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ABSTRACT 

DESIGN AND APPLICATION OF NETWORK-ON-CHIP VIRTUAL 
PROTOTYPING PLATFORM 

The progressive growth in the complexity of Multiprocessor System-on-

Chip (MPSoC) designs to meet demands on low power, speed, performance as 

well as functional features has increased the level of complexity of component 

and system level modelling for design verification. In this research, a 

reconfigurable and scalable verification environment for Network-on-Chip 

(NoC) systems to allow early verification and validation is proposed. 

Various component level verification environments based on the 

Universal Verification Methodology (UVM), such as the Advanced High-

performance Bus (AHB), the Advanced Peripheral Bus (APB), and the AHB-

to-NoC Bridge, have been developed. Generic Sequences which, can be 

extended to model various peripherals such as memory controller, GPIO, SPI, 

and timer are used within the corresponding environments. To coordinate 

between multiple Sequences, Virtual sequencers are used. Analysis ports are 

used to collect transfers from different hierarchies of the verification 

environment for analysis. These component level environments are used to 

build up the sub-system and system level environment. The system level 

environment will be used to verify the designs from specifications to gate level 

implementation. 
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Configuration Objects are used to provide re-configurability of the verification 

environment in various hierarchical levels, from component to system. 

Generally, this allows the models to be configured based on the specific 

configurations such as mapping the slave models on different memory 

addresses, and defining the number of routers that is used so that  a basic 

verification framework can be generated.  

To demonstrate scalability and re-configurability, verification 

environments have been set up to verify a few NoC architectures. Scoreboards 

and checkers are implemented to verify the correctness of the transactions. 

Functional and code coverage measurements are taken to ensure the design has 

been tested thoroughly. 
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              CHAPTER 1 

INTRODUCTION 

1.1 Background and Motivations 

The semiconductor industry as we know it today is still very 

much on an unrelenting pursuit of Moore’s Law. Moore’s Law predicts 

that device density in digital CMOS integrated circuits doubles 

approximately every two years. This prediction still holds true today to 

a great extent because the law is widely used in the semiconductor 

industry to guide long-term planning and set targets for research and 

development. We, therefore, witness exponential improvement in 

performance as well as the miniaturization of any product that uses 

mainly microelectronic chips. It also opens up the possibilities of higher 

levels of intellectual property (IP) integration, even multiple systems, in 

a single chip increasing significantly the functional capabilities and 

performance within the same die area. 

SoC companies are able to leverage these technology 

advancements to innovate and differentiate their market offerings which 

includes single core to multicore system solutions. These design 

possibilities leads to various improvements such as high speed and 

performance as well as bigger embedded storage within the same chip 

size. Complex systems are now able to be embedded into Multi-

Processor System-On-Chip (MPSoC). 
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However, MPSoC inherit board level interconnect issues 

whereby interconnecting the IPs with conventional busses is not 

possible anymore as the number of cores increases. This is because 

conventional bus structures take up routing resources, making the chip 

not routable and it is not cost effective to increase the chip size. Hence, 

research on the interconnection between the processor cores has also 

been rapidly evolving from the conventional bus interconnect in MPSoC 

to use terrestrial network based concept as interconnect. On-chip 

networks, or Network-On-Chip (NoC), will allow the architecture to be 

scalable and adaptive as each core will be connected to a node in the 

network. A few core, thus connected forms a local network cluster and 

several clusters can be similarly linked to form a global network of 

clusters. 

 

The challenge now is in the verification of such an MPSoC 

design. It is common knowledge in SoC design circles that design 

verification efforts easily take up to 80% of the time and resources in a 

chip design project. Every additional IP core that is integrated into the 

MPSoC multiplies the state-space and the level of complexity of 

component and system level modelling for design verification. An 

MPSoC consists of multiple functional blocks, processors, protocols, 

interfaces and peripherals. In order to obtain a satisfactory functional 

verification coverage, the interactions between the functional block as 

well as the functional block’s operating mode have to be tested and 

exercised thoroughly. Now add to this the chip design imperative to be 
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able to detect every defect that will be present in silicon wafers, the 

enormity of the task becomes gravely apparent. A strict methodology 

and disciplined is called for. The ability to scale and re-use any 

verification components and models created in the effort is highly 

desirable. 

1.1.1 Research Objectives and Approach 

In this research, a scalable, reconfigurable, reusable verification 

platform for the verification of an MPSoC design with on-chip network 

communication is proposed. The followings are the research objectives 

of the research: 

• Acquire ASIC design  skills in such design, especially in “First-Time-

Success” ASIC Design Methodology

• Apply industry standard tools for the verification methodology

• Design the scalable verification environment for another concurrent

research on the SoC architecture.

• Demonstrate the scalability of the verification environment for

architecture exploration

Due to the high cost of masks and wafer fabrication in current 

deep submicron technology ASIC design failure is not an option.  A 

first-time-success ASIC Design Methodology is strictly adhered to in 

designing our MPSoC and the verification platform so that the design 
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process is systematic, deliberate and schedules manageable. In terms of 

verification, the process also consumes a lot of resources and 

computational power in designing and developing the test scenarios. 

Therefore, an industrial standard methodology known as the Universal 

Verification Methodology (UVM) is adopted in designing the 

verification platform. In addition, the platform has to be reusable, 

reconfigurable and scalable so that it can be used not only in another 

concurrent MPSoC design project with on-chip network interconnects 

but also for other future projects. 

 

Functional design verification starts with directed test cases that 

model numerous scenarios to exercise the functionality of the design. 

All corner cases must be carefully and exhaustively considered. The 

increasing number of cores in the multicore system design further 

complicates matters. These cores working independently running its 

own firmware add on to the existing scenario modelling complexity. 

Functional coverage is used as a mean of measurement to track the 

functional verification progress. 

 

As the crystalline nature and the manufacturing process of 

silicon wafers are bound to have defects, complete fault coverage is 

essential. Each node of the system is injected with stuck-at-1 and stuck-

at-0 fault, the fault should be able to be observed at the output of the 

system during each simulation. If the fault cannot be observed, new test 

patterns will be generated or changes to the design is made. In a complex 
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design with millions of gates, these fault simulations are extremely time 

consuming and difficult. Code coverage is the best effort alternatives for 

this situation. Code coverage reflects how thoroughly the Hardware 

Description Language (HDL) code has been exercised. Code coverage 

tools usually provide line coverage, arc coverage for state machines, 

expression coverage, event coverage, and toggle coverage. Toggle 

coverage gives an approximation of the fault coverage and the quality 

of the test patterns. Coverage closure defines the measurement of the 

quality of the verification suite in generating stimulus to exercise the 

Design Under Test (DUT). 

 

Constrained Random Verification is used to speed up the 

coverage closure process. Using a constrained random approach, 

stimulus within the constraints are autonomously generated. Describing 

the stimulus this way is more concise, easier to review and more 

productive. By utilizing constraint random solver in formal tool such as 

Synopsys VCS, all possible stimuli within the valid stimulus space that 

has been defined in the constraints, which may not be otherwise 

anticipated are generated to exercise the DUT. This stimulus is critical 

to cover unexpected cases during the verification process.  

 

If the stimulus is randomly produced, there is a high probability 

that the generated stimulus is repeated introducing redundancy of the 

stimulus. This situation will result in difficulties in archiving the 

expected coverage closure. To further understand the problem, consider 
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the “Coupon Collector’s Problem” from probability theory (Ballance, 

2009).  The subject to the problem is the number of trials required to 

collect a full set of coupons from a limitless uniformly distributed 

random collection. In the early stage, the coupon collection slot can be 

easily filled up as the probability of a new coupon selection is high 

compared to the previously selected coupon. As the coupon collection 

reaches its complete collection, the probability of getting the duplicated 

coupon is higher. From this theory, the estimated number of trials 

needed to completely collect the set of coupon is estimated to be O (n*In 

(n)). Consider a collection that consists of 50 coupons, then, about 196 

random trials are needed to archive the full collection. Thus, a uniformly 

distributed random stimulus will result in 10-30% of efficiency. In 

contrast, if the redundant stimulus is removed, then, the coverage closure 

could be archived 5-10 times faster. Rules or constraints are added to the 

stimulus generation to remove the redundancy, allowing constrained 

random stimulus to be generated. 

 

The stimulus generation or tests and verification environment 

that interface directly to the Design Under Test (DUT) is separated. This 

is to ensure that the same verification environment can be reused with 

multiple tests and enable the tools to merge the coverage report from 

these tests. 
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1.1.2 Dissertation Organization 

 
 
The remaining part of the dissertation, Chapter 2 is organized 

with a literature review on designing the scalable and reconfigurable 

virtual prototyping platform, including surveys on current verification 

languages and methodologies adoption trends. An introduction to the 

AMBA bus is then followed by an overview of our chip specifications. 

Chapter 3 discusses the ASIC Design Methodology and the Universal 

Verification Methodology (UVM) which has been adopted. Chapter 4 

introduces to the readers our proposed hierarchically reusable and 

reconfigurable verification platform architecture that we have 

developed. In Chapter 5, the results from our proposed platform will be 

discussed. This chapter will also discuss the various measurements taken 

to ensure the chip is fully verified. Finally, Chapter 6 concludes and 

summarizes the dissertation and the recommendations for further works. 
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             CHAPTER 2 

 

 LITERATURE REVIEW 
 

2.1 ESL Design levels 
 

In the exploratory stage of a VLSI design project, it is essential to 

evaluate the trade-off between simulation accuracy and speed because 

early architectural exploration of the design could lead to better decision 

in designing the SoC and reducing major architectural changes late in the 

project timeline. 

 

 

2.1.1 Evolution of the ESL design flow 
 

The system architects require a fast and accurate simulation of 

an MPSoC that are capable of running real application softwares. The 

current MPSoC design flow has changed, considering the complexities 

involved (Ghenassia, 2005). Modelling at a higher abstraction level, the 

Electronic System Level (ESL) focuses on the functionality rather than 

its implementation allows faster yet reasonably accurate simulation 

results (David et al. , 2009). A technique, Transaction Level Modeling 

(TLM) has evolved to aide this task. 
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2.1.2 TLM Overview 

TLM can be used to model the functional specifications from the 

customers by describing the system exchanging transfers in the form of 

transactions over the channels. TLM interfaces are implemented within 

the channels to encapsulate the communication protocols. 

Communications are established by accessing these interfaces through the 

module ports. This allows the descriptions to be abstract, not encumbered 

by implementation details like clocks, drive strengths, signal delays, data 

flow and so on (Ashwin et al. , 2013). These models are refined as the 

design process evolves. Along with the ESL introduction, there is also a 

need to have languages that are able to support the features. Currently, 

only SystemC and System Verilog supports TLM. 

2.2 Verification Languages 

When the Verilog Hardware Description Language was created in 

the mid-1980s, the typical design was of the order of five to ten thousand 

gates. The size and complexity of hardware designs and verification has 

quickly outgrown the capabilities of Verilog and VHDL because the 

amount of codes required becomes significantly larger which was 

becoming unmanageable and inefficient. 
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2.2.1 Early Verification Languages 
 

Verisity launched the Specman e language which built upon 

object-oriented programming (OOP) to deliver aspect-oriented 

programming (AOP) and soon it became a main verification language. 

AOP approach allows new functionality to be added to the existing code 

in a non-invasive manner. AOP also addresses same feature in various 

sections of the codes concern by allowing the existing structs to be 

extended to add additional functionalities. 

 

Synopsys also introduced its own OpenVera. These commercial 

tools are costly. In some cases, companies resorted to the test benches 

written using C or C++ and would drive the DUT through Programming 

Logic interface (PLI). PLI allows C or C++ functions to be invoked from 

Verilog. 

 

 

2.2.2 System Verilog Language 
 

System Verilog which is a significant enhancement from its 

predecessor, Verilog includes major extension into abstract design, 

testbench, and C based APIs has emerged. This extension is an 

integration of the features from SUPERLOG, VERA, C, C++, and 

VHDL along with OVA and PSL assertions (Chris & Greg , 2012). It 

allows System Verilog to be effectively used as Hardware Description 

and Verification Language (HDVL) because it provides synthesizable 

construct, capabilities of hardware modelling at RTL, system and 
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architectural levels and various verification features such as classes, 

constrained random stimulus and coverage. (Mentor & Cadence, 2007). 

From the functional verification study done by Mentor Graphics under 

Wilson Research Group, it is notable that System Verilog is widely used 

in the industries, especially for designs in the multi-million gate region 

(Foster, 2013). 

 

2.2.3 SystemC Language 
 

While System Verilog can be seen as a bottom up approach, 

extending Verilog with OOP features to allow the representation of the 

system level design in a more abstract manner and access to systems 

described using high-level descriptions such as C or C++, and SystemC.  

The approach builds upon the designers’ familiarity with C or C++ to 

provide the libraries needed for HDL modelling. This gives a top down 

approach in the SoC system design. (Donatella et al. , 2004). It has been 

the researcher’s and EDA vendors’ interest to seamlessly synthesize 

C/C++/SystemC codes to targeting hardware implementation. The 

ability to combine System Verilog and SystemC in a single 

hardware/software co-verification platform let the designers leverage 

the fast simulation speed while providing a platform for concurrent 

hardware/software development. SystemC model can be used as a 

golden reference model to the intended design modelled using HDL 

while System Verilog can be used to develop the automated verification 

platform since the verification features such as constraint random 

stimulus and coverage are more prominent in System Verilog (Black, 
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2013). The language itself can provide useful constructs for the users, 

but, designers need to go beyond just knowing them. They require some 

guidelines or methodology to fully utilize the language (Ruggiero, 

2009). 

 

2.3 Verification Methodologies 
 
 

Despite the richness in language itself that are able to provide the 

needs to implement complex verification environment, best practices 

and shared understanding between engineers within the workplace, and 

code reusability has called for a standard methodology (Bromley, 2013). 

Some EDA Tool vendors provides user guides in terms of more detailed 

code examples while illustrating the basic concept of their own 

methodology. These become a problem when the designer or 

verification engineers’ tries to use tools from different vendors as the 

vendors based their tools upon their own verification methodology 

(Anderson, 2010).  

 
 
2.3.1 Early Verification Methodologies 

One of the early verification methodology is Verification 

Advisor (vAdvisor), a comprehensive collection of best practices and 

advisory for users of the e verification language developed by Verisity 

Design. This leads to the development of the e Reuse Methodology 

(eRM).  
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The methodology provides guidelines on the naming 

conventions to avoid interference between verification components. The 

methodology also introduces the concept of Sequences to enable e 

Verification Component (eVCs) to generate and synchronize complex 

multi transaction scenarios in the verification environment. These 

Sequences are passed to the BFM through the Sequence Driver. 

Functional partitioning of the testbench is another concept introduced in 

the methodology. Bus Functional Model (BFM) is used to drive the 

DUT while the Monitor monitors the DUT. The Monitors, Sequence 

Drivers, BFMs and Configuration Objects are encapsulated within the 

Agent. These Agents with a global Configuration Objects are 

encapsulated within the environment (Shvartz, 2003). Figure 2-1 shows 

the overall architecture of this methodology. 

 

 

Figure 2-1: eRM functional partitioning testbench (Verisity, 2004) 
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This verification methodology was used in developing a reusable 

verification environment for an Ethernet IP core  (Swarna et al. , 2008).  

It was already evident that the concept of reusability of the verification 

component and Sequences had been the focus in verification 

(Krolikoski, 2011). 

 

Shortly thereafter, Synopsys introduced the Reference 

Verification Methodology (RVM) based on its own OpenVera 

verification language. Based upon RVM, Synopsys published the 

Verification Methodology Manual VMM). The methodology provides 

guidelines in creating a layered verification architecture to allow the 

reusability of the components. Interfaces are used to connect the 

verification environment with the DUT. This provides pin name 

abstractions that can be used with different DUTs as well as different 

model implementation of the same DUT (Janick et al. , 2005). A 

verification platform based on this methodology has been developed to 

verify the Yak SoC (Lu et al. , 2009). 

 

Mentor Graphics also introduces their own verification 

methodology, Advanced Verification Methodology (AVM) for 

SystemC and System Verilog. The methodology provides a framework 

for component hierarchy and TLM communication to provide a 

standardized use of the model in SystemC and System Verilog 

verification environment. 
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Cadence then acquired Verisity and transformed its eRM into the 

Universal Reuse Methodology (URM) which supports System Verilog, 

e as well as SystemC. 

 

 

2.3.2 Open Verification Methodology (OVM) 
 

Although the EDA vendors’ methodologies had their success 

with their own customer base which ran on its own simulators, there is 

no attempt at cross vendor support or any form of standards. Cadence 

and Mentor Graphics later took the initiative by published an open 

source verification methodology, Open Verification Methodology 

(OVM). This methodology became widely adopted because of its 

reusability of various verification components at different hierarchical 

levels of the design and different projects, and also reusability of the 

verification components with different tests whereby the stimulus 

generation or tests are separated from the verification environment 

(Malik et al. , 2013). It also supports the development of Multilanguage 

verification environment with System Verilog, SystemC and e, and is 

able to interoperate between different tools from different vendors 

(Mentor & Cadence , 2007). 
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2.3.3 Universal Verification Methodology (UVM) 
 

Accellera Systems Initiative, a standards organization that 

supports a mix of users and EDA vendors decided to create, support and 

advance system-level design, modelling, and verification standards for 

use by worldwide electronic industries. To tackle the verification 

standardization, Accellera uses OVM as baseline and includes key 

features from VMM methodology resulting in the now widely adopted 

Universal Verification Methodology (UVM). 

 

The UVM builds upon SystemC and System Verilog Object-

Oriented Programming (OOP). The UVM components use Transaction 

level communication (TLM) between object communications. UVM is 

based on a hierarchical testbench organization. The dynamically-

generated objects allows the tests and testbench architecture to be 

specified without recompiling and the separation of the testbench 

stimulus or Sequences from the testbench structure. (Salemi, 2013). 

Universal Verification Component (UVCs) is a reusable verification IP 

developed based on the UVM Methodology (Aynsley, 2012)  that also 

includes the interface protocol. This promotes the reusability of the 

modules and allows designers to work together independently. Virtual 

Sequences can be  used to coordinate the Sequences or test cases across 

multiple modules. This further enhances reusability (Yun et al. , 2011). 

A robust AHB verification environment has been derived based on the 

methodology (Bhaumik & Jaydeep, 2013). Other works include a 
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reusable verification environment for ethernet (Sridevi & Dr. 

Krishnamurthy, 2013). 

 

An independent study undertaken by Mentor Graphics under 

Wilson Research Group on the various methodologies that has been 

adopted in 2010 and 2012 revealed that the adoption of the UVM 

methodology since its introduction in 2010 was widespread. It indicated 

that half of the designs which were over 5 Million gates used UVM in 

2012 (Foster, 2013). Figure 2-2 shows the overall evolution of the 

verification methodology.  

 

 
Figure 2-2: Verification Methodology Evolution 
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2.4 NoC Architecture 
 
2.4.1 Overview 
 

We used the ARM Cortex-M0 core in all of our works. This core 

only has the computation logic. The instructions and data needed by the 

core to perform the computations are stored in the external memory. ARM 

implements the AHB-Lite bus to interface the core to the memory. 

Peripheral devices for IO and special purpose processing that complement 

the core are abstracted as registers mapped into the memory space. In this 

regard, the Processing Element (PE) in our work consists of an ARM 

Cortex-M0, memory, and peripheral devices connected with the AHB-

Lite bus. 

 

The AHB-Lite bus is a single-master subset of the full AHB bus 

(ARM, 2006). As such, the core is the bus master to all the devices on the 

bus. In a true multi-core system, a PE should be able to initiate access on 

the interconnect regardless of the other PEs at any time. Clearly, the 

single-master AHB-Lite bus is not directly applicable as the interconnects 

between the PEs. 

 

In the following sections, we first describe the architecture of the 

PE based on the Cortex-M0 and AHB-Lite bus. This is followed by the 

description of a multi-core system that interconnects the PEs using a 

traditional multi-layer matrix technique. This system is used as the 

reference system for benchmarking in a corresponding work in our 

group. As shown in one of our research projects, The Design and 
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Implementation of a Scalable Multi-Processor System-on-Chip Using 

Network Communication for Parallel Coarse-Grain Data Processing, the 

complexity in such system may grow to an unmanageable scale. Our 

research into scalable multi-core architecture has resulted in a ready-for-

tapeout NoC base system. Hence, in the last section, this specific 

architecture, together with several other network topologies investigated 

in our works, are described. The subsequent chapters in this thesis shall 

build on the expositions here to demonstrate the design of a scalable, 

reconfigurable and reusable verification platform used in this work and 

The Design and Implementation of a Scalable Multi-Processor System-

on-Chip Using Network Communication for Parallel Coarse-Grain Data 

Processing. 
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2.4.2 ARM Cortex-M0 based PE 
 

AHB-Lite addresses the requirement for a high performance bus. 

It supports single AHB master and provides high bandwidth operation. 

The features of AHB-Lite for high performance and high clock 

frequency system includes burst transfers, single-clock edge operation, 

non-tristate implementation and wide data bus configurations. AHB-

Lite Bus consist of a decoder and a multiplexer. The decoder is used to 

decode the address (HADDR) from the AHB Master to generate the 

slave select signal (HSEL). The multiplexer uses the HSEL signal to 

channel back the corresponding slave responses (ARM, 2006). These 

are shown in Figure 2-3. We refer the interested readers on the AHB-

Lite bus to AMBA™ 3 APB Protocol v1.0 Specification (ARM, 2006). 

Figure 2-3 shows the single master AHB architecture.  

 

 

Figure 2-3: Single master AHB-Lite Bus System (ARM, 2006) 
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In our system, Cortex-M0 communicates with the flash 

controller, SRAM controller, Parallel port, GPIO, AHB2APB Bridge, 

Advanced Encryption Standard (AES) core and AHB2NOC adapter 

through the AHB-Lite Bus.  Figure 2-4 shows our special core 

implementation. The purpose of this system is to control the I/O 

interfaces such as GPIO and parallel port. In AHB normal core system 

as shown in Figure 2-5, it consist of an AES core. This AHB system 

which will perform the AES cross-grain encryption. In both of the 

system, AHB2APB Bridge is used to add peripherals such as timer and 

SPI. The Advanced Peripheral Bus (APB) is designed for low bandwidth 

control accesses. This system is also used to read from the 32kB FLASH 

through the FLASH controller. 

 

 

Figure 2-4: AHB Special core system 
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Figure 2-5: AHB Normal Core System 
 

 

2.4.3 AHB-Lite Bus based Multicore System 
 

The AHB-Lite is a single master bus interface. In AHB-Lite 

based multicore system, multilayer matrix layers has to be added to 

isolate the AHB masters from each other but allowed the slaves to be 

accessed by the processors. 

 

The operation of the multi-layer matrix is best described with an 

example. In Figure 2.6, slave arbitration is performed by the multilayer 

matrix so that when AHB master 1 is accessing slave 1, AHB master 2 

is not allowed to have access to that slave. Figure 2-6 illustrates AHB 

master 1 and master 2 each have access to slaves 1, 2, and 3. Slaves 4 
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and 5 is a local slave to AHB master 2 so only AHB master 2 have access 

to those slaves. In order for AHB master 1 and AHB master 2 or the 

processor cores to communicate, mailbox is one of the mechanism that 

can be used by having it as a common slave to the processor cores. This 

allows processor core 1 to write to the mailbox. Processor core 2 can 

then retrieve from the mailbox and vice versa. 

 

 
 

Figure 2-6: AHB Multicore system using Multiplayer Matrix 
 
 

In another study in Design and Implementation of a Scalable 

Multi-Processor System-on-Chip Using Network Communication for 

Parallel Coarse-Grain Data Processing, a bus based AHB-Lite multicore 

system has been developed as a comparison for the network based 

multicore system. The implementation of the architecture is as shown in 

Figure 2-7. 
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Figure 2-7: Bus based AHB-Lite multicore system implementation 
 

Once the parallel port contains transfer, interrupt is triggered to 

single core system 3. Single core system 3 then requests the memory 

control through the DMA. The memory control establishes connection 

the Shared memory 0 and Parallel port by configuring the data bus 

interconnect matrix. After the connection is established, the transaction 

from the parallel port is transferred to the shared memory 0 through the 

DMA. When the transaction has finished, the DMA sends request to the 

memory controller to break the parallel port and shared memory 0 

connections. 

 

The single core system 3 sends message to the mailbox through 

the control bus interconnect matrix. Each mailbox buffer corresponds to 

a single core system. Let’s say the message is for single core system 0, 

this message is directly passed to the system. The single core system 0 
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requests the memory controller to form the connection to the shared 

memory 0 to retrieves the content of shared memory 0 for processing. 

The processed transfer is sent back to the shared memory 0. This 

overrides the shared memory 0 content. Once the transfer has finished, 

the single core system 0 requests the memory controller to break the 

connection between the system and shared memory. A message is sent 

to the single core system 3 through the mailbox. To retrieve the 

processed data in shared memory 0, single core system 3 sends request 

to form the connection between the parallel port and the shared memory 

0 though the memory controller. After the transfer has finished, the 

single core system 3 sends another request to the memory controller to 

break the connection. 

 

The system level verification challenge is to develop a system 

level verification environment which is able to monitor the various 

different transfer types and the environment can also be configured with 

different monitors to monitor from various points based on the number 

and type of PE. 
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2.4.4 Network-based Multicore System 
 

The increasing of the PE, controllers and peripherals in the 

Multi-Processor System-on-Chip (MPSoC) can lead to a very large and 

complex multilayer matrix design.  This will make the overall design 

size to be significantly larger which will increase the die area and 

fabrication cost. A network can be used to replace the multilayer matrix. 

 

2.4.4.1 Network Topologies 
 

A network topology consists of links and nodes. A link is the 

communication path between 2 communicating nodes. The nodes are 

the endpoints of any branch in the network and are essentially the PEs. 

These nodes can have different arrangements and are linked to form a 

network. There are different topologies such as ring, star, line, and mesh. 

The challenge is to develop a verification platform that is able to adapt 

based on these different architecture needs. 
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The ring architecture shown in Figure 2-8. The data packet 

travels from one node to the next. When the data packet reaches a node, 

the node checks if the destination address predefined in the packet is the 

same as the node address. If it is the same, the data packet is meant for 

that node. If not, the data packet continues to travel until its designated 

node is reached. This topology can be easily extendable, but the network 

diameter increases linearly with the number of nodes. (Chen et al. , 

2011) 

 

 

 

Figure 2-8: Ring Network Topology 
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In a star topology as illustrated in Figure 2-9, the nodes 

communicate across the network though the centre hub. The data packet 

is broadcast from the central hub to the corresponding nodes. This 

topology also allows additional nodes to be added with ease. But, if the 

central hub failed, the network will fail to operate. 

 

 

 

 

 

 

Figure 2-9: Star Network Topology 
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A network topology is considered mesh when more than 2 nodes 

are connected to each other. Figure 2-10 shows a partially connected 

mesh topology. Part of the nodes are not connected to each other. The 

nodes which are connected to a few other nodes would need a 

significantly large amount of I/O interface. This would reduce the 

scalability of the system. 

 

 

 

 

 

 

Figure 2-10: Partially Connected Mesh Network Topology 
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In a fully connected mesh shown in Figure 2-11, each node is 

connected to all the other available nodes in the network. Large number 

of I/O on the nodes are required as a result (Pandya, 2013). This reduces 

the network congestion by using the available alternative paths to the 

designated node directly. 

 

 

 

 

Figure 2-11: Fully Connected Mesh Network Topology 
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In a bus or line topology in Figure 2-12, all nodes are connected 

to one common link. This topology is commonly used as interconnect in 

SoC as well as MPSoC systems. An example of this interconnect would 

be an AHB-Lite Bus which has been described earlier. This topology 

grows linearly with the system which reduces the scalability of the 

system. 

 

 

 

 

 

 

 

Figure 2-12: Line Network Topology 
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2.4.4.2 The UTAR NOC 
 
 

The network topologies used in our systems are generated by 

utilizing the CONfigurable Network Creation Tool (CONNECT) 

(Michael Papamichael, 2012). The network uses credit-based flow 

control. This means that the network clients need to control the credits 

with the routers that is connected. In order to send the flit, the client 

enables the EN_putFlit and flit is loaded to pufFlit register to send to the 

network. The getCredits is set to the maximum selected Flit Buffer 

Depth during the network generation. Once the flit has been sent out into 

the network, the client decrements the credit’s availability for the 

particular virtual channel to keep track of the remaining credits. The 

Send Flit protocol is shown in Figure 2-13. 

 

 

 

 

Figure 2-13: CONNECT Network Send Flit Protocol 
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For the client to retrieve the flit from the router, the client needs 

to maintain incoming flit buffers for each of the virtual channels to store 

the flit. These buffers are sized accordingly to the selected flit buffer 

depth. When the client de-queues a flit from its incoming flit buffers, a 

credit corresponding to the virtual channel is sent to the router. This is 

to inform the router about the availability of the new space. Figure 2-14 

illustrates the receiving flit protocol. 

 

 

 

 

 

Figure 2-14: CONNECT Network Receive Flit Protocol 
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Figure 2-15 shows the fields of the routers’ flit that defines the 

network protocol of the generated router. 

 

 

Figure 2-15: CONNECT NoC Flit 
 
 

Valid bit indicates the validity of the flit to be sent. It is set to 1 

to indicate that flit is valid. In order to identify the last flit in the transfer, 

Is_tail field is used. The destination field defines the transfer from one 

router to its designated destination. The width of this field depends on 

the number of endpoints in the network. Virtual channels are used to 

transmit and receive the flits are indicated in the virtual channel field 

and the width depends on the number of available virtual channels that 

is defined during the router generation. The data field contains the data 

for the transfer. Various data sizes can also be defined during the router 

generation. In our case, the data size is defined to be 32 bits incoherent 

with the AHB-Lite bus size.  An additional source field is added to the 

CONNECT flit to add the address of the flit sender as illustrated in 

Figure 2-16.  This field is used by the AHB2NOC adapter for buffering 

the data transfer. 

 

 

Figure 2-16: Modified CONNECT NoC Flit 
 

 

valid bit is_tail destination virtual channel source data

1-bit 1-bit 2-bit 1-bit 2-bit 32-bit

valid bit is_tail destination virtual channel source data

1-bit 1-bit 2-bit 1-bit 2-bit 32-bit
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The AHB2NOC adapter that we have developed in Figure 2-17 

allows the AHB system to communicate with the network routers. For 

the processor to retrieve the flit transfer, the adapter converts the flit to 

AHB transfer. This can be done through polling the buffer empty status 

register flag or wait for the interrupt when the flit is received. The 

adapter wraps the AHB transfer into packet flits and send them to the 

network router. 

 

 

Figure 2-17: AHB2NOC Block 
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One node of the router is connected to the special core. This core 

has access to the NoCs’ I/Os through GPIO or parallel port, and SPI to 

allow the system to capture the data and to send the processed data out 

to another system. The other 3 nodes are connected to 3 normal cores. 

These cores will perform the AES encryption. The overall system is 

shown in Figure 2-18. 

 

 

 

 

Figure 2-18: NoC Architecture 
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The AHB Systems are connected to the ring network through the 

AHB2NOC adapter in the normal core and special core modules. 

Similarly, the ring router can be replaced by other network topologies. 

 
 
 
2.5 Summary 
 
 

This chapter has discussed on the ESL Design flow using the TLM 

modelling.  The discussion followed by various verification languages 

that has been developed. It should be notable that System Verilog and 

SystemC has evolved from the traditional verification languages to cope 

with the new verification challenges. System Verilog has gained much 

interest among EDA vendors. This has led to the development of various 

verification methodologies for System Verilog such as AVM, URM, 

OVM and UVM. Among them, UVM is the standard verification 

methodology that has agreed upon among the EDA community. The final 

part of this chapter discussed on the NoC architecture of our UTAR NoC 

which utilizes the CONNECT generator to generate the network router. 

The following chapter will discuss on the methodologies involved in 

ASIC design in particular the UVM methodology that is adhered to 

develop our verification environment. 
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    CHAPTER 3 
 

 ASIC DESIGN AND VERIFICATION METHODOLOGIES 
 
 
3.1 ASIC Design Methodology 
 
 

ASIC Design is a very costly process, especially fabricating wafers in 

submicron technology. A set of the photolithographic masks is extremely 

expensive and the lead-time for the fabrication process is long thereby 

influencing a product’s time-to-market. Therefore, absolute discipline in the 

design process is critical and the adherence to a proven methodology is 

necessary to ensure success in the first attempt. Tools to assist the design 

process further enforce the methodology. Usually major EDA vendors offer 

integrated tools for every phase of the design flow. However, sometimes it may 

be necessary to integrate tools from different EDA vendors in areas where they 

are better supported.  

 

Since failure in ASIC design is not an option, thorough design verification 

would feature predominantly in any design methodology. Coupled with the 

inherent defects in silicon wafers extremely high levels of fault coverage are 

demanded. 

 

The following subsections of this chapter will discuss the ASIC design 

methodology and the Universal Verification Methodology (UVM).  
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3.1.1 Front End Design 
 

3.1.1.1 Specifications 
 

A chip design starts with defining the system specifications that 

describe the functional features, electrical and speed performance, and 

technology options. This involves the evaluation of the various 

fabrication technology nodes that are able to accommodate the 

performance requirements along with the cost trade-off that are 

involved. The overall project budget should also be taken into 

consideration.  

 

3.1.1.2  Electronic System Level Designs 
 

The electronic system should be described at the behavioural 

level. At this level, there are several ways to model its behaviour. 

Transaction Level Modelling (TLM) models are one of the methods that 

can serve this purpose. In TLM, the model description is in terms of 

transactions that are transferred over the channel. The TLM concepts 

and interfaces shall be discussed in Section 3.2.1. TLM allows the 

implementation of the design to be optimized as early as possible in the 

designing stage. Various innovative implementation methods can then 

be effectively explored to differentiate the performance and time-to-

market of the finished product from the competitors.  

 

The system architecture can be defined by mapping the system 

requirements to hardware and software components in such a way as to 
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meet design objectives. From TLM, conventionally, designers manually 

translate the model into Register Transfer Level (RTL) models, which 

are prone to errors. However, with the High Level Synthesis (HLS) 

tools, TLM models could ease the design flow by being able to 

synthesize the design intent to the lower Register Transfer level.  

(Brown, 2009). 

 

3.1.1.3 Register Transfer Level (RTL) Design 
 

The designs are usually described using Hardware Description 

Language such as Verilog or VHDL at Register Transfer Level (RTL). 

RTL design involves describing the design behaviour as transfer is 

occurring between registers at every clock cycle. This introduces the 

concept of timing and allows the speed performance of the chip to be 

defined. 

3.1.1.4  Verification 
 

In ASIC Design, the verification process is a discipline in itself 

and will take up a major share of the time and labour resources of an 

entire design cycle. It is a common misconception that an ASIC design 

that has been verified functionally with an FPGA is ready for tape out. 

This is not the case because an FPGA is a finished product at an already 

determined process point, guaranteed to work within the specified 

supply voltage and temperature range. In the case of an ASIC design, 

this is the stage where this guarantee is ensured by performing thorough 

design verification within all corners of process, temperature and supply 
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voltage variations. The functions and design intents defined in the 

specification must work within these environmental boundaries. 

 

The verification plan contains descriptions of the functional 

features that need to be exercised and the techniques in developing the 

test cases especially for all boundary cases. This verification plan will 

serve as an overall scoreboard for functional coverage. 

 

A verification environment models the actual system in which 

the Design Under Test (DUT) works. This environment consists of 

various models to generate the input stimulus and check for the 

responses. These models depend on the interfaces that the DUT is 

connected and the DUT’s functionality. The Verification process is done 

each time when changes are made to the design and when the design is 

synthesized from one abstraction level to another. 

 

Since ASIC Design verification is a highly discipline process, a 

standard methodology is strictly adhered to. In our case, the Universal 

Verification Methodology (UVM) is used in developing our reusable, 

reconfigurable and scalable verification environment. The details of the 

methodology will be discussed in Section 3.2 while the implementation 

of the verification platform will be reviewed in Chapter 4 of this 

dissertation.  
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3.1.1.5 Design For Test (DFT)  
 

Manufacturing defects and crystalline imperfections in silicon 

wafers will manifest as faults at random locations in a fabricated wafer. 

These faults will cause the chip not function according to its design 

intent. Therefore, these faults must be detected at test. These special 

tests, or Design for Test (DFT) features, must be built in to achieve near 

one hundred percent fault coverage.  

 

 Achieving full functional, line, code and toggle coverage in 

verification will give a high degree of fault coverage, but will almost 

certainly be insufficient due to the limited controllability and 

observability for the finite number of input and output pins of the chip. 

It is therefore necessary to implement structured testability features. 

These are special DFT structures designed into the chip with the goal of 

detecting every fault.  

 

The most favoured structured DFT features adopted are Built-In-

Self-Test (BIST) for regular structures like memories and Scan Chaining 

for logic. For memories, it is common for BIST hardware design to 

include Built-In-Self-Repair (BISR) where redundant memory rows or 

banks can be swapped for bad ones. Structures can also be implemented 

in hardware to support the structured fault simulation.  

 

Although Scan Chaining of internal logic and BIST will allow a 

very high degree of fault coverage, the chip input and output (I/O) 
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buffers and associated functions are not easily covered. The JTAG 

(IEEE 1149.1) Boundary Scans implementation takes care of this. JTAG 

Boundary Scan together with BIST will allow fully automated testing of 

a number of ASICs in a system board.  

 

3.1.1.6 Synthesis 
 

The RTL codes are synthesized into a gate level netlist according 

to the imposed timing constraints using synthesis tools. Since the logic 

gate, designs are specific to the manufacturer and the technology the 

target cell library must be provided for design synthesis. The gate level 

netlist can be optimized for area, speed performance and testability 

through the design constraints.  

3.1.1.7 Static Timing Analysis (STA) 
 

Static timing analysis is performed on fully synchronous designs 

to validate the timing performance of the ASIC. The speed or timing 

constraints of the design must be provided as input to the synthesis tool 

with considered timing margins to allow for physical design variations.  

 

A good wire load model from the physical chip floor plan is also 

beneficial during synthesis and STA in order to achieve early timing 

closure after placement; routing and parasitic extraction are back 

annotated into the netlist. STA checks all possible paths for timing 

violations under worst-case scenarios. This process is performed on the 
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gate level netlist. Timing closure with a well-accepted STA tool is very 

often sufficient to sign off for tape out.  

 

The synthesized gate level netlist also needs to be ensured that 

the RTL design intent is not modified by performing the equivalence 

checking. The process from defining the specification to design 

synthesis is considered the front-end design flow in designing SoC. The 

next section will discuss on using this generated gate level netlist and 

transform it into the layout of the chip. 

 

 

3.1.2 Back End / Physical Design 
 

3.1.2.1 Floorplan 
 

The physical implementation of the ASIC can begin with a gate 

level netlist, which has sufficient timing margins. Macro cells like 

SRAM, and other pre-designed Intellectual Properties (IP) blocks, and 

IO locations are placed to minimize the die area and maximize 

routability so that the overall chip cost can be reduced.  

 

Core utilization is set to the appropriate value to give margins 

for routability taking into consideration the extra space requirements for 

power networks and clock tree routing during the first attempt. It usually 

takes a few iterations to get a better core utilization value. It is important 

to weight the trade-off between the chip size and routability of the chip. 

Setting the core utilization value too high may result in either an un-
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routable chip or timing inability to close timing for critical paths due to 

long or roundabout routing. Any changes in the chip size to 

accommodate more routing resources would mean re-starting the floor-

planning process due. This increases the use of valuable resources and 

time-to-market. If the core utilization value is set too low, the chip size 

grows, causing the overall cost of the chip will increase.  

 

3.1.2.2 Power Network Synthesis 
 

There must be sufficient power and ground supply pins to anchor 

the chip firmly to its operating voltage, prevent power, and ground noise 

from interfering. Placement constraint script is used to place these power 

pads strategically on each side of the chip, especially where there are 

many simultaneously switching output drivers. Ground bounce 

simulation can be done to determine that sufficient pairs of power pads 

have been added.  

 

If there are more than one power domain in the design the power 

distribution within these power domains features significantly in the 

floor planning and placement phase. The power distribution networks 

for the chip are synthesized based on the power budget specifications 

for each domain. The width of the power buses must be sufficient to 

prevent a drop in supply voltage below the designed range. This IR drop 

is analysed and displayed by the tool. Adjustments can be made to the 

floorplan and power networks until the IR drop requirement is met.  
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3.1.2.3 Clock and Buffer Tree Synthesis 
 

Clock tree will be synthesized to be as close to an ideal clock as 

possible as this is set at design synthesis for a fully synchronous design. 

The Clock Tree synthesis tool will buffer the clock to sufficiently fast 

rise and fall edges and at the same time try to balance the clock branches 

so that the clock skew is controlled when it arrives at all the flip-flops to 

ensure no register data shoot through situations. Skew control is not as 

critical in the buffer tree generation.  

 

3.1.2.4 Place and Route 
 
The rest of the standard cells fill up the core area. Where they 

are placed is determined by the routing weight of the cells. Before these 

cells are routed, it is prudent to examine the congestion map, which will 

indicate whether there are sufficient routing resources available. 

Placement optimization can be done to improve routability. The tool will 

try to find all possible routes for the signals, irrespective of whether 

design rules are violated or not. Many iterations of the search and repair 

process are then performed to fix design rules as well as timing 

violations. If these violations cannot be fixed after rounds of placement 

optimization and re-routing it may be necessary to increase the chip size. 

Parasitic RC extraction is done using a high precision 3-D extraction 

tool. A delay-timing calculator is used to convert these RC delay values 

to the Standard Delay Format (SDF) to be back annotated to the post 

layout netlist for precise timing simulation and STA. 
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3.1.2.5 Chip Finishing 
 
Additional steps are taken to prepare the chip for tape out. The 

length of the routed interconnects may be too long in the same metal 

layer. This will cause damage to the devices it connects to due to the 

collected charges on the metal layer during the fabrication. Antenna 

rules, which are provided by the foundry, are used by the tool during the 

search and repair process. Antenna fixing is done automatically by the 

tool by breaking these long same level interconnects using the next 

higher-level metal. For the top-level metal, which do not have a higher 

metal layer to split the wires, protection diodes, can be added to the 

device for protection. 

 

The remaining unused areas in the standard cell rows filler cells 

are added to establish continuity of the N- well, the P-well and the power 

buses. Extra metals and polys fills are added to meet the density 

requirements by the foundry for manufacturability. 

 

Empty spaces may be left after the corresponding IO cells are 

added. IO fillers are added to fill up these areas to complete the IO power 

ring of the chip, which also provides some ESD protection.  

 

Redundant vias are inserted wherever there are spaces to avoid a 

possible manufacturing issue where some vias become too narrow and 

may not form proper connections.  
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3.1.2.6 Post layout verification 
 

The post layout netlist is extracted from the GDSII physical 

design database. LVS is the process where the equivalence of the 

physical layout is checked against the pre-layout gate level netlist to 

ensure that logical nothing is changed during Clock Tree Synthesis, 

buffering and optimization in the backend process. Design Rule Check 

(DRC) is performed to ensure geometrical design rules determined by 

the technology and manufacturability considerations are not violated.   

Minor changes or corrections can still be done to the layout 

through the Engineering Change Order (ECO) processes provide for by 

the layout tool. DRC and LVS are done again each time the physical is 

altered. 

 

3.1.2.7 Tape out 
 

The signoff STA reports and timing simulations are reviewed to 

ensure that the design is ready for tape-out. The foundry will review that 

design have met the manufacturability guidelines provided by them 

before proceeding to order the masks. Figure 3-1 shows the overall 

ASIC Methodology. 
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Figure 3-1: ASIC Design Methodology 

 

 

3.2 Universal Verification Methodology (UVM) 
 
 

The increasing complexity of ASIC design verification has 

called for a standard methodology to be strictly adhered to. UVM is the 

current industrial standard verification methodology (Glasser, 2011). 

 

UVM is based on the TLM and OOP (Object Oriented 

Programming) concepts. It provides a set of TLM communication 

interfaces and channels to allow the OOP classes to communicate at 

transaction level. The TLM and OOP concepts will be introduced in next 

two sub-sections to allow a clearer understanding of the UVM 

discussion. 
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3.2.1 Transaction Level Modelling (TLM) Concepts 
 
 

 The TLM is a transaction based modelling used for developing 

abstract models of components and systems. The transaction is an OOP 

class object that includes the necessary information such as variables 

and constraints to model the communication between two components. 

The amount of information that is encapsulated within the transaction 

indicates an abstraction level of the model. The basic transaction could 

be extended to include additional properties and constraints. For 

example, to fully specify the bus transaction, including Objects such as 

transfer delays or latency will better model the bus operation.  

  

3.2.1.1 TLM Communication 
 

TLM components initiates transactions by 3 basic 

communication mechanism – put, get and broadcast. put is when a 

producer component puts information to a consumer component. get is 

when a consumer gets information from the producer. A third 

mechanism allows a producer to broadcast information and consumers 

may subscribe to these broadcasted information (Glasser, 2009). 

 

The TLM communication interface is defined by the port and 

export pair. A TLM port specifies the methods to be used for a particular 

connection. These methods are implemented by the TLM export, so that 

it can be executed when the port initiates the transaction. TLM interface 

allows each of the components to be isolated from each other. The 
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components at the higher level can instantiate its sub-components and 

connects them together independent of any knowledge of the 

implementation. Accessing the sub-components can be achieved by 

making its interfaces visible at its higher-level component allowing the 

whole component to be visible as a single component with a set of 

interfaces regardless of its internal implementations.  

 

3.2.1.2 Analysis Communications 
 

 
The TLM put and get ports would require at least one export 

connected. In the case of passive components such as Monitors, which 

collect transactions and broadcast them to the other components, a third 

port, the Analysis Port, which may be left either unconnected or 

connected to any number of components, is needed.  The components 

that subscribe to the broadcast are connected to the Analysis Port via 

their respective Analysis Exports.  

 
 The next subsection will introduce the concepts of the object 

oriented verification environment, which makes it configurable, 

scalable, and reusable across projects (Sharon, and Kathleen, 2013). 
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3.2.2 Object Oriented Verification Environment 
 
The verification environment is used to fully exercise the DUT 

by modelling devices the DUT connects to. A Hardware Description 

Language (HDL) can be used to  model these devices. However, it will 

be a challenge to model the verification environment of complex designs 

as in the case of most SoC with HDL and its limited features. For 

example complex predictors or checkers need to be implemented to 

allow self checking especially during regression testing.  

 

Extensive input stimulus needs to be designed to fully exercise 

the DUT for complete functional coverage. Manually defining each of 

the stimulus scenarios would take take an extraordinary amount of time 

and effort and some cases might still be missing. Here constraint random 

stimulus generators are needed to generate the stimulus within the 

defined constraints for valid, invalid as well as abnormal transfers.  

 

HDL, without additional aids to facilitate complex modelling 

requirements, will be unable to deliver the complete functional 

verification coverage  and the desirable features of configurability, 

scalability and reusability. The system Verilog language has evolved 

from Verilog HDL  and incorporates OOP features to overcome this  

(IEEE, 2009).   

 

In Object Oriented Language, class contains data elements, and 

methods which can be instantiated. An object refers to an instance of a 
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class. These objects can be created and destroyed dynamically, allowing 

the verification environment to be configured. Each of these classes 

performs a specific task.  

  

The Scenario Generator generates the stimulus based on 

constraints or rules provided by the verification engineer to model the 

behavior of the test cases. The DUT uses virtual interfaces to form the 

connections between the DUT and the verification environment. Virtual 

interfaces provide a mechanism for separating abstract models and test 

programs from the actual signals that make up the design. A virtual 

interface allows the same Driver to operate on different portions of the 

DUT and to dynamically control the set of stimulus associated with the 

Driver. Changes to the underlying design under test do not require the 

code using virtual interfaces to be rewritten. The other classes that need 

to communicate with the DUT using the same communication protocol 

can then reuse the same virtual interface. These virtual interfaces can be 

passed to the different classes to make the connections between the DUT 

and verification environment.  

 

The Driver class interprets and drives the Transactions to the 

virtual interface. The Monitor class is used to monitor the response from 

the DUT through the virtual interface and extract transaction 

information for comparison by the Checker. Figure 3-2 illustrates the 

various classes in an OOP based verification environment.   
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Figure 3-2: Layered OOP Verification Environment 
 

 

The communication between these components can be 

simplified by encapsulating the transfer using objects or as transactions 

instead of passing multiple signal Objects. Data analysis and 

manipulation can then be done easily by accessing the corresponding 

objects. When a similar type of transfer is needed, the same transaction 

class can be reused. As examples, the types of transfer classes that has 

been developed for the use of our verification environments are AHB, 

APB, NoC, and SPI.  

 

Inheritance is another concept in OOP to facilitate reusability. It 

allows different behaviours for the same method in the derived class to 

override the behaviour in the base class. This can be done through virtual 

functions. Virtual functions are used to support polymorphism where 
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multiple classes with different behaviours can be used interchangeably. 

As an example of the use of inheritance, the lower level layers such as 

protocol layer can be modelled using the base class. More complex 

models can utilize these protocol models. The base classes can be reused 

directly or used to derive other classes thus increasing the verification 

productivity.  

 

We have introduced the importance of using object oriented 

concepts in the verification environment development. This concept has 

been adopted in recent Verification Methodologies such as Verification 

Methodology Manual (VMM) (Janick et al. , 2005), Open Verification 

Methodology (OVM) (Glasser, 2009) and Universal Verification 

Methodology (UVM) (Sharon, and Kathleen, 2013). The next section 

shall discuss on the generic verification environment in the Universal 

Verification Methodology (UVM) which has adopted the various OOP 

classes.    
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3.2.3 Generic UVM Verification Environment 
 
 
 
 

The stimuli are abstracted as Transactions. They are generated in 

the Sequence and randomized according to specific rules and constraints. 

The Sequence sends the stimulus packets to the Sequencer. The 

Sequencer coordinates these transactions from multiple Sequences. 

When the Driver is ready, it grabs the Transaction from the Sequencer’s 

TLM get_port. The Driver converts the Transactions into timed input 

stimulus to drive the DUT.  

 

 In order to verify the correctness of the DUT operation, we need 

to sample the stimulus, analyse the responses and keep score of the 

coverage. The Monitor acts as a service provider. It packages the sampled 

data and sends to its service subscribers such as the Scoreboard and 

Coverage Analysis Objects through the TLM analysis_port.  The 

Scoreboard then checks for the correctness of the received transfer.  

 

The Monitor, Driver, Configuration Objects and Sequencer can 

be grouped as Agent so that they can be reused as a basic block or a 

Universal Verification Component (UVC). These Agents as well as in 

some cases the Configuration Objects will be grouped to form the 

Environment.  This forms another UVC. In this way, the Environment 

can also be reused and re-configured based on the requirement of a 

design. It allows multiple Agents to be instantiated. The virtual 

interfaces that connect to the DUTs can be passed to each of the Agents 
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and its sub components through the Environment allowing each of the 

sub-environments to be instantiated to verify various modules in the 

system. This module level environment can be built hierarchically to 

form a system testbench. 

The basic verification environment using UVM is shown in 

Figure 3-3. 

 

 

Figure 3-3: Generic UVM Verification Environment Architecture 
 

 

 

This discussion shall continue with the discussion of the methods 

to build test cases or scenarios for the DUT. 
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3.2.4 Scenario Generation 
 
 

In UVM, Sequences are used to model test scenarios. These 

Sequences can be layered to model scenarios that are more complex.  

(Janick et al. , 2013). 

 

The basic Sequence or the lowest level Sequence models the 

protocol communication layer and the read write access.  These 

Sequences are generic and often implement as an Application Specific 

Interface (API) layer for the Driver. For instance, these have been 

developed as our UVC for the AHB, APB, GPIO, and SPI protocols.  

 

Higher level Sequences to model more complex scenarios can 

utilize these basic Sequences as shown in Figure 3-4. These layered 

Sequences are used to model components such as AHB memory which 

utilises the basic AHB Sequences. 
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Figure 3-4: Sequence Layering 
 

3.2.5 Factory concept in UVM 
 

The UVM Factory is an advanced implementation of the 

Factory design pattern in OOP software, which provides features to 

allow the subtype of the object to be decided during run time. All the 

components are registered with this Factory. When the Factory creates 

this object, it will search for the instance or type override. The 

components, Transactions and Sequences can be overridden from the 

higher-level components. If none exists, it will create the existing 

instance and type. For a complete exposition, refer to Cummings, 2012. 

 

As an illustration, we want to send the bad frame UART stimulus 

instead of the good frame stimulus that has been implemented in the 

Driver. The same verification environment can still be used as long as 
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the good frame UART Driver component is replaced by the bad frame 

components. Figure 3-5 shows a bad frame UART Monitor and Driver 

replacing the existing Driver through the Factory overriding method. 

The method has been used in developing our verification components. 

This will allow custom components to override the existing components 

in our current verification environment. 

 

 

 

 

Figure 3-5: Factory overriding 
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3.2.6 Configuration Objects 
 
 

Since the verification teams need to be able to run thousands of 

tests on a design, it would be ideal to compile the whole verification 

environment once and then run thousands of tests using the same 

environment. UVM allows the implementation of this dynamically 

reconfigurable verification environment.  

 

The Configuration Objects serve this purpose. It is a mechanism 

in UVM to allow lower level component variables to be configured by 

its higher-level component. Objects such as strings, integers, objects and 

virtual interfaces can be defined in a common class. This class, which 

contains the Objects, is passed from the highest hierarchy of the 

verification to its sub components. These can include the number of 

Agents, the starting and ending addresses of the slaves and the type of 

components. 

 

As an example, the number of Agents can be instantiated based 

on these Objects. This allows the verification environment structure to 

be maintained and reused while some of its components are replaced.  

The next section shall discuss on how the UVM simulation is 

executed.   
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3.2.7 UVM Simulation Phases 
 
 

In order to have a consistent verification environment execution, 

UVM uses phases. Using the predefined phases allows verification 

components to be developed in isolation but still interoperable. This is 

because there is a common understanding of the events that should 

happen in each phase.  

The simulation runs in phases. It starts by building the UVM 

environment root component, which is the DUT in its test environment. 

The UVM phasing is then instantiated. The build phase constructs the 

testbench and the various child components and configures them. The 

components are constructed from top to bottom of the testbench 

hierarchy by using the Objects from the higher-level components in the 

hierarchy to properly construct the lower level components. 

 

All these components are connected during the connect phase. 

This phase makes the TLM connections between components and works 

from the bottom of the hierarchy upwards. At the end of elaboration 

phase, final configuration, topology, connection and other integrity 

checks are performed.  

 

The start of the simulation phase is used to display banners, 

verification environment topology and configuration information. This 

phase occurs right before the time consuming part of the simulation 

begins.  
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The run phase is where the main body of the test executes. This 

phase is implemented as a task and consumes simulation time. Each of 

the UVM components is in the run phase at the same time and the tasks 

are executed in parallel.  

 

The extract phase is used to retrieve and process information 

captured by the scoreboards and functional coverage monitors through 

the analysis components after the simulation time no longer advanced. 

It computes coverage statistics and summaries. The results of the 

simulation are displayed or written to a file.  

 

The check phase is used to validate the transaction that has been 

collected in the extract phase and determine the overall simulation 

outcome. It is used to check that no unaccounted-for data remains. 

 

The report phase reports the result of the test. It may also be used 

to write to a file. In Figure 3-6, the basic phases in UVM are illustrated. 
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Figure 3-6: UVM Phases 

 

3.3  Summary 
 

This chapter emphasized the importance of methodologies in 

ASIC design and verification. Verification, being a very significant part 

of the ASIC design effort, calls for an absolute discipline and 

methodology of its own. Both the ASIC design methodology and the 

Universal Verification Methodology have been introduced. The 

advantages of using an OOP based verification environment to facilitate 

the creation of reusable and scalable verification components were 

discussed. The discussion continues by introducing the generic UVM 

based verification environment. The reusability and re-configurability is 

further enhanced by using Factory methods, TLM, and Configuration 

Objects in UVM. In Chapter 4 the objective of this work, which is the 

implementation of a verification platform using UVM for Net-on-Chip 

(NoC) verification, is presented.  
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  CHAPTER 4 
 

 VERIFICATION PLATFORM ARCHITECTURE 
 
4.1 Overview 

 

The hardware design of a Multiprocessor System-on-Chip 

(MPSoC) using an on chip network (NoC) has been described in Chapter 

2 Section 2.4. The NoC design can be implemented using various 

architectures such as mesh, ring and line which can be easily scaled. The 

objective of this work is to build a verification platform which is 

reconfigurable, scalable and reusable to accommodate these various 

architectures and design scalability. This Chapter presents the 

implementation of this verification platform using UVM. This platform 

will be built hierarchically. The component level verification environment 

will be discussed next.  

 
 
 
 
4.2 Component level Testbench 
 

The component level testbench is the most primitive verification 

environment. In UVM, it is one of the Universal Verification Components 

(UVCs). This environment consists of basic Sequences that model the 

communication protocols such as the AHB, APB, SPI, GPIO, network 

and parallel port. The basic Sequences can then be extended to model 

other complex scenarios such as memory read write model using the 

specific communication protocols. This enhances the reusability of the 
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basic Sequences. The component level testbench is used to verify each 

component individually in our system.  

 

 

4.2.1 NoC Environment 
 

The NoC environment is used to verify the generated 

CONNECT routers that have been described in Chapter 2 Section 2.4. 

To begin with, here is a recap on the protocol to send and receive a flit. 

In order to send a flit, the enable putflit, EN_putFlit has to the asserted. 

The credit availability is decremented by the client once the flit has been 

sent into the network. To retrieve the flit from the network, incoming flit 

buffers are used to maintain the flit for each of the virtual channels. The 

enable put credit signal, EN_putCredits is asserted when a flit is 

received by the client.  

 

Figure 4-1 shows the overall NoC verification environment. This 

environment consists of a pair of Send and Receive Agent connected to 

the router.  
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Figure 4-1: NoC Verification Environment 
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The number of Agents instantiated depends on the parameter 

num_of_routers. This parameter is defined in the noc_config class and 

it is passed to all the components using uvm_config_object. When each 

of these Agents is created, an id associated with it is also created. This 

id is passed to all the Agents sub-components using uvm_config_int. The 

implementation is shown in Figure 4-2. 

 

 

Figure 4-2: NoC Environment Implementation 
 
 

In the Figure 4-3, part of the Agent implementation is shown. 

The is_active is another important parameter set in the Configuration 

Objects class. This parameter can be set to UVM_ACTIVE or 

UVM_PASSIVE. UVM_ACTIVE means that this UVC is activated and 

is going to be used to generate the stimulus. As an active component, the 

Driver and Sequencer will be created apart from the Monitor. If the 

component is set to passive using UVM_PASSIVE, then only Monitor 

will be created.  In this NoC verification, a Send and Recv pair of Driver, 

Monitor and Sequencer are instantiated.    
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Figure 4-3: NoC Agent Implementation 
 
 
 
 

The flit transaction is defined using a class. This has been used 

in the Sequence to contain the stimulus, the Driver packs this flit and 

drives to the VSif virtual interface that connects to the DUT. The 

implementation of the Driver is shown in Figure 4-4. 

 

 

 

Figure 4-4: NoC Send Driver Implementation 
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The Recv Monitor then monitors the flit. It waits until a valid flit 

is monitored. The corresponding fields in the flit are packed into 

flit_temp. Once all the values of the virtual interface have been recorded 

into the flit_temp, the flit_temp is passed to the subscribers that subscribe 

to the Monitor. The Figure 4-5 shows the implementation of the NoC 

Recv Monitor. 

 

 

 

Figure 4-5: NoC Recv Monitor Implementation 
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The Send Scoreboard and Recv Scoreboard are instantiations of 

the same Single Channel NoC Scoreboard. These Scoreboards are used 

to compare and check if the send flit is received by the right endpoint of 

router as illustrated in Figure 4-6.  

 

 

Figure 4-6: Flit Compare 
 
 
 
 

Similarly, the Driver at the receiving end sends another flit back. 

The Recv Monitor at the sending end now monitors the flit. The Recv 

Scoreboard checks the responses.   

 

 

 

4.2.2 AHB Environment 
 
 

In our proposed NoC architecture, each of the ARM M0 core has 

several peripherals connected to it using the ARM Advanced High-

performance Bus (AHB). The AHB protocol consists of address and data 

phase working in pipeline as shown in Figure 4-7. During the address 

phase, the AHB master sends the control signals which includes address 
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(HADDR), and transfer type (HWRITE) to the AHB slaves through the 

AHB-Lite bus. The data (HRDATA) is send or read during the data phase 

at the cycle following the address phase.   

 

Figure 4-7: AHB Read Write Transfer (ARM, 2006) 
 

 

 

If additional cycles are required, HREADY signal can be set to 0 

by the AHB slaves until the slave is ready to receive the data from the 

AHB master during the write transfer or to have the data ready for the 

AHB master to read during the read transfer shown in Figure 4-8. (ARM, 

2006) 

read transfer:

write transfer:

72 
 



 

 

Figure 4-8: AHB Read Write Transfer with Wait States (ARM, 2006) 
 

 

 

From the NoC architecture perspective, each core and its 

peripherals is a component. Thus, the basic building block of the 

verification environment is the AHB environment. A component level 

verification of an AHB system consists of an AHB master and two AHB 

slaves is shown in Figure 4-9. 
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Figure 4-9: AHB Environment 
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It should be noted that the AHB slave is a generic model which 

can be further extended to model specific components, such as memory 

controller, GPIO, SPI, I2C, USART, ADC, RTC, Timer etc.  The basic 

Sequences will be discussed in Chapter 5 Section 5.2. In our work, the 

AHB master Sequence will model write transactions to access both AHB 

memory slave models through the AHB master Driver.  

 

Figure 4-10 shows the implementation of the AHB master 

Driver. During the start of the simulation, the default values are driven 

to the DUT through the Vif interface. The wait_reset_deassertion() task 

is used by the AHB master waits for the system to reset. After the system 

reset has been detected, the get_and_drive_pipelined() task performs the 

address and data phases. In the event the reset is asserted when the 

system is running, the monitor_reset_assertion() task is used to monitor 

this event. The unfinished transaction that occurs due to the 

asynchronous reset is managed by the manage_unfinished_trans() task. 
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Figure 4-10: AHB Master Driver Implementation 
 
 
 

These transactions are also monitored by the AHB master 

Monitor. The implementation is shown in Figure 4-11.  

 

 

 
 
Figure 4-11: AHB Master Monitor Implementation 
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In the Monitor, monitor_transaction(),        

monitor_reset_assertion(), monitor_error() and monitor_ready() tasks 

are used to indicate different transaction types. The 

monitor_reset_assertion() task  monitors the system resets while the 

monitor_transaction() task is used to monitor the address and data 

phases. When the data phase and address phase has completed, 

monitor_ready() is used to inform the base Sequence the transaction is 

ready. monitor_error() is used to indicate any error transaction. These 

transactions are sent to the subscribers of the Monitor. 

 

On the other hand, the AHB slaves will record the write 

transactions from the master through the AHB slave Monitor and loop 

back the transactions using the AHB slave Driver for the AHB master 

to read.  

 

To verify the correct functionalities of the master and slaves, the 

Scoreboard gathers the transactions from AHB master and slave 

Monitors to compare for the correctness of the transactions. This is 

shown in Figure 4-12.  

77 
 



 

 

Figure 4-12: AHB Scoreboard Implementation 
 
 

The Configuration Objects are added to allow the slaves model 

to be mapped to different regions in the memory map using the 

add_slave() function as shown in Figure 4-13.  

 

 

Figure 4-13: AHB add_slave() function 
 
 
 

78 
 



 

 
4.2.3 APB Environment 
 
 

For completeness of the system, we have also developed the 

APB verification environment using similar structure as described above 

(ARM, 2003). We can use the Advanced Peripheral Bus (APB) to 

connect to components that have lower bus bandwidth requirements. 

When there is no transfer, the APB stays in the default state that is the 

IDLE state. Once the transfer occurs, the bus state changes from IDLE 

to SETUP. The appropriate select signal, PSELx is asserted. The bus 

remains in this state for 1 clock cycle. During the next clock cycle, the 

bus state changes to ENABLE state. In this state, PENABLE is asserted 

which also last for 1 clock cycle. If there is no further transfer, the bus 

state returns to IDLE. The bus changes from ENABLE to SETUP when 

there is another transfer. Figure 4-14 illustrates the overall APB transfer 

process.   
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Figure 4-14: APB transfer state machine 
 

 

During the write transfer, the address (PADDR), data (PRDATA) 

and select (PSEL) signal is asserted during the SETUP cycle. The enable 

signal, PENABLE is asserted during the next clock cycle, indicating the 

ENABLE cycle is taking place. The address, data, and control signals 

remain valid throughout the cycle. Once the transfer is completed, the 

enable signal is de-asserted. The timing diagram in Figure 4-15 shows 

the write process. 
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Figure 4-15: APB Write timing diagram (ARM , 2003) 
 
 

Figure 4-16 shows the read process for the APB bus. Similarly, 

the address, write and select signal is set during the setup cycle. In this 

case, the write signal is de-asserted. The APB slave is required to 

provide the data once the enable signal is asserted. The data will be 

sampled on the rising edge of the clock at the end of the ENABLE cycle.  

 
Figure 4-16: APB Read timing diagram (ARM , 2003) 
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If additional time is required, the APB can de-assert the ready 

signal when the enable signal is asserted.  This holds the APB in the 

SETUP state until the ready signal is asserted indicating the slave is 

ready to receive or provide the data. When the ready signal is asserted, 

the state changes from SETUP to enable and performs the transfer as 

shown in Figure 4-17. 

 

 

Figure 4-17: APB timing diagram with wait state (ARM , 2003)
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Figure 4-18: APB Environment 
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The APB environment consists of APB Master and 2 APB slaves 

modelled as memory is shown in Figure 4-18. The APB master is 

connected to the APB slaves through the APB bus. The APB master will 

perform a write read transfer to access these memories. The APB master 

Driver waits for the system to reset. It waits for new transaction from 

the Sequence using get_next_item(). The transaction obtained will be 

driven to the Vif virtual interface. Once the transaction is completed, it 

uses item_done() to indicate to the Sequence that the transaction has 

been successfully driven. Figure 4-19 shows the implementation of this 

APB master Driver. 

 

 

 

 

Figure 4-19: APB Driver Implementation 
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 Figure 4-20 shows the implementation of the APB master Monitor. This 

Monitor is used to monitor the transaction driven by the APB master Driver and 

also the responses from the APB slaves. If the read transaction is monitored, the 

Monitor will gather the slave responses. When a write transaction is detected 

instead, the Monitor gathers the transaction driven by its master Driver. 

 

 

 

 
 
Figure 4-20: APB Monitor Implementation 
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The Checker or the Scoreboard compares the intended transfer 

that is sent to each memory is received by the correct memory slave as 

shown in Figure 4-21.  

 

 

 

 

Figure 4-21: APB Scoreboard 
 
 
 
 
 

The behaviour of the stimulus is modelled in the basic Sequence 

which can be extended to model other peripherals such as, in this case, 

APB memory. The implementation of the basic Sequence is discussed 

in Chapter 5 Section 5.2. 
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4.2.4 SPI Environment 
 

The SPI module is attached to the APB bus in our system. This 

module is to allow each of the Cortex M0 to send status information 

such as debug messages. For the SPI UVC environment, basic 

Sequences have been created to generate the SPI transfer. The UVC can 

be configured to generate and capture various SPI modes. Figure 4-22 

shows the 8 bit SPI transfer with the transmitting and receiving at the 

negative edge of the clock. The 1st bit also can be configured as the most 

significant bit (MSB).  

 

 

 
 
Figure 4-22: 8bit MSB SPI transfer at negative clock edge 
 
 
 
 

Another example is shown in Figure 4-23. The transfer is 

configured with the 1st bit as least significant bit (LSB). The transmitting 

and receiving of the transfers occurs at the positive edge of the generated 

clock, sclk.  
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Figure 4-23: 8bit LSB SPI transfer at positive clock edge 
  
 

 The SPI Driver implementation is shown in Figure 4-24. In this UVC, 

the Configuration Objects have been used to determine the SPI transfer Objects 

such as data transfer size, data type indicating the first bit the Most Significant 

Bit (MSB) or the Least Significant Bit (LSB) and, the transmit and receive clock 

edges. Before the SPI drives the SPI virtual interface, spi_if, the SPI Driver 

waits until the SPI Monitor detects an SPI slave is selected. It then drives each 

bit of the transaction until it reached the configured transaction data size. The 

Driver utilizes the SPI Monitor to determine the SPI clock edges that the 

transaction should be sent.   

 

 

 
 
Figure 4-24: SPI Driver Implementation 
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 Figure 4-25 shows the implementation of the SPI Monitor.  It waits until 

an SPI slave is selected and packs each bits collected from the SPI virtual 

interface to be sent to its subscribers. If the tx_clk_phase in the SPI 

Configuration Parameter is set to zero, the transaction will be collected during 

the negative phase of the clock and vice versa. 

 

 

 

 
 
Figure 4-25: SPI Monitor Implementation of tx negative clock phase 
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4.2.5 Parallel port Environment 
 

In our system, the parallel port module is used as an input for the 

AES encryption. The parallel port UVC is developed to verify the 

parallel port module. During the read transfer as shown in Figure 4-26, 

the parallel port drives pp_av_n low, indicating there is data available in 

the transmit buffer. When the host device detected the pp_av_n is low, 

it drives the pp_strobe_n low to initiate the read transfer. pp_wrn_n 

signal is driven high, indicating a read transfer. The parallel port asserts 

the pp_wait_n signal. At the same time, the data are available at the 

parallel port interface. The host reads the data and drives the 

pp_strobe_n signal high. This indicates the end of the transfer. The 

parallel port drives the pp_wait_n low. If there are still data remaining 

in the buffer, the pp_av_n signal remains low. The pp_av_n is asserted 

once the buffer is empty.  

 

 

 
 
Figure 4-26: Parallel port read timing diagram 
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Figure 4-27 shows the protocol for the parallel port write. The 

host device will de-assert the pp_strobe_n signal to initiate the write 

transfer. At the same time, the pp_wr_n is also driven low to indicate 

write transfer type. The valid data is driven by the host device. Once the 

parallel port is ready, it reads the data and assert the pp_wait_n signal. 

To end the transfer, the host device drives the pp_strobe_n signal high. 

In the next cycle, pp_wait_n is driven low by the parallel port.   

 

 
 
Figure 4-27: Parallel port write timing diagram 
 
 

The read, write protocol of the parallel port modules has been 

modelled using Sequences in the parallel port UVC. This forms the basic 

Sequence for this UVC. The parallel port transfer stimulus generated by 

the UVC is injected to the parallel port RTL module for processing. The 

read Sequence enables the parallel port UVC to gather the transfer from 

the RTL.   

 

Coupled with these basic read, write Sequence, the Parallel Port 

Driver in Figure 4-28 implements the Parallel Port write protocol. 

Similarly, the Parallel Port UVC drives the default values to the virtual 
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interface and waits for the system to reset using 

wait_reset_deassertion() task. Once the system has been reset, the UVC 

uses the get_and_drive() task to drive the available transactions from the 

Sequence. In the event that if the system reset occurs, 

monitor_reset_assertion () is used to monitor this event.  

 

 

Figure 4-28: Parallel Port Driver Implementation 
 
 
 
  Figure 4-29 shows the implementation of the Parallel Port 

Monitor. The trans_collected is an instantiation of the parallel port transfer, 

which consist of the pp_wr_n, pp_data and pp_data_width.  This object is used 

to collect the transaction from the parallel_port_if virtual interface.  
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Figure 4-29: Parallel Port Monitor Implementation 
 
 
 
 
 
4.2.6 GPIO Environment 
 
 

The GPIO is added to our system as another means of I/O. It 

allows our system to send out transfer to another system. It also enables 

our system to use it to gather transfers. To verify this module, a basic 

UVC has been developed. The basic Sequences in the GPIO UVC allow 

us to perform basic GPIO read write transfer. It allows us to generate 

GPIO transfer for our system and Monitor the activity on the GPIO bus. 

 

The GPIO Driver waits for the transaction delay which can be set 

in the GPIO basic Sequence. This can be used to model the delay between 

the GPIO transfers and constraints can be set to randomize the delay 

between the transfers. This can be used to model the delay between the 

GPIO transfers and constraints can be set to randomize the delay between 

the transfers. The GPIO_DATA_WIDTH parameter corresponds to each 
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of the GPIO pins. For each of the pins, if gpio_pin_oe is set to zero, the 

GPIO UVC will drive the transactions to the DUT.   

 

 

Figure 4-30: GPIO Driver Implementation 
 
  

The GPIO Monitor implementation is illustrated in Figure 4-31. The 

variable transfer_data is used to collect the transaction when the GPIO UVC 

drives the transaction to the DUT. When the GPIO UVC receives the transaction 

from the DUT, monitor_data variable is used instead. 

 

 
 
Figure 4-31: GPIO Monitor Implementation 
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4.3 Subsystem level Testbench 
 

The subsystem verification environment builds up from multiple 

component level verification environment modules discussed in Chapter 

4 Section 4.2. In this case, multiple Sequences targeted for these multiple 

environments are used. Virtual Sequencer can be used to coordinate these 

Sequences. For the subsystem Scoreboard to gather the transfer from its 

lower analysis components such as Monitors, Analysis Port can be used. 

The basic concepts Analysis Port has been discussed in Chapter 3 Section 

3.2.1.2. The Monitor from the component level verification environment 

will broadcast the transfers that it has gathered through this port.  

 

 

4.3.1 AHB2NoC Environment 
 

Once we have the basic modules of the system and verification 

environment set up. We can reuse the modular components to develop 

our subsystem verification environment. The AHB2NoC subsystem 

verification environment uses the AHB and NoC UVC. The AHB master 

Agent generates the AHB transfer. This transfer is converted to flit by 

the AHB2NoC adapter. The NoC receive Agent is used to capture the 

flit from the AHB2NoC adapter and sends it to the Scoreboard to check 

for the correctness of the flit. The NoC send Agent is then used to 

generate a flit and send through the AHB2NoC adapter. This is to ensure 

that the content of the flit is converted to the corresponding AHB 

transfer. The environment is shown in Figure 4-32.  
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Figure 4-32: AHB2NoC Adapter Verification Environment 
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Since there are 2 different UVCs involved, the Virtual Sequencer 

has been used to coordinate the Sequences running. The Sequencer 

coordinates the Sequence for the AHB UVC to send the transfer and 

NoC UVC to monitor the transfer and vice versa. This is shown using 

Figure 4-33. 

 

 

 
 
Figure 4-33:  Virtual Sequencer and Analysis port for AHB2NoC 
 
 
 

Figure 4-34 shows the implementation of our Virtual Sequencer. 

This Sequencer consist of both the AHB master Sequencer and two NoC 

slave recv and send Sequencer.  
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Figure 4-34: AHB2NoC Virtual Sequencer Implementation 
 
 
 

As an example, during the creation of the test as shown 

in Figure 4-35, the p_sequencer which is the AHB2NoC Virtual 

Sequencer is registered with the factory. This allows different Sequence 

which runs on different Sequencer utilise the same Virtual Sequencer. 

 

 

 
 
Figure 4-35: AHB2NoC Test Example 
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4.3.2 AHB Parallel Port Environment 
 
 

 
 
Figure 4-36: AHB Parallel Port read timing diagram 
 
 
 
 

To write to the parallel port, the Cortex M0 begins by writing the 

address and transfer type. The transfer data is sent out during the next 

cycle. When the host device is ready to accept the transfer, the host 

device de-asserts pp_strobe_n signal. The parallel port reads the data 

and assert the pp_wait_n for the next 2 cycle. To indicate the end of the 

transfer, the host device drives the pp_strobe_n signal to high. 

pp_wait_n is driven low by the parallel port.  
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Figure 4-37: AHB Parallel Port write timing diagram 
 
 
 
 

Figure 4-38 shows the setup of our AHB2ParallelPort 

verification environment. The AHB2ParallelPort RTL module is the 

design under test in this case. The AHB side of AHB2ParallelPort 

module connects to the AHB-Lite Bus while the other end connects to 

our parallel port interface. To verify this module, the AHB sends transfer 

to the parallel port. This transfer is also monitored by the AHB UVC. 

The parallel port transfer from the RTL module is monitored by the 

parallel port UVC. The Scoreboard has been setup to check for the 

correctness of the transfer by comparing the AHB with the parallel port 

transfer.   
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Figure 4-38: AHB2ParallelPort Verification Environment 
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The coordination between the AHB and parallel port UVC 

Sequences is done through the subsystem Virtual Sequencer as shown 

in Figure 4-39. This module is muxed with the GPIO module.   

 

 
 
Figure 4-39: ParallelPort Verification Environment Virtual Sequencer 

 

Similarly, instead of having the NoC slave Sequencer, the AHB 

Parallel Port Virtual Sequencer consist of an AHB master Sequencer and 

a parallel port Sequencer shown in Figure 4-40.  
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Figure 4-40: AHB Parallel Port Virtual Sequencer 
 
 
 
 
4.3.3 AHB GPIO Environment 
 
 

In the AHB GPIO verification environment, the AHB UVC sets 

the register in the GPIO to send GPIO transfer. This transfer also writes 

to the configuration environment which will set the respective 

Configuration Objects of the GPIO transfer. The GPIO UVC is used to 

capture this transfer and compare it with the AHB transfer in the 

Scoreboard. These transfers are sent to the Scoreboard to check for 

correctness of the transfer. Figure 4-41 shows our AHB GPIO 

verification environment setup. The DUT is attached to the verification 

environment through the AHB interface on one end. On the other end, 

the DUT is attached to the GPIO interface.  
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Figure 4-41: AHB GPIO Verification Environment 
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Since we need the AHB and GPIO UVC to work together, the 

verification environment uses its Virtual Sequencer to load the AHB and 

GPIO Sequences to the corresponding Sequencers in the AHB and GPIO 

UVC as shown in Figure 4-42.  

 

 

 
 
Figure 4-42: Virtual Sequencer and Analysis port for AHB GPIO 
 
 
 

The implementation of the AHB GPIO Virtual Sequencer is 

similar to the Virtual Sequencer that has been discussed for the 

AHB2NoC verification environment in Section 4.3.1 as well as for the 

AHB Parallel Port in Section 4.3.2.  
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4.3.4 AHB APB Subsystem Environment 
 
 

The AHB and APB bus is connected using the AHB2APB 

Bridge. This bridge converts the AHB-Lite bus to the APB bus signals. 

Due to the bus conversion from a pipeline transfer in the AHB-Lite to a 

non-pipeline bus for the APB bus, a minimum of 3 cycle is required for 

the APB bus. In Figure 4-43, we have an overview of our AHB-APB 

subsystem verification environment which uses the AHB and APB 

environments.  

 

 

Figure 4-43: AHB APB Bridge Verification Environment Overview 
 
 

The AHB2APB bridge verification environment is shown in 

Figure 4-44. The DUT in this case is the AHB2APB Bridge  
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Figure 4-44: AHB2APB Bridge Verification Environment 
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In this verification environment, the AHB master will send write 

transactions to the APB subsystem through the AHB APB Bridge. The 

AHB master will try to write to the APB memory slave.  The Figure 

4-45 shows the timing for the AHB to write to the APB bus. 

 

 

Figure 4-45: AHB APB transfer timing diagram 
 
 

The APB slaves will then loop back the previous write 

transactions when the AHB master generates a read transaction as 

illustrated in Figure 4-46. The APB slave data in PRDATA can be seen 

in the HRDATA during the read transfer. 

 .  
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Figure 4-46: AHB APB read timing diagram 
 

The AHB and APB environment as well as the AHB-Lite bus 

and APB subsystem has previously been verified using the 

corresponding modular verification environment. In the sub-system 

level, a Virtual Sequencer is used to coordinate AHB and APB Sequence 

as in Figure 4-47.  Thus, component level environment can be reused 

without modification. 
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Figure 4-47: Virtual Sequences and Analysis port for AHB APB Bridge 
Verification Environment 
 
 
 
 
4.3.5 APB SPI Environment 
 

The APB SPI verification environment consist of the APB and 

SPI verification environment. The APB master Agent UVC is used to 

configure configuration registers in the SPI RTL module. This transfer 

will also be used to configure the Configuration Objects in the SPI UVC. 

The module will generate the SPI transfer according to the transfer 

configuration. The APB transfer, which is used to configure the 

configuration register is also used to configure the configuration of the 

SPI UVC. This is to ensure that the SPI RTL and the SPI UVC are using 

the same SPI protocol. Figure 4-48 shows the APB SPI verification 

environment. 
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Figure 4-48: APB SPI Verification Environment 
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Virtual Sequencer is setup in this verification environment as 

shown in Figure 4-49. This is to allow the coordination between the APB 

and SPI Sequences. The Monitor in the APB and SPI environment 

monitors the activity on the bus connected to the DUT. These data 

gathered is sent to the subsystem Scoreboard to be compared. 

 

 
 
Figure 4-49: Virtual Sequencer and Analysis port for APB SPI 
 
  

4.4 System level Testbench 
 

The system level verification environment can then be built upon 

the multiple component and subsystem level verification environment.  

This section will discuss the setup of the system level verification 

environment using UVC and followed by implementation with Cortex M0 

attached to our NoC system. This section will also elaborate on the 

firmware loading and the functionalities of the NoC system.   
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4.4.1 NoC System Level Environment 
 

After the modular component of the system has been designed 

and verified correctly, these components will be integrated to form a 

system. To ensure that this system is working correctly, a system level 

testbench has to be designed. In our case, we reuse the components that 

we have developed from component and subsystem level. Depending on 

the network architecture in the System level verification, multiple NoC 

environment can be used to generate and receive transfers over the 

network. Furthermore, the Configuration Objects in each environment 

and its sub components allow each of them to be configured 

independently according to the needs of the verification. This allows the 

verification environments to be adaptive to the network architecture and 

scalable to the architecture as the network grows.  

 

We have used CONNECT network generator to generate 

different network architectures for our simulations. For a 4-endpoint 

architecture, our NoC Env is configured to consist of 4 AHB 

environments, 1 parallel port environment, 1 APB environment and 1 

NoC environment. This is illustrated in Figure 4-50. 
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Figure 4-50: NoC System simulation using Sequences 
 

The Parallel Port Master in a parallel port environment UVC is 

used to inject the plain text and key for the AES encryption to the NoC 

System. One of the AHB masters in AHB environment UVC will be 

used to read the data from the parallel port and write the plain text to one 

of the other 3 AHB masters to perform AES encryption. Once, the plain 

text is encrypted, the corresponding AHB master sends the encrypted 

data back to the AHB master which is attached to the parallel port to 

write the cipher text out. 

 

To check for the correctness of the AES encryption, a golden 

reference model of the AES using the AES algorithm is modelled. The 

values generated from the AES golden reference model is compared 

with the values read from the AES RTL Design when the encryption has 

finished. Figure 4-51 shows the input implementation for the AES 

model. When the AHB transaction occurs to the corresponding AHB 
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addresses which corresponds to the AES module registers, the values are 

stored in its respective variable and AES_encryption() task is called.   

 

 

Figure 4-51: AHB Plain Text Input 
 
 

The implementation of this task is shown in Figure 4-52. The 

task will get the key and plain text for encryption. These are arranged in 

2D matrix or state for the AES encryption by making use of the 

encrypt_block() task.    
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Figure 4-52: AHB AES Reference Model 
  

 

This task performs the AES encryption algorithm.  The number 

of iterations required to perform the encryption depends on the number 

of bits for the AES. The 128-bit AES uses 10 rounds of iterations. In the 

add_roundkey() task, the plain text is combined with the key using the 

bitwise XOR function. The sub_bytes() task is used to perform 

substitution on each of these bytes using the Rijndael_Sbox lookup table.  
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Figure 4-53: AHB AES Encryption Block 

 

 

For AES encryption, the first row remains unchanged. 

Depending on the row, n, the elements in that particular row is shifted 

left circularly by n-1 bytes using the shift_row() task. These new 

elements are then multiplied by a fixed matrix: 

 

𝑴𝑴 = �

𝟐𝟐 𝟑𝟑 𝟏𝟏 𝟏𝟏
𝟏𝟏 𝟐𝟐 𝟑𝟑 𝟏𝟏
𝟏𝟏 𝟏𝟏 𝟐𝟐 𝟑𝟑
𝟑𝟑 𝟏𝟏 𝟏𝟏 𝟐𝟐

�          (  Equation 4.1  ) 

 

Multiplication of the element by 1 means no change to the 

location of that element. If multiplication by 2 is done, this means the 

element shifts to the left. When multiplication by 3 is performed, these 

elements should be shifted to the left and XOR is performed with the 

initial un-shifted value. If the shifted values are larger than 0xFF, then, 

a conditional XOR with 0x1B is performed. 
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At every round of iteration, a new subkey is produced. These 

subkeys are combined with the partially encrypted plain text using 

bitwise XOR until the encryption is completed. This is implemented in 

the add_roundkey() task. The mix_column() task is omitted during the 

last iteration to simplify the decryption process. 

  

After the environment has been setup and verified to be able to 

monitor the correctness of the transfer, the M0 core is attached to the 

system. The verification environments which previously is used to 

generate the stimulus for the DUT is not removed. Instead, they are used 

to monitor the system for the correctness of the transfer. The M0 core 

will generate the stimulus according to the firmware it is running.         

 

 

Figure 4-54: Cortex-M0 replacing the Sequences 
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The firmware for the Cortex-M0 is written in C and compiled 

using CodeSourcery. The compiled firmware is loaded into the program 

memory for each M0 through the verification environment. The 

encrypted cipher text from the AES that is sent out through the parallel 

port is monitored by the parallel port UVC. The result is logged into a 

debug log file.  

 

Figure 4-55: Loading firmware to the Cortex-M0 
 
 
 
 
4.5 Summary 
 

This chapter has discussed on the architecture of our verification 

environment which we have built hierarchically. We started off by 

designing the component level verification environment for AHB, APB, 

GPIO, SPI, and CONNECT network. We utilize these primitive 

environment in our subsystem environments such as AHB GPIO, 

AHB2APB Bridge, AHB2NoC and APB SPI. The system level 
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verification environment can then be formed from multiple subsystem 

level and component level verification environment. The following 

chapter shall discuss on the results from the exploration of our different 

NoC architectures.   
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       CHAPTER 5 
 

 RESULTS AND DISCUSSIONS 
 
 
This Chapter shall discuss the results of our verification platform for our NoC 

architecture exploration. The platform can be separated into fixed and variable 

components. The fixed components are the AHB, and APB system modules in 

the architecture as well as the basic Sequences for stimulus generation. For the 

variable components, it consists of the router architectures and the number of 

modular verification environments that can be instantiated in the system level 

environment. In the following section, the verification strategies for verifying 

the various UTAR NoC architectures using the platform will be discussed. This 

includes the verification plans for the modules of the UTAR NoC, the 

simulation results and the self-checking verification environment scoreboards 

that we have developed to assist in the verification process.  

5.1 Verification Plans 
 
 

The foremost purpose in any design verification is to achieve full 

and complete functional coverage. A verification plan is necessary to 

serve as a guideline and checklist in developing our test cases for 

verifying the corresponding modules. In order to maintain clarity and not 

cloud things with the overwhelming details only the functions of the 

AHB2NOC Bridge, various router architectures and APB subsystem 

modules and their verification plan will be discussed in the following 

subsections, as illustrations. The discussion for the rest of the modules in 

the system is included in APPENDIX A. 

121 
 



 

 

5.1.1 AHB2NOC Bridge 
 
 

The AHB2NoC Bridge converts an AHB data transfer to a 

network data flit and also from the network flit to the AHB transfer. For 

each router node a dedicated flit transmit and receive buffer is created. 

The transfer is sent through the AHB to the corresponding transmit 

buffer. The transfer or flit is received by another AHB2NoC bridge at 

the destination. If the transmit interrupt is enabled, the transmit interrupt 

will be triggered upon sending the flit. Upon receiving the flit, the new 

transfer flag is set. The received interrupt can also be triggered if the 

received interrupt is enabled. The bridge also allows the bridge to 

receive multiple flits before triggering the interrupt. The received flit 

will be stored in the receive buffer location that denotes the sender 

router. When the buffer in the router and the bridge buffers are full, the 

transfers that follow will be discarded.  

 

The Table 5-1 summarizes the AHB2NoC Verification plan. The 

first test scenario is to ensure the AHB2NoC Bridge is able to cast the 

transfer from the AHB to flit and vice versa. Another test is developed 

to ensure that the bridge only generates the interrupt after the number of 

transfers defined. Since the bridge also contains transmit and receive 

buffers, it is also necessary to verify that the buffer full flag is set and 

the transfers following does not override the buffer content. Polling 

method is also used as a test to gather the new transfer from the bridge.  
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Table 5-1: AHB2NoC Verification Plan 
 
Tests Test Descriptions Verification 

Criteria 
ahb2noc_special_test Enable transmit and 

receive interrupt. Send 
eight flit from AHB to 
router and receive eight 
credit from the router and 
compare the transfer 

Expects the 
AHB2NoC bridge 
is able to send 
ahb and flit 
correctly and vice 
versa 

ahb2noc_n_flit_special_tes
t 

Enable transmit and 
receive interrupt. Enable 
multiple receive interrupt. 
Send sixteen flit from AHB 
to router and receive 
sixteen credit from the 
router and compare the 
transfer 

Expects that the 
receive interrupt 
is set after n_flit 
transfer. 

ahb2noc_transmit_buffer_
overrun_test 

Transmit 34 bit flit until 
transmit buffer overrun and 
check for buffer full flag 

Expects that the 
data in the 
transmit buffer is 
not overwritten 
by the new 
transfer after the 
transmit buffer is 
full 

ahb2noc_receive_buffer_o
verrun_test 

Receive 34 bit flit until 
receive buffer overrun and 
check for the buffer full 
flag 

Expects that the 
data in the receive 
buffer is not 
overwritten after 
the receive buffer 
is full 

ahb2noc_polling_test 
 

Check for buffer receive 
flit flag and compare the 
transfer 

Expect that the 
flit receive flag is 
triggered upon 
receiving a new 
flit 

ahb2noc_random_test Randomly transmit and 
receive flit with random 
interval delay 

Expects the 
correct transfer 
that is send and 
receive within 
different time 
intervals 
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5.1.2 NOC Router 
 
For the NoC Router, we will use the ring architecture as an illustration.  

5.1.2.1 Ring architecture 
 

In Table 5-2, the NoC Ring Router verification plan is 

summarized. The router routes the transfer from one of the core to 

another. The noc_ring_34_test sends the flit stimulus from one node to 

another node of the router. This is used to verify the send and receive of 

the router. To ensure that collision does not occur in the network, 

noc_ring_34_collision_test has been setup. This test starts sending from 

all the router nodes simultaneously and monitors the incoming flit. 

Table 5-2: NoC Verification Plan 
 
Tests Test Descriptions Verification 

Criteria 
noc_ring_34_test 34 bit data transfer is sent 

from one node to another 
in the 4 node ring router 

Expects the router 
to send and 
receive the flit 
correctly. 

noc_ring_34_collision_test Send 34 bit transfer from 
all 4 node of the router 
simultaneously 

Expects the flits 
send by the router 
does not collide 
with the flit that is 
sent from another 
router 

noc_ring_34_random_tran
sfer_collision_test 

Send 34 bit transfer from 
random routers for 
collision detection 

Expects no 
collision to occur 
when randomly 
send and receive 
from the routers 
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5.1.3 APB Subsystem Environment 
 
 

The APB Subsystem provides a lower bandwidth bus for slower 

peripherals. In our system, only the SPI module is attached to the APB 

bus. Hence, the main focus is to verify the APB SPI module in this case. 

The SPI module is able to generate maximum of 128bit of SPI transfer.  

The basic test case for the SPI is to read and write through the 

SPI correctly is shown in Table 5-3. Other test cases include generating 

various speed and transfer size of the SPI transfer. Illegal range of speed 

and data sizes test has also been setup to ensure that the invalid transfers 

are not driven to the interface. 

 

Table 5-3: APB Subsystem Verification Plan 
 
Tests Test Descriptions Verification 

Criteria 
apb_spi_read_test Set the SPI module to 

output SPI transfer 
128bit and the UVC to 
read the transfer 

Expects correct 
SPI transfer from 
the module 

apb_spi_write_test 
 

Set the SPI to output 
SPI transfer 128bit and 
the UVC to loopback 
the transfer. 

Expects the 
module to read 
the correct SPI 
transfer 

apb_spi_random_test Set the SPI  module to 
send constrained 
random transfer size 
and transfer mode 

Expects correct 
transfer with 
various sizes from 
the module  

apb_spi_random_div_test Set the SPI module  to 
send constrained 
random transfer speed 
and the delay between 
each transfer 

Expects the 
module to send 
the SPI transfer 
with various 
speeds 

apb_spi_illegal_transfer_size
_test 

Set illegal SPI transfer 
size 

Expects the 
module not to 
drive any transfer 

apb_spi_illegal_speed_test Set SPI divisor register 
beyond the range 

Expects the 
module not to 
drive any transfer 
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The next section shall discuss the stimulus generation mechanism that we have 

developed. 

5.2 Verification environment stimulus generations 
 
 

The Sequences or stimulus generation mechanism described in 

this section form the basis test template of each of the verification 

environments. These Sequences has been used and extended to generate 

the test cases that has been described in the verification plan subsection 

earlier.  Some of these Sequences which models a more complex scenario 

consist of tasks so that it can be utilized when it is used in the higher level 

Sequences. During the discussion later, a few examples are given to 

illustrate the usages of some of these Sequences.  

5.2.1 NoC Sequences 
 
 

Table 5-4 summarizes the NoC Master Basic Sequences that 

model the client for the network. The send_flit Sequence can be used to 

generate the flit for the router. In this Sequence, the parameters that can 

be constrained are valid, is_tail, dst, vc and data. This valid bit is used 

to indicate that the generated flit is valid. The is_tail parameter is used 

to indicate that this is the last flit while dst allows the flit to be sent to 

different locations. The vc is the virtual channel that the flit is used to 

send through the network. Since the network is credit based, the 

send_credits Sequence is created to send credit to the router. In this 

Sequence the valid and vc bit can be constrained. This valid bit is used 
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to indicate a valid credit while the vc bit indicates the virtual channel for 

the incoming credit.  The ask_credit Sequence can be used to request 

credit from the router. In order to ease the use of the basic Sequences, 

the send_flit_ask_credit Sequence combines the functionality of the 

send_flit and ask_credit Sequences. 

 

Table 5-4: NoC Master Basic Sequence 
 
NoC Master Basic 
Sequence  
 

Description 

send_flit  Sequence to generate flit to the router  
ask_flit Sequence to request flit from the router  
send_credits Sequence to send credits to the router 
ask_credit Sequence to ask credit from the router 
send_flit_ask_credit Sequence that sends flit and request credit 

from the router 
 

To illustrate the usage of these Sequences, Figure 5-1 shows part 

of the ping_pong_agent_seq. From the figure, the send_flit_seq 

Sequence is an instance of send_flit. The parameters inside this 

Sequence can be constrained. For this example, the flit is set to valid and 

this flit is the last flit of the transfer. The data for this flit is 1.  
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Figure 5-1: Part of ping_pong_agent_seq 
 

The NoC Slave Basic Sequences models the router is listed in 

Table 5-5. The slave_send_flit Sequence is used to send flit to the client. 

Similarly, the slave_send_credits Sequence sends the credit to the client 

and the slave_ask_credits Sequence request the credit from the client. 

The slave_send_flit_ask_credit Sequence allows the flit to be sent to the 

client and request the credits from the client. This Sequence merges the 

slave_send_flit Sequence with slave_ask_credit Sequence.  
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Table 5-5: NoC Slave Basic Sequence 
 
NoC Slave Basic Sequence  
 

Tasks Description 

slave_send_flit  Sequence to generate 
the flit for the router 
client  

slave_send_credits 
 

 Sequence to generate 
the credit for the 
router client 

slave_ask_credit  Sequence to ask the 
credit for the router 
client 

slave_send_flit_ask_credit noc_slave_send_flit(va
lid, is_tail, vc, data, 
delay) 
 

Sequence to generate 
the flit for the router 
client and request 
credit 

slave_ask_flit_send_credit send_credits(flit,  
num_valid, int 
num_vc, int 
num_credit_delay) 
 

Sequence to request 
the flit from the 
router client and send 
the credit to the 
router client 

noc_slave_ask_flit(int 
num_flit, int 
num_valid, int 
num_vc, int 
num_credit_delay) 
 

 
 

An ahb2noc_special_slave_send_flit Sequence is extended 

from one of the NoC Slave Basic Sequences as shown in Figure 5-2.  

The task noc_slave_send_flit() has been utilized to generate the flit. In 

addition, constraints are added to the destination and source bits in the 

flit so that the source and destination is limited to sixteen.   
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Figure 5-2: ahb2noc_special_slave_send_flit Sequence 
 
 

5.2.2 AHB 
 

Table 5-6 shows the AHB Master Basic Sequence that allows the 

AHB Master transfer to be modelled. These Sequences provides various 

types of AHB transfers – bytes, half word, word, double word, four 

word, un-pipelined, un-aligned.  
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Table 5-6: AHB Master Basic Sequence 
 
AHB Master Basic 
Sequence  

Tasks Description 

ahb_seq 
 

 

wait_response(ahb
_transfertx) 

The task to wait for the 
response from the slave 

wait_response_mul
(ahb_transfertx, bit 
last_trans, int 
index, ref 
bit[`BUS_SIZE-
1:0] data_array[]) 

The task to wait for multiple 
response from the slave 

monitor_reset_erro
r() 

The task to monitor reset and 
error on the bus 

ahb_single_seq  Sequence to generate idle and 
non-sequential AHB transfer  

ahb_wait_read_data_s
eq 

 

 Sequence to wait for the data 
ready to be read 

ahb_single_unpipeline
d_seq 

 

 Sequence to send non 
pipelined AHB transfer 

ahb_doubleword_seq  Sequence to send AHB 
double word size transfer 

ahb_fourword_seq  Sequence to send AHB four 
word size transfer 

ahb_unalined_seq  Sequence to send unaligned 
AHB transfer 

ahb_incr_seq  Sequence to incremental AHB 
transfer 

ahb_incr_n_seq 
 

 Sequence to send multiple 
incremental AHB transfer 

ahb_wrap_n_seq 
 

 Sequence to send four, eight 
or sixteen incremental AHB 
transfer 

ahb_valid_seq  Sequence to send random 
valid AHB transfer 

ahb_unpipelined_seq  Sequence to send non 
pipelined AHB transfer 

basic_multiple_seq  Sequence that combines the 
various sequences that 
generates the AHB transfers 
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As an example to use the AHB Master Basic Sequence, the 

ahb_pp_single_seq is extended from the basic_multiple_seq Sequence. 

Part of this Sequence is shown in Figure 5-3. single_non_seq Sequence 

in the basic_multiple_seq Sequence has been used in this example. The 

pp_direction, pp_address, pp_data, and pp_size parameters can be used 

to constraint the Sequence. The pp_direction parameter allows either a 

read or a write transaction to be generated. The pp_addess parameter 

allows the transaction to be generated for the corresponding address that 

is defined while the data for that transaction can be defined in the 

pp_data parameter. The size of each transfer can be defined using 

pp_size.  

 

 
Figure 5-3: Part of ahb_pp_single_seq Sequence 
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The AHB Slave Basic Sequences listed in Table 5-7 can be used 

as a generic AHB slave model. One of the functions in this Sequence is 

to wait for the slave data to be ready using the wait_data_ready() task. 

The AHB control signals for the from the AHB master can be retrieved 

by using wait_control_ready() task. The driving_driver() allows the 

model to drive AHB transfers with errors and also extends the transfer 

by de-asserting the HREADY signal through the hready_duration 

parameter. 

 

Table 5-7: AHB Slave Basic Sequence 
 
AHB Slave Basic 
Sequence  

Tasks Description 

ahb_slave_basic_seq 
 

wait_data_ready(ahb_transfer 
rx, ahb_transfer prev_rx) 
 

Task in the 
sequence to wait 
for the slave data 

wait_control_ready Task in the 
sequence to wait 
for the AHB 
control signals 

driving_driver(int 
hready_duration, int error, 
logic [31:0] hrdata) 
 

Task to drive 
transfers to the 
AHB bus 

 
 

Figure 5-4 shows the ahb_lite_bus_sw_ahb_slave_seq1 which 

is used as a model for one of the AHB slaves. The driving_driver() task 

has been utilized. There are 3 input parameters to this task: 

hready_duration, error, and hrdata. The hready_duration parameter 

allows the transaction to be delayed for a defined cycles before driving 

the transaction to the DUT. In order to drive an error transaction, the 
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error parameter must be set. The data can be constrained using the 

hrdata parameter.   

 

 
 
Figure 5-4: ahb_lite_bus_sw_ahb_slave_seq1 Sequence 
 
 
 
 
 
 
 

5.2.3 APB 
 

The APB Master Basic Sequences in Table 5-8 can be used to 

generate various APB transfers. There are Sequences to perform byte 

and word read write Sequence.  The read_after_write_seq allows a 

Sequence of write read transfer. By using the 

multiple_read_after_write_seq, multiple write read transfer can be 

done. This Sequence extends the read_after_write_seq.  
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Table 5-8: APB Master Basic Sequence 
 
APB Master Basic Sequence  
 

Description 

read_byte_seq Sequence to read a byte 
write_byte_seq Sequence to write a byte 
read_word_seq Sequence to read a word 
write_word_seq Sequence to write a word 
read_after_write_seq Sequence to perform write and read 
multiple_read_after_write_seq Sequence to perform multiple read and 

write 
 
 

The APB Slave Basic Sequences is used to model the APB slave. 

The Simple_response_seq can be used to send simple transfer to the 

APB master. Mem_response_seq can also be used. This allows the write 

transfer from the APB master to be stored and the content can be read 

back during the read transfer. Table 5-9 summarizes these Sequences. 

 

Table 5-9: APB Slave Basic Sequence 
 
APB Slave Basic Sequence  
 

Description 

Simple_response_seq 
 

Sequence that checks for the valid APB slave 
access and if the address is within the range, 
response to the transfer 

Mem_response_seq Sequence that loopback the APB data that is 
written to the slave model 

 
 

5.2.4 SPI Sequence 
 
 

In the SPI environment, the spi_base_seq implements the basic 

SPI read write Sequence.  The Spi_incr_payload_seq allows the 

generation of continuous SPI transfer. Table 5-10 summarizes the list of 

SPI Basic Sequences.  
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Table 5-10: SPI Basic Sequence 
 
SPI Basic Sequence  
 

Description 

Spi_base_seq Sequence that generates basic SPI transfer 
Spi_incr_payload_seq Sequence that generates multiple SPI 

transfer 
 
 
 

5.2.5 GPIO Sequence 
 

The GPIO Basic Sequence is developed to generate the GPIO 

read write transfer. These Sequences is listed in Table 5-11. This 

implementation is done within the GPIO environment. 

Gpio_multiple_simple_trans extends the Gpio_simple_trans_seq to be 

able to generate multiple read write transfer. 

 

Table 5-11: GPIO Basic Sequence 
 
GPIO Basic Sequence  
 

Description 

Gpio_simple_trans_seq 
 

Sequence that generates GPIO read write 
transfer 

Gpio_multiple_simple_trans 
 

Sequence that generates multiple write 
transfer 

 
 

The performance evaluation for our various architectures will be 

discussed in the following subsections. The discussion compares the 

simulation results between the M0 cores and the AHB UVC model. The 

result from four, eight and sixteen router system will also be discussed.   
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5.3 Performance Evaluation 
 

Using the UVC environment that we have setup, the Sequence to 

generate the traffic and estimate the performance of our system is 

designed. A simple scenario where transactions are initiated from the 

special core to one router followed by two and three router. This setup has 

been done using the four router system. Figure 5-5 shows the results from 

the simulation. It is notable that the latency for the initial transfer is 29 

cycles for transfer to 1 and 3 routers. When transferring to 2 router the 

latency is 33 cycles. In 2 router system, it is expected that the latency will 

increase initially because at this time before the 1st transfer is read by the 

special core, the acknowledge flit for the first normal core is being read. 

For a 3 router system, then, the latency increase at every 4th 

transfer. There is no spike in between the 3 router system because the 

special core is programmed to send to all the 3 routers before reading the 

acknowledge flit.  
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Figure 5-5: Various transfer in 4 router system 
 
 

This simulation has been extended to evaluate the performance 

of the eight and sixteen router system. For the sixteen router system, the 

latency increases drastically after the 10th data is sent. This is because at 

this stage, the data is already in the special core’s buffers but the special 

core is receiving the acknowledge flit for the last transfer to be sent. The 

8 router system on the other hand received the last acknowledge flit 

during its 19th flit. Hence, there is a peak on the graph.  
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Figure 5-6: Latency comparison for 4, 8, and 16 router system 
 
 
 

Figure 5-7 illustrate the results from configuring the Ahb2NoC 

Bridge in the 4 router system with buffer depth of 1, 2 and 5. As the 

buffer size increases the system throughput also increases. The system 

response with the Ahb2NoC Bridge configured with 5 buffers begins to 

stabilize after the 15th data. This is because this fills up the 5 buffer depth 

in the corresponding Ahb2NoC Bridge which interfaces to the 3 normal 

cores. The system would be least efficient when the number of data to 

be encrypted is less than the buffer size of the system. 
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Figure 5-7: Various Buffer Depth for 4 router system 
 
 

The throughput comparison for four router system with buffer 

depth 1, 2 and 5 is shown in  

Table 5-12. The buffer depth 2 system has higher throughput 

compared to the buffer depth 5 system because the buffer depth 5 system 

reaches its steady state throughput after 15th data while the system with 

buffer depth 2 already stabilize during its 6th data. Once the amount of 

input data is higher than the time the system takes to stabilize then the 

throughput of the system with buffer depth 5 will be more than the 

system with buffer depth 2. The following section will discuss on the 

result of the system with 1kB, 2kB, 4kB and 8kB data size. 

 
4 router system architecture Throughput( bit per cycle) 

Buffer depth 1 2.7826 
Buffer depth 2 3.3147 
Buffer depth 5 2.869 

 
Table 5-12: Throughput for 4 router system with various buffer depth 
 
 

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30

LA
TE

N
CY

 ( 
BI

TS
 P

ER
 C

YC
LE

)

NUM OF DATA

CAMPARISON WITH DIFFERENT BUFFER DEPTH  
FOR 4  ROUTER SYSTEM

buffer depth 2 buffer depth 5 buffer depth 1

140 
 



 

  The effect of the system with various data sizes has also been 

studied.  

Figure 5-8 shows the throughput performance result when the system of 

different buffer depth is injected with various data sizes. The throughput 

difference between systems with buffer depth 5 and buffer depth 2 gives 

about additional throughput of 0.5 bit per cycle. However, increasing the 

buffer depth further to 10 results in about 0.2 bit per cycle.    

  

 
 
Figure 5-8: Throughput for 4 router system with various data sizes 
 
 

The result of the latency of the system is shown in  

Figure 5-9. By increasing the buffer depth from 2 to 5, the 

latency increases about 50 cycles. Increasing from buffer depth 5 to 10 

further results in an increase of 100 cycle’s latency. The system with 

buffer depth 5 in this case would be the most efficient because increasing 

the system buffer depth to 10 would result in insignificant throughput 

performance compared to the buffer depth 5 system performance.  

Furthermore, this will increase the latency and cost of the system as 

3
3.2
3.4
3.6
3.8

4
4.2
4.4

0 1 2 3 4 5 6 7 8 9TH
RO

U
GH

PU
T 

(B
IT

 P
ER

 C
YC

LE
)

DATA SIZE (KB)

THROUGPUT FOR 4  ROUTER SYSTEM WITH 
VARIOUS DATA SIZES

buffer depth 2 buffer depth 5 buffer depth 10

141 
 



 

bigger buffer size would contribute to bigger chip size and higher power 

consumption.    

 
 
Figure 5-9: Latency for 4 router system with various data sizes 
 
 
 

Figure 5-10 shows the result of the effects of various buffer depth 

on an eight router system. With buffer depth 1, the systems latency 

stabilizes after 8th transfer. However, it is notable here that the system 

with buffer depth 5 and 10 increases the latency until the 20th data. The 

system with buffer depth 5 stabilizes around 35th transfer which is the 

total amount of data required to fill up the buffers. On the other hand, 

buffer depth 10 system increases in latency before 10th data and more 

rapidly from the 15th to 20th data and decline slowly after the 20th data. 

As the buffer size increases, the latency increases as well. This is 

because with more buffers, the system have to wait for the buffers to get 

filled up before initiating the transfer.  
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Figure 5-10: Various Buffer Depth for eight router system 
 
 

Further investigation on the effect of various data sizes is 

perform to evaluate the performance of the system. The result is 

illustrated in Figure 5-11. With data size less than 2kB, a system with 

buffer depth 5 outperformed a system with buffer depth 10. This means 

that increasing the buffer depth at this stage would reduce the throughput 

performance instead. When the data size is 2kB, the throughput 

performance of a system with buffer depth 10 is similar to a buffer depth 

5 system. From 4kB data size onwards, the throughput difference 

between a buffer depth 5 and 10 system is about 0.1 bit per cycle. 
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Figure 5-11: Throughput for eight router system with various data sizes 
 

 

Figure 5-12 shows the latency of the eight router system with 

various data sizes. The latency between system with buffer depth 2 and 

5 is about 140 cycles while the difference of latency between buffer 

depth 5 and 10 system is 230 cycles. In this system, it is also evidently 

that system with buffer depth 10 offers insignificant throughput 

improvement but increases the latency instead. The insignificant 

improvement is due to the fact that beyond 5 buffer depth, the network 

and normal resources are already fully utilized.   
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Figure 5-12: Latency for eight router system with various data sizes 
 
 

For sixteen router system, the latency increases for the system 

with buffer depth 2, 5 and 10 with 160 data as shown in Figure 5-13. 

This is because the router size is significantly larger compared to 4 and 

eight router system which affects the time for the system to reach a 

steady throughput response.  

 

Figure 5-13: Various Buffer Depth for sixteen router system 
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Similarly, the study of the response of various data sizes on this 

system has been performed. Figure 5-14 shows the throughput result 

response of the system. When the data size is lesser than 2kB, the system 

with buffer depth 10 would have the lowest throughput of 0.5 bit per 

cycle lesser compared to the system with buffer depth 2 and 5. At this 

point, the system would be more efficient if a buffer depth 2 is used 

instead. As the data size increases to 4kB, the system with buffer depth 

5 and 10 offers about 0.5 bit per cycle of throughput improvement. This 

makes a system with buffer depth 5 a better choice compared to buffer 

depth 10 system. When the data size is more than 4kB, system with 

buffer depth 10 offers only 0.1 bit per cycle of throughput improvement 

to the system. Again, the insignificant improvement is due to the fact 

that beyond 5 buffer depth, the network and normal resources are 

already fully utilized.   
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Figure 5-14: Throughput for 16 router system with various data sizes 
 
 

The latency response of the sixteen router system can be seen in 

Figure 5-15. The latency of a buffer depth 5 system is 300 cycles more 

than the buffer depth 2 system. The buffer depth 10 system has 450 

cycles latency more than a buffer depth 5 system. Overall, system with 

buffer depth 5 is the most efficient in this case as increasing the buffer 

depth further offers insignificant improvement of the throughput.  
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Figure 5-15: Latency for 16 router system with various data sizes 
 
 
 

The comparison between the router systems and buffer depth is 

performed. Figure 5-16 shows the result of these comparisons. In this 

case, the four router system has a better throughput performance 

compared to the eight and sixteen router system. The maximum 

throughput of these systems are about 3.55 bit per cycle. This is because 

the special core has more buffers to monitor in a larger system.  
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Figure 5-16: Throughput comparison between various router system with 
buffer depth 2 and data sizes 
 

 

The latency for comparison for the systems with buffer depth 2 

is shown in Figure 5-17. It is expected that the sixteen router system will 

have the highest latency since the overall network size is larger 

compared to the 4 and eight router system.  
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Figure 5-17: Latency comparison between various router system with 
buffer depth 2 and data sizes 
 

 

Figure 5-18 shows the throughput comparisons between systems 

with 5 depth buffers. The throughput for a 4 router system is larger than 

the throughput of the eight and sixteen router system. From this result, 

it can be predicted that when the router system becomes larger, the 

throughput of the system will reduce. The maximum throughput of these 

systems are about 4.1 bit per cycle. Comparing the buffer depth 2 and 

the buffer depth 5 systems, the maximum throughput has increased by 

0.55 bit per cycle from 3.55 to 4.1 bit per cycle. 
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Figure 5-18: Throughput comparison between various router system with 
buffer depth 5 and data sizes 
 
 

The latency between the systems with 5 depth buffer is shown in 

Figure 5-19. The 4 router system has the least latency in the comparison. 

This is because the size of the 4 router system is smaller compared to 

the size of a sixteen router system. From the result, it can also be seen 

that when the size of the router doubled, the latency is also doubled. 
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Figure 5-19: Latency comparison between various router system with 
buffer depth 5 and data sizes 
 

 

The throughput comparison for 10 depth buffer for the 4, eight 

and sixteen router system is shown in Figure 5-20. From this result, the 

maximum throughput for these systems are 4.3 bit per cycle.   
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Figure 5-20: Throughput comparison between various router system with 
buffer depth 10 and data sizes 
 

 

The sixteen router system with buffer depth 10 has the largest 

latency compared to 4 and eight router system because the larger the 

router system, the more buffers the system has for the corresponding 

normal cores.  
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Figure 5-21: Latency comparison between various router system with 
buffer depth 10 and data sizes 
 

The next subsection will discuss the methods to scale and 

reconfigure the platform.  

 

5.4 Verification Environment Scalability and Re-configurability 
 
 

The platform consists of parameterized modular verification 

environments that can be instantiated according to the targeted NoC 

architectures and the processing node architectures.  

We used the following concepts to construct a scalable and 

reconfigurable NoC verification platform: Virtual Sequencer, 

Configuration Objects, and Sequence Library. 
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5.4.1 Virtual Sequencer 

Each environment in the platform has one or more Sequencers on which 

the Sequences can be injected into the DUT. In UVM, there is a start 

method to start a Sequence on a particular Sequencer. To be able do so, 

we must obtain a handler to that particular Sequencer. The Virtual 

Sequencer refers to a Sequencer that has all the handlers to the Sequencer 

in the platform. This essentially allows us to control and coordinate all the 

stimulus generators.  

 

The Virtual Sequencer setup is illustrated in Figure 5-22. In the figure, the 

AHB Seqr 0 acts as the handler corresponds to the AHB ENV 0. Similarly, 

the NoC Seqr 0 provides a handler to the NoC ENV 0 environment. After 

the platform is constructed in the build phase, we connect the handlers in 

the Virtual Sequencer to the respective Sequencers. In UVM, these are 

simply assignments of handler variables. 

 

 

Figure 5-22: Virtual Sequencer with lower level Sequencer handler 
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Since our platform is parameterized, such assignments can be done 

automatically because the hierarchical paths of the Sequencer handlers are 

well defined by the parameters. Part of the Virtual Sequencer code with 

the AHB and SPI handler is shown in Figure 5-23.  

 

 

Figure 5-23: Part of the Virtual Sequencer code 
 
 
 

5.4.2 Configuration Objects 
 

Most of the parameters of our platform are controlled through the 

Configuration Objects. As discussed previously, UVM provides the 

configuration database class to facilitate such use case. This database can 

be used to store virtually any objects.   

 

In our platform, the appropriate system component can be 

reconfigured which includes the number of masters and slaves for each 

environment. This also includes the slave address mapping for systems 

such as AHB and APB. The discussion of the Configuration Objects in 

this section is based on the NoC Configuration Object as shown in Figure 

5-24. We shall describe each of  its parameters and show how to use these 

parameters to configure the Environments and its sub-components.  
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The num_of_routers specifies the number of NoC master while 

the num_of_slave_routers is used to specify the number of NoC slaves. 

These are used in to configure the components in the NoC Environment. 

The num_of_normal_core and num_of_special_core define the number 

of cores in the platform. As an example of their usage, these parameters 

are needed to determine the connections between the Virtual Sequencer 

and the Sequencer for the AHB and SPI Environment as discussed in 

Figure 5-23 in the previous section.  

 

 

Figure 5-24: Part of NoC Configuration Object 
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In addition to the parameters described, there are two functions 

in the NoC Configuration Objects. These can be used to add slaves in 

the NoC Environment using add_slave() function or to add masters 

through the add_master() function. The masters and slaves have 

previously been discussed in Chapter 4 Section 4.1.  

 
The detailed implementation of the add_master() function for 

the NoC Configuration Object is shown in Figure 5-25. Each time when 

this function is called, a new master configuration object is created and 

stored in the master_configs queue.  

 

 

 
 
Figure 5-25: Add Master Function 
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Similarly, Figure 5-26 shows the implementation of the slave 

parameter. Each time when this function is called, a new slave 

configuration object is created and stored in the slave_configs queue.  

 

 
 
Figure 5-26: Add Slave Function 
 
 
 To use this NoC Configuration Object, it is registered to the Factory in 

the platform. The usage of the Factory has been described previously in Chapter 

3 Section 3.1.5. This Configuration Object is passed into the NoC Environment 

and its subcomponents. Figure 5-27 Figure 5-27 shows part of the code that 

perform this task. 

 

 

 
 
Figure 5-27: Setting NoC Configuration Object  
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  In each of the components, Figure 5-28 shows the code used in 

the build phase to retrieve the Configuration Objects. This Configuration Object 

can then be used to configure its sub components.  

 

 

 

Figure 5-28: Code to retrieve the Configuration Objects  
 
 
 

Figure 5-29 shows part of the NoC Environment code. The 

num_of_routers determines the number of NoC master Agents that to 

create. The information stored in the each of the master_configs is 

retrieved to configure the master Agents. These Agents will create their 

Driver, Sequencer and Monitor accordingly.   

 

 

 

Figure 5-29: Part of NoC Environment Code 
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Reusing the same environment, multiple instances of the Agents 

can be invoked through the add_slave() and add_master() function. This 

allows the verification environment to be scaled horizontally.  

Figure 5-30 shows how we configure the platform to model a 

four routers NoC system. There are four cores in the system, a special 

core and three normal cores, which are specified through the 

num_of_normal_core and num_of_special_core parameters.   

 

 

 
 
Figure 5-30: NoC configuration for four router system 
 

 

Figure 5-31 shows the NoC Configuration Objects to configure 

the existing platform for an eight routers system. The parameters inside 

the NoC Configuration Object are changed accordingly. For this system, 

it consists of a special core and seven normal cores. 
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Figure 5-31: NoC Configuration for eight routers system 
 
 

Similarly, the configuration of the sixteen router system is as 

shown in Figure 5-32 which consist of a special core and fifteen normal 

cores.  

 

 
 
Figure 5-32: NoC Configuration for 16 routers system 
 
 

Figure 5-33 illustrates graphically the constructed platform 

based on the parameters in the NoC Configuration Object. Through the 

setting of these parameters, the corresponding checkers are also 

instantiated. Each AHB2NoC bridge link will have a pair of AHB2NoC 

Send and Receive Scoreboard to monitor the transfer. Another NoC 

Scoreboard to verify the transfers within the router is setup. The 
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scoreboards are identified with two indices. The first index would denote 

the node number of the router. The second index would indicate the link 

to each of the nodes. For example, NoC Sbrd [1][0] would monitor the 

transfer from router 1 to router 0 and NoC Sbrd [0][1] would monitor 

the transfer from router 0 to router 1.    

 

 
 
Figure 5-33: NoC Platform 
 

 

For different network router architecture with the same number of 

routers, the new router can be used to replace the old router. In the case 

where the number of routers is different, the top design module definition 

has to be changed in accordance to the router’s input output ports. 
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5.4.3 Sequence Library 

 

The scalability of the environment can also be scaled vertically. Using 

the basic Sequences that have been discussed in the previous sections, 

other Sequences can be extended from these Sequences. Figure 5-34 

shows part of the ahb2noc_special_base_seq. The Sequence is extended 

from one of the AHB Master Basic Sequence.  This is used to generate 

and read transfers for the AHB2NoC Bridge.  

 

 

Figure 5-34: part of the ahb2noc_special_base_seq Sequence 
 

An ahb_aes_base_seq as shown in Figure 5-35 is also extended 

from the same basic_multiple_seq. This Sequence generates the plaintext 

and key for the AES encryption. There is also a task to read the cipher text 

from the AES after the encryption is completed. This shows that the basic 

Sequences can be reused to develop the other Sequences. 
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Figure 5-35: part of ahb_aes_base_seq Sequence 
 

Our platform can be easily extended to include a new system 

component. We briefly describe the required steps in the following 

paragraphs.  

 

Firstly, the corresponding environment of that component has to 

be developed. This environment will be instantiated in the platform using 

a parameterized variable that is configurable through the Configuration 

Objects. 

  

Next, a Sequencer handler for this new environment has to be 

added to the existing Virtual Sequencer. This is because a Sequence can 

only be started on the Sequencer with the same type.  

 

The new test Sequences corresponding to the new architecture 

have to be created as well because of the new test scenarios for the new 

NoC architecture. These test cases can be derived from the Sequences 

library.  
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In addition to the above, a new virtual interface has to be defined 

when developing the new component. This virtual interface is created at 

the top level module of the platform to bind the new system component 

and the platform.  

 

5.5 Summary 
 
 

This Chapter starts off by giving an overview of our platform and 

verification plans for our UTAR NoC based on the design specifications. 

Only a few main modules are used as illustrations in order to keep the 

clarity and conciseness of this dissertation. The discussion is followed by 

the various Sequences that we have developed for various modular 

verification environments. The design exploration that we have 

performed on a four-, eight-, and sixteen-router system illustrates the re-

configurability and scalability of the verification environment also has 

been discussed. We have also demonstrated by our experimentation with 

various buffer sizes, data sizes and router numbers that this platform can 

be readily used for architectural exploration. The final section of this 

chapter discussed the scalability and re-configurability approach for the 

module and system level verification environment.  The next Chapter 

shall conclude this dissertation.  
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            CHAPTER 6 
 

 CONCLUSION 
 

This chapter summarizes the dissertation. The development of the various 

verification components that is used to assist the verification of our UTAR NoC 

will be highlighted. This summary will also include the summary of the methods 

that is involved to make the verification environment scalable and 

reconfigurable. The discussion ends with the stress on the importance of design 

verification and the reasons reusability, scalability and configurability are very 

desirable attributes. 

 

 

6.1 Conclusion 
 
 

The Universal Verification Components (UVC) are component 

models which are developed based on the Universal Verification 

Methodology (UVM). The various UVCs that we have developed models 

the protocol layers such as AMBA High-Speed Bus (AHB), AMBA 

Advanced Peripheral Bus (APB), GPIO, parallel port, CONNECT 

network, and SPI.  

 

These verification components are used to generate the stimulus 

and monitor the bus connected to the Design Under Test (DUT). From 

these component level environments, we have reused them to design our 

sub-system level verification environment. These component and sub-
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system level environments are used to form our UTAR NoC system 

level verification environment. With minimal effort, these similar 

environments can be setup quickly for verification of different 

architectural requirements and scale according to the network size.   

  

The detailed architecture of the verification environment from a 

component to system level has been discussed in Chapter 4 Verification 

Platform Architecture. The component verification platform has been 

used to verify the modules that we have designed, namely, the 

AHB2NoC Bridge, AES encryption model, GPIO, parallel port, AHB 

master and slave models and SPI. These components have been used to 

assist in the verification process of the UTAR NoC. The architecture of 

our UTAR NoC system level verification environment is derived from 

the modular and subsystem level UVCs environments are also explained 

in that chapter. 

  

These environments can easily be scaled horizontally. This can 

be done by using the Configuration Objects to configure the verification 

environment to expand according to the system needs. Multiple 

components or Agents can be instantiated within a verification 

environment based on these parameters. The parameters have also been 

used in our system level verification environment to instantiate multiple 

modular environments and checkers based on the number of processors 

in the system. These will allow each of the environments to monitor the 

responses from the processors and its peripherals. 
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Another aspect of scalability has been demonstrated through the 

use of the basic Sequences that basically models the protocol layer. 

These Sequences is used in higher level Sequences. By using this 

approach, the environment can be said to be able to scale vertically as 

well. The lowest level is the basic Sequences that act as the interface to 

access the Driver and Monitor. In the higher level Sequences, more 

focus can be put into designing various test cases or scenarios to exercise 

the system under test by utilizing the lower level Sequences. 

 

The result of our verification environment is discussed in 

Chapter 5. In the results and discussion section, the discussion starts off 

with the various basic Sequences that we have designed as stimulus for 

our system. This includes a Sequence that can be used to generate the 

traffic and measures the performance of a four-, eight- and sixteen- 

router system for architectural performance exploration purposes.  

 

The first exploration is done to investigate the effect of various 

buffer sizes of the AHB2NoC Bridge on the systems. A protocol where 

the special core sends a block of data with data block size the same as 

the AHB2NoC bridge buffer depth is used. From the results, the system 

would be the least efficient when the amount of data is lesser than the 

total buffer size of the AHB2NoC Bridge. By increasing the buffer size, 

the throughput of the system can be increased. The Ahb2NoC Bridge 

with buffer depth 5 gives the most efficient throughput. Increasing the 
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buffer depth further will only increase the throughput by 0.1 bits per 

cycle. The maximum throughput of a 2 buffer depth is 3.55 bits per cycle 

compared to a 5 buffer depth which is 4.1 bits per cycle. For the 10 deep 

buffer system, the maximum throughput is 4.3 bits per cycle.  

 

These performance measurements are further extended to an 

eight and sixteen router system to demonstrate the re-configurability and 

scalability of the architecture and verification environment that we have 

proposed. It also serves as a performance comparison among the four, 

eight and sixteen router system. It is observed that as the number of 

nodes in the NoC increases, the latency of the system also increases. 

This factor has to be taken into account when designing the architecture 

so that the overall system performance is not significantly affected.  

  

In conclusion, this dissertation has demonstrate the concepts 

involved in the development of a reusable, scalable and reconfigurable 

multi-processor Network-On-Chip virtual prototyping platform based 

on the Universal Verification Methodology (UVM). Object Oriented 

Programming (OOP) and UVM concepts along with System Verilog has 

provided an essential verification methodology and language for the 

current ASIC design challenges.  
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Any manufacturing defects and crystalline imperfections in the 

silicon wafers could cause faults at random locations, and therefore has 

to be discovered. Tests are developed to discover these faults. Achieving 

full functional, line, code and toggle coverage could provide a high 

degree of these fault coverage. Verification itself could therefore easily 

take up to 80% of the all the available resources in the ASIC design. 

Thus, a reusable, scalable and reconfigurable verification component 

and platform would certainly lessen the effort of the verification process 

and to ease design exploration.   
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APPENDIX A 
 

 Additional Verification Plan 
 

A.0 AHB Memory-Built-In-Self-Test (MBIST) 
 
 

In our system, we have implemented the MBIST module. The 

module injects various test patterns into the SRAM upon entering 

MBIST test mode. The purpose is to ensure that the SRAM is in good 

condition to operate. A test case to test the MBIST module to ensure that 

the MBIST module test the SRAM module.   

 

Table 2-1: AHB MBIST Verification Plan 
 
Tests Test Descriptions Verification 

Criteria 
ahb_mbist_test Set the chip into test mode. Replace 

the SRAM with SRAM model that 
can generate normal and faulty 
SRAM behaviour. Send start signal 
to mbist to send checkerboard, 
march-c pattern to SRAM including 
various faults test pattern, stuck-at-
fault(SAF), transition fault(TF), 
Inversion Coupling Fault(CFin), 
Idempotent Coupling Fault(Cfid), 
Dynamic Coupling Fault(Cfdyn), 
AND and OR Bridging Fault(BF), 
State Coupling Fault(SCF), Address 
Decoding Fault A(AF_A),  Address 
Decoding Fault b ( AF_B), Address 
Decoding Fault C (AF_C), Address 
Decoding Fault D (AF_D). If the 
SRAM model in faulty mode, the test 
should detect fail flag set. 

Ensure that the 
mbist can send 
various test 
patterns to verify 
the SRAM 
module and 
compare the 
results. 
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A.1 AHB SRAM 
 
 

The ahb_sram_test generates the various types of the AHB 

transfer to write to and read from the SRAM. This ensures the SRAM can 

handle the AHB various AHB transfers correctly. In the event that there 

are invalid transfers, the SRAM should also be able to handle that 

situation. ahb_sram_invalid_test has been setup for this purpose. Table 

2-2 shows the list of features and the criteria to verify the SRAM. 

 

Table 2-2: AHB SRAM Verification Plan 
 
Tests Test Descriptions Verification 

Criteria 
ahb_sram_test Generate multiple types of AHB 

transactions to the SRAM controller. 
Targeted address are randomized within 
the SRAM address map range. The 
order of transaction created: 

Expects the 
correct transfer is 
written to SRAM 
and the correct 
content is read 
from the SRAM 
 
 
 
 
 
 

 

AHB SINGLE WRITE transaction(s), 
the number of SINGLE transaction 
created depends on the num_single 
variable value 
AHB SINGLE READ transaction(s) 
AHB SINGLE WRITE transaction(s) 
with an IDLE transaction inserted after 
every WRITE transaction(s) 
AHB SINGLE READ transaction(s) 
with an IDLE transaction inserted after 
every READ transaction(s) 
AHB SINGLE WRITE transaction(s) 
with a SINGLE READ transaction 
inserted after every WRITE 
transaction(s) 
AHB INCR WRITE transaction(s), the 
number of transaction created depends 
on the num_incr variable value 
AHB INCR READ transaction(s) 
AHB INCR WRITE transaction(s) with 
BUSY transactions generated randomly 
AHB INCR READ transaction(s) with 
BUSY transactions generated randomly 
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Table 2-3: AHB SRAM Verification Plan Continued 
 
Tests Test Descriptions Verification 

Criteria 
 AHB INCRn WRITE transactions, the 

type of INCRn depends on the 
incr_n_burst variable value 

 

 AHB INCRn READ transactions  
 AHB INCRn WRITE transactions with 

BUSY transactions generated randomly 
 

 AHB INCRn READ transactions with 
BUSY transactions generated randomly 

 

 AHB WRAPn WRITE transactions, the 
type of WRAPn depends on the 
wrap_n_burst variable value 

 

 AHB WRAPn READ transactions  
 AHB WRAPn WRITE transactions with 

BUSY transactions generated randomly 
 

 AHB WRAPn READ transactions with 
BUSY transactions generated randomly 

 

ahb_sram_rand
om_test 

Generate random AHB transactions to 
the SRAM controller. Targeted address 
are randomized within the SRAM 
address map range. 

Expects the 
SRAM is able to 
be accessed with 
various random 
transactions 

ahb_sram_alter
nate_test 

Alternately drive transactions to SRAM 
and APB interface to toggle HREADY 
pin of SRAM controller.   

Expects the 
SRAM to be able 
to handle when 
the SRAM ready 
signal is toggled 

ahb_sram_inva
lid_test 

Drive double word and unalined 
transaction to SRAM. 

Expects the 
SRAM to be able 
to handle invalid 
transfer 

ahb_sram_stall
_write_to_idle
_test 

Drive write transaction to SRAM and 
immediately after that continuously 
drive read transaction to put the SRAM 
into READ_STALL_WRITE state. 
After a few clock cycles, drive nReset 
low for 2 cycles. It will force the SRAM 
state from READ_STALL_WRITE to 
IDLE state. 
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A.2 AHB GPIO 
 
 

The GPIO is another mean of input for our system. The tests are 

generated to configure the GPIO as input. The correctness of the transfer 

is checked with the transfer received at the AHB.  The GPIO is also set to 

output and the intended AHB transfer is sent to the GPIO. The GPIO is 

checked against the AHB transfer. Once the GPIO is verified to be able 

to send and receive transfer correctly, randomise test cases are done to 

randomly set each pin as input or output. The summary of test cases is 

shown in Table 2-4. 

 

 

Table 2-4: AHB GPIO Verification Plan 
 
Tests Test Descriptions Verification 

Criteria 
ahb_gpio_in_test Configure GPIO as input 

and compare the result of 
the transfer 

Expects the GPIO 
to receive correct 
transfer 

Ahb_gpio_out_test 
 

Configure GPIO as output 
and compare the result of 
the transfer 

Expects the GPIO 
to output the 
correct transfer 

ahb_gpio_random_test Randomly configure GPIO 
as input or output 

Expects correct 
random read write 
transfer from the 
GPIO 
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A.3 AHB2APB Bridge 
 
 

The AHB2APB Bridge allows the AHB transfer to be cast to APB 

transfer. During the 1st cycle of the transfer conversion, a minimum of 3 

cycles are required for the complete APB transfer to be generated. The 

following APB transfer would require minimum 2 cycles.  

The ahb_apb_bridge_test is used to check correctness of the 

converted transfer from AHB to APB and APB to AHB. It is also 

necessary to verify the correct slave select signals are generated and the 

transfer from the corresponding slaves are passed back to the AHB. This 

is done using ahb_apb_bridge_address_map_test. The 

ahb_apb_bridge_out_of_slave_test determines the response from the 

bridge when a non-existing slave is selected. This is to check the design 

so that it should produce a deterministic response for the system to be 

debugged. Table 2-5 shows the test cases for the AHB APB Bridge. 

 

Table 2-5: AHB APB Bridge Verification Plan 
 
Tests Test Descriptions Verification 

Criteria 
ahb_apb_bridge_test Read and write to APB 

slave 1 and 2 and compare 
transfer results 

Expects the 
correct transfer 
from AHB to 
APB and APB to 
AHB  

ahb_apb_bridge_address_m
ap_test 

Check slaves address 
mapping 

Expects the corrct 
APB slave is 
selected and the 
correct content 
from the selected 
slave 

ahb_apb_bridge_out_of_sla
ve_test 

Set ahb master to access 
beyond apb slaves 
addresses 

Expects no 
transfer from the 
bridge 
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A.4 AHB Parallel Port 
 
 

The AHB parallel port module is used as the primary input for 

the NoC System AES encryption application.  There are transmit and 

receive buffers for transmitting and receiving. The enable transmit 

interrupt can be set. When the parallel port has finished transmitting the 

transfer, the transmit interrupt is triggered. Similarly, when the parallel 

port finished receiving a transfer, the receive interrupt is triggered. 

 

The ahb_pp_32_test is used to verify the parallel port module to 

be able to transmit and receive parallel port transfer correctly. The test 

also includes cases where the Cortex-M0 writes to the parallel port 

module until the transmit buffer is full. The test monitors whether the 

trasmit buffer full flag is set when it is full. To further ensure that the 

transfers in the buffers are not overwritten, the test sends transfers after 

the buffers are full. The overall AHB Parallel Port tests are shown in 

Table 2-6.  
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Table 2-6: AHB Parallel Port Verification Plan 
 
Tests Test Descriptions Verification 

Criteria 
ahb_pp_32_test Transmit 32 bit ahb transfer to 

parallel port and compare the data. 
Expects the 
parallel port to 
receive and send 
transfer correctly. 

Receive 32 bit ahb transfer from 
parallel port and compare the data. 
Transmit 32 bit ahb transfer to 
parallel port and receive 32 bit 
transfer from parallel port and 
compare the data. 
Transmit 32 bit ahb transfer to 
parallel port until buffer size and 
check transmit bf flag and compare 
the data. 
Receive 32 bit ahb transfer until 
buffer size and check receive bf flag 
and compare the data. 
Transmit 32 bit ahb transfer to 
parallel port and set transmit 
interrupt and compare the data. 
Receive 32 bit ahb transfer and set 
receive interrupt and compare the 
data. 
Receive 32 bit ahb transfer until 
buffer size and set receive interrupt 
and compare the data. 
Receive 32 bit ahb transfer until 
receive buffer overrun 
Transmit 32 bit ahb transfer until 
trasmit buffer overrun 

ahb_pp_32_rando
m_test 

Randomly transmit and receive 32 bit 
ahb transfer 

 

ahb_pp_32_send_
recv_test 

Transmit and receive 32 bit transfer 
at the same time 

 

ahb_pp_32_turn_
around_test 

Transmit and receive at the fastest 
turn around from  input to output and 
from output to input 
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A.5 AHB Advanced Encryption Standard (AES) 
 

The main application for the UTAR NoC is to perform AES 

encryption. The AES encryption core is attached to each of the normal 

core unit. This AES core can perform 128 bit encryption. The encryption 

starts when an AHB transfer is done to the last plaintext, AES_PLAIN3. 

When the encryption is done, the AES_CF flag is set. Interrupt can also 

be enabled. Upon receiving the cipher text, the interrupt can be triggered. 

A buffer is implemented to store the new plain text during continuous 

transfer. 

During the test, a set of 4 32bit plain text is sent to the AES module 

to be encrypted. The output cipher text is gathered using the interrupt and 

polling method. The result is compared using a reference model of the 

AES which is implemented in the AES scoreboard. Using the 

ahb_aes1_change_text_key_encryption_test, the plain text and key is 

changed when the AES is performing the encryption. This is to ensure 

that the the new plain text and key does not corrupt the encryption data. 

Since writing to 3rd set of plain text, AES_PLAIN3 can start the 

encryption, a test is setup to verify that the AES_PLAIN1 and 

AES_PLAIN2 is set to 0 or the previous set value. The 

ahb_aes1_overlap_test is used to verify that the newest plain text is stored 

in the buffer for encryption. Table 2-7 sumarizes the tests for the AES 

module. 
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Table 2-7: AHB AES Verification Plan 
 
Tests Test Descriptions Verification 

Criteria 
ahb_aes1_interrupt_test 4 set of plain text and key 

is sent to the AES module 
to be encrypted and result 
is compared and check for 
12 cycles for the aes 
encryption to finished 

Produce the right 
cipher text based 
on the plain text 
and key given 

ahb_aes1_polling_test Enable interrupt. 4 set of 
plain text and key is sent to 
the AES module to be 
encrypted and result is 
compared 

Produce the right 
cipher text based 
on the plain text 
and key given 

ahb_aes1_random_interrupt
_test 

Randomize plain text and 
key is sent to the AES 
module to be encrypted 
and once plain text is 
encrypted, interrupt is set 
and result is compared 

Produce the right 
cipher text based 
on the plain text 
and key given 

ahb_aes1_random_polling_
test 

Randomize plain text and 
key is sent to the AES 
module to be encrypted 
and wait until aes 
encrypted flag is set and 
result is compared 

Produce the right 
cipher text based 
on the plain text 
and key given 

ahb_aes1_overlap_test Overlap 2nd key and plain. The encryption 
should be done 
using the new key 
and plain text 

ahb_aes1_change_text_key
_encryption_test 

Change the text and key 
during encryption. 

The encrypted 
cipher is expected 
to use the 
previous key 
instead of the new 
key 

ahb_aes1_less_plain_key_t
est 

Provide plain3 and key3 to 
start encryption without 
text 0,1,2 and key 0,1,2. 

Plain and key 
0,1,2 is expected 
to set to default 0 
or previous set 
value. 
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A.6 AHB-Lite Bus 
 

AHB-Lite Bus is used to connect the AHB components to the 

Cortex-M0 core to form an AHB system. Test cases has been develop to 

ensure that the AHB-Lite Bus decodes the correct slave select signals and 

the corresponding slave transfer is passed back correctly. Various types 

of AHB transfers are also used to verify the decoding process. The various 

AHB Lite Bus tests are shown in Table 2-8. 

 

Table 2-8: AHB-Lite Bus Verification Plan 
 
Tests Test Descriptions Verification 

Criteria 
ahb_lite_bus
_sw_address
_map_and_tr
ansfer_test 

AHB Master access all 7 slaves 
connected to the ahb lite bus including 
default slave and check for the hsel 
signals 

Expects the AHB 
sends the right 
slave select 
signals and reads 
the slave data 
correctly. 

AHB Master reads hrdata, and hready 
from the slaves and compare with the 
master 
Enable switch mode to perform address 
remap to switch between boot-load and 
normal mode 

ahb_lite_bus
_sw_multi_tr
ansfer_test 

AHB Master sends multiple type transfer 
to all the 7 slaves: single write, single 
read, single unpipelined write , single 
unpipelined read, incr read, incr write, 
incr write with busy, incr read with busy, 
incr_n write burst, incr_n read burst, 
incr_n write burst with busy, incr_n read 
burst with busy, burst_n read burst, 
burst_n write burst, burst_n write burst 
with busy, and burst_n read burst with 
busy 

Expects the AHB-
Lite bus to be 
able to handle 
various read and 
write transfers  

ahb_lite_bus
_sw_random
_multi_transf
er_test 

AHB Master randomly send multiple type 
transfer to all the 7 slaves: single nonseq 
unpipelined, single nonseq, single idle, 
incr, incr_n, and wrap_n transfer 

Expects the AHB-
Lite bus to handle 
random read and 
write transfers 
correctly 
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