
DESIGN AND APPLICATION OF NETWORK-ON-CHIP
VIRTUAL PROTOTYPING PLATFORM

LIM ZHEN NING

MASTER OF ENGINEERING SCIENCE

FACULTYOF ENGINEERING AND GREEN
TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN
JANUARY 2015

DESIGN AND APPLICATION OF NETWORK-ON-CHIP VIRTUAL
PROTOTYPING PLATFORM

By

LIM ZHEN NING

A Dissertation submitted to the Department of Electronic Engineering,
Faculty of Engineering and Green Technology,

Universiti Tunku Abdul Rahman,
in partial fulfilment of the requirements for the degree of

Master of Engineering Science
January 2015

DEDICATION

Dedicated to my family and friends

ii

ABSTRACT

DESIGN AND APPLICATION OF NETWORK-ON-CHIP VIRTUAL
PROTOTYPING PLATFORM

The progressive growth in the complexity of Multiprocessor System-on-

Chip (MPSoC) designs to meet demands on low power, speed, performance as

well as functional features has increased the level of complexity of component

and system level modelling for design verification. In this research, a

reconfigurable and scalable verification environment for Network-on-Chip

(NoC) systems to allow early verification and validation is proposed.

Various component level verification environments based on the

Universal Verification Methodology (UVM), such as the Advanced High-

performance Bus (AHB), the Advanced Peripheral Bus (APB), and the AHB-

to-NoC Bridge, have been developed. Generic Sequences which, can be

extended to model various peripherals such as memory controller, GPIO, SPI,

and timer are used within the corresponding environments. To coordinate

between multiple Sequences, Virtual sequencers are used. Analysis ports are

used to collect transfers from different hierarchies of the verification

environment for analysis. These component level environments are used to

build up the sub-system and system level environment. The system level

environment will be used to verify the designs from specifications to gate level

implementation.

iii

Configuration Objects are used to provide re-configurability of the verification

environment in various hierarchical levels, from component to system.

Generally, this allows the models to be configured based on the specific

configurations such as mapping the slave models on different memory

addresses, and defining the number of routers that is used so that a basic

verification framework can be generated.

To demonstrate scalability and re-configurability, verification

environments have been set up to verify a few NoC architectures. Scoreboards

and checkers are implemented to verify the correctness of the transactions.

Functional and code coverage measurements are taken to ensure the design has

been tested thoroughly.

iv

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful

completion of this project. I would like to express my gratitude to my research

supervisor, Dr. Loh Siu Hong and my Co-supervisors, Dr. Yap Vooi Voon and

Prof. Lee Sze Wei, and Mr. Tang Chong Ming for their invaluable advices,

guidance and enormous patience throughout the development of the research.

 My sincere gratitude to Mr. Ng Mow Song for his contributions in this

research. This project would not be that successful without his guidance and

insight perspectives in verification.

.

In addition, I would also like to express my gratitude to my loving parent

who had helped and given me encouragement and fellow postgraduate

teammates, Dicky Hartono, Felix Lokananta, and Arya Wicaksana in the

discussions.

Last but not least, the gratitude also to all my other friends who give

ideas and suggestions. Without all of them, this project would not be as

successful as it is. Thank you once again for all the ideas, suggestions, guidance,

efforts and skills that have been given to me.

v

APPROVAL SHEET

This dissertation/thesis entitled “DESIGN AND APPLICATION OF
NETWORK-ONCHIP VIRTUAL PROTOTYPING PLATFORM” was
prepared by LIM ZHEN NING and submitted as partial fulfilment of the
requirements for the degree of Master of Engineering Science at Universiti
Tunku Abdul Rahman.

Approved by:

(Dr. Loh Siu Hong)
Date:…………………..
Supervisor
Department of Electrical and Electronic Engineering
Faculty of Engineering and Science
Universiti Tunku Abdul Rahman

(Dr. Yap Vooi Voon)
Date:…………………..
Co-supervisor
Department of Electronic Engineering
Faculty of Engineering and Green Technology
Universiti Tunku Abdul Rahman

(Mr. Tang Chong Ming)
Date:12-01-2015
Co-supervisor
Department of Electronic Engineering
Faculty of Engineering and Green
Technology Universiti Tunku Abdul
Rahman

vi

Toshiba
Typewritten Text

Toshiba
Typewritten Text

FACULTY OF ENGINEERING AND GREEN TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: __________________

SUBMISSION OF DISSERTATION

It is hereby certified that Lim Zhen Ning_(ID No: 12AGM00015) has completed this

dissertation entitled “DESIGN AND APPLICATION OF NETWORK-ON-CHIP

VIRTUAL PROTOTYPING PLATFORM” under the supervision of Dr. Loh Siu Hong

(Supervisor) from the Department of Electronic Engineering, Faculty of Engineering and

Green Technology , Dr. Yap Vooi Voon Co-Supervisor from the Department of Electronic

Engineering, Faculty of Engineering and Green Technology and Mr. Tang Chong Ming Co-

Supervisor from the Department of Electronic Engineering, Faculty of Engineering and

Green Technology .

I understand that University will upload softcopy of my dissertation in pdf format into UTAR

Institutional Repository, which may be made accessible to UTAR community and public.

Yours truly,

(LIM ZHEN NING)

vii

Toshiba
Typewritten Text
15 Jan 2015

Toshiba
Typewritten Text

Toshiba
Typewritten Text

Toshiba
Typewritten Text

DECLARATION

I hereby declare that the dissertation is based on my original work except for
quotations and citations which have been duly acknowledged. I also declare that
it has not been previously or concurrently submitted for any other degree at
UTAR or other institutions.

Name ____________________________

Date _____________________________

viii

Toshiba
Typewritten Text

Toshiba
Typewritten Text
Lim Zhen Ning

Toshiba
Typewritten Text
15 Jan 2015

Toshiba
Typewritten Text

Toshiba
Typewritten Text

Toshiba
Typewritten Text

ix

TABLE OF CONTENTS

 Page

DEDICATION II

ABSTRACT III

ACKNOWLEDGEMENTS V

APPROVAL SHEET VI

DECLARATION VIII

TABLE OF CONTENTS IX

LIST OF TABLES XIV

LIST OF FIGURES XV

LIST OF ABBREVIATIONS XXI

CHAPTER

1.0 INTRODUCTION 1

1.1 BACKGROUND AND MOTIVATIONS 1

1.1.1 Research Objectives and Approach 3

1.1.2 Dissertation Organization 7

2.0 LITERATURE REVIEW 8

2.1 ESL DESIGN LEVELS 8

2.1.1 Evolution of the ESL design flow 8

2.1.2 TLM Overview 9

2.2 VERIFICATION LANGUAGES 9

2.2.1 Early Verification Languages 10

x

2.2.2 System Verilog Language 10

2.2.3 SystemC Language 11

2.3 VERIFICATION METHODOLOGIES 12

2.3.1 Early Verification Methodologies 12

2.3.2 Open Verification Methodology (OVM) 15

2.3.3 Universal Verification Methodology (UVM) 16

2.4 NOC ARCHITECTURE 18

2.4.1 Overview 18

2.4.2 ARM Cortex-M0 based PE 20

2.4.3 AHB-Lite Bus based Multicore System 22

2.4.4 Network-based Multicore System 26

2.4.4.1 Network Topologies 26

2.4.4.2 The UTAR NOC 32

2.5 SUMMARY 37

3.0 ASIC DESIGN AND VERIFICATION METHODOLOGIES 38

3.1 ASIC DESIGN METHODOLOGY 38

3.1.1 Front End Design 39

3.1.1.1 Specifications 39

3.1.1.2 Electronic System Level Designs 39

3.1.1.3 Register Transfer Level (RTL) Design 40

3.1.1.4 Verification 40

3.1.1.5 Design For Test (DFT) 42

3.1.1.6 Synthesis 43

3.1.1.7 Static Timing Analysis (STA) 43

3.1.2 Back End / Physical Design 44

xi

3.1.2.1 Floorplan 44

3.1.2.2 Power Network Synthesis 45

3.1.2.3 Clock and Buffer Tree Synthesis 46

3.1.2.4 Place and Route 46

3.1.2.5 Chip Finishing 47

3.1.2.6 Post layout verification 48

3.1.2.7 Tape out 48

3.2 UNIVERSAL VERIFICATION METHODOLOGY (UVM) 49

3.2.1 Transaction Level Modelling (TLM) Concepts 50

3.2.1.1 TLM Communication 50

3.2.1.2 Analysis Communications 51

3.2.2 Object Oriented Verification Environment 52

3.2.3 Generic UVM Verification Environment 56

3.2.4 Scenario Generation 58

3.2.5 Factory concept in UVM 59

3.2.6 Configuration Objects 61

3.2.7 UVM Simulation Phases 62

3.3 SUMMARY 64

4.0 VERIFICATION PLATFORM ARCHITECTURE 65

4.1 OVERVIEW 65

4.2 COMPONENT LEVEL TESTBENCH 65

4.2.1 NoC Environment 66

4.2.2 AHB Environment 71

4.2.3 APB Environment 79

4.2.4 SPI Environment 87

xii

4.2.5 Parallel port Environment 90

4.2.6 GPIO Environment 93

4.3 SUBSYSTEM LEVEL TESTBENCH 95

4.3.1 AHB2NoC Environment 95

4.3.2 AHB Parallel Port Environment 99

4.3.3 AHB GPIO Environment 103

4.3.4 AHB APB Subsystem Environment 106

4.3.5 APB SPI Environment 110

4.4 SYSTEM LEVEL TESTBENCH 112

4.4.1 NoC System Level Environment 113

4.5 SUMMARY 119

5.0 RESULTS AND DISCUSSIONS 121

5.1 VERIFICATION PLANS 121

5.1.1 AHB2NOC Bridge 122

5.1.2 NOC Router 124

5.1.2.1 Ring architecture 124

5.1.3 APB Subsystem Environment 125

5.2 VERIFICATION ENVIRONMENT STIMULUS GENERATIONS 126

5.2.1 NoC Sequences 126

5.2.2 AHB 130

5.2.3 APB 134

5.2.4 SPI Sequence 135

5.2.5 GPIO Sequence 136

5.3 PERFORMANCE EVALUATION 137

xiii

5.4 VERIFICATION ENVIRONMENT SCALABILITY AND RE-CONFIGURABILITY

154

5.4.1 Virtual Sequencer 155

5.4.2 Configuration Objects 156

5.4.3 Sequence Library 164

5.5 SUMMARY 166

6.0 CONCLUSION 167

6.1 CONCLUSION 167

REFERENCES 172

APPENDIX A 175

A.0 AHB MEMORY-BUILT-IN-SELF-TEST (MBIST) 175

A.1 AHB SRAM 176

A.2 AHB GPIO 178

A.3 AHB2APB BRIDGE 179

A.4 AHB PARALLEL PORT 180

A.5 AHB ADVANCED ENCRYPTION STANDARD (AES) 182

A.6 AHB-LITE BUS 184

LIST OF TABLES

TABLE 5-1: AHB2NOC VERIFICATION PLAN ... 123

TABLE 5-2: NOC VERIFICATION PLAN .. 124

TABLE 5-3: APB SUBSYSTEM VERIFICATION PLAN .. 125

TABLE 5-4: NOC MASTER BASIC SEQUENCE .. 127

TABLE 5-5: NOC SLAVE BASIC SEQUENCE ... 129

TABLE 5-6: AHB MASTER BASIC SEQUENCE .. 131

TABLE 5-7: AHB SLAVE BASIC SEQUENCE ... 133

TABLE 5-8: APB MASTER BASIC SEQUENCE ... 135

TABLE 5-9: APB SLAVE BASIC SEQUENCE ... 135

TABLE 5-10: SPI BASIC SEQUENCE ... 136

TABLE 5-11: GPIO BASIC SEQUENCE ... 136

TABLE 5-12: THROUGHPUT FOR 4 ROUTER SYSTEM WITH VARIOUS BUFFER

DEPTH ... 140

TABLE 2-1: AHB MBIST VERIFICATION PLAN .. 175

TABLE 2-2: AHB SRAM VERIFICATION PLAN ... 176

TABLE 2-3: AHB SRAM VERIFICATION PLAN CONTINUED 177

TABLE 2-4: AHB GPIO VERIFICATION PLAN ... 178

TABLE 2-5: AHB APB BRIDGE VERIFICATION PLAN 179

TABLE 2-6: AHB PARALLEL PORT VERIFICATION PLAN 181

TABLE 2-7: AHB AES VERIFICATION PLAN ... 183

TABLE 2-8: AHB-LITE BUS VERIFICATION PLAN ... 184

xiv

LIST OF Figures

FIGURE 2-1: ERM FUNCTIONAL PARTITIONING TESTBENCH (VERISITY, 2004) .. 13

FIGURE 2-2: VERIFICATION METHODOLOGY EVOLUTION 17

FIGURE 2-3: SINGLE MASTER AHB-LITE BUS SYSTEM (ARM, 2006) 20

FIGURE 2-4: AHB SPECIAL CORE SYSTEM ... 21

FIGURE 2-5: AHB NORMAL CORE SYSTEM .. 22

FIGURE 2-6: AHB MULTICORE SYSTEM USING MULTIPLAYER MATRIX............ 23

FIGURE 2-7: BUS BASED AHB-LITE MULTICORE SYSTEM IMPLEMENTATION 24

FIGURE 2-8: RING NETWORK TOPOLOGY .. 27

FIGURE 2-9: STAR NETWORK TOPOLOGY ... 28

FIGURE 2-10: PARTIALLY CONNECTED MESH NETWORK TOPOLOGY 29

FIGURE 2-11: FULLY CONNECTED MESH NETWORK TOPOLOGY 30

FIGURE 2-12: LINE NETWORK TOPOLOGY .. 31

FIGURE 2-13: CONNECT NETWORK SEND FLIT PROTOCOL 32

FIGURE 2-14: CONNECT NETWORK RECEIVE FLIT PROTOCOL 33

FIGURE 2-15: CONNECT NOC FLIT .. 34

FIGURE 2-16: MODIFIED CONNECT NOC FLIT ... 34

FIGURE 2-17: AHB2NOC BLOCK ... 35

FIGURE 2-18: NOC ARCHITECTURE .. 36

FIGURE 3-1: ASIC DESIGN METHODOLOGY ... 49

FIGURE 3-2: LAYERED OOP VERIFICATION ENVIRONMENT 54

FIGURE 3-3: GENERIC UVM VERIFICATION ENVIRONMENT ARCHITECTURE.... 57

FIGURE 3-4: SEQUENCE LAYERING.. 59

FIGURE 3-5: FACTORY OVERRIDING .. 60

FIGURE 3-6: UVM PHASES ... 64

xv

FIGURE 4-1: NOC VERIFICATION ENVIRONMENT .. 67

FIGURE 4-2: NOC ENVIRONMENT IMPLEMENTATION .. 68

FIGURE 4-3: NOC AGENT IMPLEMENTATION ... 69

FIGURE 4-4: NOC SEND DRIVER IMPLEMENTATION .. 69

FIGURE 4-5: NOC RECV MONITOR IMPLEMENTATION 70

FIGURE 4-6: FLIT COMPARE .. 71

FIGURE 4-7: AHB READ WRITE TRANSFER (ARM, 2006) 72

FIGURE 4-8: AHB READ WRITE TRANSFER WITH WAIT STATES (ARM, 2006) 73

FIGURE 4-9: AHB ENVIRONMENT ... 74

FIGURE 4-10: AHB MASTER DRIVER IMPLEMENTATION 76

FIGURE 4-11: AHB MASTER MONITOR IMPLEMENTATION 76

FIGURE 4-12: AHB SCOREBOARD IMPLEMENTATION 78

FIGURE 4-13: AHB ADD_SLAVE() FUNCTION .. 78

FIGURE 4-14: APB TRANSFER STATE MACHINE ... 80

FIGURE 4-15: APB WRITE TIMING DIAGRAM (ARM , 2003) 81

FIGURE 4-16: APB READ TIMING DIAGRAM (ARM , 2003)............................... 81

FIGURE 4-17: APB TIMING DIAGRAM WITH WAIT STATE (ARM , 2003) 82

FIGURE 4-18: APB ENVIRONMENT ... 83

FIGURE 4-19: APB DRIVER IMPLEMENTATION .. 84

FIGURE 4-20: APB MONITOR IMPLEMENTATION .. 85

FIGURE 4-21: APB SCOREBOARD ... 86

FIGURE 4-22: 8BIT MSB SPI TRANSFER AT NEGATIVE CLOCK EDGE 87

FIGURE 4-23: 8BIT LSB SPI TRANSFER AT POSITIVE CLOCK EDGE 88

FIGURE 4-24: SPI DRIVER IMPLEMENTATION .. 88

FIGURE 4-25: SPI MONITOR IMPLEMENTATION OF TX NEGATIVE CLOCK PHASE89

xvi

FIGURE 4-26: PARALLEL PORT READ TIMING DIAGRAM 90

FIGURE 4-27: PARALLEL PORT WRITE TIMING DIAGRAM 91

FIGURE 4-28: PARALLEL PORT DRIVER IMPLEMENTATION 92

FIGURE 4-29: PARALLEL PORT MONITOR IMPLEMENTATION 93

FIGURE 4-30: GPIO DRIVER IMPLEMENTATION .. 94

FIGURE 4-31: GPIO MONITOR IMPLEMENTATION ... 94

FIGURE 4-32: AHB2NOC ADAPTER VERIFICATION ENVIRONMENT 96

FIGURE 4-33: VIRTUAL SEQUENCER AND ANALYSIS PORT FOR AHB2NOC 97

FIGURE 4-34: AHB2NOC VIRTUAL SEQUENCER IMPLEMENTATION 98

FIGURE 4-35: AHB2NOC TEST EXAMPLE .. 98

FIGURE 4-36: AHB PARALLEL PORT READ TIMING DIAGRAM 99

FIGURE 4-37: AHB PARALLEL PORT WRITE TIMING DIAGRAM 100

FIGURE 4-38: AHB2PARALLELPORT VERIFICATION ENVIRONMENT 101

FIGURE 4-39: PARALLELPORT VERIFICATION ENVIRONMENT VIRTUAL

SEQUENCER .. 102

FIGURE 4-40: AHB PARALLEL PORT VIRTUAL SEQUENCER 103

FIGURE 4-41: AHB GPIO VERIFICATION ENVIRONMENT 104

FIGURE 4-42: VIRTUAL SEQUENCER AND ANALYSIS PORT FOR AHB GPIO 105

FIGURE 4-43: AHB APB BRIDGE VERIFICATION ENVIRONMENT OVERVIEW . 106

FIGURE 4-44: AHB2APB BRIDGE VERIFICATION ENVIRONMENT 107

FIGURE 4-45: AHB APB TRANSFER TIMING DIAGRAM 108

FIGURE 4-46: AHB APB READ TIMING DIAGRAM ... 109

FIGURE 4-47: VIRTUAL SEQUENCES AND ANALYSIS PORT FOR AHB APB BRIDGE

VERIFICATION ENVIRONMENT .. 110

FIGURE 4-48: APB SPI VERIFICATION ENVIRONMENT 111

xvii

FIGURE 4-49: VIRTUAL SEQUENCER AND ANALYSIS PORT FOR APB SPI 112

FIGURE 4-50: NOC SYSTEM SIMULATION USING SEQUENCES 114

FIGURE 4-51: AHB PLAIN TEXT INPUT ... 115

FIGURE 4-52: AHB AES REFERENCE MODEL... 116

FIGURE 4-53: AHB AES ENCRYPTION BLOCK ... 117

FIGURE 4-54: CORTEX-M0 REPLACING THE SEQUENCES 118

FIGURE 4-55: LOADING FIRMWARE TO THE CORTEX-M0 119

FIGURE 5-1: PART OF PING_PONG_AGENT_SEQ ... 128

FIGURE 5-2: AHB2NOC_SPECIAL_SLAVE_SEND_FLIT SEQUENCE 130

FIGURE 5-3: PART OF AHB_PP_SINGLE_SEQ SEQUENCE 132

FIGURE 5-4: AHB_LITE_BUS_SW_AHB_SLAVE_SEQ1 SEQUENCE 134

FIGURE 5-5: VARIOUS TRANSFER IN 4 ROUTER SYSTEM 138

FIGURE 5-6: LATENCY COMPARISON FOR 4, 8, AND 16 ROUTER SYSTEM 139

FIGURE 5-7: VARIOUS BUFFER DEPTH FOR 4 ROUTER SYSTEM........................ 140

FIGURE 5-8: THROUGHPUT FOR 4 ROUTER SYSTEM WITH VARIOUS DATA SIZES

 ... 141

FIGURE 5-9: LATENCY FOR 4 ROUTER SYSTEM WITH VARIOUS DATA SIZES 142

FIGURE 5-10: VARIOUS BUFFER DEPTH FOR EIGHT ROUTER SYSTEM 143

FIGURE 5-11: THROUGHPUT FOR EIGHT ROUTER SYSTEM WITH VARIOUS DATA

SIZES .. 144

FIGURE 5-12: LATENCY FOR EIGHT ROUTER SYSTEM WITH VARIOUS DATA SIZES

 ... 145

FIGURE 5-13: VARIOUS BUFFER DEPTH FOR SIXTEEN ROUTER SYSTEM 145

FIGURE 5-14: THROUGHPUT FOR 16 ROUTER SYSTEM WITH VARIOUS DATA SIZES

 ... 147

xviii

FIGURE 5-15: LATENCY FOR 16 ROUTER SYSTEM WITH VARIOUS DATA SIZES . 148

FIGURE 5-16: THROUGHPUT COMPARISON BETWEEN VARIOUS ROUTER SYSTEM

WITH BUFFER DEPTH 2 AND DATA SIZES .. 149

FIGURE 5-17: LATENCY COMPARISON BETWEEN VARIOUS ROUTER SYSTEM WITH

BUFFER DEPTH 2 AND DATA SIZES ... 150

FIGURE 5-18: THROUGHPUT COMPARISON BETWEEN VARIOUS ROUTER SYSTEM

WITH BUFFER DEPTH 5 AND DATA SIZES .. 151

FIGURE 5-19: LATENCY COMPARISON BETWEEN VARIOUS ROUTER SYSTEM WITH

BUFFER DEPTH 5 AND DATA SIZES ... 152

FIGURE 5-20: THROUGHPUT COMPARISON BETWEEN VARIOUS ROUTER SYSTEM

WITH BUFFER DEPTH 10 AND DATA SIZES .. 153

FIGURE 5-21: LATENCY COMPARISON BETWEEN VARIOUS ROUTER SYSTEM WITH

BUFFER DEPTH 10 AND DATA SIZES ... 154

FIGURE 5-22: VIRTUAL SEQUENCER WITH LOWER LEVEL SEQUENCER HANDLER

 ... 155

FIGURE 5-23: PART OF THE VIRTUAL SEQUENCER CODE................................... 156

FIGURE 5-24: PART OF NOC CONFIGURATION OBJECT 157

FIGURE 5-25: ADD MASTER FUNCTION .. 158

FIGURE 5-26: ADD SLAVE FUNCTION ... 159

FIGURE 5-27: SETTING NOC CONFIGURATION OBJECT 159

FIGURE 5-28: CODE TO RETRIEVE THE CONFIGURATION OBJECTS 160

FIGURE 5-29: PART OF NOC ENVIRONMENT CODE .. 160

FIGURE 5-30: NOC CONFIGURATION FOR FOUR ROUTER SYSTEM 161

FIGURE 5-31: NOC CONFIGURATION FOR EIGHT ROUTERS SYSTEM 162

FIGURE 5-32: NOC CONFIGURATION FOR 16 ROUTERS SYSTEM 162

xix

FIGURE 5-33: NOC PLATFORM .. 163

FIGURE 5-34: PART OF THE AHB2NOC_SPECIAL_BASE_SEQ SEQUENCE 164

FIGURE 5-35: PART OF AHB_AES_BASE_SEQ SEQUENCE 165

xx

LIST OF ABBREVIATIONS

AES Advanced Encryption Standard
AHB

Advanced High-performance Bus. System bus definition within
the AMBA 2.0 specification.
Defines a high-performance bus, including pipelined access,
bursts, split and retry operations.

AMBA Advanced Microprocessor Bus Architecture. Bus system defined
by ARM Technologies for system-on-chip architectures.

APB Advanced Peripheral Bus. Peripheral bus definition within the
AMBA 2.0 specification. The
Bus is used for low power peripheral devices, with a simple
interface logic.

ASIC Application Specific Integrated Chip
AVM Advanced Verification Methodology
BFM Bus Functional Model
BIST Build In Self-Test
CDV Coverage Driven Verification
DUT Design Under Test
eRM E Reuse Methodology
ESL Electronic System Level
HDL Hardware Description Language
HW Hardware
IP Intellectual Property

NoC Network-On-Chip
OOP Object-Oriented Programming
OVM Open Verification Methodology
RTL Register Transfer Level. Description of hardware at the level of

digital data paths, the data transfer and its storage.
SoC System-On-Chip. A highly integrated device implementing a

complete computer system on a single chip.
STA Static Timing Analysis
SV System Verilog
SW Software

TLM Transaction Level Model. A model of a system in which
communication is described as transactions, abstract of pins and
wires.

URM Universal Reuse Methodology
UVC Universal Verification Component
UVM Universal Verification Methodology
VIP Verification IP

VMM Verification Methodology Manual

xxi

 CHAPTER 1

INTRODUCTION

1.1 Background and Motivations

The semiconductor industry as we know it today is still very

much on an unrelenting pursuit of Moore’s Law. Moore’s Law predicts

that device density in digital CMOS integrated circuits doubles

approximately every two years. This prediction still holds true today to

a great extent because the law is widely used in the semiconductor

industry to guide long-term planning and set targets for research and

development. We, therefore, witness exponential improvement in

performance as well as the miniaturization of any product that uses

mainly microelectronic chips. It also opens up the possibilities of higher

levels of intellectual property (IP) integration, even multiple systems, in

a single chip increasing significantly the functional capabilities and

performance within the same die area.

SoC companies are able to leverage these technology

advancements to innovate and differentiate their market offerings which

includes single core to multicore system solutions. These design

possibilities leads to various improvements such as high speed and

performance as well as bigger embedded storage within the same chip

size. Complex systems are now able to be embedded into Multi-

Processor System-On-Chip (MPSoC).

1

However, MPSoC inherit board level interconnect issues

whereby interconnecting the IPs with conventional busses is not

possible anymore as the number of cores increases. This is because

conventional bus structures take up routing resources, making the chip

not routable and it is not cost effective to increase the chip size. Hence,

research on the interconnection between the processor cores has also

been rapidly evolving from the conventional bus interconnect in MPSoC

to use terrestrial network based concept as interconnect. On-chip

networks, or Network-On-Chip (NoC), will allow the architecture to be

scalable and adaptive as each core will be connected to a node in the

network. A few core, thus connected forms a local network cluster and

several clusters can be similarly linked to form a global network of

clusters.

The challenge now is in the verification of such an MPSoC

design. It is common knowledge in SoC design circles that design

verification efforts easily take up to 80% of the time and resources in a

chip design project. Every additional IP core that is integrated into the

MPSoC multiplies the state-space and the level of complexity of

component and system level modelling for design verification. An

MPSoC consists of multiple functional blocks, processors, protocols,

interfaces and peripherals. In order to obtain a satisfactory functional

verification coverage, the interactions between the functional block as

well as the functional block’s operating mode have to be tested and

exercised thoroughly. Now add to this the chip design imperative to be

2

able to detect every defect that will be present in silicon wafers, the

enormity of the task becomes gravely apparent. A strict methodology

and disciplined is called for. The ability to scale and re-use any

verification components and models created in the effort is highly

desirable.

1.1.1 Research Objectives and Approach

In this research, a scalable, reconfigurable, reusable verification

platform for the verification of an MPSoC design with on-chip network

communication is proposed. The followings are the research objectives

of the research:

• Acquire ASIC design skills in such design, especially in “First-Time-

Success” ASIC Design Methodology

• Apply industry standard tools for the verification methodology

• Design the scalable verification environment for another concurrent

research on the SoC architecture.

• Demonstrate the scalability of the verification environment for

architecture exploration

Due to the high cost of masks and wafer fabrication in current

deep submicron technology ASIC design failure is not an option. A

first-time-success ASIC Design Methodology is strictly adhered to in

designing our MPSoC and the verification platform so that the design

3

process is systematic, deliberate and schedules manageable. In terms of

verification, the process also consumes a lot of resources and

computational power in designing and developing the test scenarios.

Therefore, an industrial standard methodology known as the Universal

Verification Methodology (UVM) is adopted in designing the

verification platform. In addition, the platform has to be reusable,

reconfigurable and scalable so that it can be used not only in another

concurrent MPSoC design project with on-chip network interconnects

but also for other future projects.

Functional design verification starts with directed test cases that

model numerous scenarios to exercise the functionality of the design.

All corner cases must be carefully and exhaustively considered. The

increasing number of cores in the multicore system design further

complicates matters. These cores working independently running its

own firmware add on to the existing scenario modelling complexity.

Functional coverage is used as a mean of measurement to track the

functional verification progress.

As the crystalline nature and the manufacturing process of

silicon wafers are bound to have defects, complete fault coverage is

essential. Each node of the system is injected with stuck-at-1 and stuck-

at-0 fault, the fault should be able to be observed at the output of the

system during each simulation. If the fault cannot be observed, new test

patterns will be generated or changes to the design is made. In a complex

4

design with millions of gates, these fault simulations are extremely time

consuming and difficult. Code coverage is the best effort alternatives for

this situation. Code coverage reflects how thoroughly the Hardware

Description Language (HDL) code has been exercised. Code coverage

tools usually provide line coverage, arc coverage for state machines,

expression coverage, event coverage, and toggle coverage. Toggle

coverage gives an approximation of the fault coverage and the quality

of the test patterns. Coverage closure defines the measurement of the

quality of the verification suite in generating stimulus to exercise the

Design Under Test (DUT).

Constrained Random Verification is used to speed up the

coverage closure process. Using a constrained random approach,

stimulus within the constraints are autonomously generated. Describing

the stimulus this way is more concise, easier to review and more

productive. By utilizing constraint random solver in formal tool such as

Synopsys VCS, all possible stimuli within the valid stimulus space that

has been defined in the constraints, which may not be otherwise

anticipated are generated to exercise the DUT. This stimulus is critical

to cover unexpected cases during the verification process.

If the stimulus is randomly produced, there is a high probability

that the generated stimulus is repeated introducing redundancy of the

stimulus. This situation will result in difficulties in archiving the

expected coverage closure. To further understand the problem, consider

5

the “Coupon Collector’s Problem” from probability theory (Ballance,

2009). The subject to the problem is the number of trials required to

collect a full set of coupons from a limitless uniformly distributed

random collection. In the early stage, the coupon collection slot can be

easily filled up as the probability of a new coupon selection is high

compared to the previously selected coupon. As the coupon collection

reaches its complete collection, the probability of getting the duplicated

coupon is higher. From this theory, the estimated number of trials

needed to completely collect the set of coupon is estimated to be O (n*In

(n)). Consider a collection that consists of 50 coupons, then, about 196

random trials are needed to archive the full collection. Thus, a uniformly

distributed random stimulus will result in 10-30% of efficiency. In

contrast, if the redundant stimulus is removed, then, the coverage closure

could be archived 5-10 times faster. Rules or constraints are added to the

stimulus generation to remove the redundancy, allowing constrained

random stimulus to be generated.

The stimulus generation or tests and verification environment

that interface directly to the Design Under Test (DUT) is separated. This

is to ensure that the same verification environment can be reused with

multiple tests and enable the tools to merge the coverage report from

these tests.

6

1.1.2 Dissertation Organization

The remaining part of the dissertation, Chapter 2 is organized

with a literature review on designing the scalable and reconfigurable

virtual prototyping platform, including surveys on current verification

languages and methodologies adoption trends. An introduction to the

AMBA bus is then followed by an overview of our chip specifications.

Chapter 3 discusses the ASIC Design Methodology and the Universal

Verification Methodology (UVM) which has been adopted. Chapter 4

introduces to the readers our proposed hierarchically reusable and

reconfigurable verification platform architecture that we have

developed. In Chapter 5, the results from our proposed platform will be

discussed. This chapter will also discuss the various measurements taken

to ensure the chip is fully verified. Finally, Chapter 6 concludes and

summarizes the dissertation and the recommendations for further works.

7

 CHAPTER 2

 LITERATURE REVIEW

2.1 ESL Design levels

In the exploratory stage of a VLSI design project, it is essential to

evaluate the trade-off between simulation accuracy and speed because

early architectural exploration of the design could lead to better decision

in designing the SoC and reducing major architectural changes late in the

project timeline.

2.1.1 Evolution of the ESL design flow

The system architects require a fast and accurate simulation of

an MPSoC that are capable of running real application softwares. The

current MPSoC design flow has changed, considering the complexities

involved (Ghenassia, 2005). Modelling at a higher abstraction level, the

Electronic System Level (ESL) focuses on the functionality rather than

its implementation allows faster yet reasonably accurate simulation

results (David et al. , 2009). A technique, Transaction Level Modeling

(TLM) has evolved to aide this task.

8

2.1.2 TLM Overview

TLM can be used to model the functional specifications from the

customers by describing the system exchanging transfers in the form of

transactions over the channels. TLM interfaces are implemented within

the channels to encapsulate the communication protocols.

Communications are established by accessing these interfaces through the

module ports. This allows the descriptions to be abstract, not encumbered

by implementation details like clocks, drive strengths, signal delays, data

flow and so on (Ashwin et al. , 2013). These models are refined as the

design process evolves. Along with the ESL introduction, there is also a

need to have languages that are able to support the features. Currently,

only SystemC and System Verilog supports TLM.

2.2 Verification Languages

When the Verilog Hardware Description Language was created in

the mid-1980s, the typical design was of the order of five to ten thousand

gates. The size and complexity of hardware designs and verification has

quickly outgrown the capabilities of Verilog and VHDL because the

amount of codes required becomes significantly larger which was

becoming unmanageable and inefficient.

9

2.2.1 Early Verification Languages

Verisity launched the Specman e language which built upon

object-oriented programming (OOP) to deliver aspect-oriented

programming (AOP) and soon it became a main verification language.

AOP approach allows new functionality to be added to the existing code

in a non-invasive manner. AOP also addresses same feature in various

sections of the codes concern by allowing the existing structs to be

extended to add additional functionalities.

Synopsys also introduced its own OpenVera. These commercial

tools are costly. In some cases, companies resorted to the test benches

written using C or C++ and would drive the DUT through Programming

Logic interface (PLI). PLI allows C or C++ functions to be invoked from

Verilog.

2.2.2 System Verilog Language

System Verilog which is a significant enhancement from its

predecessor, Verilog includes major extension into abstract design,

testbench, and C based APIs has emerged. This extension is an

integration of the features from SUPERLOG, VERA, C, C++, and

VHDL along with OVA and PSL assertions (Chris & Greg , 2012). It

allows System Verilog to be effectively used as Hardware Description

and Verification Language (HDVL) because it provides synthesizable

construct, capabilities of hardware modelling at RTL, system and

10

architectural levels and various verification features such as classes,

constrained random stimulus and coverage. (Mentor & Cadence, 2007).

From the functional verification study done by Mentor Graphics under

Wilson Research Group, it is notable that System Verilog is widely used

in the industries, especially for designs in the multi-million gate region

(Foster, 2013).

2.2.3 SystemC Language

While System Verilog can be seen as a bottom up approach,

extending Verilog with OOP features to allow the representation of the

system level design in a more abstract manner and access to systems

described using high-level descriptions such as C or C++, and SystemC.

The approach builds upon the designers’ familiarity with C or C++ to

provide the libraries needed for HDL modelling. This gives a top down

approach in the SoC system design. (Donatella et al. , 2004). It has been

the researcher’s and EDA vendors’ interest to seamlessly synthesize

C/C++/SystemC codes to targeting hardware implementation. The

ability to combine System Verilog and SystemC in a single

hardware/software co-verification platform let the designers leverage

the fast simulation speed while providing a platform for concurrent

hardware/software development. SystemC model can be used as a

golden reference model to the intended design modelled using HDL

while System Verilog can be used to develop the automated verification

platform since the verification features such as constraint random

stimulus and coverage are more prominent in System Verilog (Black,

11

2013). The language itself can provide useful constructs for the users,

but, designers need to go beyond just knowing them. They require some

guidelines or methodology to fully utilize the language (Ruggiero,

2009).

2.3 Verification Methodologies

Despite the richness in language itself that are able to provide the

needs to implement complex verification environment, best practices

and shared understanding between engineers within the workplace, and

code reusability has called for a standard methodology (Bromley, 2013).

Some EDA Tool vendors provides user guides in terms of more detailed

code examples while illustrating the basic concept of their own

methodology. These become a problem when the designer or

verification engineers’ tries to use tools from different vendors as the

vendors based their tools upon their own verification methodology

(Anderson, 2010).

2.3.1 Early Verification Methodologies

One of the early verification methodology is Verification

Advisor (vAdvisor), a comprehensive collection of best practices and

advisory for users of the e verification language developed by Verisity

Design. This leads to the development of the e Reuse Methodology

(eRM).

12

The methodology provides guidelines on the naming

conventions to avoid interference between verification components. The

methodology also introduces the concept of Sequences to enable e

Verification Component (eVCs) to generate and synchronize complex

multi transaction scenarios in the verification environment. These

Sequences are passed to the BFM through the Sequence Driver.

Functional partitioning of the testbench is another concept introduced in

the methodology. Bus Functional Model (BFM) is used to drive the

DUT while the Monitor monitors the DUT. The Monitors, Sequence

Drivers, BFMs and Configuration Objects are encapsulated within the

Agent. These Agents with a global Configuration Objects are

encapsulated within the environment (Shvartz, 2003). Figure 2-1 shows

the overall architecture of this methodology.

Figure 2-1: eRM functional partitioning testbench (Verisity, 2004)

13

This verification methodology was used in developing a reusable

verification environment for an Ethernet IP core (Swarna et al. , 2008).

It was already evident that the concept of reusability of the verification

component and Sequences had been the focus in verification

(Krolikoski, 2011).

Shortly thereafter, Synopsys introduced the Reference

Verification Methodology (RVM) based on its own OpenVera

verification language. Based upon RVM, Synopsys published the

Verification Methodology Manual VMM). The methodology provides

guidelines in creating a layered verification architecture to allow the

reusability of the components. Interfaces are used to connect the

verification environment with the DUT. This provides pin name

abstractions that can be used with different DUTs as well as different

model implementation of the same DUT (Janick et al. , 2005). A

verification platform based on this methodology has been developed to

verify the Yak SoC (Lu et al. , 2009).

Mentor Graphics also introduces their own verification

methodology, Advanced Verification Methodology (AVM) for

SystemC and System Verilog. The methodology provides a framework

for component hierarchy and TLM communication to provide a

standardized use of the model in SystemC and System Verilog

verification environment.

14

Cadence then acquired Verisity and transformed its eRM into the

Universal Reuse Methodology (URM) which supports System Verilog,

e as well as SystemC.

2.3.2 Open Verification Methodology (OVM)

Although the EDA vendors’ methodologies had their success

with their own customer base which ran on its own simulators, there is

no attempt at cross vendor support or any form of standards. Cadence

and Mentor Graphics later took the initiative by published an open

source verification methodology, Open Verification Methodology

(OVM). This methodology became widely adopted because of its

reusability of various verification components at different hierarchical

levels of the design and different projects, and also reusability of the

verification components with different tests whereby the stimulus

generation or tests are separated from the verification environment

(Malik et al. , 2013). It also supports the development of Multilanguage

verification environment with System Verilog, SystemC and e, and is

able to interoperate between different tools from different vendors

(Mentor & Cadence , 2007).

15

2.3.3 Universal Verification Methodology (UVM)

Accellera Systems Initiative, a standards organization that

supports a mix of users and EDA vendors decided to create, support and

advance system-level design, modelling, and verification standards for

use by worldwide electronic industries. To tackle the verification

standardization, Accellera uses OVM as baseline and includes key

features from VMM methodology resulting in the now widely adopted

Universal Verification Methodology (UVM).

The UVM builds upon SystemC and System Verilog Object-

Oriented Programming (OOP). The UVM components use Transaction

level communication (TLM) between object communications. UVM is

based on a hierarchical testbench organization. The dynamically-

generated objects allows the tests and testbench architecture to be

specified without recompiling and the separation of the testbench

stimulus or Sequences from the testbench structure. (Salemi, 2013).

Universal Verification Component (UVCs) is a reusable verification IP

developed based on the UVM Methodology (Aynsley, 2012) that also

includes the interface protocol. This promotes the reusability of the

modules and allows designers to work together independently. Virtual

Sequences can be used to coordinate the Sequences or test cases across

multiple modules. This further enhances reusability (Yun et al. , 2011).

A robust AHB verification environment has been derived based on the

methodology (Bhaumik & Jaydeep, 2013). Other works include a

16

reusable verification environment for ethernet (Sridevi & Dr.

Krishnamurthy, 2013).

An independent study undertaken by Mentor Graphics under

Wilson Research Group on the various methodologies that has been

adopted in 2010 and 2012 revealed that the adoption of the UVM

methodology since its introduction in 2010 was widespread. It indicated

that half of the designs which were over 5 Million gates used UVM in

2012 (Foster, 2013). Figure 2-2 shows the overall evolution of the

verification methodology.

Figure 2-2: Verification Methodology Evolution

17

2.4 NoC Architecture

2.4.1 Overview

We used the ARM Cortex-M0 core in all of our works. This core

only has the computation logic. The instructions and data needed by the

core to perform the computations are stored in the external memory. ARM

implements the AHB-Lite bus to interface the core to the memory.

Peripheral devices for IO and special purpose processing that complement

the core are abstracted as registers mapped into the memory space. In this

regard, the Processing Element (PE) in our work consists of an ARM

Cortex-M0, memory, and peripheral devices connected with the AHB-

Lite bus.

The AHB-Lite bus is a single-master subset of the full AHB bus

(ARM, 2006). As such, the core is the bus master to all the devices on the

bus. In a true multi-core system, a PE should be able to initiate access on

the interconnect regardless of the other PEs at any time. Clearly, the

single-master AHB-Lite bus is not directly applicable as the interconnects

between the PEs.

In the following sections, we first describe the architecture of the

PE based on the Cortex-M0 and AHB-Lite bus. This is followed by the

description of a multi-core system that interconnects the PEs using a

traditional multi-layer matrix technique. This system is used as the

reference system for benchmarking in a corresponding work in our

group. As shown in one of our research projects, The Design and

18

Implementation of a Scalable Multi-Processor System-on-Chip Using

Network Communication for Parallel Coarse-Grain Data Processing, the

complexity in such system may grow to an unmanageable scale. Our

research into scalable multi-core architecture has resulted in a ready-for-

tapeout NoC base system. Hence, in the last section, this specific

architecture, together with several other network topologies investigated

in our works, are described. The subsequent chapters in this thesis shall

build on the expositions here to demonstrate the design of a scalable,

reconfigurable and reusable verification platform used in this work and

The Design and Implementation of a Scalable Multi-Processor System-

on-Chip Using Network Communication for Parallel Coarse-Grain Data

Processing.

19

2.4.2 ARM Cortex-M0 based PE

AHB-Lite addresses the requirement for a high performance bus.

It supports single AHB master and provides high bandwidth operation.

The features of AHB-Lite for high performance and high clock

frequency system includes burst transfers, single-clock edge operation,

non-tristate implementation and wide data bus configurations. AHB-

Lite Bus consist of a decoder and a multiplexer. The decoder is used to

decode the address (HADDR) from the AHB Master to generate the

slave select signal (HSEL). The multiplexer uses the HSEL signal to

channel back the corresponding slave responses (ARM, 2006). These

are shown in Figure 2-3. We refer the interested readers on the AHB-

Lite bus to AMBA™ 3 APB Protocol v1.0 Specification (ARM, 2006).

Figure 2-3 shows the single master AHB architecture.

Figure 2-3: Single master AHB-Lite Bus System (ARM, 2006)

20

In our system, Cortex-M0 communicates with the flash

controller, SRAM controller, Parallel port, GPIO, AHB2APB Bridge,

Advanced Encryption Standard (AES) core and AHB2NOC adapter

through the AHB-Lite Bus. Figure 2-4 shows our special core

implementation. The purpose of this system is to control the I/O

interfaces such as GPIO and parallel port. In AHB normal core system

as shown in Figure 2-5, it consist of an AES core. This AHB system

which will perform the AES cross-grain encryption. In both of the

system, AHB2APB Bridge is used to add peripherals such as timer and

SPI. The Advanced Peripheral Bus (APB) is designed for low bandwidth

control accesses. This system is also used to read from the 32kB FLASH

through the FLASH controller.

Figure 2-4: AHB Special core system

21

Figure 2-5: AHB Normal Core System

2.4.3 AHB-Lite Bus based Multicore System

The AHB-Lite is a single master bus interface. In AHB-Lite

based multicore system, multilayer matrix layers has to be added to

isolate the AHB masters from each other but allowed the slaves to be

accessed by the processors.

The operation of the multi-layer matrix is best described with an

example. In Figure 2.6, slave arbitration is performed by the multilayer

matrix so that when AHB master 1 is accessing slave 1, AHB master 2

is not allowed to have access to that slave. Figure 2-6 illustrates AHB

master 1 and master 2 each have access to slaves 1, 2, and 3. Slaves 4

22

and 5 is a local slave to AHB master 2 so only AHB master 2 have access

to those slaves. In order for AHB master 1 and AHB master 2 or the

processor cores to communicate, mailbox is one of the mechanism that

can be used by having it as a common slave to the processor cores. This

allows processor core 1 to write to the mailbox. Processor core 2 can

then retrieve from the mailbox and vice versa.

Figure 2-6: AHB Multicore system using Multiplayer Matrix

In another study in Design and Implementation of a Scalable

Multi-Processor System-on-Chip Using Network Communication for

Parallel Coarse-Grain Data Processing, a bus based AHB-Lite multicore

system has been developed as a comparison for the network based

multicore system. The implementation of the architecture is as shown in

Figure 2-7.

23

Figure 2-7: Bus based AHB-Lite multicore system implementation

Once the parallel port contains transfer, interrupt is triggered to

single core system 3. Single core system 3 then requests the memory

control through the DMA. The memory control establishes connection

the Shared memory 0 and Parallel port by configuring the data bus

interconnect matrix. After the connection is established, the transaction

from the parallel port is transferred to the shared memory 0 through the

DMA. When the transaction has finished, the DMA sends request to the

memory controller to break the parallel port and shared memory 0

connections.

The single core system 3 sends message to the mailbox through

the control bus interconnect matrix. Each mailbox buffer corresponds to

a single core system. Let’s say the message is for single core system 0,

this message is directly passed to the system. The single core system 0

24

requests the memory controller to form the connection to the shared

memory 0 to retrieves the content of shared memory 0 for processing.

The processed transfer is sent back to the shared memory 0. This

overrides the shared memory 0 content. Once the transfer has finished,

the single core system 0 requests the memory controller to break the

connection between the system and shared memory. A message is sent

to the single core system 3 through the mailbox. To retrieve the

processed data in shared memory 0, single core system 3 sends request

to form the connection between the parallel port and the shared memory

0 though the memory controller. After the transfer has finished, the

single core system 3 sends another request to the memory controller to

break the connection.

The system level verification challenge is to develop a system

level verification environment which is able to monitor the various

different transfer types and the environment can also be configured with

different monitors to monitor from various points based on the number

and type of PE.

25

2.4.4 Network-based Multicore System

The increasing of the PE, controllers and peripherals in the

Multi-Processor System-on-Chip (MPSoC) can lead to a very large and

complex multilayer matrix design. This will make the overall design

size to be significantly larger which will increase the die area and

fabrication cost. A network can be used to replace the multilayer matrix.

2.4.4.1 Network Topologies

A network topology consists of links and nodes. A link is the

communication path between 2 communicating nodes. The nodes are

the endpoints of any branch in the network and are essentially the PEs.

These nodes can have different arrangements and are linked to form a

network. There are different topologies such as ring, star, line, and mesh.

The challenge is to develop a verification platform that is able to adapt

based on these different architecture needs.

26

The ring architecture shown in Figure 2-8. The data packet

travels from one node to the next. When the data packet reaches a node,

the node checks if the destination address predefined in the packet is the

same as the node address. If it is the same, the data packet is meant for

that node. If not, the data packet continues to travel until its designated

node is reached. This topology can be easily extendable, but the network

diameter increases linearly with the number of nodes. (Chen et al. ,

2011)

Figure 2-8: Ring Network Topology

27

In a star topology as illustrated in Figure 2-9, the nodes

communicate across the network though the centre hub. The data packet

is broadcast from the central hub to the corresponding nodes. This

topology also allows additional nodes to be added with ease. But, if the

central hub failed, the network will fail to operate.

Figure 2-9: Star Network Topology

28

A network topology is considered mesh when more than 2 nodes

are connected to each other. Figure 2-10 shows a partially connected

mesh topology. Part of the nodes are not connected to each other. The

nodes which are connected to a few other nodes would need a

significantly large amount of I/O interface. This would reduce the

scalability of the system.

Figure 2-10: Partially Connected Mesh Network Topology

29

In a fully connected mesh shown in Figure 2-11, each node is

connected to all the other available nodes in the network. Large number

of I/O on the nodes are required as a result (Pandya, 2013). This reduces

the network congestion by using the available alternative paths to the

designated node directly.

Figure 2-11: Fully Connected Mesh Network Topology

30

In a bus or line topology in Figure 2-12, all nodes are connected

to one common link. This topology is commonly used as interconnect in

SoC as well as MPSoC systems. An example of this interconnect would

be an AHB-Lite Bus which has been described earlier. This topology

grows linearly with the system which reduces the scalability of the

system.

Figure 2-12: Line Network Topology

31

2.4.4.2 The UTAR NOC

The network topologies used in our systems are generated by

utilizing the CONfigurable Network Creation Tool (CONNECT)

(Michael Papamichael, 2012). The network uses credit-based flow

control. This means that the network clients need to control the credits

with the routers that is connected. In order to send the flit, the client

enables the EN_putFlit and flit is loaded to pufFlit register to send to the

network. The getCredits is set to the maximum selected Flit Buffer

Depth during the network generation. Once the flit has been sent out into

the network, the client decrements the credit’s availability for the

particular virtual channel to keep track of the remaining credits. The

Send Flit protocol is shown in Figure 2-13.

Figure 2-13: CONNECT Network Send Flit Protocol

32

For the client to retrieve the flit from the router, the client needs

to maintain incoming flit buffers for each of the virtual channels to store

the flit. These buffers are sized accordingly to the selected flit buffer

depth. When the client de-queues a flit from its incoming flit buffers, a

credit corresponding to the virtual channel is sent to the router. This is

to inform the router about the availability of the new space. Figure 2-14

illustrates the receiving flit protocol.

Figure 2-14: CONNECT Network Receive Flit Protocol

33

Figure 2-15 shows the fields of the routers’ flit that defines the

network protocol of the generated router.

Figure 2-15: CONNECT NoC Flit

Valid bit indicates the validity of the flit to be sent. It is set to 1

to indicate that flit is valid. In order to identify the last flit in the transfer,

Is_tail field is used. The destination field defines the transfer from one

router to its designated destination. The width of this field depends on

the number of endpoints in the network. Virtual channels are used to

transmit and receive the flits are indicated in the virtual channel field

and the width depends on the number of available virtual channels that

is defined during the router generation. The data field contains the data

for the transfer. Various data sizes can also be defined during the router

generation. In our case, the data size is defined to be 32 bits incoherent

with the AHB-Lite bus size. An additional source field is added to the

CONNECT flit to add the address of the flit sender as illustrated in

Figure 2-16. This field is used by the AHB2NOC adapter for buffering

the data transfer.

Figure 2-16: Modified CONNECT NoC Flit

valid bit is_tail destination virtual channel source data

1-bit 1-bit 2-bit 1-bit 2-bit 32-bit

valid bit is_tail destination virtual channel source data

1-bit 1-bit 2-bit 1-bit 2-bit 32-bit

34

The AHB2NOC adapter that we have developed in Figure 2-17

allows the AHB system to communicate with the network routers. For

the processor to retrieve the flit transfer, the adapter converts the flit to

AHB transfer. This can be done through polling the buffer empty status

register flag or wait for the interrupt when the flit is received. The

adapter wraps the AHB transfer into packet flits and send them to the

network router.

Figure 2-17: AHB2NOC Block

35

One node of the router is connected to the special core. This core

has access to the NoCs’ I/Os through GPIO or parallel port, and SPI to

allow the system to capture the data and to send the processed data out

to another system. The other 3 nodes are connected to 3 normal cores.

These cores will perform the AES encryption. The overall system is

shown in Figure 2-18.

Figure 2-18: NoC Architecture

36

The AHB Systems are connected to the ring network through the

AHB2NOC adapter in the normal core and special core modules.

Similarly, the ring router can be replaced by other network topologies.

2.5 Summary

This chapter has discussed on the ESL Design flow using the TLM

modelling. The discussion followed by various verification languages

that has been developed. It should be notable that System Verilog and

SystemC has evolved from the traditional verification languages to cope

with the new verification challenges. System Verilog has gained much

interest among EDA vendors. This has led to the development of various

verification methodologies for System Verilog such as AVM, URM,

OVM and UVM. Among them, UVM is the standard verification

methodology that has agreed upon among the EDA community. The final

part of this chapter discussed on the NoC architecture of our UTAR NoC

which utilizes the CONNECT generator to generate the network router.

The following chapter will discuss on the methodologies involved in

ASIC design in particular the UVM methodology that is adhered to

develop our verification environment.

37

 CHAPTER 3

 ASIC DESIGN AND VERIFICATION METHODOLOGIES

3.1 ASIC Design Methodology

ASIC Design is a very costly process, especially fabricating wafers in

submicron technology. A set of the photolithographic masks is extremely

expensive and the lead-time for the fabrication process is long thereby

influencing a product’s time-to-market. Therefore, absolute discipline in the

design process is critical and the adherence to a proven methodology is

necessary to ensure success in the first attempt. Tools to assist the design

process further enforce the methodology. Usually major EDA vendors offer

integrated tools for every phase of the design flow. However, sometimes it may

be necessary to integrate tools from different EDA vendors in areas where they

are better supported.

Since failure in ASIC design is not an option, thorough design verification

would feature predominantly in any design methodology. Coupled with the

inherent defects in silicon wafers extremely high levels of fault coverage are

demanded.

The following subsections of this chapter will discuss the ASIC design

methodology and the Universal Verification Methodology (UVM).

38

3.1.1 Front End Design

3.1.1.1 Specifications

A chip design starts with defining the system specifications that

describe the functional features, electrical and speed performance, and

technology options. This involves the evaluation of the various

fabrication technology nodes that are able to accommodate the

performance requirements along with the cost trade-off that are

involved. The overall project budget should also be taken into

consideration.

3.1.1.2 Electronic System Level Designs

The electronic system should be described at the behavioural

level. At this level, there are several ways to model its behaviour.

Transaction Level Modelling (TLM) models are one of the methods that

can serve this purpose. In TLM, the model description is in terms of

transactions that are transferred over the channel. The TLM concepts

and interfaces shall be discussed in Section 3.2.1. TLM allows the

implementation of the design to be optimized as early as possible in the

designing stage. Various innovative implementation methods can then

be effectively explored to differentiate the performance and time-to-

market of the finished product from the competitors.

The system architecture can be defined by mapping the system

requirements to hardware and software components in such a way as to

39

meet design objectives. From TLM, conventionally, designers manually

translate the model into Register Transfer Level (RTL) models, which

are prone to errors. However, with the High Level Synthesis (HLS)

tools, TLM models could ease the design flow by being able to

synthesize the design intent to the lower Register Transfer level.

(Brown, 2009).

3.1.1.3 Register Transfer Level (RTL) Design

The designs are usually described using Hardware Description

Language such as Verilog or VHDL at Register Transfer Level (RTL).

RTL design involves describing the design behaviour as transfer is

occurring between registers at every clock cycle. This introduces the

concept of timing and allows the speed performance of the chip to be

defined.

3.1.1.4 Verification

In ASIC Design, the verification process is a discipline in itself

and will take up a major share of the time and labour resources of an

entire design cycle. It is a common misconception that an ASIC design

that has been verified functionally with an FPGA is ready for tape out.

This is not the case because an FPGA is a finished product at an already

determined process point, guaranteed to work within the specified

supply voltage and temperature range. In the case of an ASIC design,

this is the stage where this guarantee is ensured by performing thorough

design verification within all corners of process, temperature and supply

40

voltage variations. The functions and design intents defined in the

specification must work within these environmental boundaries.

The verification plan contains descriptions of the functional

features that need to be exercised and the techniques in developing the

test cases especially for all boundary cases. This verification plan will

serve as an overall scoreboard for functional coverage.

A verification environment models the actual system in which

the Design Under Test (DUT) works. This environment consists of

various models to generate the input stimulus and check for the

responses. These models depend on the interfaces that the DUT is

connected and the DUT’s functionality. The Verification process is done

each time when changes are made to the design and when the design is

synthesized from one abstraction level to another.

Since ASIC Design verification is a highly discipline process, a

standard methodology is strictly adhered to. In our case, the Universal

Verification Methodology (UVM) is used in developing our reusable,

reconfigurable and scalable verification environment. The details of the

methodology will be discussed in Section 3.2 while the implementation

of the verification platform will be reviewed in Chapter 4 of this

dissertation.

41

3.1.1.5 Design For Test (DFT)

Manufacturing defects and crystalline imperfections in silicon

wafers will manifest as faults at random locations in a fabricated wafer.

These faults will cause the chip not function according to its design

intent. Therefore, these faults must be detected at test. These special

tests, or Design for Test (DFT) features, must be built in to achieve near

one hundred percent fault coverage.

 Achieving full functional, line, code and toggle coverage in

verification will give a high degree of fault coverage, but will almost

certainly be insufficient due to the limited controllability and

observability for the finite number of input and output pins of the chip.

It is therefore necessary to implement structured testability features.

These are special DFT structures designed into the chip with the goal of

detecting every fault.

The most favoured structured DFT features adopted are Built-In-

Self-Test (BIST) for regular structures like memories and Scan Chaining

for logic. For memories, it is common for BIST hardware design to

include Built-In-Self-Repair (BISR) where redundant memory rows or

banks can be swapped for bad ones. Structures can also be implemented

in hardware to support the structured fault simulation.

Although Scan Chaining of internal logic and BIST will allow a

very high degree of fault coverage, the chip input and output (I/O)

42

buffers and associated functions are not easily covered. The JTAG

(IEEE 1149.1) Boundary Scans implementation takes care of this. JTAG

Boundary Scan together with BIST will allow fully automated testing of

a number of ASICs in a system board.

3.1.1.6 Synthesis

The RTL codes are synthesized into a gate level netlist according

to the imposed timing constraints using synthesis tools. Since the logic

gate, designs are specific to the manufacturer and the technology the

target cell library must be provided for design synthesis. The gate level

netlist can be optimized for area, speed performance and testability

through the design constraints.

3.1.1.7 Static Timing Analysis (STA)

Static timing analysis is performed on fully synchronous designs

to validate the timing performance of the ASIC. The speed or timing

constraints of the design must be provided as input to the synthesis tool

with considered timing margins to allow for physical design variations.

A good wire load model from the physical chip floor plan is also

beneficial during synthesis and STA in order to achieve early timing

closure after placement; routing and parasitic extraction are back

annotated into the netlist. STA checks all possible paths for timing

violations under worst-case scenarios. This process is performed on the

43

gate level netlist. Timing closure with a well-accepted STA tool is very

often sufficient to sign off for tape out.

The synthesized gate level netlist also needs to be ensured that

the RTL design intent is not modified by performing the equivalence

checking. The process from defining the specification to design

synthesis is considered the front-end design flow in designing SoC. The

next section will discuss on using this generated gate level netlist and

transform it into the layout of the chip.

3.1.2 Back End / Physical Design

3.1.2.1 Floorplan

The physical implementation of the ASIC can begin with a gate

level netlist, which has sufficient timing margins. Macro cells like

SRAM, and other pre-designed Intellectual Properties (IP) blocks, and

IO locations are placed to minimize the die area and maximize

routability so that the overall chip cost can be reduced.

Core utilization is set to the appropriate value to give margins

for routability taking into consideration the extra space requirements for

power networks and clock tree routing during the first attempt. It usually

takes a few iterations to get a better core utilization value. It is important

to weight the trade-off between the chip size and routability of the chip.

Setting the core utilization value too high may result in either an un-

44

routable chip or timing inability to close timing for critical paths due to

long or roundabout routing. Any changes in the chip size to

accommodate more routing resources would mean re-starting the floor-

planning process due. This increases the use of valuable resources and

time-to-market. If the core utilization value is set too low, the chip size

grows, causing the overall cost of the chip will increase.

3.1.2.2 Power Network Synthesis

There must be sufficient power and ground supply pins to anchor

the chip firmly to its operating voltage, prevent power, and ground noise

from interfering. Placement constraint script is used to place these power

pads strategically on each side of the chip, especially where there are

many simultaneously switching output drivers. Ground bounce

simulation can be done to determine that sufficient pairs of power pads

have been added.

If there are more than one power domain in the design the power

distribution within these power domains features significantly in the

floor planning and placement phase. The power distribution networks

for the chip are synthesized based on the power budget specifications

for each domain. The width of the power buses must be sufficient to

prevent a drop in supply voltage below the designed range. This IR drop

is analysed and displayed by the tool. Adjustments can be made to the

floorplan and power networks until the IR drop requirement is met.

45

3.1.2.3 Clock and Buffer Tree Synthesis

Clock tree will be synthesized to be as close to an ideal clock as

possible as this is set at design synthesis for a fully synchronous design.

The Clock Tree synthesis tool will buffer the clock to sufficiently fast

rise and fall edges and at the same time try to balance the clock branches

so that the clock skew is controlled when it arrives at all the flip-flops to

ensure no register data shoot through situations. Skew control is not as

critical in the buffer tree generation.

3.1.2.4 Place and Route

The rest of the standard cells fill up the core area. Where they

are placed is determined by the routing weight of the cells. Before these

cells are routed, it is prudent to examine the congestion map, which will

indicate whether there are sufficient routing resources available.

Placement optimization can be done to improve routability. The tool will

try to find all possible routes for the signals, irrespective of whether

design rules are violated or not. Many iterations of the search and repair

process are then performed to fix design rules as well as timing

violations. If these violations cannot be fixed after rounds of placement

optimization and re-routing it may be necessary to increase the chip size.

Parasitic RC extraction is done using a high precision 3-D extraction

tool. A delay-timing calculator is used to convert these RC delay values

to the Standard Delay Format (SDF) to be back annotated to the post

layout netlist for precise timing simulation and STA.

46

3.1.2.5 Chip Finishing

Additional steps are taken to prepare the chip for tape out. The

length of the routed interconnects may be too long in the same metal

layer. This will cause damage to the devices it connects to due to the

collected charges on the metal layer during the fabrication. Antenna

rules, which are provided by the foundry, are used by the tool during the

search and repair process. Antenna fixing is done automatically by the

tool by breaking these long same level interconnects using the next

higher-level metal. For the top-level metal, which do not have a higher

metal layer to split the wires, protection diodes, can be added to the

device for protection.

The remaining unused areas in the standard cell rows filler cells

are added to establish continuity of the N- well, the P-well and the power

buses. Extra metals and polys fills are added to meet the density

requirements by the foundry for manufacturability.

Empty spaces may be left after the corresponding IO cells are

added. IO fillers are added to fill up these areas to complete the IO power

ring of the chip, which also provides some ESD protection.

Redundant vias are inserted wherever there are spaces to avoid a

possible manufacturing issue where some vias become too narrow and

may not form proper connections.

47

3.1.2.6 Post layout verification

The post layout netlist is extracted from the GDSII physical

design database. LVS is the process where the equivalence of the

physical layout is checked against the pre-layout gate level netlist to

ensure that logical nothing is changed during Clock Tree Synthesis,

buffering and optimization in the backend process. Design Rule Check

(DRC) is performed to ensure geometrical design rules determined by

the technology and manufacturability considerations are not violated.

Minor changes or corrections can still be done to the layout

through the Engineering Change Order (ECO) processes provide for by

the layout tool. DRC and LVS are done again each time the physical is

altered.

3.1.2.7 Tape out

The signoff STA reports and timing simulations are reviewed to

ensure that the design is ready for tape-out. The foundry will review that

design have met the manufacturability guidelines provided by them

before proceeding to order the masks. Figure 3-1 shows the overall

ASIC Methodology.

48

Figure 3-1: ASIC Design Methodology

3.2 Universal Verification Methodology (UVM)

The increasing complexity of ASIC design verification has

called for a standard methodology to be strictly adhered to. UVM is the

current industrial standard verification methodology (Glasser, 2011).

UVM is based on the TLM and OOP (Object Oriented

Programming) concepts. It provides a set of TLM communication

interfaces and channels to allow the OOP classes to communicate at

transaction level. The TLM and OOP concepts will be introduced in next

two sub-sections to allow a clearer understanding of the UVM

discussion.

49

3.2.1 Transaction Level Modelling (TLM) Concepts

 The TLM is a transaction based modelling used for developing

abstract models of components and systems. The transaction is an OOP

class object that includes the necessary information such as variables

and constraints to model the communication between two components.

The amount of information that is encapsulated within the transaction

indicates an abstraction level of the model. The basic transaction could

be extended to include additional properties and constraints. For

example, to fully specify the bus transaction, including Objects such as

transfer delays or latency will better model the bus operation.

3.2.1.1 TLM Communication

TLM components initiates transactions by 3 basic

communication mechanism – put, get and broadcast. put is when a

producer component puts information to a consumer component. get is

when a consumer gets information from the producer. A third

mechanism allows a producer to broadcast information and consumers

may subscribe to these broadcasted information (Glasser, 2009).

The TLM communication interface is defined by the port and

export pair. A TLM port specifies the methods to be used for a particular

connection. These methods are implemented by the TLM export, so that

it can be executed when the port initiates the transaction. TLM interface

allows each of the components to be isolated from each other. The

50

components at the higher level can instantiate its sub-components and

connects them together independent of any knowledge of the

implementation. Accessing the sub-components can be achieved by

making its interfaces visible at its higher-level component allowing the

whole component to be visible as a single component with a set of

interfaces regardless of its internal implementations.

3.2.1.2 Analysis Communications

The TLM put and get ports would require at least one export

connected. In the case of passive components such as Monitors, which

collect transactions and broadcast them to the other components, a third

port, the Analysis Port, which may be left either unconnected or

connected to any number of components, is needed. The components

that subscribe to the broadcast are connected to the Analysis Port via

their respective Analysis Exports.

 The next subsection will introduce the concepts of the object

oriented verification environment, which makes it configurable,

scalable, and reusable across projects (Sharon, and Kathleen, 2013).

51

3.2.2 Object Oriented Verification Environment

The verification environment is used to fully exercise the DUT

by modelling devices the DUT connects to. A Hardware Description

Language (HDL) can be used to model these devices. However, it will

be a challenge to model the verification environment of complex designs

as in the case of most SoC with HDL and its limited features. For

example complex predictors or checkers need to be implemented to

allow self checking especially during regression testing.

Extensive input stimulus needs to be designed to fully exercise

the DUT for complete functional coverage. Manually defining each of

the stimulus scenarios would take take an extraordinary amount of time

and effort and some cases might still be missing. Here constraint random

stimulus generators are needed to generate the stimulus within the

defined constraints for valid, invalid as well as abnormal transfers.

HDL, without additional aids to facilitate complex modelling

requirements, will be unable to deliver the complete functional

verification coverage and the desirable features of configurability,

scalability and reusability. The system Verilog language has evolved

from Verilog HDL and incorporates OOP features to overcome this

(IEEE, 2009).

In Object Oriented Language, class contains data elements, and

methods which can be instantiated. An object refers to an instance of a

52

class. These objects can be created and destroyed dynamically, allowing

the verification environment to be configured. Each of these classes

performs a specific task.

The Scenario Generator generates the stimulus based on

constraints or rules provided by the verification engineer to model the

behavior of the test cases. The DUT uses virtual interfaces to form the

connections between the DUT and the verification environment. Virtual

interfaces provide a mechanism for separating abstract models and test

programs from the actual signals that make up the design. A virtual

interface allows the same Driver to operate on different portions of the

DUT and to dynamically control the set of stimulus associated with the

Driver. Changes to the underlying design under test do not require the

code using virtual interfaces to be rewritten. The other classes that need

to communicate with the DUT using the same communication protocol

can then reuse the same virtual interface. These virtual interfaces can be

passed to the different classes to make the connections between the DUT

and verification environment.

The Driver class interprets and drives the Transactions to the

virtual interface. The Monitor class is used to monitor the response from

the DUT through the virtual interface and extract transaction

information for comparison by the Checker. Figure 3-2 illustrates the

various classes in an OOP based verification environment.

53

Figure 3-2: Layered OOP Verification Environment

The communication between these components can be

simplified by encapsulating the transfer using objects or as transactions

instead of passing multiple signal Objects. Data analysis and

manipulation can then be done easily by accessing the corresponding

objects. When a similar type of transfer is needed, the same transaction

class can be reused. As examples, the types of transfer classes that has

been developed for the use of our verification environments are AHB,

APB, NoC, and SPI.

Inheritance is another concept in OOP to facilitate reusability. It

allows different behaviours for the same method in the derived class to

override the behaviour in the base class. This can be done through virtual

functions. Virtual functions are used to support polymorphism where

54

multiple classes with different behaviours can be used interchangeably.

As an example of the use of inheritance, the lower level layers such as

protocol layer can be modelled using the base class. More complex

models can utilize these protocol models. The base classes can be reused

directly or used to derive other classes thus increasing the verification

productivity.

We have introduced the importance of using object oriented

concepts in the verification environment development. This concept has

been adopted in recent Verification Methodologies such as Verification

Methodology Manual (VMM) (Janick et al. , 2005), Open Verification

Methodology (OVM) (Glasser, 2009) and Universal Verification

Methodology (UVM) (Sharon, and Kathleen, 2013). The next section

shall discuss on the generic verification environment in the Universal

Verification Methodology (UVM) which has adopted the various OOP

classes.

55

3.2.3 Generic UVM Verification Environment

The stimuli are abstracted as Transactions. They are generated in

the Sequence and randomized according to specific rules and constraints.

The Sequence sends the stimulus packets to the Sequencer. The

Sequencer coordinates these transactions from multiple Sequences.

When the Driver is ready, it grabs the Transaction from the Sequencer’s

TLM get_port. The Driver converts the Transactions into timed input

stimulus to drive the DUT.

 In order to verify the correctness of the DUT operation, we need

to sample the stimulus, analyse the responses and keep score of the

coverage. The Monitor acts as a service provider. It packages the sampled

data and sends to its service subscribers such as the Scoreboard and

Coverage Analysis Objects through the TLM analysis_port. The

Scoreboard then checks for the correctness of the received transfer.

The Monitor, Driver, Configuration Objects and Sequencer can

be grouped as Agent so that they can be reused as a basic block or a

Universal Verification Component (UVC). These Agents as well as in

some cases the Configuration Objects will be grouped to form the

Environment. This forms another UVC. In this way, the Environment

can also be reused and re-configured based on the requirement of a

design. It allows multiple Agents to be instantiated. The virtual

interfaces that connect to the DUTs can be passed to each of the Agents

56

and its sub components through the Environment allowing each of the

sub-environments to be instantiated to verify various modules in the

system. This module level environment can be built hierarchically to

form a system testbench.

The basic verification environment using UVM is shown in

Figure 3-3.

Figure 3-3: Generic UVM Verification Environment Architecture

This discussion shall continue with the discussion of the methods

to build test cases or scenarios for the DUT.

57

3.2.4 Scenario Generation

In UVM, Sequences are used to model test scenarios. These

Sequences can be layered to model scenarios that are more complex.

(Janick et al. , 2013).

The basic Sequence or the lowest level Sequence models the

protocol communication layer and the read write access. These

Sequences are generic and often implement as an Application Specific

Interface (API) layer for the Driver. For instance, these have been

developed as our UVC for the AHB, APB, GPIO, and SPI protocols.

Higher level Sequences to model more complex scenarios can

utilize these basic Sequences as shown in Figure 3-4. These layered

Sequences are used to model components such as AHB memory which

utilises the basic AHB Sequences.

58

Figure 3-4: Sequence Layering

3.2.5 Factory concept in UVM

The UVM Factory is an advanced implementation of the

Factory design pattern in OOP software, which provides features to

allow the subtype of the object to be decided during run time. All the

components are registered with this Factory. When the Factory creates

this object, it will search for the instance or type override. The

components, Transactions and Sequences can be overridden from the

higher-level components. If none exists, it will create the existing

instance and type. For a complete exposition, refer to Cummings, 2012.

As an illustration, we want to send the bad frame UART stimulus

instead of the good frame stimulus that has been implemented in the

Driver. The same verification environment can still be used as long as

59

the good frame UART Driver component is replaced by the bad frame

components. Figure 3-5 shows a bad frame UART Monitor and Driver

replacing the existing Driver through the Factory overriding method.

The method has been used in developing our verification components.

This will allow custom components to override the existing components

in our current verification environment.

Figure 3-5: Factory overriding

60

3.2.6 Configuration Objects

Since the verification teams need to be able to run thousands of

tests on a design, it would be ideal to compile the whole verification

environment once and then run thousands of tests using the same

environment. UVM allows the implementation of this dynamically

reconfigurable verification environment.

The Configuration Objects serve this purpose. It is a mechanism

in UVM to allow lower level component variables to be configured by

its higher-level component. Objects such as strings, integers, objects and

virtual interfaces can be defined in a common class. This class, which

contains the Objects, is passed from the highest hierarchy of the

verification to its sub components. These can include the number of

Agents, the starting and ending addresses of the slaves and the type of

components.

As an example, the number of Agents can be instantiated based

on these Objects. This allows the verification environment structure to

be maintained and reused while some of its components are replaced.

The next section shall discuss on how the UVM simulation is

executed.

61

3.2.7 UVM Simulation Phases

In order to have a consistent verification environment execution,

UVM uses phases. Using the predefined phases allows verification

components to be developed in isolation but still interoperable. This is

because there is a common understanding of the events that should

happen in each phase.

The simulation runs in phases. It starts by building the UVM

environment root component, which is the DUT in its test environment.

The UVM phasing is then instantiated. The build phase constructs the

testbench and the various child components and configures them. The

components are constructed from top to bottom of the testbench

hierarchy by using the Objects from the higher-level components in the

hierarchy to properly construct the lower level components.

All these components are connected during the connect phase.

This phase makes the TLM connections between components and works

from the bottom of the hierarchy upwards. At the end of elaboration

phase, final configuration, topology, connection and other integrity

checks are performed.

The start of the simulation phase is used to display banners,

verification environment topology and configuration information. This

phase occurs right before the time consuming part of the simulation

begins.

62

The run phase is where the main body of the test executes. This

phase is implemented as a task and consumes simulation time. Each of

the UVM components is in the run phase at the same time and the tasks

are executed in parallel.

The extract phase is used to retrieve and process information

captured by the scoreboards and functional coverage monitors through

the analysis components after the simulation time no longer advanced.

It computes coverage statistics and summaries. The results of the

simulation are displayed or written to a file.

The check phase is used to validate the transaction that has been

collected in the extract phase and determine the overall simulation

outcome. It is used to check that no unaccounted-for data remains.

The report phase reports the result of the test. It may also be used

to write to a file. In Figure 3-6, the basic phases in UVM are illustrated.

63

Figure 3-6: UVM Phases

3.3 Summary

This chapter emphasized the importance of methodologies in

ASIC design and verification. Verification, being a very significant part

of the ASIC design effort, calls for an absolute discipline and

methodology of its own. Both the ASIC design methodology and the

Universal Verification Methodology have been introduced. The

advantages of using an OOP based verification environment to facilitate

the creation of reusable and scalable verification components were

discussed. The discussion continues by introducing the generic UVM

based verification environment. The reusability and re-configurability is

further enhanced by using Factory methods, TLM, and Configuration

Objects in UVM. In Chapter 4 the objective of this work, which is the

implementation of a verification platform using UVM for Net-on-Chip

(NoC) verification, is presented.

64

 CHAPTER 4

 VERIFICATION PLATFORM ARCHITECTURE

4.1 Overview

The hardware design of a Multiprocessor System-on-Chip

(MPSoC) using an on chip network (NoC) has been described in Chapter

2 Section 2.4. The NoC design can be implemented using various

architectures such as mesh, ring and line which can be easily scaled. The

objective of this work is to build a verification platform which is

reconfigurable, scalable and reusable to accommodate these various

architectures and design scalability. This Chapter presents the

implementation of this verification platform using UVM. This platform

will be built hierarchically. The component level verification environment

will be discussed next.

4.2 Component level Testbench

The component level testbench is the most primitive verification

environment. In UVM, it is one of the Universal Verification Components

(UVCs). This environment consists of basic Sequences that model the

communication protocols such as the AHB, APB, SPI, GPIO, network

and parallel port. The basic Sequences can then be extended to model

other complex scenarios such as memory read write model using the

specific communication protocols. This enhances the reusability of the

65

basic Sequences. The component level testbench is used to verify each

component individually in our system.

4.2.1 NoC Environment

The NoC environment is used to verify the generated

CONNECT routers that have been described in Chapter 2 Section 2.4.

To begin with, here is a recap on the protocol to send and receive a flit.

In order to send a flit, the enable putflit, EN_putFlit has to the asserted.

The credit availability is decremented by the client once the flit has been

sent into the network. To retrieve the flit from the network, incoming flit

buffers are used to maintain the flit for each of the virtual channels. The

enable put credit signal, EN_putCredits is asserted when a flit is

received by the client.

Figure 4-1 shows the overall NoC verification environment. This

environment consists of a pair of Send and Receive Agent connected to

the router.

66

Figure 4-1: NoC Verification Environment

67

The number of Agents instantiated depends on the parameter

num_of_routers. This parameter is defined in the noc_config class and

it is passed to all the components using uvm_config_object. When each

of these Agents is created, an id associated with it is also created. This

id is passed to all the Agents sub-components using uvm_config_int. The

implementation is shown in Figure 4-2.

Figure 4-2: NoC Environment Implementation

In the Figure 4-3, part of the Agent implementation is shown.

The is_active is another important parameter set in the Configuration

Objects class. This parameter can be set to UVM_ACTIVE or

UVM_PASSIVE. UVM_ACTIVE means that this UVC is activated and

is going to be used to generate the stimulus. As an active component, the

Driver and Sequencer will be created apart from the Monitor. If the

component is set to passive using UVM_PASSIVE, then only Monitor

will be created. In this NoC verification, a Send and Recv pair of Driver,

Monitor and Sequencer are instantiated.

68

Figure 4-3: NoC Agent Implementation

The flit transaction is defined using a class. This has been used

in the Sequence to contain the stimulus, the Driver packs this flit and

drives to the VSif virtual interface that connects to the DUT. The

implementation of the Driver is shown in Figure 4-4.

Figure 4-4: NoC Send Driver Implementation

69

The Recv Monitor then monitors the flit. It waits until a valid flit

is monitored. The corresponding fields in the flit are packed into

flit_temp. Once all the values of the virtual interface have been recorded

into the flit_temp, the flit_temp is passed to the subscribers that subscribe

to the Monitor. The Figure 4-5 shows the implementation of the NoC

Recv Monitor.

Figure 4-5: NoC Recv Monitor Implementation

70

The Send Scoreboard and Recv Scoreboard are instantiations of

the same Single Channel NoC Scoreboard. These Scoreboards are used

to compare and check if the send flit is received by the right endpoint of

router as illustrated in Figure 4-6.

Figure 4-6: Flit Compare

Similarly, the Driver at the receiving end sends another flit back.

The Recv Monitor at the sending end now monitors the flit. The Recv

Scoreboard checks the responses.

4.2.2 AHB Environment

In our proposed NoC architecture, each of the ARM M0 core has

several peripherals connected to it using the ARM Advanced High-

performance Bus (AHB). The AHB protocol consists of address and data

phase working in pipeline as shown in Figure 4-7. During the address

phase, the AHB master sends the control signals which includes address

71

(HADDR), and transfer type (HWRITE) to the AHB slaves through the

AHB-Lite bus. The data (HRDATA) is send or read during the data phase

at the cycle following the address phase.

Figure 4-7: AHB Read Write Transfer (ARM, 2006)

If additional cycles are required, HREADY signal can be set to 0

by the AHB slaves until the slave is ready to receive the data from the

AHB master during the write transfer or to have the data ready for the

AHB master to read during the read transfer shown in Figure 4-8. (ARM,

2006)

read transfer:

write transfer:

72

Figure 4-8: AHB Read Write Transfer with Wait States (ARM, 2006)

From the NoC architecture perspective, each core and its

peripherals is a component. Thus, the basic building block of the

verification environment is the AHB environment. A component level

verification of an AHB system consists of an AHB master and two AHB

slaves is shown in Figure 4-9.

73

Figure 4-9: AHB Environment

74

It should be noted that the AHB slave is a generic model which

can be further extended to model specific components, such as memory

controller, GPIO, SPI, I2C, USART, ADC, RTC, Timer etc. The basic

Sequences will be discussed in Chapter 5 Section 5.2. In our work, the

AHB master Sequence will model write transactions to access both AHB

memory slave models through the AHB master Driver.

Figure 4-10 shows the implementation of the AHB master

Driver. During the start of the simulation, the default values are driven

to the DUT through the Vif interface. The wait_reset_deassertion() task

is used by the AHB master waits for the system to reset. After the system

reset has been detected, the get_and_drive_pipelined() task performs the

address and data phases. In the event the reset is asserted when the

system is running, the monitor_reset_assertion() task is used to monitor

this event. The unfinished transaction that occurs due to the

asynchronous reset is managed by the manage_unfinished_trans() task.

75

Figure 4-10: AHB Master Driver Implementation

These transactions are also monitored by the AHB master

Monitor. The implementation is shown in Figure 4-11.

Figure 4-11: AHB Master Monitor Implementation

76

In the Monitor, monitor_transaction(),

monitor_reset_assertion(), monitor_error() and monitor_ready() tasks

are used to indicate different transaction types. The

monitor_reset_assertion() task monitors the system resets while the

monitor_transaction() task is used to monitor the address and data

phases. When the data phase and address phase has completed,

monitor_ready() is used to inform the base Sequence the transaction is

ready. monitor_error() is used to indicate any error transaction. These

transactions are sent to the subscribers of the Monitor.

On the other hand, the AHB slaves will record the write

transactions from the master through the AHB slave Monitor and loop

back the transactions using the AHB slave Driver for the AHB master

to read.

To verify the correct functionalities of the master and slaves, the

Scoreboard gathers the transactions from AHB master and slave

Monitors to compare for the correctness of the transactions. This is

shown in Figure 4-12.

77

Figure 4-12: AHB Scoreboard Implementation

The Configuration Objects are added to allow the slaves model

to be mapped to different regions in the memory map using the

add_slave() function as shown in Figure 4-13.

Figure 4-13: AHB add_slave() function

78

4.2.3 APB Environment

For completeness of the system, we have also developed the

APB verification environment using similar structure as described above

(ARM, 2003). We can use the Advanced Peripheral Bus (APB) to

connect to components that have lower bus bandwidth requirements.

When there is no transfer, the APB stays in the default state that is the

IDLE state. Once the transfer occurs, the bus state changes from IDLE

to SETUP. The appropriate select signal, PSELx is asserted. The bus

remains in this state for 1 clock cycle. During the next clock cycle, the

bus state changes to ENABLE state. In this state, PENABLE is asserted

which also last for 1 clock cycle. If there is no further transfer, the bus

state returns to IDLE. The bus changes from ENABLE to SETUP when

there is another transfer. Figure 4-14 illustrates the overall APB transfer

process.

79

Figure 4-14: APB transfer state machine

During the write transfer, the address (PADDR), data (PRDATA)

and select (PSEL) signal is asserted during the SETUP cycle. The enable

signal, PENABLE is asserted during the next clock cycle, indicating the

ENABLE cycle is taking place. The address, data, and control signals

remain valid throughout the cycle. Once the transfer is completed, the

enable signal is de-asserted. The timing diagram in Figure 4-15 shows

the write process.

80

Figure 4-15: APB Write timing diagram (ARM , 2003)

Figure 4-16 shows the read process for the APB bus. Similarly,

the address, write and select signal is set during the setup cycle. In this

case, the write signal is de-asserted. The APB slave is required to

provide the data once the enable signal is asserted. The data will be

sampled on the rising edge of the clock at the end of the ENABLE cycle.

Figure 4-16: APB Read timing diagram (ARM , 2003)

81

If additional time is required, the APB can de-assert the ready

signal when the enable signal is asserted. This holds the APB in the

SETUP state until the ready signal is asserted indicating the slave is

ready to receive or provide the data. When the ready signal is asserted,

the state changes from SETUP to enable and performs the transfer as

shown in Figure 4-17.

Figure 4-17: APB timing diagram with wait state (ARM , 2003)

82

Figure 4-18: APB Environment

83

The APB environment consists of APB Master and 2 APB slaves

modelled as memory is shown in Figure 4-18. The APB master is

connected to the APB slaves through the APB bus. The APB master will

perform a write read transfer to access these memories. The APB master

Driver waits for the system to reset. It waits for new transaction from

the Sequence using get_next_item(). The transaction obtained will be

driven to the Vif virtual interface. Once the transaction is completed, it

uses item_done() to indicate to the Sequence that the transaction has

been successfully driven. Figure 4-19 shows the implementation of this

APB master Driver.

Figure 4-19: APB Driver Implementation

84

 Figure 4-20 shows the implementation of the APB master Monitor. This

Monitor is used to monitor the transaction driven by the APB master Driver and

also the responses from the APB slaves. If the read transaction is monitored, the

Monitor will gather the slave responses. When a write transaction is detected

instead, the Monitor gathers the transaction driven by its master Driver.

Figure 4-20: APB Monitor Implementation

85

The Checker or the Scoreboard compares the intended transfer

that is sent to each memory is received by the correct memory slave as

shown in Figure 4-21.

Figure 4-21: APB Scoreboard

The behaviour of the stimulus is modelled in the basic Sequence

which can be extended to model other peripherals such as, in this case,

APB memory. The implementation of the basic Sequence is discussed

in Chapter 5 Section 5.2.

86

4.2.4 SPI Environment

The SPI module is attached to the APB bus in our system. This

module is to allow each of the Cortex M0 to send status information

such as debug messages. For the SPI UVC environment, basic

Sequences have been created to generate the SPI transfer. The UVC can

be configured to generate and capture various SPI modes. Figure 4-22

shows the 8 bit SPI transfer with the transmitting and receiving at the

negative edge of the clock. The 1st bit also can be configured as the most

significant bit (MSB).

Figure 4-22: 8bit MSB SPI transfer at negative clock edge

Another example is shown in Figure 4-23. The transfer is

configured with the 1st bit as least significant bit (LSB). The transmitting

and receiving of the transfers occurs at the positive edge of the generated

clock, sclk.

87

Figure 4-23: 8bit LSB SPI transfer at positive clock edge

 The SPI Driver implementation is shown in Figure 4-24. In this UVC,

the Configuration Objects have been used to determine the SPI transfer Objects

such as data transfer size, data type indicating the first bit the Most Significant

Bit (MSB) or the Least Significant Bit (LSB) and, the transmit and receive clock

edges. Before the SPI drives the SPI virtual interface, spi_if, the SPI Driver

waits until the SPI Monitor detects an SPI slave is selected. It then drives each

bit of the transaction until it reached the configured transaction data size. The

Driver utilizes the SPI Monitor to determine the SPI clock edges that the

transaction should be sent.

Figure 4-24: SPI Driver Implementation

88

 Figure 4-25 shows the implementation of the SPI Monitor. It waits until

an SPI slave is selected and packs each bits collected from the SPI virtual

interface to be sent to its subscribers. If the tx_clk_phase in the SPI

Configuration Parameter is set to zero, the transaction will be collected during

the negative phase of the clock and vice versa.

Figure 4-25: SPI Monitor Implementation of tx negative clock phase

89

4.2.5 Parallel port Environment

In our system, the parallel port module is used as an input for the

AES encryption. The parallel port UVC is developed to verify the

parallel port module. During the read transfer as shown in Figure 4-26,

the parallel port drives pp_av_n low, indicating there is data available in

the transmit buffer. When the host device detected the pp_av_n is low,

it drives the pp_strobe_n low to initiate the read transfer. pp_wrn_n

signal is driven high, indicating a read transfer. The parallel port asserts

the pp_wait_n signal. At the same time, the data are available at the

parallel port interface. The host reads the data and drives the

pp_strobe_n signal high. This indicates the end of the transfer. The

parallel port drives the pp_wait_n low. If there are still data remaining

in the buffer, the pp_av_n signal remains low. The pp_av_n is asserted

once the buffer is empty.

Figure 4-26: Parallel port read timing diagram

90

Figure 4-27 shows the protocol for the parallel port write. The

host device will de-assert the pp_strobe_n signal to initiate the write

transfer. At the same time, the pp_wr_n is also driven low to indicate

write transfer type. The valid data is driven by the host device. Once the

parallel port is ready, it reads the data and assert the pp_wait_n signal.

To end the transfer, the host device drives the pp_strobe_n signal high.

In the next cycle, pp_wait_n is driven low by the parallel port.

Figure 4-27: Parallel port write timing diagram

The read, write protocol of the parallel port modules has been

modelled using Sequences in the parallel port UVC. This forms the basic

Sequence for this UVC. The parallel port transfer stimulus generated by

the UVC is injected to the parallel port RTL module for processing. The

read Sequence enables the parallel port UVC to gather the transfer from

the RTL.

Coupled with these basic read, write Sequence, the Parallel Port

Driver in Figure 4-28 implements the Parallel Port write protocol.

Similarly, the Parallel Port UVC drives the default values to the virtual

91

interface and waits for the system to reset using

wait_reset_deassertion() task. Once the system has been reset, the UVC

uses the get_and_drive() task to drive the available transactions from the

Sequence. In the event that if the system reset occurs,

monitor_reset_assertion () is used to monitor this event.

Figure 4-28: Parallel Port Driver Implementation

 Figure 4-29 shows the implementation of the Parallel Port

Monitor. The trans_collected is an instantiation of the parallel port transfer,

which consist of the pp_wr_n, pp_data and pp_data_width. This object is used

to collect the transaction from the parallel_port_if virtual interface.

92

Figure 4-29: Parallel Port Monitor Implementation

4.2.6 GPIO Environment

The GPIO is added to our system as another means of I/O. It

allows our system to send out transfer to another system. It also enables

our system to use it to gather transfers. To verify this module, a basic

UVC has been developed. The basic Sequences in the GPIO UVC allow

us to perform basic GPIO read write transfer. It allows us to generate

GPIO transfer for our system and Monitor the activity on the GPIO bus.

The GPIO Driver waits for the transaction delay which can be set

in the GPIO basic Sequence. This can be used to model the delay between

the GPIO transfers and constraints can be set to randomize the delay

between the transfers. This can be used to model the delay between the

GPIO transfers and constraints can be set to randomize the delay between

the transfers. The GPIO_DATA_WIDTH parameter corresponds to each

93

of the GPIO pins. For each of the pins, if gpio_pin_oe is set to zero, the

GPIO UVC will drive the transactions to the DUT.

Figure 4-30: GPIO Driver Implementation

The GPIO Monitor implementation is illustrated in Figure 4-31. The

variable transfer_data is used to collect the transaction when the GPIO UVC

drives the transaction to the DUT. When the GPIO UVC receives the transaction

from the DUT, monitor_data variable is used instead.

Figure 4-31: GPIO Monitor Implementation

94

4.3 Subsystem level Testbench

The subsystem verification environment builds up from multiple

component level verification environment modules discussed in Chapter

4 Section 4.2. In this case, multiple Sequences targeted for these multiple

environments are used. Virtual Sequencer can be used to coordinate these

Sequences. For the subsystem Scoreboard to gather the transfer from its

lower analysis components such as Monitors, Analysis Port can be used.

The basic concepts Analysis Port has been discussed in Chapter 3 Section

3.2.1.2. The Monitor from the component level verification environment

will broadcast the transfers that it has gathered through this port.

4.3.1 AHB2NoC Environment

Once we have the basic modules of the system and verification

environment set up. We can reuse the modular components to develop

our subsystem verification environment. The AHB2NoC subsystem

verification environment uses the AHB and NoC UVC. The AHB master

Agent generates the AHB transfer. This transfer is converted to flit by

the AHB2NoC adapter. The NoC receive Agent is used to capture the

flit from the AHB2NoC adapter and sends it to the Scoreboard to check

for the correctness of the flit. The NoC send Agent is then used to

generate a flit and send through the AHB2NoC adapter. This is to ensure

that the content of the flit is converted to the corresponding AHB

transfer. The environment is shown in Figure 4-32.

95

Figure 4-32: AHB2NoC Adapter Verification Environment

96

Since there are 2 different UVCs involved, the Virtual Sequencer

has been used to coordinate the Sequences running. The Sequencer

coordinates the Sequence for the AHB UVC to send the transfer and

NoC UVC to monitor the transfer and vice versa. This is shown using

Figure 4-33.

Figure 4-33: Virtual Sequencer and Analysis port for AHB2NoC

Figure 4-34 shows the implementation of our Virtual Sequencer.

This Sequencer consist of both the AHB master Sequencer and two NoC

slave recv and send Sequencer.

97

Figure 4-34: AHB2NoC Virtual Sequencer Implementation

As an example, during the creation of the test as shown

in Figure 4-35, the p_sequencer which is the AHB2NoC Virtual

Sequencer is registered with the factory. This allows different Sequence

which runs on different Sequencer utilise the same Virtual Sequencer.

Figure 4-35: AHB2NoC Test Example

98

4.3.2 AHB Parallel Port Environment

Figure 4-36: AHB Parallel Port read timing diagram

To write to the parallel port, the Cortex M0 begins by writing the

address and transfer type. The transfer data is sent out during the next

cycle. When the host device is ready to accept the transfer, the host

device de-asserts pp_strobe_n signal. The parallel port reads the data

and assert the pp_wait_n for the next 2 cycle. To indicate the end of the

transfer, the host device drives the pp_strobe_n signal to high.

pp_wait_n is driven low by the parallel port.

99

Figure 4-37: AHB Parallel Port write timing diagram

Figure 4-38 shows the setup of our AHB2ParallelPort

verification environment. The AHB2ParallelPort RTL module is the

design under test in this case. The AHB side of AHB2ParallelPort

module connects to the AHB-Lite Bus while the other end connects to

our parallel port interface. To verify this module, the AHB sends transfer

to the parallel port. This transfer is also monitored by the AHB UVC.

The parallel port transfer from the RTL module is monitored by the

parallel port UVC. The Scoreboard has been setup to check for the

correctness of the transfer by comparing the AHB with the parallel port

transfer.

100

Figure 4-38: AHB2ParallelPort Verification Environment

101

The coordination between the AHB and parallel port UVC

Sequences is done through the subsystem Virtual Sequencer as shown

in Figure 4-39. This module is muxed with the GPIO module.

Figure 4-39: ParallelPort Verification Environment Virtual Sequencer

Similarly, instead of having the NoC slave Sequencer, the AHB

Parallel Port Virtual Sequencer consist of an AHB master Sequencer and

a parallel port Sequencer shown in Figure 4-40.

102

Figure 4-40: AHB Parallel Port Virtual Sequencer

4.3.3 AHB GPIO Environment

In the AHB GPIO verification environment, the AHB UVC sets

the register in the GPIO to send GPIO transfer. This transfer also writes

to the configuration environment which will set the respective

Configuration Objects of the GPIO transfer. The GPIO UVC is used to

capture this transfer and compare it with the AHB transfer in the

Scoreboard. These transfers are sent to the Scoreboard to check for

correctness of the transfer. Figure 4-41 shows our AHB GPIO

verification environment setup. The DUT is attached to the verification

environment through the AHB interface on one end. On the other end,

the DUT is attached to the GPIO interface.

103

Figure 4-41: AHB GPIO Verification Environment

104

Since we need the AHB and GPIO UVC to work together, the

verification environment uses its Virtual Sequencer to load the AHB and

GPIO Sequences to the corresponding Sequencers in the AHB and GPIO

UVC as shown in Figure 4-42.

Figure 4-42: Virtual Sequencer and Analysis port for AHB GPIO

The implementation of the AHB GPIO Virtual Sequencer is

similar to the Virtual Sequencer that has been discussed for the

AHB2NoC verification environment in Section 4.3.1 as well as for the

AHB Parallel Port in Section 4.3.2.

105

4.3.4 AHB APB Subsystem Environment

The AHB and APB bus is connected using the AHB2APB

Bridge. This bridge converts the AHB-Lite bus to the APB bus signals.

Due to the bus conversion from a pipeline transfer in the AHB-Lite to a

non-pipeline bus for the APB bus, a minimum of 3 cycle is required for

the APB bus. In Figure 4-43, we have an overview of our AHB-APB

subsystem verification environment which uses the AHB and APB

environments.

Figure 4-43: AHB APB Bridge Verification Environment Overview

The AHB2APB bridge verification environment is shown in

Figure 4-44. The DUT in this case is the AHB2APB Bridge

106

Figure 4-44: AHB2APB Bridge Verification Environment

107

In this verification environment, the AHB master will send write

transactions to the APB subsystem through the AHB APB Bridge. The

AHB master will try to write to the APB memory slave. The Figure

4-45 shows the timing for the AHB to write to the APB bus.

Figure 4-45: AHB APB transfer timing diagram

The APB slaves will then loop back the previous write

transactions when the AHB master generates a read transaction as

illustrated in Figure 4-46. The APB slave data in PRDATA can be seen

in the HRDATA during the read transfer.

 .

108

Figure 4-46: AHB APB read timing diagram

The AHB and APB environment as well as the AHB-Lite bus

and APB subsystem has previously been verified using the

corresponding modular verification environment. In the sub-system

level, a Virtual Sequencer is used to coordinate AHB and APB Sequence

as in Figure 4-47. Thus, component level environment can be reused

without modification.

109

Figure 4-47: Virtual Sequences and Analysis port for AHB APB Bridge
Verification Environment

4.3.5 APB SPI Environment

The APB SPI verification environment consist of the APB and

SPI verification environment. The APB master Agent UVC is used to

configure configuration registers in the SPI RTL module. This transfer

will also be used to configure the Configuration Objects in the SPI UVC.

The module will generate the SPI transfer according to the transfer

configuration. The APB transfer, which is used to configure the

configuration register is also used to configure the configuration of the

SPI UVC. This is to ensure that the SPI RTL and the SPI UVC are using

the same SPI protocol. Figure 4-48 shows the APB SPI verification

environment.

110

Figure 4-48: APB SPI Verification Environment

111

Virtual Sequencer is setup in this verification environment as

shown in Figure 4-49. This is to allow the coordination between the APB

and SPI Sequences. The Monitor in the APB and SPI environment

monitors the activity on the bus connected to the DUT. These data

gathered is sent to the subsystem Scoreboard to be compared.

Figure 4-49: Virtual Sequencer and Analysis port for APB SPI

4.4 System level Testbench

The system level verification environment can then be built upon

the multiple component and subsystem level verification environment.

This section will discuss the setup of the system level verification

environment using UVC and followed by implementation with Cortex M0

attached to our NoC system. This section will also elaborate on the

firmware loading and the functionalities of the NoC system.

112

4.4.1 NoC System Level Environment

After the modular component of the system has been designed

and verified correctly, these components will be integrated to form a

system. To ensure that this system is working correctly, a system level

testbench has to be designed. In our case, we reuse the components that

we have developed from component and subsystem level. Depending on

the network architecture in the System level verification, multiple NoC

environment can be used to generate and receive transfers over the

network. Furthermore, the Configuration Objects in each environment

and its sub components allow each of them to be configured

independently according to the needs of the verification. This allows the

verification environments to be adaptive to the network architecture and

scalable to the architecture as the network grows.

We have used CONNECT network generator to generate

different network architectures for our simulations. For a 4-endpoint

architecture, our NoC Env is configured to consist of 4 AHB

environments, 1 parallel port environment, 1 APB environment and 1

NoC environment. This is illustrated in Figure 4-50.

113

Figure 4-50: NoC System simulation using Sequences

The Parallel Port Master in a parallel port environment UVC is

used to inject the plain text and key for the AES encryption to the NoC

System. One of the AHB masters in AHB environment UVC will be

used to read the data from the parallel port and write the plain text to one

of the other 3 AHB masters to perform AES encryption. Once, the plain

text is encrypted, the corresponding AHB master sends the encrypted

data back to the AHB master which is attached to the parallel port to

write the cipher text out.

To check for the correctness of the AES encryption, a golden

reference model of the AES using the AES algorithm is modelled. The

values generated from the AES golden reference model is compared

with the values read from the AES RTL Design when the encryption has

finished. Figure 4-51 shows the input implementation for the AES

model. When the AHB transaction occurs to the corresponding AHB

114

addresses which corresponds to the AES module registers, the values are

stored in its respective variable and AES_encryption() task is called.

Figure 4-51: AHB Plain Text Input

The implementation of this task is shown in Figure 4-52. The

task will get the key and plain text for encryption. These are arranged in

2D matrix or state for the AES encryption by making use of the

encrypt_block() task.

115

Figure 4-52: AHB AES Reference Model

This task performs the AES encryption algorithm. The number

of iterations required to perform the encryption depends on the number

of bits for the AES. The 128-bit AES uses 10 rounds of iterations. In the

add_roundkey() task, the plain text is combined with the key using the

bitwise XOR function. The sub_bytes() task is used to perform

substitution on each of these bytes using the Rijndael_Sbox lookup table.

116

Figure 4-53: AHB AES Encryption Block

For AES encryption, the first row remains unchanged.

Depending on the row, n, the elements in that particular row is shifted

left circularly by n-1 bytes using the shift_row() task. These new

elements are then multiplied by a fixed matrix:

𝑴𝑴 = �

𝟐𝟐 𝟑𝟑 𝟏𝟏 𝟏𝟏
𝟏𝟏 𝟐𝟐 𝟑𝟑 𝟏𝟏
𝟏𝟏 𝟏𝟏 𝟐𝟐 𝟑𝟑
𝟑𝟑 𝟏𝟏 𝟏𝟏 𝟐𝟐

� (Equation 4.1)

Multiplication of the element by 1 means no change to the

location of that element. If multiplication by 2 is done, this means the

element shifts to the left. When multiplication by 3 is performed, these

elements should be shifted to the left and XOR is performed with the

initial un-shifted value. If the shifted values are larger than 0xFF, then,

a conditional XOR with 0x1B is performed.

117

At every round of iteration, a new subkey is produced. These

subkeys are combined with the partially encrypted plain text using

bitwise XOR until the encryption is completed. This is implemented in

the add_roundkey() task. The mix_column() task is omitted during the

last iteration to simplify the decryption process.

After the environment has been setup and verified to be able to

monitor the correctness of the transfer, the M0 core is attached to the

system. The verification environments which previously is used to

generate the stimulus for the DUT is not removed. Instead, they are used

to monitor the system for the correctness of the transfer. The M0 core

will generate the stimulus according to the firmware it is running.

Figure 4-54: Cortex-M0 replacing the Sequences

118

The firmware for the Cortex-M0 is written in C and compiled

using CodeSourcery. The compiled firmware is loaded into the program

memory for each M0 through the verification environment. The

encrypted cipher text from the AES that is sent out through the parallel

port is monitored by the parallel port UVC. The result is logged into a

debug log file.

Figure 4-55: Loading firmware to the Cortex-M0

4.5 Summary

This chapter has discussed on the architecture of our verification

environment which we have built hierarchically. We started off by

designing the component level verification environment for AHB, APB,

GPIO, SPI, and CONNECT network. We utilize these primitive

environment in our subsystem environments such as AHB GPIO,

AHB2APB Bridge, AHB2NoC and APB SPI. The system level

119

verification environment can then be formed from multiple subsystem

level and component level verification environment. The following

chapter shall discuss on the results from the exploration of our different

NoC architectures.

120

 CHAPTER 5

 RESULTS AND DISCUSSIONS

This Chapter shall discuss the results of our verification platform for our NoC

architecture exploration. The platform can be separated into fixed and variable

components. The fixed components are the AHB, and APB system modules in

the architecture as well as the basic Sequences for stimulus generation. For the

variable components, it consists of the router architectures and the number of

modular verification environments that can be instantiated in the system level

environment. In the following section, the verification strategies for verifying

the various UTAR NoC architectures using the platform will be discussed. This

includes the verification plans for the modules of the UTAR NoC, the

simulation results and the self-checking verification environment scoreboards

that we have developed to assist in the verification process.

5.1 Verification Plans

The foremost purpose in any design verification is to achieve full

and complete functional coverage. A verification plan is necessary to

serve as a guideline and checklist in developing our test cases for

verifying the corresponding modules. In order to maintain clarity and not

cloud things with the overwhelming details only the functions of the

AHB2NOC Bridge, various router architectures and APB subsystem

modules and their verification plan will be discussed in the following

subsections, as illustrations. The discussion for the rest of the modules in

the system is included in APPENDIX A.

121

5.1.1 AHB2NOC Bridge

The AHB2NoC Bridge converts an AHB data transfer to a

network data flit and also from the network flit to the AHB transfer. For

each router node a dedicated flit transmit and receive buffer is created.

The transfer is sent through the AHB to the corresponding transmit

buffer. The transfer or flit is received by another AHB2NoC bridge at

the destination. If the transmit interrupt is enabled, the transmit interrupt

will be triggered upon sending the flit. Upon receiving the flit, the new

transfer flag is set. The received interrupt can also be triggered if the

received interrupt is enabled. The bridge also allows the bridge to

receive multiple flits before triggering the interrupt. The received flit

will be stored in the receive buffer location that denotes the sender

router. When the buffer in the router and the bridge buffers are full, the

transfers that follow will be discarded.

The Table 5-1 summarizes the AHB2NoC Verification plan. The

first test scenario is to ensure the AHB2NoC Bridge is able to cast the

transfer from the AHB to flit and vice versa. Another test is developed

to ensure that the bridge only generates the interrupt after the number of

transfers defined. Since the bridge also contains transmit and receive

buffers, it is also necessary to verify that the buffer full flag is set and

the transfers following does not override the buffer content. Polling

method is also used as a test to gather the new transfer from the bridge.

122

Table 5-1: AHB2NoC Verification Plan

Tests Test Descriptions Verification

Criteria
ahb2noc_special_test Enable transmit and

receive interrupt. Send
eight flit from AHB to
router and receive eight
credit from the router and
compare the transfer

Expects the
AHB2NoC bridge
is able to send
ahb and flit
correctly and vice
versa

ahb2noc_n_flit_special_tes
t

Enable transmit and
receive interrupt. Enable
multiple receive interrupt.
Send sixteen flit from AHB
to router and receive
sixteen credit from the
router and compare the
transfer

Expects that the
receive interrupt
is set after n_flit
transfer.

ahb2noc_transmit_buffer_
overrun_test

Transmit 34 bit flit until
transmit buffer overrun and
check for buffer full flag

Expects that the
data in the
transmit buffer is
not overwritten
by the new
transfer after the
transmit buffer is
full

ahb2noc_receive_buffer_o
verrun_test

Receive 34 bit flit until
receive buffer overrun and
check for the buffer full
flag

Expects that the
data in the receive
buffer is not
overwritten after
the receive buffer
is full

ahb2noc_polling_test

Check for buffer receive
flit flag and compare the
transfer

Expect that the
flit receive flag is
triggered upon
receiving a new
flit

ahb2noc_random_test Randomly transmit and
receive flit with random
interval delay

Expects the
correct transfer
that is send and
receive within
different time
intervals

123

5.1.2 NOC Router

For the NoC Router, we will use the ring architecture as an illustration.

5.1.2.1 Ring architecture

In Table 5-2, the NoC Ring Router verification plan is

summarized. The router routes the transfer from one of the core to

another. The noc_ring_34_test sends the flit stimulus from one node to

another node of the router. This is used to verify the send and receive of

the router. To ensure that collision does not occur in the network,

noc_ring_34_collision_test has been setup. This test starts sending from

all the router nodes simultaneously and monitors the incoming flit.

Table 5-2: NoC Verification Plan

Tests Test Descriptions Verification

Criteria
noc_ring_34_test 34 bit data transfer is sent

from one node to another
in the 4 node ring router

Expects the router
to send and
receive the flit
correctly.

noc_ring_34_collision_test Send 34 bit transfer from
all 4 node of the router
simultaneously

Expects the flits
send by the router
does not collide
with the flit that is
sent from another
router

noc_ring_34_random_tran
sfer_collision_test

Send 34 bit transfer from
random routers for
collision detection

Expects no
collision to occur
when randomly
send and receive
from the routers

124

5.1.3 APB Subsystem Environment

The APB Subsystem provides a lower bandwidth bus for slower

peripherals. In our system, only the SPI module is attached to the APB

bus. Hence, the main focus is to verify the APB SPI module in this case.

The SPI module is able to generate maximum of 128bit of SPI transfer.

The basic test case for the SPI is to read and write through the

SPI correctly is shown in Table 5-3. Other test cases include generating

various speed and transfer size of the SPI transfer. Illegal range of speed

and data sizes test has also been setup to ensure that the invalid transfers

are not driven to the interface.

Table 5-3: APB Subsystem Verification Plan

Tests Test Descriptions Verification

Criteria
apb_spi_read_test Set the SPI module to

output SPI transfer
128bit and the UVC to
read the transfer

Expects correct
SPI transfer from
the module

apb_spi_write_test

Set the SPI to output
SPI transfer 128bit and
the UVC to loopback
the transfer.

Expects the
module to read
the correct SPI
transfer

apb_spi_random_test Set the SPI module to
send constrained
random transfer size
and transfer mode

Expects correct
transfer with
various sizes from
the module

apb_spi_random_div_test Set the SPI module to
send constrained
random transfer speed
and the delay between
each transfer

Expects the
module to send
the SPI transfer
with various
speeds

apb_spi_illegal_transfer_size
_test

Set illegal SPI transfer
size

Expects the
module not to
drive any transfer

apb_spi_illegal_speed_test Set SPI divisor register
beyond the range

Expects the
module not to
drive any transfer

125

The next section shall discuss the stimulus generation mechanism that we have

developed.

5.2 Verification environment stimulus generations

The Sequences or stimulus generation mechanism described in

this section form the basis test template of each of the verification

environments. These Sequences has been used and extended to generate

the test cases that has been described in the verification plan subsection

earlier. Some of these Sequences which models a more complex scenario

consist of tasks so that it can be utilized when it is used in the higher level

Sequences. During the discussion later, a few examples are given to

illustrate the usages of some of these Sequences.

5.2.1 NoC Sequences

Table 5-4 summarizes the NoC Master Basic Sequences that

model the client for the network. The send_flit Sequence can be used to

generate the flit for the router. In this Sequence, the parameters that can

be constrained are valid, is_tail, dst, vc and data. This valid bit is used

to indicate that the generated flit is valid. The is_tail parameter is used

to indicate that this is the last flit while dst allows the flit to be sent to

different locations. The vc is the virtual channel that the flit is used to

send through the network. Since the network is credit based, the

send_credits Sequence is created to send credit to the router. In this

Sequence the valid and vc bit can be constrained. This valid bit is used

126

to indicate a valid credit while the vc bit indicates the virtual channel for

the incoming credit. The ask_credit Sequence can be used to request

credit from the router. In order to ease the use of the basic Sequences,

the send_flit_ask_credit Sequence combines the functionality of the

send_flit and ask_credit Sequences.

Table 5-4: NoC Master Basic Sequence

NoC Master Basic
Sequence

Description

send_flit Sequence to generate flit to the router
ask_flit Sequence to request flit from the router
send_credits Sequence to send credits to the router
ask_credit Sequence to ask credit from the router
send_flit_ask_credit Sequence that sends flit and request credit

from the router

To illustrate the usage of these Sequences, Figure 5-1 shows part

of the ping_pong_agent_seq. From the figure, the send_flit_seq

Sequence is an instance of send_flit. The parameters inside this

Sequence can be constrained. For this example, the flit is set to valid and

this flit is the last flit of the transfer. The data for this flit is 1.

127

Figure 5-1: Part of ping_pong_agent_seq

The NoC Slave Basic Sequences models the router is listed in

Table 5-5. The slave_send_flit Sequence is used to send flit to the client.

Similarly, the slave_send_credits Sequence sends the credit to the client

and the slave_ask_credits Sequence request the credit from the client.

The slave_send_flit_ask_credit Sequence allows the flit to be sent to the

client and request the credits from the client. This Sequence merges the

slave_send_flit Sequence with slave_ask_credit Sequence.

128

Table 5-5: NoC Slave Basic Sequence

NoC Slave Basic Sequence

Tasks Description

slave_send_flit Sequence to generate
the flit for the router
client

slave_send_credits

 Sequence to generate
the credit for the
router client

slave_ask_credit Sequence to ask the
credit for the router
client

slave_send_flit_ask_credit noc_slave_send_flit(va
lid, is_tail, vc, data,
delay)

Sequence to generate
the flit for the router
client and request
credit

slave_ask_flit_send_credit send_credits(flit,
num_valid, int
num_vc, int
num_credit_delay)

Sequence to request
the flit from the
router client and send
the credit to the
router client

noc_slave_ask_flit(int
num_flit, int
num_valid, int
num_vc, int
num_credit_delay)

An ahb2noc_special_slave_send_flit Sequence is extended

from one of the NoC Slave Basic Sequences as shown in Figure 5-2.

The task noc_slave_send_flit() has been utilized to generate the flit. In

addition, constraints are added to the destination and source bits in the

flit so that the source and destination is limited to sixteen.

129

Figure 5-2: ahb2noc_special_slave_send_flit Sequence

5.2.2 AHB

Table 5-6 shows the AHB Master Basic Sequence that allows the

AHB Master transfer to be modelled. These Sequences provides various

types of AHB transfers – bytes, half word, word, double word, four

word, un-pipelined, un-aligned.

130

Table 5-6: AHB Master Basic Sequence

AHB Master Basic
Sequence

Tasks Description

ahb_seq

wait_response(ahb
_transfertx)

The task to wait for the
response from the slave

wait_response_mul
(ahb_transfertx, bit
last_trans, int
index, ref
bit[`BUS_SIZE-
1:0] data_array[])

The task to wait for multiple
response from the slave

monitor_reset_erro
r()

The task to monitor reset and
error on the bus

ahb_single_seq Sequence to generate idle and
non-sequential AHB transfer

ahb_wait_read_data_s
eq

 Sequence to wait for the data
ready to be read

ahb_single_unpipeline
d_seq

 Sequence to send non
pipelined AHB transfer

ahb_doubleword_seq Sequence to send AHB
double word size transfer

ahb_fourword_seq Sequence to send AHB four
word size transfer

ahb_unalined_seq Sequence to send unaligned
AHB transfer

ahb_incr_seq Sequence to incremental AHB
transfer

ahb_incr_n_seq

 Sequence to send multiple
incremental AHB transfer

ahb_wrap_n_seq

 Sequence to send four, eight
or sixteen incremental AHB
transfer

ahb_valid_seq Sequence to send random
valid AHB transfer

ahb_unpipelined_seq Sequence to send non
pipelined AHB transfer

basic_multiple_seq Sequence that combines the
various sequences that
generates the AHB transfers

131

As an example to use the AHB Master Basic Sequence, the

ahb_pp_single_seq is extended from the basic_multiple_seq Sequence.

Part of this Sequence is shown in Figure 5-3. single_non_seq Sequence

in the basic_multiple_seq Sequence has been used in this example. The

pp_direction, pp_address, pp_data, and pp_size parameters can be used

to constraint the Sequence. The pp_direction parameter allows either a

read or a write transaction to be generated. The pp_addess parameter

allows the transaction to be generated for the corresponding address that

is defined while the data for that transaction can be defined in the

pp_data parameter. The size of each transfer can be defined using

pp_size.

Figure 5-3: Part of ahb_pp_single_seq Sequence

132

The AHB Slave Basic Sequences listed in Table 5-7 can be used

as a generic AHB slave model. One of the functions in this Sequence is

to wait for the slave data to be ready using the wait_data_ready() task.

The AHB control signals for the from the AHB master can be retrieved

by using wait_control_ready() task. The driving_driver() allows the

model to drive AHB transfers with errors and also extends the transfer

by de-asserting the HREADY signal through the hready_duration

parameter.

Table 5-7: AHB Slave Basic Sequence

AHB Slave Basic
Sequence

Tasks Description

ahb_slave_basic_seq

wait_data_ready(ahb_transfer
rx, ahb_transfer prev_rx)

Task in the
sequence to wait
for the slave data

wait_control_ready Task in the
sequence to wait
for the AHB
control signals

driving_driver(int
hready_duration, int error,
logic [31:0] hrdata)

Task to drive
transfers to the
AHB bus

Figure 5-4 shows the ahb_lite_bus_sw_ahb_slave_seq1 which

is used as a model for one of the AHB slaves. The driving_driver() task

has been utilized. There are 3 input parameters to this task:

hready_duration, error, and hrdata. The hready_duration parameter

allows the transaction to be delayed for a defined cycles before driving

the transaction to the DUT. In order to drive an error transaction, the

133

error parameter must be set. The data can be constrained using the

hrdata parameter.

Figure 5-4: ahb_lite_bus_sw_ahb_slave_seq1 Sequence

5.2.3 APB

The APB Master Basic Sequences in Table 5-8 can be used to

generate various APB transfers. There are Sequences to perform byte

and word read write Sequence. The read_after_write_seq allows a

Sequence of write read transfer. By using the

multiple_read_after_write_seq, multiple write read transfer can be

done. This Sequence extends the read_after_write_seq.

134

Table 5-8: APB Master Basic Sequence

APB Master Basic Sequence

Description

read_byte_seq Sequence to read a byte
write_byte_seq Sequence to write a byte
read_word_seq Sequence to read a word
write_word_seq Sequence to write a word
read_after_write_seq Sequence to perform write and read
multiple_read_after_write_seq Sequence to perform multiple read and

write

The APB Slave Basic Sequences is used to model the APB slave.

The Simple_response_seq can be used to send simple transfer to the

APB master. Mem_response_seq can also be used. This allows the write

transfer from the APB master to be stored and the content can be read

back during the read transfer. Table 5-9 summarizes these Sequences.

Table 5-9: APB Slave Basic Sequence

APB Slave Basic Sequence

Description

Simple_response_seq

Sequence that checks for the valid APB slave
access and if the address is within the range,
response to the transfer

Mem_response_seq Sequence that loopback the APB data that is
written to the slave model

5.2.4 SPI Sequence

In the SPI environment, the spi_base_seq implements the basic

SPI read write Sequence. The Spi_incr_payload_seq allows the

generation of continuous SPI transfer. Table 5-10 summarizes the list of

SPI Basic Sequences.

135

Table 5-10: SPI Basic Sequence

SPI Basic Sequence

Description

Spi_base_seq Sequence that generates basic SPI transfer
Spi_incr_payload_seq Sequence that generates multiple SPI

transfer

5.2.5 GPIO Sequence

The GPIO Basic Sequence is developed to generate the GPIO

read write transfer. These Sequences is listed in Table 5-11. This

implementation is done within the GPIO environment.

Gpio_multiple_simple_trans extends the Gpio_simple_trans_seq to be

able to generate multiple read write transfer.

Table 5-11: GPIO Basic Sequence

GPIO Basic Sequence

Description

Gpio_simple_trans_seq

Sequence that generates GPIO read write
transfer

Gpio_multiple_simple_trans

Sequence that generates multiple write
transfer

The performance evaluation for our various architectures will be

discussed in the following subsections. The discussion compares the

simulation results between the M0 cores and the AHB UVC model. The

result from four, eight and sixteen router system will also be discussed.

136

5.3 Performance Evaluation

Using the UVC environment that we have setup, the Sequence to

generate the traffic and estimate the performance of our system is

designed. A simple scenario where transactions are initiated from the

special core to one router followed by two and three router. This setup has

been done using the four router system. Figure 5-5 shows the results from

the simulation. It is notable that the latency for the initial transfer is 29

cycles for transfer to 1 and 3 routers. When transferring to 2 router the

latency is 33 cycles. In 2 router system, it is expected that the latency will

increase initially because at this time before the 1st transfer is read by the

special core, the acknowledge flit for the first normal core is being read.

For a 3 router system, then, the latency increase at every 4th

transfer. There is no spike in between the 3 router system because the

special core is programmed to send to all the 3 routers before reading the

acknowledge flit.

137

Figure 5-5: Various transfer in 4 router system

This simulation has been extended to evaluate the performance

of the eight and sixteen router system. For the sixteen router system, the

latency increases drastically after the 10th data is sent. This is because at

this stage, the data is already in the special core’s buffers but the special

core is receiving the acknowledge flit for the last transfer to be sent. The

8 router system on the other hand received the last acknowledge flit

during its 19th flit. Hence, there is a peak on the graph.

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30

LA
TE

N
CY

 (C
YC

LE
S)

NUM OF DATA

VARIOUS TRANSFER IN 4 ROUTER SYSTEM

transfer to 3 router transfer to 2 router transfer to 1 router

138

Figure 5-6: Latency comparison for 4, 8, and 16 router system

Figure 5-7 illustrate the results from configuring the Ahb2NoC

Bridge in the 4 router system with buffer depth of 1, 2 and 5. As the

buffer size increases the system throughput also increases. The system

response with the Ahb2NoC Bridge configured with 5 buffers begins to

stabilize after the 15th data. This is because this fills up the 5 buffer depth

in the corresponding Ahb2NoC Bridge which interfaces to the 3 normal

cores. The system would be least efficient when the number of data to

be encrypted is less than the buffer size of the system.

.

0

50

100

150

200

250

0 5 10 15 20 25 30

LA
TE

N
CY

 (
CY

CL
ES

)

NUM OF DATA

LATENCY COMPARISON FOR 4,8 AND 16 ROUTER
SYSTEM

16 router system 8 router system 4 router system

139

Figure 5-7: Various Buffer Depth for 4 router system

The throughput comparison for four router system with buffer

depth 1, 2 and 5 is shown in

Table 5-12. The buffer depth 2 system has higher throughput

compared to the buffer depth 5 system because the buffer depth 5 system

reaches its steady state throughput after 15th data while the system with

buffer depth 2 already stabilize during its 6th data. Once the amount of

input data is higher than the time the system takes to stabilize then the

throughput of the system with buffer depth 5 will be more than the

system with buffer depth 2. The following section will discuss on the

result of the system with 1kB, 2kB, 4kB and 8kB data size.

4 router system architecture Throughput(bit per cycle)

Buffer depth 1 2.7826
Buffer depth 2 3.3147
Buffer depth 5 2.869

Table 5-12: Throughput for 4 router system with various buffer depth

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30

LA
TE

N
CY

 (
BI

TS
 P

ER
 C

YC
LE

)

NUM OF DATA

CAMPARISON WITH DIFFERENT BUFFER DEPTH
FOR 4 ROUTER SYSTEM

buffer depth 2 buffer depth 5 buffer depth 1

140

 The effect of the system with various data sizes has also been

studied.

Figure 5-8 shows the throughput performance result when the system of

different buffer depth is injected with various data sizes. The throughput

difference between systems with buffer depth 5 and buffer depth 2 gives

about additional throughput of 0.5 bit per cycle. However, increasing the

buffer depth further to 10 results in about 0.2 bit per cycle.

Figure 5-8: Throughput for 4 router system with various data sizes

The result of the latency of the system is shown in

Figure 5-9. By increasing the buffer depth from 2 to 5, the

latency increases about 50 cycles. Increasing from buffer depth 5 to 10

further results in an increase of 100 cycle’s latency. The system with

buffer depth 5 in this case would be the most efficient because increasing

the system buffer depth to 10 would result in insignificant throughput

performance compared to the buffer depth 5 system performance.

Furthermore, this will increase the latency and cost of the system as

3
3.2
3.4
3.6
3.8

4
4.2
4.4

0 1 2 3 4 5 6 7 8 9TH
RO

U
GH

PU
T

(B
IT

 P
ER

 C
YC

LE
)

DATA SIZE (KB)

THROUGPUT FOR 4 ROUTER SYSTEM WITH
VARIOUS DATA SIZES

buffer depth 2 buffer depth 5 buffer depth 10

141

bigger buffer size would contribute to bigger chip size and higher power

consumption.

Figure 5-9: Latency for 4 router system with various data sizes

Figure 5-10 shows the result of the effects of various buffer depth

on an eight router system. With buffer depth 1, the systems latency

stabilizes after 8th transfer. However, it is notable here that the system

with buffer depth 5 and 10 increases the latency until the 20th data. The

system with buffer depth 5 stabilizes around 35th transfer which is the

total amount of data required to fill up the buffers. On the other hand,

buffer depth 10 system increases in latency before 10th data and more

rapidly from the 15th to 20th data and decline slowly after the 20th data.

As the buffer size increases, the latency increases as well. This is

because with more buffers, the system have to wait for the buffers to get

filled up before initiating the transfer.

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9

AV
ER

AG
E

LA
TE

N
CY

 (C
YC

LE
S)

DATA SIZE (KB)

LATENCY FOR 4 ROUTER SYSTEM WITH
VARIOUS SIZES

buffer depth 2 buffer depth 5 buffer depth 10

142

Figure 5-10: Various Buffer Depth for eight router system

Further investigation on the effect of various data sizes is

perform to evaluate the performance of the system. The result is

illustrated in Figure 5-11. With data size less than 2kB, a system with

buffer depth 5 outperformed a system with buffer depth 10. This means

that increasing the buffer depth at this stage would reduce the throughput

performance instead. When the data size is 2kB, the throughput

performance of a system with buffer depth 10 is similar to a buffer depth

5 system. From 4kB data size onwards, the throughput difference

between a buffer depth 5 and 10 system is about 0.1 bit per cycle.

0

50

100

150

200

250

300

350

400

450

500

0 10 20 30 40 50 60 70 80 90 100

LA
TE

N
CY

 (
BI

T
PE

R
CY

CL
E)

NUM OF DATA

VARIOUS BUFFER DEPTH ON 8 ROUTER
SYSTEM

buffer depth 5 buffer depth 10 buffer depth 2

143

Figure 5-11: Throughput for eight router system with various data sizes

Figure 5-12 shows the latency of the eight router system with

various data sizes. The latency between system with buffer depth 2 and

5 is about 140 cycles while the difference of latency between buffer

depth 5 and 10 system is 230 cycles. In this system, it is also evidently

that system with buffer depth 10 offers insignificant throughput

improvement but increases the latency instead. The insignificant

improvement is due to the fact that beyond 5 buffer depth, the network

and normal resources are already fully utilized.

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

0 1 2 3 4 5 6 7 8 9

TH
RO

U
GH

PU
T

(B
IT

 P
ER

 C
YC

LE
)

DATA SIZES (KB)

THROUGHPUT FOR 8 ROUTER SYSTEM WITH
VARIOUS DATA SIZES

buffer depth 2 buffer depth 5 buffer depth 10

144

Figure 5-12: Latency for eight router system with various data sizes

For sixteen router system, the latency increases for the system

with buffer depth 2, 5 and 10 with 160 data as shown in Figure 5-13.

This is because the router size is significantly larger compared to 4 and

eight router system which affects the time for the system to reach a

steady throughput response.

Figure 5-13: Various Buffer Depth for sixteen router system

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9

AV
ER

AG
E

LA
TE

N
CY

 (C
YC

LE
S)

DATA SIZES (KB)

LATENCY FOR 8 ROUTER SYSTEM WITH VARIOUS
DATA SIZES

buffer depth 2 buffer depth 5 buffer depth 10

0
100
200
300
400
500
600
700
800
900

0 20 40 60 80 100 120 140 160 180

LA
TE

N
CY

 (
BI

T
PE

R
CY

CL
E)

NUM OF DATA

VARIOUS BUFFER DEPTH ON 16
ROUTER SYSTEM

buffer depth 5 buffer depth 10 buffer depth 2

145

Similarly, the study of the response of various data sizes on this

system has been performed. Figure 5-14 shows the throughput result

response of the system. When the data size is lesser than 2kB, the system

with buffer depth 10 would have the lowest throughput of 0.5 bit per

cycle lesser compared to the system with buffer depth 2 and 5. At this

point, the system would be more efficient if a buffer depth 2 is used

instead. As the data size increases to 4kB, the system with buffer depth

5 and 10 offers about 0.5 bit per cycle of throughput improvement. This

makes a system with buffer depth 5 a better choice compared to buffer

depth 10 system. When the data size is more than 4kB, system with

buffer depth 10 offers only 0.1 bit per cycle of throughput improvement

to the system. Again, the insignificant improvement is due to the fact

that beyond 5 buffer depth, the network and normal resources are

already fully utilized.

146

Figure 5-14: Throughput for 16 router system with various data sizes

The latency response of the sixteen router system can be seen in

Figure 5-15. The latency of a buffer depth 5 system is 300 cycles more

than the buffer depth 2 system. The buffer depth 10 system has 450

cycles latency more than a buffer depth 5 system. Overall, system with

buffer depth 5 is the most efficient in this case as increasing the buffer

depth further offers insignificant improvement of the throughput.

3

3.2

3.4

3.6

3.8

4

4.2

0 1 2 3 4 5 6 7 8 9

TH
RO

U
GH

PU
T

(B
IT

 P
ER

 C
YC

LE
)

DATA SIZES(KB)

THROUGHPUT FOR 16 ROUTER SYSTEM WITH
VARIOUS DATA SIZES

buffer depth 2 buffer depth 5 buffer depth 10

147

Figure 5-15: Latency for 16 router system with various data sizes

The comparison between the router systems and buffer depth is

performed. Figure 5-16 shows the result of these comparisons. In this

case, the four router system has a better throughput performance

compared to the eight and sixteen router system. The maximum

throughput of these systems are about 3.55 bit per cycle. This is because

the special core has more buffers to monitor in a larger system.

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7 8 9

AV
ER

AG
E

LA
TE

N
CY

 (C
YC

LE
S)

DATA SIZES (KB)

LATENCY FOR 16 ROUTER SYSTEM WITH
VARIOUS DATA SIZES

buffer depth 2 buffer depth 5 buffer depth 10

148

Figure 5-16: Throughput comparison between various router system with
buffer depth 2 and data sizes

The latency for comparison for the systems with buffer depth 2

is shown in Figure 5-17. It is expected that the sixteen router system will

have the highest latency since the overall network size is larger

compared to the 4 and eight router system.

3.46

3.47

3.48

3.49

3.5

3.51

3.52

3.53

3.54

3.55

3.56

0 1 2 3 4 5 6 7 8 9

TH
RO

U
GH

PU
T

(B
IT

 P
ER

 C
YC

LE
)

DATA SIZE (KB)

THROUGHPUT COMPARISON BETWEEN
VARIOUS ROUTER SYSTEM WITH BUFFER

DEPTH 2 AND DATA SIZES

16 router system 8 router system 4 router system

149

Figure 5-17: Latency comparison between various router system with
buffer depth 2 and data sizes

Figure 5-18 shows the throughput comparisons between systems

with 5 depth buffers. The throughput for a 4 router system is larger than

the throughput of the eight and sixteen router system. From this result,

it can be predicted that when the router system becomes larger, the

throughput of the system will reduce. The maximum throughput of these

systems are about 4.1 bit per cycle. Comparing the buffer depth 2 and

the buffer depth 5 systems, the maximum throughput has increased by

0.55 bit per cycle from 3.55 to 4.1 bit per cycle.

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9

LA
TE

N
CY

 (C
YC

LE
S)

DATA SIZE (KB)

LATENCY COMPARISON BETWEEN VARIOUS
ROUTER SYSTEM WITH BUFFER DEPTH 2 AND

DATA SIZES

16 router system 8 router system 4 router system

150

Figure 5-18: Throughput comparison between various router system with
buffer depth 5 and data sizes

The latency between the systems with 5 depth buffer is shown in

Figure 5-19. The 4 router system has the least latency in the comparison.

This is because the size of the 4 router system is smaller compared to

the size of a sixteen router system. From the result, it can also be seen

that when the size of the router doubled, the latency is also doubled.

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

0 1 2 3 4 5 6 7 8 9

TH
RO

U
GH

PU
T

(B
IT

 P
ER

 C
YC

LE
)

DATA SIZE (KB)

THROUGHPUT COMPARISON BETWEEN
VARIOUS ROUTER SYSTEM WITH BUFFER

DEPTH 5 AND DATA SIZES

16 router system 8 router system 4 router system

151

Figure 5-19: Latency comparison between various router system with
buffer depth 5 and data sizes

The throughput comparison for 10 depth buffer for the 4, eight

and sixteen router system is shown in Figure 5-20. From this result, the

maximum throughput for these systems are 4.3 bit per cycle.

0
100
200
300
400
500
600
700

0 1 2 3 4 5 6 7 8 9

LA
TE

N
CY

 (
CY

CL
ES

)

DATA SIZE (KB)

LATENCY COMPARISON BETWEEN VARIOUS
ROUTER SYSTEM WITH BUFFER DEPTH 5 AND

DATA SIZES

16 router system 8 router system 4 router system

152

Figure 5-20: Throughput comparison between various router system with
buffer depth 10 and data sizes

The sixteen router system with buffer depth 10 has the largest

latency compared to 4 and eight router system because the larger the

router system, the more buffers the system has for the corresponding

normal cores.

3

3.2

3.4

3.6

3.8

4

4.2

4.4

0 1 2 3 4 5 6 7 8 9

TH
RO

U
GH

PU
T

(B
IT

 P
ER

 C
YC

LE
)

DATA SIZE (KB)

THROUGHPUT COMPARISON BETWEEN
VARIOUS ROUTER SYSTEM WITH BUFFER

DEPTH 10 AND DATA SIZES

16 router system 8 router system 4 router system

153

Figure 5-21: Latency comparison between various router system with
buffer depth 10 and data sizes

The next subsection will discuss the methods to scale and

reconfigure the platform.

5.4 Verification Environment Scalability and Re-configurability

The platform consists of parameterized modular verification

environments that can be instantiated according to the targeted NoC

architectures and the processing node architectures.

We used the following concepts to construct a scalable and

reconfigurable NoC verification platform: Virtual Sequencer,

Configuration Objects, and Sequence Library.

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7 8 9

LA
TE

N
CY

 (C
YC

LE
S)

DATA SIZE (KB)

LATENCY COMPARISON BETWEEN VARIOUS
ROUTER SYSTEM WITH BUFFER DEPTH 10 AND

DATA SIZES

16 router system 8 router system 4 router system

154

5.4.1 Virtual Sequencer

Each environment in the platform has one or more Sequencers on which

the Sequences can be injected into the DUT. In UVM, there is a start

method to start a Sequence on a particular Sequencer. To be able do so,

we must obtain a handler to that particular Sequencer. The Virtual

Sequencer refers to a Sequencer that has all the handlers to the Sequencer

in the platform. This essentially allows us to control and coordinate all the

stimulus generators.

The Virtual Sequencer setup is illustrated in Figure 5-22. In the figure, the

AHB Seqr 0 acts as the handler corresponds to the AHB ENV 0. Similarly,

the NoC Seqr 0 provides a handler to the NoC ENV 0 environment. After

the platform is constructed in the build phase, we connect the handlers in

the Virtual Sequencer to the respective Sequencers. In UVM, these are

simply assignments of handler variables.

Figure 5-22: Virtual Sequencer with lower level Sequencer handler

155

Since our platform is parameterized, such assignments can be done

automatically because the hierarchical paths of the Sequencer handlers are

well defined by the parameters. Part of the Virtual Sequencer code with

the AHB and SPI handler is shown in Figure 5-23.

Figure 5-23: Part of the Virtual Sequencer code

5.4.2 Configuration Objects

Most of the parameters of our platform are controlled through the

Configuration Objects. As discussed previously, UVM provides the

configuration database class to facilitate such use case. This database can

be used to store virtually any objects.

In our platform, the appropriate system component can be

reconfigured which includes the number of masters and slaves for each

environment. This also includes the slave address mapping for systems

such as AHB and APB. The discussion of the Configuration Objects in

this section is based on the NoC Configuration Object as shown in Figure

5-24. We shall describe each of its parameters and show how to use these

parameters to configure the Environments and its sub-components.

156

The num_of_routers specifies the number of NoC master while

the num_of_slave_routers is used to specify the number of NoC slaves.

These are used in to configure the components in the NoC Environment.

The num_of_normal_core and num_of_special_core define the number

of cores in the platform. As an example of their usage, these parameters

are needed to determine the connections between the Virtual Sequencer

and the Sequencer for the AHB and SPI Environment as discussed in

Figure 5-23 in the previous section.

Figure 5-24: Part of NoC Configuration Object

157

In addition to the parameters described, there are two functions

in the NoC Configuration Objects. These can be used to add slaves in

the NoC Environment using add_slave() function or to add masters

through the add_master() function. The masters and slaves have

previously been discussed in Chapter 4 Section 4.1.

The detailed implementation of the add_master() function for

the NoC Configuration Object is shown in Figure 5-25. Each time when

this function is called, a new master configuration object is created and

stored in the master_configs queue.

Figure 5-25: Add Master Function

158

Similarly, Figure 5-26 shows the implementation of the slave

parameter. Each time when this function is called, a new slave

configuration object is created and stored in the slave_configs queue.

Figure 5-26: Add Slave Function

 To use this NoC Configuration Object, it is registered to the Factory in

the platform. The usage of the Factory has been described previously in Chapter

3 Section 3.1.5. This Configuration Object is passed into the NoC Environment

and its subcomponents. Figure 5-27 Figure 5-27 shows part of the code that

perform this task.

Figure 5-27: Setting NoC Configuration Object

159

 In each of the components, Figure 5-28 shows the code used in

the build phase to retrieve the Configuration Objects. This Configuration Object

can then be used to configure its sub components.

Figure 5-28: Code to retrieve the Configuration Objects

Figure 5-29 shows part of the NoC Environment code. The

num_of_routers determines the number of NoC master Agents that to

create. The information stored in the each of the master_configs is

retrieved to configure the master Agents. These Agents will create their

Driver, Sequencer and Monitor accordingly.

Figure 5-29: Part of NoC Environment Code

160

Reusing the same environment, multiple instances of the Agents

can be invoked through the add_slave() and add_master() function. This

allows the verification environment to be scaled horizontally.

Figure 5-30 shows how we configure the platform to model a

four routers NoC system. There are four cores in the system, a special

core and three normal cores, which are specified through the

num_of_normal_core and num_of_special_core parameters.

Figure 5-30: NoC configuration for four router system

Figure 5-31 shows the NoC Configuration Objects to configure

the existing platform for an eight routers system. The parameters inside

the NoC Configuration Object are changed accordingly. For this system,

it consists of a special core and seven normal cores.

161

Figure 5-31: NoC Configuration for eight routers system

Similarly, the configuration of the sixteen router system is as

shown in Figure 5-32 which consist of a special core and fifteen normal

cores.

Figure 5-32: NoC Configuration for 16 routers system

Figure 5-33 illustrates graphically the constructed platform

based on the parameters in the NoC Configuration Object. Through the

setting of these parameters, the corresponding checkers are also

instantiated. Each AHB2NoC bridge link will have a pair of AHB2NoC

Send and Receive Scoreboard to monitor the transfer. Another NoC

Scoreboard to verify the transfers within the router is setup. The

162

scoreboards are identified with two indices. The first index would denote

the node number of the router. The second index would indicate the link

to each of the nodes. For example, NoC Sbrd [1][0] would monitor the

transfer from router 1 to router 0 and NoC Sbrd [0][1] would monitor

the transfer from router 0 to router 1.

Figure 5-33: NoC Platform

For different network router architecture with the same number of

routers, the new router can be used to replace the old router. In the case

where the number of routers is different, the top design module definition

has to be changed in accordance to the router’s input output ports.

163

5.4.3 Sequence Library

The scalability of the environment can also be scaled vertically. Using

the basic Sequences that have been discussed in the previous sections,

other Sequences can be extended from these Sequences. Figure 5-34

shows part of the ahb2noc_special_base_seq. The Sequence is extended

from one of the AHB Master Basic Sequence. This is used to generate

and read transfers for the AHB2NoC Bridge.

Figure 5-34: part of the ahb2noc_special_base_seq Sequence

An ahb_aes_base_seq as shown in Figure 5-35 is also extended

from the same basic_multiple_seq. This Sequence generates the plaintext

and key for the AES encryption. There is also a task to read the cipher text

from the AES after the encryption is completed. This shows that the basic

Sequences can be reused to develop the other Sequences.

164

Figure 5-35: part of ahb_aes_base_seq Sequence

Our platform can be easily extended to include a new system

component. We briefly describe the required steps in the following

paragraphs.

Firstly, the corresponding environment of that component has to

be developed. This environment will be instantiated in the platform using

a parameterized variable that is configurable through the Configuration

Objects.

Next, a Sequencer handler for this new environment has to be

added to the existing Virtual Sequencer. This is because a Sequence can

only be started on the Sequencer with the same type.

The new test Sequences corresponding to the new architecture

have to be created as well because of the new test scenarios for the new

NoC architecture. These test cases can be derived from the Sequences

library.

165

In addition to the above, a new virtual interface has to be defined

when developing the new component. This virtual interface is created at

the top level module of the platform to bind the new system component

and the platform.

5.5 Summary

This Chapter starts off by giving an overview of our platform and

verification plans for our UTAR NoC based on the design specifications.

Only a few main modules are used as illustrations in order to keep the

clarity and conciseness of this dissertation. The discussion is followed by

the various Sequences that we have developed for various modular

verification environments. The design exploration that we have

performed on a four-, eight-, and sixteen-router system illustrates the re-

configurability and scalability of the verification environment also has

been discussed. We have also demonstrated by our experimentation with

various buffer sizes, data sizes and router numbers that this platform can

be readily used for architectural exploration. The final section of this

chapter discussed the scalability and re-configurability approach for the

module and system level verification environment. The next Chapter

shall conclude this dissertation.

166

 CHAPTER 6

 CONCLUSION

This chapter summarizes the dissertation. The development of the various

verification components that is used to assist the verification of our UTAR NoC

will be highlighted. This summary will also include the summary of the methods

that is involved to make the verification environment scalable and

reconfigurable. The discussion ends with the stress on the importance of design

verification and the reasons reusability, scalability and configurability are very

desirable attributes.

6.1 Conclusion

The Universal Verification Components (UVC) are component

models which are developed based on the Universal Verification

Methodology (UVM). The various UVCs that we have developed models

the protocol layers such as AMBA High-Speed Bus (AHB), AMBA

Advanced Peripheral Bus (APB), GPIO, parallel port, CONNECT

network, and SPI.

These verification components are used to generate the stimulus

and monitor the bus connected to the Design Under Test (DUT). From

these component level environments, we have reused them to design our

sub-system level verification environment. These component and sub-

167

system level environments are used to form our UTAR NoC system

level verification environment. With minimal effort, these similar

environments can be setup quickly for verification of different

architectural requirements and scale according to the network size.

The detailed architecture of the verification environment from a

component to system level has been discussed in Chapter 4 Verification

Platform Architecture. The component verification platform has been

used to verify the modules that we have designed, namely, the

AHB2NoC Bridge, AES encryption model, GPIO, parallel port, AHB

master and slave models and SPI. These components have been used to

assist in the verification process of the UTAR NoC. The architecture of

our UTAR NoC system level verification environment is derived from

the modular and subsystem level UVCs environments are also explained

in that chapter.

These environments can easily be scaled horizontally. This can

be done by using the Configuration Objects to configure the verification

environment to expand according to the system needs. Multiple

components or Agents can be instantiated within a verification

environment based on these parameters. The parameters have also been

used in our system level verification environment to instantiate multiple

modular environments and checkers based on the number of processors

in the system. These will allow each of the environments to monitor the

responses from the processors and its peripherals.

168

Another aspect of scalability has been demonstrated through the

use of the basic Sequences that basically models the protocol layer.

These Sequences is used in higher level Sequences. By using this

approach, the environment can be said to be able to scale vertically as

well. The lowest level is the basic Sequences that act as the interface to

access the Driver and Monitor. In the higher level Sequences, more

focus can be put into designing various test cases or scenarios to exercise

the system under test by utilizing the lower level Sequences.

The result of our verification environment is discussed in

Chapter 5. In the results and discussion section, the discussion starts off

with the various basic Sequences that we have designed as stimulus for

our system. This includes a Sequence that can be used to generate the

traffic and measures the performance of a four-, eight- and sixteen-

router system for architectural performance exploration purposes.

The first exploration is done to investigate the effect of various

buffer sizes of the AHB2NoC Bridge on the systems. A protocol where

the special core sends a block of data with data block size the same as

the AHB2NoC bridge buffer depth is used. From the results, the system

would be the least efficient when the amount of data is lesser than the

total buffer size of the AHB2NoC Bridge. By increasing the buffer size,

the throughput of the system can be increased. The Ahb2NoC Bridge

with buffer depth 5 gives the most efficient throughput. Increasing the

169

buffer depth further will only increase the throughput by 0.1 bits per

cycle. The maximum throughput of a 2 buffer depth is 3.55 bits per cycle

compared to a 5 buffer depth which is 4.1 bits per cycle. For the 10 deep

buffer system, the maximum throughput is 4.3 bits per cycle.

These performance measurements are further extended to an

eight and sixteen router system to demonstrate the re-configurability and

scalability of the architecture and verification environment that we have

proposed. It also serves as a performance comparison among the four,

eight and sixteen router system. It is observed that as the number of

nodes in the NoC increases, the latency of the system also increases.

This factor has to be taken into account when designing the architecture

so that the overall system performance is not significantly affected.

In conclusion, this dissertation has demonstrate the concepts

involved in the development of a reusable, scalable and reconfigurable

multi-processor Network-On-Chip virtual prototyping platform based

on the Universal Verification Methodology (UVM). Object Oriented

Programming (OOP) and UVM concepts along with System Verilog has

provided an essential verification methodology and language for the

current ASIC design challenges.

170

Any manufacturing defects and crystalline imperfections in the

silicon wafers could cause faults at random locations, and therefore has

to be discovered. Tests are developed to discover these faults. Achieving

full functional, line, code and toggle coverage could provide a high

degree of these fault coverage. Verification itself could therefore easily

take up to 80% of the all the available resources in the ASIC design.

Thus, a reusable, scalable and reconfigurable verification component

and platform would certainly lessen the effort of the verification process

and to ease design exploration.

171

REFERENCES

Anderson, T. L., 2010. UVM: Extending Standardization From Language To
Methodology, s.l.: Chip Design Magazine.

ARM , 2003. AMBA™ 3 APB Protocol v1.0 Specification, s.l.: s.n.

ARM, 2006. AMBA® 3 AHB-Lite Protocol v1.0 Specification, s.l.: ARM
Limited.

Ashwin P. Patel,Vyom M. Bhankhariya, and Jignesh S. Prajapati, 2013. An
Overview Of Transaction-Level Modelling (TLM) In Universal
Verification Methodology (UVM). Journal Of Information, Knowledge
And Research In Electronics And Communication Engineering, 2(2), pp.
542-546.

Aynsley, J., 2012. Easier SystemVerilog with UVM: Taming the Beast. San Jose,
DVCon 2012.

Ballance, M., 2009. Evolving the Coverage-Driven Verification Flow, s.l.:
Mentor Graphics.

Bhaumik Vaidya, and Jaydeep Bhatt, 2013. Design of a robust verification

environment for AMBA AHB System in Universal Verification
Methodology. International Journal of Research in Computer
Engineering and Electronics, pp. 1-6.

Black, D. C., 2013. A Tale of Two Languages: SystemVerilog & SystemC. San
Jose, DVCon 2013.

Bromley, J., 2013. If SystemVerilog is so good, why do we need the UVM?
Sharing responsibilities between libraries and the core language. Paris,
Specification & Design Languages (FDL), 2013 Forum on.

Brown, S., 2009. TLM-Driven Design And Verification – Time For A
Methodology Shift, s.l.: Cadence Design Systems INC.

Chris Spear, and Greg Tumbush, 2012. SystemVerilog for Verification: A Guide
to Learning the Testbench Language Features. 3rd edition ed.
s.l.:Springer.

Cummings, C. E., 2012. The OVM/UVM Factory & Factory Overrides How
They Work - Why They Are Important. s.l., Sunburst Design, Inc., pp. 1-
48.

David C. Black, Jack Donovan, Bill Bunton, and Anna Keist, 2009. Systemc
from the Ground Up. 2nd ed. s.l.:Springer.

172

Donatella Sciuto, Grant Martin, Wolfgang Rosenstiel, Stuart Swan, Frank
Ghenassia, Peter Flake, and Johny Srouji, 2004. SystemC and
SystemVerilog: Where do they fit? Where are they going?. Washington,
IEEE Computer Society.

Foster, H., 2013. Wilson Research Group 2012 Functional Verification Study,
s.l.: Mentor Graphics Corp.

Ghenassia, F., 2005. Transaction-Level Modeling With SystemC: TLM Concepts
and Applications for Embedded Systems. 1st ed. s.l.:Springer.

Janick Bergeron, Eduard Cerny, Alan Hunter & Andy Nightingale, 2005.
Verification Methodology Manual for SystemVerilog. 1st ed. s.l.:Springer.

Janick Bergeron, Fabian Delguste, Steve Knoeck, Steve McMaster, Aron Pratt,
and Amit Sharma, 2013. Beyond UVM: Creating Truly Reusable Protocol
Layering. s.l., DVCON 2013 .

Jie Chen,Cheng Li, and Paul Gillard, 2011. Network-on-Chip (NoC) Topologies
and Performance: A Review. s.l., ocs2011.

Krolikoski, S., 2011. Evolution of EDA standards worldwide. January/Febuary,
pp. 72-75.

L.Swarna Jyothi,Harish R, and Dr.A.S.Manjunath, 2008. Reusable Verification
Environment for verification of Ethernet packet. IJCSNS International
Journal of Computer Science and Network Security, 8(11), pp. 226-235.

Lu Kong, Wu-Chen Wu, Yong He, Ming He, and Zhong-Hua Zhou, 2009.
Design of SoC verification platform based on VMM methodology. Beijing,
IEEE.

Martin. G, and Smith. G, 2009. High-Level Synthesis: Past, Present, and Future.
Design & Test of Computers, IEEE, July-August, pp. 18-25.

Mentor Graphics Corporation and Cadence Design Systems, Inc, 2007. Open
Verification Methodology (OVM), s.l.: Mentor Graphics Corporation and
Cadence Design Systems. Inc.

Pandya, K., 2013. Network Structure or Topology. International Journal of
Advance Research in Computer Science and Management Studies, 1(2),
pp. 22-27.

Rich Edelman, and Raghu Ardeishar, 2013. Sequence, Sequence on the Wall –
Who’s the Fairest of Them All?. San Jose, DVCon 2013.

Ruggiero, C., 2009. Verification Methodology Matters. s.l.:Chip Design
Magazine.

Salemi, R., 2013. Uvm primer. 1st edition ed. s.l.:Boston Light Press.

173

Shvartz, A., 2003. Maximizing Verification Productivity: eVC Reuse
Methodology (eRM). s.l.:Design & Reuse.

Sridevi Chitti, and Dr. G.Krishnamurthy, 2013. Reusable Verification
Environment for Verification of Ethernet. International Journal of
Emerging Trends in Electrical and Electronics, 5(2), pp. 22-25.

Verisity, 2004. e Reuse Methodology (eRM) Developer Manual, s.l.: Verisity.

Viney Malik,Rajesh Mehra, and Surender Ahlawat, 2013. Advanced Testbench
Design using Reusable Verification Component and OVM. International
Journal of Computer Applications, 73(15), pp. 36-40.

Young-Nam Yun, Jae-Beom Kim, Nam-Do Kim, and Byeong Min, 2011.
Beyond UVM for Practical SoC Verification. s.l., IEEE, pp. 158-162.

174

APPENDIX A

 Additional Verification Plan

A.0 AHB Memory-Built-In-Self-Test (MBIST)

In our system, we have implemented the MBIST module. The

module injects various test patterns into the SRAM upon entering

MBIST test mode. The purpose is to ensure that the SRAM is in good

condition to operate. A test case to test the MBIST module to ensure that

the MBIST module test the SRAM module.

Table 2-1: AHB MBIST Verification Plan

Tests Test Descriptions Verification

Criteria
ahb_mbist_test Set the chip into test mode. Replace

the SRAM with SRAM model that
can generate normal and faulty
SRAM behaviour. Send start signal
to mbist to send checkerboard,
march-c pattern to SRAM including
various faults test pattern, stuck-at-
fault(SAF), transition fault(TF),
Inversion Coupling Fault(CFin),
Idempotent Coupling Fault(Cfid),
Dynamic Coupling Fault(Cfdyn),
AND and OR Bridging Fault(BF),
State Coupling Fault(SCF), Address
Decoding Fault A(AF_A), Address
Decoding Fault b (AF_B), Address
Decoding Fault C (AF_C), Address
Decoding Fault D (AF_D). If the
SRAM model in faulty mode, the test
should detect fail flag set.

Ensure that the
mbist can send
various test
patterns to verify
the SRAM
module and
compare the
results.

175

A.1 AHB SRAM

The ahb_sram_test generates the various types of the AHB

transfer to write to and read from the SRAM. This ensures the SRAM can

handle the AHB various AHB transfers correctly. In the event that there

are invalid transfers, the SRAM should also be able to handle that

situation. ahb_sram_invalid_test has been setup for this purpose. Table

2-2 shows the list of features and the criteria to verify the SRAM.

Table 2-2: AHB SRAM Verification Plan

Tests Test Descriptions Verification

Criteria
ahb_sram_test Generate multiple types of AHB

transactions to the SRAM controller.
Targeted address are randomized within
the SRAM address map range. The
order of transaction created:

Expects the
correct transfer is
written to SRAM
and the correct
content is read
from the SRAM

AHB SINGLE WRITE transaction(s),
the number of SINGLE transaction
created depends on the num_single
variable value
AHB SINGLE READ transaction(s)
AHB SINGLE WRITE transaction(s)
with an IDLE transaction inserted after
every WRITE transaction(s)
AHB SINGLE READ transaction(s)
with an IDLE transaction inserted after
every READ transaction(s)
AHB SINGLE WRITE transaction(s)
with a SINGLE READ transaction
inserted after every WRITE
transaction(s)
AHB INCR WRITE transaction(s), the
number of transaction created depends
on the num_incr variable value
AHB INCR READ transaction(s)
AHB INCR WRITE transaction(s) with
BUSY transactions generated randomly
AHB INCR READ transaction(s) with
BUSY transactions generated randomly

176

Table 2-3: AHB SRAM Verification Plan Continued

Tests Test Descriptions Verification

Criteria
 AHB INCRn WRITE transactions, the

type of INCRn depends on the
incr_n_burst variable value

 AHB INCRn READ transactions
 AHB INCRn WRITE transactions with

BUSY transactions generated randomly

 AHB INCRn READ transactions with
BUSY transactions generated randomly

 AHB WRAPn WRITE transactions, the
type of WRAPn depends on the
wrap_n_burst variable value

 AHB WRAPn READ transactions
 AHB WRAPn WRITE transactions with

BUSY transactions generated randomly

 AHB WRAPn READ transactions with
BUSY transactions generated randomly

ahb_sram_rand
om_test

Generate random AHB transactions to
the SRAM controller. Targeted address
are randomized within the SRAM
address map range.

Expects the
SRAM is able to
be accessed with
various random
transactions

ahb_sram_alter
nate_test

Alternately drive transactions to SRAM
and APB interface to toggle HREADY
pin of SRAM controller.

Expects the
SRAM to be able
to handle when
the SRAM ready
signal is toggled

ahb_sram_inva
lid_test

Drive double word and unalined
transaction to SRAM.

Expects the
SRAM to be able
to handle invalid
transfer

ahb_sram_stall
_write_to_idle
_test

Drive write transaction to SRAM and
immediately after that continuously
drive read transaction to put the SRAM
into READ_STALL_WRITE state.
After a few clock cycles, drive nReset
low for 2 cycles. It will force the SRAM
state from READ_STALL_WRITE to
IDLE state.

177

A.2 AHB GPIO

The GPIO is another mean of input for our system. The tests are

generated to configure the GPIO as input. The correctness of the transfer

is checked with the transfer received at the AHB. The GPIO is also set to

output and the intended AHB transfer is sent to the GPIO. The GPIO is

checked against the AHB transfer. Once the GPIO is verified to be able

to send and receive transfer correctly, randomise test cases are done to

randomly set each pin as input or output. The summary of test cases is

shown in Table 2-4.

Table 2-4: AHB GPIO Verification Plan

Tests Test Descriptions Verification

Criteria
ahb_gpio_in_test Configure GPIO as input

and compare the result of
the transfer

Expects the GPIO
to receive correct
transfer

Ahb_gpio_out_test

Configure GPIO as output
and compare the result of
the transfer

Expects the GPIO
to output the
correct transfer

ahb_gpio_random_test Randomly configure GPIO
as input or output

Expects correct
random read write
transfer from the
GPIO

178

A.3 AHB2APB Bridge

The AHB2APB Bridge allows the AHB transfer to be cast to APB

transfer. During the 1st cycle of the transfer conversion, a minimum of 3

cycles are required for the complete APB transfer to be generated. The

following APB transfer would require minimum 2 cycles.

The ahb_apb_bridge_test is used to check correctness of the

converted transfer from AHB to APB and APB to AHB. It is also

necessary to verify the correct slave select signals are generated and the

transfer from the corresponding slaves are passed back to the AHB. This

is done using ahb_apb_bridge_address_map_test. The

ahb_apb_bridge_out_of_slave_test determines the response from the

bridge when a non-existing slave is selected. This is to check the design

so that it should produce a deterministic response for the system to be

debugged. Table 2-5 shows the test cases for the AHB APB Bridge.

Table 2-5: AHB APB Bridge Verification Plan

Tests Test Descriptions Verification

Criteria
ahb_apb_bridge_test Read and write to APB

slave 1 and 2 and compare
transfer results

Expects the
correct transfer
from AHB to
APB and APB to
AHB

ahb_apb_bridge_address_m
ap_test

Check slaves address
mapping

Expects the corrct
APB slave is
selected and the
correct content
from the selected
slave

ahb_apb_bridge_out_of_sla
ve_test

Set ahb master to access
beyond apb slaves
addresses

Expects no
transfer from the
bridge

179

A.4 AHB Parallel Port

The AHB parallel port module is used as the primary input for

the NoC System AES encryption application. There are transmit and

receive buffers for transmitting and receiving. The enable transmit

interrupt can be set. When the parallel port has finished transmitting the

transfer, the transmit interrupt is triggered. Similarly, when the parallel

port finished receiving a transfer, the receive interrupt is triggered.

The ahb_pp_32_test is used to verify the parallel port module to

be able to transmit and receive parallel port transfer correctly. The test

also includes cases where the Cortex-M0 writes to the parallel port

module until the transmit buffer is full. The test monitors whether the

trasmit buffer full flag is set when it is full. To further ensure that the

transfers in the buffers are not overwritten, the test sends transfers after

the buffers are full. The overall AHB Parallel Port tests are shown in

Table 2-6.

180

Table 2-6: AHB Parallel Port Verification Plan

Tests Test Descriptions Verification

Criteria
ahb_pp_32_test Transmit 32 bit ahb transfer to

parallel port and compare the data.
Expects the
parallel port to
receive and send
transfer correctly.

Receive 32 bit ahb transfer from
parallel port and compare the data.
Transmit 32 bit ahb transfer to
parallel port and receive 32 bit
transfer from parallel port and
compare the data.
Transmit 32 bit ahb transfer to
parallel port until buffer size and
check transmit bf flag and compare
the data.
Receive 32 bit ahb transfer until
buffer size and check receive bf flag
and compare the data.
Transmit 32 bit ahb transfer to
parallel port and set transmit
interrupt and compare the data.
Receive 32 bit ahb transfer and set
receive interrupt and compare the
data.
Receive 32 bit ahb transfer until
buffer size and set receive interrupt
and compare the data.
Receive 32 bit ahb transfer until
receive buffer overrun
Transmit 32 bit ahb transfer until
trasmit buffer overrun

ahb_pp_32_rando
m_test

Randomly transmit and receive 32 bit
ahb transfer

ahb_pp_32_send_
recv_test

Transmit and receive 32 bit transfer
at the same time

ahb_pp_32_turn_
around_test

Transmit and receive at the fastest
turn around from input to output and
from output to input

181

A.5 AHB Advanced Encryption Standard (AES)

The main application for the UTAR NoC is to perform AES

encryption. The AES encryption core is attached to each of the normal

core unit. This AES core can perform 128 bit encryption. The encryption

starts when an AHB transfer is done to the last plaintext, AES_PLAIN3.

When the encryption is done, the AES_CF flag is set. Interrupt can also

be enabled. Upon receiving the cipher text, the interrupt can be triggered.

A buffer is implemented to store the new plain text during continuous

transfer.

During the test, a set of 4 32bit plain text is sent to the AES module

to be encrypted. The output cipher text is gathered using the interrupt and

polling method. The result is compared using a reference model of the

AES which is implemented in the AES scoreboard. Using the

ahb_aes1_change_text_key_encryption_test, the plain text and key is

changed when the AES is performing the encryption. This is to ensure

that the the new plain text and key does not corrupt the encryption data.

Since writing to 3rd set of plain text, AES_PLAIN3 can start the

encryption, a test is setup to verify that the AES_PLAIN1 and

AES_PLAIN2 is set to 0 or the previous set value. The

ahb_aes1_overlap_test is used to verify that the newest plain text is stored

in the buffer for encryption. Table 2-7 sumarizes the tests for the AES

module.

182

Table 2-7: AHB AES Verification Plan

Tests Test Descriptions Verification

Criteria
ahb_aes1_interrupt_test 4 set of plain text and key

is sent to the AES module
to be encrypted and result
is compared and check for
12 cycles for the aes
encryption to finished

Produce the right
cipher text based
on the plain text
and key given

ahb_aes1_polling_test Enable interrupt. 4 set of
plain text and key is sent to
the AES module to be
encrypted and result is
compared

Produce the right
cipher text based
on the plain text
and key given

ahb_aes1_random_interrupt
_test

Randomize plain text and
key is sent to the AES
module to be encrypted
and once plain text is
encrypted, interrupt is set
and result is compared

Produce the right
cipher text based
on the plain text
and key given

ahb_aes1_random_polling_
test

Randomize plain text and
key is sent to the AES
module to be encrypted
and wait until aes
encrypted flag is set and
result is compared

Produce the right
cipher text based
on the plain text
and key given

ahb_aes1_overlap_test Overlap 2nd key and plain. The encryption
should be done
using the new key
and plain text

ahb_aes1_change_text_key
_encryption_test

Change the text and key
during encryption.

The encrypted
cipher is expected
to use the
previous key
instead of the new
key

ahb_aes1_less_plain_key_t
est

Provide plain3 and key3 to
start encryption without
text 0,1,2 and key 0,1,2.

Plain and key
0,1,2 is expected
to set to default 0
or previous set
value.

183

A.6 AHB-Lite Bus

AHB-Lite Bus is used to connect the AHB components to the

Cortex-M0 core to form an AHB system. Test cases has been develop to

ensure that the AHB-Lite Bus decodes the correct slave select signals and

the corresponding slave transfer is passed back correctly. Various types

of AHB transfers are also used to verify the decoding process. The various

AHB Lite Bus tests are shown in Table 2-8.

Table 2-8: AHB-Lite Bus Verification Plan

Tests Test Descriptions Verification

Criteria
ahb_lite_bus
_sw_address
_map_and_tr
ansfer_test

AHB Master access all 7 slaves
connected to the ahb lite bus including
default slave and check for the hsel
signals

Expects the AHB
sends the right
slave select
signals and reads
the slave data
correctly.

AHB Master reads hrdata, and hready
from the slaves and compare with the
master
Enable switch mode to perform address
remap to switch between boot-load and
normal mode

ahb_lite_bus
_sw_multi_tr
ansfer_test

AHB Master sends multiple type transfer
to all the 7 slaves: single write, single
read, single unpipelined write , single
unpipelined read, incr read, incr write,
incr write with busy, incr read with busy,
incr_n write burst, incr_n read burst,
incr_n write burst with busy, incr_n read
burst with busy, burst_n read burst,
burst_n write burst, burst_n write burst
with busy, and burst_n read burst with
busy

Expects the AHB-
Lite bus to be
able to handle
various read and
write transfers

ahb_lite_bus
_sw_random
_multi_transf
er_test

AHB Master randomly send multiple type
transfer to all the 7 slaves: single nonseq
unpipelined, single nonseq, single idle,
incr, incr_n, and wrap_n transfer

Expects the AHB-
Lite bus to handle
random read and
write transfers
correctly

184

	cover page
	ZN Compiled-Final-signed
	DEDICATION
	ABSTRACT
	ACKNOWLEDGEMENTS
	APPROVAL SHEET
	1.
	DECLARATION
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF Figures
	LIST OF ABBREVIATIONS
	1. INTRODUCTION
	1.1 Background and Motivations
	1.1.1 Research Objectives and Approach
	1.1.2 Dissertation Organization

	2. LITERATURE REVIEW
	2
	2.1 ESL Design levels
	2.1.1 Evolution of the ESL design flow
	2.1.2 TLM Overview

	2.2 Verification Languages
	2.2.1 Early Verification Languages
	2.2.2 System Verilog Language
	2.2.3 SystemC Language

	2.3 Verification Methodologies
	2.3.1 Early Verification Methodologies
	2.3.2 Open Verification Methodology (OVM)
	2.3.3 Universal Verification Methodology (UVM)

	2.4 NoC Architecture
	2.4.1 Overview
	2.4.2 ARM Cortex-M0 based PE
	2.4.3 AHB-Lite Bus based Multicore System
	2.4.4 Network-based Multicore System
	2.4.4.1 Network Topologies
	2.4.4.2 The UTAR NOC

	2.5 Summary

	3. ASIC DESIGN AND VERIFICATION METHODOLOGIES
	3
	3.1 ASIC Design Methodology
	3.1.1 Front End Design
	3.1.1.1 Specifications
	3.1.1.2 Electronic System Level Designs
	3.1.1.3 Register Transfer Level (RTL) Design
	3.1.1.4 Verification
	3.1.1.5 Design For Test (DFT)
	3.1.1.6 Synthesis
	3.1.1.7 Static Timing Analysis (STA)

	3.1.2 Back End / Physical Design
	3.1.2.1 Floorplan
	3.1.2.2 Power Network Synthesis
	3.1.2.3 Clock and Buffer Tree Synthesis
	3.1.2.4 Place and Route
	3.1.2.5 Chip Finishing
	3.1.2.6 Post layout verification
	3.1.2.7 Tape out

	3.2 Universal Verification Methodology (UVM)
	3.2.1 Transaction Level Modelling (TLM) Concepts
	3.2.1.1 TLM Communication
	3.2.1.2 Analysis Communications

	3.2.2 Object Oriented Verification Environment
	3.2.3 Generic UVM Verification Environment
	3.2.4 Scenario Generation
	3.2.5 Factory concept in UVM
	3.2.6 Configuration Objects
	3.2.7 UVM Simulation Phases

	3.3 Summary

	4. VERIFICATION PLATFORM ARCHITECTURE
	4
	4.1 Overview
	4.2 Component level Testbench
	4.2.1 NoC Environment
	4.2.2 AHB Environment
	4.2.3 APB Environment
	4.2.4 SPI Environment
	4.2.5 Parallel port Environment
	4.2.6 GPIO Environment

	4.3 Subsystem level Testbench
	4.3.1 AHB2NoC Environment
	4.3.2 AHB Parallel Port Environment
	4.3.3 AHB GPIO Environment
	4.3.4 AHB APB Subsystem Environment
	4.3.5 APB SPI Environment

	4.4 System level Testbench
	4.4.1 NoC System Level Environment

	4.5 Summary

	5. RESULTS AND DISCUSSIONS
	5
	5.1 Verification Plans
	5.1.1 AHB2NOC Bridge
	5.1.2 NOC Router
	5.1.2.1 Ring architecture

	5.1.3 APB Subsystem Environment

	5.2 Verification environment stimulus generations
	5.2.1 NoC Sequences
	5.2.2 AHB
	5.2.3 APB
	5.2.4 SPI Sequence
	5.2.5 GPIO Sequence

	5.3 Performance Evaluation
	5.4 Verification Environment Scalability and Re-configurability
	5.4.1 Virtual Sequencer
	5.4.2 Configuration Objects
	5.4.3 Sequence Library

	5.5 Summary

	6. CONCLUSION
	6
	6.1 Conclusion

	2. Additional Verification Plan
	A.0 AHB Memory-Built-In-Self-Test (MBIST)
	A.1 AHB SRAM
	A.2 AHB GPIO
	A.3 AHB2APB Bridge
	A.4 AHB Parallel Port
	A.5 AHB Advanced Encryption Standard (AES)
	A.6 AHB-Lite Bus

