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FLOOD FORECASTING IN LANGAT RIVER BASIN 

USING STOCHASTIC ARIMA MODEL 

 

 

ABSTRACT 

 

 

Floods have huge environmental and economic impact. Therefore, flood forecasting 

is given a lot of attention due to its importance. This study analysed the annual 

maximum stage readings of three rivers in Langat River Basin for flood forecasting 

using ARIMA model. Stage readings were taken from four stations: Dengkil, Kg. Lui, 

Kg. Rinching and Kajang. The Kajang series was found to be a white noise series so 

no modelling could be done. The white noise tests carried out for the Kajang series 

were the Box-Pierce test, the Ljung-Box test and the McLeod-Li test which gave the 

p-values of 0.408, 0.214 and 0.218 respectively. The modelling approach was based 

on the Box-Jenkins approach, which starts with model identification followed by 

parameter estimation and lastly model verification. The significance level adopted 

was 0.05. The ADF test, KPSS test and Mann-Kendall trend test were performed to 

determine data stationarity. The Mann-Kendall trend test gave p-values of 0.438 and 

0.072 for the Dengkil and Kg. Lui series respectively, indicating the absence of trend 

while the p-value for the Kg. Rinching series was less than 0.0001 so a trend was 

present. The p-values from the ADF test were 0.35, 0.138 and 0.411 while the p-

values from the KPSS test were 0.001, 0.005 and 0.03 for the Dengkil, Kg Lui and 

Kg. Rinching series respectively. All three series were non-stationary. 

 

The main tool used in ARIMA modelling was the XLSTAT statistical 

software. Model identification was done by visual inspection on the ACF and PACF. 

XLSTAT computed the model parameters using the Maximum Likelihood (ML) 

method. For model verification, the chosen criterion for model parsimony was the 

AICC and the diagnostic checks included residuals’ independence, homoscedasticity 

and normal distribution. The best ARIMA models for the Dengkil, Kg. Lui and Kg. 
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Rinching series were (1,1,0), (1,1,0) and (1,1,1) respectively with their AICC values 

of 133.736, 55.348 and 42.292. The RACF and RPACF showed residuals’ 

independence while the histograms showed approximately normally distributed 

residuals. Homoscedasticity was confirmed with the Breusch-Pagan test giving p-

values of 0.145, 0.195 and 0.747 for the Dengkil, Kg. Lui and Kg. Rinching models 

respectively. Forecast series up to a lead time of eight years were generated using the 

accepted ARIMA models. Model accuracy was checked by comparing the synthetic 

series with the original series. Results showed that the ARIMA models for the rivers 

and the forecast series were adequate. By visual inspection, the Dengkil model and 

the Kg. Lui model looked more convincing than the Kg. Rinching model. In 

conclusion, the Box-Jenkins approach to ARIMA modelling was found to be 

appropriate and adequate for the rivers under study in Langat River Basin. The flood 

forecast up to a lead time of eight years for the three models exhibited a straight line 

with near constant streamflow values showing that the forecast values were similar to 

the last recorded observation. 
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CHAPTER 1 

 

 

 

1 INTRODUCTION 

 

 

 

1.1 Background 

 

Flood analysis is a form of extreme value analysis. The main interest in analyzing 

extreme hydrological events is not in what has occurred but possibilities that further 

extreme events will occur in the future. Flood analysis in particular, allows 

statisticians, mathematicians and hydrologists to estimate future flood occurrence 

probabilities as well as the peak magnitude of streamflow. It is a subject of great 

importance due to its large environmental and economic impact. According to a 

study conducted by KTA Tenaga in 2002, the total flood affected area in Malaysia in 

2000 was 29799 km
2
, which is about 9.04 % of 329,735 km

2
, the total land area of 

Malaysia (DID Malaysia, 2003). The population in flood affected areas in 2000 was 

4,819,265, which is 22 % of the total population at that time and the Annual Average 

Damage estimated was RM 915 million (at year 2000 prices). The study shows how 

flood has a huge impact on Malaysia. Another reason flood analyses are important is 

that the design and operation of hydraulic structures such as dams and reservoirs are 

determined based on them. 

 

 Flood modelling depends on available data to generate efficient estimations. 

There are two approaches to hydrological modelling; at-site modelling and regional 

modelling. At-site modelling uses historical data of the site being studied which 

includes rainfall data, flood records and runoff data. On the other hand, regional 

modelling uses data from different sites in a region that is assumed to have similar 

hydrological behaviour. It is more frequently used in ungauged sites and sites with 
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limited historical data. Regionalization also reduces the sampling uncertainty 

because more data is introduced (Madsen, 1996). Regional modelling is a popular 

approach in developing and undeveloped countries with low density of gauging 

stations due to lack of funds and qualified personnel. 

 

Statistical analysis of flood data does not always provide a true answer 

because hydrological events are subjected to great variability and uncertainties. The 

uncertainties include sampling uncertainty and model uncertainty (Madsen, 1996). 

They are more prevalent especially when the estimated return periods are beyond 

observable period (when extrapolation is required). Sampling uncertainty arises 

when estimating the parameters of a particular statistical distribution due to a limited 

set of data. On the other hand, model uncertainty arises when selecting the type of 

frequency distribution to be used. It is essential that a suitable distribution model is 

chosen for hydrological analysis. No particular model is considered superior for all 

applications (WMO, 2009). The selection of model ultimately has to depend on the 

problem encountered and the available data. 

 

The chosen method of study falls under the category of time series modelling. 

Time series is commonly used in the financial sectors and also in the field of 

hydrology. The beauty of time series modelling is that future values of a variable can 

be estimated using its historical values.  

 

 The study area is the Langat River Basin which spans two states in Malaysia, 

namely Selangor and Negeri Sembilan. The Langat River Basin is shown in Figure 

1.1. It has a catchment area of approximately 2,348 km
2
. The Langat River is the 

main stream while other major tributaries include the Semenyih River, the Labu 

River and the Beranang River. Two dams are located at the upper region of the river 

basin; the Semenyih dam and the Langat dam. The Semenyih dam has a catchment 

area of 56.7 km
2 

while the Langat dam has a catchment area of 41.1 km
2
.  
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Figure 1.1: The Langat River Basin 

 

 

 

1.2 Problem Statement 

 

The event of flood can cause significant damage to the lives and properties of those 

living within the affected area. The high water level causes disruption to their daily 

activities. Children will be unable to attend school, adults will be unable to work and 

consequently the nation’s economy will be affected. In year 2000 alone the damage 

caused by flood in Malaysia was estimated to cost more than RM 915 million (DID 

Malaysia, 2003).  

 

 The design of hydraulic structures such as dams and reservoirs also depends 

on the design flood of the particular river. An inaccurate design flood can lead to 

inefficiency of those hydraulic structures. Modifications to an existing structure are 

extremely costly and troublesome. Therefore, flood analysis is important to address 

these key issues. The main obstacle in flood analysis is the lack of sufficient data to 

predict future occurrences. The available data may be insufficient to guarantee an 

acceptable confidence level. 
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1.3 Aim and Objectives 

 

The aim of this study is to mitigate the flood problems in Langat River Basin through 

developing a stochastic model for forecasting annual maximum streamflows in the 

study rivers. The objectives of this study are: 

 

i. To develop stochastic ARIMA models for the study rivers using Box-Jenkins 

approach; 

ii. To forecast future annual maximum streamflow values in the study rivers 

using the developed ARIMA models. 

 

 

 

1.4 Significance of Study 

 

Through this study, the forecasted annual maximum streamflow values for the 

chosen rivers in Langat River Basin are available for future use. The results from this 

study are beneficial to engineers, researchers and hydrologists in the field of 

hydrology, especially in flood forecasting and flood management. A better 

understanding towards flood study may limit the environmental and economic 

impact of flood and subsequently reducing flood damage.  

 

The results also contribute to a better understanding towards stochastic flood 

forecasting modelling, particularly time series modelling. This study can be a 

reference for future development of time series modelling in hydrological studies. 

 

 

 

1.5 Scope of Work 

 

The scope of work of the present study includes the study of statistical models in the 

field of hydrology and the application of time series model, namely the 

Autoregressive Integrated Moving-Average (ARIMA) model, onto the study area. 

Stage readings from four water level stations in the Langat River Basin were 
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analysed and the future annual maximum streamflow magnitudes were forecasted 

using ARIMA model.  



 

 

 

CHAPTER 2 

 

 

 

2 LITERATURE REVIEW 

 

 

 

2.1 Stochastic, Probabilistic and Deterministic Modelling 

 

The primary focus of this study is on stochastic modelling for flood analysis. 

However, it is important to highlight other methods of modelling for a better 

understanding on the similarities and differences of these methods.  

 

 The stochastic models are related to the probability models in the sense that 

both types of models have random variables. The former are models of dependent 

random variable while the latter are models of independent variables. Although 

models of independent random variables are much simpler to understand compared 

to models of dependent random variables, the concepts involved are actually 

common to both types of models. For example, concepts of probability, probability 

distribution and estimation are essential in expressing random variables. In fact, 

having a good understanding on the simpler probability models is useful in 

understanding the more complex stochastic models.  

 

 The main difference between probability models and stochastic models lies 

on the dependence between random variables. The incorporation of dependence 

between random variables is the major difficulty in modelling dependent random 

variables. To overcome the difficulty in estimation, time series analysis and 

regression techniques are applied in order to build a stochastic model in flood 

analysis.  
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 Goldman (1985) uses an example of designing a system of reservoirs to 

examine the different approaches of stochastic and deterministic models. In order to 

estimate the required storage capacity of the system, the future inflows and water 

demands have to be estimated. One possible way to estimate future inflows is to 

create a mathematical model which simulates future weather conditions and then 

couple it with a watershed model to predict future streamflow. In this way, the 

weather conditions and the inflows are predicted before they are observed. This type 

of model is a deterministic model. The common presumption used in deterministic 

models is that future inflows are identical to past inflows, which is highly unlikely in 

real life. Alternatively, another approach is to assume that past inflows are 

observations of a random or stochastic process, in which future observations cannot 

be estimated with certainty. By treating the inflows as a random process, a mean for 

identifying the underlying probability law governing the process, or equivalently, a 

stochastic model, must be developed.  

 

 

 

2.2 Design Flood 

 

The design flood in the form of frequency-based flood is determined by applying 

frequency analysis of flood flows or rainfall data by carrying out one of the 

following (WMO, 2009): 

 

i. Frequency analysis of rainfall data to obtain a frequency-based storm, which 

is then converted to design flood; 

ii. Frequency analysis of flood flows; 

iii. Regional frequency analysis. 

 

 Sutcliffe (1978) discussed on the choice between the method of frequency 

analysis of flood flows and the method of design storm (or method of unit 

hydrograph). The unit hydrograph method is necessary if: 

 

i. The detailed shape of the flood is required; 

ii. The estimate of the maximum flood is required. 
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2.2.1 Rainfall-Runoff Approach 

 

The rainfall-runoff approach involves coupling rainfall frequency statistics with a 

catchment model to estimate flood. This approach can be divided according to their 

spatial structure (lumped, semi-distributed or distributed) and time representation 

(event-based simulations and continuous simulations).  

 

 For event-based simulations the rainfall-runoff model is fed by a design 

rainfall of a defined probability (Paquet et al., 2013). A very popular method is the 

revitalised flood hydrograph (ReFH) method (Kjeldsen, 2007), which is commonly 

used in England and Wales and has replaced the earlier Flood Studies Report/Flood 

Estimation Handbook (FSR/FEH) rainfall-runoff method for most applications. The 

ReFH model converts a design rainfall event into a design flood. The three 

components of the ReFH model include a loss model, a routing model and a 

baseflow model. Figure 2.1 shows the structure of ReFH model. 

 

 

Figure 2.1: Structure of ReFH Model 

 

 

 For continuous simulations, Boughton and Droop (2003) presented a very 

comprehensive review on this type of method. Calver and Lamb (1995) performed 

flood frequency estimation for a sample of ten UK catchments using continuous 

rainfall-runoff modelling. This continuous simulation is also known as the Monte 

Carlo simulation whereby a stochastic rainfall model is coupled with a rainfall-runoff 



9 

model. Cameron et al. (2000) coupled a stochastic rainfall model with the 

TOPMODEL to estimate flood peaks for four UK catchments and the results 

compared well with the traditional statistical approach. 

 

 There had been some studies done to compare the rainfall-runoff method with 

flood frequency analysis. Boughton and Hill (1997) compared the continuous 

approach with flood frequency statistics for a 108 km
2
 catchment in Victoria, 

Australia. Their results concluded that long flood records are important for better 

estimates using flood frequency statistics. In another case study, Boughton et al. 

(2002) compared the estimates from continuous simulation method and design storm 

approach with the estimates from flood frequency analysis in three small catchments 

(62 km
2
, 108 km

2
, 259 km

2
). Very short flood records used in flood frequency 

analysis resulted in estimates that were up to 50 % smaller. In an Austrian case study, 

Gutknecht et al. (2006) concluded that for very low probability floods, the design 

flood from an event-based approach is larger than the estimates from flood frequency 

statistics and regional methods. McKerchar and Macky (2001) compared design 

flood estimates from a design storm approach and regional flood analysis to the 

estimates from flood frequency analysis of six catchments in Australia. It was found 

that the estimates from design storm approach tend to be more than 100 % larger 

compared to the other estimates. 

 

 Thus, in most catchments, the event based runoff model generally gives 

larger flood estimates than flood frequency analysis (Rogger et al., 2012). For better 

estimates from the flood frequency statistics, long flood records are necessary. 

 

 

 

2.2.2 Flood Frequency Analysis Approach 

 

Generally, flood frequency analysis is the study on streamflow records in order to 

make estimations on future streamflow values.  

 

 There are two prevalent methods for flood frequency analysis; the annual 

maximum series (AMS) method and the partial duration series (PDS) method. The 
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PDS method is also known as the peak over threshold (POT) method. The main 

difference between the two methods is the extreme values used. The AMS method 

takes into account only the annual maximum while the PDS method includes all the 

values exceeding a certain threshold level. One significant drawback of the AMS 

method is that secondary events in a year may give higher values than annual 

maxima of other years (Madsen, 1996). However, the AMS method is commonly 

used in frequency analyses compared to the PDS method (WMO, 2009). The AMS 

method is easier to define and the assumption that annual maxima are independent is 

reasonable. The PDS method, on the other hand, requires its user to choose an 

appropriate threshold value as well as ensuring independence between successive 

peaks.  

 

 Cunnane (1973) compared estimates in the PDS model with exponential 

distribution to the corresponding AMS model with Gumbel distribution and 

discovered that if the PDS has more than 1.65 exceedances per year, then the PDS 

model is more efficient than the AMS model. Madsen (1996) compared the AMS 

model with the PDS model using three methods of estimation and concluded that 

since heavy-tailed distribution are the most common in flood frequency analysis, the 

preferred model would be the PDS model.  

 

 According to Takara (2009), the important issues to be considered in a 

frequency analysis are: 

 

i. Data characteristics; 

ii. Sample size; 

iii. Parameter estimation; 

iv. Model evaluation; 

v. Accuracy of quantile estimates. 

 

 The frequency curve is deemed complete when a suitable distribution has 

been fitted to the observed flood peak data (Sivandran, 2002). As shown in Figure 

2.2, the fitted curves relates the return period to a flood magnitude.  
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Figure 2.2: Example of Flood Frequency Curve (Source: Sivandran, 2002) 

 

 

 

2.2.3 Types of Distribution 

 

NERC (1975) studied the frequency distributions used in flood analyses by most 

countries and the results are tabulated in Table 2.1.  

 

Table 2.1: Frequency Distributions Used in Flood Analysis Studied by NERC 

(1975) 

Distribution Percentage of countries 

recommended 

Percentage of total 

countries using it 

Log-Normal (LN) 18.9 15 

Log-Pearson Type 3 (LP3) 15.4 23 

Pearson Type 3 (P3) 11.9 12 

Generalized Extreme Value (GEV) 

including Extreme Value Type 1 

(EV1) 

 

24.9 

 

32 
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There are other relatively less used distributions such as the Gamma 

distribution, the Wakeby distribution and the exponential distribution. Many 

frequency distributions for flood analysis are described in details by Cunnane (1989). 

 

 A very informative research was done by Haktanir and Horlacher (1993) 

whereby various distributions were evaluated for flood frequency analysis. Nine 

different probability distributions were applied to the annual flood peak series in two 

streams in Scotland and the Rhine Basin in Germany. It was found that the GEV and 

the log-normal distributions predict floods with return periods of more than 100 

years better than other distributions. The GEV type 2, log-Pearson type 3 and the 

Wakeby distributions would usually give conservative peaks. The log-logistic 

distribution coupled with the ML method tends to overestimate high return period 

floods.  

 

 

 

2.2.3.1 Normal Distribution 

 

The normal distribution is useful for describing well-behaved hydrologic phenomena 

such as total annual flow. It has a symmetrical, unbounded, bell-shaped curve. The 

maximum value for a normal distribution occurs at the mean and due to its 

symmetrical nature, half of the values will be below the mean and another half will 

be above the mean.  

 

 For the purpose of flood analysis, the normal distribution is not suitable to be 

used. It has an unbounded lower limit whereas streamflows observed in flood 

analyses have a lower bound of zero. Besides, streamflows observed in flood 

analysis normally have a skewed distribution, which cannot be represented by the 

symmetrical shape of the normal distribution.  

 

 

 

 

 



13 

2.2.3.2 Log-Normal Distribution 

  

Streamflows in flood analysis are non-negative and typically have skewed 

distributions. The log-normal distribution is one of the frequently used models for 

skewed distributions. By definition, if the natural logarithm of a random variable is 

normally distributed, then it has a log-normal distribution.  

 

 A random variable represented by the log-normal distribution takes on values 

in the range of zero to positive infinity. The parameter μ determines the scale of the 

distribution while σ
2
 determines the shape of the distribution. Figure 2.3 shows 

different shapes of log-normal distributions under different σ.  

 

 

Figure 2.3: Log-Normal Distributions under Different σ 

 

 

 

2.2.3.3 Log-Pearson Type 3 Distribution 

 

The log-Pearson type 3 distribution is widely used in flood frequency modelling in 

the United States of America and it had been recommended for that purpose by 

Interagency Advisory Committee on Water Data (1982).  

 

Its probability density function (PDF) is defined by three parameters: the 

location parameter (𝜉), the scale parameter (𝛽) and the shape parameter (𝛼) with 𝛼 > 

0 and 𝛽 either positive or negative. For 𝛽 < 0, its values are in the range of zero to 
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exponential (𝜉) and for 𝛽 > 0, its values have a lower bound so they are more than 

exponential (𝜉).  

 

 

 

2.2.3.4 Gumbel Distribution 

 

The Gumbel distribution belongs to a type of distribution termed extreme value 

distribution. There are three types of extreme value distributions which describe the 

distribution of the maximum and minimum values in a large sample defined by 

Gumbel (1958). The Gumbel distribution is also known as the extreme value type 1 

distribution because it is actually a special case of generalized extreme value 

distribution with its shape parameter, κ = 0.  

 

 The location parameter is denoted by 𝜉 and the moments for the distribution 

are 𝜇𝑥, 𝜎𝑥
2 and 𝛾𝑥. 

 

 

 

2.2.3.5 GEV Distribution 

 

The generalized extreme value distribution is an expression that includes the type 1, 

2 and 3 extreme value distributions (Gumbel, 1958; Hosking et al., 1985). The GEV 

distribution is commonly used as a general model for extreme events such as flood 

flows, especially in the regionalization procedures (NERC, 1975; Stedinger and Lu, 

1995). 

 

 

 

2.2.4 Parameter Estimation 

 

Parameter estimation is done on the distributions chosen to describe flood flows so 

that the required quantiles and expectations can be obtained with the fitted model. 

There are different methods for parameter estimation and the most commonly used in 
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flood analysis are the method of moments (MOM), the maximum likelihood (ML) 

method and the probability weighted moments (PWM) method. The PWM method is 

regarded as one of the best parameter estimation methods (Cunnane, 1989).  

 

  Monte Carlo studies comparing various fitting methods for the log-normal 

(LN), Gumbel (EV1), generalized extreme value (GEV) and log-Pearson type 3 (LP3) 

distributions were summarized by Takara and Stedinger (1994) and it was noticed 

that: 

 

i. For two-parameter distributions (LN(2), EV1(2)), the maximum likelihood 

method gave accurate quantile estimators; 

ii. The quantile lower bound estimation method coupled with the maximum 

likelihood method or methods of moments (Qt & MOM or Qt & ML) gives 

more accurate quantile estimates for three-parameter distributions such as 

LN(3), P3(3) and LP3(3); 

iii. The probability weighted moments method (PWM) is best for the GEV(3) 

distribution. The PWM is also known as the L-moments method (Hosking 

and Wallis, 1997). 

 

 

 

2.3 Stochastic Processes and Time Series 

 

Chow (1969) gave a brief but comprehensive introduction on stochastic hydrologic 

phenomenon: “The hydrologic phenomenon changes with time in accordance with 

the law of probability as well as the sequential relationship between its occurrences.” 

For example, the event of a flood follows the law of probability and is affected by the 

previous flood condition. 

 

 In flood analysis, stochastic modelling can be applied in many ways. One of 

them is to perform a stochastic rainfall modelling which is then coupled with a 

watershed model to make flood estimates. Another way is to apply stochastic 

modelling on the streamflow itself. The focus of this study is on stochastic 

streamflow modelling. 
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 An in-depth review on stochastic processes in hydrologic system is given by 

Chow and Meridith (1969). Time series analysis is an important component in 

stochastic modelling and Matalas (1967) and Kisiel (1969) provided a general survey 

of hydrologic time series analysis. Figure 2.4 shows the components of a time series. 

The components in a time series can be divided into deterministic component (trends, 

periodicities and catastrophic events) and random component.  

 

 Chow (1969) reviewed three time series models which have been used in 

hydrologic study: the moving-average model, the sum-of-harmonics model and the 

autoregression model. The approaches used to select the best model were also 

reviewed and they are the correlogram and the spectrum analysis. 

 

 Since the focus is on stochastic streamflow modelling, the type of 

dependence that is focused is the serial dependence. Serial dependence is used to 

model the relationship between past and current observation of streamflow (Goldman, 

1985). Goldman also discussed on using linear regression and correlation to 

determine the dependence between random variables or in the case of serial 

dependence, between observations of the same variable. 

 

 

Figure 2.4: Components of Time Series 
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 Most of the conventional statistical methods deal with models in which the 

observations are assumed to be independent. However, a lot of data in daily 

applications have dependent observations. Engineering, economics and natural 

sciences have a great deal of data in the form of time series. According to Akgun 

(2003), the main objective of a time series analysis is to determine the stochastic 

process that governs the observed series and subsequently forecast future values from 

the observed series. 

 

Naturally, streamflow has a random component. However, it is also observed 

that a high flow tends to follow high flow and a low flow tends to follow low flow so 

it is not fully random. In statistics, the term ‘stochastic’ denotes randomness but in 

hydrology it can be used to refer to a partial random sequence as well. 

 

 The autocorrelation coefficient is a time series parameter that indicates serial 

dependence between successive values of a time series. This coefficient is  calculated 

for successive observations as well as for observations that are separated by various 

time intervals. These time intervals are known as lag period. A graph of 

autocorrelation coefficient against lag period is known as a correlogram. The 

correlogram is an excellent indicator of the behaviour of the underlying stochastic 

process of the series. If a correlogram shows nearly zero values for all lag periods, 

the process is a white noise process, which is purely random. On the other hand, if a 

correlogram shows values close to one, it indicates a deterministic process (Gupta, 

1989). No modelling or forecasting could be done on a white noise series because 

there is no more information which could be extracted from the series.  

 

 

 

2.4 Stochastic Modelling 

  

 According to Box and Jenkins (1976), time series modelling can be carried out in 

the following stages: 

 

i. Selection of model type; 

ii. Identification of model form; 
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iii. Estimation of model parameters; 

iv. Diagnostic check of the model. 

 

Salas et al. (1980) further explained the stages of time series modelling. At 

the first stage, a type of model representing the dependence of time series is selected. 

For example, the Markov chain model and the autoregressive model are two common 

types of models for that purpose. Once a type of model is selected, the form or the 

order the model has to be identified. For instance, if the autoregressive model is 

chosen, it has to be identified whether it is an autoregressive model of order one (one 

autoregressive coefficient), order two, et cetera. Next, estimation is done on the 

parameters of the model identified and finally diagnostic checks are done to verify 

the quality of the model. The whole process is an iterative process with feedback and 

interaction between the stages. 

 

Salas and Smith (1980) on the other hand, proposed a systematic approach to 

hydrologic time series modelling which consists of six phases: 

 

i. Identification of model composition; 

ii. Selection of model type; 

iii. Identification of model form; 

iv. Estimation of model parameters; 

v. Goodness-of-fit testing; 

vi. Evaluation of uncertainties. 

 

This systematic approach by Salas and Smith retains some of the components 

of the Box-Jenkins approach while also adding some steps which improve the 

modelling process. 

 

 There are many models which have been proposed in the past for stochastic 

modelling. They include: the autoregressive (AR) models (Thomas and Fiering, 1962; 

Yevjevich, 1963; Matalas, 1967); the autoregressive moving-average (ARMA) 

models (Carlson et al., 1970; O’Connell, 1971); the ARMA-Markov models 

(Letternmaier and Burges, 1977); the fractional Gaussian noise (FGN) models 
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(Matalas and Wallis, 1971); the broken-line (BL) models (Mejia et al., 1972); and the 

disaggregation models (Valencia and Schaake, 1973). 

 

According to Salas et al. (1980), these models have been criticized for: 

inability to reproduce short term dependence; inability to reproduce long term 

dependence; parameters estimation difficulties; inability to generate large samples of 

synthetic data; lack of physical basis; and too many parameters. The advantages and 

limitations of the mentioned models can be found out through the original 

publications as well as through the reviews mentioned.  

 

 Bowles et al. (1980) investigated the range of applicability of the lag two 

autoregressive (AR) model, the ARMA model, the BL model, the fast fractional 

Gaussian noise (FFGN) model and the ARMA-Markov (AMAK) model in drought 

analysis based on these criteria: 

 

i. Ability to preserve annual persistence statistics and the run properties of the 

seasonal statistics; 

ii. Model cost and ease to use; 

iii. Magnitude of economic damage associated with flows generated by each 

model; 

iv. Reservoir capacity and critical design parameters. 

 

The results showed that the FFGN and BKL were much more costly than the 

AR(2), ARMA and AMAK. The parameter estimation for the AR(2) was the easiest. 

Based on criteria (i), all models are effective in preserving the Hurst coefficient 

except the AR(2) model, with the ARMA model being most effective. In terms of 

estimating the required reservoir capacity based on criteria (iv), the ARMA and 

AMAK were the most conservative followed by the AR(2) model and then the BKL 

and FFGN models. 
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2.5 The ARMA Family 

 

An autoregressive integrated moving-average (ARIMA) model is basically an 

ARMA model. The difference is that ARIMA is used when the raw data is non-

stationary and it requires differencing to become stationary. Once the data is 

differenced, the procedure becomes an ARMA procedure. The outcomes from the 

ARMA procedure are then integrated to reverse the effect of the initial differencing. 

 

 The seasonal autoregressive integrated moving-average (SARIMA) model on 

the other hand, takes into account the seasonal effect in the data series. If there is any 

seasonal or cyclic pattern in the series, the SARIMA model would be more 

appropriate to be used. There are actually other models which have similar concept 

with the ARMA model. One example would be the autoregressive conditional 

heteroscedastic (ARCH) model. However, the more commonly used models from the 

ARMA family are the ARMA model itself, the ARIMA model and the SARIMA 

model.  

 

 

 

2.6 ARIMA Model 

 

The ARIMA modelling is actually an approach that has the flexibility to fit a model 

which is adapted from the data structure itself. With the help of the computed 

autocorrelation function and partial autocorrelation function, the time series’ 

stochastic nature can be modelled and vital information such as trend, periodic 

components, random components and serial correlation can be obtained. 

 

 The Box-Jenkins approach to ARIMA modelling is an iterative model 

building process where the best models have to be determined through trial and error. 

However, with the advent of computers and statistical software packages, this 

iterative process can be simplified. Commonly used software packages include 

Statgraphics, Minitab and Statistica.  
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 The ARIMA model has three main components: 

 

i. Autoregressive (AR); 

ii. Integrated (I); 

iii. Moving-Average (MA). 

 

The AR component represents the autocorrelation between current and past 

observations while the MA component describes the autocorrelation structure of 

error. The integrated component represents the level of differencing required to 

transform a non-stationary series into a stationary series (Hasmida, 2009). A non-

seasonal ARIMA model is usually denoted by (p,d,q). The order of the AR 

component is denoted by p, the order of differencing is denoted by d and q is the 

order of the MA component. 

 

 Throughout the years researchers have used the ARIMA model for different 

scientific and technical applications. Ahlert and Mehta (1981) described the random 

component of streamflow time series by examining the stochastic structure of the 

flow data for the Upper Delaware River. Forecasting monthly rainfall data using 

various ARIMA models was done by Fernando and Jayawardena (1994). Ahmad et 

al. (2001) analysed water quality data whereas Hsu et al. (1995) carried out 

streamflow prediction on a medium sized basin in Mississippi. The ARIMA model 

was applied to monthly data from Kelkit Stream watershed by Yurekli et al. (2005). 

Kurunc et al. (2005) reviewed the performance of two stochastic models (Thomas-

Fiering and ARIMA) on Yesilirmak River, Turkey. 

 

There have been a lot of reviews on the performance of the ARIMA model. 

Tang et al. (1991) argued that the ARIMA model is only suitable for short term 

forecasting. The ARIMA model needs a long input series to produce forecasts that 

are more accurate. Therefore, the ARIMA model may not work well for short input 

series. Maia et al. (2008) showed that the performance of ARIMA is satisfactory in 

forecasting either a linear or non-linear interval series. It is also a good forecasting 

alternative to inter-valued time series. However, it was shown that the hybrid model 

of ARIMA and artificial neural network gives a better average performance. 
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2.6.1 Stationarity 

 

The Box-Jenkins approach is a stationary time series approach. If a time series is 

non-stationary, differencing is required to make it stationary before the Box-Jenkins 

approach can be carried out. There are many ways to determine non-stationarity. The 

common tests used include unit root tests and trend tests. Figure 2.5 shows the 

examples of stationary and non-stationary time series. 

 

 

Figure 2.5: Examples of Stationary and Non-stationary Time Series 
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2.6.1.1 ADF Test 

 

The testing for unit root’s presence in a time series is a normal starting point of 

applied work in macroeconomics. One of the popular tests for unit root is the 

Augmented Dickey-Fuller (ADF) test. This test is based on estimates from an 

augmented autoregression. One of the main issues in the ADF test is the choice of 

lag length k. Schwert (1989) and Harris (1992) found that the autoregression order 

has important size and power implications. Ng and Perron (1995) provided a formal 

analysis on the relevance of lag length k in the ADF test procedure.  

 

 

 

2.6.1.2 KPSS Test 

 

Another well known test for stationarity in econometrics is the Kwiatkowski-

Phillips-Schmidt-Shin (KPSS) test. It tests for the null hypothesis of stationarity as 

opposed to the ADF test which tests for the null hypothesis of non-stationarity. One 

of the important arguments against the use of tests with stationarity as the null 

hypothesis is that it is very difficult to control their size when the process is 

stationary and extremely autoregressive (Hobijn et al., 1998).   

 

The KPSS test is oversized for processes that are highly autoregressive 

because it uses a semiparametric heteroscedasticity and autocorrelation consistent 

covariance estimator with positive finite sample bias. However, one can choose other 

bandwidths other than the ones suggested by KPSS for the estimator. Care should be 

taken when choosing a bandwidth because a bandwidth that is too large implies that 

the long run variance is overestimated and if common nominal significance levels are 

used, the test will have little or no power in finite samples. On the other hand, a 

bandwidth that is too small for a highly autoregressive process implies that the long 

run variance is underestimated and thus the test is oversized. Hobijn et al. (1998) 

suggested an automatic form of KPSS test that minimizes the size distortion without 

facing the problem of inconsistency. 
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2.6.1.3 Mann-Kendall Trend Test 

 

The Mann-Kendall trend test is commonly used to test the presence of trend in a time 

series. It is not a parametric test so the data do not have to be normally distributed 

and it has low sensitivity to sudden changes due to non-homogeneous time series. 

The Mann-Kendall S Statistic shows the behaviour of a trend. A positive S indicates 

an upward trend while a downward trend is indicated by a negative S. Another 

statistic obtained from the test is the Kendall’s tau, which measures the strength of 

the dependence between two variables. A positive value of Kendall’s tau shows that 

the variables’ ranks increase together while a negative value shows that as one 

variable’s rank increases, the other variable’s rank decreases. Figure 2.6 shows an 

example of trend in a time series. 

 

 

Figure 2.6: Example of Trend in a Time Series 

 

 

 



25 

2.6.2 Independence 

 

The basic assumption is that the residuals of an ARIMA model are white noise. A 

white noise series have uncorrelated random shock with zero mean and constant 

variance. If the residuals are independent, it means that there is no more information 

that could be extracted from the series. One of the ways to determine the 

independence is to visually inspect the correlogram of the residuals. If the 

correlogram shows values that are close to zero, the residuals are uncorrelated and 

independent. Figure 2.7 shows an example correlogram or autocorrelation function 

(ACF) that exhibits white noise. 

 

 

Figure 2.7: Example of ACF Exhibiting White Noise (Source: Hyndman and 

Athanasopoulos, 2013) 

 

 

 

2.6.3 Homoscedasticity 

 

Homoscedasticity is the term used to define that the variance of the disturbance term 

in each observation is constant. If the residuals are homoscedastic, their variances are 

stable. The probability of the disturbance terms reaching a given positive or negative 
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value will be the same in all observations, which means that they have the same 

dispersion. Figure 2.8 illustrates an example of homoscedastic dispersion. 

 

 

Figure 2.8: Example of Homoscedastic Dispersion 

 

 

 There are two main reasons why homoscedasticity is important. The first 

involves the regression coefficients’ variances. The variances should be as small as 

possible in order to produce maximum precision. The second reason is the chances 

that the estimators of the standard errors of the regression coefficients could be 

wrong. These estimators are computed on the assumption that the disturbance terms 

are homoscedastic. 

 

 Heteroscedasticity can be detected by using different tests which include the 

Spearman Rank Correlation test, the Goldfield-Quandt test, the Glejser test and the 

Breusch-Pagan test. 
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2.7 Transformation 

 

Many statistical analyses are done based on the assumption that the population being 

investigated is normally distributed with a common variance. In situations where the 

relevant assumptions are violated, a few options are available: 

 

i. Ignore the violation of the assumptions and continue with the analysis; 

ii. Decide on a correct assumption in place of the violated one and proceed with 

the new assumption taken into account; 

iii. Design a new model that retains the important aspects of the original model 

and satisfies the assumptions; 

iv. Select a distribution-free method that can be used even if the assumptions are 

violated. 

 

Most researchers have opted for the third option which includes applying a 

transformation to the original data. One of the popular transformation methods is the 

Box-Cox transformation (Box and Cox, 1964). In ARIMA modelling, if the 

normality assumption for the residuals is not true, it is usually well satisfied when a 

Box-Cox transformation is done onto the original observations (Yurekli and Kurunc, 

2005). 

 

 Although it is widely used, Sakia (1992) found that the Box-Cox 

transformation seldom fulfills the assumptions of linearity, normality and 

homoscedasticity simultaneously. This transformation has more practical use in the 

determination of functional relationships, especially in the field of econometrics. 

 

 

 

2.8 Forecasting 

 

Forecasting can be categorized into short-term forecasting and long-term forecasting. 

Short-term forecasting can predict values that are a few time periods (a few years) 

into the future. Long-term forecasting on the other hand, can predict values for time 

periods that extend far beyond that. In terms of applications, long-term forecasts are 
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used for strategic planning while short-term forecasts are used for project 

developments as well as operation management. Statistical methods are good for 

short-term forecasting because the historical data normally exhibit inertia and do not 

show drastic changes (Montgomery et al., 2008). Short-term forecasting is based on 

identifying, modelling and extrapolating the patterns found in the data. 

 

 Box et al. (1994) stated that the use of available observations to forecast 

future values can provide a basis for: 

 

i. Business and economic planning; 

ii. Production planning; 

iii. Production and inventory control; 

iv. Control and optimization of industrial processes. 

 

It shows a wide range of applications for time series forecasting. In the field of 

hydrology, which is the field of interest in the present study, there have been a lot of 

researches and studies done that are related to time series forecasting.  

 

 It is essential to specify the accuracy of forecasts. The accuracy is expressed 

by calculating a set of probability limits on either side of the forecast. The range of 

this set of limits is also sometimes called the confidence interval or prediction 

interval. It means that the future observations will be within these limits. Figure 2.9 

shows a forecast function with 50 % probability limits. 
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Figure 2.9: Forecast Function at 50 % Probability Limits (Source: Box et al., 

1994) 

   

 

 

2.9 Summary 

 

There are two main approaches in performing a flood analysis; the rainfall-runoff 

analysis approach and the flood frequency analysis approach. The first approach uses 

rainfall statistics and a catchment model to estimate flood. In the second approach, 

only peak flow data is used to make the estimation. The comparisons between the 

two approaches had been done by researchers mentioned. 

 

 Another method of predicting flood is by using stochastic modelling. A time 

series has four main components which are the trend component, the periodic 

component, the catastrophic component, and the random component. Different 

researchers had come up with different approaches to model a time series and a very 

popular and widely used systematic approach was done by Box and Jenkins (1976). 

The comparisons for some of the commonly used stochastic models were also done 

by many researchers. 
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 It is noteworthy that the outcome of an ARMA/ARIMA/SARIMA model is 

different from the outcome of a flood frequency analysis. A flood frequency analysis 

produces a flood frequency curve whereas an ARMA/ARIMA/SARIMA model 

generates a synthetic series and a forecast series. 

 

 The stationarity of a series can be tested by using the ADF test, the KPSS test 

and the Mann-Kendall trend test. The residuals of an ARIMA model are required to 

be independent, homoscedastic and normally distributed. Transformations are 

sometimes required to normalize a series and a widely used transformation method is 

the Box-Cox transformation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

CHAPTER 3 

 

 

 

METHODOLOGY 

 

 

 

3.1 Location of Study and Data Acquisition 

 

The river basin under study was the Langat River Basin located in the state of 

Selangor. The stage readings from four water level stations were collected for 

analysis. The stations were the Sg. Langat at Dengkil station (ID: 2816441), the Sg. 

Lui at Kg. Lui station (ID: 3118445), the Sg. Semenyih at Kg. Rinching station (ID: 

2918401), and the Sg. Langat at Kajang station (ID: 2917401). Figure 3.1 shows the 

locations of the stations.  

 

 

Figure 3.1: Locations of Water Level Stations in Langat Basin 
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 Having obtained the stage readings, they were sorted so that the annual 

maximum stage for each of the stations could be obtained. The annual maximum 

stage readings were then subjected to ARIMA modelling, resulting in forecasts of 

future annual maximum stage readings. The stage readings generated by the ARIMA 

model were then converted to streamflow readings using rating curves developed for 

the respective rivers. Therefore, the outputs were stage readings which were 

interchangeable with streamflow readings. Both stage and streamflow readings are 

useful and the choice of using which one of them depends on the hydrological 

application. 

 

 

 

3.2 Tools and Instruments 

 

The main tool used for this study was the Microsoft Excel program. The Excel add-

on statistical software XLSTAT was also used in addition to basic Microsoft Excel 

functions. 

 

 

 

3.3 ARIMA Modelling of Annual Maximum Stage 

 

The autoregressive integrated moving-average (ARIMA) model is one of the most 

popular stochastic models used to analyse a time series. It was chosen for this study 

because it is relatively simple to use and effective. It is made up of three main 

components; the autoregressive (AR) component, the moving-average (MA) 

component, and the differencing and integrating component. The properties of the 

ARIMA model were discussed in details by Salas et al. (1980). In this study, the time 

series that was subjected to ARIMA modelling was an annual time series.  

 

 The general ARIMA (p,d,q) model is 

 

𝑈𝑡 =  𝜙1𝑈𝑡−1 + 𝜙2𝑈𝑡−2+. . . + 𝜙𝑝𝑈𝑡−𝑝 + 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2−. . . −𝜃𝑞𝜀𝑡−𝑞  

(3.1) 



33 

where 

𝑈𝑡 = 𝑋𝑡 − 𝑋𝑡−𝑑 

(3.2) 

𝜙𝑝 = autoregressive parameter 

𝜀𝑡 = residual 

𝜃𝑞 = moving-average parameter 

X = dependent variable  

U = d-th difference of the dependent variable. 

 

 An iterative approach to model building was proposed by Box and Jenkins 

(1976). It consists of three stages; (i) model identification, (ii) parameter estimation 

and (iii) model verification. The use of statistical software enables faster parameter 

calculation. The steps carried out for ARIMA modelling are explained in the 

following subsections. 

 

 

 

3.3.1 Plotting the Series and Its ACF and PACF 

 

The main tools used for identification of model were the visual displays of the series, 

which included the autocorrelation function (ACF) and the partial correlation 

function (PACF). Using the annual maximum stage readings as the input time series, 

the autocovariance function (𝑐𝑘), the autocorrelation coefficients (𝑟𝑘) and the partial 

correlation coefficients (𝜙𝑘(𝑘)) were calculated and the series with its ACF and 

PACF were plotted using XLSTAT. The number of lags k should fall between N/4 

and N, therefore the chosen number of lags in this study was sufficient.  

 

𝑐𝑘 =
1

𝑁
∑(𝑥𝑡 − 𝑥̅)

𝑁−𝑘

𝑡=1

(𝑥𝑡+𝑘 − 𝑥̅), 0 ≤ 𝑘 ≤ 𝑁 

  (3.3) 
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𝑟𝑘 =
𝑐𝑘

𝑐0
=

∑ (𝑥𝑡 − 𝑥̅)𝑁−𝑘
𝑡=1 (𝑥𝑡+𝑘 − 𝑥̅)

∑ (𝑥𝑡 − 𝑥̅)2𝑁
𝑡=1

 

    (3.4) 

 

𝜙̂𝑘+1(𝑘 + 1) = [𝑟𝑘+1 − ∑ 𝜙̂𝑘(𝑗)𝑟𝑘+1−𝑗

𝑘

𝑗=1

] / [1 − ∑ 𝜙̂𝑘(𝑗)𝑟𝑗

𝑘

𝑗=1

] 

 (3.5a) 

 

𝜙̂𝑘+1(𝑗) = 𝜙̂𝑘(𝑗) − 𝜙̂𝑘+1(𝑘 + 1)𝜙̂𝑘(𝑘 − 𝑗 + 1) 

  (3.5b) 

 

 The ACF and PACF were then analysed to determine behaviour and 

stationarity of the series. If all the ACF and PACF values are insignificant and fall 

within the confidence band, it indicates that the observations are independent. In 

such a case the time series is a white noise process and no modelling could be 

performed. 

 

A stationary time series has a rapidly decaying ACF. If the ACF is slow 

decaying, it indicates that the series may be non-stationary and requires differencing. 

Further tests should be carried out to confirm the non-stationarity. 

 

 

 

3.3.2 Stationarity Tests 

 

Unit root tests such as the Augmented Dickey-Fuller (ADF) test and the 

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test were carried out to test the presence 

of a unit root while the Mann-Kendall trend test was performed to check for the 

presence of a trend. The presence of a unit root or a trend should indicate non-

stationarity of the series. The significance level used was 5 %. 
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 If the series is non-stationary, differencing is required to transform it into a 

stationary series. On the other hand, if the series is stationary, the series is modelled 

as an ARMA process instead, which requires no differencing. 

 

 

 

3.3.3 Differencing 

 

Differencing is normally done onto non-stationary series to make it stationary. If the 

series is originally stationary, this step is skipped. In an ARIMA model, the order of 

differencing (d) is determined by trial and error.  

 

 The series was initially differenced once (d = 1) and the ACF and PACF of 

the differenced series were plotted and analysed. If the ACF and PACF decay rapidly 

then it indicates stationarity is achieved. Another indicator is the standard deviation 

of the differenced series. The optimum differenced series should have the lowest 

standard deviation. 

 

 The differenced series was then differenced again (d = 2) to check for 

underdifferencing or overdifferencing. Similarly, the ACF and PACF were plotted 

and analysed. The lag 1 ACF and PACF of an overdifferenced series will be lower 

than negative 0.5. If the standard deviation of the current series is lower than that of 

the previous series, then the current series has the optimum order of differencing.  

 

 It is noteworthy that some researchers argue that the effect of 

overdifferencing is much less serious than the effect of underdifferencing. 

 

 

 

3.3.4 Identifying p and q 

 

Having identified the optimum order of differencing (d), the next step was to identify 

the order of the autoregressive and moving-average parameters. The ACF 

(symbolized as 𝜌𝑘) and the PACF for the optimum differenced series were analysed 
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to determine the p and q of the ARIMA model. Table 3.1 shows the identification 

properties of AR, MA and ARMA processes. 

 

Table 3.1: Identification Properties of AR, MA and ARMA Processes 

Process Autocorrelation Partial Autocorrelations 

 

AR(p) 

 

Infinite in extent. Consists of 

damped waves. Attenuates as 

𝜌𝑘 = ∑ 𝜙𝑗𝜌𝑘−𝑗

𝑝

𝑗=1

 

  (3.6) 

 

Finite in extent. Peaks at lags 1 

through p and then cuts off. 

 

 

 

MA(q) 

 

Finite in extent. Peaks at lags 1 

through q and then cuts off. 

 

 

Infinite in extent. Consists of 

damped waves. 

 

ARMA(p,q) 

 

Infinite in extent. First q-p lags: 

irregular then damped waves. 

Attenuates as  

𝜌𝑘 = ∑ 𝜙𝑖𝜌𝑘−𝑖

𝑝

𝑖=1

 

(k ≥ q + 1)          (3.7) 

 

Infinite in extent. First p-q lags: 

irregular then damped waves. 

 

 

 

3.3.5 Choosing the Best ARIMA Model 

 

The previous step gave an indication of the order of p and q that should be fitted in 

the model. However, it was recommended to try a few different values of p and q to 

get the best model while preserving the parsimony of the parameters. To test for the 

parsimony of parameters, the corrected Akaike Information Criteria (AICC) was 

used. The model with the minimum AICC was selected as the best model.  
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 The XLSTAT software can find the best model based on the AICC values 

calculated for a range of p and q. In this study the maximum p selected was 3 and the 

maximum q selected was also 3. The model with the minimum AICC was then 

subjected to diagnostic checks. 

 

According to Salas et al. (1980), there are three levels of parameter 

estimation. The parameters can be estimated with increasing accuracy by: a 

preliminary estimate, a likelihood method and a nonlinear estimation. XLSTAT only 

estimated the parameters in the first and second level. Preliminary estimation was 

done by applying Yule-Walker equations. The Yule-Walker equations can be used to 

estimate the autoregressive parameters (𝜙̂) and the moving-average parameter (𝜃). 

The maximum likelihood estimates were more efficient estimates that took into 

account all the information stored in the data.      

 

 

 

3.3.6 Diagnostic Checks 

 

After the best initial model was determined, the next step was running the diagnostic 

checks. Its purpose was to verify the proposed model’s validity. Before any checking 

was done onto the residuals, the values of the estimated ARIMA parameters first had 

to be in an interval computed using the Hessian standard errors. If the values are out 

of that interval, then they are not significant and the ARIMA model should not be 

used. 

 

The first checking on the residuals was to test for independence. In this 

approach, the consideration was that the observed data was transformed into a series 

of purely independent residuals through the modelling of time series. The 

independence of residuals can be determined by inspecting its ACF and PACF plot. 

If the residuals autocorrelation function (RACF) and residuals partial autocorrelation 

function (RPACF) are not significant, which means none of their values exceed the 

significance interval, then the residuals are independent. The value of residual at any 

lag will not affect the value of residual at the next lag.  
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 The next criterion that required checking was residuals homoscedasticity. 

Homoscedasticity means having a stable set of variances and an ARIMA model 

should have homoscedastic residuals. This particular criterion was tested using the 

Breusch-Pagan test. The significance level used was 5 %. 

 

 The third checking was done to determine whether the residuals’ distributions 

were approximately normal. The residuals had to be approximately normal in order 

to produce a good forecast confidence interval. Strictly normal distribution was not 

necessary as long as the residuals were approximately normal. The normality of the 

residuals was tested using normality tests, namely the Jarque-Bera test, the Shapiro-

Wilk test and the Anderson-Darling test. Visual inspection was also done on the Q-Q 

plot and histograms of the residuals. 

 

 In order for the chosen model to be accepted, the residuals had to be 

independent, homoscedastic, and approximately normally distributed. If the chosen 

model fails any of the three criteria then it will be rejected and the next model with 

the least AICC will be applied and checked. 

 

 

 

3.3.7 Series Comparison and Forecasting 

 

The best model that passed the diagnostic checking will then have its synthetic series 

compared to the original data series. This determined the degree of resemblance 

between the synthetic series and the original data series. If the pattern of the synthetic 

series appears similar to the pattern of the original series, then the fitted model is a 

good model. 

 

 The final step was to generate a forecast of future values. The ARIMA model 

can predict future values as well as its confidence interval using the calculated model 

parameters. In this study the chosen number of forecasted values was eight, which 

means that the values were forecasted for the next eight years after the last 

observation. 
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3.4 Summarized Steps to Flood Modelling Using ARIMA 

 

Flood modelling began with data collection in the form of stage readings. The 

readings were sorted to produce a series of annual maximum stage readings for the 

ARIMA modelling procedure. After the ARIMA procedure, the results were 

forecasted stage readings which can then be converted into streamflow readings by 

using the rating curves provided by the Department of Irrigation and Drainage (DID) 

Malaysia. The summarized steps are shown in Figure 3.2. 
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Figure 3.2: Flowchart of Flood Modelling Using ARIMA 

Collect river stage readings 

Sort stage readings to obtain annual maximum values 

Plot and analyse the series as well as its ACF and PACF. Carry out ADF 

test, KPSS test and Mann-Kendall trend test 

 

 

Difference the series once and twice. 

Analyse its ACF and PACF to determine d 

Determine the p and q of the ARIMA model using the information in Table 

3.1 on the ACF and PACF of the optimum differenced model 

Use XLSTAT to fit in a range of p and q to find the ARIMA model with 

the least AICC. The maximum order of p and q used is 3 

The model with least AICC is put through a diagnostic 

checking. Residuals should be independent, 

homoscedastic and approximately normal 

Compare the generated ARIMA series with the original data series to check 

for model accuracy  

Forecast for future annual 

maximum stage values 

Convert stage values to streamflow 

values using rating curves 

Yes 

No 

Yes 

No 

Start 

Stationary? 

d = 0 

Pass? 

End 
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3.5 Summary 

 

In summary, the raw data obtained from the four water level stations was in the form 

of historical stage records. They were sorted to produce four series of annual 

maximum stage readings which were then modelled using ARIMA models. The 

outputs from the ARIMA models were the generated synthetic series as well as the 

forecasted series of annual maximum stage readings. These stage values can then be 

converted to streamflow values by using the rivers’ rating curves. 

 

 The main tool used in this study was Microsoft Excel spreadsheet program. A 

statistical computing program called XLSTAT was also studied and used as an add-

on to Microsoft Excel. 

 

 The steps in ARIMA modelling included analyzing the series’ ACF and 

PACF, carrying out stationarity tests, differencing the series, running the XLSTAT 

software to find the best model, diagnostic checking, comparing generated series 

with original series, and forecasting. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

CHAPTER 4 

 

 

 

4 RESULTS AND DISCUSSION 

 

 

 

4.1 Data Collected 

 

The stage readings collected from the four stations and their graphical forms are 

presented in Table 4.1 and Figure 4.1 respectively. 

 

Table 4.1: Annual Maximum Stage Values in Meter 

Year Dengkil Kg. Lui Kg. Rinching Kajang 

1960 7.50    

1961 7.67    

1962 7.83    

1963 7.81    

1964 7.34    

1965 7.57 76.38   

1966 7.56 75.92   

1967 7.66 76.34   

1968 7.20 75.73   

1969 7.19 76.41   

1970 5.87 75.65   

1971 6.19 77.36   

1972 5.89 77.46   

1973 6.70 77.30   

1974 5.46 77.80   

1975 5.64 77.45 23.54  

1976 5.25 77.26 23.62 23.33 

1977 4.59 78.20 23.33 24.58 

1978 4.36 77.66 23.16 24.18 

1979 4.90 77.25 23.02 24.04 

1980 5.16 77.48 23.31 24.26 

1981 4.91 77.77 22.90 24.38 
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1982 5.97 77.53 23.44 26.52 

1983 5.38 77.72 23.06 24.43 

1984 6.18 77.76 23.72 24.74 

1985 5.93 77.78 23.26 25.30 

1986 5.74 77.85 22.95 24.04 

1987 5.95 77.91 23.69 24.14 

1988 5.71 77.72 23.16 24.77 

1989 6.29 78.24 24.12 24.40 

1990 5.35 77.41 23.21 23.87 

1991 7.62 77.70 23.04 24.95 

1992 9.30 77.44 23.34 25.63 

1993 6.65 78.25 23.37 25.39 

1994 7.30 77.55 22.69 25.09 

1995 8.26 77.64 22.53 25.30 

1996 6.28 77.57 22.55 24.86 

1997 6.29 77.34 22.67 24.87 

1998 5.46 77.25 22.60 23.60 

1999 5.17 77.54 21.89 23.90 

2000 5.67 77.57 22.81 24.57 

2001 5.09 77.47 22.49 23.8 

2002 5.95 77.56 22.52 24.24 

2003 6.28 77.61 22.60 23.57 

2004 8.09 77.79 21.95 24.53 

2005 5.77 76.79 21.78 23.48 

2006 6.58 77.40 21.47 25.28 

2007 5.98 77.10 21.96 25.18 

2008 6.53 77.25 22.47 24.54 

2009 6.52 77.47 22.49 26.59 

2010 6.40 77.22 21.53 23.72 

2011 6.51 77.58 21.85 25.00 

2012 6.84 77.96 22.25 25.42 

2013 6.11 78.46 21.83 24.31 

 

 

 The Dengkil station had the longest historical record of stage readings, 

followed by the Kg. Lui station, the Kg. Rinching station and lastly the Kajang 

station. Most time series reference materials recommended that the number of 

observations should at least be fifty but in real hydrological modelling the historical 

record may be short and in this study only the Dengkil series exceeded fifty 

observations.  Nonetheless, modelling can still be done even if the number of 

observations was less than fifty. 
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Figure 4.1: Annual Maximum Stage Readings 
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 From the graphical representation of the series, there was a lack of 

seasonality in the data. This was not surprising because the data used was the annual 

maximum stage readings, which more often than not, do not have seasonality. 

Therefore, modelling was simpler since seasonal effects were absent.  

 

 

 

4.2 ACF and PACF Plots 

 

The ACF and PACF for the four series are presented in Figure 4.2, Figure 4.3, Figure 

4.4 and Figure 4.5.  

 

 

Figure 4.2: ACF and PACF of Dengkil Series 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

A
u

to
co

rr
e

la
ti

o
n

 

Lag 

Autocorrelogram (Dengkil) 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

P
ar

ti
al

 a
u

to
co

rr
e

la
ti

o
n

 

Lag 

Partial autocorrelogram (Dengkil) 



46 

 

Figure 4.3: ACF and PACF of Kg. Lui Series 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
u

to
co

rr
e

la
ti

o
n

 

Lag 

Autocorrelogram (Kg Lui) 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
ar

ti
al

 a
u

to
co

rr
e

la
ti

o
n

 

Lag 

Partial autocorrelogram (Kg Lui) 



47 

 

Figure 4.4: ACF and PACF of Kg. Rinching Series 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
u

to
co

rr
e

la
ti

o
n

 

Lag 

Autocorrelogram (Kg. Rinching) 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
ar

ti
al

 a
u

to
co

rr
e

la
ti

o
n

 

Lag 

Partial autocorrelogram (Kg. Rinching) 



48 

 

Figure 4.5: ACF and PACF of Kajang Series 
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values were not significant. Further white noise tests (Box-Pierce test and Ljung-Box 

test) were applied to the Kajang series and they showed that the series was indeed a 

white noise series. Table 4.2 shows the results of the white noise tests. Therefore, no 

further modelling was done onto the Kajang series. 
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Table 4.2: Results of White Noise Tests 

Test Value p-value Remarks 

Box-Pierce 12.477 0.408 White noise 

Ljung-Box 15.525 0.214 White noise 

McLeod-Li 15.445 0.218 White noise 

 

 

 

4.3 Stationarity Tests 

 

Stationarity tests were carried out for the remaining three series to confirm the initial 

presumption that they were non-stationary. The results for the ADF test, KPSS test 

and Mann-Kendall trend test are presented in Table 4.3. 

 

Table 4.3: Results of Stationarity Tests 

Station 
ADF test KPSS test 

Mann-Kendall 

trend test Remarks 

 p-value p-value p-value 

Dengkil 0.350 0.001 0.438 Non-stationary 

Kg. Lui 0.138 0.005 0.072 Non-stationary 

Kg. Rinching 0.411 0.030 <0.0001 Non-stationary 

 

 

 The tests confirmed that all the data series were non-stationary. The 

Augmented Dickey-Fuller test and the KPSS test showed that all three series had unit 

roots. The Mann-Kendall test also detected a trend in the Kg. Rinching series. A 

series that has either a unit root or a trend was considered as non-stationary and 

therefore required differencing.  

 

 The ADF test and the KPSS test are actually similar in the sense that both of 

them are used to test for unit roots. The difference is that the null hypothesis and 

alternative hypothesis for both tests are inverted. The ADF has the following 

hypotheses: 
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H0 = The series is non-stationary (presence of unit root); 

H1 = The series is stationary. 

 

The KPSS test, on the other hand, has the following hypotheses:  

 

H0 = The series is stationary; 

H1 = The series is non-stationary (presence of unit root). 

 

The KPSS test is commonly used to confirm the results of the ADF test or vice versa. 

Since both tests showed the same outcomes, the stationarity results were convincing. 

 

 Now that the series were known to be non-stationary, a simple ARMA model 

may not be sufficiently good enough to model those series. Instead, an ARIMA 

model was used. Thus, the optimum order of differencing, d had to be determined 

first. 

 

 

 

4.4 Differencing the Series 

 

The series were differenced once and twice to obtain the optimum d. The ACF and 

PACF of the differenced series are shown in Figure 4.6, Figure 4.7 and Figure 4.8 

while the standard deviations of the original and differenced series are shown in 

Table 4.4. 
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Figure 4.6: ACF and PACF of Differenced Dengkil Series 
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Figure 4.7: ACF and PACF of Differenced Kg. Lui Series 

 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

A
u

to
co

rr
e

la
ti

o
n

 

Lag 

Kg. Lui (d=1) 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

P
ar

ti
al

 a
u

to
co

rr
e

la
ti

o
n

 

Lag 

Kg. Lui (d=1) 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

A
u

to
co

rr
e

la
ti

o
n

 

Lag 

Kg. Lui (d=2) 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

P
ar

ti
al

 a
u

to
co

rr
e

la
ti

o
n

 

Lag 

Kg. Lui (d=2) 



53 

 

Figure 4.8: ACF and PACF of Differenced Kg. Rinching Series 
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(d = 2) series were lower than -0.5, indicating overdifferencing. Therefore, the 

optimum level of differencing for the three series was one and the d value used in the 

ARIMA model would be one. 

 

 The ACF and PACF of the series with d = 1 were then analysed using Table 

3.1. The PACF of each series was significant at lag 1, indicating the presence of a 

first order autoregressive (AR) component. The ACF of each series was also 

significant at lag 1 so a moving-average (MA) component may be present. Therefore, 

the ARIMA models that seem reasonable to be tested were (1,1,0) and (1,1,1). 

However, with the computing capabilities of the XLSTAT software, the orders of p 

and q were tested up to three.  

 

 

 

4.5 ARIMA Modelling and Diagnostic Checking 

 

XLSTAT was used to compute the AICC for ARIMA models with p starting from 

one to three and q starting from zero to three. The models tested were (1,1,0), (1,1,1), 

(1,1,2), (1,1,3), (2,1,0), (2,1,1), (2,1,2), (2,1,3), (3,1,0), (3,1,1), (3,1,2) and (3,1,3). 

For each station, the model having the minimum AICC was chosen as the best model. 

The best models along with their estimated parameter values are tabulated in Table 

4.5. 

 

Table 4.5: Best ARIMA Models 

 Dengkil Kg. Lui Kg. Rinching 

Best model (1,1,0) (1,1,0) (1,1,1) 

AICC 133.736 55.348 42.292 

MSE 0.672 0.169 0.137 

AR(1) -0.395 -0.532 0.241 

MA(1)  - - -1.000 

Constant -0.023 0.044 -0.047 
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 The results showed that the preliminary models determined from the ACF 

and PACF of the differenced series were indeed the best models.  The Hessian 

standard errors were calculated and all the estimated parameters successfully fell 

within the significance interval. The RACF and RPACF for the best ARIMA models 

were plotted and shown in Figure 4.9, Figure 4.10 and Figure 4.11. 

. 

The RACF and RPACF for all the three series fell within the confidence 

interval. They were not significant and this showed that the residuals were 

independent, therefore satisfying the first residual criterion. The next requirement 

was residuals’ homoscedasticity and Table 4.6 shows the results of Breusch-Pagan 

test. Figure 4.12 shows the distribution of the standardized residuals. 

 

 

Figure 4.9: RACF and RPACF of Dengkil Model 
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Figure 4.10: RACF and RPACF of Kg. Lui Model 
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Figure 4.11: RACF and RPACF of Kg. Rinching Model 
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Figure 4.12: Distribution of Standardized Residuals 
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 The residuals were homoscedastic which meant that they had constant 

variances. It was important for the residuals to be homoscedastic because it 

determined whether the model’s ability to predict variable values was consistent. A 

model with heteroscedastic residuals cannot give results that are trustworthy and 

transformation of the data is required (Yurekli and Kurunc, 2005). The most 

commonly used transformation method is the Box-Cox transformation. Although 

primarily used to normalize a series, it may also be used onto the raw data before 

modelling in order to obtain homoscedastic residuals. However, Sakia (1992) argued 

that the Box-Cox transformation seldom fulfils the assumptions of linearity, 

homoscedasticity and normality simultaneously. In short, it may not be useful in 

obtaining homoscedastic residuals. Since the results showed homoscedastic residuals 

for the three models, no transformation was required. 

 

 The third criterion for diagnostic checking was the distribution of the 

residuals. The residuals were subjected to normality tests and histograms were also 

plotted to give a visual representation of their distributions. The results of normality 

tests are presented in Table 4.7 while the histograms are shown in Figure 4.13. The 

significance level used was 5 % and the test results that gave p-values higher than 

0.05 indicated normality. 

 

Table 4.7: Results of Normality Tests 

Station 
Shapiro-Wilk test Anderson-Darling test Jarque-Bera test 

p-value p-value p-value 

Dengkil 0.017 0.012 0.007 

Kg. Lui 0.140 0.066 0.064 

Kg. Rinching 0.315 0.223 0.331 

 

 



60 

 

Figure 4.13: Histograms of Residuals 
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 Both the normality tests and histograms showed that the Kg. Lui series and 

the Kg. Rinching series had normally distributed residuals. The Dengkil series 

however, failed the normality tests but its histograms showed that it was very close to 

a normal distribution, which was good enough. The normality of residuals’ 

distribution was important to produce a satisfactory confidence interval for the 

forecast. Improving the normality can improve the trustworthiness of the confidence 

interval but it has little effect on the parameter estimates of the model (Osbourne, 

2013). Again, the Box-Cox transformation can be applied to obtain normally 

distributed residuals but it was not done in this study because it was not really 

necessary to normalize the residuals which were already close to normality. 

 

Therefore, all three series generated by the ARIMA model passed the 

diagnostic checking stage. The estimated parameters were significant and the models 

had independent, homoscedastic and approximately normally distributed residuals. 

 

 

 

4.6 Comparison of Series and Forecasting 

 

The synthetic series generated by the ARIMA models were compared to the original 

series to check for model accuracy. Forecast series were also generated for a lead 

time of eight years with 95 % confidence intervals. Figure 4.14 shows the original 

series, the synthetic series and the forecast series for the three stations while Table 

4.8 lists the exact forecast values as well as their confidence intervals. 
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Figure 4.14: Original Series, Synthetic Series and Forecast Series 
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 The Dengkil model and the Kg. Lui model were considerably satisfactory 

because their synthetic series had similar pattern to the original series. The Kg. 

Rinching model on the other hand, was adequate but less convincing compared to the 

other two models. Its synthetic series still maintained the general trend of the original 

series but some of its values were very different from the original values. Overall, all 

three models were adequate but the Dengkil model and the Kg. Lui model were more 

convincing than the Kg. Rinching model. The exact stage values can be found in 

Appendix C. 

 

 The forecast series for all three models presented in Figure 4.14 were similar 

because they looked like a straight line. There were fluctuations in the beginning of 

the forecast but as the time step increased, the fluctuations became smaller and 

barely noticeable. The three forecast series looked reasonable because they seemed to 

continue the trends of their original series.  

 

Table 4.8: Forecast Values and Confidence Interval 

Lead 
Dengkil Kg. Lui Kg. Rinching 

Forecast Interval Forecast Interval Forecast Interval 

1 6.389 
(4.783, 

7.996) 
78.217 

(77.413, 

79.022) 
21.865 

(21.139, 

22.592) 

2 6.279 
(4.401, 

8.156) 
78.346 

(77.458, 

79.235) 
21.874 

(21.127, 

22.621) 

3 6.322 
(4.082, 

8.563) 
78.278 

(77.203, 

79.352) 
21.876 

(21.128, 

22.625) 

4 6.305 
(3.799, 

8.812) 
78.314 

(77.136, 

79.492) 
21.877 

(21.128, 

22.625) 

5 6.312 
(3.549, 

9.075) 
78.295 

(76.996, 

79.594) 
21.877 

(21.128, 

22.625) 

6 6.309 
(3.318, 

9.301) 
78.305 

(76.908, 

79.702) 
21.877 

(21.128, 

22.625) 

7 6.310 
(3.104, 

9.517) 
78.300 

(76.805, 

79.794) 
21.877 

(21.128, 

22.625) 

8 6.310 
(2.903, 

9.517) 
78.303 

(76.720, 

79.886) 
21.877 

(21.128, 

22.625) 
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 The confidence intervals are also known as prediction intervals. According to 

Chatfield (1998), these prediction intervals are important to enable forecasters to 

 

i. Assess future uncertainties; 

ii. Come up with different strategies for the range of possible outcomes; 

iii. Compare different forecasting methods thoroughly; 

iv. Explore different scenarios with different assumptions. 

 

 

 

4.7 Conversion to Streamflow Series 

 

The original series, synthetic series and forecast series of stage readings were 

converted to streamflow series using the rating curves provided by DID. Figure 4.15 

shows the converted streamflow series. 

 

 The streamflow series and the stage series had the same shapes. Both 

streamflow and stage values can be used in hydrological applications. The 

conversion process involved basic interpolation technique using the values from the 

rating curves. 
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Figure 4.15: Streamflow Series 
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4.8 Summary 

 

The data collected were in the form of stage readings. These readings were then 

sorted to obtain the annual maximum values. The Dengkil station had the most 

observations while the Kajang station had the least.  

 

 The ACF and PACF showed that the Kajang series was a white noise series. 

Further white noise tests confirmed it so no modelling was done onto that series. The 

other three series seemed non-stationary from the ACF and PACF so stationarity 

tests (ADF, KPSS and Mann-Kendall trend test) were carried out to confirm it. They 

were indeed non-stationary so differencing was required. 

 

 The series were differenced twice and the optimum level of differencing was 

found to be one. The ACF and PACF of the differenced series suggested the ARIMA 

models (1,1,0) and (1,1,1) to be tested. However, since the XLSTAT can model for a 

range of p and q easily, the order of p and q was increased to 3. The models with the 

least AICC along with their parameters were given in Table 4.5. 

 

 Diagnostic checks showed that the models had parameters that were 

significantly different from zero and residuals that were independent, homoscedastic 

and approximately normally distributed. Therefore, all three models passed the 

requirements.  

 

 The synthetic series were compared to the original series and it was found 

that all the models were adequate but the Dengkil model and the Kg. Lui model 

seemed more convincing than the Kg. Rinching model. Forecast series were also 

obtained and they appeared to be straight lines with minor fluctuations. The forecast 

series also looked reasonably convincing. 

 

 Lastly, all the stage series were converted to streamflow series using the 

rating curves provided by DID and it was found that the patterns of the stage series 

and the streamflow series were the same.  

 



 

 

 

CHAPTER 5 

 

 

 

5 CONCLUSION AND RECOMMENDATIONS 

 

 

 

5.1 Conclusion 

 

Ultimately, the objectives of this study had been achieved. Statistical modelling was 

successfully performed onto the study rivers using the time series approach, 

specifically the autoregressive integrated moving-average (ARIMA) method. 

Forecast series were also generated by the models to give sequences of future stage 

and streamflow values.  

 

 One of the series, the Kajang series, could not be modelled because it was a 

white noise series and no dependence existed between its successive streamflow 

values. The future values cannot be predicted using the historical values. The best 

ARIMA models for the other three series, Dengkil, Kg. Lui and Kg. Rinching series 

were (1,1,0), (1,1,0) and (1,1,1) respectively. 

 

 The best models were the models with the least AICC and passed the 

diagnostic checks. Their residuals were independent, homoscedastic and 

approximately normally distributed. By comparing the models’ synthetic series with 

the original series, their accuracies were checked. All three models were adequate 

models.  

 

 The critical step in ARIMA modelling was model identification. The values 

of p, q and d had to be determined visually and they depended on the modeller’s 
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experience and judgement. The selection of p and q had been made easier because 

XLSTAT can quickly compute the AICC for models with different p and q. 

 

 The ARIMA model is suitable for short term forecasting because the ARMA 

family models can model short term persistence very well. Goldman (1985) argued 

that the autoregressive model is a finite memory model, thus it does not fare well in 

long term forecasting.  

 

In conclusion, the Box-Jenkins approach for ARIMA modelling was found to 

be appropriate and adequate for the rivers under study in Langat River Basin. The 

flood forecast up to a lead time of eight years for the three models exhibited a 

straight line with near constant streamflow values showing that the forecast values 

were similar to the last recorded observation. 

 

 

 

5.2 Recommendations 

 

Although the ARIMA modelling in this study was considerably successful, generally 

there are still doubts on the application of ARIMA models. There are some 

recommendations that can be useful for further understanding and improvement of 

the ARIMA model: 

 

i. The length of historical record of input data affects the model’s performance 

so longer input series should be used to predict more accurately; 

ii. Apply transformations such as the Box-Cox transformation onto the data 

series to improve the desired residuals’ characteristic if necessary;  

iii. Compare the ARIMA model with other models such as the Thomas-Fiering 

model and the Markov model; 

iv. Apply a combination of ARIMA and artificial neural network in a hybrid 

model; 

v. Apply and compare the ARIMA model for both short term forecasting and 

long term forecasting. 
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5 APPENDICES 

 

 

 

APPENDIX A: XLSTAT Program 
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APPENDIX B: Results of Statistical Tests 

 

 

 

 

 

 

White noise tests (Kajang):

Statistic DF Value p-value

Box-Pierce 12 12.477 0.408

Ljung-Box 12 15.525 0.214

McLeod-Li 12 15.445 0.218

Mann-Kendall trend test / Two-tailed test (Dengkil):

Kendall's tau -0.073

S -105.000

Var(S) 17963.000

p-value (Two-tailed) 0.438

alpha 0.05

The exact p-value could not be computed. An approximation has been used to compute the p-value.

Test interpretation:

H0: There is no trend in the series

Ha: There is a trend in the series

The risk to reject the null hypothesis H0 while it is true is 43.78%.

As the computed p-value is greater than the significance level alpha=0.05, one cannot reject the null 

hypothesis H0.

Mann-Kendall trend test / Two-tailed test (Kg. Lui):

Kendall's tau 0.179

S 210.000

Var(S) 13452.000

p-value (Two-tailed) 0.072

alpha 0.05

The exact p-value could not be computed. An approximation has been used to compute the p-value.

Test interpretation:

H0: There is no trend in the series

Ha: There is a trend in the series

The risk to reject the null hypothesis H0 while it is true is 7.15%.

As the computed p-value is greater than the significance level alpha=0.05, one cannot reject the null 

hypothesis H0.
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Mann-Kendall trend test / Two-tailed test (Kg. Rinching):

Kendall's tau -0.636

S -470.000

Var(S) 6830.667

p-value (Two-tailed) < 0.0001

alpha 0.05

The exact p-value could not be computed. An approximation has been used to compute the p-value.

Test interpretation:

H0: There is no trend in the series

Ha: There is a trend in the series

The risk to reject the null hypothesis H0 while it is true is lower than 0.01%.

As the computed p-value is lower than the significance level alpha=0.05, one should reject the null 

hypothesis H0, and accept the alternative hypothesis Ha.

Dickey-Fuller test (Dengkil):

Tau (Observed value) -2.431

Tau (Critical value) -0.718

p-value (one-tailed) 0.350

alpha 0.05

Test interpretation:

H0: There is a unit root for the series.

Ha: There is no unit root for the series. The series is stationary.

The risk to reject the null hypothesis H0 while it is true is 34.96%.

KPSS test (Dengkil):

Eta (Observed value) 0.269

Eta (Critical value) 0.147

p-value (one-tailed) 0.001

alpha 0.05

Test interpretation:

H0: The series is stationary.

Ha: The series is not stationary.

The risk to reject the null hypothesis H0 while it is true is lower than 0.11%.

As the computed p-value is greater than the significance level alpha=0.05, one cannot reject the null 

hypothesis H0.

As the computed p-value is lower than the significance level alpha=0.05, one should reject the null 

hypothesis H0, and accept the alternative hypothesis Ha.
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Dickey-Fuller test (Kg. Lui):

Tau (Observed value) -2.980

Tau (Critical value) -0.709

p-value (one-tailed) 0.138

alpha 0.05

Test interpretation:

H0: There is a unit root for the series.

Ha: There is no unit root for the series. The series is stationary.

The risk to reject the null hypothesis H0 while it is true is 13.78%.

KPSS test (Kg. Lui):

Eta (Observed value) 0.765

Eta (Critical value) 0.451

p-value (one-tailed) 0.005

alpha 0.05

Test interpretation:

H0: The series is stationary.

Ha: The series is not stationary.

The risk to reject the null hypothesis H0 while it is true is lower than 0.50%.

As the computed p-value is greater than the significance level alpha=0.05, one cannot reject the null 

hypothesis H0.

As the computed p-value is lower than the significance level alpha=0.05, one should reject the null 

hypothesis H0, and accept the alternative hypothesis Ha.

Dickey-Fuller test (Kg. Rinching):

Tau (Observed value) -2.294

Tau (Critical value) -0.619

p-value (one-tailed) 0.411

alpha 0.05

Test interpretation:

H0: There is a unit root for the series.

Ha: There is no unit root for the series. The series is stationary.

The risk to reject the null hypothesis H0 while it is true is 41.07%.

KPSS test (Kg. Rinching):

Eta (Observed value) 0.161

Eta (Critical value) 0.145

p-value (one-tailed) 0.030

alpha 0.05

Test interpretation:

H0: The series is stationary.

Ha: The series is not stationary.

The risk to reject the null hypothesis H0 while it is true is lower than 3.05%.

As the computed p-value is greater than the significance level alpha=0.05, one cannot reject the null 

hypothesis H0.

As the computed p-value is lower than the significance level alpha=0.05, one should reject the null 

hypothesis H0, and accept the alternative hypothesis Ha.
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Breusch-Pagan test (Dengkil):

LM (Observed value) 2.119

LM (Critical value) 3.841

DF 1

p-value (Two-tailed) 0.145

alpha 0.05

Test interpretation:

H0: Residuals are homoscedastic

Ha: Residuals are heteroscedastic

The risk to reject the null hypothesis H0 while it is true is 14.55%.

As the computed p-value is greater than the significance level alpha=0.05, one cannot reject the null 

hypothesis H0.

Breusch-Pagan test (Kg. Lui):

LM (Observed value) 1.682

LM (Critical value) 3.841

DF 1

p-value (Two-tailed) 0.195

alpha 0.05

Test interpretation:

H0: Residuals are homoscedastic

Ha: Residuals are heteroscedastic

The risk to reject the null hypothesis H0 while it is true is 19.47%.

As the computed p-value is greater than the significance level alpha=0.05, one cannot reject the null 

hypothesis H0.

Breusch-Pagan test (Kg. Rinching):

LM (Observed value) 0.104

LM (Critical value) 3.841

DF 1

p-value (Two-tailed) 0.747

alpha 0.05

Test interpretation:

H0: Residuals are homoscedastic

Ha: Residuals are heteroscedastic

The risk to reject the null hypothesis H0 while it is true is 74.69%.

As the computed p-value is greater than the significance level alpha=0.05, one cannot reject the null 

hypothesis H0.
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Dengkil

Variable\Test Shapiro-Wilk Anderson-Darling Jarque-Bera

 (Standardized residuals) 0.017 0.012 0.007

Kg. Lui

Variable\Test Shapiro-Wilk Anderson-Darling Jarque-Bera

 (Standardized residuals) 0.140 0.066 0.064

Kg. Rinching

Variable\Test Shapiro-Wilk Anderson-Darling Jarque-Bera

 (Standardized residuals) 0.315 0.223 0.331
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APPENDIX C: ARIMA Model Stage Readings 
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Dengkil

Observations Stage ARIMA(Stage) Residuals Standardized residuals Standard error Lower bound (95%) Upper bound (95%)

1 7.500 7.500 0.000 0.000

2 7.670 7.492 0.178 0.217

3 7.830 7.570 0.260 0.317

4 7.810 7.734 0.076 0.093

5 7.340 7.785 -0.445 -0.543

6 7.570 7.493 0.077 0.094

7 7.560 7.446 0.114 0.139

8 7.660 7.531 0.129 0.157

9 7.200 7.588 -0.388 -0.473

10 7.190 7.349 -0.159 -0.194

11 5.870 7.161 -1.291 -1.575

12 6.190 6.359 -0.169 -0.206

13 5.890 6.031 -0.141 -0.172

14 6.700 5.976 0.724 0.884

15 5.460 6.347 -0.887 -1.082

16 5.640 5.917 -0.277 -0.338

17 5.250 5.536 -0.286 -0.349

18 4.590 5.371 -0.781 -0.953

19 4.360 4.818 -0.458 -0.559

20 4.900 4.418 0.482 0.588

21 5.160 4.654 0.506 0.617

22 4.910 5.025 -0.115 -0.140

23 5.970 4.976 0.994 1.213

24 5.380 5.519 -0.139 -0.169

25 6.180 5.580 0.600 0.732

26 5.930 5.831 0.099 0.121

27 5.740 5.996 -0.256 -0.312

28 5.950 5.782 0.168 0.205

29 5.710 5.834 -0.124 -0.152

30 6.290 5.772 0.518 0.632

31 5.350 6.028 -0.678 -0.827

32 7.620 5.689 1.931 2.356

33 9.300 6.691 2.609 3.184

34 6.650 8.604 -1.954 -2.383

35 7.300 7.664 -0.364 -0.444

36 8.260 7.010 1.250 1.524

37 6.280 7.848 -1.568 -1.913

38 6.290 7.029 -0.739 -0.902

39 5.460 6.253 -0.793 -0.968

40 5.170 5.755 -0.585 -0.714

41 5.670 5.252 0.418 0.510

42 5.090 5.440 -0.350 -0.427

43 5.950 5.286 0.664 0.810

44 6.280 5.578 0.702 0.857

45 8.090 6.117 1.973 2.407

46 5.770 7.342 -1.572 -1.918

47 6.580 6.654 -0.074 -0.090

48 5.980 6.227 -0.247 -0.302

49 6.530 6.184 0.346 0.422

50 6.520 6.280 0.240 0.293

51 6.400 6.491 -0.091 -0.111

52 6.510 6.415 0.095 0.116

53 6.840 6.434 0.406 0.496

54 6.110 6.677 -0.567 -0.692

55 6.389 0.820 4.783 7.996

56 6.279 0.958 4.401 8.156

57 6.322 1.143 4.082 8.563

58 6.305 1.279 3.799 8.812

59 6.312 1.410 3.549 9.075

60 6.309 1.526 3.318 9.301

61 6.310 1.636 3.104 9.517

62 6.310 1.738 2.903 9.717
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Kg. Lui

Observations Stage ARIMA(Stage) Residuals Standardized residuals Standard error Lower bound (95%) Upper bound (95%)

1 76.380 76.380 0.000 0.000

2 75.920 76.346 -0.426 -1.039

3 76.340 76.232 0.108 0.264

4 75.730 76.183 -0.453 -1.105

5 76.410 76.121 0.289 0.703

6 75.650 76.115 -0.465 -1.133

7 77.360 76.121 1.239 3.017

8 77.460 76.517 0.943 2.297

9 77.300 77.474 -0.174 -0.423

10 77.800 77.452 0.348 0.848

11 77.450 77.601 -0.151 -0.368

12 77.260 77.703 -0.443 -1.079

13 78.200 77.428 0.772 1.880

14 77.660 77.767 -0.107 -0.260

15 77.250 78.014 -0.764 -1.862

16 77.480 77.535 -0.055 -0.134

17 77.770 77.425 0.345 0.842

18 77.530 77.683 -0.153 -0.372

19 77.720 77.725 -0.005 -0.011

20 77.760 77.686 0.074 0.181

21 77.780 77.806 -0.026 -0.062

22 77.850 77.836 0.014 0.033

23 77.910 77.880 0.030 0.074

24 77.720 77.945 -0.225 -0.548

25 78.240 77.888 0.352 0.857

26 77.410 78.030 -0.620 -1.511

27 77.700 77.919 -0.219 -0.532

28 77.440 77.613 -0.173 -0.420

29 78.250 77.645 0.605 1.473

30 77.550 77.886 -0.336 -0.818

31 77.640 77.989 -0.349 -0.851

32 77.570 77.659 -0.089 -0.217

33 77.340 77.674 -0.334 -0.814

34 77.250 77.529 -0.279 -0.680

35 77.540 77.365 0.175 0.427

36 77.570 77.453 0.117 0.286

37 77.470 77.621 -0.151 -0.368

38 77.560 77.590 -0.030 -0.073

39 77.610 77.579 0.031 0.075

40 77.790 77.650 0.140 0.340

41 76.790 77.761 -0.971 -2.366

42 77.400 77.389 0.011 0.027

43 77.100 77.142 -0.042 -0.103

44 77.250 77.327 -0.077 -0.186

45 77.470 77.237 0.233 0.567

46 77.220 77.420 -0.200 -0.487

47 77.580 77.420 0.160 0.390

48 77.960 77.455 0.505 1.229

49 78.460 77.825 0.635 1.547

50 78.217 0.411 77.413 79.022

51 78.346 0.453 77.458 79.235

52 78.278 0.548 77.203 79.352

53 78.314 0.601 77.136 79.492

54 78.295 0.663 76.996 79.594

55 78.305 0.713 76.908 79.702

56 78.300 0.763 76.805 79.794

57 78.303 0.808 76.720 79.886
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Kg. Rinching

Observations Stage ARIMA(Stage) Residuals Standardized residuals Standard error Lower bound (95%) Upper bound (95%)

1 23.540 23.540 0.000 0.000

2 23.620 23.520 0.100 0.270

3 23.330 23.496 -0.166 -0.448

4 23.160 23.342 -0.182 -0.491

5 23.020 23.224 -0.204 -0.549

6 23.310 23.149 0.161 0.435

7 22.900 23.176 -0.276 -0.744

8 23.440 23.047 0.393 1.059

9 23.060 23.160 -0.100 -0.270

10 23.720 23.061 0.659 1.779

11 23.260 23.218 0.042 0.114

12 22.950 23.068 -0.118 -0.319

13 23.690 22.980 0.710 1.915

14 23.160 23.150 0.010 0.026

15 24.120 23.024 1.096 2.958

16 23.210 23.254 -0.044 -0.119

17 23.040 22.999 0.041 0.112

18 23.340 22.934 0.406 1.094

19 23.370 22.992 0.378 1.019

20 22.690 22.967 -0.277 -0.746

21 22.530 22.755 -0.225 -0.606

22 22.550 22.672 -0.122 -0.330

23 22.670 22.639 0.031 0.083

24 22.600 22.633 -0.033 -0.088

25 21.890 22.566 -0.676 -1.824

26 22.810 22.354 0.456 1.230

27 22.490 22.548 -0.058 -0.157

28 22.520 22.436 0.084 0.227

29 22.600 22.412 0.188 0.507

30 21.950 22.392 -0.442 -1.192

31 21.780 22.185 -0.405 -1.093

32 21.470 22.092 -0.622 -1.679

33 21.960 21.972 -0.012 -0.032

34 22.470 22.060 0.410 1.105

35 22.490 22.159 0.331 0.894

36 21.530 22.124 -0.594 -1.603

37 21.850 21.849 0.001 0.004

38 22.250 21.895 0.355 0.958

39 21.830 21.959 -0.129 -0.347

40 21.865 0.371 21.139 22.592

41 21.874 0.381 21.127 22.621

42 21.876 0.382 21.128 22.625

43 21.877 0.382 21.128 22.625

44 21.877 0.382 21.128 22.625

45 21.877 0.382 21.128 22.625

46 21.877 0.382 21.128 22.625

47 21.877 0.382 21.128 22.625
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APPENDIX D: Rating Curves 
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