = strcat(install_path,Files.dir);

%% SETTING PARAMETERS FOR THE SYSTEM

PcamI = PcamScaled; % camera matrices

Km = Kcanon10GOOD; % camera calibration matrix

dist1 = 30; % distance from camera

plotFramese = true; % plot images in space

plotPoints = true; % plot point clouds

fitPlanes = true;

nplanes = 100; % number of planes

fitthreshold = 0.01; % plane threshold

density = 50;

points = 500; % closest N points

minpoints = 20; % minimum points

maxDist = 10; % maximum distance

planeransac = 200; % RANSAC iterations

startFrame = 1;

%% DETAILS ABOUT THE PARAMETERS INVOLVED

% FplusExtra -> (nx9) n features x [frame1,frame2,X1,Y1,X2,Y2,R,G,B]

% Pcam -> (3x4xk) camera matrices in relative frame for k camera poses

% Km -> (3x3) camera calibration matrix

% Files -> (structxk) struct containing the name of the image files for

% plotting in the point cloud

% dist -> (1x1) show points within distance

51

% plotFrames -> (true/false) Plot the images positioned in space

% plotPoints -> (true/false) Plot the point clouds

% fitPlanes -> (true/false) Use the plane fitting algorithm

% nplanes -> (1x1) Number of iterations to run the plane

% fitting algorithm

% fitthreshold -> (1x1) Fitting threshold for the planes

% density -> (1x1) Density of the displayed planes

% points -> (1x1) Maximum number of points to select at every

% iterations

% minpoints -> (1x1) Minimum number of points requiered for a

% plane

% planeransac -> (1x1) Ransac iterations for plane fitting

% maxDist -> (1x1) Maximum distance from points to mean

% startFrame -> (1x1) Starting frame

%% WITH THE MATCHING FEATURE POINTS AND CAMERA MOTIONS, A 3D MODEL IS BUILT

% 3 GENERAL STEPS INVOLVED:

% 1. function 'plotFrames' created 3D map with image displayed in space

% 2. the 3D model is created containing point cloud.

% 3. function 'fitPlanes' will represent the point cloud with planar

% patches

%% START THE 3D RECONSTRUCTION STEPS

% taking PcamScaled filed as the original camera matrix

tic; % counting the total time used for 3D reconstruction

%1. Normalize the camera matrix from 3x4x8 into 4x4x8

%2. Inverse the matrix Pcam

Pcam = invertMotion(normalizePcam(PcamI));

 % Number of frames (number of frame is either 4,6 or 8 in our system)

 frames = size(Pcam,3);

%3. Absolute Pcam in 3x4x8 matrix

 [PcamABS] = getTrajectory3DNorm(Pcam);

%4. making b into 3x3x8 matrix (value follow the 1st 3 row and 3 column of PcamABS)

 b = PcamABS(:,1:3,:);

%5. centers is the 8x3 matrix (value for each row is the last colum value

% from PcamABS)

 centers = reshape(PcamABS(:,4,:),3,size(PcamABS,3))';

%6. Normalized the camera matricex and invert back the Pcam and save in PcamInv

PcamInv = normalizePcam(Pcam);

 for(i=1:size(Pcam,3))

 PcamInv(:,:,i) = inv(PcamInv(:,:,i));

 end;

%7. Making the Pcam from 4x4x8 back into 3x4x8

 PcamInv = PcamInv(1:3,:,:);

%8. Getting PcamABSInv in 3x4x8 matrix

 [PcamABSInv] = getTrajectory3DNorm(PcamInv);

%9. Creating blank matrix for this three variables

 MAP = [];

 POINTCLOUD = [];

 POINTCLOUDidx = [];

 MAPc = [];

%10. determine the matrix coeffiecient

 for(i=startFrame:frames-1)

 if(size(Km,3)==1)

 K = Km;

 else

 K = Km(:,:,i);

 end;

%11. Find all matches between frames

 % find out the matches between frame i and i+1 and put it in nx2 matrix

 P = FplusExtra(FplusExtra(:,1)==i & FplusExtra(:,2)==i+1,3:4);

52

 % on the 3rd column of the coding, add in '1' for every row

 P = [P,ones(size(P,1),1)];

 % find out the matches between frame i and i+1 and put it in nx2 matrix

 Q = FplusExtra(FplusExtra(:,1)==i & FplusExtra(:,2)==i+1,5:6);

 % on the 3rd column of the coding, add in '1' for every row

 Q = [Q,ones(size(Q,1),1)];

 % Get image indexes

 indxAllFeatures = FplusExtra(FplusExtra(:,1)==i & FplusExtra(:,2)==i+1,1);

 % Get RGB values for each point of the matched value

 R = FplusExtra(FplusExtra(:,1)==i & FplusExtra(:,2)==i+1,7);

 G = FplusExtra(FplusExtra(:,1)==i & FplusExtra(:,2)==i+1,8);

 B = FplusExtra(FplusExtra(:,1)==i & FplusExtra(:,2)==i+1,9);

 % Triangulate points

 x3d = findTriangulationLM(P,Q,[eye(3),[0;0;0]],PcamInv(:,:,i+1),K,K)';

 % Find points which distance to the camera center is below the

 % threshold value

 d = sqrt(x3d(:,1).^2+x3d(:,2).^2+x3d(:,3).^2);

 x3d = x3d(d<dist1,:);

 indxFeatures = indxAllFeatures(d<dist1);

 R = R(d<dist1,:);

 G = G(d<dist1,:);

 B = B(d<dist1,:);

 % Put the points in absolute coordinates

 for(f=1:size(x3d,1))

 x3d(f,1:3) = (PcamABS(:,1:3,i)*x3d(f,1:3)'+PcamABS(:,4,i))';

 end;

 % Create localMAP

 MAPlocal =

[x3d(:,1:3),floor(R*255),floor(G*255),floor(B*255),ones(size(x3d,1),3)];

 POINTCLOUD = [POINTCLOUD;MAPlocal];

 POINTCLOUDidx = [POINTCLOUDidx;indxFeatures];

 end;

%12. Plot images

 MAPframes = [];

 if(plotFrames)

 for(i=1:frames-1)

 PcamInv = inv([PcamABS(:,:,i);0,0,0,1]);

 PcamInv = PcamInv(1:3,:);

 if(size(Km,3)==1)

 K = Km;

 else

 K = Km(:,:,i);

 end;

 % Reading the image

 strcat(Files.dir,Files.files(i).name)

 img = imread(strcat(Files.dir,Files.files(i).name));

 % subsample rate

 subsample = 6;

 % Prepare image map

 imgMAP =

zeros(length(1:subsample:size(img,2))*length(1:subsample:size(img,1)),9);

 counter = 1;

 % Get 3D points of the image

 for m=1:subsample:size(img,2)

 for n=1:subsample:size(img,1)

 % Put in camera center coordinates

 aa = inv(K)*[m;n;1];

53

 % Move to the camera 1 reference frame

 aa = PcamABS(:,1:3,i)*aa+PcamABS(:,4,i);

 if(size(img,3)==1)

 R = floor(img(n,m));

 G = R;

 B = R;

 else

 R = floor(img(n,m,1));

 G = floor(img(n,m,2));

 B = floor(img(n,m,3));

 end;

 imgMAP(counter,:) = [aa',double(R),double(G),double(B),ones(1,3)];

 counter = counter+1;

 end;

 end;

 size(imgMAP);

 MAPframes = [MAPframes;imgMAP];

 end;

 end;

 %% FIT ALL THE n PLANES TO THE WHOLE POINT CLOUD

 foundPlanes = 0;

 MAPplanes = [];

 if(fitPlanes)

 % Get all points

 totalX3D = POINTCLOUD(:,1:3);

 x3dToFit = totalX3D;

 % Get number of closest points

 npts = points;

 minpointsLocal = minpoints;

 subsetx3dToFit = x3dToFit;

 % Obtain as many planes as requested

 for(np=1:nplanes)

 % display the size(x3dToFit)

 fprintf('Number of Iteration: %d\n',np);

 fprintf('Size: %d\n',size(x3dToFit,1));

 fprintf('Number of points: %d\n',npts);

 % If the points obtain is enough

 if(size(x3dToFit,1)>minpointsLocal)

 % Choose a random point

 n = getNRandom(1,size(x3dToFit,1));

 % Get the closest points

 closest =

ipdm(x3dToFit,x3dToFit(n,:),'Subset','smallestfew','limit',min(npts,size(x3dToFit,1))

);

 % Get those points

 subsetx3dToFit = x3dToFit(full(closest)~=0 & full(closest)<maxDist,:);

 subsetIdx = POINTCLOUDidx(full(closest)~=0 & full(closest)<maxDist,:);

 % Eliminate poitns which are too far away from the pointcloud

 % centroid

 centroid = mean(subsetx3dToFit);

 % calculate distances and mean distance

 D = ipdm(subsetx3dToFit,centroid);

 meanD = median(D);

 % Eliminate points that are larger than mean

 subsetx3dToFit = subsetx3dToFit(D<meanD,:);

 subsetIdx = subsetIdx(D<meanD,:);

 % If the set size is enough

54

 if(length(subsetx3dToFit)>minpointsLocal)

 % Fit plane

 [B,P,inliers, warning] =

ransacfitplane(subsetx3dToFit',fitthreshold,0,minpoints,planeransac);

 if(length(inliers)>minpointsLocal)

 foundPlanes = foundPlanes+1;

 fprintf('A Plane has been found, determining texture\n');

 % Select the picture

 indx = floor(max(subsetIdx(inliers,:)));

 % Find proyection for texture

 [MAPplane,MAPplaneColor] =

makePlanePlot3dcHull(B,density,subsetx3dToFit(inliers,1:3),Files,[floor(median(subset

Idx(inliers,:))),floor(median(subsetIdx(inliers,:)))],PcamABS,K,centers);

 % Add map

 MAPplanes = [MAPplanes;MAPplane];

 MAPc = [MAPc;MAPplaneColor];

 % Remove inliers

 [x3dToFit,I] =

setdiff(x3dToFit(:,:),subsetx3dToFit(inliers,:),'rows');

 POINTCLOUDidx = POINTCLOUDidx(I,:);

 end;

 end;

 end;

 end;

 end;

 if(plotPoints)

 if(size(MAP,1)==1)

 MAP = POINTCLOUD;

 else

 MAP = [MAP;POINTCLOUD];

 end;

 end;

 fprintf('Total time used %.3f s\n', toc) ;

 %% WRITING 3DC FILE

 fprintf('Writing 3DC file');

 if(size(POINTCLOUD,1)>0)

 dlmwrite('3d.3dc',POINTCLOUD,' ');

 end;

 if(size(MAPplanes,1)>0)

 dlmwrite('3dPlane.3dc',MAPplanes,' ');

 end;

 if(size(MAPc,1)>0)

 dlmwrite('3dPlaneC.3dc',MAPc,' ');

 end;

 if(size(MAPframes,1)>0)

 dlmwrite('3dFrames.3dc',MAPframes,' ');

 end;

55

findTriangulationLM.m

%% FIND TRIANGULATION LM

% With the fundamental matrix ans a set of correcpoding points, the 3D points

% where the rays intercept are found

% This can be done by minimizing a cost functionas described by Zisserman

% in p.314 using the LM algorithm.

%

% Input - X1 -> (nx3) set of homogeneous points in first image

% - X2 -> (nx3) set of homogeneous points in second image

% - P1 -> (3x4) First camera matrix

% - P2 -> (3x4) Second camera matrix

% - K1 -> (3x3) First camera calibration

% - K2 -> (3x3) Second camera calibration

%

% Output - X3D -> (3xn) A matrix of triangulated 3D points

%% FUNCTION

function [X3D] = findTriangulationLM(X1,X2,P1,P2,K1,K2)

 % Get only the interested image points

 x1 = X1(:,1:2);

 x2 = X2(:,1:2);

 % Perform triangulation on the points

 for i=1:size(x1,1)

 % Get 3D image points

 xphat = K1\X1(i,1:3)';

 xqhat = K2\X2(i,1:3)';

 % Build matrix A for first image

 A = [xphat(1)*P1(3,:)-P1(1,:);

 xphat(2)*P1(3,:)-P1(2,:);

 xqhat(1)*P2(3,:)-P2(1,:);

 xqhat(2)*P2(3,:)-P2(2,:)];

 % Normalize matrix A

 A1n = sqrt(sum(A(1,:).*A(1,:)));

 A2n = sqrt(sum(A(2,:).*A(2,:)));

 A3n = sqrt(sum(A(3,:).*A(3,:)));

 A4n = sqrt(sum(A(4,:).*A(4,:)));

 Anorm = [A(1,:)/norm(A(1,:));

 A(2,:)/norm(A(2,:));

 A(3,:)/norm(A(3,:));

 A(4,:)/norm(A(4,:))];

 % Get the 3D point

 [Uan,San,Van] = svd(Anorm);

 X3D(:,i) = Van(:,end);

 % Normalize 3D point to ensure the points not in infinity

 X3D(:,i) = X3D(:,i)./X3D(4,i);

 end;

56

getNRandom.m

%% GET RANDOM POINTS (INTEGERS)

% Get n different random numbers out of a set

%

% Input - n -> (1x1) Number of random numbers

% - K -> (1x1) Maximum number

%

% Output - R -> (1xn) List of different random numbers

%% FUNCTION

function R = getNRandom(n,K)

 % Get all posible numbers

 N = randperm(K);

 % Get n of them

 R = N(1:n)';

getTrajectory3DNorm.m

%% GET TRAJECTORY 3D NORMINAL

% To get the absolute trajectory of a camera given the set of relative

% camera poses.

% It is done by normalizing the camera matrices and chain

% multiplication.

% Input - Pcam -> (3x4xn) Relative camera matrices for n poses

% Output - PcamABS -> (3x4xn) Absolute camera matrices for n poses

%% FUNCTION

function [PcamABS] = getTrajectory3DNorm(Pcam)

 PcamABS = zeros(4,4,size(Pcam,3));

 % Normalize the camera matrices

 PcamN = normalizePcam(Pcam);

 PcamABS(:,:,1) = PcamN(:,:,1);

 % Accumulate the camera matrices to get the absolute value

 for(i=2:size(Pcam,3))

 PcamABS(:,:,i) = PcamABS(:,:,i-1)*PcamN(:,:,i);

 end;

 PcamABS = PcamABS(1:3,:,:);

invertMotion.m

%% INVERT MOTION

% Invert the camera motion

% Either from camera 1 to camera 2 or camera 2 to camera 1

% Input - Pcam -> (4x4xn) Camera motion (normalized)

% Output - PcamInv -> (4x4xn) Inverted camera motion (normalized)

%% FUNCTION

function PcamInv = invertMotion(Pcam)

PcamInv = Pcam;

for(i=1:size(Pcam,3))

 PcamInv(:,:,i) = inv(PcamInv(:,:,i));

end;

57

normalizePcam.m

%% NORMALIZED CAMERA MATRICES

% Normalizes a 3x4 camera matrices to 4x4

% Input - Pcam -> (3x4xn) n camera matrices

% Output - PcamN -> (4x4xn7) n normalized camera matrices

%% FUNCTION

function [PcamN] = normalizePcam(Pcam)

 PcamN = Pcam;

 for i=1:size(Pcam,3)

 PcamN(4,:,i) = [0,0,0,1]; % make the matrices into 4 x 4 matrix

 end;

randomsample.m

%% RANDOM SAMPLE

% Selects n random items from an array

%

% Inputs: a - Either an array of values from which the items are to

% be selected, or an integer in which case the items

% are values selected from the array [1:a]

% n - The number of items to be selected.

%

%Output: item - a array of ramdom permutation od the intergers 1:n

%% FUNCTION

function item = randomsample(a, n)

 npts = length(a);

 if npts == 1 % scalar argument for a

 npts = a;

 a = [1:a]; % Construct an array 1:a

 end

 if npts < n

 error(...

 sprintf('Trying to select %d items from a list of length %d',n, npts));

 end

 item = zeros(1,n);

 for i = 1:n

 % Generate random value in the appropriate range

 r = ceil((npts-i+1).*rand);

 item(i) = a(r); % Select the rth element from the list

 a(r) = a(end-i+1); % Overwrite selected element

 end

58

ransac.m

%% RANSAC

% Fits model to data robustly with RANSAC algorithm

% Input:

% x -> Data sets to fit a model M

% Assumed that x is of size [d x Npts]

% where d is the dimensionality of the data

% Npts is the number of data points.

%

% fittingfn-> Handle to a function that fits a model to s

% data from x.

% M = fittingfn(x)

%

% distfn -> Handle to a function that evaluates the

% distances from the model to data x.

% [inliers, M] = distfn(M, x, t)

% This function must evaluate the distances between points

% and the model returning the indices of elements in x that

% are inliers.

% The points that are within distance't' of the model.

% Additionally, if M is a cell array of possible models

% 'distfn' will return the model that has the most inliers.

% After this, M will be a non-cell object representing only

% one model.

%

% degenfn -> Handle to a function that determines whether a

% set of datapoints will produce a degenerate model.

% This is used to discard random samples that do not

% result in useful models.

% r = degenfn(x)

%

% s -> The minimum number of samples from x required by

% fittingfn to fit a model.

%

% t -> The distance threshold between a data point and the model

% used to decide whether the point is an inlier or not.

%

% feedback -> An optional flag 0/1 Defaults = 0.

%

% maxDataTrials -> Maximum number of attempts to select a non-degenerate

% data set. Defaults = 100.

%

% maxTrials -> Maximum number of iterations.

% Defaults = 1000.

%

% Output:

% M -> The model having the greatest number of inliers.

% inliers -> An array of indices of the elements of x that were

% the inliers for the best model.

%% FUNCTION

function [M, inliers, war] = ransac(x, fittingfn, distfn, degenfn, s, t, feedback, ...

 maxDataTrials, maxTrials)

 % Test number of parameters

 error (nargchk (6, 9, nargin));

 error (nargoutchk (3, 3, nargout));

 if nargin < 9; maxTrials = 1000; end;

 if nargin < 8; maxDataTrials = 100; end;

 if nargin < 7; feedback = 0; end;

 [rows, npts] = size(x);

 p = 0.99; % Optimum probability of choosing at least one sample

 % free from outliers

 bestM = NaN; % Sentinel value allowing detection of solution failure.

 trialcount = 0;

 bestscore = 0;

 N = 1; % Initialisation for number of trials.

59

 war = false;

 while N > trialcount

 % Select at random s datapoints to form a trial model, M.

 % Make sure these points are not in a degenerate configuration.

 degenerate = 1;

 count = 1;

 while degenerate

 % Generate s random indicies in the range 1 until npts

 ind = randsample(npts, s);

 % Test that these points are not a degenerate configuration.

 degenerate = feval(degenfn, x(:,ind));

 if ~degenerate

 % Fit model to this random selection of data points.

 % M may represent a set of models that fit the data

 % M will be a cell array of models in this case

 M = feval(fittingfn, x(:,ind));

 if isempty(M)

 degenerate = 1;

 end

 end

 % Safeguard against being stuck in this loop forever

 count = count + 1;

 if count > maxDataTrials

 warning('Unable to select a nondegenerate data set');

 break

 end

 end

 %% EVALUATE DISTANCE BETWEEN POINTS

 % Model returning the indices of elements in x that are inliers.

 % Additionally, if M is a cell array of possible models 'distfn'

 % will return the model that has the most inliers.

 % After this call M will be a non-cell object representing 1 model

 [inliers, M] = feval(distfn, M, x, t);

 % Find the number of inliers to this model.

 ninliers = length(inliers);

 if ninliers > bestscore % latest largest set of inliers

 bestscore = ninliers; % Record data for this model

 bestinliers = inliers;

 bestM = M;

 % Update estimate of N, the number of trials to ensure the data

 % we choose with probability p is a data set with no outliers

 fracinliers = ninliers/npts;

 pNoOutliers = 1 - fracinliers^s;

 pNoOutliers = max(eps, pNoOutliers); % Avoid division by -Inf

 pNoOutliers = min(1-eps, pNoOutliers);% Avoid division by 0.

 N = log(1-p)/log(pNoOutliers);

 end

 trialcount = trialcount+1;

 if feedback

 fprintf('trial %d out of %d \r',trialcount, ceil(N));

 end

 % Safeguard against being stuck in this loop forever

 if trialcount > maxTrials

 warning(...

 sprintf('ransac reached the maximum number of %d trials',...

 maxTrials));

 war = true;

 break

 end

 end

 fprintf('\n');

60

 if ~isnan(bestM) % A solution is found

 M = bestM;

 inliers = bestinliers;

 else

 M = [];

 inliers = [];

 end

ransacfitplane.m

%% RANSAC FIT PLANE

% Using RANSAC method to fits plane to 3D array of points

% Uses RANSAC algorithm to robustly fit a plane to a set of 3D data points

% to eliminate the outliers

%

% Input - XYZ -> 3xNpts array of xyz coordinates to fit plane

% - t -> The distance threshold between data point and the plane

% used to decide whether a point is an inlier or not.

% - feedback -> Optional flag 0 or 1 to turn on RANSAC feedback

% information.

%

% Output - B -> 4x1 array of plane coefficients in the form

% b(1)*X + b(2)*Y +b(3)*Z + b(4) = 0

% -> The magnitude of B is 1.

% -> This plane is obtained by a least squares fit to all the

% points that were considered to be inliers, hence this

% plane will be slightly different to that defined by P below.

% - P -> The three points in the data set that were found to

% define a plane having the most number of inliers.

% -> The three columns of P defining the three points.

% - inliers -> The indices of the points that were considered

% inliers to the fitted plane.

%

%% FUNCTION

function [B, P, inliers, warning] = ransacfitplane(XYZ, t, feedback,dataIt,ransacIt)

 if nargin == 2

 feedback = 0;

 end

 [rows, npts] = size(XYZ);

 if rows ~=3

 error('data is not 3D');

 end

 if npts < 3

 error('too few points to fit plane');

 end

 s = 3; % Minimum number of points needed to fit a plane.

 fittingfn = @defineplane;

 distfn = @planeptdist;

 degenfn = @isdegenerate;

 %performing RANSAC

 [P, inliers, warning] = ransac(XYZ, fittingfn, distfn, degenfn, s, t,

feedback,dataIt,ransacIt);

 % Perform least squares fit to the inlying points

 if(length(inliers>3))

 B = fitplane(XYZ(:,inliers));

 else

 B = 0;

 end;

%% DEFINE A PLANE WITH GIVEN DATA POINTS

% Define a plane given 3 data points as required by RANSAC

% In this case,the 3 points were used directly to define the plane.

function P = defineplane(X);

 P = X;

%% CALCULATE DISTANCE BETWEEN A PLANE AND ARRAY OF POINTS

% The plane is defined by a 3x3 matrix, P. The three columns of P defining

61

% three points that are within the plane.

function [inliers, P] = planeptdist(P, X, t)

 % Find mean of points

 m = mean(X,2);

 n = cross(P(:,2)-P(:,1), P(:,3)-P(:,1)); % Plane normal.

 n = n/norm(n); % Make it a unit vector.

 npts = length(X);

 d = zeros(npts,1);

 dm = zeros(npts,1);

 for i = 1:npts

 d(i) = abs(dot(X(:,i)-P(:,1), n)); % Distance

 dm(i) = abs(dot(X(:,i)-m, n));

 end

 tm = (max(dm)-mean(dm))/2;

 % Locate nd all points which distance to plane is below threshold and

 % distance to the mean of the points is small

 inliers = find(abs(d) < t);

%% DETERMINE A SET OF POINTS ARE IN DEGENERATE CONFIGURATION OR NOT

% A function to determine whether a set of 3 points are in a degenerate

% configuration for fitting a plane as required by RANSAC.

% If they are colinear, they are degenerate.

function r = isdegenerate(X)

 % The three columns of X are the coordinates of the 3 points.

 r = iscolinear(X(:,1),X(:,2),X(:,3));

