DESIGN AND DEVELOPMENT OF DATA MANAGEMENT SYSTEM FOR
MOTION DETECTION SYSTEM

LIM YU HUNG

A project report submitted in partial fulfilment of the
requirements for the award of the degree of

Bachelor of Engineering (Hons.) Mechatronics Engineering

Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

April 2011

i

DECLARATION

I hereby declare that this project report is based on my original work except for
citations and quotations which have been duly acknowledged. I also declare that it
has not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature :
Name : Lim Yu Hung
ID No. : O8UEB07291

Date

il

APPROVAL FOR SUBMISSION

I certify that this project report entitled “DESIGN AND DEVELOPMENT OF
DATA MANAGEMENT SYSTEM FOR MOTION DETECTION SYSTEM”
was prepared by LIM YU HUNG has met the required standard for submission in
partial fulfilment of the requirements for the award of Bachelor of Engineering

(Hons.) Mechatronics Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor: Mr. Chuah Yea Dat

Date

v

The copyright of this report belongs to the author under the terms of the
copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku
Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2011, Lim Yu Hung. All right reserved.

DESIGN AND DEVELOPMENT OF DATA MANAGEMENT SYSTEM FOR
MOTION DETECTION SYSTEM

ABSTRACT

Fall can be perceived as an abnormal motion which will cause people especially
elderly to suffer from pain and more seriously can affect one’s health. Age
population could not sustain any risk from falling that a normal youngster does
especially at home when everyone is working away from home. There are some
existing fall detection products on the market to assist elderly so that immediate
response can be taken to save a precious life. In this report, a user friendly graphic
user interface is developed to obtain real time data and monitor the motion of user.
Graphs showing the digital code for acceleration in X, Y and Z-axis will be plotted
and the data obtained will be saved in a text file for offline analysis purpose. A tri-
axis accelerometer is used to detect the motion of body and the analogue data from
this sensor is converted to digital value by using analogue and digital converter in
microcontroller. The microcontroller also functions to communicate with personal
computer through wireless module and perform the fall detection algorithm. Motion
is being monitored in real time to detect if there is a fall happens. Simple fall
algorithm using threshold value is developed based on experimental data collected
from back falling, right-side falling and left-side falling. Experiments have also been
carried out for normal daily activities like walking, sitting, squatting and standing
back again and jumping. Buzzer on the hardware will sound and a message will
prompt out on the graphic user interface to alert people nearby so that necessary

action can be taken.

DECLARATION

TABLE OF CONTENTS

APPROVAL FOR SUBMISSION

ABSTRACT

TABLE OF CONTENTS

LIST OF TABLES
LIST OF FIGURES

LIST OF SYMBOLS / ABBREVIATIONS
LIST OF APPENDICES

CHAPTER

INTRODUCTION

1.1
1.2

Background

Aim and Objectives

LITERATURE REVIEW

2.1 Dynamic Fall Detection and Pace Measurement in
Walking Sticks

2.2 PerFallD: A Pervasive Fall Detection System Using
Mobile Phones

2.3 Fall Detection Sensor System

24 Accurate, Fast Fall Detection Using Gyroscopes and

Accelerometer-Derived Posture Information

vi

ii

jii

vi

ix

xiii

xiv

2.5

2.6

2.7

2.8

On-line Automatic Detection of Human Activity in
Home Using Wavelet and Hidden Markov Models
Scilab Toolkits

Fall Detection System for Bather Using Ultrasound
Sensors

Review of Other Works and Existing Commercial
Products

Overall Review

METHODOLOGY

3.1

3.2

Project Work Scope

3.1.1 Feasibility Study

3.1.2 Preliminary Prototype Construction
3.1.3 Writing Source Codes

3.1.4 Testing and Debugging

3.1.5 Data Collection and Fall Detection
3.1.6 Finalised Hardware Construction
3.1.7 Improvement and Development

Milestone Organisation

RESULTS AND DISCUSSIONS

4.1
4.2
4.3
4.4

Installing FTDI Driver

Graphic User Interface (GUI) of MDS

Get Started With MDS GUI

Visual Basic 2010 Source Code Explanation
44.1 Loading Main Form

4.4.2 Input Processing

443 Receiving Data

vii

10

11
12

14
14
14
15
15
15
16
16
16
17

18
18
18
20
24
25
26
27

444 Appending Data Received, Plotting Graphs and

Logging Data Collected
4.4.5 Saving Data to Rich Text File

28
31

4.4.6 Converting Data Collected in Character Form to

Integer

31

447 Plotting Graph Using ZedGraphControl
4.5 MPLAB Source Code Explanation

viii

33
34

45.1 Receiving Command to Start Communicate with

GUI 35

45.2 Convert Analogue Data from Accelerometer into

Digital Data 35

4.5.3 Conversion from Characters to Integer and Sending

Characters to GUI to Display on Text Box 36

4.5.4 Fall Algorithm 38

4.6 Experimental Results 38

4.6.1 Back Falling Result 40

4.6.2 Left Falling Result 42

4.6.3 Right Falling Result 43

4.6.4 Determining Threshold Value 45

4.7 Problem Encountered 45

4.7.1 Conversion from Characters to Integer 46

4.7.2 Signal Noises 48

5 CONCLUSION AND RECOMMENDATIONS 53
5.1 Recommendations 53

5.1.1 Reducing Power Consumption 53

5.1.2 Storing Data in Secure Digital (SD) Card 54

5.1.3 Improve Fall Detection Accuracy Using Additional

Gyroscope 55

5.1.4 Instantaneous Graph Plotting 56

52 Conclusion 57
REFERENCES 58
APPENDICES 60

TABLE

2.1

LIST OF TABLES

TITLE

Overall Review on Six Papers

1X

PAGE

12

FIGURE

1.1

2.1

2.2

23

24

25

2.6

3.1

4.1

4.2

4.3

4.4

4.5

LIST OF FIGURES

TITLE

Motion Detection System (MDS)

Walking Stick Prototype with Gyro and Atmel
EB63 Evaluation Board. Orientation of the Gyro,
Located at the Base of the Stick (Almeida et al.,
2007)

(a) Acceleration Readings in Directions of X-, Y-,
and Z-Axis that are Associated with and Fixed
Regard to the Body of the Mobile Phone. (b)
Mobile Phone Orientation can be Decided by Yaw
(®y), Pitch (0y) and Roll (®,) (Dai Et Al., 2009)

Wrist Fall Detection System (centre suisse
d’electronique et de microtechnique, 2004)

(@) The TEMPO 3.0 Sensor Node; (b) The
Placement of Two TEMPO 3.0 Nodes (Li et al.,
2009)

Functional Diagram of Automatic Detection
System (Tarik Al-ani et al., 2007)

System Composition (Dobashi et al., 2008)

Gantt Chart

GUI of MDS

Accelerometer Non-linearity

Port Setting User Interface when Setup is Clicked
Message Showing Error Occurs

The Designated Location for Wearing the
Hardware

PAGE

10

11

17

19

19

20

20

21

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

Hardware Configurations

GUI Displaying Jumping Motion When the
Software is Started to Communicate in Real Time

Offline Analysis of Data Collected on Jumping
Motion

Message Prompts when there is Fall Identified

Open COM Port on Start Up on Port Setting
Dialog Box

Example of Data Collected and Saved in Rich Text
File

Excel File for Acceleration Calculation
Port Setting Displayed on the Toolstripstatuslabel
ZedGraphControl in Visual Studio Toolbox

Visualization on Data Stored in ADRESL and
ADRESH

Part of ASCII Lookup Table Showing the ASCCI
Code for Character “0-9”

Left-Side and Right-Side Falling Motion

Three Experimental Results for Back Falling with
X, Y, Z-Axis

Three Experimental Results for Left-Side Falling
with X, Y, Z-Axis

Three Experimental Results for Right-Side Falling
with X, Y, Z-Axis

Using Data in Text Box to Perform Character to
Integer Conversion

Data Transferred in Packet
Inaccurate Data Obtained at the Beginning
Wireless Module Troubleshooting

Microcontroller Troubleshooting

22

22

23

24

26

28

29

30

33

36

37

39

42

43

45

46

47

48

49

50

X1

4.26

4.27

4.28

5.1

5.2

53

Data from Two Signal Generator with 1.76V,,, for
Sine Wave and 2V, for Square Wave at 8Hz

a) Data (Sine Waveform) after A/D Conversion to
PC Through Skxbee b) Data Comparison between
the Actual (Signal Generator) with the Calculated
(Skxbee)

a) Data (Square Waveform) after A/D Conversion
to PC through Skxbee b) Data Comparison
between the Actual (Signal Generator) With the
Calculated (Skxbee)

Continuous Mode Configuration if Alert Mode is
Implemented

Reserved Port for Connecting to SD Card

Reserved Port for Connecting to Gyroscope

50

51

52

54

55

56

Xii

ar

Ax

a;

LIST OF SYMBOLS / ABBREVIATIONS

total acceleration of body in digital code
X-axis acceleration in digital code
Y-axis acceleration in digital code

Z-axis acceleration in digital code

Xiii

APPENDIX

LIST OF APPENDICES

TITLE

Visual Basic 2010 Source Code
MPLAB Source Code

Graphs and Figures

X1V

PAGE

60

86

90

CHAPTER 1

INTRODUCTION

Studies have shown that many countries are suffering from the increase of elderly
population and this trend is expected to keep on increasing in the next years (Perolle,
Fraisse, Mavros, and Etxeberria, 2006). Many of elderly people are left alone at
home when their grown up children go out work to earn some living. Accidents
might occur during this time and these home accidents are identified to be falls, fire
and flames, poisoning, choking and suffocation and others (Department of Health,
Social Services and Public Safety UK, 2004). Among them, falls are predominant.
The effect of falls happened on elderly cannot be neglected since it might cause them
to paralyse at old age or even take away their lives if no immediate treatments are

given to them (Tarik Al-ani, Quynh Trang Le Ba and Eric Monacelli, 2007).

As for the reason mentioned, it is good to have a system that can help detect
and even monitor the motion of elderly at home with the convenience brought by
technologies nowadays. This project relates Motion Detection System (MDS) used in
home basis. Motion detection is one particular field in Body Area Network (BAN)
for monitoring the daily activity of a person. In MDS, vital sign sensors, which are
tri-axial accelerometers, are placed on a person’s body with high correlation to
motion. The tasks of MDS are to detect several motions like walking, sitting down,
getting up, and especially the falling types of motions. The vital signals collected
from the two accelerometers are sent to personal computer through wireless modules
and the acceleration-to-time graph will be plotted out automatically in real time. This

information is ready to be analysed by medical expert to identify a fall. Emergency

2

signal will be given out to alert the person’s family and immediate action can be

taken by medical centre to save a precious life at home.

Acceleroameters, microcontroller Wireless module 2 . Medical officer

and wireless moduls 1

Fanuly

Figure 1.1: Motion Detection System (MDS)

The main reason to carry out this project is to reduce the number of
accidental deaths and injuries of elderly caused by fall in home at Malaysia. Other
reasons that lead to the conduction of this project are to reduce the Malaysian
medical expenditure, to solve the problem of lack of rooms in hospitals, and to

optimize the quality of life and independence of elderly.

In this project, only the house stage is of our concern. There are few
challenges in designing and developing a MDS. The most critical part is the
reliability of the system. It is important for the system to retrieve accurate and precise
data from the accelerometer with minimum noise introduced and small time delay as
well (ideally no time delay). Data should not be lost also during the data transferred
from sensors to computer. The plotted graph should clear enough for proper
interpretation. The second challenge is to design ergonomic hardware which does not
intrude the daily life of elderly. It would be ideal to make the hardware not detectable
by others. Besides, data transfer from sensors to computer must not provide
movement restriction to them in their house, wireless modules are thus used in our
system. The other problems would be the respect of privacy and personal data and

the ease of use of the system to users.

1.1 Background

In Europe countries, there are many different home telemedicine systems developed
ranging from very simple medicine-taking reminder, glucose and blood pressure
monitoring system, to complex multi-users interface with Artificial Intelligent in
decision making (Blount et al., 2007). MDS is perceived as a sub-brunch of Home
Telehealth. It is classified as active telemonitoring in Tarik Al-ani et al. (2007) paper
since sensors are attached to a person and alert will be generated when there is a fall.
There are four main groups of technologies used to detect fall: worn device with
immediate detection, worn device to detect unusual behaviour, environment sensing
with immediate sensing and lastly environment sensing to detect unusual behaviour

(Perolle et al., 2006).

In Dai Jiangpeng, Bai Xiaole, Yang Zhimin, Shen Zhaohui and Xuan Dong
(2009), fall detection techniques are classified into three categories by academic
researchers: acceleration based detection, databases based motion detection and
lastly image processing based detection. Acceleration based detection is mostly
based on thresholds and this would be the focus in our project. Databases based
motion detection is a more powerful system which store detected user behaviour for
different activities. Fall can be detected by classifying these activities and the motion
of users are being monitored at the same time. Finally, image processing based
detection is utilising video camera to detect fall. This system sacrifices users’ privacy

and the detection area is somehow restricted as there are “blind spots” in the house.

1.2 Aim and Objectives

The aim of this project is to design and develop a data management system for real
time MDS at home in Malaysia which can be modified to suit the users’ and

developers’ requirements as compare to existing commercial products. The data

4

management is divided into to two levels, low and high levels. Low level is
responsible for data acquisition from accelerometers’ input signals to computer and
high level is converting these raw data into useful information and display on
Graphic User Interface (GUI) with clear and proper indications. Simple fall detection

algorithm will also be developed in this level.

There are several objectives to be achieved along with the aim throughout
this project. Among them are:
o To develop an effective and accurate data acquisition system.
o To develop a simple and user-friendly Graphic User Interface.
o To design a real time data acquisition system.

o To design a durable MDS for appropriate working hours.

This report is organised as follows: Chapter 2 Literature Review, review on
six related papers with comments; Chapter 3 Methodology, steps taken to complete
this project; Chapter 4 Results and Discussions, design of GUI, source code
explanations, experimental results, fall detection algorithm and problem encountered;
Chapter 5 Conclusion and Recommendations, conclude the overall design and

propose improvement future development.

CHAPTER 2

LITERATURE REVIEW

2.1 Dynamic Fall Detection and Pace Measurement in Walking Sticks

Almeida Oscar, Zhang Ming and Liu Jyh-Charn (2007) proposed dynamic fall
detection system and pace measurement into walking sticks and canes using a
gyroscope and Atmel EB63 evaluation board. This system detects fall by using a
simple threshold method with defined stick’s stability. Alarm will be given out when
the stick’s stability equal or larger than the falling threshold and the reset button is
not pressed by the user in specific time. The user’s walking pace is also monitored by
the detection system, such that the user will be warned when travelling at paces
above his or her normal speed. This system is able to preserve energy with different

polling frequency levels.

The overall system is good but the major concern is on the walking stick and
processing board. As the data collected from the gyroscope is transmitted through
wire as shown in the figure, it might restrict the movement of elderly. It might even
cause elderly to fall down if the wire is not being placed properly. Besides that, the
size of the processing board is considerably large for elderly to carry even its weight
might be low. This design is somehow intrusive to elderly as other people can notice
the device easily. The propose solution will be making the data transfer between the
stick and processing board wirelessly since no one would carry the stick for whole
day and waste their effort taking off the system from their body if they just want to
leave the stick for a moment. The idea is similar to the Bluetooth earphone used

nowadays.

On the idea of fall detection algorithm, it is worth for referencing as it is
based on simple threshold value to detect a fall. However, different falling type
might result in different threshold values. For instance, the threshold value might
different if the elderly is holding the walking stick while falling down compare to if
he or she let the walking stick to fall freely. False positive (fall is detected but it did
not occur in actual case) might happen if the walking stick is lifted and rotated from
vertical to horizontal orientation by the users. Perhaps a pressure sensor is required to
install at the base of the stick in this situation to ensure no alarm will be given out to

prevent false detection.

Figure 2.1: Walking Stick Prototype with Gyro and Atmel EB63 Evaluation
Board. Orientation of the Gyro, Located at the Base of the Stick (Almeida et al.,
2007)

2.2 PerFallD: A Pervasive Fall Detection System Using Mobile Phones

Dai et al. (2009) proposed a fall detection system using mobile phone with integrated
accelerometer. Since this paper is using mobile phone as the detection devices, the
major focus is on fall detection algorithm, alerting function and user interfaces

design. The fall algorithm is based on the amplitude of total acceleration of phone

AX

body| A, | =\/ Ty ‘A},‘z +|A,|” and the amplitude of acceleration at the absolute

7

vertical direction |AV| = ‘Ax sin@, + A sin@ + A cosf cosd | . If both parameters

exceed the thresholds set within a period of time, alarm will be triggered. Users can

change the setting of the system through the designed interface also.

Using mobile phone platform to detect fall is a new and good system as one
can get a mobile phone with multi-functions at affordable price. The major issue in
this system is that will using only one accelerometer integrated in the mobile phone
enough for detecting a real fall. Noises might be generated and if the system solely
depends on one accelerometer might not be that reliable. Moreover, as stated in the
paper that there are three possible positions that a user can place the mobile phone,
so the threshold set in fall algorithm might not be the optimum one. The area of

sensing should be fixed in order to have more accurate fall detection rate.

Y-axiz

@ (b)
Figure 2.2: (a) Acceleration Readings in Directions of X-, Y-, and Z-Axis that
are Associated with and Fixed Regard to the Body of the Mobile Phone. (b)
Mobile Phone Orientation can be Decided by Yaw (®), Pitch (®y) and Roll (®,)
(Dai Et Al., 2009)

2.3 Fall Detection Sensor System

In centre suisse d’electronique et de microtechnique [csem] (2004) paper, the
detection system is integrated in the wrist watch. This device consists of a
microprocessor (MSP430) with two Micro-Electromechanical System (MEMS)
sensors which function as ADXL321 accelerometer. The user interface is LCD
screen and an integrated vibrator for alert the user that a fall has been detected and

alarm will soon be sent. Data can be transmitted over short distance using Bluetooth

protocol but this function is for future development. The acceleration signals are
recorded and store in flash memory. No real time monitoring is mentioned in this
paper currently. The system is tested offline using MATLAB. The algorithm used in
this paper is similar to that in Dai et al. (2009) without the use of the amplitude of
absolute vertical direction. It uses the time dependent acceleration vector with

selected threshold to discriminate between two classes: fall and no fall.

The main advantage of placing fall detector at wrist is the possibility of
wearing the device at night. The major drawback is the signal processing challenge
of estimating a fall from wrist acceleration data, due to the strong accelerations
experienced by the forearm during daily-life activities. This system is only suitable to
detect intentional fall but not unintentional fall which contributes the most in the

motion of a person.

Figure 2.3: Wrist Fall Detection System (centre suisse d’electronique et de

microtechnique, 2004)

2.4 Accurate, Fast Fall Detection Using Gyroscopes and Accelerometer-

Derived Posture Information

In this paper (Li et al., 2009), a fall detection system using both accelerometers and
gyroscopes is proposed. Human activities are divided into two categories: static
postures and dynamic transitions. By using two tri-axial accelerometers at separate
body locations, the system can recognize four kinds of static postures: standing,
bending, sitting, and lying. Motions between these static postures are considered as

dynamic transitions. Linear acceleration and angular velocity are measured to

9

determine whether motion transitions are intentional. If the transition before a lying
posture is not intentional, a fall event is detected. In addition, this solution features

low computational cost and real-time response.

Although this system gives high fall detection rate, the results obtained did
not reflect the reliability since data are only collected from three male people. There
are several thresholds set in the algorithm based on the data collected from these
people and these thresholds might not applicable to other users especially elderly in
detecting real fall. Quality and quantity of the data sets are important and cannot be
neglected. It is advised to widen the experiment area in order to obtain more accurate
data and thresholds. Besides, this system also has difficulties in differentiating

jumping into bed and falling against wall with a seated posture.

fa) (k)
Figure 2.4: (a) The TEMPO 3.0 Sensor Node; (b) The Placement of Two
TEMPO 3.0 Nodes (Li et al., 2009)

2.5 On-line Automatic Detection of Human Activity in Home Using

Wavelet and Hidden Markov Models Scilab Toolkits

10

In Tarik Al-ani et al. (2007) paper, one ADXL202E bi-axial accelerometer is
connected to a PIC16F876 microcontroller to gather the raw data and sends the
acceleration-to-time information to a personal computer. This information is further
processed by the computer using MATLAB and SCILAB software. The whole
system is trained and tested using Wavelet and Hidden Markov Model, an Artificial
Intelligent (AI) approach to distinguish four different human activity events: walk,

fall during walking, fall starting from static position and sitting down-getting up.

This system is using algorithm that is more complicated than other previously
discussed. It requires more computational power and memory storage for storing
training data sets. This system is ideal for motion monitoring but as for simple fall
detection, using this system is not that suitable and appropriate. It could be taken as a

good reference for future development.

wireless conneXion

sensar f——" ———7—" PC Feature extraction

1 ‘,

@ HWIM training

v

Figure 2.5: Functional Diagram of Automatic Detection System (Tarik Al-ani et

al., 2007)

2.6 Fall Detection System for Bather Using Ultrasound Sensors

This fall detection system 1is using two ultrasound sensors (KEYENCE
CORPORATION, UD-330) located at the roof of the bathroom, (Dobashi Hiroki,
Tajima Takuya, Abe Takehiko, Kimura Haruhiko, 2008). This paper describes
detection of bather’s fall in bathroom at Japan which is related to their custom to take

hot bath and soak in bathtub. The principle of fall detection in this system is by

11

calculating the behaviour identification rate using the height of bather head. The
height of bather when he or she is sitting is taken as the threshold for determining
whether the bather is standing or fell down. When the identification rate is high, this

indicates that an accident has been occurred.

The issue to be concerned is whether the sensors are sensing the bather or
other objects in the bathroom. When using this system, the area of concern must be
well defined to make sure that the sensors are sensing the bather, not other things.
Hence, everything inside the bathroom must be identified so that the unwanted data

will be filtered before the further analysis is carried out.

This system is very practical to detect fall of bather since the bather cannot
wear any device when he or she is taking bath. However, it might not suitable to be
implemented throughout the entire area of house. It would be a very expensive
system to implement because many sensors will be used due to the sensing range for
these ultrasound sensors is only from 400mm to 3000mm as stated in the paper. The

idea of using ultrasound to detect fall is worth to take as a reference.

Front Rear
Sensor Sensor
o o]

A .
/ Standi [lP,

Shower

2200[mm]
lop Right
Tumblad ;
! ; e 5 =4) s
Left %,/ 950[mm)]
1400{mm)

Figure 2.6: System Composition (Dobashi et al., 2008)

2.7 Review of Other Works and Existing Commercial Products

12

In Miaou Shaou-Gang, Sung Pei-Hsu, and Huang Chia-Yuan (2006) paper, they
propose fall detection system using omni-camera. Image of a person is captured and
this image will go through image processing with personal information of each
individual taken into consideration to detect fall. Although the camera used is
capable to capture 360° scene, several cameras will be needed to install in the entire
house since there are different partitions in a house (rooms, toilet, kitchen and etc.).
This is a costly system to be implemented and privacy will need to be intruded.
Besides that, Fu, Z., Culurciello, E., Lichtsteiner, P., Delbruck, T. (2008); Sixsmith,
A. and Johnson, N. (2004); also propose capturing images of people to detect fall
based on image processing techniques. Such approaches have the same limitations

mentioned above with moderate fall detection rate.

There are some commercial health monitoring products such as Philips’
Lifeline uses a help button to issue medial alerts when the user falls. However, when
a really serious fall happens, people may be in unconscious state and not able to push
the button. Experiments have been carried out in Dai et al. (2009) paper on the
commercial product provided by Brickhouse. The results show that this system has
high false negative (29.9%) in backward falls. Meanwhile, the false positive is also
high (21.9%). This product not only incapable to detect real fall, but it is bringing
inconvenience to elderly as they need to reset the product every time a false alarm is

triggered.

2.8 Overall Review

Table 2.1: Overall Review on Six Papers

Paper Method Outcome
Dynamic Fall e Walking sticks and canes with a Able to identify a
Detection and Pace gyroscope and Atmel EB63 fall even the stick
Measurement in evaluation board to detect fall and | does not totally lie
Walking Sticks measure pace. on the floor

e Fall is identified when the velocity | horizontally.

13

exit the defined threshold.

PerFallD: A Pervasive
Fall Detection System
Using Mobile Phones

Mobile phone with integrated
accelerometer to detect fall and
send emergency signal

Fall algorithm is based on the
amplitude of total acceleration of
phone body and the acceleration at
the absolute vertical direction. Fall
is identified if both parameters

exceed the thresholds defined.

Able to detect
forward, lateral,
backward fall with

different accuracy.

Fall Detection Sensor

System

Wrist watch to detect fall.
Detect fall offline based on the

acceleration of wrist watch.

Only able to detect

intentional fall.

Accurate, Fast Fall
Detection Using
Gyroscopes and
Accelerometer-
Derived Posture

Information

Detect fall by placing
accelerometers and gyroscopes at
chest and thigh of a person.
Threshold-based fall detection.

Able to detect
different fall type
except falling
against wall and

jumping into bed.

On-line Automatic
Detection of Human
Activity in Home
Using Wavelet and
Hidden Markov
Models Scilab
Toolkits

Bi-axial accelerometer and
microcontroller to collect data and
detect fall using Wavelet and
Hidden Markov Models Scilab
Toolkits.

Fall is detected base on

classification.

Able to distinguish
walk, fall during
walk, fall start
from static position
and sitting down-

getting up.

Fall Detection System
for Bather Using

Ultrasound Sensors

Ultrasound installed in bathroom to
detect fall.

Threshold-based fall detection
using the sitting position as the

threshold.

Detect fall in a
place installed with

SENsor.

CHAPTER 3

METHODOLOGY

3.1 Project Work Scope

MDS is only focusing on real time motion detection, fall, in a house. Wireless
communication modules, SKXbee with Xbee, which range up to 30m is used for data
transfer between microcontroller PIC16F877A and personal computer. This range is
far enough for a common size of house of 40 feet x 80 feet. Raw data from
accelerometers is transmitted to PIC16F877A via Port A and Port E and the coding is
done using MPLAB in C language. The data received by PIC will be sent through
one set of SKXbee 1 wirelessly to another SKXbee 2. Finally, data received on
SKXbee 2 is transmitted to computer via Universal Serial Bus (USB). Data will be
processed, analysed and displayed on GUI using Visual Basic. Fall is detected by
simple algorithm written in C. This paper only focuses on software part. Hardware

parts will only be explained in brief.

3.1.1 Feasibility Study

The first step will be studying the past and most recent articles regarding the
reliability, requirements and implementation of the system. Different way of
detecting fall like using ultrasound, accelerometer, gyroscope, video camera or others
will be identified. Besides that, algorithms for fall detection are also studied. After

studying works from others, practical surveys will be carried out on medical officers

15

such as doctors and nurses and elderly people who will be the user to decide the

detailed design of the system.

3.1.2 Preliminary Prototype Construction

Price and specification of the components in the design are considered before making
purchase. Then, the circuit will be built on the breadboard for testing before

soldering it.

3.1.3 Writing Source Codes

Based on the hardware built, source codes will be written in C language because it is
easy to use, understand and user-friendly. Visual Basic is used to create the GUI by
importing the Visual C into it. The source code will allow the system to collect real
time data and plot out the corresponding graph with the given interval, i.e. every

second or every minute.

The devices that required programming are:

o Microcontroller which converts the sensors analogue output to digital input
before transmitting to transceiver module.

o Reading the data transmitted to PC through USB by certain interval.

o Algorithm for detecting fall.

3.14 Testing and Debugging

Each stage of programming will need to be tested to see whether the output data is
correct by verification process. For instant, a mass is dropped from specific height to

obtain its velocities and also its acceleration. The obtained experimental values are

16

compared with the designed software value and check. If problem encountered,

troubleshooting will be performed.

3.1.5 Data Collection and Fall Detection

After the entire source codes are verified to be working correctly, data with different
motions are collected for human to analyze. The data is represented in a graph form
and might be compared with other existing sources. Data will be collected repeatedly
as to see the system persistency and consistency. When the data collected is good
enough, fall simple detection algorithm will be developed. Before that, the data

might need to be smoothened to further reduce noise generated.

3.1.6 Finalised Hardware Construction

The overall hardware including the circuits and casing will be built out after the code
written has been tested and debugged. Circuit path will be drawn out using Altium
and all the components will then be soldered on printed circuit board (PCB). The
arrangement of components is organised nicely in order to make the hardware as

small as possible to comply with non-intrusive hardware design.

3.1.7 Improvement and Development

More user-friendly and systematic code as well as GUI will be developed. In the
software part, artificial intelligent (AI) might be developed also if all the data
transmission and retrieval are accomplished. This Al is important and it serves as to
detect and identify which raw data obtained represent the patient falls and alarming
signal such as text message to their family as well as the hospital to take immediate

action.

3.2 Milestone Organisation

17

Task

2010

2011

Jun - |Jul Aug |Sept |Oct |Nov

Dec

Jan

Feh

Mar

Apr

Feasibility Study

Preliminary Prototype Construction

Writing Source Code

Trimester one report preparation

Testing and Debugging

Data Collection and Fall Detection

Finalised Hardware Construction

[mprovement and Development

Report Compilation and Presentation

Figure 3.1: Gantt Chart

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Installing FTDI Driver

It is important to install this driver on PC so that the hardware can communicate with
PC. Since SKXbee is using FTDI chip as serial port to USB converter, PC must be
equipped with this driver in order to create a virtual COM port for communication
among them. This driver is free and can be downloaded from a website

(http://www.ftdichip.com/FTDrivers.htm) and the driver installation guide also

provided in the website.

4.2 Graphic User Interface (GUI) of MDS

In order to make the user interface of the MDS to be as user friendly as possible,
there is not much features in the interface so that user does not need to key in many
things for the configurations. Figure 4.1 shows the GUI when user double clicks on

the .exe extension.

Fall Detection Control

Fle Setup

] v 2

aecelarafion 1 veru Tima Reeelration y veris Tma sccalaration zveru Tma
1z 1z

i
eleraton
rat

Open COM Part

COMT7 9800 N8 1 Handshake: Mone CLOSED

Figure 4.1: GUI of MDS

On the left, it is a text box showing the data received from the three axes
accelerometer through microcontroller. There are three graphs shown in Figure 4.1,
each of them representing the X, Y and Z-axis acceleration of a human body
respectively. The data plotted on the graph is the direct conversion of the analogue-
to-digital values representing the output voltage of the accelerometer. In order to
obtain the actual acceleration values, it can be done by using the Excel file,
“Acceleration Calculation”, provided. The approximate acceleration value is almost

linear to the output voltage produced as given in the data sheet.

Parameter Conditions Min Typ Max | Unit
SENSOR INPUT Each axis
Measuremeant Range 13 +36 g
< Tommearty % of fullscale 103 R ——
Package Alignment Error 1] Degrees
Interaxis Alignment Error 0.1 Degreas
Cross-Axis Sensitivity! t] %

Figure 4.2: Accelerometer Non-linearity

At the bottom of the program, there is a tool strip status label showing the
selected port which has been connected, baud rate, parity bit, number of data bits,
number of stop bit, handshake and comport status (open or closed). All of these

parameters can be changed except parity bit, number of data bits and number of stop

20

bit through setup menu strip. User can choose which port he/she would like to
connect to if there is more than one com ports. User can also set the baud rate so that
it synchronizes with the baud rate of SKXbee module. This interface has been
specified that no parity bit is required, eight data bit to be sent and read and one stop

bit. Figure 4.3 shows Port Setting user interface when setup menu is clicked.

Fall Detection Control Port Settings

File | Setup
— 1 i
Set up port parameters Accaleration 1 Veraus Tims JCOIM17 9500 e
Handshaking
|:| Open COM port on startup
a) b)

Figure 4.3: Port Setting User Interface when Setup is Clicked

Lastly, there are two command buttons and error display box. The functions
of both command buttons are to open the selected COM port and clear text in the text
box respectively. Error display box will display exceptions that are encountered in
the software so that user understands what causes the error to be happened. Figure
4.4 shows that the COM port has been disconnected when the program is still

running.

Exception: The port 'COM17' does not exist. Module: ComParts. hMethad: WyinlOErrar
Open COM Port

Clear Text

on] |

ol ol ol ol o1 ol ol
Time

on] |

ol ol ol ol ol ol ol
Time

oo 1
ol ol

Figure 4.4: Message Showing Error Occurs

4.3 Get Started With MDS GUI

21

To start with the MDS, user will have to wear the processing board, which is the PIC
microcontroller together with the SKXbee wireless module, on the waist as shown in
the Figure 4.5. Sensor is specified to be placed at middle of the breast of user for
detecting accurate motion acceleration. After putting on the hardware, user has to
turn on the system by pushing the on off button on the board. When the board is
powered up, user will have to double click on the software and the Fall Detection
Control GUI will appear. User is required to do simple setting on the software as
mentioned previously. The bit rate and handshaking option will always remain at
“9600” bit rate and “None” respectively since the microcontroller and wireless
module is preset into this condition. User should select which port to be opened
while setting the configuration. Usually the port to be connected will display on the

first item in the list box.

Figure 4.5: The Designated Location for Wearing the Hardware

After doing the necessary setup, user needs to click on the “Open COM Port”
button and text box will be enabled at the same time. User must key in “ok” in the
text box and microcontroller will starts to collect data from sensor and transmit the

data to PC wirelessly.

22

Figure 4.6: Hardware Configurations

Figure 4.7 shows the GUI when microcontroller is communicating with PC in
real time. The graph plotted in GUI in real time is in discrete state and hence the
points in between are not joined. In this report, the data obtained has not gone

through data reconstruction state in digital signal processing.

F%] Fall Detection Control

Fle Setup
oy z
1551 04400505 Ageleration 1 Vari Time i &ggeleration yVeris Time - ‘Bgealerstion zVerw Tima
0551 04400591
0551 04400530 B . .
0551 04400530 = o *
0551 0444 0551 - By - ?2
0551 04400531 " Eres 9 o
0551 04400531 . %& " i ?"ﬂ
0551 04400591 Fra AR £ o H £
0551 0440 0591 L. # 3 . e -—-——w—“
0551 04400591 2 s = 1 2 N
0551 04400531 m LR . w
0556 0445 0531 " H
[R51 04400588 - g "
0551 04400585 m . ™ : F
0547 04400585
DSSD 0440 UEEE =2 “nmz | nuaa | umz -]
15510440 0550+,
COM17 8600 WA 1 Handshake Mome OFEM

Figure 4.7: GUI Displaying Jumping Motion When the Software is Started to

Communicate in Real Time

User can use any Excel package for plotting the graph offline and analyze it.
User might need to do some setting before the graph can be generated in the Excel

file. Below shows the step for drawing the graph:

23

e Start any Excel package

® Browse to save data in C:\ drive. Office button -> Open. Change File of type
to All Files and select the corresponding “...Fall Detection Data Log”

e Select Delimited and click Next

e Select Delimited as Space and click Next

¢ Click Finish. User should see the collected data in an Excel sheet

e Highlight the X-axis column (column A), Y-axis column (column B) and Z-
axis column (column C).

e C(Click Insert in top menu -> Line Chart -> 2D line

e Right click on the graph -> Select Data -> Click on Series 1 -> Click Edit ->
Enter the series name as x

e Repeat for y and z-axes

e The graph showing the acceleration of three axes can be plotted in one as in

Figure 4.8 if user would like to combine the graphs

1200

1000

200

600 = N e
M\]Nﬁ .
~ ! u§;= ¥
= H gL =

e NS Y :

200 .}

|
0
AN O MM~ AN oMM~ AN OMS AN MmN AN DN~ =N o™
AN s N~ 000 NS N W N MM N WS N M N WSO
L B B B e T B o o B e I B e B B e I o B T o B S I 0 I o I a o]

Figure 4.8: Offline Analysis of Data Collected on Jumping Motion

User can let the system to run on its own after doing the setup and MDS will
monitoring the motion in real time. If fall is detected, a beep will be sounded and a
message will be prompted to alert people in the house (Figure 4.9). Buzzer on the
hardware will also be sounded continuously to alarm family members in the house

that the elderly has fallen down. Buzzer will sound until the reset button is pressed to

24

disable the alarm. Besides disabling the alarm, user also has to press the reset button
if he/she wishes to stop the whole system instead of only closing the software on PC.
If user would like to continue with the monitoring, user has to clear the text box

using the “Clear Text” button before keying in “ok” to start monitoring.

Fall Detected!!! X

Fall has been detected!
Immediate action musk be taken!

Figure 4.9: Message Prompts when there is Fall Identified

44 Visual Basic 2010 Source Code Explanation

SKXbee module is connected to PC via USB for more user friendly solution to ease
user to explore the possible development application. There is a USB to Universal
Asynchronous Receiver Transmitter (UART) converter chip on SKXbee wireless
module, FTDI FT232RL, which offer easy yet reliable communication. This
converter will communicate with PC by generating a virtual COM port on PC. Thus,
communicating with SKXbee wireless module with PC is actually communicating

through virtual COM port instead of USB.

MDS GUI is developed by using Visual Basic 2010 which is able to
communicate with the wireless module via COM port driver on PC that used by
FTDI FT232RL. The concept is same as communicating SKXbee with PC using
Windows HyperTerminal. There are several parts to take note in the development of
the GUI such as COM port communication, text to integer conversion, graph plotting
and data logging. Fall detection algorithm is developed on the PIC microcontroller
instead of this GUI to detect fall and send alert. The fall algorithm will be discussed

in later section.

25

44.1 Loading Main Form

Once the program is executed, Form1 which is the Main Form will be loaded and the
GUI will be showed. It will go through a routine for finding and accessing COM port.
“MyPortSettingDialog” is defined to Class which will provide a dialog box for
viewing and selecting COM ports and parameters as shown in Figure 4.3 b). A timer
is used to check for any changes on the COM port at every 1000 milliseconds
interval. Timer is turned off at the beginning and will be started in

“SetlnitialPortParameters” routine if there is no COM port saved previously.

“InitialDisplayElements” initialized the text colour in text box as shown in
Figure 4.1 to be red for transmitting data. The initial port parameters are set based on
the COM port being detected on the PC. COM port displayed on the GUI will always
be the one lastly used by user. If the saved COM port is not detected, this program
will search for other COM port on the PC and display the corresponding parameters.
“No COM ports found. Please attach a COM-port device.” message will be displayed

to prompt the user that there no any port being connected.

User can specify whether he/she wants to open the COM port on start up as
shown in the Figure 4.10. Upon loading the Main Form, the Open COM port on start
up check box will also be checked. The COM port will be open once the program is
started and user does not need to click on the “Open COM Port” button. Lastly, three
graphs will be initialized as well to set the desired form of appearance as well as the

axes labelling when the form is loaded.

Private Sub Forml_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Lload

Show()
UserPortl = New ComPorts
MyPortSettingsDialog = New PortSettingsDialog

tmrLookForPortChanges.Interval = 1000
tmrLookForPortChanges.Stop()

InitializeDisplayElements()

26

SetInitialPortParameters()

If ComPorts.comPortExists Then
UserPortl.SelectedPort.PortName = _
ComPorts.myPortNames (MyPortSettingsDialog.cmbPort.SelectedIndex)

If MyPortSettingsDialog.chkOpenComPortOnStartup.Checked Then

UserPortl.PortOpen = UserPortl.OpenComPort()

rtbMonitor.Enabled = True
AccessForm("DisplayCurrentSettings", "", Color.Black)
AccessForm("DisplayStatus"”, "", Color.Black)

Else
DisplayCurrentSettings()
End If
End If

AddHandler ComPorts.UserInterfaceData, AddressOf AccessFormMarshal
AddHandler PortSettingsDialog.UserInterfaceData, _

AddressOf AccessFormMarshal
AddHandler PortSettingsDialog.UserInterfacePortSettings, _

AddressOf SetPortParameters

CreateGraph(zgl, zg2, zg3)
End Sub

Bit Fiate

'a600 v

Handzhaking

| Mone w | QK
%L | Open COM port on startup

Figure 4.10: Open COM Port on Start Up on Port Setting Dialog Box

4.4.2 Input Processing

Private Sub rtbMonitor_TextChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles rtbMonitor.TextChanged

ProcessTextboxInput()
End Sub

Private

Dim
Dim
Dim
Dim

27

Sub ProcessTextboxInput()

ar As IAsyncResult
msg As String
textLength As Integer
userInput As String

If ((rtbMonitor.Text.Length > userInputIndex + _

Else

End

UserPortl.ReceivedDatalLength) And ComPorts.comPortExists) Then
userInput = rtbMonitor.Text

textLength = userInput.Length - userInputIndex

userInput = rtbMonitor.Text.Substring(userInputIndex, textLength)
msg = DateTime.Now.ToString

ar = UserPortl.WriteToComPortDelegatel.BeginInvoke _

(userInput, New AsyncCallback _

(AddressOf UserPortl.WriteCompleted), msg)

AccessForm("UpdateStatusLabel”, "", Color.Black)

UserPortl.ReceivedDatalLength = @

If

userInputIndex = rtbMonitor.Text.Length

End Sub

4.43 Receiving Data

When there is data received from SKXbee via COM port, the above routine will be

executed. Try...Catch statement has been used to provide a way to handle some or all

possible errors that may occur in a given block of code, while still running code. If

there is no error, the “RaiseEvent” will trigger the event of displaying new received

data on the text box and plotting the graphs on GUI. Error message which is known

as exception will be displayed in red text as shown in Figure 4.4.

Friend Sub DataReceived(ByVal sender As Object, _

Dim

Try

ByVal e As SerialDataReceivedEventArgs)

newReceivedData As String

28

newReceivedData = selectedPort.ReadExisting
receivedDatalength += newReceivedData.LlLength

RaiseEvent UserInterfaceData("AppendToMonitorTextBox", _
newReceivedData, Color.Black)

Catch ex As Exception
DisplayException(ModuleName, ex)
End Try
End Sub

4.44 Appending Data Received, Plotting Graphs and Logging Data Collected

Once the event has been raised, there are three possible cases or actions can be taken
to perform some defined tasks. For case “AppendToMonitorTextBox”,
“rtbMonitor.AppendText(formText)” functions to append the data received from
SKXbee on the text box named rtbMonitor. The data collected is also being saved in
a rich text file for offline analysis purpose. The graphs can be plotted out using Excel
same as doing offline analysis using SD card explained in section 4.2. Figure 4.11
shows the raw data saved on C:\ drive. First, second and third column corresponds to

X-axis, Y-axis and Z-axis respectively.

0542 06535 0546
0545 06535 0547
0547 0655 0547
0547 06855 0546
0544 0e55 0545
0540 0654 0545
0547 06855 0545
0547 0855 0547
0547 0e33 0547
0542 0634 0547
0544 0654 0545
0547 065335 0547
0547 0655 0547
0546 0655 0545
0542 0855 0547
0548 0655 0547
0545 0655 0545
0547 0855 0530
0543 0633 0545
0544 0635 0547
0547 06535 0547

Figure 4.11: Example of Data Collected and Saved in Rich Text File

29

The approximate acceleration of each axis can be computed by using the
Acceleration Calculation Excel file provided as mentioned in section 4.1. Figure

below show a value of 542 corresponds to an acceleration of 2.11m/s.

Data obtained from graph
542 (Insert a value here)

Corresponding output voltage
1.48348 V

Approximate acceleration
0.214663 g = 2.105842 m/s2

Figure 4.12: Excel File for Acceleration Calculation

The While...End While statement used in this program code session is to
check whether there is a fall detected. The detection algorithm is done by the PIC
microcontroller and when there is a fall detected, a character “e¢” will be sent out to
this GUI. Once this GUI detects character “e”, a beep will be sounded and a message
box will prompt out alerting others that there is a fall been detected. On the hardware
side, there is a buzzer attach on the board and the buzzer will sound to alert other
family members in the house that the people wearing this MDS has fell down and

immediate action must be taken.

“Convert](formText.Length, formText)” converts the data received from
microcontroller, which is in character form into integer so that real time graphs can

be plotted in the GUI.

For case “DisplayStatus”, status will always be updated through the rtbStatus
in Figure 4.4. For case “DisplayCurrentSettings”, port’s configuration and the
parameters will be displayed on ToolStripStatusLabel at the bottom of the GUI as

shown in Figure 4.13.

30

Clear Text

COM17 HB00 M &1 Handshake: Mone CLOSED

Figure 4.13: Port Setting Displayed on the Toolstripstatuslabel

Private Sub AccessForm(ByVal action As String, _
ByVal formText As String, ByVal textColor As Color)

Select Case action
Case "AppendToMonitorTextBox"

rtbMonitor.SelectionColor = colorReceive
rtbMonitor.AppendText(formText)

SavetoRichTextFile(formText)

While count < formText.Length And fall = False
If formText.Substring(count) = "e" Then

Beep()
MsgBox("Fall has been detected!" + _

a + "Immediate action must be taken!",
CType(MessageBoxButtons.OK, MsgBoxStyle), _
"Fall Detected!!!")
fall = True
End If
count += 1
End While

count = @
fall = False

Convertl(formText.Length, formText)
rtbMonitor.SelectionColor = colorTransmit
Case "DisplayStatus"
DisplayStatus(formText, textColor)
Case "DisplayCurrentSettings"
DisplayCurrentSettings()
Case Else

End Select
End Sub

31

4.4.5 Saving Data to Rich Text File

When doing real time detection in Continuous Mode, the data collected will be saved
in a rich text file format automatically so that the data can be analyzed offline after
one whole day of system running. This data is useful and crucial for analysing the
fall signal for different falling down patterns and writing a reliable fall algorithm to

detect fall accurately and precisely.

“StreamWriter” is a class in .NET framework library to create and write texts
into a defined file. “objWriter” is declared as one type of “StreamWTriter”, and a valid
path for the file that wants to write to is declared. “Write” is a method to write all the
text into specific file. Data will be saved in C:\ drive and the file name includes the

date of the data collect with “Fall Detection Data Log”.

Private Sub SavetoRichTextFile(ByVal content As String)

Dim fileName As String = "C:\" + DateString + _
" Fall Detection Data Log.rtf"
Dim objWriter As New System.IO.StreamWriter(fileName, True)
objWriter.Write(content)
objWriter.Close()
End Sub

4.4.6 Converting Data Collected in Character Form to Integer

The data transmitted from microcontroller is in the form of character as the
communication between PIC and SKXbee is through UART. Microcontroller is
unable to transmit the integer value of more than 8 bits and the data received could
not be understood by the PC in direct integer form. What the PC can interpret is only
ASCII code. Thus, microcontroller has to process analogue-to-digital data from
accelerometer. The integer values are split in to four characters before PIC
microcontroller sends these data to PC. As a result, conversion subroutine is needed

in GUI in order to be able to plot the graphs.

32

“i = Convert.Tolnt16(data.Substring(i2, 4))” converts four characters to one
integer value. For instance, integer “0542” displayed on the text box in GUI
represents characters “0”, “5”, “4”, “2” and must be converted into “real” integer
value so that graphs can be plotted. After conversion, each X, Y and Z-axis
acceleration graphs will be plotted with respect to time. GenerateGraph() subroutine

is used to draw the graph out using ZedGraphControl.

Private Sub Convertl(ByRef length As Integer, ByRef data As String)

data = storage & data
length = length + length2

While acc <= length And c =1
If length - acc = @ Then
c =20
ElseIf length - acc >= 5 Then
i = Convert.ToIntl6(data.Substring(i2, 4))
d=d+1
If d = 1 Then
GenerateGraph(zgl)
ElseIf d = 2 Then
GenerateGraph(zg2)
ElseIf d = 3 Then
GenerateGraph(zg3)
d=29
End If

i2 = i2 + 5
acc = acc + 5
c=1

Else
acc
c =20
i2 =0
End If
End While

acc + 5

If length - acc < @ Then
length2 = length - acc + 5
storage = data.Substring(acc - 5, length2)
iz =1
ac
C =
Else
storage
length2 =
iz =1
ac
C =
End If
End Sub

0

0
[l ||

1
()

0

n
[l ||

4.4.7

33

Plotting Graph Using ZedGraphControl

ZedGraph is an additional control in Visual Studio .NET. To add this control in

Visual Basic control toolbox, zedgraph.dll and zedgraph.Web.dll files must be

downloaded and added in the project. These files are available online and are a free

source. Once the zedgraph.dll is added, ZedGraphControl will be seen in toolbox.

— -
[=l Dialogs

k Painker

j ColorDialog

j FolderBrowserDialog

A7 FonkDialog

5 OpenFileDialog

ﬁ SaveFileDialog

[+ Wisual Basic PowerPacks

=l General
k Painkter
iﬁ ZediaraphControl

ﬁ: Error List B Ckpuk

ZedGraphControl
Version 5,0,9,41461
JMET Component

Figure 4.14: ZedGraphControl in Visual Studio Toolbox

As mentioned in section 4.3.1, graphs have to be initialized before using.

Each graph is labelled properly with Acceleration, Time and the corresponding graph

Title. Note that the Time-axis type must be changed to “AxisType.Date” in order to

allow the GUI to show correct format of time displayed on the graph.

Private

Dim
Dim
Dim

myPanel.
myPane2
myPanel
myPanel
myPanel
myPane2.
myPane2

Sub CreateGraph(ByVal zgcl As ZedGraphControl, _
ByVal zgc2 As ZedGraphControl, _
ByVal zgc3 As ZedGraphControl)

myPanel As GraphPane
myPane2 As GraphPane
myPane3 As GraphPane

Title.Text
.Text
.Title.Text
.Title.Text

.Title
.XAxis
.YAxis
.XAxis
XAxis.Title.Text
.Title.Text

.YAxis

zgcl.GraphPane
zgc2.GraphPane
zgc3.GraphPane

"Acceleration x Versus Time"
"Acceleration y Versus Time"

"Time"
"Acceleration”

.Type = AxisType.Date

"Time"
"Acceleration”

34

myPane2.XAxis.Type = AxisType.Date
myPane3.Title.Text = "Acceleration z Versus Time"
myPane3.XAxis.Title.Text = "Time"
myPane3.YAxis.Title.Text = "Acceleration”
myPane3.XAxis.Type = AxisType.Date

End Sub

A list of ©point pairs are generated in plotting graph.
“list. Add(DateTime.Now.ToOADate, Convert. ToDouble(i))” add new pair of points
into the list. The time and acceleration values are horizontal and vertical axis
respectively. X, Y and Z-axis acceleration are plotted accordingly and the appearance
of each curve is defined. X-axis acceleration will have blue colour curve, Y-axis and
Z-axis acceleration will have green and red curve respectively. The graph will be

updated each time this routine is called to plot real time graph.

Private Sub GenerateGraph(ByVal zgcvalue As ZedGraphControl)
Dim myPane As GraphPane = zgcvalue.GraphPane
Dim 1list As PointPairlList = New PointPairlList

list.Add(DateTime.Now.ToOADate, Convert.ToDouble(i))

If d = 1 Then
Dim myCurve As LineItem = _
myPane.AddCurve("", list, Color.Blue, SymbolType.Circle)
myCurve.Symbol.Fill = New Fill(Color.Blue)
ElseIf d = 2 Then
Dim myCurve As LineItem = _
myPane.AddCurve("", list, Color.Green, SymbolType.Circle)
myCurve.Symbol.Fill = New Fill(Color.Green)
ElseIf d = 3 Then
Dim myCurve As LineItem = _
myPane.AddCurve("", list, Color.Red, SymbolType.Circle)
myCurve.Symbol.Fill = New Fill(Color.Red)
End If

zgcvalue.AxisChange()

zgcvalue.Invalidate()
End Sub

4.5 MPLAB Source Code Explanation

PIC microcontroller needs to be programmed in order to sample the analogue data
from accelerometer to digital form and communicate with SKXbee through UART.
MPLAB IDE is used to write the program in C and HI-TECH C Compiler is used to

compile the program and to generate the Hex file. It is important to know how PIC

35

microcontroller is programmed so that communication between GUI and PIC can be

fully understood.

4.5.1 Receiving Command to Start Communicate with GUI

PIC microcontroller will only start to communicate with GUI when “ok™ characters

are entered by user. This is done by using While statement as shown.

unsigned char a;

while (1)
{
a = receivel();
if (a == '0o'")
{
a = receive();
if (a == 'k') break;

4.5.2 Convert Analogue Data from Accelerometer into Digital Data

Referring to PIC16F877A datasheet, there are total of eight modules (RAO, 1, 2, 3, 5,
REQ, 1, 2) of analogue to digital (A/D) converter. In the hardware design, RA3 is
connected to a positive 2.8V to provide reference voltage for all the A/D modules
due to the reason that accelerometer only produces output voltage range from 0 —
2.8V. RAO, 1, 2 is connected to the X, Y and Z-axis of the accelerometer
respectively. REO, 1, 2 have been reserved for second accelerometer in the future

development.

Data is sampled for X, Y and Z-axis accordingly and are stored in an integer
array called “SData[]”. Delay is necessary as to allow PIC has sufficient acquisition

time and conversion time. To access RAO, the combination of CHS2, CHS1 and

36

CHSO is “000”. A/D module will start the conversion once ADGO is set to 1. After
the conversion time, converted data will be stored in ADRESL and ADRESH
registers. Data has been configured to be right-justified, making six most significant
bits of ADRESH read as “0” (Figure 4.15). Combination to access RA1 and RA2 is
“001” and “010” respectively (Please refer to PIC datasheet).

unsigned int temp;

CHS2=0;CHS1=0;CHS0=0;

DelayUs (20);

ADGO=1;

DelayUs (20);

if (ADIF)

{
SData[0]=ADRESL;
temp=ADRESH*0b100000000;
SData[0]+=temp;

Diata

A
[|

98 T6543210 bit
lofofofofo] [| [ITTT]I]]

ADEESH ADEESL

Figure 4.15: Visualization on Data Stored in ADRESL and ADRESH

4.5.3 Conversion from Characters to Integer and Sending Characters to GUI

to Display on Text Box

To convert integer to characters, the first thing to do is to split the integer value into
one, tenth, hundredth, and thousandth. This can be done by dividing the integer by 10,
100, 1000 and taking the corresponding remainder values. Below shows an example

of splitting integer value of 1023.

1023
10

% =10remainder 2 (tenth)

=102 remainder 3 (one)

% =1remainder 0 (hundredth)

E =0remainder1 (thousandth)

37

This simple logic is written in code below. SData[0] is an integer array

holding the X-axis data, the data is stored in a temporary register named “Data” in

performing the splitting process. To convert the split integer value into ASCII

character, it is as simple as adding the value by hexadecimal value of 30h.

“display()” function in the code below sends the character to PC and displays it on

text box. This routine is repeated for Y and Z-axis data (SData[1] and SData[2]

respectively) and this process will be repeated again and again until there is fall

detected, then only the PIC will stop getting data from accelerometer.

unsigned int one;
unsigned int ten;
unsigned int hundreds;
unsigned int thousands;
unsigned int Data;

Data=SDhata[0]/10;
one=SDatal[0]%10;
ten=Data%$10;
Data=Data/10;
hundreds=Data%10;
Data=Data/10;
thousands=Data%10;
display (0x30+thousands) ;
display (0x30+hundreds) ;
display (0x30+ten);
display (0x30+one) ;

Dec Hx Oct Html Chr
43 30 060 0
49 31 061 «#49;
50 32 062 2
51 33 063 3
B2 34 064 4
83 35 065 5
54 36 066 6
55 37 067 7
56 38 070 8
E7 39 071 9: 9

0 -] T n s L O

Figure 4.16: Part of ASCII Lookup Table Showing the ASCCI Code for

Character “0-9”

4.5.4 Fall Algorithm

38

Fall can be identified if all three axes acceleration values have exceeded the specified

threshold values. Thresholds are set based on the experimental results being carried

out and it will be discussed in the next section. Square root function has been used to

calculate the magnitude of the total acceleration of body and math.h header must be

included in order to use this function.

#include <math.h>

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

int Threshold = 1112;

long x;

long x2;

long y;

long y2;

long z;

long z2;

int calculated_acceleration;

x=SDatal[0];

X2=X*X;

y=SDatal[l];

Y2=y*yi

z=SDatal[2];

z2=2%7;
calculated_acceleration=(unsigned

int) round(sqrt ((x2+y2+z2)));

if (calculated_acceleration >= Threshold)

{

display (0x65);
while (1)
{
RD1=1;
}

4.6 Experimental Results

It is hard and impossible to carry out the experiments on elderly since “near to real

fall” actions have to be done in order to obtain accurate and precise data. Hence,

39

experiments have been carried out on two young persons, Lim Yu Hung (author) and
Koo Yee Lan. Both are in the age of 22 to 23. The number of experimental results
obtained is small due to time constraint which has been spent on developing the

whole system till collecting data.

Data have been collected for daily activities such as walking, sitting down,
squatting down and standing up back and jumping (refer to Appendix). The
paramount is to obtain falling data. Suitable thresholds that will indicate a fall will
then be obtained. Thresholds finding and setting will be discussed in brief in this
report. Three types of falling patterns, back falling, left-side falling and right-side
falling, have been simulated. Each falling patterns are repeated three times to obtain
the average thresholds. Front falling has not been simulated due to reason that the
hardware is to be wear at front position (Figure 4.17) and it might damage the
hardware. If front falling were to be simulated, proper casing would have to be
designed so that it will protect the hardware and at the same time not hurting the user

who is wearing it during fall.

» Left-side
falling

Right-side
falling

Figure 4.17: Left-Side and Right-Side Falling Motion

40

The threshold value can based on total acceleration of body according to Dai

et al. (2009) paper.

2

2 2
+ +la|

a

X

a),

=
Where
ar = total acceleration of body in digital code
ax = X-axis acceleration in digital code
ay= Y-axis acceleration in digital code

a, = Z-axis acceleration in digital code

4.6.1 Back Falling Result

L V640” +897% + 423> =1180.31 = 1180

iy = N1127 +247 + 2247 =251.50 = 252

Aymax) = V659 + 946 +960° =1500.27 = 1500

A(miny = \/6082 +19% +291%> =674.32 = 674

Bymaxy = V7447 + 496” + 7837 =1188.55 ~ 1189

gy =/5047 + 287 + 2067 = 545.19 = 545

aaverage(max) = 1180 * 15300 *1 189 = 128967 = 1290
_252+674+545 _ 490.33 = 490

aavemge (min)

4.1)

41

Xx=640

1000

6ZZ
EZZ
LTZ
Tz
S0Z
66T
EGBT
LBT
18T
SLT
69T
EST
£5T
15T
SFT
GET
EET
LET
T
STT
60T
E0T
L6
16
S8
64
EL
£9
T4
55
6t
£t
LE
TE
L
6T
ET

—
—
—

a)

Xx=659
7=

1200

1000
8OO
600
400
2

E5Z
LT
4
SEZ
T4 4
EZZ
LTE
112
S0Z
GGT
EBT
LBT
TET
SLT
69T
EST
£5T
T5T
SFT
BET
EET
LT
TZT
STT
60T
E0T
L6
16
S8
GL
EL
£9
18
55
6t
Et
LE
TE
52
6T
ET

—
—y
—

x=504
—Z0
=206

Y
V4

b)

bl g

783

x=744

y=496
V4

Q00
800
700
600
500
300
200
100

Q

400

6ZET
EZZ
[aT4
e
502
GET
EGT
LBT
18T
SLT
69T
E9T
LST
15T
SFT
GET
EET
£ZT
TZT
STT
60T
E0T
LB
16
S8
6L
EL
L9
19
55
[
=4
LE
1€
52
6T
ET

)

42

Figure 4.18: Three Experimental Results for Back Falling with X, Y, Z-Axis

4.6.2 Left Falling Result

O 7747 + 4727 + 248 = 939.87 ~ 940

iy = VAO8” + 6327 +76” = 756.08 = 756

Ao max) = V10232 + 640 + 654> =1372.53 =1373

ymy = /6007 + 6007 + 1887 =860.11~869

Amaxy = 8967 + 4877 + 2847 =1058.60 = 1059

Gy = V6087 + 6117 +252% = 898.05 =~ 898

Gy = 940 +1373 +1059 1124
3
aaverage’(min) = 736 +869 + 898 =841
3
Q00
80O x=T74 / \\
700 v=472
600 &%%4 8 \ Y AW
500 ’Wﬁ\ J\“h—/)’% *N Jﬁv i,
o = = - :"‘ o e v = —

400 ‘ V —
300 x=408 —_—12

Lt/

100

0 T T T
I I - B = e T = B = T = = R = T B T+ Y= B T« N T = B T =T T = - O =R = O Y=
A A NN MM FOMD OO0 OO A AMNMNNMMFIOMEOOR~RN0ODEDN O oo
I I B B B B B B B e e B B = B = = = Y Y]

43

1200 - s
Cx=1023 | -
1000 : N AN
P y=oaU Al
! 1 7 l
I
800 L 7=654 L4 : L
________ rd 1
I
500 /\] e s .

ﬁw T

1 —
400 \\ﬂ‘ y T x=600
200 \/ } 7—60(\

z=188
o TTTTT T
ﬁﬁﬁ
A NN MM SN W W MM~ 00O O A MNMNM M S s WNWW WM M~00N o O A
aaaaaaaaaaaaaaaaaaaaaaa
———————— [N
1000 1 QOL A
T X=690
1 N
1 7\
900 I
—, 1 JA
. y=487 | AN
800 | ; — T
—_ 1 7 I 1
00 . 2=284 .
________ rd
6500 n-__A 1
:w::s:&::m(v :
™ | -
500 A |
400 31 !
J 'u x=608 iz
300 \V
200 y
— 7z=252
o
mm
A A NN Mg g NWNW WM M~D00NN OO A A NN S s WNW W~ M~D00nNn o O
N A Hd A A A A A A NN

Figure 4.19: Three Experimental Results for Left-Side Falling with X, Y, Z-Axis

4.6.3 Right Falling Result

Ay max) = V417% + 586 +819% =1089.98 =~ 1090

i = N3727 +1927 + 5277 = 673.04 = 673

Uy = V4337 + 4322 +1016° =1185.90 ~ 1185

iy =N3277 + 204 +7927 =880.80 =881

44

ey = V2367 +159% +1022% = 1060.88 = 1061

gy = 3122 + 1127 +568” = 657.66 = 658

1090 +1185+1061

aaverage(max) - 3 =1112
aaverage(min) = 673 * 881 il 658 = 737.33 = 737
3
o »
200 o x=417 | N
800 SR \ @
—y=>60—, ik
700 : :],.r’ }/11

600

500

400

300

200

100

0

A-ﬁ—l—\/‘J_ vy v s = S
\\i] —_—
x=372 —

y=192

WD WD W W WD WD oW DWW DDA WD WD WD WD oW
~ A NN MM TN WWDMSMDNODGN oo

O o NN M Mo N0 WwM~M~D0N0noO OO
B s B B B e B e e R R Y B B R R]

~
1200 -
TX=433
| | SO
1000 :‘,_4Q2 ! 4
] 7
1 | ’ |
’ 1
(R 1
Cz=1016 0 [
800 — T
(1 I M
|‘
I
600 A A‘M %
FIF\A/M\N —
‘!; 207 | ==
400 .(X=32/
200 \/ y=
z=792
0
e e e e T
w A NN MM S S NN W~ M~00NN O O A A N MNMMS g WNWNWwW W~ M™~000:
R B R I I B e I I I]

45

1200

x=236
1000 y: l 39

z=1022 /\

8OO

O S ——— __-..._,“'__’d"' -
5 —
‘_\/_ﬁrJ“\ .)

400

200

1
N
I
D
(@)
o0

11
16
21
26
31
36
41
a5
51
56
61
66
71
76
81
86
91
96

101

106 3

111 3

116

121

126

131

136

141

146

151

156

161

166

171

176

181

186

c)
Figure 4.20: Three Experimental Results for Right-Side Falling with X, Y, Z-

Axis

4.6.4 Determining Threshold Value

After analysing a series of data obtained as in previous section, the appropriate
threshold value can be determined. From the processed data, it can be seen that the
maximum total acceleration values for three types of falling are very close as
compare to the minimum total acceleration values. Thus, the threshold is set based on
the maximum for simplicity without sacrificing the accuracy. The smallest average
maximum total acceleration value is set as the threshold in the hardware so that the
system is able to detect three falling types. Average values have been taken instead
of the minimum value from the experiments as to compensate for allowable tolerance

in the real environment.

Threshold =1112

4.7 Problem Encountered

46

Throughout the construction of the hardware and software design, there are many
problems faced. Corrective steps have been taken to solve and improve the overall

system.

4.7.1 Conversion from Characters to Integer

One of the problems is the conversion from character to integer algorithm on GUI.
The first approach used to perform conversion is by reading the raw data obtained
and displayed on the text box and convert four characters into one integer by

incrementing the text box length of the text box.

0551 0440 055 A Beeslaration

51 0440 0591 =
551 0440 0590 -
0551 0440 0590

3

0551 0444 053
0551 0440 0531
0551 0440 053
0551 0440 0531
0551 0440 0531

2 H

snnsleraion

B

0551 0440 0531

0551 0440 0591 so]

0556 0445 0591

0557 0440 0558]
551 0440 0585 s
547 0440 0585

0550 0440 055 w0

oEz3

Cloze COK Part |

Figure 4.21: Using Data in Text Box to Perform Character to Integer

Conversion

Text box length is being assigned by a long variable as shown below, which

can carry up to 64-bit signed integer value and this value will eventually reach its

47

maximum value (9223372036854775807) and overflow will occur. When overflow
occurs, no more conversion can be done and the graphs would not be plotted out as

integer values are needed for the graphs plotting.

Dim length2 As Long = ©

i = Convert.ToIntl6(rtbMonitor.Substring(i2, 4))

As shown in the code above, the conversion is based on the data displayed on
rtbMonitor text box and these values will be used to plot graphs. To solve the
overflow problem, conversion routine is modified to convert characters received
immediately from the COM port instead of the characters displayed on text box. This
method is proved to be working since the length of data (one packet) that transmitted
to COM port each time is relatively small, below ten characters. Hence, the length of
the packet will not exceed the maximum amount of neither long nor integer variables
and each time the data is transmitted, the length of the string will be reset instead of

keep on increasing as in the case in text box.

H ¥y F
Packet per packet 21 0440 0536 ~ Acceleration
each tune data 13 51 0440 0591 m:
transferred] 551 0440 0590 eoo |
0551 0440 0530
D]]]:D:D 05571 0444 0531 =71
0551 0440 0531 sl
[TIII11L] 0551 0440 0591 anbady f
0551 0440 0591 Foat
BRI L 0551 0440 0531 |
0551 0440 0531 3
. 0551 0440 0531 -
% 0556 0446 0531]
0551 0440 0588 =
R51 0440 0585 it
47 0440 0585]
440
— [n:=x]
W
Cloze COM Port
P

SE Xbee

Figure 4.22: Data Transferred in Packet

48

Dim length2 As Integer = @

i = Convert.ToIntl6(data.Substring(i2, 4))

The length of the data received in one packet can be represented by integer
instead of long variable. This will not only solve the problem of overflow but also

improving the processing power required by the program.

4.7.2 Signal Noises

There are appearances of unknown noise and spike at the very beginning of data
collection (Figure 4.23). This directly influenced accuracy of the system. Therefore,
several steps are taken in order to find out the reason which may cause by wireless

module or microcontroller.

1200
1000
200
—)‘

400
200
0 -

AR A el A e R I i R A I - A it

e T T B T I e L A M e B e T S I e) O o U T O |

A MUy~ =M s W0 XN oD N C~O NS0 NN T W00

o H = A AR A A M MMM S st SF SE

Figure 4.23: Inaccurate Data Obtained at the Beginning

49

First and foremost, accelerometer is replaced by signal generator to diagnosis
wireless module. However, the obtained waveform got lots of noise and the output
values somehow were different from input values. So, microcontroller part is

suspected to be the source of problem.

Nevertheless, the result was same as previous data obtained. No matter how
the input frequency and the input amplitude are adjusted, data collected still not
varied a lot. After a series of testing, the data collected was found to be shifted in
between three axes acceleration values. By referring back to the PIC microcontroller
sheet, it is found that the data conversion time specified was insufficient. Thus,
longer delay time was introduced and eventually the output waveform was same with

the input waveform but with appearance of noise.

Then, suggestion was given to check the grounding of each component
because improper grounding might cause noise to output. So, all the unused analogue
pins are being connected to ground. As a result, unwanted noise is reduced on the
output waveform. The unused analogue pins can also be configured to become digital

pins to give the same effect as hardware grounding.
Finally, the system was tested again with accelerometer and proper and

accurate data was obtained (Figure 4.26, 4.27, 4.28). The following figures show the

basic idea of troubleshooting process.

Microcontroller Wireless module ‘)

ADC XBEE

Signal Generator

Figure 4.24: Wireless Module Troubleshooting

50

Microcontroller ‘)

ADC ®

Signal Generator

{

Change the frequency and
amplitude

Figure 4.25: Microcontroller Troubleshooting

Telk i i Stop t Pos: 00005 CURSOPR
+
Tvpe

Ry

¥ Cursar 2
=500
CH1 1.00% CH2 1.00% b 250ms CH1 7 0.00%

Lse rultipurpose knob to mosve Cursor 1
Figure 4.26: Data from Two Signal Generator with 1.76V,, for Sine Wave and
2V, for Square Wave at 8Hz

800
700
ﬁ H e _%H_HH
500
£00
—
300
200 d
100 1 —1
0 T T T T T T T A A T T I e T T I e T
A o M~ uw M A @ M~ A~ Mmoo ™~ Mmoo
a)
actual calculated
x(min) 0.32 0.28418
x(max) 2.04 2.003906
b)

51

Figure 4.27: a) Data (Sine Waveform) after A/D Conversion to PC Through

Skxbee b) Data Comparison between the Actual (Signal Generator) with the

Calculated (Skxbee)

105
113
121
129
137
145
153
161

-y

52

actual calculated

y(min) 0.16 0.196289

y(max) 2.2 2.191406
b)

Figure 4.28: a) Data (Square Waveform) after A/D Conversion to PC through
Skxbee b) Data Comparison between the Actual (Signal Generator) With the
Calculated (Skxbee)

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 Recommendations

5.1.1 Reducing Power Consumption

Improvement should be done to allow user to choose to send the data continuously to
the PC or only send the alert to the PC when there is a fall detected. This can be done
by doing some setting on the hardware. To choose to send data continuously, user
will only need to plug the connector to pin 1 and pin 9 counting from right top of the
microcontroller. If user prefers to alert the PC when there is fall, unplug the whole

connector from the microcontroller. Figure 5.1 shows how the connection would be.

The main reason why this system allows user to select different modes is to
improve the power management and reduce power consumption on the hardware.
When using continuous mode, part of the power is used by SKXbee wireless module
and interfacing between wireless module with microcontroller in transmitting data.
As state in the datasheet of SKXbee wireless module, the typical operating current
consumed when transmitting data is 45mA and receiving data is SOmA. As for PIC
microcontroller, the maximum current sourced by PORTC and PORTD is 200mA,
averagely 100mA for each PORTC and PORTD. Since microcontroller is connected
with wireless module through receive and transmit bit (PORTC pin 6 and 7), the
maximum current consumed is also quite high. Based on the estimation above, Alert

Mode is proposed to reduce power consumption and increase the battery lifespan.

54

However, the above statement is purely based on theoretical analysis. Experimental

data shall be conducted in future.

Figure 5.1: Continuous Mode Configuration if Alert Mode is Implemented

Besides that, PIC microcontroller should be configured in sleep mode when
user is sitting down or did not move for some time (resting or taking nap). However,
SKXbee can only communicate in Asynchronous mode as stated in the data sheet. In
order to save more power, hardware selection would also be considered. Choosing
other wireless module that could communicate in Synchronous mode allow PIC
microcontroller to transfer or receive data in sleep mode. Funding is also an issue
that directly affect the system power consumption because advance hardware will
allow MDS to have lower power consumption. With limited funding, the best

hardware that can suit for this application will be the one used in this project.

5.1.2 Storing Data in Secure Digital (SD) Card

When whole system was being designed and constructed, there are some issues and
problem faced. One of the issues that will affect the reliability of MDS is data loss.
Since data is transmitted through wireless module, some of the data will somehow

loss due to environment disturbance and obstacles like wall that interfere the data

55

transmission. The indoor communication range of SKXbee that will cause no data

loss is far more less than 30 metres as in datasheet due to the reason stated above.

Due to this problem, it is more reliable to save the data in a SD or even micro
SD card that can be carried by user together the hardware. Effort has been put on
adding SD card feature on the real hardware. However, the source code for creating a
text file and storing data in SD card could not be finished due to limitation of time.
Hardware port has been reserved in hardware as shown in Figure 5.2. By
implementing this feature, it will not only help to solve data loss problem, it also
save power and extend the battery life. Data stored in SD card can then be taken out
to analyze on PC using the same method as mentioned in section 4.3. This is a very

important feature that must be implemented in future development.

However, it is proposed to use PIC 18F family to perform this task as Writing
to SD card is based on Serial Port Interface (SPI) which may consume quite a lot of

the microcontroller Random Access Memory (RAM).

Figure 5.2: Reserved Port for Connecting to SD Card

5.1.3 Improve Fall Detection Accuracy Using Additional Gyroscope

56

There are some motions not in fall category but still triggers the fall detection alarm.
One of the non-fall motions identified is jumping, which is very seldom to be
performed by elderly. In order to increase the accuracy of fall, it is suggested to use
another gyroscope combining with accelerometer to obtain the body orientation and
velocity as proposed in many papers like Almeida et al. (2007) and Dai et al. (2009)
papers. By using this additional information together with acceleration value, fall can
be identified more accurately. However, more computation power will be needed to

run the fall algorithm.

Figure 5.3: Reserved Port for Connecting to Gyroscope

5.1.4 Instantaneous Graph Plotting

There is an issue concerning the real time graph plotting using Zedgraph control in
VB 2010. The graphs showing X, Y and Z-axis acceleration should display
instantaneous graphs upon receiving data from the microcontroller according to the
source code written. However, only the Z-axis acceleration graph being refreshed on
real time while X and Y-axis did not shows the updated graphs despite data have
been updated in the graph. This could be due to the VB program and Zedgraph
control that could not be updated in real time regardless of the PC RAM.

57

5.2 Conclusion

In conclusion, the aim and objectives of this project have been achieved with some
improvement to be done in future. User friendly and simple GUI using Visual Basic
2010 has been developed together will simple and effective fall algorithm (MPLAB)
to detect real fall. Several improvements can be done as stated in the
recommendations to make this MDS a more reliable system to user. The MDS
hardware can be shrunk much smaller (coin size) size using surface mount

components instead of through-hole to prevent intrusion to user.

The overall cost to develop MDS is only at about RM700 — RMS800
(including circuit testing components). This cost could be reduced if this product is

being mass produced to make it affordable to each family.

58

REFERENCES

Perolle, G., Fraisse, P., Mavros, M., Etxeberria, 1. (2006) Automatic Fall Detection
and Activity Monitoring for Elderly.

Department of Health, Social Services and Public Safety UK. (2004). Home
Accident Prevention Strategy and Action Plan 2004-2009.

Tarik Al-ani, Quynh Trang Le Ba and Eric Monacelli. (2007). On-line Automatic
Detection of Human Activity in Home Using Wavelet and Hidden Markov
Models Scilab Toolkits.

Blount, M., Batra, V. M., Capella, A. N., Ebling, M. R., Jerome, W. F., Martin, S. M.
et al. (2007). Remote health-care monitoring using Personal Care Connect.

Almeida Oscar, Zhang Ming, Liu Jyh-Charn. (2007). Dynamic Fall Detection and
Pace Measurement in Walking Sticks.

Dobashi Hiroki, Tajima Takuya, Abe Takehiko, Kimura Haruhiko. (2008). Fall
Detection System for Bather Using Ultrasound Sensors.

Dai Jiangpeng, Bai Xiaole, Yang Zhimin, Shen Zhaohui and Xuan Dong. (2009).
PerFallD: A Pervasive Fall Detection System Using Mobile Phones.

Mars Lan, Ani Nahapetian, Alireza Vahdatpour, Lawrence Au, William Kaiser,
Majid Sarrafzadeh. (2009). SmartFall: An Automatic Fall Detection System Based
on Subsequence Matching for the SmartCane.

centre suisse d’electronique et de microtechnique [csem]. (2004). Fall Detection
Sensor System.

Li Qiang, Stankovic, John A., Mark Hanson, Adam Barth, John Lach, Zhou Gang
(2009). Accurate, Fast Fall Detection Using Gyroscopes and Accelerometer-
Derived Posture Information.

Miaou Shaou-Gang, Sung Pei-Hsu, Huang Chia-Yuan. (2006). A Customized
Human Fall Detection System Using Omni-Camera Images and Personal
Information.

59

Fu, Z., Culurciello, E., Lichtsteiner, P. and Delbruck, T.. (2008). Fall Detection using
an Address-Event Temporal Contrast Vision Sensor, in Proceedings of IEEE
International Symposium on Circuits and Systems.

Sixsmith, A. and Johnson, N. (2004). A Smart Sensor to Detect the Falls of the
Elderly, Pervasive Computing, Vol. 3, Issue 2, pp. 42-47.

APPENDICES

APPENDIX A: Visual Basic 2010 Source Code

MainForm.vb

Option Explicit On
Option Strict On

Imports System.IO.Ports
Imports Microsoft.Win32
Imports ZedGraph

Public Class MainForm

Const ButtonTextOpenPort As String = "Open COM Port"
Const ButtonTextClosePort As String = "Close COM Port"
Const ModuleName As String = "Fall Detection Control"

Const a As String = ControlChars.NewLine
Dim i As Integer = 0

Dim i2 As Integer =1

Dim acc As Integer
Dim b As Integer
Dim c As Integer
Dim d As Integer =
Dim count As Integer = 0@
Dim fall As Boolean = False
Dim storage As String = ""
Dim length2 As Integer = 0@
Dim time As Double

0

1]
O oI

Friend MyMainForm As MainForm
Friend MyPortSettingsDialog As PortSettingsDialog
Friend UserPortl As ComPorts

Private Delegate Sub AccessFormMarshalDelegate(ByVal action As String,

ByVal textToAdd As String, _

ByVal textColor As Color)

Private AccessFormMarshalDelegatel As AccessFormMarshalDelegate
Private colorReceive As Color = Color.Green

Private colorTransmit As Color = Color.Red

Private maximumTextBoxLength As Integer

60

61

Private receiveBuffer As String
Private savedOpenPortOnStartup As Boolean
Private userInputIndex As Integer

<summary>

Perform functions on the application's form.
Used to access the form from a different thread.
See AccessFormMarshal().

</summary>

<param name="action"> a string that names the action to perform on the
form </param>

""" <param name="formText"> text that the form displays </param>

""" <param name="textColor"> a system color for displaying text </param>

Private Sub AccessForm(ByVal action As String, ByVal formText As String,
ByVal textColor As Color)

Select Case action

Select an action to perform on the form.
' (Can add more actions as needed.)

Case "AppendToMonitorTextBox"

Append text to the rtbMonitor textbox using the color for
received data.

rtbMonitor.SelectionColor = colorReceive
rtbMonitor.AppendText(formText)

SavetoRichTextFile(formText)

While count < formText.Length And fall = False
If formText.Substring(count) = "e" Then
Beep()
MsgBox("Fall has been detected!" + a + "Immediate
action must be taken!", _
CType(MessageBoxButtons.0OK, MsgBoxStyle), "Fall
Detected!!!")
fall = True
End If
count += 1
End While

count = ©
fall = False

Convertl(formText.Length, formText)
'Conversion(formText.Length)

'Return to the default color.
rtbMonitor.SelectionColor = colorTransmit

Trim the textbox's contents if needed. (Uncomment codes
below)

'"If rtbMonitor.TextLength > maximumTextBoxLength Then

'TrimTextBoxContents()

62

"End If
Case "DisplayStatus"
' Add text to the rtbStatus textbox using the specified color.
DisplayStatus(formText, textColor)

Case "DisplayCurrentSettings"

' Display the current port settings in the
ToolStripStatusLabel.

DisplayCurrentSettings()
Case Else

End Select
End Sub

<summary>
Convert the digits into integers and generate the corresponding graphs
</summary>

Private Sub Convertl(ByRef length As Integer, ByRef data As String)

data = storage & data
length = length + length2

While acc <= length And c =1
If length - acc = @ Then
c=20
ElseIf length - acc >= 5 Then
i = Convert.ToIntl6(data.Substring(i2, 4))

d=d+1
If d = 1 Then
GenerateGraph(zgl)
ElselIf d = 2 Then
GenerateGraph(zg2)
ElselIf d = 3 Then
GenerateGraph(zg3)
d =290
End If
i2 = i2 + 5
acc = acc + 5
c=1
Else
acc = acc + 5
c =20
i2 =0
End If
End While

If length - acc < @ Then
length2 = length - acc + 5
storage = data.Substring(acc - 5, length2)
i2 =1
ac
C =

0

n
[l ||

63

Else
storage =
length2 = 0
i2 =1
ac
C =
End If
End Sub

0

n
=

<summary>
Save the data into rich text format.
</summary>

Private Sub SavetoRichTextFile(ByVal content As String)

Dim fileName As String = "C:\" + DateString + " Fall Detection Data
Log.rtf"
Dim objWriter As New System.IO.StreamWriter(fileName, True)
objWriter.Write(content)
objWriter.Close()
End Sub

<summary>
Generate graph.
</summary>

Private Sub GenerateGraph(ByVal zgcvalue As ZedGraphControl)
Dim myPane As GraphPane = zgcvalue.GraphPane
Dim list As PointPairlList = New PointPairList

list.Add(DateTime.Now.ToOADate, Convert.ToDouble(i))

If d = 1 Then
Dim myCurve As LineItem = myPane.AddCurve("", list, Color.Blue,
SymbolType.Circle)
myCurve.Symbol.Fill = New Fill(Color.Blue)
ElseIf d = 2 Then
Dim myCurve As LineItem = myPane.AddCurve(
SymbolType.Circle)
myCurve.Symbol.Fill = New Fill(Color.Green)
ElseIf d = 3 Then
Dim myCurve As LineItem = myPane.AddCurve("", list, Color.Red,
SymbolType.Circle)
myCurve.Symbol.Fill = New Fill(Color.Red)
End If

, list, Color.Green,

zgcvalue.AxisChange()
zgcvalue.Invalidate()
End Sub

<summary>
Enables accessing the form from another thread.
The parameters match those of AccessForm()
</summary>
""" <param name="action"> a string that names the action to perform on the
form </param>
""" <param name="formText"> text that the form displays </param>
""" <param name="textColor"> a system color for displaying text </param>
Private Sub AccessFormMarshal(ByVal action As String, ByVal formText As
String, ByVal textColor As Color)

AccessFormMarshalDelegatel = New AccessFormMarshalDelegate(AddressOf
AccessForm)
Dim args() As Object = {action, formText, textColor}

Call AccessForm, passing the parameters in args.

MyBase.Invoke(AccessFormMarshalDelegatel, args)
End Sub

<summary>
Display the current port parameters on the form.
</summary>

Private Sub DisplayCurrentSettings()
Dim selectedPortState As String = ""
If ComPorts.comPortExists Then
If (Not (UserPortl.SelectedPort Is Nothing)) Then

If UserPortl.SelectedPort.IsOpen Then
selectedPortState = "OPEN"
btnOpenOrClosePort.Text = ButtonTextClosePort

Else
selectedPortState = "CLOSED"
btnOpenOrClosePort.Text = ButtonTextOpenPort

End If

End If

UpdateStatusLabel _
(CStr(MyPortSettingsDialog.cmbPort.SelectedItem) + " "+
CStr(MyPortSettingsDialog.cmbBitRate.SelectedItem) + _

" N 81 Handshake: " + _
MyPortSettingsDialog.cmbHandshaking.SelectedItem.ToString + _
" " + selectedPortState)

Else
DisplayStatus(ComPorts.noComPortsMessage, Color.Red)
UpdateStatusLabel("")

End If
End Sub

<summary>

Provide a central mechanism for displaying exception information.
Display a message that describes the exception.

</summary>

<param name="moduleName"> the module where the exception
occurred.</param>
""" <param name="ex"> the exception </param>

Private Sub DisplayException(ByVal moduleName As String, ByVal ex As
Exception)

Dim errorMessage As String
errorMessage = "Exception: " & ex.Message & _

" Module: " & moduleName & _
". Method: " & ex.TargetSite.Name

65

DisplayStatus(errorMessage, Color.Red)

' To display errors in a message box, uncomment this line:
MessageBox.Show(errorMessage)

End Sub

<summary>
Displays text in a richtextbox.
</summary>

<param name="status"> the text to display.</param>
<param name="textColor"> the text color. </param>

Private Sub DisplayStatus(ByVal status As String, ByVal textColor As Color)

Purpose : Displays text in a richtextbox.

' Accepts . status - the text to display.

! : textcolor - the text color.
rtbStatus.ForeColor = textColor
rtbStatus.Text = status

End Sub

<summary>

Get user preferences for the COM port and parameters.
See SetPreferences for more information.

</summary>

Private Sub GetPreferences()

UserPortl.SavedPortName = Settings.Default.ComPort

UserPortl.SavedBitRate = Settings.Default.BitRate

UserPortl.SavedHandshake = Settings.Default.Handshaking

savedOpenPortOnStartup = Settings.Default.OpenComPortOnStartup
End Sub

<summary>
Initialize elements on the main form.
</summary>

Private Sub InitializeDisplayElements()

than this:

The TrimTextboxContents routine trims a richtextbox with more data

maximumTextBoxLength = 10000
rtbMonitor.SelectionColor = colorTransmit
End Sub

<summary>
Determine if the textbox's TextChanged event occurred due to new user

If yes, get the input and write it to the COM port.
</summary>

Private Sub ProcessTextboxInput()
Dim ar As IAsyncResult

Dim msg As String
Dim textLength As Integer

66

Dim userInput As String
" Find out if the textbox contains new user input.

If the new data is data received on the COM port or if no COM port
exists, do nothing.

If ((rtbMonitor.Text.Length > userInputIndex +
UserPortl.ReceivedDatalength) And _
ComPorts.comPortExists) Then

Retrieve the contents of the textbox.
userInput = rtbMonitor.Text
' Get the length of the new text.

textLength = userInput.Length - userInputIndex

Extract the unread input.

userInput = rtbMonitor.Text.Substring(userInputIndex, textLength)
' Create a message to pass to the Write operation (optional).
The callback routine can retrieve the message when the write

completes.

msg = DateTime.Now.ToString

' Send the input to the COM port.

' Use a different thread so the main application doesn't have to
wait

' for the write operation to complete.

ar = UserPortl.WriteToComPortDelegatel.BeginInvoke(userInput, New
AsyncCallback(AddressOf UserPortl.WriteCompleted), msg)

' To use the same thread for writes to the port,
comment out the statement above and uncomment the statement
below.

'UserPortl.WriteToComPort(userInput)

AccessForm("UpdateStatusLabel”, "", Color.Black)

Else

Received bytes displayed in the text box are ignored,
but we need to reset the value that indicates

the number of received but not processed bytes.

UserPortl.ReceivedDatalength = @
End If
'Uncomment codes below to trim text box contents
"If rtbMonitor.TextLength > maximumTextBoxLength Then

'"TrimTextBoxContents()
! End If

Update the value that indicates the last character processed.

userInputIndex = rtbMonitor.Text.Length
End Sub

67

<summary>
Save user preferences for the COM port and parameters.
</summary>

Private Sub SavePreferences()
' To define additional settings, in the Visual Studio IDE go to
Solution Explorer > right click on project name > Properties >

Settings.

If (MyPortSettingsDialog.cmbPort.SelectedIndex > -1) Then

The system has at least one COM port.

Settings.Default.ComPort =
MyPortSettingsDialog.cmbPort.SelectedItem.ToString
Settings.Default.BitRate =
CInt(MyPortSettingsDialog.cmbBitRate.SelectedItem)
Settings.Default.Handshaking =
DirectCast(MyPortSettingsDialog.cmbHandshaking.SelectedItem, Handshake)
Settings.Default.OpenComPortOnStartup =
MyPortSettingsDialog.chkOpenComPortOnStartup.Checked
Settings.Default.Save()
End If
End Sub
""" <summary>
Use stored preferences or defaults to set the initial port parameters.
</summary>

Private Sub SetInitialPortParameters()

' Get preferences or default values.
GetPreferences()
If ComPorts.comPortExists Then

Select a COM port and bit rate using stored preferences if

available.

UsePreferencesToSelectParameters()
' Save the selected indexes of the combo boxes.
MyPortSettingsDialog.SavePortParameters()

Else
' No COM ports have been detected. Watch for one to be attached.
tmrLookForPortChanges.Start()
DisplayStatus(ComPorts.noComPortsMessage, Color.Red)

End If

UserPortl.ParameterChanged = False
End Sub
"' <summary>
Saves the passed port parameters.

68

""" Called when the user clicks OK on PortSettingsDialog.
"' < /summary>

Private Sub SetPortParameters(ByVal userPort As String, ByVal userBitRate
As Integer, _
ByVal userHandshake As Handshake)

Try

Don't do anything if the system has no COM ports.
If ComPorts.comPortExists Then

If MyPortSettingsDialog.ParameterChanged Then

One or more port parameters has changed.

If (String.Compare(MyPortSettingsDialog.oldPortName,
CStr(userPort), True) <> @) Then

The port has changed.
Close the previously selected port.

UserPortl.PreviousPort = UserPortl.SelectedPort
UserPortl.CloseComPort(UserPortl.SelectedPort)

Set SelectedPort to the current port.

UserPortl.SelectedPort.PortName = userPort
UserPortl.PortChanged = True

End If

Set other port parameters.

UserPortl.SelectedPort.BaudRate = userBitRate
UserPortl.SelectedPort.Handshake = userHandshake

MyPortSettingsDialog.SavePortParameters()

UserPortl.ParameterChanged = True

Else
UserPortl.ParameterChanged = False

End If
End If

Catch ex As InvalidOperationException

UserPortl.ParameterChanged = True
DisplayException(ModuleName, ex)

Catch ex As UnauthorizedAccessException

UserPortl.ParameterChanged = True
DisplayException(ModuleName, ex)
' This exception can occur if the port was removed.
If the port was open, close it.

UserPortl.CloseComPort(UserPortl.SelectedPort)

69

Catch ex As System.IO.IOException

UserPortl.ParameterChanged = True
DisplayException(ModuleName, ex)

End Try
End Sub

<summary>
Trim a richtextbox by removing the oldest contents.
</summary>

<remarks >
To trim the box while retaining any formatting applied to the retained
contents,

""" create a temporary richtextbox, copy the contents to be preserved to
the

""" temporary richtextbox,and copy the temporary richtextbox back to the
original richtextbox.

""" </remarks>
Private Sub TrimTextBoxContents()

Dim rtbTemp As New RichTextBox
Dim textboxTrimSize As Integer

When the contents are too large, remove half.
textboxTrimSize = maximumTextBoxLength \ 2

rtbMonitor.Select(rtbMonitor.TextLength - textboxTrimSize + 1,
textboxTrimSize)

rtbTemp.Rtf = rtbMonitor.SelectedRtf

rtbMonitor.Clear()

rtbMonitor.Rtf = rtbTemp.Rtf

rtbTemp = Nothing

rtbMonitor.SelectionStart = rtbMonitor.TextLength

End Sub

<summary>
""" Set the text in the ToolStripStatusLabel.
</summary>

<param name="status"> the text to display </param>
Private Sub UpdateStatusLabel(ByVal status As String)

ToolStripStatusLabell.Text = status
StatusStripl.Update()
End Sub

<summary>
Set the user preferences or default values in the combo boxes and
ports array
""" using stored preferences or default values.
</summary>

Private Sub UsePreferencesToSelectParameters()

MyPortSettingsDialog.SelectComPort(UserPortl.SavedPortName)
MyPortSettingsDialog.SelectBitRate(UserPortl.SavedBitRate)

70

UserPortl.SelectedPort.BaudRate = UserPortl.SavedBitRate
MyPortSettingsDialog.SelectHandshaking(UserPortl.SavedHandshake)
UserPortl.SelectedPort.Handshake = UserPortl.SavedHandshake
MyPortSettingsDialog.chkOpenComPortOnStartup.Checked =
savedOpenPortOnStartup
End Sub
"' <summary>
Depending on the text displayed on the button, open or close the
selected port
""" and change the button text to the opposite action.
</summary>

Private Sub btnOpenOrClosePort_Click(ByVal sender As Object, ByVal e As
System.EventArgs) _
Handles btnOpenOrClosePort.Click

If (btnOpenOrClosePort.Text Is ButtonTextOpenPort) Then

UserPortl.OpenComPort()

If UserPortl.SelectedPort.IsOpen Then
rtbMonitor.Enabled = True
btnOpenOrClosePort.Text = ButtonTextClosePort

End If

ElseIf (btnOpenOrClosePort.Text Is ButtonTextClosePort) Then
UserPortl.CloseComPort(UserPortl.SelectedPort)
If Not UserPortl.SelectedPort.IsOpen Then
rtbMonitor.Enabled = False
btnOpenOrClosePort.Text = ButtonTextOpenPort
End If
End If
End Sub

<summary>

Create an instance of the ComPorts class.
Initialize port settings and other parameters.
specify behavior on events.

</summary>

Private Sub Forml_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load

Show()

Create an instance of the ComPorts class for accessing a specific
port.

UserPortl = New ComPorts
MyPortSettingsDialog = New PortSettingsDialog

tmrLookForPortChanges.Interval = 1000
tmrLookForPortChanges.Stop()

InitializeDisplayElements()
SetInitialPortParameters()
If ComPorts.comPortExists Then

UserPortl.SelectedPort.PortName =
ComPorts.myPortNames(MyPortSettingsDialog.cmbPort.SelectedIndex)

71

A check box enables requesting to open the selected COM port on

start up.

Otherwise the application opens the port when the user clicks

the Open Port

button or types text to send.
If MyPortSettingsDialog.chkOpenComPortOnStartup.Checked Then

UserPortl.PortOpen = UserPortl.OpenComPort()
rtbMonitor.Enabled = True
AccessForm("DisplayCurrentSettings", "", Color.Black)
AccessForm("DisplayStatus"”, "", Color.Black)

Else
DisplayCurrentSettings()
End If
End If
' Specify the routines that execute on events in other modules.
' The routines can receive data from other modules.
AddHandler ComPorts.UserInterfaceData, AddressOf AccessFormMarshal
AddHandler PortSettingsDialog.UserInterfaceData, AddressOf

AccessFormMarshal

AddHandler PortSettingsDialog.UserInterfacePortSettings, AddressOf

SetPortParameters

'Initialize graph

CreateGraph(zgl, zg2, zg3)
Sub

<summary>
Close the port if needed and save preferences.
</summary>

Private Sub MainForm_FormClosing(ByVal sender As Object, ByVal e As

Handles

System.windows.Forms.FormClosingEvenEArgs)
Me.FormClosing

UserPortl.CloseComPort(UserPortl.SelectedPort)
SavePreferences()
Sub

<summary>
Do whatever is needed with new characters in the textbox.
</summary>

Private Sub rtbMonitor_TextChanged(ByVal sender As System.Object, ByVal e
As System.EventArgs) _

Handles rtbMonitor.TextChanged

ProcessTextboxInput()
Sub

<summary>

Look for ports. If at least one is found, stop the timer and
select the saved port if possible or the first port.

This timer is enabled only when no COM ports are present.
</summary>

72

Private Sub tmrLookForPortChanges_Tick(ByVal sender As Object, ByVal e As
System.EventArgs) _
Handles tmrLookForPortChanges.Tick

ComPorts.FindComPorts()
If ComPorts.comPortExists Then

tmrLookForPortChanges.Stop()
DisplayStatus("COM port(s) found.", Color.Black)

MyPortSettingsDialog.DisplayComPorts()
MyPortSettingsDialog.SelectComPort(UserPortl.SavedPortName)
MyPortSettingsDialog.SelectBitRate(UserPortl.SavedBitRate)
MyPortSettingsDialog.SelectHandshaking(UserPortl.SavedHandshake)

' Set selectedPort.

SetPortParameters(UserPortl.SavedPortName,
CInt(UserPortl.SavedBitRate), _
DirectCast(UserPortl.SavedHandshake, Handshake))

DisplayCurrentSettings()
UserPortl.ParameterChanged = True
End If
End Sub

<summary>
''"' Clear text in the rtb.
</summary>

Private Sub BtnClearAll_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) _
Handles BtnClearAll.Click

rtbMonitor.Clear()

rtbStatus.Clear()

rtbMonitor.SelectionColor = colorTransmit

iz =1

i=

acc

b =

Cc =

d =29

storage

length2 = 0
End Sub

PO Il ®

<summary>
Look for COM ports and display them in the combo box.
</summary>

Private Sub PortSettingToolStripMenuItem_Click(ByVal sender As
System.0Object, ByVal e As System.EventArgs) _
Handles PortSettingToolStripMenuItem.Click

ComPorts.FindComPorts()
MyPortSettingsDialog.DisplayComPorts()

MyPortSettingsDialog.SelectComPort(UserPortl.SelectedPort.PortName)
MyPortSettingsDialog.SelectBitRate(UserPortl.SelectedPort.BaudRate)

73

MyPortSettingsDialog.SelectHandshaking(UserPortl.SelectedPort.Handshake)

UserPortl.ParameterChanged = False

Display the combo boxes for setting port parameters.

MyPortSettingsDialog.ShowDialog()
End Sub

Private Sub ExitToolStripMenuIteml_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) _
Handles ExitToolStripMenuIteml.Click

UserPortl.CloseComPort(UserPortl.SelectedPort)
SavePreferences()
End

End Sub

<summary>
Initialize Graph.
</summary>

Private Sub CreateGraph(ByVal zgcl As ZedGraphControl, _
ByVal zgc2 As ZedGraphControl, ByVal zgc3 As
ZedGraphControl)
Dim myPanel As GraphPane = zgcl.GraphPane
Dim myPane2 As GraphPane = zgc2.GraphPane
Dim myPane3 As GraphPane = zgc3.GraphPane

' Set the titles and axis labels
myPanel.Title.Text = "Acceleration x Versus Time"
myPane2.Title.Text = "Acceleration y Versus Time"
myPanel.XAxis.Title.Text = "Time"
myPanel.YAxis.Title.Text = "Acceleration”
myPanel.XAxis.Type = AxisType.Date
myPane2.XAxis.Title.Text = "Time"

myPane2.YAxis.Title.Text = "Acceleration”
myPane2.XAxis.Type = AxisType.Date
myPane3.Title.Text = "Acceleration z Versus Time"
myPane3.XAxis.Title.Text = "Time"
myPane3.YAxis.Title.Text = "Acceleration”
myPane3.XAxis.Type = AxisType.Date
End Sub
End Class

PortSettingsDialog.vb

Option Explicit On
Option Strict On

Imports System.IO.Ports
"' <summary>
Provides a dialog box for viewing and selecting COM ports and parameters.
</summary>

Public Class PortSettingsDialog

74

Private bitRates(10) As Integer
Private oldBitRateIndex As Integer
Private oldHandshakeIndex As Integer
Friend oldPortName As String

Private settingsInitialized As Boolean

These events enable other modules to detect events and receive data.

Friend Shared Event UserInterfacePortSettings(ByVal selectedPort As String,
ByVal selectedBitRate As Integer, ByVal selectedHandshake As Handshake)

Friend Shared Event UserInterfaceData(ByVal action As String, ByVval
formText As String, ByVal textColor As Color)

<summary>

Display available COM ports in a combo box.

Assumes ComPorts.FindComPorts has been run to fill the myPorts array.
</summary>

Friend Sub DisplayComPorts()

Clear the combo box and repopulate (in case ports have been added or

removed) .
cmbPort.DataSource = ComPorts.myPortNames
End Sub
""" <summary>
""" Set initial port parameters.
"' < /summary>

Friend Sub InitializePortSettings()
If Not settingsInitialized Then
'Bit rates to select from.

bitRates(0) = 300
bitRates(1l) = 600
bitRates(2) = 1200
bitRates(3) = 2400
bitRates(4) = 9600
bitRates(5) = 14400
bitRates(6) = 19200
bitRates(7) = 38400
bitRates(8) = 57600
bitRates(9) = 115200
bitRates(10) = 128000

'Place the bit rates and handshaking options in the combo boxes.

cmbBitRate.DataSource = bitRates
cmbBitRate.DropDownStyle = ComboBoxStyle.DropDownlList

Handshaking options.

cmbHandshaking.Items.Add(Handshake.None)
cmbHandshaking.Items.Add(Handshake.XOnX0ff)
cmbHandshaking.Items.Add(Handshake.RequestToSend)
cmbHandshaking.Items.Add(Handshake.RequestToSendXOnXOff)

cmbHandshaking.DropDownStyle = ComboBoxStyle.DropDownlList

75

'Find and display available COM ports.
ComPorts.FindComPorts()
cmbPort.DataSource = ComPorts.myPortNames
cmbPort.DropDownStyle = ComboBoxStyle.DropDownlList
settingsInitialized = True

End If

Sub

<summary>

Compares stored parameters with the current parameters.

</summary>

<returns>

True if any parameter has changed.
</returns>

Friend Function ParameterChanged() As Boolean

Return (oldBitRateIndex <> cmbBitRate.SelectedIndex) Or _
(oldHandshakeIndex <> cmbHandshaking.SelectedIndex) Or _
((String.Compare(oldPortName, CStr(cmbPort.SelectedItem),

True) <> 9))

End

Function

<summary>

Save the current port parameters.

Enables learning if a parameter has changed.
</summary>

Friend Sub SavePortParameters()

oldBitRateIndex = cmbBitRate.SelectedIndex
oldHandshakeIndex = cmbHandshaking.SelectedIndex
oldPortName = CStr(cmbPort.SelectedItem)

Sub

<summary>

Select a bit rate in the combo box.

Does not set the bit rate for a COM port.

</summary>

<param name="bitRate"> The requested bit rate </param>

Friend Sub SelectBitRate(ByVal bitRate As Integer)

cmbBitRate.SelectedItem = bitRate

Sub

<summary>

Select a COM port in the combo box.
Does not set the selectedPort variable.

</summary>

<param name="comPortName"> A COM port name </param>

76

<returns > The index of the selected port in the combo box </returns>

Friend Function SelectComPort(ByVal comPortName As String) As Integer

If comPortName doesn't exist in the combo box, SelectedItem remains
the same.

cmbPort.SelectedItem = comPortName

If (cmbPort.SelectedIndex > -1) Then

At least one COM port exists.

If (Not (String.Compare(cmbPort.SelectedItem.ToString, comPortName,
True) = 0)) Then

The requested port isn't available. Select the first port.
cmbPort.SelectedIndex = @

End If
Else

No COM ports exist.

RaiseEvent UserInterfaceData("DisplayStatus”,
ComPorts.noComPortsMessage, Color.Red)
ComPorts.comPortExists = False
End If

Return cmbPort.SelectedIndex
End Function

<summary>
Sets handshaking in the combo box.

Does not set handshaking for a COM port.
</summary>

""" <param name="requestedHandshake"> the requested handshaking as a
System.IO.Ports.Handshake value. </param>

Friend Sub SelectHandshaking(ByVal requestedHandshake As Handshake)
cmbHandshaking.SelectedItem = requestedHandshake
End Sub
<summary>
Initialize port settings.
InitializeComponent is required by the Windows Form Designer.
</summary>
Sub New()
InitializeComponent()
InitializePortSettings()
End Sub
<summary>

The port parameters may have changed.
Make the parameters available to other modules.

77

</summary>

Private Sub btnOK_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnOK.Click

Dim statusMessage As String

Set the port parameters.

If ComPorts.comPortExists Then

RaiseEvent UserInterfacePortSettings(cmbPort.SelectedItem.ToString,
CInt(cmbBitRate.SelectedItem), DirectCast(cmbHandshaking.SelectedItem,
Handshake))

End If

RaiseEvent UserInterfaceData("DisplayCurrentSettings", "", Color.Black)

If cmbPort.SelectedIndex = -1 Then
statusMessage = ComPorts.noComPortsMessage
Else
statusMessage =
End If

RaiseEvent UserInterfaceData("DisplayStatus", statusMessage,
Color.Black)

End Sub

<{summary>

Configure components in the dialog box.
</summary>

Friend Sub PortSettingsDialog_Load(ByVal sender As Object, ByVal e As
System.EventArgs) Handles Me.Load

btnOK.DialogResult = Windows.Forms.DialogResult.OK
Me.AcceptButton = btnOK
btnOK.Focus()

End Sub

<summary>

Don't save any changes to the form.
</summary>

Private Sub btnCancel Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnCancel.Click
Me.Hide()
End Sub
End Class

ComPorts.vb

option explicit on
Option Strict On

Imports System.IO.Ports
Imports System.Runtime.Remoting.Messaging

<summary>

</summary>

78

Routines for finding and accessing COM ports.

Public Class ComPorts

Const ModuleName As String = "ComPorts"

Friend Shared
Friend Shared
Friend Shared
attach a COM-port

Friend Shared
(Byval
As Color)

Shared members - do not belong to a specific instance of the class.

comPortExists As Boolean

myPortNames() As String

noComPortsMessage As String = "No COM ports found. Please
device."

Event UserInterfaceData _
action As String, ByVal formText As String, ByVal textColor

Non-shared members - belong to a specific instance of the class.

Friend Delegate Function WriteToComPortDelegate(ByVal textToWrite As

String) As Boolean

Friend WriteToComPortDelegatel As New WriteToComPortDelegate(AddressOf

WriteToComPort)

Private SerialDataReceivedEventHandlerl _
As New SerialDataReceivedEventHandler(AddressOf DataReceived)
Private SerialErrorReceivedEventHandlerl _
As New SerialErrorReceivedEventHandler(AddressOf ErrorReceived)

Local variables available as Properties.

Private m_ParameterChanged As Boolean

Private m_PortChanged As Boolean

Private m_PortOpen As Boolean

Private m_PreviousPort As New SerialPort

Private m_ReceivedDatalength As Integer

Private m_SavedBitRate As Integer = 9600

Private m_SavedHandshake As Handshake = Handshake.None

Private m_SavedPortName As String =

Private m_SelectedPort As New SerialPort

Friend Property ParameterChanged() As Boolean

Get

Return m_ParameterChanged

End Get

Set(ByVal value As Boolean)
m_ParameterChanged = value

End Set
End Property

Friend Property PortChanged() As Boolean

Get

Return m_PortChanged

End Get

Set(ByVal value As Boolean)
m_PortChanged = value

End Set
End Property

Friend Property PortOpen() As Boolean

79

Get
Return m_PortOpen
End Get
Set(ByVal value As Boolean)
m_PortOpen = value
End Set
End Property

Friend Property PreviousPort() As SerialPort
Get
Return m_PreviousPort
End Get
Set(ByVal value As SerialPort)
m_PreviousPort = value
End Set
End Property

Friend Property ReceivedDatalLength() As Integer
Get
Return m_ReceivedDatalength
End Get
Set(ByVal value As Integer)
m_ReceivedDatalength = value
End Set
End Property

Friend Property SavedBitRate() As Integer
Get
Return m_SavedBitRate
End Get
Set(ByVal value As Integer)
m_SavedBitRate = value
End Set
End Property

Friend Property SavedHandshake() As Handshake
Get
Return m_SavedHandshake
End Get
Set(ByVal value As Handshake)
m_SavedHandshake = value
End Set
End Property

Friend Property SavedPortName() As String
Get
Return m_SavedPortName
End Get
Set(ByVal value As String)
m_SavedPortName = value
End Set
End Property

Friend Property SelectedPort() As SerialPort
Get
Return m_SelectedPort
End Get
Set(ByVal value As SerialPort)
m_SelectedPort = value
End Set
End Property

80

<summary>

If the COM port is open, close it.

</summary>

<param name="portToClose"> the SerialPort object to close </param>

Friend Sub CloseComPort(ByVal portToClose As SerialPort)

Try
RaiseEvent UserInterfaceData("DisplayStatus", "", Color.Black)

If (Not IsNothing(portToClose)) Then
If portToClose.IsOpen Then

portToClose.Close()
RaiseEvent UserInterfaceData("DisplayCurrentSettings", "",
Color.Black)

End If
End If

Catch ex As InvalidOperationException

parameterChanged = True
portChanged = True
DisplayException(ModuleName, ex)

Catch ex As UnauthorizedAccessException

parameterChanged = True
portChanged = True
DisplayException(ModuleName, ex)

Catch ex As System.IO.IOException

parameterChanged = True

portChanged = True

DisplayException(ModuleName, ex)
End Try

End Sub

<summary>

Called when data is received on the COM port.

Reads and displays the data.

""" See FindPorts for the AddHandler statement for this routine.
</summary>

Friend Sub DataReceived(ByVal sender As Object, ByVal e As
SerialDataReceivedEventArgs)

Dim newReceivedData As String

Try
' Get data from the COM port.

newReceivedData = selectedPort.ReadExisting

Save the number of characters received.

receivedDatalength += newReceivedData.LlLength

81

RaiseEvent UserInterfaceData("AppendToMonitorTextBox",
newReceivedData, Color.Black)

Catch ex As Exception
DisplayException(ModuleName, ex)
End Try
End Sub

<summary>

Provide a central mechanism for displaying exception information.
Display a message that describes the exception.

</summary>

<param name="ex"> The exception </param>
<param name="moduleName" > the module where the exception was raised.
</param>

Private Sub DisplayException(ByVal moduleName As String, ByVal ex As
Exception)

Dim errorMessage As String

errorMessage = "Exception: " & ex.Message & _
" Module: " & moduleName & _
". Method: " & ex.TargetSite.Name

RaiseEvent UserInterfaceData("DisplayStatus”, errorMessage, Color.Red)

' To display errors in a message box, uncomment this line:
' MessageBox.Show(errorMessage)

End Sub
<summary>
Respond to error events.

</summary>

Private Sub ErrorReceived(ByVal sender As Object, ByVal e As
SerialErrorReceivedEventArgs)

Dim SerialErrorReceivedl As SerialError
SerialErrorReceivedl = e.EventType
Select Case SerialErrorReceivedl

Case SerialError.Frame
Console.WriteLine("Framing error.")

Case SerialError.Overrun
Console.WriteLine("Character buffer overrun.")

Case SerialError.RXOver
Console.WriteLine("Input buffer overflow.")

Case SerialError.RXParity
Console.WriteLine("Parity error.")

Case SerialError.TXFull
Console.WriteLine("Output buffer full.™)
End Select
End Sub

<summary>

Find the PC's COM ports and store parameters for each port.

Use saved parameters if possible, otherwise use default values.
</summary>

<remarks>

The ports can change if a USB/COM-port converter is attached or

removed,
""" so this routine may need to run multiple times.

</remarks>

Friend Shared Sub FindComPorts()

Place the names of all COM ports in an array and sort.

myPortNames = SerialPort.GetPortNames

Is there at least one COM port?
If myPortNames.Length > @ Then

comPortExists = True
Array.Sort(myPortNames)

Else
' No COM ports found.

comPortExists = False
End If

End Sub

<summary>

Open the SerialPort object selectedPort.

If open, close the SerialPort object previousPort.
</summary>

Friend Function OpenComPort() As Boolean
Dim success As Boolean = False

Try
If comPortExists Then

The system has at least one COM port.
If the previously selected port is still open, close it.

If PreviousPort.IsOpen Then
CloseComPort(PreviousPort)

End If

If (Not (SelectedPort.IsOpen) Or PortChanged) Then
SelectedPort.Open()
If SelectedPort.IsOpen Then

The port is open. Set additional parameters.
Timeouts are in milliseconds.

SelectedPort.ReadTimeout = 10000

82

83

SelectedPort.WriteTimeout = 10000

Specify the routine that runs when a DataReceived
event occurs.

AddHandler SelectedPort.DataReceived,
SerialDataReceivedEventHandlerl

AddHandler SelectedPort.ErrorReceived,
SerialErrorReceivedEventHandlerl

Send data to other modules.

RaiseEvent UserInterfaceData("DisplayCurrentSettings",
"", Color.Black)

RaiseEvent UserInterfaceData("DisplayStatus", B
Color.Black)

success = True
' The port is open with the current parameters.

PortChanged = False

End If
End If

End If
Catch ex As InvalidOperationException

parameterChanged = True
portChanged = True
DisplayException(ModuleName, ex)

Catch ex As UnauthorizedAccessException

parameterChanged = True
portChanged = True
DisplayException(ModuleName, ex)

Catch ex As System.IO.IOException

parameterChanged = True

portChanged = True

DisplayException(ModuleName, ex)
End Try

Return success
End Function

<summary>
Executes when WriteToComPortDelegatel completes.

</summary>

<param name="ar"> the value returned by the delegate's BeginInvoke
method </param>

Friend Sub WriteCompleted(ByVal ar As IAsyncResult)
Dim deleg As WriteToComPortDelegate

Dim msg As String
Dim success As Boolean

84

Extract the value returned by BeginInvoke (optional).

msg = DirectCast(ar.AsyncState, String)

Get the value returned by the delegate.

deleg = DirectCast(DirectCast(ar, AsyncResult).AsyncDelegate,
WriteToComPortDelegate)

success = deleg.EndInvoke(ar)

If success Then
RaiseEvent UserInterfaceData("UpdateStatusLabel”, "", Color.Black)
End If
' Add any actions that need to be performed after a write to the COM
port completes.
' This example displays the value passed to the BeginInvoke method
and the value returned by EndInvoke.

Console.WriteLine("Write operation began: " & msg)
Console.WriteLine("Write operation succeeded: " & success)
End Sub
"' <summary>
""" Write a string to the SerialPort object selectedPort.
"' < /summary>

<param name="textToWrite"> A string to write </param>
Friend Function WriteToComPort(ByVal textToWrite As String) As Boolean
Dim success As Boolean

Try

Open the COM port if necessary.

If (Not (selectedPort Is Nothing)) Then
If ((Not selectedPort.IsOpen) Or portChanged) Then

Close the port if needed and open the selected port.
portOpen = OpenComPort()

End If
End If

If selectedPort.IsOpen Then
selectedPort.Write(textToWrite)
success = True

End If

Catch ex As TimeoutException
DisplayException(ModuleName, ex)

Catch ex As InvalidOperationException
DisplayException(ModuleName, ex)
parameterChanged = True
RaiseEvent UserInterfaceData("DisplayCurrentSettings", ""
Color.Black)

P

Catch ex As UnauthorizedAccessException
DisplayException(ModuleName, ex)

' This exception can occur if the port was removed.
' If the port was open, close it.

CloseComPort(selectedPort)

parameterChanged = True

RaiseEvent UserInterfaceData("DisplayCurrentSettings",
Color.Black)

End Try
Return success
End Function

End Class

P

85

finclude <pic.h>

#include <math.h>
#include <stdio.h>
#include "delay.h"
#include "delay.c"

__CONFIG(0x3F32);

void initPIC();

APPENDIX B: MPLAB Source Code

void convert (int num);

void GetSensor (int *SData);
void display (unsigned int c);
unsigned char receive (void);

int SDhatal[3];

unsigned char aj;

void main (void)

{
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

// int 1i;

int
int
int
int
int
int

one;

ten;

hundreds;
thousands;
Data;
Threshold=1112;

long x;
long x2;
long y;
long y2;
long z;
long z2;

int

initPIC();

while (1)
by user

calculated_acceleration;

// Wait for 'ok'

receive () ;

a = receive();
if (a == 'k') break;

to be entered

86

display (0x0a); //Enter new line
// Text will display on Hyperterminal after 'ok' is

while (1)
{
GetSensor (SData) ;

Data=SData[0]/10;
one=SData[0]%10;
ten=Data%10;
Data=Data/10;
hundreds=Data%10;
Data=Data/10;
thousands=Data%10;
display (0x30+thousands) ;
display (0x30+hundreds) ;
display (0x30+ten);
display (0x30+one) ;
display (0x20) ; // Space
Data=SDhata[l1l]/10;
one=SData[1]%10;
ten=Data%10;
Data=Data/10;
hundreds=Data%$10;
Data=Data/10;
thousands=Data%10;
display (0x30+thousands);
display (0x30+hundreds) ;
display (0x30+ten);
display (0x30+one) ;
display (0x20); // Space
Data=SData[2]/10;
one=SData[2]%10;
ten=Data%10;
Data=Data/10;
hundreds=Data%10;
Data=Data/10;
thousands=Data%10;
display (0x30+thousands) ;
display (0x30+hundreds) ;
display (0x30+ten);
display (0x30+one) ;
display (0x0a) ; //Go to new line
//display (0x0d) ;

x=SDatal[0];
X2=X*X;
y=SDhatal[l];
Y2=Yy*y;
z=SDatal[2];
z22=2%2;
calculated_acceleration=(unsigned
int) round(sqrt ((x2+y2+z2)));
if (calculated_acceleration >= Threshold)
{
display (0x65) ; //"e"
while (1)
{
RD1=1;

entered

87

}

void initPIC ()
{

SPBRG=129;
baud

BRGH=1;
transmission

TXEN=1;

CREN=1;

SPEN=1;

TRISE=0b00000111;
TRISA=0b00101111;
TRISD=0;
ADIE=1;

converter interrupt
ADCON1=0x83;

Vref, RAO,1,2,5-analogue, REO,1,2-digital

ADCONO=0x41;
ADRESL=0;
ADRESH=0;
PORTD=0;

}

void display (unsigned int c)
text on the screen
{
while (TXIF == 0);
TXREG = c;
}

unsigned char receive (void)
text from PC
{

while (RCIF == 0);

a = RCREG;

return aj;

}

void GetSensor (int *SData)
{
unsigned int temp;
CHS2=0;CHS1=0; CHS0=0;
DelayUs (20);
ADGO=1;
DelayUs (20);
if (ADIF)
{
SData [0]=ADRESL;
temp=ADRESH*0b100000000;
SData[0] +=temp;
}

CHS2=0;CHS1=0;CHS0=1;
DelayUs (20);
ADGO=1;

88

// set baud rate as 9600
// High speed data
// Enable_Tx

// Enable_Rx
// Set_Serial_Pins

//Enables the A/D
//Right justified. RA3-

//fosc/8, on A/D converter

// subrountine to display the

// subrountine to receive

DelayUs (20);

if (ADIF)

{
SData[1]=ADRESL;
temp=ADRESH*0b100000000;
SData[l]+=temp;

}

CHS2=0;CHS1=1;CHS0=0;

DelayUs (20);

ADGO=1;

DelayUs (20);

if (ADIF)

{
SData[2]=ADRESL;
temp=ADRESH*0b100000000;
SData[2]+=temp;

&9

90

APPENDIX C: Graphs and Figures

1200

1000

200

25

33

41

49

57

85

73

81

89

a7
105
113
121
129
137
145
153
161
169
177
185
193
201
209
217
225
233
241
249
257
265
273
281
289
297
305
313
321
329
337
345
353
361
369
377
385
393

1200

1000

Jump and step back to floor

Lean down a bit

K_J%

_/'\'\

\\‘\jH_J

Halt position

16
21
26
31
36
41
46
51
56
61
66
71
76
Bl
86
a1
96
101
106
i B 1
116
131
126
131
136
141
148
151
156
161
166
171
178
181
186
191
196
201
206
211
218
221
226
231
238
241
246
251
256
261
268
271

1200

1000

600

-_Y

.

_/"‘\-\

_—

115
121
127
133
139
145
151
157
163
169
175
181
187
193
188
205
211
217
223
229
235
241
247
253
259
265
271
277
283
289
295
301
307
313
319
325
331

Jump motion

91

File

Setup

X ¥ z

0551 0440 0556 ~
0551 0440 0591
0551 0440 05490
0551 0440 0590
0551 01444 0591
0551 0440 0591
0551 0440 0591
0551 0440 0591
0557 0440 0591
0551 0440 0591
0551 0440 05491
0556 0448 0591
0551 0440 0588
0551 01440 0535
0547 0440 0585
0550 0440 0588
0551 0440 0588

Aaoeleratan

Azcelaration 1 veriun Tms

Becaleration y varius Tin

Accaleration Zveriul T

- e
= s
* Lok 100 +*
= .
& }
- stk o +
= oy -
%
% yim 3 s
" £ £ "
et E ., E *
hd 3 . e .—_..w—
. -) H
Tt HIY ¢
- i p &
- 3
P H
- g =
T 3
w0 L4
5 i .
oo o o F e -

Tme

e

Clear Text

COM17 8600 M &1

File

Setup

£ ¥ z

Handshake: None OPEN

0555 0440 D595 A
0556 0441 0595
0553 0440 0598
0551 0441 0591
0552 0441 0G4
0551 0441 0591
0552 0444 0596
0552 0444 0593
551 0444 0695
0551 0441 0593
0554 0443 0600
0553 0440 0595
0551 0441 0695
0551 0444 0595
0551 0444 0595
0551 0444 0598
0551 ;

[E3}

Clear Text

Aceelaration 1 Veriu Tms

Bccaleration y Verius Tins

Acealaration Zvsriun Tims

=
&0 1000 &7
an
+
B k¥ -
+
B
& o PN 23
i =
PR ad +
e = &N =
i + f vy Em -
T i T D E ¥
H & H H
+ &
i S 4, b s : H LY v
e -
E
sa Rkl am 3 .
L -
=0 + o -
™ +
i - . B
.
o B
Jiwe ava St ame | awe | auen e Jwe st 3w aws | siee | ane | ane Jwe aa s s ae | ate 3

Tme

Time

COK17 8600 MG 1

File Setup

® y z

Handshake: None OPEM

Fall Detection Control

0550 0440 0595 &
0550 0444 0595
0548 01444 0595
0550 01444 0596
0550 0445 0595
0550 0444 0596
0557 0441 0596
0550 01444 0593
0547 01444 0593
0547 01444 0595
0545 0448 0600
0547 1444 0596
0547 1444 0595
0550 0444 0596
0545 0444 0596
0547 01444 0591
0547

Clear Text

&ceelaration Veraun Tima

Aecaleration y Veraus Tina

Legelaration zVerius Tima

sancloraton
L

J—
&

4

]

.

PR O N

e o

+

].“.u

aansieraton

g

g

E=m

=

DS mE oms WS

.

EE

COM17 9800 ME1

Handshake: MNone OFER

GUI when obtaining jump motion data

92

—

—

700
600
500
400
300
200
100

=8 £ sez
15t 682
[y £8z
EED 54
ey Tz
ST 592
i 652
5 £5¢
il vz
o
24 134
= m 144
i S 344
GiE m D
S
9tE m E
108 66T
862 1)) E6T
68z m 81
08z s 81
e = ST
29z 2! 69T
£5¢ €91
[5T
134 +— 15T
9zz ‘A 1%
Lz e E BET
207 = EoEet
66T [} E szt
061 = Eorer
18T @] ST
zit o] 50T
Mmﬂ on £0T
5 £ x
9ET W w Mm
Lzt

811 M

60T

00t

6

]

EL

2]

55

ap €
€ sz
sz 6T
6T T
ot 2
1 1

700
600
500
400
300
200
100

700
600
500
400
300
200
100

ETE
L0E
T0E
S62
B8C
EBC
[rsa
TLC
89¢
652
EST
Lve
e
SET
BZC
EZT
LTT
T1e
s0Z
66T
EBT
8T
8T
SLT
69T
£49T
LST
15T
SET
BET

Sit motion

Fall Detes

Fle Setup

* ¥ z

0543 01440 0547 ~
0545 (01440 0550
0546 1440 0551
0545 0440 0550
0547 01440 0551
05468 01440 0547
0545 0440 0545
0544 01440 0551
0547 0440 0545
0547 01440 0549
0550 01440 0551
0547 01436 0550
0547 1435 0551
0547 01440 0547
0547 01440 0546
0545 01440 0550
0547

(=l

Accelaration T veriun Tms

Becaleration y varius Tin

Accaleration ZvsriuYTImE

B 8B 28

pr—
B g 2

Koo

cosleraion
g

—
5

scoeratan
&

siis
Tme

sest

ER
Time

wn
sent

sas1

20
sat

seis
e

sis1

Clear Text

COK17 8600 MG 1

File

Setup

X ¥ z

Handshake: None OPEM

0543 0440 0535 A
0550 0440 0535
(560 0440 585
1560 0440 1585
551 0440 0588
0547 0440 0533
0547 0440 0586
1560 0440 1567
0543 01440 0588
0543 0440 0557
0546 0440 0557
(550 0440 I6AE
1548 0440 586
0543 0440 0554
0547 0440 0535
1547 0440 586
0550 0440 1585 v

Aceelaration T veriun Tms

Becaleration y varius Tins

Accaleration ZveriuETIme

’ﬁ\

e

pr—
8

.

—F

Agoelesrafon
4 8 & &
et

4

+

‘Baoeleraton

]

g

=
2m 2= am am am

Tme

21m

2134

2135

2m 2= ;W 2@ 2=

e

2im 213

2135

2=

2= zm 21w am

21m 213

2135

Clear Text

COK17 8600 MG 1

File

Setup

] v z

Handshake: None OPEM

0551 0448 0604 ~
0553 0445 0604
0556 0445 060
0553 01445 0604
0551 0444 0604
0551 0444 0604
0551 0444 0604
0557 0445 0604
0553 1444 0604
0552 0444 0604
0553 0448 0608
0551 0445 0604
0551 01445 0600
0551 0448 0604
0551 0448 0604
0551 0448 0604
0551

&cealeration 1 veriu Tma

Ascaleration y varaus Tima

Seeelaration 2verius Tima

= -
-
S0 s
-t
z 3 : +
-
= e et oy Ss e ‘ 3 & z N
o el oy I
<90 s Y o i o o
= M T pae 4 o ST
5 b s 5 . 5 ot .
H = H 5 H * + 1
Esa H bl Es
H . . s H :
i i b § i
= 1 = %
5 =
=] £ hog
. = .
.
. . . & i
i .
@
[PR R S e S e AP R O e S e i R S S e T

Tme

Clear Text

Tma

=02

COM17 9800 MNB1

Handshake: Mone OFPEMN

GUI when obtaining sit motion data

94

—

—

185 505
5 a6t
185 e
125 ser
115 69t
105 o9t
6% L
I 2%
Tty set
159 e
Tep e
=il a0t
Teh 168
= e
i 68
5 i
T6€
THE ~ 443
TeE =) £pE
198 mm vee
T5€ w S2E
2 a1e
i 08
=
i - 08z
08 —
= Tz
162 -
172 29z
182 cor
1z nW. o
19z S i
152 wn oee
Tz P
66T
11z Py
0z o o1
161 = s
181 o1
Tt ..m et
19T Y e
15T m aET
THT = 21
TET = a1
121 1) &0t
Tt o001
o1 5
6 - 28
18 £
] va
19 o5
15 ar
2 £
1% 8z
1z 5T
s ot
T T
= = = = o o o o o o o o o = o = o o o o o o
R 3 & g 8 a a S &] g B i B & R & & g & i E

09t
5%
faad
EEV
Lad
ST¥
90t
LBE
88¢
GLE
0LE
T9€
Z5€
E¥E
FEE
SZE
at1e
L0E
B6Z
B8C
08¢
TiE
[4=4
ESE

SET
a9zT
L1e
802
66T
06T
8T
ZLT
£49T
¥ST
SFT
9ET
fZT

Squat and stand back motion

Fall Detection Contral

File Setup

] y z

0551 04400585 =
0551 04400586
[R51 04400588
0551 04400585
0555 04400588
0551 04400583
[RG1 04400554
0651 04400584
0551 04400584
0551 04400583
0553 0440 0585
[RGF 0440 0585
0851 04400553
0551 04400583
0551 04400583
1653 04400554
0553 0440 D585

Clear Text

Accaleration 1 Veriun Time

Acesleraton y Ver s Time

Accalarstion zver Tme

Sassleratan
1

+
t

.
-
%

soosterstan
b &

ET

'IOO +
wp #4°

& [.3‘*“.
R
*hepe

s =B
""io

3
e

R L)

cosleraton

H

#

= wmE

E=2=

mm

COM17 8B00 NE1

File Sstup

x ¥ z

Handshake: None OPEN

Fall Detection Control

1654 0444 D600
0654 04440538
0553 0444 0600
0551 0441 0600
[RGF 0444 0600
0853 0441 DBOD
0856 0441 D596
0555 0444 0600
(651 0444 0535
0653 0441 DBOD
0553 0444 DE0D
0558 0445 0600
0555 0444 0535
1653 0444 0600
1554 0441 0538
0553 04440598
0554 0444 0595 »

Ageleration ¥ Ver Time

Ageslaration y Veru Tims

Bccalerstion zVerw Tme

Aogeleraton
s
+ u...: ..

Savetraton
BB

@

i

Aaueleraton

Zaz
nma

)
s

om

7z
e

COMT7 S9BOD NE1

File Setup

] v z

Handshake: Mane OPERN

Fall Detection Contral

0556 0440 0597 A
0556 0440 0533
[R5 01440 D534
065 01440 D533
0560 0444 0595
0555 0441 0533
0556 0440 0530
RGN 0440 DROD
N5 01440 D531
0556 01440 0595
0556 0440 0532
[R5 01441 D533
065 01441 D533
0560 0440 0593
0556 0440 0532
0556 0440 0531
0566 0440 v

Clear Text

Accalsrston 1 Ver Tme

Agcslsration y Vsrius Time

Accalerstion 2 Veriun Tma

=0

asosleraian

I

o
&

+
R

+

: .g" e
lé;,:‘..«.
+

&
-
ey
—

aoonleradan

N

o .E':

=1z
e

=
e

z=m

=z
Tme

COMTF 8B00 NB1

Handshake: None OPEN

GUI when obtaining squat and stand back motion data

96

M [I
622 EbL
ats 6ZL
€0 ST
059 ToL
4t (89
o9 Lo
159 559
8e9 P
529 o
z1a o
= .
€45 o855 m
095 ats —_—
M el B D =
s v -
iz €65 <
805 615 (&)
56t 505
2t 16t
69t Lt
a5t mb €9t
vy " . 13
L oER > m sEv
ﬁ Ly = Tzt
vor o
s 188 W 68 o4
8LE o
6LE =
m 59€ , 598 =
433 Toe =
6EE (5]
{ | C D £
o EiE 60 e
00 7}
187 62 A
viz 132 I3y
19z 19z R
vz 34 &
562 134
f£44 52z
602 112
35T 16T
231 €31
i3 o1
51 ot
vrT et
TET s
BT
ot €T
Ge 66
st 8
a5 T
&5 5
or 33
%4 6T
4 st
1 1
o o o o o o o o o o o o o o E E E E E E o
R & & £ a s B S 3] 2 B] B R & & £ & a S

E0L
069
££9
a9
159
BEQ
sz9
Z19
665
985
E£S
095
L¥S
FES
Tzs
805
SE¥
8y
69t
asy

0EY
LTy
ot
T6E
BLE

Walk motion

Fall Detection Control

File Setup
" y z
0543 0440 0577 ~ a Accslsration 1 verius Time - Accelsration y verius Time. - Accalsration zveriun Time
0543 0441 0676
0542 0444 0676 o 5 s : . L. ;
0540 0440 0572 o8 ¥ 5 @ LY e e B0 5 G
0540 0440 0572 i IR LN Firdaty s wreitdi PO ST JO
0540 0440 0572 = ‘et e e = et W 2 = iwgigcggf il
0540 0441 0572 Eailognse el e yin s it o ¥ she
0540 0440 0572 : fa ™ Tddlal” s elial = T ke Rt sy B
E -|-~ e ‘v £ “h, t* e 4 Rt g te ¥ &;
0542 01440 0572 £ T & £ FEtausit sl £ TRogdti ety
H &a ﬁ' HG ” S FAAa H FE 23 20t 5 JNPLAPE SR
0540 0436 0568 L= ‘ ,, P ., : 2 ghedy Larvsegye L se +eSELPE we %
0542 0440 0569 LRS- D P ': + §, EIRER MNP IS S 1 etet ete 4+
0536 0440 0672 e MR % - TSt - s e,
0537 0435 0568 el " ¥ 38 .
0540 0440 0564 = ® > iRe: =
0540 0440 0565
Egjg‘““‘m 0560 ./l =55 o ey =l T P = = || = e P i
e Tme Time. Time.
COM17 8600 NB1 Handshake: Nore OPEN

Fall Detection Control

File Setup

£ y z

0547 0440 D562 A
0545 0440 05749
0543 01440 0552
0550 01440 0552
0551 0440 0582
0557 0440 0585
0557 0440 0583
0557 0440 0530
0557 0440 0583
0557 0440 0582
0548 0440 0582
0557 01440 0553
0557 0440 0583
0551 0440 0583
0557 0440 0583
0557 0440 0582

0551 0440 \}

£cgeleration verius Tima

Bcoaleration y Verius Thne

Laceleration zverus Time

Jems—
]

su

El

Aaueleraton

aaueieraton

*

14m 1410

1518

1m

1610

s

14m

1410

1418

Clear Text

COM17 9800 MNE1

Handshake: Mone OFERN

Fall Detection Control

File

Setup

¥y

z

EER

0543 01440 D587 A
0543 0440 0535
0542 0440 N6AE
542 0440 1587
0544 01444 0588
0543 0440 0553
1543 0440 0585
1543 0440 1567
0543 0440 585
0543 0440 0554
0543 0440 0535
1543 0440 1540
0543 0440 1586
0543 01444 0538
1543 0444 0535
0543 0440 0585
0543 0440 v

Clear Text

Acealaration 1 Veriun T

Bccalaration y Verius Thns

Accaleration Zvsrius Time

Jem—
8

&

i

b

‘saeleraton

A

w P

4

‘Boneteratan

o

gg?i*"z’??"ii

17 121

s

180

w1

175

1201 1808

181

COK17 8600 WG 1

Handshake: None OPEM

GUI when obtaining walk motion data

ol Fall Detection Control

File Setup

x ¥ z

98

[E=% EeR (=

0636 0532 0654 =
0636 0536 D652
0633 0534 0652
0633 0534 0652
0640 0536 0655
0636 0536 0643
0636 0536 0651
0636 0536 0652
0636 0536 D654
0638 0536 D655
0636 0536 D652
0636 0536 D652
0638 0534 D652
0640 0536 0657
0633 0536 0652
0636 0536 0655
0636 =

Close COM Port

Aoeleratan

Aosleration x Versus Tima

‘Agoskaration y Versus Tima

‘Aggsleration 2 Versus Tima

r—

r—

-

&

038

o8

COM3 9600 N 81 Handshake: None OPEN

a-! Fall Detection Control

File Setup

x ¥ z

0600 0543 0688 -
(0595 0543 0679
0591 0543 0684
05594 0540 0680
0600 0542 0688
0601 0540 0679
0600 0540 0679
0604 0540 0678
0604 0540 0679
0604 0537 0678
0604 0540 0679
(0600 0540 0679
(0600 0540 0679
0601 0538 0681
0601 0540 0681

ccstaraton

Acoaeration X versus TIme

Acosieration y Versua Time

acomeration z versus TIme

s00

ccelaraton

H

§

g B E B

H

cclaraton

‘e

s

)

e

e

23 D

B

B

B

COM3 9600 N&1 Handshake: None OPEN

a-! Fall Detection Control

File Setup

x ¥ z

0632 0527 0659 ~
0632 0526 0657
0632 0526 0659
0633 0527 D658
0636 0527 D659
0636 0526 DB59
0633 0526 D655
0633 0527 0657
0632 0527 0656
0632 0527 0657
0632 0528 0659
0632 0528 0660
0632 0528 0659
0632 0527 0659
0632 0528 0659
0633 0627 0660
0632 =

sccoleraton

F}

Apoalaration x Varsus Tima

‘2oosleration y Varsus Tima

‘Asosiaration 2 Varsus Tima

0

200

700

00

seclaraton

0

700

0

o

00

.

r—

%,
P lai i
w"

g

prers

o5z

os2s

Tine.

o5z

COM3 9600 N 81 Handshake: None OPEN

GUI when obtaining back falling motion data

a5 Fall Detection Contral

File Setup

x ¥ z

0656 0505 0579 ~

0

A posiaration x Varsus Tima

w0

‘2cosleration y Varsus Tima

0656 0504 0577
0656 0504 057!

0657 0504 0576
0662 0504 0577
0659 0499 0579
0659 0499 0578
0657 0497 0580
0654 0496 0584
0655 0496 0583
0649 0497 0583
0655 0499 0583
0652 0497 0583
0654 0496 0580
0655 0497 0583
0654 0499 0583

00

o0

sccoleraton

s0

100

r——

o0

o

e

r——

0655 0439 =

cats

el cinE) o0 Pl

Tine.

el cani

Tims

) o il

COM3 9600 N 81 Handshake: None OPEN

a5 Fall Detection Contral

File Setup

x ¥ z

0649 0492 0579 ~

A posiaration x Varsus Tima

‘2cosleration y Varsus Tima

AcCHISrStion 2 Varsus TIma

0652 0487 0579
0651 0488 0577
0652 0487 057
0649 0492 0579
0643 0489 05
0652 0487 0579
0649 0457 057
0645 0457 0578
0647 0490 0578
0649 0492 057
0648 0490 0582
0647 0458 0582
0648 0458 057
0650 0487 0579
0649 0487 0579

sccoleraton

——

=

r——

.

"
-
+

A, o e

o o
e ‘0*,.'

. et

0643 =

COM3 9600 N 81 Handshake: None OPEN

a-! Fall Detection Control

File Setup

x ¥ z

= Ho =

0640 0504 0531 =

acoaeration X versus TIme

Acosteration y Versua Time

acoseration z versus TIme

06410504 0528
0641 0500 0527
0643 0504 0527
0645 0504 0529
0640 0504 0529
0642 0504 0529
0643 0504 0528
0643 0504 0527
0643 0504 0528
0642 0504 0531
0642 0504 0531
0640 0504 0529
06410504 0531
0640 0504 0532
0641 0504 053

300

Aastormton

+

Asaslarmton

o0

Asaelarmion

&

&

I
¥ &
¥
i
et
E3
.t

-

.t

06410504 =

200

COM3 9600 N&1 Handshake: None OPEN

GUI when obtaining left falling motion data

a-! Fall Detection Control
File Setup

x y z

100

[E=% HoR (=5

0480 0527 0652 ~

Acostaration x Varsus Tima

00

‘oosleration y Veraus Tima

Acosteration 2 varaus Tina

0480 0527 0649 ™=
0476 0524 0647
0480 0524 0647
0480 0527 0651
04310524 0647 e
0430 0526 0650
0430 0526 0649
0430 0526 0647
0480 0526 0646
0430 0526 0647
0430 0526 0647
0430 0526 0647
0430 0526 0646
0430 0527 0646

0

azastaratan

.
a—rts ¢

T

¥

acasteraton

ccelaraton

0480 0524 0647 |
0480 0524 =

i

Close COM Port

COM3 9600 N81

a-! Fall Detection Control

File Setup

x ¥ z

Handshake: Mone OPEN

(BN EoR =

0496 0543 0672 ~

‘Acosleration x Vareus Tima

Aceslerstion y Vereua Tima

Acosteration 2 Varaus Time

0499 0540 0671
0504 0540 0675 .
0499 0543 0671
0499 0542 0672 =
0496 0543 0672
0496 0542 0672 =0
0496 0543 0673
0496 0543 0673
0496 0542 0672
0497 0542 0675
0497 0542 0673 -
0497 0542 0675
0497 0540 0673 =
0499 0540 0676

acceleraton
§

ccstaraton

e

ccelaraton

0499 D537 0676 5]
0499 =

COM3 9600 NB81

Handshake: None OPEN

o) Fall Detection Control
File Setup

x ¥ z

0480 0526 0654 ~

acesierstion X Versus TIme

700

Acoseration y Versua Time

AccalBrEtion T Versus TIme

0480 0527 0654
0480 0528 0652
0483 0527 0654 =
0486 0527 0655
0486 0526 0654 0
0483 0527 0655
0483 0524 0655
0481 0526 0649
0483 0524 0647
0483 0527 0647 a0
0485 0528 0649
0483 0527 0652
0480 0528 0652
0480 0527 0655

J——
]

0

acleratan

%
e

r—

1000

00

0430 0526 D65
0480 0527] =

W 004 wos e

COM3 9600 N81 Handshake: None OPEN

GUI when obtaining right falling motion data

