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ABSTRACT 
 

 

SIMULATION OF OSCILLATIONS IN NEURONAL NETWORKS 

USING THE MORRIS-LECAR NEURON MODEL 
 

 

 Chan Siow Cheng  
 

 

 

 

 

 

Electrical recordings of brain activity show the presence of oscillations in 

different brain structures. Experimental and modeling studies of neuronal 

networks serve as the basis for exploration on the mechanisms of basic brain 

functions. In the first part of my work, a population density approach which is 

derived from the assumption of an infinite number of neurons is introduced to 

simulate the network activity of a large number of interconnected Morris-

Lecar (ML) neurons. I demonstrated that the population density approach 

overcomes the limitation imposed by the large computation time required for 

direct simulations of a network of individual neurons when the number of 

neurons is very large. The use of the ML neuron model also enables more 

realistic simulations of the behavior of real neurons such as the activities of 

type I and type II neurons (integrators and resonators) that are not possible 

using the simple integrate-and-fire neuron model. For the second part of my 

work, I successfully simulated the ultra-slow oscillations that were observed 

experimentally in cortical cultures of rat brain neurons using a modified ML 

neuron model that takes into consideration the interaction between the neurons 

and the astrocytes in the network.   
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CHAPTER 1 

 

INTRODUCTION 

1 INTRODUCTION 

 

It is estimated that the human brain contains more than 10
10

 densely packed 

neurons that are interconnected to an intricate network (Gerstner and Kistler, 

2002). Gray in his review (Gray, 1994) reported that a wide range of 

oscillatory patterns expressed at the level of individual cells as well as 

networks of cells is often exhibited in the nervous system. Brunel in his 

analytical study (Brunel and Hakim, 1999) described neuronal network 

activities of sparsely connected spiking neurons that displayed a rich repertoire 

of states including global activity that oscillates. It has also been reported that 

neuronal network oscillations with various rhythms serve different functional 

roles in many brain processes such as those involving cognitive functions, 

consciousness, behavioural activities, processing of sensory information and 

signal transmission (Wang, 2003). Therefore, the study of oscillatory 

mechanisms is a field of growing interest, both experimentally (Steriade et al., 

1993; Buzsáki and Draguhn, 2004; Chen et al., 2006; Zhu et al., 2006; Compte 

et al., 2008) and theoretically (Destexhe et al., 1993; Wang and Buzsáki, 1996; 

Brunel and Hakim, 1999; Brunel, 2000; Tsodyks et al., 2000; Kudela et al., 

2003; Melamed et al., 2008; Gielen et al., 2010; Buzsáki and Wang, 2012).  
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For modelling studies that approximate to the real situation where the 

neuronal network consists of a large number of neurons, computational 

efficiency and time become important (Nykamp and Tranchina, 2000; 

Reutimann et al., 2003; Marpeau et al., 2009). Also, it has been hypothesized 

that glial cells that are normally assumed to play only a supporting role to the 

neurons may actually play an important role in regulating the network global 

oscillations (Fellin et al., 2004; Volman et al., 2004; De Pittà et al., 2012). The 

above two issues are explored in the current study.  

 

1.1 The Neuron Model 

 

I have to choose a neuron model for my simulation studies. The integrate-and-

fire (IF) neuron models that require the solution of only the membrane 

potential equation is one of the simplest and efficient spiking neuron models 

that is widely used in computational neuroscience. However, the model cannot 

reproduce the more complex properties and features of biological neurons.  

Hodgkin and Huxley (1952) developed the neuron model that is named after 

them by conducting experiments on the axon of a squid. Although the 

Hodgkin and Huxley (HH) model enables the simulation of more complex 

neuronal behaviours, it requires the solution of four simultaneous equations 

describing three ion channels and a leakage channel. Due to its complexity, 

HH model is computationally expensive especially when simulating a large 

number of interconnected neurons. Morris and Lecar (1981) reduced the HH 

model to a more manageable two dimensional model that only requires the 
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solution of two simultaneous equations - the membrane potential and a 

activation variable for the potassium current. The Morris-Lecar (ML) model 

has been reported to capture the essential features of neuronal dynamics and 

plays an important role in the study of neuronal rhythms and oscillations (Lim 

and Kim, 2007; Lim and Kim, 2011). This model is adopted in the current 

study.  

 

1.2 Population Density Approach 

 

To improve the computational efficiency of neuronal networks that consist of a 

large number of neurons, the population density approach (PDA) was 

introduced. Previous studies of PDA have mostly been developed for the IF 

models such as leaky integrate-and-fire (LIF) model (Omurtag et al., 2000), 

integrate-and-fire conductance based model (Nykamp and Tranchina, 2000; 

Haskell et al., 2001; Nykamp and Tranchina, 2001), and integrate-and-fire-or-

burst (IFB) model (Casti et al., 2002; Apfaltrer et al., 2006; Huertas and Smith, 

2006a; Huertas and Smith, 2006b). The first part of this thesis describes the 

PDA that is developed to simulate the network activity of an infinite number 

of ML neurons. 

 

1.3 Simulation of Ultra-Slow Oscillations 

 

The frequency of network oscillations can be manifested in three main 

categories: higher frequency band (>40Hz), slow oscillations (< 1Hz) during 
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sleep-wave sleep, and ultra-slow oscillations in between 0.001Hz and 0.01Hz. 

Most previous studies have focused on network oscillations in the range of 

traditional EEG frequency bands (>0.5 Hz). These studies explored many 

significant factors in these network oscillations including the presence of noise 

(Reinker et al., 2006; Nesse et al., 2008; Kilpatrick and Bressloff, 2010), the 

role of endogenously active cells (Latham et al., 2000), shunting inhibition 

(Vida et al., 2006; Talathi et al., 2010), as well as the balance of excitation and 

inhibition in the networks (Bazhenov et al., 2008; Liu et al., 2010).  

 

In recent years, however, many researchers start to focus on brain 

activities in a much slower time scale such as ultra-slow oscillations that have 

been identified in various brain regions such as in the cortex (Picchioni et al., 

2011), hippocampus (Penttonen et al., 1999; Zhu et al., 2010), and thalamus 

(Lőrincz et al., 2009). The potential role of ultra-slow oscillations in neural 

activity is discussed in relation to the communication between the brain, spinal 

cord and vegetative system (Bașar, 2011), the establishment of activity-

dependent synaptic connectivity (Feller, 1999) and synaptic plasticity(Allers et 

al., 2002).  

 

Such slow oscillatory dynamics in neuronal networks have also been 

investigated in recent computational studies. A mean field model in cortical 

default network was proposed to predict the naturally arising of these slow 

cycling of cortical activity (Steyn-Ross et al., 2011).  Ng et al. (2013) 

simulated the ultra-slow oscillations similar to those observed by Mok et al. 

(2012) in a study of rat brain cortical cells cultured in multi-electrode arrays 
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using the IF neuron model. However, the neural mechanisms underlying the 

ultra-slow oscillations are still under-investigated.  

 

It has recently been revealed that glial cells may be involved in 

processing information and modulating neuronal dynamics in the brain (Hirase 

et al., 2004; Poskanzer and Yuste, 2011). A few experimental studies suggested 

the possible involvement of glial cells in producing slow oscillatory 

phenomena (Hughes et al., 2011; Krueger et al., 2011). In the second part of 

this thesis, I present a computational model that takes into consideration the 

bi-directional interaction between neurons and glial cells in the network that 

successfully simulated the ultra-slow oscillations that was observed in cortical 

cultures of rat brain neurons (Mok et al., 2012).  

 

The remaining chapters of this thesis are organized as follow: 

 

Chapter 2 presents the description and corresponding equations of the 

PDA using the ML neuron model. To test the accuracy and computational 

efficiency of PDA, the simulation results are compared against conventional 

direct simulation for groups of individual neurons in a few network examples.   

 

Chapter 3 describes a modified ML neuron model that takes into 

consideration the bi-directional communication between neurons and glial 

cells. The role of glial cells in modulating the frequency of neuronal network 

activities is investigated. The simulation results are compared with the 

experimental results that are observed in cortical cultures of rat brain neurons.  
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Chapter 4 presents the overall conclusions. Some future works are also 

suggested in this chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

7 

CHAPTER 2 

 

SIMULATION OF NETWORK OSCILLATIONS USING THE 

POPULATION DENSITY APPROACH 

2 SIMULATION OF NETWORK OSCILLATIONS USING THE 

POPULATION DENSITY APPROACH 

A population density approach (PDA) is presented to simulate the global 

activity of a network of Morris-Lecar (ML) neurons. The network is composed 

of identical excitatory and inhibitory ML neurons. Each neuron randomly 

receives excitatory and inhibitory connections from other neurons in the 

network and an excitatory external input which is described by an independent 

Poisson process from neurons outside the network. I solved the evolution 

equations for the population density approach numerically. The results were 

compared against those obtained from conventional computation for groups of 

individual neurons in a few example networks. I found that when the neuronal 

network comprises a large number of identical excitatory ML neurons that are 

sparsely connected, the population density approach gives a closer 

approximation to the network activity. I also demonstrated that the population 

density approach using the ML neuron model can be used to simulate the 

activities of type I and type II neurons (integrators and resonators) in a 

network of sparsely connected excitatory and inhibitory neurons that was not 

possible using the integrate-and-fire neuron model. 

 

*
 Published as: Chan, S.C., Poznanski, R.R. and Goh, S.Y., 2014.  Network 

activity in a Morris-Lecar population density model. Neurocomputing, 138, pp. 

332-338. 
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2.1 Introduction 

 

Previous studies of somatosensory, visual cortex (Mountcastle, 1957; Hubel 

and Wiesel, 1962) and pools of motor neurons (Eric R. Kandel, 1991) showed 

that in many parts of the brain, neurons are structured in units with similar 

properties. Therefore it is convenient to describe the mean population activity 

rather than the spiking of single neurons. For networks that consist of a large 

number of neurons, the fraction of neurons E  with membrane potential 

� H !8�9 H � I =� is approximated as 

limMNOPQFRDSQ� �E�T � H !8�9 H � I =� U V � W X8�, �9=�Y2ZY
Y  

where X8�, �9 is the membrane potential probability density. 

 

The PDA overcomes the limitation imposed by the large computation 

time required for simulations of a network of neurons when the number of 

neurons becomes very large. The computation time for PDA is dependent on 

the number of interacting populations rather than the number of neurons 

(Apfaltrer et al., 2006). 

 

This chapter is organized as follows. The literature review of PDA, 

Type I and Type II neurons are discussed in section 2.2. The methodology is 

given in section 2.3. The network architecture is described in section 2.3.1 and 

the direct simulation of the conductance-based ML neuron model in section 

2.3.2. In section 2.3.3, I introduced the PDA for the ML neuron model and 

derived the corresponding PDA equations. The numerical algorithm for 
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solving the PDA equations is presented in section 2.3.4. I presented the results 

of a single uncoupled population of type II neurons in section 2.4.1. The 

effects of the number of connections on the network behaviour is investigated 

and discussed in section 2.4.2. The performance of PDA is also tested by 

varying the postsynaptic potential (PSP) for inhibitory synapses in section 

2.4.3.1. The simulation for Type I and Type II neurons are presented in section 

2.4.3.2.  Section 2.4.4 shows the comparison of computation time between the 

PDA and the direct simulation of a network of ML neurons. New implications 

and advances in the study of neural systems are stated in section 2.5. Section 

2.6 is the conclusion of this chapter. 

 

2.2 Literature Review 

 

2.2.1 Population Density Approach (PDA) 

 

The population density approach (PDA) has been used to study the network 

behaviour of a large number of identical IF neurons which have similar 

biophysical properties. Most of the previous studies focused one-dimensional 

PDA for the leaky integrate-and-fire (LIF) model (Omurtag et al., 2000) and 

the integrate-and-fire conductance based model (Nykamp and Tranchina, 

2000; Haskell et al., 2001; Nykamp and Tranchina, 2001). These were 

extended to studies of two-dimensional PDA for the integrate-and-fire-or-burst 

(IFB) model (Casti et al., 2002; Apfaltrer et al., 2006; Huertas and Smith, 

2006a; Huertas and Smith, 2006b). In the limit of a small voltage jump, the 



 

 

10 

PDA can be reduced to the Fokker-Planck (diffusion) approximation to 

analyze the dynamics of the distribution of neuron potentials (Brunel and 

Hakim, 1999; Brunel, 2000; Mongillo and Amit, 2001; Reutimann et al., 2003; 

Wang and Jiao, 2006; Marpeau et al., 2009; Jiao and Wang, 2010). In order to 

describe the neuron dynamics precisely, a PDA that takes into consideration 

the effects of slow ionic currents was proposed by Chiznov et al. (Chizhov et 

al., 2006). They simulated the activity of a recurrent inhibitory neuron network 

with a constant current step input. 

 

I am not aware of any previous computational study that has applied 

the PDA to a network that comprises a large number of identical ML neurons. 

The current study is expected to provide simulations of more complex 

properties of large networks of neurons. 

 

2.2.2 Type I and Type II Neurons 

 

The ML model can reproduce the integrator or the resonator neurons (hereafter 

termed as type I and type II neurons respectively) depending on the parameter 

of voltage-dependent potassium current (Tonnelier, 2005) while the IF neuron 

is an integrator. The integrator neuron exhibits saddle-node bifurcation when it 

transits between a rest state and repetitive firing state. In contrast, the 

resonator neuron exhibits Andronov-Hopf bifurcation (Izhikevich, 2000). With 

a higher frequency of input spike train, the integrators are more likely to fire 

whereas resonators tend to fire when the frequency of input spike train is 

similar with the frequency of sub-threshold membrane potential oscillations 
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(rhythmic fluctuations of the voltage difference between interior and exterior 

of neurons). Many cortical neurons are integrators while the resonator neuron 

behaviour has been formed in the thalamic (Puil et al., 1994) and cortical 

regions (Hutcheon et al., 1996b; Hutcheon et al., 1996a). 

 

2.3 Methodology 

 

2.3.1 Network Architecture 

 

A network of interconnected excitatory and inhibitory populations is shown in 

Figure 2.1. There are U��� and U�� identical ML neurons in the excitatory and 

inhibitory populations respectively. Each population randomly receives ���� 

excitatory connections and ���  inhibitory connections from other neurons 

inside the network. It also receives ���	 external excitatory inputs with rate 


��	 from neurons outside the network. The total effect of the external network 

is treated as an external Poisson input. External spikes are statistically 

independent and approximated by a Poisson distribution (Brunel and Hakim, 

1999; Brunel, 2000) 
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Figure 2.1: Schematic diagram of the network architecture. The network is 

composed of an excitatory population and an inhibitory population that 

interconnect with each other. Each population receives ���	 excitatory external 

input from neurons outside the network with rate 
��	. The symbols ���� and ���  are the number of excitatory and inhibitory connections from neurons 

inside the network. 

 

2.3.2 The Direct Simulation of the Conductance-based ML Neuron 

Model 

 

The set of differential equations that governs the dynamics of the membrane 

potential for ML neuron E (E � 1, 2, 3, … , U��� I U��) is written as follows 

(Morris and Lecar, 1981): 

0 =!�=� � \4�],� I 4�^,� (2.1) 

=_�=� � ` 8_O8!�9 \_�9�a8!�9  
(2.2) 

where 

4�],� � 4��,� I 4b,� I 4c,�                                           
� d���O8!� \ e��9 I db_�8!� \ eb9 I dc8!� \ ec9 

(2.3) 

 
Excitator

y 

Inhibitor

y 
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�O8!�9 � 0.5/1 I �1QTf8!� \ !#9 !$⁄ g3 (2.4) 

_O8!�9 � 0.5/1 I �1QTf8!� \ !69 !h⁄ g3 (2.5) 

�a8!�9 � 1)S�Tf8!� \ !69 82!h9⁄ g (2.6) 

 

Here, !�  is the membrane potential and _�  is the activation variable for the 

potassium current. There are two kinds of source currents to each neuron, 4�],� 
and 4�^,�. 4�],� is the total ionic current that consists of i2 current, 4b,�, 01$2 

current, 4��,�  and a leakage current, 4c,�  and 0  is the membrane capacitance. 

The maximum conductance for the ions and the leakage channels are denoted 

by d��, db and dcwhereas e��, eb and ec represent the reversal potentials for 

the ions and the leakage channels. _�  tends to the saturation value _O8!�9 
with a characteristic time scale of 8�a8!�9 j⁄ 9 where �a8!�9 is associated with 

the relative time scales of firing dynamics, which varies broadly from cell to 

cell and exhibits significant of temperature dependency. Fast changes of the 

calcium current take the gate variable �� as the saturation value �O8!�9.     
  

 When the pre-synaptic neuron k 8k � 1, 2, 3, … , ���	 I ���� I ���9 
fires at time �, the potential of the connected postsynaptic neuron E is increased 

or decreased by potential (PSP) amplitude ��l . For simplicity, I assume that 

��l � ����  for excitatory synapses and ��l � ���  for inhibitory synapses. The 

synaptic current of the Eth neuron is described as follows: 
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74�^,� � ��^m��ll
mn
o

8� \ �lo9 (2.7) 

where ��^ � 70 is the synaptic time constant, 7 is membrane resistance  and 

�lo  is the time of the p th spike on neuron k . When !�  crosses the threshold 

value !	�, neuron E emits a spike. 

 

2.3.3 The PDA for ML Neuron Model 

 

A PDA is introduced to represent the membrane behaviour of a large number 

of identical ML neurons described in the previous section (Nykamp and 

Tranchina, 2000; Huertas and Smith, 2006a; Huertas and Smith, 2006b),  

X8�,�, �9=�=� � 5Df!8�9q8�, � I =�9 1Q= _8�9q8�,� I =�9g (2.8) 

for � q 8!A�, !A��9 and � q 80,19.  
 

The evolution equation for the probability of finding the membrane 

potential of a randomly chosen neuron in population of 1 � Fr) (excitatory), 

EQT(inhibitory) at � over all possible states at time � is based on conservation 

of probability (Nykamp and Tranchina, 2000): 

��� X8�, �, �9 � \s · ��8�, �, �9 (2.9) 

where s� F̂Y8� ��⁄ 9 I F̂v8� ��⁄ 9 and ��8�, �, �9 is the total probability flux 

crossing �  and �  at time � . The total probability flux consists of two 

components: 

��8�, �, �9 � ���	����� 8�, �, �9 I ����	����� 8�, �, �9 (2.10) 

���	�����8�, �, �9 is the flux due to the intrinsic membrane dynamics: 
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���	�����8�,�, �9 � /wY8�, �9F̂Y I wv8�, �9F̂v3X8�, �, �9 (2.11) 

where 

wY8�,�9 � \ 4�]0  
(2.12) 

wv8�, �9 � \` 8� \ �O9�a  
(2.13) 

 

The flux, ����	�����8�, �, �9  due to the synaptic input from external 

network and the connected neurons in the network is written in the form, 

����	�����8�,�, �9 � ����	8�, �, �9 I �����8�, �, �9 \ ����8�, �, �9 (2.14) 

As shown in Figure 2.2, when a neuron with voltage, � � �x receives ���	 
excitatory external input at rate of 
��	, it could push � to higher voltages from 

any voltage �yq8� \ ���	 , �9 and create a positive excitation flux: 

����	8�, �, �9 � ���	
��	8�9W X8�y, �, �9=�yY
Y;z{|}  

(2.15) 

 

 

 

 

 

 Figure 2.2: Positive excitation flux due to excitatory external input. 

 

A neuron with voltage �yq8� \ ���� , �9 could generate another positive 

excitation flux across voltage � upon the arriving of ����  excitatory internal 

with input rate of 
��� from the connected neurons within the network (Figure 

2.3): 

� \ ���	 � 

Positive excitation 

�yq8� \ ���	, �9 
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�����8�, �, �9 � ����
���8�9W X8�y, �, �9=�yY
Y;z{|~  

(2.16) 

 

 

 

 

 

Figure 2.3: Positive excitation flux due to excitatory internal input. 

 

Conversely if a neuron with voltage �yq8�, � I ���9  receives ��� 

inhibitory internal input with rate of 
�� and crosses � to lower voltages, it 

could create a negative inhibition flux (Figure 2.4): 

����8�, �, �9 � ���
��8�9W X8�y, �, �9=�yY2z��-
Y  

(2.17) 

 

 

 

 

 

Figure 2.4: Negative inhibition flux due to inhibitory internal input. 

 

When the upward movement of total probability flux, ��  crosses 

� � !	�, it corresponds to the fraction of neurons firing per unit time. Thus, 

the population firing rate that describes the average firing rate across all 

neurons in the population is obtained by integrating over all slow recovery 

� \ ���� � 

Positive excitation 

�yq8� \ ���� , �9 

� I ��� � 

Negative inhibition 

�yq8�, � I ���9 
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variables of the action of the potassium current, �x: 

8�9 � W �����o�8�y, �9 · F̂Y#

� =�x (2.18) 

where �����o�8�, �9 � ��8� � !	�, �, �9  when there are positive fluxes of 

����	�����8� � !	�, �, �9 and ���	�����8� � !	�, �, �9. 
 

 The assumption of no probability flux across the boundaries at 

� � 0, � � 1  � � !A� and � � !A��  leads us to the following boundary 

conditions associated with Equation 2.9, 

X8� � !A�, 0 � � � 1, �9 � 0  

X8� � !A��, 0 � � � 1, �9 � 0  

X8!A� � � � !A�� , � � 0, �9 � 0  

X8!A� � � � !A�� , � � 1, �9 � 0 (2.19) 

 

At any time �, the population density functions in Equation 2.9 with 

the boundary conditions above must satisfy the conservation of probability law, 

W W X8�y, �y, �9=�y=�y � 1#
�

��,|
����

 
(2.20) 

 

2.3.4 Numerical Algorithm for PDA 

 

To solve the model equations in the PDA, I discretize ���� ��⁄ �, ���� ��⁄ � and 

solve the resulting set of ODEs using Runge-Kutta 4
th

 order. For p �
1, 2, … , UY, the membrane voltage is discretized as 
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�o � p∆� I !A� (2.21) 

where ∆� � 8��,|;����9M� . 

Whereas for Q � 1, 2, … , Uv , the discretization of gating variable for 

potassium is shown as 

� � Q∆� (2.22) 

where ∆� � #M�  

 

 Using the Equation 2.14, the spatial derivatives of ����	����� at the grid 

points is given as  

�����	������� � ������	8�, �, �9 I �����8�, �, �9 \ ����8�, �, �9���   
� ���	
��	 8�9fX8�, �, �9 \ X8� \ ���	, �, �9g  

I ����
��� 8�9fX8�, �, �9 \ X8� \ ���� , �, �9g
\ ���
�� 8�9fX8� I ��� , �, �9 \ X8�, �, �9g 

(2.23) 

 

To improve stability, a downward and upward scheme is employed to 

discretize the flux due to the intrinsic membrane dynamics in the PDA. 

8����	����� ��⁄ 9 is discretized as 
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����	������� � ��� �\ 4�� I 4b I 4c0 X8�, �, �9�
� ��� �\d���O8� \ e��9 I db�8� \ eb9 I dc8� \ ec90 X8�, �, �9�
� ��� �\ 10 81� \ @9X8�, �, �9�
� ��� �\ 10 �� \ @1� X8�, �, �9� 

(2.24) 

where  

1 � d���O I db� I dc  

@ � d���Oe�� I db�eb I dcec (2.25) 

A neuron with � H 8@ 1⁄ 9 moves probability upwards creating positive fluxes 

while a neuron with � � 8@ 1⁄ 9  moves probability downwards, creating 

negative fluxes (Figure 2.5). To ensure stability, a downward first order 

approximation is used for the derivatives for � H 8@ 1⁄ 9, 
����	������� � wY8�, �, �9X8�,�, �9 \ wY8� \ ∆�,�, �9X8� \ ∆�,�, �9∆�  

(2.26) 

 

and an upward first order approximation for � � 8@ 1⁄ 9, 
����	������� � wY8� I ∆�,�, �9X8� I ∆�,�, �9 \ wY8�,�, �9X8�, �, �9∆�  

(2.27) 

 

 

 

 

Figure 2.5: The positive and negative fluxes due to the intrinsic membrane 

dynamics, ����	����� ��⁄ . 

!A�� !A� @ 1�  

Positive Negative flux 
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 The discretization of the flux, 8����	����� ��⁄ 9 is denoted by  

����	������� � ��� /wv8�, �, �9X8�,�, �93
� ��� �\ �̀a �� \ �O8�9�X8�, �, �9� 

(2.28) 

For a neuron with � H �O8�9, positive fluxes are created and a downward 

first order approximation is used: 

����	������� � wv8�, �, �9X8�, �, �9 \ wv8�, � \ ∆�, �9X8�, � \ ∆�, �9∆�  
(2.29) 

while an upward first order approximation is used for � � �O8�9 (Figure 2.6), 

����	������� � wv8�, � I ∆�, �9X8�, � I ∆�, �9 \ wv8�,�, �9X8�, �, �9∆�  
(2.30) 

 

 

 

Figure 2.6: The positive and negative fluxes due to the intrinsic membrane 

dynamics, ����	����� ��⁄ . 

 

2.4 Results and Discussion 

 

2.4.1 Single Uncoupled Population of Neurons Results 

 

The root-mean-square error (RMSE) was computed to measure the difference 

between individual neuron histograms and the corresponding regions under 

the population density curve. Let ��  denotes the population of individual 

neuron results and � denotes the PDA results, then the RMSE is given as 

1 0 �O 

Positive Negative flux 
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7:�e8��, �9 � �m 8�� \ �9$Q

��#  

(2.31) 

where Q is the total number of data.   

 

 The response of a single excitatory population of ML neurons to the 

external Poisson input is simulated. Each neuron receives an excitatory 

external input, ���	 � 1 from neurons outside the network with mean firing 

rate, 
��	 � 200 1DDE�1��/��  and external postsynaptic potential, ���	 �
0.1�!. The other network parameters of type II neurons are shown in Table 

2.1 (Balenzuela et al., 2006). 

 

Table 2.1: Parameters for conductance based ML neuron model (Lim and Kim, 

2007) 

Parameter Description Value for type 

II (type I) 

��  Threshold value for �O \1.2 �! 

�� Steepness parameter for �O 18 �! 

�� Threshold value for _O 2 �! 812�!9 
�  Steepness parameter for _O 30 �! 

¡¢£ Reversal potential for 01$2 channels 120 �! 

¡¤ Reversal potential for leakage channels \60 �! 

¡¥ Reversal potential for i2 channels \84 �! 

¦ Capacitance of membrane 5 &w )�$⁄  

§ Temperature time scale factor 0.04 

¨¦© Maximum conductance for 01$2 channels 4.4 �� )�$⁄  
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¨ª Maximum conductance for i2 channels 8 �� )�$⁄  

¨« Maximum conductance for leakage channels 2 �� )�$⁄  

¬®¯ Synaptic time constant 1 �� 

°±² Threshold value for spiking state 0 �! 

 

The results obtained from the population density model are compared 

with those obtained from computations of populations of individual neuron for 

populations of 100, 1000 and 10,000 neurons in Figure 2.7. Figure 2.7(a-c) 

compares the firing rates during 50ms time period while Figure 2.7(d-f) 

compares the snapshots of the probability density across the membrane 

potential at time, � � 25��. For the results of computations of populations of 

individual neurons, histograms of fixed bin size, 0.8mV and 0.02ms are used 

for the membrane potential distribution and firing rate respectively. Both the 

probability density across membrane potential and firing rates show that the 

error of the PDA decreases when the network comprises a large number of 

identical neurons. For an individual neuron population of 100 neurons, the 

membrane potential distribution and firing rate are sparse compared to the 

results obtained from the PDA with the average RMSE=0.0056 and 0.0486 

respectively. Similar results were obtained for network size of 1000 neurons 

with the average RMSE=0.0031 and 0.0464. The membrane potential 

distribution and firing rate for 10,000 neurons compares well with the results 

obtained from the PDA with the average RMSE=0.0023 and 0.0279. In Figure 

2.8, the corresponding temporal evolution of the PDA for membrane potential 

is shown with these three different sizes of population neurons. Figure 2.8(a) 



 

 

shows the result of PDA whereas the results of individual neuron simulation 

with 10,000, 1000 and 100 neurons are shown in Figure 2.8(b-d).  

 

Figure 2.7: Comparison of the PDA with populations of individual neurons 

with three different population sizes: (a, d) 100 neurons, (b, e) 1000 neurons 

and (c, f) 10,000 neurons. The firing rates are shown in figures (a-c) and 

snapshots of probability density across membrane potential at time � � 25 �� 

are shown in figures (d-f). The red solid lines show the firing rates of the PDA 

results whereas histograms show the individual neuron results.
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Figure 2.8: Temporal evolution of the membrane potential simulated with (a): PDA, (b): individual population of 10,000 individual neurons, (c): 

population of 1,000 individual neurons and (d): population of 100 individual neurons.
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2.4.2 Single Coupled Population of Excitatory Neurons 

 

I compared the results of the PDA with those computed using individual 

neuron populations for two different numbers of connectivity, ���� � 2500 

and 500  in Figure 2.9. Parameters used in the simulations were U��� �
10000,  ���� � 0.01�!, ���	 � 0.15�!,  ���	 � 1 and  
��	 � 1201DDE�1��/
��. Other parameters are given in Table 2.1. In our simulation results, the 

smallest RMSE was obtained (0.0212 for RMSE of firing rate) in low 

connectivity of ���� � 500 (Figure 2.9(b)). The PDA results appear closer to 

the results from those computed using individual neuron populations when the 

number of connections is small. When the number of connections is 2500, the 

results computed using individual neuron populations diverge from the PDA 

simulation (Figure 2.9(a)) with RMSE=0.0304. The sparse coupling lowers the 

probability of neurons sharing common inputs. This is justified in the PDA 

model when the input spike trains to each neuron are independent. Therefore, 

a large error is obtained for densely connected networks. The corresponding 

temporal evolution of the probability density for membrane potential is 

illustrated in Figure. 2.10. 
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Figure 2.9: Comparison of the firing rate for the PDA with populations of 

individual neurons for two different connectivity: (a) ���� � 2500 and (b) ���� � 500. The red solid lines show the firing rates of the PDA results 

whereas histograms show the individual neuron results.
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Figure 2.10: Temporal evolution of the probability density for membrane potential that simulated with connectivity of  (a, c): ���� � 2500 , (b, 

d): ���� � 500. The population density model results are shown in (a, b) whereas the individual neuron results are shown in (c, d).
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2.4.3 Network of Excitatory and Inhibitory Neurons 

 

2.4.3.1 Varying PSP Amplitude for Inhibitory Synapses 

 

 In this section, the simulations for a network of coupled excitatory and 

inhibitory neurons are presented. The PDA results are compared with those 

obtained from the direct simulation of a population of individual neurons by 

varying the postsynaptic potentials (PSP) amplitude for inhibitory synapses, 

inhJ . Parameters used in the simulations were U��� � 8000,  U�� � 2000,
���� � ��� � 500, ���� � 0.01�!, ���	 � 0.15�!,  ���	 � 1  and 
��	 �
120 1DDE�1��/��. Other parameters are shown in Table 2.1. Both simulation 

results of firing rate calculated by the PDA and direct simulation show similar 

response as shown in Figure 2.11. With a higher level of ��� , the network 

activity tends to become more disordered. At ��� � 0.01�! , a slow 

oscillation with frequency around 15Hz was obtained (Figure 2.11(a)). When 

���  is increased to 0.1�! , the network activity is damped and loses its 

synchronization as shown in Figure 2.11(b).  
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Figure 2.11: Comparison of the firing rate for PDA with populations of 

individual neurons for two different PSP for inhibitory synapses, (a) ��� �0.01�! and (b) ��� � 0.1�!. The red solid lines presented the firing rates of 

the PDA results whereas histograms presented the individual neuron results. 
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2.4.3.2 Simulation for Type I and Type II Neurons 

 

The performance of the PDA is also tested for simulating type I and type II 

neurons. Parameters used in the following simulations were ���� � ��� �
0.01�!, ���	 � 0.1�!,U��� � 8000,U�� � 2000, ���	 � 1, ���� �
500 1Q= ��� � 200. Other network parameters are specified in Table 2.1. By 

changing the potassium activation curve, the ML model can reproduce type I 

and type II neurons behavior. The comparison of the results of firing rate from 

the PDA with those obtained from direct simulation of a population of 

individual neurons for network of type I and II neurons is illustrated in Figure 

2.12. Type I and type II neurons are driven by external synaptic input with 


��	 � 120 1DDE�1��/��  (Figure 2.12(a)) and 180 1DDE�1��/��  (Figure 

2.12(b)) respectively. Both showing good similarity between the results with 

average RMSE=0.0108 and 0.0199.  
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Figure 2.12: Comparison of the firing rate for the PDA with populations of 

individual neurons for networks of (a) type I and (b) type II neurons. The red 

solid lines show the firing rates of the PDA results whereas histograms show 

the individual neuron results. 
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2.4.4 Comparison of Computation Time 

  

The comparison of computation time for the PDA with direct simulation of a 

network of ML neurons is shown in Figure 2.13. The network consists of : 

subnetworks. Each subnetwork has 8000 and 2000 ML neurons in excitatory 

and inhibitory populations respectively. Each neuron in the population 

receives synaptic input from randomly chosen neurons inside the subnetwork 

with probability 0.1 and an external Poisson synaptic input. The computation 

time shown in the � \ 1rE� is relative to the computation time of a single 

subnetwork of direct simulation with time step of 0.01ms. All the neural 

network simulations are computed by a quad 2.8GHz processor workstation. 

The PDA outperforms direct simulation especially when the number of 

subnetworks is increased. 

 

 

Figure 2.13: Comparison of computation time for the PDA (black bars) with 

populations of individual neurons (white bars). 
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2.5 New Implications and Advances in the Study of Neural Systems 

 

The present approach can be applied to study more realistic models that 

consist of complex combinations of subnetworks such as the neocortex of 

human brain. The neocortex can contain up to 28 ³ 10´ neurons and a huge 

number of synapses of the order of 10#$. The cortical neurons are organized 

vertically into cortical columns. Each cortical column contains approximately 

60,000 neurons which have certain sets of common static and physiological 

dynamic properties (Mountcastle, 1997). The present PDA is suitable for 

simulating the mean activity of each column using the interactions with 

adjacent columns as external inputs to the column. Also with the participation 

of a large network of biologically plausible type I and type II neurons 

(integrators and resonators respectively), the present PDA can be applied to 

study complex phenomena such as resonance and oscillations observed in 

many biological neurons in thalamic and cortical regions. Resonator neurons 

with low and high-frequency resonances support the thalamocortical delta-

wave oscillations during deep sleep and high frequency rhythm during 

cognition (Hutcheon and Yarom, 2000). Furthermore resonator neurons also 

exhibit damped subthreshold oscillations of membrane potential that are 

significant in sustaining synchronized rhythmic activity (Lampl and Yarom, 

1997). 
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2.6 Conclusion 

 

I have introduced a PDA for modelling a network of ML neurons. In order to 

assess the accuracy, the simulations of the PDA and the direct simulation of 

individual neurons were compared based on the distributions of neurons across 

the membrane potential and population firing rates. For neuronal networks 

with a large number of sparsely connected neurons, the PDA provides a good 

approximation to the behaviour of networks. For large 

populations/subnetworks, the computational efficiency of the PDA is better 

than direct simulation of individual neurons.  
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CHAPTER 3 

 

SIMULATION OF ULTRA-SLOW OSCILLATIONS IN CORTICAL 

NETWORK
 

3 SIMULATION OF ULTRA-SLOW OSCILLATIONS IN 

CORTICAL NETWORK 

In this second part of my thesis, I simulated the ultra-slow oscillatory activity 

using a modified Morris-Lecar neuron model that takes into consideration the 

interaction between the neurons and the glial cells in the networks. Based on 

the model, the frequency of the network activity is affected by variations in the 

calcium level of the glial cells and ultra-slow oscillations are induced when the 

recovery time for inositol 1, 4, 5-trisphosphate ( IP69  receptor in the 

endoplasmic reticulum (ER) is slow.  My results of simulations of ultra-slow 

oscillatory activity are comparable with those obtained from the in-vitro 

recordings in dissociated cortical cultures. I further proposed that variations in 

the interaction between neurons and glial cells have a primary role in changing 

the degree of synchrony among neurons in the ultra-slow oscillatory activity. 
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3.1 Introduction 

 

In the recent studies, many researchers started to focus on brain activity that is 

not displayed in the range of traditional EEG frequency bands but in a much 

slower time scale with frequencies ranging from 0.001-0.01Hz (Drew et al., 

2008; Lőrincz et al., 2009; Zhu et al., 2010; Picchioni et al., 2011). A similar 

slow rhythm was reported in networks of rat brain cortical cells cultured on 

multi-electrode arrays (Wagenaar et al., 2005; Mok et al., 2012). Ng et al. 

(2013) simulated the ultra-slow oscillations by introducing generation and 

dissipation terms of a hypothetical inhibitory property into the network 

equations of a network of Integrate and Fire (IF) neurons. While the 

underlying mechanisms of these ultra-slow oscillations were not completely 

understood, a few studies suggested the possible involvement of glial cells in 

the generation of these ultra-slow oscillations (Hughes et al., 2011; Krueger et 

al., 2011). In the present work, a network model that takes into consideration 

the interaction between neurons and glial cells is used to simulate the ultra-

slow oscillations.  

 

This chapter is organized as follows. The literature review of glial cells, 

communication between neurons and astrocytes, astrocytic excitation: neuron 

dependent excitation and spontaneous excitation, as well as computation 

models for interaction between neurons and astrocytes are presented in section 

3.2. In section 3.3, the methodology is presented. The network connectivity 

among neurons and astrocytes are developed in section 3.3.1. The modified 

conductance-based ML neuron model is described in section 3.3.2. The 

astrocyte model is presented in section 3.3.3 and the results of bursting 
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activities in a network of ML neurons, in section 3.4.1. The results of ultra-

slow oscillations in a network of ML neurons are shown in section 3.4.2. 

Emergence of synchronous/asynchronous pattern in neuronal network 

activities is studied in section 3.4.3. The effect of ����� on the rise time of up 

states in ultra-slow oscillations is presented in section 3.4.4. Section 3.5 is the 

discussion and section 3.6, the conclusion of this chapter. 

 

3.2 Literature Review 

 

3.2.1 Glial Cells 

  

In the human brain, glial cells outnumbered neurons with a ratio of 

approximately 10:1 (Magistretti, 1996). Because glial cells cannot generate 

action potentials, they were conventionally considered as structural and 

chemical supporting elements for the neurons. However, recent studies have 

provided increasing evidence to suggest that astrocytes (the most numerous 

type of glial cells) play an essential role in processing information and 

modulating neuronal dynamics in the brain (Hirase et al., 2004; Nimmerjahn 

et al., 2004; Poskanzer and Yuste, 2011; Wade et al., 2012) 

 

3.2.2 Communication between Neurons and Astrocytes 

 

Astrocytes can listen and respond to neurons. Neurotransmitters released by 

neurons interact with the receptors on the astrocytes and induce intracellular 

calcium elevation (Araque et al., 2000; Fellin et al., 2006). The intracellular 
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calcium elevation in astrocytes in turn causes the release of gliotransmitter 

such as glutamate and ATP that regulate the synaptic neurotransmission 

(Newman, 2003; Perea and Araque, 2005; Di Castro et al., 2011).  

 

3.2.3 Astrocytic Excitations: Neuron-dependent Excitations and 

Spontaneous Excitations 

  

Astrocytic excitations can be caused by neurons or occur without the 

participation of neurons, which is known as spontaneous excitation (Volterra 

and Meldolesi, 2005). Spontaneous calcium oscillations have been observed 

experimentally in the cortex (Fatatis and Russell, 1992; Charles, 1994), 

hippocampus (Harris-White et al., 1998) and thalamus (Parri and Crunelli, 

2003). Calcium elevation can occur intrinsically and are not dependent on 

neuronal activities (Araque et al., 2000; Parri and Crunelli, 2003; Perea et al., 

2009) Perea et al., 2009). The spontaneous intracellular 01$2  signals have 

different properties from those in neurons: long duration in tens of seconds, 

large amplitude and regular but rare occurrence from 0.5 to 5 min(Volterra and 

Meldolesi, 2005). There are some inconsistent results reported for the 

initiation of spontaneous calcium oscillations. Some of the investigators 

showed that extracellular calcium was required in the generation of 

spontaneous calcium oscillations (Aguado et al., 2002; Volterra and Meldolesi, 

2005) while others reported that intracellular calcium transients trigger the 

spontaneous oscillations (Parri and Crunelli, 2003; Wang et al., 2006). 

Regardless of their origin, these spontaneous events are important in the 

bidirectional communication between neurons and astrocytes, which is able to 

influence neuronal excitability (Parri et al., 2001; Pasti et al., 2001; Nett et al., 
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2002; Fellin et al., 2004). 

 

  Besides studies in the level of a single astrocyte, the collective 

dynamic behaviour of astrocytes has been widely investigated. Sasaki et al. 

(2011) showed that clusters of 2 to 5 astrocytes in the mouse hippocampus and 

neocortex spontaneously exhibited locally synchronized activity. In addition, 

Kuga et al. (2011) studied the larger scale behaviour of hippocampal 

astrocytes in the mouse and showed that almost all the hundreds of astrocytes 

exhibited synchronized calcium activity. Parri et al. (2001) reported regular 

spontaneous calcium oscillations in thalamic astrocytes with periodicity of 

around 0.019Hz and suggested that such oscillations might lead to rhythmic 

neuronal activity.  

 

3.2.4 Computation Models for Interactions between Neurons and 

Astrocytes 

 

Several computational studies have been developed to investigate the 

underlying biophysical mechanisms of interaction between neurons and 

astrocytes. Nadkarni and Jung (2004) introduced “dressed neuron model” that 

consists of a single neuron and astrocyte. The bidirectional communication in 

this simple neuron-glial circuit can provide long-term potentiation and can 

induce spontaneous oscillations in the dressed neuron. Furthermore, a 

mathematical model for the synaptic interactions between presynaptic neuron, 

postsynaptic neuron and astrocyte in tripartite synapse was also proposed 

(Nadkarni and Jung, 2007; Postnov et al., 2007). Postnov et al. (2009) 

extended the tripartite synapse model by incorporating the spatial branching 
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structure of coupled astrocytes. With the extended model, they reproduced the 

most typical glial cell responses and patterns of signal transmission. Sotero 

and Martínez-Cancino (2010) presented a dynamical mean field model that 

incorporates a large number of tripartite synapses. The model predicts that 

astrocytic activity can strongly influence neuronal electrical activities. A 

neural population model which considered the functional outcome of neuron-

astrocyte interaction was also investigated to study the neural synchronization 

(Amiri et al., 2011; Amiri et al., 2012). Amiri et al. (2013) expanded the 

network size to 50 pyramidal neurons and 50 interneurons. The ratio of one 

astrocyte to two neurons has been used. They concluded that astrocytes play a 

primary role in synchronization of the neuronal network activities. 

 

 Except for Amiri et al. (2013), most of the previous computational 

studies focused on functional-based approach to model network that consists 

of only several neurons and astrocytes. However, modeling of a large and 

biophysically meaningful network of interacting neurons and astrocytes has 

yet to be carried out. In the present study, a network model that comprises 

10,000 ML neurons interacting with 10,000 astrocytes is described. The ML 

neurons and astrocytes in the network are randomly connected. Besides of the 

primary neuron-neuron interactions, the synaptic transmission is also 

modulated by astrocyte-neuron interactions.  

 

 

 



  

41 

3.3 Methodology 

 

3.3.1 Network Architecture 

 

 A network of interconnected excitatory neurons and inhibitory neurons 

as well as astrocytes is presented in Figure 3.1. There are randomly connected 

U���  excitatory neurons, U��  inhibitory neurons and U��	  astrocytes in the 

network. The connectivity between pre-synaptic neuron k  and postsynaptic 

neuron E is chosen probabilistically and is denoted by 5�l (Latham et al., 2000). 

For infinite range of connectivity, 5�l  is only dependent on the type of 

presynaptic and postsynaptic neurons, 

5�l � 5·^�,·^¸O  (3.1) 

where ¹� refers to excitatory (E) or inhibitory (I) type of neuron. In the terms 

of mean number of connections, i·^¸  and connectivity bias, º·^¸ , the 

connection probability can be written in the form of 

5»·^¸O � i·^¸U��� IU��º·^¸ 
(3.2) 

5¼·^¸O � i·^¸º·^¸U��� IU��º·^¸ 
(3.3) 

 When there is a connection between neurons, the synaptic strength is 

controlled by parameters: JEE (excitatory neuron connects to excitatory 

neuron), JIE (excitatory neuron connects to inhibitory neuron), JEI (inhibitory 

neuron connects to excitatory neuron) and JII (inhibitory neuron connects to 

inhibitory neuron). 
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In this study, I assumed that each astrocyte is randomly connected to 2 

neurons (Nedergaard et al., 2003). When the neuron emits a spike, 

neurotransmitter, ¹ will be released and causes the elevation of intracellular 

01$2  level in the astrocytes. In turn, the activated astrocytes will release 

gliotransmitters which can regulate synaptic transmission via the connection 

strength of parameters "# and "$. 

 

 

 

 

 

 

 

Figure 3.1: Schematic diagram of the network architecture. The network is 

composed of randomly connected excitatory (Ex) and inhibitory (In) neurons 

as well as astrocytes (Ast) which can regulate synaptic transmission by the 

strength connections represented by "#(       ) and "$ (       ). The coupling 

strength between neurons are controlled by JEE (           ), JEI (           ),         

JIE (           ) and JII (           ).  

 

3.3.2 The Modified Conductance-based ML Neuron Model 

 

A modified version of the ML neuron model (Morris and Lecar, 1981; Prescott 

et al., 2008) is used in the following simulations. The advantage of this model 

is that as long as the tangent-bifurcation structure is retained, the results for 

arbitrary long inter-spike intervals will not be altered (Volman et al., 2007) 

even if a different set of parameters for the model is chosen. The set of 

differential equations that governs the dynamics of the membrane potential for 

Ast 

Ast Ex In 

In 

Ex 
Ex 
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neuron E 8E � 1, 2, 3, … , U��� IU��9 are written as follows: 

0 =!�=� � \4M�,� \ 4b,� \ 4c,� \ 4�½¾¿,� \ 4�^,�  I 4�,� I 4��	,� (3.4) 

=_�=� � ` 8_O8!�9 \ _�9�a8!�9  
(3.5) 

where 

4M�,� � dM��O8!�98!� \ eM�9 (3.6) 

4b,� � db_�8!�98!� \ eb9 (3.7) 

4c,� � dc8!� \ ec9 (3.8) 

�O8!�9 � 0.581 I �1QTf8!� \ !#9 !$⁄ g9 (3.9) 

_O8!�9 � 0.581 I �1QTf8!� \ !69 !h⁄ g9 (3.10) 

�a8!�9 � 1cosh f8!� \ !69 82!h9⁄ g (3.11) 

 

Here, !  is the membrane potential and _  is the activation variable for the 

potassium current. The internal ionic current consists of  i2 current, 4b,� , U12 

current, 4M�,� and a leakage current, 4c,�.  0 is the capacitance of the membrane. 

The maximum conductance for the ion and the leakage channels are denoted 

by dM�, db and dc where eM�, eb and ec represent the reversal potentials for 

the ion and leakage channels. The fraction of open potassium channels _ 

tends to the saturation value _O8!�9  with a characteristic time scale of 

8�a8!�9 j⁄ 9. Fast changes of the calcium current take the gate variable �� as 

the saturation value �O8!�9. 
 

 The original ML model is modified by including the additional slow 

adaptation-afterhyperpolarization (AHP) current. The slow 
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afterhyperpolarization current, 4�½¾¿,� , is activated following the action 

potential emitted by each neuron. This current is described as (Prescott et al., 

2008): 

4�½¾¿,� � d�½¾¿Ä�½¾¿,�8!� \ eb9 (3.12) 

After each action potential, 4�½¾¿can persist up to 5s (Sah and Louise Faber, 

2002). The activation of 4�½¾¿,� is controlled by Ä�½¾¿,�: 
=Ä�½¾¿,�=� � � 11 I F8ÅÆ;��9 ÇÆ⁄ \ Ä�½¾¿,�� �*+ÈÉÊ�  

(3.13) 

where d�½¾¿ is the slow afterhyperpolarization conductance, �*+ÈÉÊ is the time 

constants. Ë* and "*  are set to 0�! and 1�! respectively. Exemplar voltage 

trace of neuron with and without AHP current is shown in Figure 3.2. The 

AHP current following each single action potential will suppress the 

depolarization for periods that is dependent on the time constant of  �*+ÈÉÊ. 
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Figure 3.2: The membrane potential of neuron with AHP current (blue solid 

line) and without AHP current (red solid line) in the case of stimulation by 

constant input current of 60&'/)�$ and �*+,-. � 55��. 

 

The synaptic current of the Eth neuron is given as (Latham et al., 2000) 

4�^,� �m Ì�l��l8�98!� \ e�^,l9l8Í�9  
(3.14) 

The coupling strength from neuron k to neuron E  is controlled by Ì�l  which 

mainly depends on the type of neurons connected: Ì�l � �ee, �e4, �4e SD �44. 
When there is no connection between neurons, Ì�l � 0. e�^,l is the reversal 

potential for excitatory synapse or inhibitory synapse. When neuron k fires, the 

the fraction of open channels, ��l on E neuron will increase instantaneously and 

then decay exponentially: 

=��l=� � \ ��l�� I D�m n8� \ �lo9o  
(3.15) 

�lo  is time of the p�T spike on neuron k. When !l crosses the threshold value 

!	�, neuron k emits a spikes and D� determines the number of closed channels 
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open each time neuron k  fires. In order to reduce the computation time, 

Equation 3.14 is written in another form of 

4�^,� � !�4� \ 4Î,� (3.16) 

where  

4� �mÌ�l��ll
 

(3.16a) 

4Î,� � mÌ�l��ll
Ïl (3.16b) 

4� and 4Î,� are evolved based on the following differential equations 

=4�=� � \ 4��� I D�m Ì�ln8� \ �lo9l8Í�9o  
(3.17) 

=4Î,�=� � \ 4Î,��� I D�m Ì�le�^,�n8� \ �lo9l8Í�9o  
(3.18) 

 

 The applied current, 4�,�  for each neuron E  was uniformly chosen 

between 0 and 4A�� . It defines how many neurons in the network are 

endogenously active that are close to the threshold value and tend to fire 

(Latham et al., 2000). The last term of Equation 3.4, 4��	,� denotes the current 

induced by astrocytes’ activities. 
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3.3.3 The Astrocyte Model 

 

Figure 3.3: Schematic illustration of astrocyte model. The solid arrows 

indicate the movement of the calcium while the dashed arrows indicate the 

cooperative effects (e.g., the effect of cytosolic /01$23 on PLC). 

 

The schematic illustration of the astrocyte model is presented in Figure 3.3. 

Astrocytes excitation is due to two main forms: neuron-dependant excitation 

and spontaneous excitation. For neuron-dependant excitation, neurotransmitter, 

¹ released from presynaptic neurons activates the receptors on the astrocytes 

and induces the production of /4563 in the intracellular space. The 456 receptor 

845679 is opened, allowing 01$2 to flow out from the endoplasmic reticulum 

8e79 to the cytosol. For spontaneous excitation in our model, the production 

of /4563  depends on the effect of intracellular /01$23  stimulation on 

membrane-bound phospholipase C (PLC) or agonist stimulation by G-protein 

mechanism. When /4563 is produced, 01$2 is released into the cytosol rapidly, 

and lead to inactivation of the 4567  channels. At this moment, cytosolic 

/01$23 is pumped back to ER. 4567 channels are activated rapidly again when 

/01$23 has decreased sufficiently. This biphasic response of 4567 causes the 

cycle to repeat itself and thereby inducing /01$23 oscillations (De Young and 

Keizer, 1992; Foskett et al., 2007). The biphasic response of 4567  and the 
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corresponding concentration of calcium in the cytosolic and ER under the 

oscillatory regime is shown in Figure 3.4. 

 

Figure 3.4: The relationship between the fraction of activated 4567, 

concentration of calcium in the cytosolic and ER under the oscillatory regime. 

 

 Accordingly, the generation of intracellular /4563  in the astrocyte is 

provided by (De Young and Keizer, 1992; Nadkarni and Jung, 2003)  

=/4563=� � �h P/01�$23 I 81 \ Ð9ph/01�$23 I ph V \ /4563�¼¿Ñ I D¼¿ÑΘ8!� \ !	�9 (3.19) 

where 0 � Ð � 1. Ð indicates the relative effect of  /01$23 activation of PLC 

on /4563 production. The maximum production rate of /4563, �h is independent 

of /01$23. In this study, I assumed that the effective �h can be increased via 

agonist stimulation by G-protein mechanism. ph is the dissociation constant 

for /01$23 activation of /4563 production and 
#ÓÔÊÑ is the degradation rate. The 

parameter D¼¿Ñdetermines the production of /4563  in response to a neuronal 
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action potential. The production term is activated when the membrane 

potential of the neuron is larger than !	� via the step function Θ. 

 

The Li-Rinzel model (Li and Rinzel, 1994) is used as the dynamic 

model of the astrocytes. The set of differential equations that governs the 

dynamics of /01$23  concentration in the intracellular space is written as 

follows: 

=/01$23=� � ���� \ ��ÕA� I �Ö��o 
(3.20) 

=�=� � Ð×81 \ �9 \ Ë×� 
(3.21) 

where 

Ð× � 1$=$ /4563 I =#/4563 I =6 
(3.22) 

Ë× � 1$/01$23 (3.23) 

 � denotes the fraction of activated 4567 . Ð×  and Ë×  correspond to the 4567 

opening rate and closing rate respectively that are controlled by the parameter 

4567  inactivation binding rate, 1$  and /01$23  inactivation dissociation 

constant, =$ . The examples of intracellular calcium oscillations of different 

frequencies with respect to 1$ and =$ are shown in Figure 3.5. 

 

   ����, �Ö��o  and ��ÕA�  are the calcium flux from ER through 456 

release channels, the leakage flux from ER to cytosol and the pump flux from 

cytosol to ER respectively. The fluxes are described by following equations: 

���� � )#�#ØO6 QO6 �68/01$23»a \ /01$239 (3.24) 

�Ö��o � )#�$8/01$23»a \ /01$239 (3.25) 
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��ÕA� � �6/01$23$/01$23$ I p6$ 
(3.26) 

 

 

where  

ØO � /4563/456 I =#3 (3.27) 

QO � /01$23/01$23 I =Ù 
(3.28) 

 The 01$2 concentration in ER is denoted as 

/01$23»a � )� \ /01$23)#  
(3.29) 

 

 

Figure 3.5: The periodic solution of intracellular calcium elevation simulated 

by the astrocyte dynamic model with 819 1$ � 0.1&:�;#, =$ � 1.049&: and 8@9 1$ � 0.05&:�;#, =$ � 1.049&:. 
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The calcium signals are transmitted from cell to cell in the oscillatory 

regimes rather than stationary states. Among the physiological significant 

oscillatory behaviours that are included are (i) for the same second messengers, 

different processes could be switched depending on the changes in oscillations 

frequency, for instance, the releasing of different transcription factors in T-

lymphocytes, (ii) a wide range of signal strengths could be accomplished, up 

to several orders of magnitude, and (iii) more types of distinct signals could be 

transmitted such as synchronization, phase locking and chaotic regimes 

(Schuster et al., 2002).  

 

If the level of /01$23 exceeds the threshold, /01$23	� , the astrocyte 

will release a finite amount of gliotransmitters into the synaptic cleft (Volman 

et al., 2007). The interaction of astrocyte-neuron is modelled by  

=Ú=� � \Ú����� I 81 \ Ú9ÛΘ8/01$23 \ /01$23	�9 (3.30) 

where ����� is 01$2 time constant, Û is a scaling factor and Θ is the Heaviside 

function. An increase of intracellular calcium, /01$23 leads to the release of 

ATP which can modulate neuronal excitability by suppressing or facilitating 

the synaptic transmission. Astrocytic ATP release activates metabotropic P2Y1 

receptors and increases the excitation of inhibitory neurons that in turn 

enhances synaptic inhibition (Bowser and Khakh, 2004; Torres et al., 2012). 

On the other hand, the activation of different purinergic receptors by ATP 

suppresses the excitability of excitatory neurons (Fellin et al., 2006). The 

biological facts are functionally modelled by including the negative and 

positive signs to the output current from the astrocyte to the excitatory and 

inhibitory neuron respectively (Amiri et al., 2013): 
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4��	 � Ü\"#Ú          ÚSD Fr)E�1�SD� QFRDSQ"$Ú              ÚSD EQTE@E�SD� QFRDSQÝ  
"#and "$  are the strength connections from the astrocyte to the excitatory 

neuron and the inhibitory neuron respectively.  

3.4 Results  

 

3.4.1 Neuronal Network without Interaction with Astrocytes 

  

I solved the resulting set of ODEs in the model using Runge-Kutta 4
th

 order 

with fixed time step of 0.1ms. For all the simulations, histograms of fixed bin 

size, 10ms is used. Firstly, the neuronal network without incorporating the 

influence of astrocyte’s activities is investigated  8"# � "$ � 09 . Figure 3.6 

demonstrates the intrinsic dynamics activities for a large network of neurons 

with different 4A��: 81960 &'/)�$, 8@963.3 &'/)�$ 1Q= 8)975 &'/)�$ . 

The other network parameters are shown in Table 3.1. When the number of 

endogenously active neurons is increased, the amplitude of firing rate is also 

increased. For a low number of endogenously active neurons, a low number of 

spikes occurred at very low rates (Figure 3.6(a)). The network activities for 

4A�� � 63.3 &'/)�$ (Figure 3.6(b)) are comparable to the bursting activities 

within the peaks of the ultra-slow oscillations observed in experiment 

(unpublished data provided by S.Y. Mok) (Figure 3.6(d)). Further increasing 

4A�� leads to neurons firing at very high rates (Figure 3.6(c)).  
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Figure 3.6: Network activities without astrocytes in the range of different 4A�� used in the network model: (a) 60 &'/)�$, (b) 63.3&'/)�$ and 

(c) 75 &'/)�$. The experimental data is shown in (d). 
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Table 3.1: Parameters for modified ML neuron model (Latham et al., 2000; 

(Lim and Kim, 2007) 

Parameter Description Value 

�� Threshold value for �O \1.2 �! 

�� Steepness parameter for �O 18 �! 

�� Threshold value for _O 12�! 

�  Steepness parameter for _O 30 �! 

¡ß£ Reversal potential for U12 channels 60 �! 

¡¤ Reversal potential for leakage channels \60 �! 

¡¥ Reversal potential for i2 channels \84 �! 

¦ Capacitance of membrane 5 &w )�$⁄  

§ Temperature time scale factor 0.04 

¨à© Maximum conductance for U12 channels 7.5 �� )�$⁄  

¨ª Maximum conductance for i2 channels 8 �� )�$⁄  

¨« Maximum conductance for leakage channels 2 �� )�$⁄  

°±² Threshold value for spiking state 0 �! 

¨áâã Slow afterhyperpolarization conductance 1.8�� )�$⁄  

¬äáâã  Slow afterhyperpolarization time constant 2000�� 

å®¯,å Reversal potential for excitatory neuron 0�! 

å®¯,æ Reversal potential for inhibitory neuron \80�! 

çåå Synaptic strength of excitatory neuron 

connects to excitatory neuron 

0.93�� )�$⁄  

çåæ Synaptic strength of inhibitory neuron 

connects to excitatory neuron 

4.19�� )�$⁄  
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Table 3.1 continued 

çææ Synaptic strength of inhibitory neuron 

connects to inhibitory neuron 

 . �èéê ëé�⁄  

çæå Synaptic strength of excitatory neuron 

connects to inhibitory neuron 

0.93�� )�$⁄  

¬ Synaptic time constant 3�� 

ì Fraction of closed channels open 0.1 

àí¯² Number of inhibitory neurons 2000 

àîïë Number of excitatory neurons 8000 

à©± Number of astrocytes 10000 

ªæ Mean number of inhibitory connections 2000 

ªå Mean number of excitatory connections 2000 

ðå Connectivity bias toward excitatory neurons 1.2 

ðæ Connectivity bias toward inhibitory neurons 0.8 

 

3.4.2 Ultra-Slow Oscillations in a Network of ML Neurons 

 

For this simulation, I included the role of the astrocytes, in modulating the 

frequency of neuronal network activities, into the model. Each astrocyte is 

randomly connected with two neurons in the network. With the participation 

of astrocytes, oscillatory activities as a succession of up and down states were 

obtained. To investigate the effect of astrocytes to the frequency of neuronal 

network activities, I varied the two parameters: 4567 inactivation binding rate, 

1$  and /01$23  inactivation dissociation constant, =$  while keeping constant 

the coupling strength of astrocyte-neuron interactions, "# � 0.425 and 

"$ � 0.05 (Figure 3.7). Note that the neuronal network frequencies are within 
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the broad range of ultra-slow oscillatory rhythm: 0.001-0.01Hz. With the same 

level of =$, the frequency of neuronal network oscillations increased as the 

level of 1$  is increased. The neurons fire irregularly and the network 

oscillations are eliminated when =$ is larger than 1.4 &:(not shown). We can 

observe from Figure 3.7, a transition in neuronal network frequency as a 

function of 1$  and =$ . This observation suggests that the astrocytes play a 

substantial role in regulating the frequency of ultra-slow oscillations.  

 

Figure 3.8 shows some of the simulated results of ultra-slow 

oscillatory activities with slightly different frequencies. It is clear that the 

coupling strength from astrocytes to neurons, "#  determines the number of 

spikes contained within the burst during the down states of the oscillations. 

Figure 3.8(a) shows the simulated results of an ultra-slow oscillation of 

approximately 0.002Hz when 1$ � 0.00141&:�;# , =$ � 1.2&:, "$ � 0.05 

and  "# � 0.425.  Figure 3.8(b) shows an ultra-slow oscillation of 

approximately 0.003Hz when 1$ � 0.0018&:�;#, =$ � 1.16&:, "$ � 0.05 

and  "# � 0.625.  Figure 3.8(c) shows an ultra-slow oscillation of 

approximately 0.005Hz when 1$ � 0.00234&:�;#, =$ � 1.16&:, "$ � 0.05 

and  "# � 0.8 . These simulation results are comparable to those observed in 

dissociated cortical networks (See Figures 3.9(a), 3.9(b) and 3.9(c)) in the 

experimental study (unpublished data provided by S.Y. Mok).  
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Figure 3.7: The frequency of neuronal network activities (represented by different colors) in unit Hz as the functions of 1$8&:�;#9 and =$8&:9. 
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Figure 3.8: Simulation results of ultra-slow oscillations with (a) 1$ � 0.00123&:�;#, =$ � 1.3&: and "# � 0.17, (b) 1$ � 0.00159&:, =$ �1.34&: and "# � 0.25, (c) 1$ � 0.00207&:�;#, =$ � 1.3&: and "# � 0.32. 
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Figure 3.9: Experimental results of spontaneous ultra-slow oscillations from different culture.
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Table 3.2: Parameters for astrocyte model (Amiri et al., 2013; De Young and 

Keizer, 1992)  

Parameter Description Value 

ñò Total free /01$23 concentration 2&: 

ñ� Ratio of ER volume to cytosol volume 0.185 

ó� Maximum rate of CICR (calcium-induced 

calcium release) 

6�;# 

ó� 01$2 leakage rate from ER 0.11�;# 

ó� Maximum rate of pump intake 0.9&:�;# 

ó  Maximum production rate of /4563 0.1�;# 

ô� /4563 dissociation constant 0.13&: 

ô� /4563 dissociation constant 0.94&: 

ôõ 01$2 activation dissociation constant 0.08234&: 

ö÷ø�  /4563 degradation time constant 7� 

ù÷ø� Rate of [4563 production 0.01&:�;# 

ú� Pump activation constant 0.1&: 

ú  Dissociation constant for /01$23  activation 

of /4563 production 

1.1&: 

û Relative effect of /01$23 activation of PLC 

on /4563 production 

0.2 

ü Scaling factor 0.5�;# 

¬¦©�� Decay rate of Ú  10� 

/¦©�23±² Astrocyte Gliotransmitter release threshold 0.2&: 
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3.4.3 Emergence of Synchronous/Asynchronous Patterns 

 

In this section, I further investigate the effect of interactions between 

astrocytes and neurons in neuronal synchronization. Different strengths of 

connection from astrocytes to excitatory neurons, "#and from astrocytes to 

inhibitory neurons, "$ are varied in the following simulations. I kept constant 

the parameters 1$ � 0.00123&:�;# and =$ � 1.3&: while other parameters 

are as given in Table 1 and 2. By setting "# � 0.17  and "$ � 0.05 , the 

synchronized neural activities within the down states of ultra-slow oscillations 

are demonstrated in Figure 3.10(a). Further increasing the interactions 

between astrocyte-neuron to  "# � 0.5, "$ � 0.35 and "# � 1.0, "$ � 0.7, the 

amplitude of neuronal firing synchronization is decreased (Figure 3.10(b) and 

Figure 3.10(c)). The simulation results reveal that increasing the coupling 

strength between the astocytes and the neurons alters the synaptic transmission 

and consequently changes the synchronization level in the neuronal network 

activities. Variation in the coupling strength of astrocyte-neuron interactions 

could be one of the plausible mechanisms in the emergence of 

synchronous/asynchronous pattern which is an important mechanism for 

neural information processing (Hamilton and Attwell 2010; Schummers et al. 

2008; Pereira Jr and Furlan 2009).  
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Figure 3.10: The effect of increasing astrocyte-neuron interactions within the down states of the ultra-slow oscillations: 

(a) "# � 0.17, "$ � 0.05; (b)  "# � 0.5, "$ � 0.35 and (c)  "# � 1.0, "$ � 0.7.
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3.4.4 Effect of ¬¦©�� on the Rise Time of Up States in Ultra-Slow 

Oscillations 

 

Experimental results revealed that the time required for the neuronal network 

activities to rise to the up states of ultra-slow oscillations varied in different 

cultures (Figure 3.11). The rise time is calculated as the average time taken for 

the neuronal network activities to change from the down states to 80% of the 

up states in each simulation. In our model, we can functionally reproduce this 

phenomenon. The critical parameter for eliciting this phenomenon is the decay 

time of astrocyte-neuron interaction function, ¬¦©�� . For the following 

simulations, we kept constant the parameters 1$ � 0.001&:�;#  , =$ �
1.0&:  and histograms of fixed bin size=1s. Figure 3.12 shows the effect of, 

¬¦©�� on the rise time. The astrocytes’ influence on the synaptic terminal 

persists even after the intracellular calcium elevation in the astrocytes is 

lowered.  

 

Figure 3.11: Experimental results of the rise time from different cultures.
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Figure 3.12: The effect of ����� on the rise time of up states in ultra-slow oscillations: (a)����� � 10�, rise time = 32.5s, (b) ����� � 20�, rise 

time = 65.5s, (c)����� � 30�, DE�F �E�F � 101�, and (d) ����� � 50�, DE�F �E�F � 119�. 
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3.5 Discussion 

 

From my model, I suggest the possible involvement of astrocytes in neuronal 

network activities. My simulation results may provide a new insight into the 

putative role of astrocytes in generating the ultra-slow oscillations that were 

observed in cortical cultures of rat brain neurons. 

 

There is increasing evidence to show that astrocytes play an active role 

in modulating neural network dynamics in the central nervous system (Parri et 

al., 2001; Wang et al., 2012). The bidirectional interactions between astrocytes 

and neurons are important in maintaining normal neuronal activities (Fellin, 

2009; Amiri et al., 2013). In this study, I modelled the interactions of neuron-

neuron as well as the interactions of astrocyte-neuron. The simulation results 

demonstrated that changes in the frequency of neuronal network oscillations 

depended mainly on the close rate and open rate of 4567, which were in turn 

controlled by two parameters: 4567 inactivation binding rate, 1$  and /01$23 
inactivation dissociation constant, =$ . This agrees with the findings by De 

Young and Keizer (1992) in which the frequency of the intracellular /01$23  
oscillations is mostly affected by the recovery time for the 4567. These 01$2 

oscillations in astrocytes are closely linked to their environment including 

their interconnected neurons. Thus, I suggest that 456  causes changes in 

astrocytes calcium levels that oscillate within the physiological time scale 

range of 0.5 \ 5�EQ� (Volterra and Meldolesi, 2005) that then interact with 

the neurons to generate ultra-slow oscillations as observed in cortical cultures 

of rat brain neurons. 
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In accordance with experimental observations (Fellin, 2009; Pereira Jr 

and Furlan, 2009; Poskanzer and Yuste, 2011), the simulation results showed 

that astrocytes can regulate the neuronal excitability and play a causal role in 

regulating the synchronization level among neurons. The results showed that 

variation in the coupling strength of astrocyte-neuron interactions was the 

primary factor that influenced the synchronization level of ultra-slow 

oscillations. However, it should be pointed out that the synchronization of 

neuronal activities as well as network behavior also depended on the 

connectivity of neuron-glial networks that were utilized in the current model. 

This may be the reason why the ultra-slow oscillations were observed in some 

cultures but not in others.    

 

In the current model, I have utilized a functional approach to model the 

astrocyte-neuron interactions. However, in order to enhance our understanding 

of ultra-slow oscillations, the fine details and the cellular signaling 

mechanisms underlying astrocyte-neuron interactions that alter the neuronal 

network activities should be further investigated using both experimental and 

computational approaches. 
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3.6 Conclusion 

  

 I propose a modified Morris-Lecar neuron model that takes into 

consideration the interaction between the neurons and the glial cells in the 

network. Using this model, I successfully simulated ultra-slow oscillations that 

are comparable to those observed in cortical cultures of rat brain neurons.  
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CHAPTER 4 

 

CONCLUSION REMARKS AND FUTURE WORK 

4 CONCLUSION REMARKS AND FUTURE WORK 

 

4.1 Summary of Major Results 

 

4.1.1 Simulation of Network Oscillations using the Population Density 

Approach 

 

A PDA is introduced to simulate a network of ML neurons. The results were 

compared against conventional computation for groups of individual neurons 

in a few example networks by varying (i) population sizes, (ii) different 

connectivity and (iii) different amplitude of PSP for inhibitory synapses. The 

PDA provided a closer approximation to the network activities for neuronal 

networks with a large number of sparsely connected neurons. 

 

One of the advantages of this approach is saving in computation time 

for simulating large biophysically meaningful neuronal networks. For large 

populations/networks, the computational efficiency of the PDA is better than 

direct simulation of individual neurons. The incorporation of the ML neuron 

model in the PDA enables the approach to be applied to study more complex 

phenomena as demonstrated in the simulation of the behavior of type I and 

type II neurons. 
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4.1.2 Simulation of Ultra-Slow Oscillations in Cortical Networks 

 

For a better understanding of ultra-slow oscillations on the time scale of 

minutes that was observed in dissociated cortical cultures of rat brain neurons, 

a modified ML network model that takes into consideration the interaction 

between neurons and astrocytes was developed. The current computational 

study provided a framework for improving understanding of the firing activity 

patterns within the oscillations as well as the bursts at the peaks and troughs. 

 

 Based on the simulation results of a large network of randomly 

connected neurons-astrocytes, the following observation may be made:   

 

(i) Endogenously active cells: Without any external stimulation to the 

neurons, the intrinsic firing patterns within the ultra-slow 

oscillations of large neuronal network are significantly controlled 

by the number of endogenously active neurons.  

 

(ii) Elevation of astrocytes calcium levels: By taking into consideration 

the interaction between neurons and astrocytes, a succession of 

peaks and troughs at different frequency can be generated. The 

frequency of the ultra-slow oscillatory activity is modulated by 

changes in the calcium levels of the astrocytes that interact with the 

ML neurons. 
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(iii) Strength of connection from astrocytes to neurons: Variations in 

the strength of the connection between the astocytes and the 

neurons can change the synchronous/asynchronous firing pattern of 

the neurons in the network.  

 

4.2 Future Work 

 

4.2.1 PDA studies 

 

The PDA can be extended to simulate more complex combinations of 

subnetworks such as the neocortex of human brain that are organized 

vertically into cortical columns with each cortical column containing 60,000 

or more neurons. Such simulations using the conventional approach to treat 

the network as a combination of individual neurons would require the 

computing power of a cluster of workstations to generate meaningful results. 

The PDA may enable more researchers with limited computing facilities to 

tackle more complex neural systems.  

 

4.2.2 Ultra-Slow Oscillations 

 

The current study is the first attempt at using a modified ML neuron model 

that takes into consideration the interaction between glial cells and neurons to 

simulate ultra-slow oscillations in a large network. The detailed mechanisms 

of the interaction of neuron-glial interactions are still not fully understood. 

Further experimental studies are necessary to investigate the effect of glial 
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cells (e.g. effect of calcium buffers) and their response to the neuronal network 

activities. Selective stimulation of glial cells via pharmacological or 

optogenetic stimulation can be devised to investigate the consequences of glial 

activities in the neuronal network. The new experimental evidence may 

provide useful hints on how to improve the analytical models. To enhance the 

computational efficiency, a two timescale mean field approach that glial cells 

operate on much slower timescales than neurons could be developed to study 

the network activities of interaction between neurons and glial cells. 
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APPENDIX A 

APPENDIX A: PROGRAMMING CODE 

PROGRAMMING CODE 

 

A.1 The Direct Simulation of the Conductance-based ML Neuron 

Model 

 

#include <iostream> 

#include <iomanip> 

#include <fstream> 

#include <deque> 

#include <tr1/random> 

#include <vector> 

#include <cmath> 

#include <ctime> 

#include <stdio.h> 

 

using namespace std; 

using namespace std::tr1; 

 

class membrane{ 

 public: 

  double C; 

  double GCa; 

  double m_inf; 

  double ECa; 

  double GK; 

  double n; 

  double EK; 

  double GLeak; 

  double ELeak; 

  double q; 

  double Iint; 

  double Inoise; 

   

  membrane(): 

   C(0), 

   GCa(0), 

   m_inf(0), 

   ECa(0), 
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   GK(0), 

   n(0), 

   EK(0), 

   GLeak(0), 

   ELeak(0), 

   Iint(Iint), 

   Inoise(Inoise), 

   q(0){} 

     

  ~membrane(){} 

    

   double operator () (double y, double t){ 

    return( 1/C * ( -GCa*m_inf*(y-ECa) - 

GK*n*(y-EK) - GLeak*(y-ELeak) ) + Inoise + Iint); 

   } 

  }; 

   

class potassium{ 

 public: 

  double tau_R; 

  double n_inf; 

  double factor; 

  double r; 

   

  potassium(): 

   tau_R(0), 

   r(0), 

   factor(0), 

   n_inf(0){} 

   

  ~potassium(){} 

    

   double operator () (double y, double t){ 

    return( factor/tau_R*(n_inf-y) ); 

   } 

  }; 

 

class Timing { 

 public: 

  Timing(){ 

   startt=time(NULL); 

   endt=time(NULL); 

  } 

  ~Timing(){} 

  void tic(){ 

  startt=time(NULL); 

  } 

  void toc(){ 

  endt=time(NULL); 

  } 
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  time_t diff(){ 

  return endt-startt; 

  } 

 private: 

  time_t startt, endt; 

}; 

 

   

template <typename function> double runge_kutta_4th(function equation, 

double initial, double t, double dt){ 

 double k1 = equation(initial,t); 

 double k2 = equation(initial + 0.5 * k1 * dt, t + 0.5 * dt); 

 double k3 = equation(initial + 0.5 * k2 * dt, t + 0.5 * dt); 

 double k4 = equation(initial + k3 * dt, t + dt); 

 return initial + (k1 + 2*k2 +2*k3 + k4)/6 * dt; 

} 

    

int main(){ 

  Timing timing; 

  ranlux4_01 r_seed(time(0)); 

 

  timing.tic(); 

  

  double C=5, GCa=4.4, GK=8, GLeak=2, ECa=120, EK=-84, 

ELeak=-60; 

  double factor=0.04, V1=-1.2, V2=18, V3=2, V4=30, Vspk=0; 

  double tend=1000, dt=0.01,t=0; 

   

  // Allocate inhibitory and excitatory neurons 

  int N=10000; 

  double inb_fraction=0.2; 

  int net_in=N*inb_fraction; 

  int net_ex=N-net_in; 

  

 

  //Generating connectivity 

  double Connection_ex=800, Connection_inb=200; 

  double con_probex=Connection_ex/net_ex; 

  double con_probinb=Connection_inb/net_in; 

  double JE=0.01, JI=0.01,Jpre;  

  bernoulli_distribution r_netProbex(con_probex);  

  bernoulli_distribution r_netProbinb(con_probinb);  

  bernoulli_distribution *r_net; 

  vector<vector<double> > net_con; 

 

  for (int i=0;i<N;i++){ 

   vector<double> temp; 

   for (int j=0;j<N;j++){ 

    if (j<net_in){ 

     r_net=&r_netProbinb; 
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     Jpre=JI; 

    } 

    else{ 

     r_net=&r_netProbex; 

     Jpre=JE; 

    } 

    if (r_net->operator()(r_seed)==1 && j!=i) 

     temp.push_back(Jpre); 

    else 

     temp.push_back(0); 

   } 

    net_con.push_back(temp); 

  }  

 

  //Neuron Initialization 

  vector<double>VV; 

  vector<double>V_temp; 

  vector<double>nn; 

  vector<double>spike; 

  uniform_real<double>r_real(-30,-10); 

  uniform_real<double>r_real2(0.0,1.0); 

   

  for (int k=0;k<N;k++){ 

   V_temp.push_back(r_real(r_seed)); 

   VV.push_back(r_real(r_seed)); 

   nn.push_back(r_real2(r_seed)); 

   spike.push_back(0); 

  } 

   

  //External input 

  double nuext=120; 

  double Jext=0.15; 

  poisson_distribution<int> ext_rate(nuext*dt); 

   

   

  // Generating voltage bin 

  double bin=0.8; 

  double Vmin=-90, Vmax=70; 

  int size_max=(Vmax-Vmin)/bin; 

  vector<double > array; 

  

  for(int j=0;j<=size_max;j++){ 

   array.push_back(0); 

  } 

   

  // Generating files 

  ofstream out_file3("voltage"); 

  ofstream out_file4("spike"); 

     

  membrane membrane1; 
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  potassium potassium1; 

   

  while(t<tend){ 

    

   for (int k=0;k<N;k++){ 

     

    double m_inf=0.5*(1+tanh((VV[k]-V1)/V2)); 

    double tau_R=1/cosh((VV[k]-V3)/(2*V4)); 

    double n_inf=0.5*(1+tanh((VV[k]-V3)/V4)); 

    

    potassium1. tau_R=tau_R; 

    potassium1. n_inf=n_inf; 

    potassium1. factor=factor; 

    potassium1. r=runge_kutta_4th(potassium1, 

nn[k], 0, dt); 

 

    membrane1. C=C; 

    membrane1. GCa=GCa; 

    membrane1. m_inf=m_inf; 

    membrane1. ECa=ECa; 

    membrane1. GK=GK; 

    membrane1. n=potassium1. r; 

    membrane1. EK=EK; 

    membrane1. GLeak=GLeak; 

    membrane1. ELeak=ELeak; 

    membrane1. Iint=spike[k]/dt; 

    membrane1. Inoise=ext_rate(r_seed)*Jext/dt; 

    membrane1. q=runge_kutta_4th(membrane1, 

VV[k], 0, dt); 

     

    V_temp[k]=VV[k]; 

    VV[k]=membrane1. q; 

    nn[k]=potassium1. r; 

     

    // probability density   

    int index=round((VV[k]-Vmin)/bin); 

    array[index]++; 

   } 

    

      

   for (int j=0;j<=size_max;j++){ 

    out_file3<<array[j]/(N)<<","; 

    } 

    out_file3<<endl; 

    

    for (int j=0;j<=size_max;j++){ 

    array[j]=0; 

    } 

 

   for(int k=0; k<N; k++){ 
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    spike[k]=0; 

   } 

 

   int r=0; 

   for (int k=0; k<N;k++){ 

    if (VV[k]>Vspk && V_temp[k]<Vspk){ 

     r++; 

     for(int j=0;j<N;j++){ 

      if (net_con[j][k]!=0){ 

       spike[j]+=net_con[j][k]; 

      } 

     } 

    } 

   } 

   out_file4<<r<<endl; 

  } 

  out_file3.close(); 

  out_file4.close(); 

  V_temp.clear(); 

  VV.clear(); 

  nn.clear(); 

  spike.clear(); 

  net_con.clear(); 

  array.clear(); 

     

  timing.toc(); 

  cout << setw(10) << timing.diff()<< "s" << endl; 

  return 0; 

 } 
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A.2 Population Density Approach (PDA) 

 

# include<iostream> 

#include <iomanip> 

# include<cmath> 

# include<fstream> 

# include<vector> 

# include<ctime> 

# include<tr1/random> 

#include<omp.h> 

 

# define PI 3.141592654 

 

using namespace std; 

using namespace std::tr1; 

 

void Simpson (double, int, vector<double>, double & ); 

 

class PopD{ 

 public: 

  double dV; 

  double ds; 

  double fes, Fv1,Fv2,Fv3,Fn1,Fn2,Fn3,FVV,FNN; 

  double N_inf; 

  double SOD; 

  double cc; 

  vector<double>::iterator it_Vbegin; 

  vector<double>::iterator it_Psbegin; 

  vector<double>::iterator it_Qsbegin; 

  vector<double>::iterator it_Rsbegin; 

   

  int k; 

  int j; 

  int sod_max; 

  int Vmax; 

  double z; 

   

   

  PopD(int sod_max, int Vmax,  int k, int j, double dV, double ds, 

double cc, double N_inf, double SOD, double Fv1, double Fv2, double Fv3, 

double Fn1, double Fn2, double Fn3, vector<double>::iterator it_Vbegin, 

vector<double>::iterator it_PSbegin, vector<double>::iterator it_QSbegin, 

vector<double>::iterator it_RSbegin): 

    

   dV(dV), 
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   ds(ds), 

   fes(fes), 

   Fv1(Fv1), 

   Fv2(Fv2), 

   Fv3(Fv3), 

   Fn1(Fn1), 

   Fn2(Fn2), 

   Fn3(Fn3), 

   N_inf(N_inf), 

   SOD(SOD), 

   cc(cc), 

   it_Vbegin(it_Vbegin), 

   it_Psbegin(it_PSbegin), 

   it_Qsbegin(it_QSbegin), 

   it_Rsbegin(it_RSbegin), 

   j(j), 

   sod_max(sod_max), 

   Vmax(Vmax), 

   k(k){} 

 

  ~PopD(){}                                                                      

 

  double operator()(double y, double t){ 

    

    

   if (cc>*(it_Vbegin+k)) 

   { 

    FVV=(Fv1*(*(it_Psbegin+k-1))-(Fv2*y))/dV; 

   } 

   else 

   { 

     FVV=(Fv2*y-(Fv3*(*(it_Psbegin+k+1))))/dV; 

   } 

    

   if (N_inf>SOD) 

   { 

    FNN=(Fn1*(*(it_Qsbegin+k))-(Fn2*y))/ds; 

   } 

   else 

   { 

    FNN=(Fn2*y-(Fn3*(*(it_Rsbegin+k))))/ds; 

   } 

    

   return(-(fes+FVV+FNN)); 

    

  } 

 }; 

 

class Timing { 

 public: 
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  Timing(){ 

   startt=time(NULL); 

   endt=time(NULL); 

  } 

  ~Timing(){} 

  void tic(){ 

  startt=time(NULL); 

  } 

  void toc(){ 

  endt=time(NULL); 

  } 

  time_t diff(){ 

  return endt-startt; 

  } 

 private: 

  time_t startt, endt; 

}; 

 

double interpolation(double x0, double x1, double x2, double y0, double y1, 

double y2, double x){ 

 return (x-x1)*(x-x2)*y0/((x0-x1)*(x0-x2))+(x-x0)*(x-x2)*y1/((x1-

x0)*(x1-x2))+(x-x0)*(x-x1)*y2/((x2-x0)*(x2-x1)); 

} 

 

template <typename function>double runge_kutta_4th(function equation, 

double initial, double t, double dt){ 

 double k1 = equation(initial, t); 

 double k2 = equation(initial + 0.5 * k1 * dt, t + 0.5 *dt); 

 double k3 = equation(initial + 0.5 * k2 * dt, t + 0.5 *dt); 

 double k4 = equation(initial + k3 * dt, t + dt); 

 return initial + (k1 + 2*k2 + 2*k3 + k4)/6 * dt; 

} 

 

int main () 

{ 

 Timing timing; 

 ranlux4_01 r_seed(time(0)); 

 int time = 0; 

 

 timing.tic(); 

 

 vector<double> V; 

 vector<double> sod; 

 vector<double> c_cons; 

 vector<double> m_inf; 

 vector<double> tau_R; 

 vector<double> n_inf; 

 vector<double> Jint_thr; 

 vector<vector<double> > P; 

 vector<vector<double> > Ps; 
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 // Parameter 

 double C=5, GCa=4.4, GK=8, GLeak=2, ECa=120, EK=-84, ELeak=-

60; 

 double dV=0.2, ds=0.001; 

 double Vth=70, Vmin=-80, Vs=0; 

 double Jext=0.15,nuext=120; 

 double JE=0.01,JI=-0.01,Connection_ext=800, Connection_inb=200; 

 double factor=0.04, V1=-1.2, V2=18, V3=2, V4=30; 

 double Fn1, Fn2, Fn3, Fv1, Fv2, Fv3, fext, FE, FI, firing=0, 

firing_temp=0,x, y, J_thr,b_cons; 

 double sod_min=0, sod_th=1; 

 double dt=0.001, tend=1000, t=0; 

 int Vmax=int((Vth-Vmin)/dV); 

 int Vspk=int((Vs-Vmin)/dV); 

 int sod_max=int((sod_th-sod_min)/ds); 

  

  

 for (int n=0; n<=sod_max; n++){  

  P.push_back(vector<double>()); 

  Ps.push_back(vector<double>()); 

  c_cons.push_back(0); 

  sod.push_back(n*ds+sod_min); 

  Jint_thr.push_back(0); 

   

  for (int i=0;i<=Vmax;i++){ 

   P[n].push_back(0); 

   Ps[n].push_back(0); 

  } 

 } 

  

 for (int i=0;i<=Vmax;i++){ 

  V.push_back(Vmin+i*dV); 

  m_inf.push_back(0.5*(1+tanh((V[i]-V1)/V2))); 

  n_inf.push_back(0.5*(1+tanh((V[i]-V3)/V4))); 

  tau_R.push_back(1/cosh((V[i]-V3)/(2*V4))); 

 } 

  

 // Initial Condition 

 double miu_ini=-20; 

 double sigma_ini=5; 

 for (int n=1;n<=sod_max-1;n++){ 

  for (int i=1;i<=Vmax-1;i++){ 

   Ps[n][i]=exp(-(pow((sod[n]-0.1874),2)))*exp(-

(pow((V[i]-miu_ini),2))/(2*pow(sigma_ini,2)))/(sigma_ini*sqrt(2*PI)); 

   

  } 

  } 

  

 for (int k=0;k<=Vmax;k++){ 
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  b_cons=0; 

  for (int j=0; j<=sod_max-1;j++){ 

   b_cons=b_cons+0.5*ds*(Ps[j][k]+Ps[j+1][k]); 

  } 

  c_cons[k]=b_cons; 

 } 

  

 b_cons=0; 

 for (int k=0;k<=Vmax-1;k++){ 

  b_cons=b_cons+0.5*dV*(c_cons[k]+c_cons[k+1]); 

 } 

  

 for (int n=0;n<=sod_max;n++){ 

  for (int i=0; i<=Vmax;i++){ 

   Ps[n][i]=Ps[n][i]/b_cons; 

  } 

 } 

 

 for (int k=0;k<=Vmax;k++){ 

  b_cons=0; 

  for (int j=0; j<=sod_max-1;j++){ 

   b_cons=b_cons+0.5*ds*(Ps[j][k]+Ps[j+1][k]); 

  } 

  c_cons[k]=b_cons; 

 } 

    

 ofstream out_file1("firing"); 

 ofstream out_file2("probability"); 

  

 int kk=0; 

    

 while (t<=tend) 

 { 

  // Flux across threhold, J_thr 

  // a. Flux due to external input across threshold 

  double Jes=0; 

  double a = V[Vspk]-Jext; 

  double b = V[Vspk]; 

  double hh=0.001; 

  int n=int((b-a)/hh); 

  int i=1; 

  if (i>n){ 

   Jes=0; 

  } 

  else{ 

   while (i<=n){ 

    double Q; 

    int index=0; 

    double m=a+(i-0.5)*hh; 
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    Q = interpolation(V[Vspk-

1],V[Vspk],V[Vspk+1],c_cons[Vspk-1],c_cons[Vspk],c_cons[Vspk+1],m); 

    Jes=Jes+hh*Q; 

    i=i+1; 

   } 

  } 

 

  //b. Flux due to excitatory neurons across threshold 

  double Jess=0; 

  a=V[Vspk]-JE; 

  b=V[Vspk]; 

  n=int((b-a)/hh); 

  i=1; 

  if (i>n){ 

   Jess=0; 

  } 

  else{ 

   while (i<=n){ 

    double Q; 

    int index=0; 

    double m=a+(i-0.5)*hh; 

       

    Q = interpolation(V[Vspk-

1],V[Vspk],V[Vspk+1],c_cons[Vspk-1],c_cons[Vspk],c_cons[Vspk+1],m); 

    Jess=Jess+hh*Q; 

    i=i+1; 

   } 

  } 

 

   

  // c. Flux due to intrinsic ion channel across threshold 

  for (int j=0;j<=sod_max;j++){ 

   double at=GCa*m_inf[Vspk]+GK*sod[j]+GLeak; 

   double 

bt=GCa*m_inf[Vspk]*ECa+GK*sod[j]*EK+GLeak*ELeak; 

   double ct=bt/at; 

   double yy; 

   

   if (ct>V[Vspk]){ 

    Jint_thr[j]=-at/C*(V[Vspk]-bt/at)*Ps[j][Vspk]; 

   } 

   else{ 

    Jint_thr[j]=0; 

   } 

   

  } 

   

  Simpson( ds, sod_max/2, Jint_thr,J_thr); 

  firing=J_thr+nuext*Jes +firing_temp*Connection_ext*Jess; 

  out_file1<<firing<<endl; 
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  firing_temp=firing; 

   

  #pragma omp parallel for  

  for (int j=1;j<=sod_max-1;j++){ 

    

   for (int k=1;k<=Vmax-1;k++){ 

     

    // a. Excitatory Flux due to external network 

    double m=V[k]-Jext; 

    double Q; 

    int index=0; 

    if (m<=V[0] || V[Vmax]<=m){ 

     Q = 0; 

    } 

    else if (V[Vmax-1]<=m && m<V[Vmax]){ 

     Q = interpolation(V[Vmax-2],V[Vmax-

1],V[Vmax],Ps[j][Vmax-2],Ps[j][Vmax-1],Ps[j][Vmax],m); 

    } 

    else if (V[0]<m && m<=V[1]){ 

     Q = 

interpolation(V[0],V[1],V[2],Ps[j][0],Ps[j][1],Ps[j][2],m); 

    } 

    else{ 

     Q = interpolation(V[k-

1],V[k],V[k+1],Ps[j][k-1],Ps[j][k],Ps[j][k+1],m); 

 

    } 

    fext=nuext*(Ps[j][k]-Q); 

 

    //Excitatory Flux due to connected neurons 

    double mm=V[k]-JE; 

    double QQ; 

    int indexx=0; 

    if (mm<=V[0] || V[Vmax]<=mm){ 

     QQ = 0; 

    } 

    else if (V[Vmax-1]<=mm && mm<V[Vmax]){ 

     QQ = interpolation(V[Vmax-

2],V[Vmax-1],V[Vmax],Ps[j][Vmax-2],Ps[j][Vmax-1],Ps[j][Vmax],mm); 

    } 

    else if (V[0]<mm && mm<=V[1]){ 

     QQ = 

interpolation(V[0],V[1],V[2],Ps[j][0],Ps[j][1],Ps[j][2],mm); 

    } 

    else{ 

     QQ = interpolation(V[k-

1],V[k],V[k+1],Ps[j][k-1],Ps[j][k],Ps[j][k+1],mm); 

    } 

    FE=Connection_ext*firing*(Ps[j][k]-QQ); 
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    //Inhibitory Flux due to connected neurons 

    double mmi=V[k]+JI; 

    double QQi; 

    if (mmi<=V[0] || V[Vmax]<=mmi){ 

     QQi = 0; 

    } 

    else if (V[Vmax-1]<=mmi && 

mmi<V[Vmax]){ 

     QQi = interpolation(V[Vmax-

2],V[Vmax-1],V[Vmax],Ps[j][Vmax-2],Ps[j][Vmax-1],Ps[j][Vmax],mmi); 

    } 

    else if (V[0]<mmi && mmi<=V[1]){ 

     QQi = 

interpolation(V[0],V[1],V[2],Ps[j][0],Ps[j][1],Ps[j][2],mmi); 

    } 

    else{ 

     QQi = interpolation(V[k-

1],V[k],V[k+1],Ps[j][k-1],Ps[j][k],Ps[j][k+1],mmi); 

    } 

    FI=Connection_inb*firing*(QQi-Ps[j][k]); 

     

    //Flux due to ion channel   

  

    double aa=GCa*m_inf[k]+GK*sod[j]+GLeak; 

    double 

bb=GCa*m_inf[k]*ECa+GK*sod[j]*EK+GLeak*ELeak; 

    double cc=bb/aa; 

     

    Fv1=(GCa*m_inf[k-1]*(V[k-1]-

ECa)+GLeak*(V[k-1]-ELeak))/C+GK*sod[j]*(V[k-1]-EK)/C; 

    Fv2=(GCa*m_inf[k]*(V[k]-

ECa)+GLeak*(V[k]-ELeak))/C+GK*sod[j]*(V[k]-EK)/C; 

    Fv3=(GCa*m_inf[k+1]*(V[k+1]-

ECa)+GLeak*(V[k+1]-ELeak))/C+GK*sod[j]*(V[k+1]-EK)/C; 

    Fn1=factor*(sod[j-1]-n_inf[k])/tau_R[k]; 

    Fn2=factor*(sod[j]-n_inf[k])/tau_R[k]; 

    Fn3=factor*(sod[j+1]-n_inf[k])/tau_R[k]; 

     

    PopD PopD(sod_max, Vmax, k, j, dV, ds,cc, 

n_inf[k], sod[j], Fv1, Fv2, Fv3, Fn1, Fn2, Fn3, V.begin(), Ps[j].begin(), Ps[j-

1].begin(), Ps[j+1].begin() ); 

    PopD.fes=fext+FE-FI; 

    PopD.z=runge_kutta_4th(PopD,Ps[j][k],0,dt); 

    P[j][k]=PopD.z; 

   } 

   

  } 

   

  for (int k=0;k<=Vmax;k++){ 

   b_cons=0; 
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   for (int j=0; j<=sod_max-1;j++){ 

    b_cons=b_cons+0.5*ds*(P[j][k]+P[j+1][k]); 

   } 

   c_cons[k]=b_cons; 

   out_file2<<c_cons[k]<<","; 

  } 

  out_file2<<endl; 

 

  cout<<"t= "<<t<<"\tintegration= "<<b_cons<<"\tFiring= 

"<<firing<<endl; 

  timing.toc(); 

  cout << setw(10) << timing.diff()<< "s" << endl; 

 } 

   

 Ps=P; 

 t=t+dt; 

 cout << setw(10) << timing.diff()<< "s" << endl;  

} 

 

void Simpson(double dx, int m, vector<double>data, double & ans) 

{ 

 double temp_f1=0; 

 for (int k=1;k<=m-1;k++){ 

  temp_f1=temp_f1+data[2*k]; 

 } 

    

 double temp_f2=0; 

 for (int k=1;k<=m;k++){ 

  temp_f2=temp_f2+data[2*k-1]; 

 } 

    

 ans = dx/3*(data[0] + data[2*m]) + 2*dx/3*temp_f1 + 

4*dx/3*temp_f2; 

} 
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A.3 The Astrocyte Model 

 

#include <iostream> 

#include <iomanip> 

#include <fstream> 

#include <deque> 

#include <vector> 

#include <cmath> 

 

using namespace std; 

 

template <typename function> double runge_kutta_4th(function equation, 

double initial, double t, double dt){ 

 double k1 = equation(initial,t); 

 double k2 = equation(initial + 0.5 * k1 * dt, t + 0.5 * dt); 

 double k3 = equation(initial + 0.5 * k2 * dt, t + 0.5 * dt); 

 double k4 = equation(initial + k3 * dt, t + dt); 

 return initial + (k1 + 2*k2 +2*k3 + k4)/6 * dt; 

} 

 

class IP3temp{ 

  public: 

   double tau; 

   double star; 

   double z; 

   double k4; 

   double v4; 

   double Ca; 

   double alpha; 

   double rip3; 

   

  IP3temp(): 

   tau(7), 

   star(0), 

   k4(1.1), 

   v4(0), 

   Ca(0), 

   alpha(0), 

   rip3(0), 

   z(0){} 

     

  ~IP3temp(){} 

   double operator () (double y, double t){ 

    return(v4*((Ca+(1-alpha)*k4)/(Ca+k4))-

y/tau+2*rip3); 
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   } 

}; 

 

class qtemp{ 

  public: 

   double alpha; 

   double beta; 

   double z; 

   

  qtemp(): 

   alpha(0), 

   beta(0), 

   z(0){} 

     

  ~qtemp(){} 

   double operator () (double y, double t){ 

    return(alpha*(1-y)-beta*y); 

   } 

}; 

 

class Catemp{ 

   

  public: 

    

   double c1; 

   double v1; 

   double ninf; 

   double pinf; 

   double q; 

   double CaER; 

   double v2; 

   double v3; 

   double k3; 

   double Jchan; 

   double Jleak; 

   double Jpump; 

   double z; 

   

  Catemp(): 

    

   c1(0.185), 

   v1(6), 

   q(0), 

   pinf(0), 

   v2(0.11), 

   v3(0.9), 

   k3(0.1), 

   Jpump(0), 

   ninf(0), 

   CaER(0), 
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   z(0){} 

     

  ~Catemp(){} 

   double operator () (double y, double t){ 

     

    Jpump=0.9*pow(y,2)/(pow(y,2)+pow(k3,2)); 

   

 Jchan=c1*v1*pow(pinf,3)*pow(ninf,3)*pow(q,3)*(CaER-y); 

    Jleak=c1*v2*(CaER-y); 

     

     

    return (Jchan-Jpump+Jleak); 

   } 

}; 

 

class interaction{ 

  public: 

   double tauCa; 

   double factor; 

   double Ca; 

   double Cath; 

   double q; 

   double z; 

   

  interaction(): 

   tauCa(0), 

   factor(0.5), 

   Ca(0), 

   Cath(0.2), 

   z(0){} 

     

  ~interaction(){} 

   double operator() (double y, double t){ 

    if (Ca>Cath) 

     q=1; 

    else  

     q=0; 

    return (-y/tauCa+(1-y)*factor*q); 

   } 

     

}; 

 

int main(){ 

  

 //Constant parameter 

 double d1=0.13, d3=0.94,d5=0.08234, c0=2, 

c1=0.185,a2=0.00123,d2=1.3,rip3=0; 

 double pinf, Jchan, Jleak, Jpump,ninf,CaER; 

  

 ofstream out_file("Ca"); 
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 ofstream out_file1("CaER"); 

 ofstream out_file2("IP3R"); 

   

 //Initialize 

 double IP3=0.01, Ca=0.15,q=0.65,f=0; 

   

 //Simulation time 

 double t=0, dt=0.1,tend=2000; 

   

 while (t<tend){ 

   

  IP3temp IP3temp1; 

  Catemp Catemp1; 

  qtemp qtemp1; 

  interaction interaction1; 

       

  //IP3 production   

  IP3temp1.v4=0.1; 

  IP3temp1.alpha=0.2; 

  IP3temp1.Ca=Ca; 

  IP3temp1.rip3=rip3; 

  IP3temp1.z=runge_kutta_4th(IP3temp1,IP3,0,dt); 

    

  qtemp1.alpha=a2*d2*(IP3+d1)/(IP3+d3); 

  qtemp1.beta=a2*Ca; 

  qtemp1.z=runge_kutta_4th(qtemp1,q,0,dt); 

    

  pinf=IP3/(IP3+d1); 

  ninf=Ca/(Ca+d5); 

  CaER=(c0-Ca)/c1; 

    

  Catemp1.pinf=pinf; 

  Catemp1.ninf=ninf; 

  Catemp1.CaER=CaER; 

  Catemp1.q=q; 

  Catemp1.z=runge_kutta_4th(Catemp1,Ca,0,dt); 

    

  Ca=Catemp1.z; 

  q=qtemp1.z; 

  IP3=IP3temp1.z; 

    

  interaction1.tauCa=10; 

  interaction1.Ca=Ca; 

  interaction1.z=runge_kutta_4th(interaction1,f,0,dt); 

  f=interaction1.z; 

    

  out_file<<Ca<<endl; 

  out_file1<<CaER<<endl; 

  out_file2<<q<<endl; 
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  t=t+dt; 

 }  

 return 0; 

} 

 

A.4 The Modified conductance-based ML Neuron Model 

 

#include <iostream> 

#include <iomanip> 

#include <fstream> 

#include <deque> 

#include <tr1/random> 

#include <vector> 

#include <cmath> 

#include <ctime> 

#include <stdio.h> 

 

using namespace std; 

using namespace std::tr1; 

 

template <typename function> double runge_kutta_4th(function equation, 

double initial, double t, double dt){ 

 double k1 = equation(initial,t); 

 double k2 = equation(initial + 0.5 * k1 * dt, t + 0.5 * dt); 

 double k3 = equation(initial + 0.5 * k2 * dt, t + 0.5 * dt); 

 double k4 = equation(initial + k3 * dt, t + dt); 

 return initial + (k1 + 2*k2 +2*k3 + k4)/6 * dt; 

} 

 

class potassium{ 

 public: 

  double tau_R; 

  double n_inf; 

  double factor; 

  double r; 

   

  potassium(): 

   tau_R(0), 

   r(0), 

   factor(0), 

   n_inf(0){} 

   

  ~potassium(){} 

    

   double operator () (double y, double t){ 

    return( factor/tau_R*(n_inf-y) ); 

   } 

}; 

 

class slowahp{ 
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 public: 

  double beta; 

  double gamma; 

  double tau; 

  double r_slow; 

  double v; 

  double sp; 

 

 slowahp(): 

  beta(0), 

  gamma(1), 

  tau(2000), 

  r_slow(0), 

  v(0), 

  sp(0){} 

 

 ~slowahp(){} 

    

   double operator () (double y, double t){ 

    return( (1/(1+exp((beta-v)/gamma))-y)/tau ); 

   } 

}; 

 

class synapse{ 

 public: 

  double beta; 

  double sy1; 

  double sinf; 

  double sp; 

  

  synapse(): 

   beta(3), 

   sinf(0), 

   sy1(0), 

   sp(0){} 

     

  ~synapse(){} 

    

   double operator () (double y, double t){ 

    return(-y/beta+0.1*sp); 

   } 

 }; 

 

class synapses{ 

 public: 

  double beta; 

  double sy2; 

  double sinf; 

  double sp2; 
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  synapses(): 

   beta(3), 

   sinf(0), 

   sy2(0), 

   sp2(0){} 

     

  ~synapses(){} 

    

   double operator () (double y, double t){ 

    return(-y/beta+0.1*sp2); 

   } 

 }; 

 

class membrane{ 

 public: 

  double C; 

  double GNa; 

  double m_inf; 

  double ENa; 

  double GK; 

  double Gahpslow; 

  double EK; 

  double GLeak; 

  double ELeak; 

  double q; 

  double Is1; 

  double Is2; 

  double IDC; 

  double w; 

  

  membrane(): 

   C(0), 

   GNa(0), 

   m_inf(0), 

   ENa(0), 

   GK(0), 

   EK(0), 

   GLeak(0), 

   Gahpslow(0), 

   ELeak(0), 

   Is1(0), 

   Is2(0), 

   IDC(0), 

   w(0), 

   q(0){} 

     

  ~membrane(){} 

    

   double operator () (double y, double t){ 
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    return( 1/C * ( -GNa*m_inf*(y-ENa) - 

GK*w*(y-EK) - Gahpslow*(y-EK)- GLeak*(y-ELeak)  - (y*Is1-Is2) + IDC)); 

     

   } 

  }; 

   

 

class Timing { 

 public: 

  Timing(){ 

   startt=time(NULL); 

   endt=time(NULL); 

  } 

  ~Timing(){} 

  void tic(){ 

  startt=time(NULL); 

  } 

  void toc(){ 

  endt=time(NULL); 

  } 

  time_t diff(){ 

  return endt-startt; 

  } 

 private: 

  time_t startt, endt; 

}; 

    

int main(){ 

  Timing timing; 

  ranlux4_01 r_seed(time(0)); 

  

  timing.tic(); 

 

  //~Constant parameter 

  double C=5, GNa=7.5, GK=8, GLeak=2, ENa=60, EK=-84, 

ELeak=-60; 

  double factor=0.04,V1=-1.2, V2=18, V3=12, V4=30, Vspk=0,t; 

  double delta=0.067,ss; 

  double tend=500000,dt=0.1;   

   

  //~Excitatory neurons parameters 

  double VsynE=0,EPSP=1; 

  

  //~Inhibitory neurons parameters 

  double  VsynI=-80,IPSP=-1.5; 

   

  //Neuron Initialization 

  vector<double>VV; 

  vector<double>V_temp; 

  vector<double>nn; 
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  vector<double>nn_slow; 

  vector<double>nn_fast; 

  vector<double>s1; 

  vector<double>s2; 

  vector<double>Vsyn; 

  vector<double>IDC; 

  vector<double>spike; 

  vector<double>sum_spikes; 

  vector<double>sum_spikes2; 

  vector<vector<double> >J; 

  double sy, s_inf,f; 

  double Isyn_Ex=0, Isyn_Inb=0,Inoise=0, VG_Ex=0, 

VG_Inb=0,check; 

 

  uniform_real<double>r_real(-70,-65); 

  uniform_real<double>r_real2(0.0,0.6); 

  uniform_real<double>r_real3(0.0,1.0); 

   

  //~Allocate inhibitory and excitatory neurons 

  int N=10000;  

  double inh_fraction=0.2; 

  int net_in=N*inh_fraction; 

  int net_ex=N-net_in; 

 

  //~Generating connectivity 

  double net_mean=2000; 

  double net_bias_in=0.8; 

  double net_bias_ex=1.2; 

  double 

net_probInIn=(net_mean*net_bias_in)/(net_ex+net_in*net_bias_in); 

  double 

net_probInEx=(net_mean)/(net_ex+net_in*net_bias_in); 

  double 

net_probExEx=(net_mean)/(net_ex+net_in*net_bias_ex); 

  double 

net_probExIn=(net_mean*net_bias_ex)/(net_ex+net_in*net_bias_ex); 

  bernoulli_distribution r_netprobExEx(net_probExEx); 

  bernoulli_distribution r_netprobInIn(net_probInIn); 

  bernoulli_distribution r_netprobExIn(net_probExIn); 

  bernoulli_distribution r_netprobInEx(net_probInEx); 

  bernoulli_distribution *r_net; 

  double Jpre; 

 

  for (int i=0;i<N;i++){ 

   J.push_back(vector<double>()); 

   Vsyn.push_back(0); 

   for (int j=0;j<N;j++){ 

    J[i].push_back(0); 

   } 
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   if (i<net_in){ 

    Vsyn[i]=VsynI; 

   } 

   else{ 

    Vsyn[i]=VsynE;  

   } 

  } 

 

   

  for (int i=0;i<N;i++){ 

     

   for (int j=0;j<N;j++){ 

     

    if (i<net_in && j<net_in){ 

     r_net=&r_netprobInIn; 

     Jpre=IPSP/(Vsyn[i]-

ELeak)*55.84311504; 

    } 

    else if (i<net_in){ 

     r_net=&r_netprobInEx; 

     Jpre=IPSP/(Vsyn[i]-

ELeak)*55.84311504;;      

    } 

    else if (i>net_in && j<net_in){ 

     r_net=&r_netprobExIn; 

     Jpre=EPSP/(Vsyn[i]-

ELeak)*55.84311504;; 

    } 

    else if (i>net_in){ 

     r_net=&r_netprobExEx; 

     Jpre=EPSP/(Vsyn[i]-

ELeak)*55.84311504;;      

    } 

    if (r_net->operator()(r_seed)==1 && j!=i){ 

     J[i][j]=Jpre; 

    } 

    else{ 

     J[i][j]=0; 

    }    

   } 

    

  } 

  

  //~Endogenous cells 

  double applied_current=63.3; 

  uniform_real<double> r_real4(0,applied_current); 

 

  //~Initialize parameter   

  for (int k=0;k<N;k++){ 

   V_temp.push_back(-60); 
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   VV.push_back(-60); 

   nn_fast.push_back(0.01); 

   nn_slow.push_back(0.01); 

   nn.push_back(0.01); 

   s1.push_back(0.01); 

   s2.push_back(0.01); 

   spike.push_back(0); 

   sum_spikes.push_back(0); 

   sum_spikes2.push_back(0); 

   IDC.push_back(r_real4(r_seed));  

  } 

    

  ofstream out_file2("spike"); 

  t=0; 

   

  while(t<tend){ 

 

   #pragma omp parallel for 

   for (int k=0;k<N;k++){ 

 

    membrane membrane1; 

    potassium potassium1; 

    fastahp fastahp1; 

    slowahp slowahp1; 

    synapse synapse1; 

    synapses synapse2; 

       

    double m_inf=0.5*(1+tanh((VV[k]-V1)/V2)); 

    double tau_R=1/cosh((VV[k]-V3)/(2*V4)); 

    double n_inf=0.5*(1+tanh((VV[k]-V3)/V4)); 

       

    potassium1. tau_R=tau_R; 

    potassium1. n_inf=n_inf; 

    potassium1. factor=factor; 

    potassium1. r=runge_kutta_4th(potassium1, 

nn[k], 0, dt); 

 

    fastahp1. v=VV[k]; 

    fastahp1. r_fast=runge_kutta_4th(fastahp1, 

nn_fast[k], 0, dt); 

 

    slowahp1. v=VV[k]; 

    slowahp1. r_slow=runge_kutta_4th(slowahp1, 

nn_slow[k], 0, dt); 

          

    synapse1. sp=sum_spikes[k]; 

    synapse1. sy1=runge_kutta_4th(synapse1, s1[k], 

0, dt); 

    s1[k]=synapse1. sy1; 
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    synapse2. sp2=sum_spikes2[k]; 

    synapse2. sy2=runge_kutta_4th(synapse2, s2[k], 

0, dt); 

    s2[k]=synapse2. sy2; 

 

    membrane1. C=C; 

    membrane1. GNa=GNa; 

    membrane1. m_inf=m_inf; 

    membrane1. ENa=ENa; 

    membrane1. Gahpslow=1.8*slowahp1. r_slow; 

    membrane1. GK=GK; 

    membrane1. w=potassium1. r; 

    membrane1. EK=EK; 

    membrane1. GLeak=GLeak; 

    membrane1. ELeak=ELeak; 

    membrane1. IDC=IDC[k]; 

    membrane1. Is1=s1[k]; 

    membrane1. Is2=s2[k]; 

    membrane1. q=runge_kutta_4th(membrane1, 

VV[k], 0, dt); 

      

    V_temp[k]=VV[k]; 

    VV[k]=membrane1. q; 

    nn_fast[k]=fastahp1. r_fast; 

    nn[k]=potassium1.r; 

    nn_slow[k]=slowahp1.r_slow; 

   } 

      

   int ex_spike=0, inb_spike=0; 

 

   for (int k=0; k<N; k++){ 

    spike[k]=0; 

    sum_spikes[k]=0; 

    sum_spikes2[k]=0; 

   } 

     

   for (int k=0; k<N;k++){ 

      

    if (VV[k]>Vspk && V_temp[k]<Vspk){ 

     spike[k]=1; 

      for (int j=0;j<N;j++){ 

      if (J[k][j]!=0){ 

       sum_spikes[j]+=J[k][j]; 

      

 sum_spikes2[j]+=J[k][j]*Vsyn[k]; 

      } 

         

      if (k<net_in) 

       inb_spike++; 

      else 
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       ex_spike++; 

     } 

    } 

   } 

   out_file2<<ex_spike<<","<<inb_spike<<endl; 

   t=t+dt;  

  } 

  timing.toc(); 

  cout << setw(10) << timing.diff()<< "s" << endl; 

  return 0; 

 } 

 

 

 

 


