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ABSTRACT

ENABLING AVQoS FOR ADAPTIVE STREAMING IN
HETEROGENEOUS NETWORK ENVIRONMENT UTILIZING NON-

INTRUSIVE BANDWIDTH INFORMATION

Lim Su Jin

Interactive communication is becoming crucial in our daily life. The form of

communication between people from anywhere becomes much easier with the

use of interactive communication, such as video conference system. The real-

time interactive communication often faced challenges in network stability

and also costly charges for bandwidth reservation. Hence, these motivate the

idea to enable adaptive streaming by adjusting the quality of the content

delivery.

In order to adapt the streaming content to the changing network

condition, network performance metrics are used to adjust the quality of the

video streams. The network performance metrics discussed in this thesis are

available bandwidth and latency. Available bandwidth is the amount of data

that can be transferred over the network with the presence of cross traffic.

Latency is the time taken for a packet to travel round trip from source to

destination, which is often referred as round-trip delay. The quality of the

video content delivery depends highly on the network available bandwidth

while the audio packets are relative to the latency between network nodes.
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There are two ways to obtain network performance metrics, intrusive

and non-intrusive measurement. Intrusive measurement is performed by

incurring the least possible traffic to the network while non-intrusive

measurement tends to measure to a subset of network nodes and predicting the

performance of the rest of the network. In a large scale network, performing

full mesh active measurement will incur large measurement overhead. Hence,

non-intrusive measurement is adopted in this thesis with the aim to reduce

measurement overhead and network congestion.

In this thesis, network performance prediction algorithm is performed

in quantitative as well as qualitative approach. The first part of the algorithm,

which is the quantitative prediction, formulates network metrics as matrix

completion problem whereby some entries are measured and some are

predicted. This method made an assumption that the network performance

metrics are correlated. In the later part of the algorithm, available bandwidth

and latency are formed as pairs for network link quality prediction.

One of the improvements made over the conventional matrix

factorization algorithm is initialization via Singular Value Decomposition

(SVD) over random initialization. This pre-processing step provides better and

faster algorithm convergence to local minimum with a close-to-actual starting

point before the stochastic updates take place. The proposed algorithm has

been experimented and shown improvement of 20% over conventional

random initialization. In the enhancement part of the algorithm, supervised

learning algorithm, Support Vector Machine (SVM) is proved to be applicable
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in network link quality prediction. Furthermore, SVM can be easily extended

to include more network features such as packet loss, jitter and throughput for

link quality prediction.

The proposed network performance prediction algorithm is integrated

into video conference system, namely AVMEDIC. AVMEDIC is currently

under research by MIMOS Berhad for medical conferencing purposes consists

of 4 parties which are communicating with each other. Network resource

estimation (NRE) framework is developed to adapt the quality of the video

content delivery based on dynamic network condition. This is done by

adjusting the bit rate of the video based on available bandwidth obtained from

the proposed algorithm. Therefore, a smooth communication can be

guaranteed by adjusting the quality of the content delivery.

In conclusion, NRE has been developed and integrated into video

conference system which enables adaptive streaming in heterogeneous

network environment. In future, the practical use of supervised learning

algorithm and online learning can be applied into real-time streaming

application.
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Background and Motivation 

 

The rapid growth in data communication and information technology 

has lead to the increment of number of users and the usage of communication 

applications. This significant evolution is introducing higher demand on 

network bandwidth. Hence, the conventional client-server architecture often 

experiences congestions and instability due to server overload. As an attempt 

to this issue, decentralized architectures have been proposed and studied to 

provide better Quality of Service (QoS).  

 

In the networking context, QoS can be measured and guaranteed by 

utilizing the network performance metrics more efficiently. Therefore, the 

knowledge of end-to-end network performance is crucial to achieve good 

QoS. The network performance metrics discussed in this research are available 

bandwidth and latency. Available network bandwidth is the amount of data 

that can be transferred over the network with the presence of other ongoing 

traffics. Latency is the time taken for a data packet to travel from a source 

network node to a destination node and then back to the source node, also 

known as the round-trip delay.  
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There are two main approaches to measure the network metrics, i.e. 

intrusive or non-intrusive measurement. Intrusive measurement is about 

measurement techniques that attempt to incur the least possible probing traffic 

but with good accuracy. Non-intrusive measurement methods meanwhile, aim 

to reduce measurement overheads by measuring a subset of network nodes and 

then predict the performance of the rest of the network. Intrusive measurement 

methods will introduce some probing traffics to the network while the non-

intrusive ones tend to minimize the measurement overhead through prediction. 

 

In general, some of the current key challenges in network performance 

prediction are: 

 Stability: Network nodes join and leave frequently and hence affect the 

stability. 

 Metric diversity: The network performance metrics (latency and available 

bandwidth) vary over time. 

 Costly measurement: Intrusive measurement methods are costly due to 

probing traffics injected into the network. 

 Scalability: Performing measurement in mesh network is highly infeasible 

with O(n2) path complexity. 
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(a) Intrusive measurement   (b) Non-intrusive measurement 

Figure 1.1 (a) Full mesh active measurement with O(n2) complexity. (b) 

Non-intrusive measurement whereby the solid paths are measured and the 

dashed paths are predicted.  

 

Mesh networks have topologies in which all network nodes are 

connected to each other. Performing full mesh active measurement in a large-

scale network, as shown in Figure 1.1 (a), often incurs prohibitively high 

measurement overheads. Hence, the researchers have been trying to design 

scalable prediction schemes to reduce the measurement overhead. Figure 1.1 

(b) illustrates one of the many approaches in which some paths are measured 

and the rest are predicted via prediction algorithms and thus, introducing less 

probing traffics.  

 

 Considering the potential overhead and probing traffics caused by 

intrusive measurement methods, the research reported here focuses on non-

intrusive network performance prediction on large-scale networks. 
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1.2 Problem Definition 

 

End-to-end network performance prediction is defined as follows: In a 

network with n nodes, a link is defined as the routing path between two end 

nodes. There will be O(n2) paths in a mesh network for the measurement 

among the n network nodes. In order to reduce the measurement overhead, a 

subset of paths is measured and the rest are predicted. The prediction problem 

is solved by machine learning method in an iterative manner through the 

minimizing of the loss function and convergence to the local minimum. In 

other words, the algorithm iterates over time to reduce the discrepancy 

between measured and predicted values. 

 

Implication of machine learning methods constructs a simple model 

based on the input data which is able to make intelligent decisions. The 

concerns of using machine learning techniques are a) the learning model 

constructed based on the training data, b) the number of measured data which 

is representing the measurement overhead. The machine learning technique, 

namely Matrix Completion, used to produce such model is widely used in data 

mining and pattern recognition. The prediction accuracy is proportional to the 

measurement overhead. This thesis aims to achieve the best accuracy with the 

minimum measurement overhead, by measuring to a subset and predicting the 

rest of the network. 
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1.3 Problem Statement and Contributions 

 

 This thesis strives to address the following problem: Current empirical 

methods of network bandwidth estimation and measurement incur high error 

rate over lossy network and impose high network overhead with flooded 

measurement packets. We propose to address this issue via matrix 

factorization approach which yields higher accuracy with improved 

convergence relative to existing approaches. In order to further enhance the 

proposed algorithm, available bandwidth and latency are formed as pairs for 

network link quality prediction. The proposed algorithm was tested and 

evaluated on publicly available dataset of available bandwidth and latency 

information.  

 

 

1.4 Research Objectives 

 

This research is aimed to: 

i. design and develop a predictive network resource estimation 

mechanism which enables non-intrusive network available bandwidth 

and latency prediction over heterogeneous network, and 

ii. develop an optimized bandwidth prediction algorithm.  
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1.5 Thesis Outline 

 

The thesis is organized as follows: 

Chapter 2 discusses the progress and limitations of related work on 

network performance prediction and identifies the research gap.  

Chapter 3 introduces the formulation of the proposed algorithm and 

describes the proposed algorithms and implementations for available 

bandwidth and latency prediction, binary and multiclass classification.  

Chapter 4 presents the simulation results and discussion of the 

proposed algorithms. 

Chapter 5 concludes this thesis with some proposed future works. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

2.1 Introduction 

 

In this chapter, a survey report on research work carried out in the past 

on latency and available bandwidth prediction methods is presented covering 

their features and limitations. Later, a comparative study on network resource 

estimation is presented in Section 2.6. Furthermore, a survey on application of 

network distance prediction is presented in the end of the chapter. 

 

 

2.2 Euclidean Embedding for Latency Prediction 

 

There are several accurate solutions that have been proposed such as 

Global Network Positioning (GNP) (Eugene Ng & Zhang, 2002) and Vivaldi 

(Dabek, et al., 2004) for latency estimation. GNP and Vivaldi methods are 

based on network embedding system which models the Internet as a geometric 

space and maps the nodes as coordinates. Vivaldi is the extended version of 

GNP in decentralized manner. Both of these approaches are purely meant for 

latency prediction. Furthermore, the Euclidean-based embedding applied by 

these approaches is not suitable for asymmetric network distance prediction. 
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2.2.1 Global Network Positioning (GNP) 

 

The main concept of GNP (Eugene Ng & Zhang, 2002) is to model the 

Internet as a geometric space and characterizes the position of the network 

nodes as a coordinate. Latency, also known as network distance, is predicted 

as the distance between two nodes embedded on the network coordinate 

system. Landmark-based architecture is applied in GNP whereby a set of 

distributed nodes are selected as Landmark and serve as a reference for the 

new joining host.  

 

 

Figure 2.1  Ordinary host operations for GNP. 

 

 The architecture of GNP is divided into landmark operation and 

ordinary host operation. The distance between landmarks is first computed in 

the chosen coordinate system. These coordinates are then disseminated to the 

new joining host. As seen from Figure 2.1, each ordinary host will derives its 

own coordinates in relative to the coordinate of the landmark hosts. Euclidean 
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based embedding suffer bad prediction accuracy when the network topology 

changes. The biggest limitation encountered in GNP is the selection of 

landmark nodes which led to limited scalability and lack of flexibility. 

 

2.2.2 Vivaldi 

 

Vivaldi (Dabek, et al., 2004) is an extended version of GNP in a 

decentralized manner whereby the landmark nodes are eliminated. Latency is 

predicted based on the distance between hosts on the coordinate system. The 

new joining host computes its coordinate after collecting latency information 

from a small set of hosts. This procedure is performed on every node and it 

keeps the node’s coordinates updated over time. This provides the Vivaldi 

method with the ability to tolerate high number of erroneous nodes and the 

metric diversity. 

 

 The shortcoming of the Vivaldi method is that slow convergence is 

experienced if a large number of nodes join the network at the same time. 

Furthermore, the method is not applicable to available bandwidth prediction. It 

was mainly designed for latency estimation. 

 

 Two important properties are applicable to the distances on the metric 

embedding spaces: 

 Symmetry: d(A, B) = d(B, A); 

 Triangle Inequality: d(A, B) + d(B, C) ≥ d(A, C) 
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Figure 2.2 Three network nodes are embedded on the Euclidean space. 

The triangle of ∆ABC shows the constraint of the triangle inequality as d(A, C) 

< d(A, C) + d(B, C). 

 

The network distances are not necessarily symmetric especially for 

one-way delays (Pathak, et al., 2008). Euclidean embedding is not applicable 

on available bandwidth prediction due to its asymmetrical behaviour. The 

violation of triangle inequality presents a big issue to the Euclidean based 

embedding. With the presence of triangle inequality, the edges on the 

embedding space are forced to shrink or to stretch accordingly and hence 

causing the prediction accuracy to decrease. There have been various 

approaches such as (Dong, et al., 2010) and (Kaafar, et al., 2009) been 

proposed to address the issue.  

 

 

2.3 Available Bandwidth Prediction Approaches 

 

 This section mainly presents available bandwidth prediction 

approaches via route observation. 
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2.3.1 BRoute 

 

BRoute (Hu & Steenkiste, 2005) is a route sharing based model 

proposed for available bandwidth estimation. The route sharing model is 

leveraged by the fact that most Internet bottlenecks are on path edges, which 

are shared by many different paths. The authors use autonomous systems (AS) 

level source and sink tree information to infer network path edges. A 

common-AS is used to identify the end-segments between source and sink 

tree. Border Gateway Protocol (BGP) is used to obtain the information 

between AS on the Internet. The BRoute server will return the smaller 

available bandwidth value between source to common-AS and destination to 

common-AS as the predicted value. The limitation of this model is that 

measurement overhead is linear with the number of end nodes in the system. 

 

2.3.2 PathGuru 

 

PathGuru (Xing, et al., 2009) is a landmark-based system for available 

bandwidth estimation. In PathGuru, each node obtains an outgoing and an 

incoming bandwidth vector using measurement data to and from landmarks. 

This method relies on the observation that, in certain circumstances, Internet’s 

available bandwidth forms an ultra-metric space (Buneman, 1974). An ultra-

metric space satisfies the Three-Points Condition (3PC), whereby for every 

three points 𝑥, 𝑦, 𝑧 𝜖 𝑋, the distances between the points, 𝐷(𝑥, 𝑦) ≤ 𝐷(𝑥, 𝑧) ≤

𝐷(𝑦, 𝑧) and the fact 𝐷(𝑥, 𝑧) = 𝐷(𝑦, 𝑧) holds. So, in this condition, the 

distance between node x and y, D(x, y), is predicted as smaller or equals to the 
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maximum of D(x, z) and D(z, y). For each prediction, the landmarks are 

selected based on ultra-metric space formation that holds highest 

approximation to the nodes to be predicted, and then the measurement results 

are applied to these landmarks to predict the available bandwidth between two 

ordinary nodes. The accuracy of this method is limited by the landmark node 

selection whereby the node may leave the network.  

 

2.3.3 Last-mile Model 

 

Last-mile model (Beaumont, et al., 2011) generalized the use of a 

“last-mile” (end-host) approximation, which reflects the overall performance 

of the complete end-to-end path. In Last-mile model, each node x is 

represented by two different bandwidth capacities, one for upload, βx
out, and 

one for download, βx
in. The end-to-end performance is assumed to be limited 

by the upload and download capacities. Hence, the predicted bandwidth P 

between two nodes x and y is given by 𝑚𝑖𝑛(𝛽𝑥
𝑜𝑢𝑡, 𝛽𝑦

𝑖𝑛). 

 

The initial value for Last-mile algorithm is very crucial as one bogus 

measurement will intensify more prediction error. Hence the authors 

introduced α value to remove a few outliers before prediction in order to deal 

with the missing and erroneous measurements. The initial outgoing and 

incoming capacity of x is computed as (1 - α)-th percentile of its 

measurements to the neighbour nodes. Then, iterative procedure is applied to 

improve the initial calculation. The accuracy of Last-mile model decreases 

when there is limited number of available measurement. Furthermore, the 
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“last-mile” assumption is not always satisfied in practice, since some nodes 

might share the same bottleneck link. 

 

 

2.4 Unified Approach via Prediction Tree 

 

A unified approach for latency and available bandwidth prediction 

called Sequoia (Ramasubramanian, et al., 2009), is a light-weight system 

which embeds nodes on tree structures via virtual nodes. The paths measured 

are assumed to be symmetric and the triangle inequality holds as well. Sequoia 

constructs prediction trees based on Gromov product through virtual nodes 

embedding, as illustrated in Figure 2.3. The requirement to construct 

prediction tree is that at least two nodes must already exist and measured in 

the tree.  

 

 

Figure 2.3 The tree embedding structure based on Gromov Product in 

simplified form. 
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For the example in Figure 2.3, latency between node A and node B is 

measured. When node C wants to join the network, it measures to node A and 

node B. By applying Gromov Product, the three nodes are embedded together 

via virtual node as filled in dark circle in Figure 2.3. The node selection is 

very crucial in prediction tree approach as it is linearly proportional to the 

prediction accuracy. The prediction accuracy drops when the number of nodes 

joining increases. Furthermore, Sequoia is unable to provide asymmetric 

prediction and also sensitive to the violations of triangle inequality.   

 

A recent attempt to solve the symmetrical constraint on prediction tree 

construction was reported in (Schober, et al., 2013). Due to the highly 

asymmetric features in available bandwidth measurement, the authors 

presented a direction-aware embedding, by separating upstream from 

downstream properties of hosts. The idea is to embed nodes for each direction 

separately and embedding it twice on the prediction tree, one for its upstream 

and the other for downstream properties. This approach is still susceptible to 

the violation of triangle inequality.  

 

 

2.5 Matrix Factorization 

 

The occurrence of triangle inequality violation has led the research 

community to focus on a rather tolerant approach, called matrix factorization. 

The pairwise network metrics are treated as the matrix element which enables 

prediction in large-scale network. The assumption made in this approach is 
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that the network performance metrics in such network have to be correlated. 

Models based on matrix factorization are able to overcome the constraints that 

exist in the Euclidean embedding system. Furthermore, it is implementable 

with other network performance metrics as long as they are correlated. 

  

 The model in matrix factorization is formulated as, a matrix, D, of size 

n × n is approximated by a low-rank matrix, �̂� of rank r, where r << n, is 

factorized into the product of two smaller matrices, X and Y, of size n × r, as 

follows:  

 

𝐷 ≈ �̂� = 𝑋𝑌𝑇                                                 (1.1) 

 

The model is further illustrated in Figure 2.4, with some elements in matrix D 

are measured (blue boxes), and the rest are unmeasured (grey boxes). The 

predicted values (yellow boxes) are approximated by the two smaller matrices, 

X and Y. The diagonal elements of the matrix are left empty since it is not of 

concern in the analysis here. 
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                   D 

   

 

 

 

 

Figure 2.4  The model of matrix factorization. 

 

 After the matrix D is factorized into two smaller matrices, each node i 

is associated with two vectors, xi and yi, corresponding to the ith row of X and 

of Y. The pairwise metric value, from node i to node j, is then predicted as the 

dot product of xi and yj. The details of the matrix factorization operations will 

be discussed in Chapter 3. There are three approaches that adopt matrix 

factorization: Internet Distance Estimation Service (IDES) (Yun, et al., 2006), 

Decentralized Matrix Factorization (DMF) (Liao, et al., 2010), and 

Decentralized Matrix Factorization via Stochastic Gradient Descent 

(DMFSGD) (Liao, et al., 2012). 
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2.5.1 Internet Distance Estimation Service (IDES) 

 

IDES (Yun, et al., 2006) is the first system formulated network 

distance prediction as a matrix completion problem. The network distances are 

modelled as the dot product of two smaller matrices using two algorithms, 

namely Singular Value Decomposition (SVD) (Klema & Laub, 1980) and 

Non-negative Matrix Factorization (NMF) (Lee & Seung, 2001). IDES applies 

landmark-based system similar to GNP which was discussed in section 2.2.1. 

The difference is that in IDES a new joining host does not have to measure 

with respect to all the landmark nodes. The example illustrated in Figure 2.5 

shows how prediction is performed on a newly joined node even without 

measuring it with respect to all landmark nodes. 

 

 Figure 2.5 In (a) new joining host H1 is measured with respect to L1, L2 

and L4 (denoted in solid lines) and predicted for its value with respect to L3 

(denoted in dashed line). In (b), when another ordinary host H2 joining, it will 

be measured with respect to a few available nodes and predicted for its value 

with respect to the other nodes via matrix factorization. 
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In Figure 2.5, the values denoted on the edge between nodes are the 

outgoing and incoming vectors for the respective host. SVD is used to factor 

the landmark distance to obtain the two smaller matrices of which the details 

will be discussed in Chapter 3. The use of landmark nodes is the shortcoming 

of IDES whereby the landmark nodes selection will affect the overall 

accuracy.  

 

2.5.2 Decentralized Matrix Factorization (DMF) 

 

The decentralized version of IDES was proposed by Liao, Geurts and 

Leduc (2010), and the matrix factorization problem is solved using Alternating 

Least Square (ALS) method. The matrix with missing elements is factorized 

and estimated iteratively by having each node retrieving a small number of 

distance measurements. DMF does not require any special nodes for landmark 

usage or central nodes to collect and store data. The authors applied non-

negative matrix factorization (NMF) to make sure the predicted values are all 

positive. NMF is enhanced with iterative optimization methods such as 

gradient descent to improve speed of convergence. The shortcoming of this 

algorithm is that no guarantee on the global minimum as it depends on the 

initial node selection for convergence. 
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2.5.3 Decentralized Matrix Factorization by Stochastic Gradient 

Descent (DMFSGD) 

 

DMFSGD (Liao, et al., 2012) is decentralized in the sense that no extra 

matrix construction is needed and only the exchange of vector information 

between nodes is involved. One of the limitations faced in DMFSGD is that 

the speed of convergence is decreased with the increase in the amount of 

neighbour information retrieved for prediction. The prediction accuracy is 

proportional to the number of probed neighbour nodes. 

 

This algorithm was further extended to qualitative prediction by 

replacing the quantitative value with 1 for good and -1 for poor (Liao, et al., 

2011). The network performance is classified through threshold, τ which is 

determined based on the application requirements. The authors suggested that 

threshold can be directly applied on round-trip-time where the measurements 

are cheap. For available bandwidth, direct classification measurement data can 

be obtained via pathload (Jain & Dovrolis, 2002) and pathChirp (Ribeiro, et 

al., 2003) with little modification. For example, direct classification of 

available bandwidth is done via pathload by sending UDP trains at a constant 

rate of τ, and classifies the path as good if no congestion is observed and poor 

otherwise. This might be inaccurate when the metrics on the path is close to τ.  
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2.6 Comparative Study 

 

 As introduced earlier in this chapter, the methods proposed for latency 

and available bandwidth prediction are mainly consist of four categories, i.e., 

Euclidean embedding, route observation, prediction tree and matrix 

factorization. This section summarizes the most outstanding algorithm from 

each of the categories. Table 2.1 summarises the features, pros and cons for 

comparison. 

 

Table 2.1 Comparison between various prediction approaches. 

 Vivaldi Last-mile Sequoia DMFSGD 
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 From the comparative study on network resource estimation, matrix 

factorization approach is selected as the main algorithm.  The details of the 

algorithms which are proposed based on matrix factorization have been 

studied and presented in Section 2.5. The comparison table in Table 2.2 shows 

the differences between the proposed algorithm and the existing approaches.  

 

Table 2.2 Network resource estimation approaches via matrix 

factorization. 

 IDES DMF DMFSGD 
Proposed 

Algorithm 

Matrix 

factorization 

algorithm 

SVD and 

NMF 

Decentralized 

version of 

IDES 

Low-rank 

matrix 

approximation 

SVD and 

SGD 

Features 

Proceed with 

missing 

entries by 

eliminating 

the rows and 

columns in 

distance 

matrix that 

contain them. 

Random 

initialization 

and updated 

continuously 

with respect 

to random 

selected 

neighbours. 

Random 

update via 

SGD. Replace 

quantitative 

prediction with 

(-1, 1) for 

good or poor 

network path 

prediction. 

Collect 

historical 

data and 

initialize via 

SVD. 

Further 

enhanced 

with link 

quality 

prediction 

Qualitative 

Prediction 
NA NA 

 Binary 

classification 

Binary and 

multiclass 

classification 

Landmark Required Not Required 

 

The proposed algorithm is an optimization to the existing approaches with 

enhanced features which will be discussed in the following chapter. 
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2.7 Application of Network Performance Prediction 

 

 Network distance prediction poses a significant role in providing end-

to-end network performance information. This information is very useful to 

Internet applications, such as overlay multicast and server selection. For 

example, in a large scale network, the predicted distances are used to guide the 

construction of multicast tree in order to reduce the measurement overhead. 

The following table shows the application of network performance prediction. 

 

Table 2.3 Application of Network Performance Prediction 

Application Description 

How application facilitates 

the prediction algorithm? 

Overlay Network 

Network that creates 

virtual topologies based on 

node-content attributes. 

Next hop selection 

Server Selection 

Clients have to select 

servers without querying 

of server location or 

network topology.   

Select the server based on 

lowest latency or highest 

available bandwidth 

 

Overlay network creates a structured virtual topology on top of the 

physical topology (Doval, D. & O’Mahony, D., 2003) which offers automatic 

load balancing and self-organization. In the standard graph-traversal problem, 

each hop brings the query closer to the target node. Hence, network 



23 

 

performance prediction can be used to define next hop selection. As a result, 

the network load and response time can be reduced. 

 

The server selection problem often arises in content downloading, 

multimedia streaming and file transfer. Round-trip latency is important to 

minimize the response time for clients during content downloading while 

higher available bandwidth implies faster data transfer time. These network 

resources can be predicted via network performance prediction algorithms 

which in turn able to reduce measurement overhead in large scale network. 

 

2.8 Conclusion 

 

This chapter discussed the related works on latency and available 

bandwidth prediction with their features and limitations. The approaches 

presented focus on different aspects, with some assumptions made to meet 

certain criteria. The algorithm developed in this thesis does not rely on the 

network structural information and the qualitative-based approach is applied 

as well. 
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CHAPTER 3 

 

END-TO-END NETWORK PERFORMANCE PREDICTION 

 

 

3.1 Introduction 

 

Predicting network bandwidth of large systems based on a few pairs of 

network nodes is essential to reduce measurement overhead. This chapter 

presents an algorithm which predicts network performance metrics, i.e. latency 

or available bandwidth based on matrix factorization and its further 

enhancement with network link quality prediction. In the first part of this 

chapter, the proposed SSGD algorithm is presented. Later in the second part of 

this chapter, the SSGD algorithm is further enhanced with network link quality 

prediction. 

 

 

3.2 Network Performance Prediction Algorithm Overview 

 

In this thesis, network performance metrics of the mesh network are 

formulated as matrix completion problem with measured and unmeasured 

entries. The formulation is made possible because of the strong correlations 

among network metrics. Furthermore, it is able to overcome the drawbacks of 

existing approaches based on Euclidean embedding.  
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A new algorithm, namely Singular value decomposition – Stochastic 

Gradient Descent (SSGD), is proposed to solve the network performance 

prediction via matrix completion. The algorithm is fully decentralized 

whereby each node only stores local information and exchange messages with 

each other, without the needs of landmarks or central servers. Different from 

the existing approaches; the conventional gradient descent is initialized with 

Singular Value Decomposition (SVD) to enhance better convergence. The 

proposed algorithm is illustrated in Figure 3.1 where SSGD algorithm is 

further enhanced with network link quality prediction.  

 

 

Figure 3.1 The illustration of the proposed algorithm. 

Output:  

Qualitative prediction on end-to-end network path. 

Output:  

Full predicted network resource (available bandwidth/ latency) matrix 

SSGD Algorithm 

 

Start 

Available Bandwidth 

Prediction 
Latency Prediction 

Binary Classification Multiclass Classification 

Link Quality Prediction 

End 
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The metric pair, is extracted from SSGD to form the input for link 

quality classification. These enable the prediction to be done in both 

quantitative and qualitative way. Link quality prediction served as an 

enhancement to the quantitative prediction which can be easily extend to other 

network metrics such as packet loss, jitter, and throughput for classification. 

 

 

3.3 SSGD Algorithm for Network Metrics Prediction 

 

The proposed algorithm is divided into two phases: initialization and 

stochastic update. For a matrix with n nodes, the network will form n × n 

distance matrix with some distances between nodes measured and others 

unmeasured.  

 

 

 

 

 

 

(a) Matrix of 8 network nodes. 
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(b) Node 5 measures network metrics to node 2, 4, and 7. 

 

(c) Node 7 measures network metrics to node 2, 5, and 8. 

 

(d) A matrix with measured and unmeasured entries is constructed. 

Figure 3.2 The formulation of network performance prediction. (Note: The 

constructed matrix in (d) contains measured value in grey and green entries are 

missing elements to be predicted. The diagonal entries are left empty as the 

performance of a node to itself is not a concern.) 
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 The proposed SSGD algorithm can be adopted in a decentralized 

network architecture with no central server. At the initial stage of the SSGD 

algorithm, SVD initialization is applied before the stochastic update. SVD is a 

matrix factorization method which serves as a method for data reduction 

whereby the best approximation can be found by using the number of data 

points lower than the number of network nodes (Baker, 2013). The following 

pseudocode shows the flow of the proposed SSGD algorithm. 

_______________________________________________________________ 

Algorithm 1 The proposed SSGD algorithm flow_______________________ 

Input: D: measurement matrix 

 Perform row-column interpolation  

 k: number of neighbours for each node 

 λ: regularization coefficient 

 r: number of dimensions 

 i: number of iterations 

 η: learning rate 

Output: Ux, Vy, and J(θ) 

perform Singular Value Decomposition initialization to obtain Ux, Vj 

 for i number of iterations 

  select a random node x with k number of neighbours 

  minimize the cost function J(θ): min J(θ) = ⁡(𝐷𝑖,𝑗 − 𝑈𝑥𝑉𝑦)  

 end for 

 

SSGD algorithm is further elaborated in the following sections. 
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3.3.1 SSGD Algorithm: Initialization 

 

The initial matrix D is constructed by filling it in with measurement 

carried out on a subset of network nodes and some unmeasured entries. Prior 

to the prediction stage, pre-processing which is the initialization through SVD 

is performed. SVD is based on a linear algebra theorem which explains that a 

rectangular matrix D can generated from the product of three matrices, an 

orthogonal matrix U, a diagonal matrix S, and the transpose of an orthogonal 

matrix V. The theorem is presented as: 

 

 𝐷𝑚𝑛 = 𝑈𝑚𝑛𝑆𝑛𝑚𝑉𝑛𝑛
𝑇                                             (3.1) 

 

where UTU = I, VTV = I; the columns of U are orthonormal eigenvectors of 

DDT, the columns of V are orthonormal eigenvectors of DTD, and S is a 

diagonal matrix containing the square roots of eigenvalues from U or V in 

descending order.  

 

Since SVD cannot handle missing elements (Brand, 2002), row and column 

interpolation is performed to fill the missing entries as follows: 

 

  �̂�𝑖,𝑗 = min⁡(�̂�𝑖𝑡ℎ⁡𝑟𝑜𝑤 , �̂�𝑗𝑡ℎ⁡𝑐𝑜𝑙)                                 (3.2) 

 

where �̂�𝑖,𝑗 is the missing value from node i to node j, �̂�𝑖𝑡ℎ⁡𝑟𝑜𝑤 is the mean of ith 

row and �̂�𝑗𝑡ℎ⁡𝑐𝑜𝑙 is the mean of jth column. In order to obtain a low-rank 

approximation, the number of singular values extracted represents the rank of 
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D. Only r numbers of rank in S are kept and the rest are replaced by zero. 

These three smaller matrices are formed into two smaller initialization 

matrices X and Y for stochastic updates. Let Sr be the new S, 𝑋 = 𝑈𝑆𝑟
1/2

 and 

𝑌𝑇 = 𝑆𝑟
1/2

𝑉𝑇, the predicted distance matrix �̂� = 𝑋𝑌𝑇 is then the optimal low-

rank approximation to D. 

 

3.3.2 SSGD Algorithm: Stochastic Update 

 

The initial predicted distance matrix is optimized based on stochastic 

gradient descent (SGD), a method which is particularly suitable to solve the 

matrix factorization problem (Koren, et al., 2009). Whenever there is a 

random measured value, dij, node i and node j update their coordinates to 

minimize the loss in the expression below 

 

𝑙(𝑑𝑖𝑗, 𝑥𝑖𝑦𝑗
𝑇) + 𝜆𝑥𝑖𝑥𝑖

𝑇 + 𝜆𝑦𝑗𝑦𝑗
𝑇                             (3.3) 

 

where λ is the regularization coefficient (Bottou, 1998) and that 𝑥𝑖𝑦𝑗
𝑇 = �̂�𝑖𝑗 

approximates dij better. The loss function l is applied and defined as  

 

𝑙(𝑑, �̂�) = (𝑑 − �̂�)2                                                      (3.4) 

 

The updates are along the negative gradient as expression 3.3. Figure 3.2 

illustrates the stochastic gradient descent optimization for matrix factorization.  
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Figure 3.3  Stochastic gradient descent optimization for matrix 

factorization. The predicted value �̂�𝑖𝑗 can be updated whenever the measured 

value 𝑑𝑖𝑗 is available. The ith row of X and jth row of Y can be updated so 

that⁡𝑥𝑖𝑦𝑗
𝑇 = �̂�𝑖𝑗 ≈ 𝑑𝑖𝑗. 

 

By using SGD to solve expression 3.3, the algorithm loops through all the 

samples dij, for i, j < n and select random sample to update the respective xi 

and yj so that 𝑑𝑖𝑗 ≈ 𝑥𝑖𝑦𝑗
𝑇. The algorithm runs through t number of iterations to 

minimize the discrepancies between measured and predicted values, as 

follows: 

 

  𝑙𝑖𝑗 = (𝑑𝑖𝑗 − 𝑥𝑖𝑦𝑗
𝑇)2 + 𝜆𝑥𝑖𝑥𝑖

𝑇 + 𝜆𝑦𝑖𝑦𝑖
𝑇                           (3.5) 

 

The xi and yj are updated based on a learning rate η, or step size, in the 

negative gradients (Bottou, 1998), giving 

 

× 

≈ �̂� 

𝑑𝑖𝑗 
= YT 

X 

�̂�𝑖𝑗 

D 

𝑥𝑖 
𝑦
𝑗
𝑇 
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    𝑥𝑖 = (1 − 𝜂𝜆)𝑥𝑖 + 𝜂(𝑑𝑖𝑗 − 𝑥𝑖𝑦𝑗
𝑇)𝑦𝑗                        (3.6) 

       𝑦𝑖 = (1 − 𝜂𝜆)𝑥𝑗 + 𝜂(𝑑𝑖𝑗 − 𝑥𝑖𝑦𝑗
𝑇)𝑥𝑖                        (3.7) 

 

The algorithm convergence is observed at each iteration which minimizes the 

difference between 𝑑𝑖𝑗 and �̂�𝑖𝑗. The convergence are said to be improved 

when the difference between 𝑑𝑖𝑗 and �̂�𝑖𝑗 was reduced after an iteration. SGD 

involves only simple update rules with vector operations and therefore it is 

able to deal with large-scale dynamic measurements. 

 

 

3.4 End-to-end Network Link Quality Prediction 

 

The quantitative prediction via matrix completion introduced in the 

Section 3.3 of this chapter is further enhanced with link quality prediction, 

whereby available bandwidth and latency are both taken into consideration to 

predict the quality of the link between two network nodes. This can be easily 

extended to other network metrics such as packet loss, jitter or throughput. 

The quality of the link between frequent communicating nodes is classified 

based on supervised learning classification. Network link quality is classified 

into binary (good or poor) and multiclass (very good, good, moderate, poor) to 

adapt to the dynamic network condition by adjusting quality of the content 

delivery. Available bandwidth and latency are predicted via the proposed 

SSGD algorithm in the previous section. The metrics pairs are extracted and 

serve as training data for link quality prediction via Logistic Regression 

(Menard, 2010) and Support Vector Machine (Cortes & Vapnik, 1995). 
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 Machine learning algorithms can be categorized into unsupervised 

learning and supervised learning. In unsupervised learning, the algorithm finds 

the structure of the training samples with unknown labels. The structure of the 

training samples is often referred to as a group formed based on their 

similarity (Komarek, 2004). In this thesis, the training samples are available 

bandwidth and latency, which are obtained from SSGD algorithm. Therefore, 

the labels of the pairs (good or poor) are known and applied using supervised 

learning based algorithm. In supervised learning, the system acquires 

knowledge from previous training samples and adapts the system with a new 

model for prediction on new input data. The most widely used supervised 

learning algorithms are Support Vector Machines (Cortes & Vapnik, 1995), 

logistic regression (Menard, 2010), and k-nearest neighbor algorithm (Mack, 

2010). Support Vector Machines (Cortes & Vapnik, 1995) and logistic 

regression (Menard, 2010) are implemented as these two are closely related 

and to identify which method is better fit for the learning pattern in this thesis. 

 

3.4.1 Logistic Regression for Link Quality Prediction  

 

Logistic Regression (LR) is frequently used to estimate qualitative 

response models in which the dependent variable is a dichotomy, such as 

email spam filtering (Chang, et al., 2008), fraudulent detection for online 

transactions (Chae, et al., 2007), and tumor malignancy classification 

(Timmerman, et al., 2005). This method is applied to predict the quality 

between two network nodes with respect to their metrics pair (available 

bandwidth and latency). LR classifies the samples based on the probability of 
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the sample to be positive or negative. For binary classification via LR, the 

algorithm uses the training samples, which is the metric pair, to predict the 

probability of the network link to be 0 (good) or 1 (poor). The following 

pseudo codes show the overview of link quality prediction via logistic 

regression. 

_______________________________________________________________ 

Algorithm 2 Logistic Regression for Link Quality Prediction______________ 

Input: Training Data, X: Latency and Available Bandwidth pairs (x, y) with 

dichotomous outcome  

C: regularization coefficient 

m: number of training samples 

Output: Link quality prediction: p(y = 1| x; θ) 

for m samples 

 minimize the cost function J(θ) 

 for j = 0, 1, …, m 

  perform gradient descent 𝜃𝑗 ≔ 𝜃𝑗−∝
𝑑

𝑑𝜃𝑗
𝐽(𝜃)   

 end for 

end for  

 

 Let X be a dataset with dichotomous outcome, y = {0, 1}. For each 

training samples xi in X, the outcome is either yi = 1 or yi = 0. The experiments 

outcome with yi = 1 are said to have good link quality, while yi = 0 for poor 

quality. The input dataset is learnable via a differentiable function instead of 

using a two line segment. The logistic regression model (Menard, 2010) is 

built based on the hypothesis as follows: 
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ℎ𝜃(𝑥) = 𝑝(𝑦 = 1|𝑥; 𝜃) = 𝑔(𝜃𝑇𝑥)                            (3.8) 

 

which is also referred to as the probability that y = 1 given x, parameterized by 

θ, where g is the sigmoid function  

 

𝑔(𝑧) =
1

1+𝑒−𝑧
                                              (3.9) 

 

The training pairs {(x(1), y(1)), (x(2), y(2)), …, (x(m), y(m))} with m samples where 

𝑥 ∈ [𝑥1, 𝑥2]
𝑇 is the set of input features are used to obtain the fitting 

parameter, θ to minimize the cost function J(θ) as follows: 

 

𝐽(𝜃) =
1

𝑚
∑ [−𝑦(𝑖) log (ℎ𝜃(𝑥

(𝑖))) − (1 − 𝑦(𝑖)) log (1 − ℎ𝜃(𝑥
(𝑖)))]𝑚

𝑖=1   (3.10) 

 

In order to optimize the algorithm, gradient descent is applied to improve 

convergence as follows: 

Optimization algorithm:___________________________________________ 

i. Compute cost function J(θ). 

ii. To minθJ(θ), perform gradient descent: 

iii. Repeat { 

        𝜃𝑗 ≔ 𝜃𝑗 − 𝛼
𝑑

𝑑𝜃𝑗
𝐽(𝜃)      (for j = 0, 1, …, n) 

} 

_______________________________________________________________ 
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The gradient of the cost function is defined as 

 

𝜕𝐽(𝜃)

𝜕𝜃𝑗
=

1

𝑚
∑ ℎ𝜃((𝑥

(𝑖)) − 𝑦(𝑖))𝑥𝑗
(𝑖)𝑚

𝑖=1                            (3.11) 

 

The trained dataset will result in a model with decision boundary and trained 

parameter for new input samples. For the non-linearly separable dataset, 

features are mapped into higher dimension with higher polynomial terms of x1 

and x2 to fit it, and regularization term θ is used to do parameter tuning. The 

polynomial is expanded up to the sixth power which is best fit in this case.  

 

ℎ𝜃(𝑥) = 𝑔(𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥1
2 + 𝜃3𝑥1

2𝑥2 +⋯)                 (3.12) 

 

The learning problem can be difficult if the dimension is too high. Features x1 

and x2 correspond to the available bandwidth and latency on the link between 

two network nodes. The cost function with regularization term as follows 

builds a more impressive classifier and prevent over-fitting, 

 

𝐽(𝜃) = −[
1

𝑚
∑ 𝑦(𝑖)𝑙𝑜𝑔ℎ𝜃(𝑥

(𝑖)) + (1 − 𝑦(𝑖))log⁡(1 − ℎ𝜃(𝑥
(𝑖)))]⁡𝑚

𝑖=1          

+
𝜆

𝑚
∑ 𝜃𝑗

2𝑛
𝑗=1                                                                             (3.13) 

 

The gradient of the cost function with regularization is defined as follows: 

 

𝜕𝐽(𝜃)

𝜕𝜃𝑗
=

1

𝑚
∑ (ℎ𝜃(𝑥

(𝑖)) − 𝑦(𝑖))𝑥𝑗
(𝑖) +

𝜆

𝑚
𝜃𝑗

𝑚
𝑖=1                       (3.14) 

for j = 1, 2, 3, …, n. 
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To enable multiclass classification, “one-against-all” logistic 

regression is applied by picking the class i that maximizes⁡𝑚𝑎𝑥𝑖ℎ𝜃
𝑖 (𝑥). The 

hypothesis of multiclass logistic regression is different from that of binary 

logistic regression while the cost function is similar for both of the cases.  

 

The hypothesis of N-class multiclass logistic regression is  

 

ℎ𝜃
𝑖 (𝑥) = 𝑝(𝑦 = 𝑖|𝑥; 𝜃)                                      (3.15) 

 

where a logistic regression classifier ℎ𝜃
𝑖 (𝑥) is trained for each class i to predict 

the probability that y = i. The prediction on each new sample is made by 

picking the class i that maximizes the hypothesis. 

 

3.4.2 Support Vector Machine for Link Quality Prediction 

 

Support Vector Machines (SVM) constructs decision boundaries based 

on different kernel function which separates a set of samples having different 

classes. The very basic example of SVM is the linear classifier, i.e. a classifier 

that separates a set of samples into their respective groups with a line. 

However, most classification problem is not linearly separable. The basic idea 

of SVM is to map the samples, using mathematical functions, known as 

kernels, into a higher dimensional space (Cortes & Vapnik, 1995). The 

following pseudo codes show the overview of link quality prediction via 

SVM. 
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_______________________________________________________________ 

Algorithm 3 Support Vector Machine for Link Quality Prediction__________ 

Input: Training Data, X: Latency and Available Bandwidth pairs (x, y) with 

dichotomous outcome  

C: regularization coefficient 

γ: margin of the support vectors 

l: number of training samples 

ω: feature vector 

ϕ(xi): kernel function 

b: bias 

Linear kernel function:⁡𝑲(𝒙𝒊, 𝒙𝒋) = 𝒙𝒊
𝑻𝒙𝒋  (for SVM with linear kernel) 

RBF kernel function: 𝑲(𝒙𝒊, 𝒙𝒋) = 𝐞𝐱𝐩(−𝜸‖𝒙𝒊 − 𝒙𝒋‖
𝟐
) ,⁡⁡⁡𝜸 > 𝟎   (for 

SVM with RBF kernel) 

Output: Link quality prediction: class label 

for l samples 

 minimize the decision function  

 𝒔𝒈𝒏(𝝎𝑻𝝓(𝒙) + 𝒃) = 𝒔𝒈𝒏(∑ 𝒚𝒊𝜶𝒊𝑲(𝒙𝒊, 𝒙𝒋) + 𝒃)𝒍
𝒊=𝟏  

          end for 

 

 SVM is able to give high accuracy with small training set size by 

mapping samples into higher dimensional feature spare. In this thesis, C-

support vector classification (C-SVC) with linear and radial basis function 

(RBF) kernel is studied to classify the samples into binary and multiclass 

classification. The main parameter in C-SVC is C, the regularization 
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parameter, which plays the role similar to 1/λ, the regularization parameter in 

regularized logistic regression.  

 

 The following figure shows the concept of SVM with the decision 

boundary of w.x + b > 0 if y = good and w.x + b < 0 if y = poor. Support 

vectors are the points touching the margin. 

 

 

Figure 3.4 Illustration of SVM with support vectors. 

 

The training features with l samples are interpreted as vectors in C-SVC, such 

that⁡𝑥𝑖𝜖𝑅
𝑛, i = 1,…, l, and the label vector 𝑦 ∈ 𝑅𝑙 such that 𝑦𝑖 ∈ {0,1} to solve 

the following primal optimization problem as introduced in (Hsu, et al., 2010), 

 

                                                   min
𝜔,𝑏,𝜉

1

2
𝜔𝑇𝜔 + 𝐶 ∑ 𝜉𝑖

𝑙
𝑖=1  

subject to     𝑦𝑖(𝜔
𝑇𝜙(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖 ,                            (3.16) 

                                             𝜉𝑖 ≥ 0,⁡⁡⁡𝑖 = 1,… , 𝑙         

margin 2γ 



 
39 

where the kernel function, ϕ(xi), maps xi into a higher-dimensional space, C > 

0 is the regularization parameter, b is a bias, ω is the feature vector, 𝜉𝑖 is the 

“slack variables” and ∑ 𝜉𝑖
𝑙
𝑖=1  is the sum of errors in addition to ωTω. For non-

linearly separable data, “slack variables” are introduced in SVM as a trade off 

to allow outliers or noisy samples to be on the wrong side. The optimization 

problem can be tuned based on C whereby higher C minimizes mis-

classifications while smaller C maximizes the margin. Due to the possible high 

dimensionality of vector variable ω, usually the dual problem is solved as 

follows (Hsu, et al., 2010): 

 

min
𝛼

1

2
𝛼𝑇𝑄𝛼 − 𝑒𝑇𝛼  

subject to    𝑦𝑇𝛼 = 0,                                                        (3.17) 

                                              0 ≤ 𝛼𝑖 ≤ 𝐶,⁡⁡⁡⁡⁡𝑖 = 1,… , 𝑙     

 

where e = [1, …, l]T is the vector of all ones, Q is an 1 by l positive semi-

definite matrix, 𝑄𝑖𝑗 ≡ 𝑦𝑖𝑦𝑗𝐾(𝑥𝑖, 𝑥𝑗), and 𝐾(𝑥𝑖 , 𝑥𝑗) ≡ 𝜙(𝑥𝑖)
𝑇𝜙(𝑥𝑗) is the 

kernel function. After solving the equation in 4.12 via the primal-dual 

relationship, the optimal ω satisfies 

 

𝜔 = ∑ 𝑦𝑖𝛼𝑖𝜙(𝑥𝑖)
𝑙
𝑖=1                                       (3.18) 

 

and the decision function is 

 

𝑠𝑔𝑛(𝜔𝑇𝜙(𝑥) + 𝑏) = 𝑠𝑔𝑛(∑ 𝑦𝑖𝛼𝑖𝐾(𝑥𝑖 , 𝑥𝑗) + 𝑏)𝑙
𝑖=1 .           (3.19) 
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The training model consists of class label names, support vectors, and kernel 

parameters are used for prediction. The kernels function for linear and RBF 

kernel is shown below (Hsu, et al., 2010): 

 

 Linear kernel:  ⁡𝐾(𝑥𝑖, 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗                                                    (3.20) 

RBF kernel:  𝐾(𝑥𝑖, 𝑥𝑗) = exp (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2
) ,⁡⁡⁡𝛾 > 0             (3.21) 

 

The regularization parameter C and kernel parameters are then chosen 

according to the selected kernel. RBF kernel is able to classify non-linear 

attributes by mapping samples into higher dimensional space, while linear 

kernel is best fit for linear relation between class labels and attributes.  

 

 

3.5 Conclusion 

 

The overall idea of the proposed algorithms is presented in this 

chapter. The first part of the algorithm, SSGD is elaborated in section 3.3 

while the enhancement is introduced in section 3.4 for link quality prediction. 

In the next chapter, simulation results for network performance prediction via 

SSGD algorithm and link quality prediction are presented. 
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

 

4.1 Introduction 

 

 This chapter presents the simulation of the proposed algorithm, which 

includes the test results, impact of parameter tuning and followed by 

performance comparison with other existing approaches. The enhancement to 

the proposed algorithm via qualitative approach for network link quality 

prediction is presented in Section 4.3. 

 

 

4.2 Evaluating End-to-end Network Performance Prediction 

 

Network performance metrics such as available bandwidth and latency 

are beneficial to overlay network construction and server selection. The 

prediction matrix consists of mesh bandwidth information with measured and 

predicted value.  

 

There are mainly two stages in the proposed SSGD algorithm: pre-

processing stage and prediction stage. 
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The pre-processing stage aims to locate good starting points for the 

nodes’ convergence to local minima. In other words, the initial approximation 

is better guaranteed with the proposed algorithm to converge to a close enough 

solution during pre-processing stage. In essence, the outgoing, xi and incoming, 

yi vector of the node is assigned based on Singular Value Decomposition 

(SVD) instead of being randomly initialized which will result in the need for 

more iterations for convergence to local minimum. The flow of simulation 

setup is illustrated in Figure 4.1.  

 

 

Figure 4.1 Simulation setup for SSGD algorithm. 

 

Prediction stage: 

Pre-processing Stage: 

Input dataset with measured and unmeasured entries 

Compute unmeasured entries with minimum of 

outgoing and incoming bandwidth of the respective 

node 

Obtain full historical and predicted data 

SVD initialization 

SGD updates 

Update ith row of outgoing matrix X and jth column of 

incoming matrix Y 

Obtain full predicted measurement matrix 

Each node selects k random neighbours 
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In the simulation, the unmeasured data are first predicted as the 

minimum of outgoing and incoming bandwidth of the corresponding network 

node. With this full historical bandwidth data, SVD initialization is performed 

to obtain the two smaller matrices X and Y as shown in Figure 4.2.  

 

 

Figure 4.2 Illustration of matrix factorization operation. 

 

In the prediction stage of the algorithm, stochastic update is performed 

on the measurement matrix through Stochastic Gradient Descent (SGD) as 

illustrated in Figure 4.2. A random node is selected at each epoch and the 

corresponding row and column of matrix X and Y along negative gradient are 

updated. The initial approximation of the function at the current point is 

updated along negative gradient to minimize the discrepancy between 

measured and predicted value. SGD is applied to estimate the predicted value 

to be closer to the measured value. Finally, a full measurement matrix is 

constructed with the predicted bandwidth information. The learning 

parameters involved in SGD are regularization parameter, λ, learning rate, η, 

× 

≈ 

 

 

= YT 
X 

 

D 

  



 

 44 

approximation rank, r, and number of neighbors, k. The parameters obtained 

from the training set are cross validated and tested with different sets of data 

of the same size. 

 

4.2.1 SSGD Algorithm Simulation Setup 

 

The input datasets used for simulation were taken from the Bedibe 

project (Eyraud-Dubois & Uznanski, 2012) and they contain network available 

bandwidth measurements between 98 of the most responsive nodes, with the 

presence of some missing measurements. Properties of the datasets are 

presented in Table 4.1 with three sets of available bandwidth measurements 

captured on different dates, including a set of data for latency prediction. The 

datasets are asymmetric in which two-way measurements were performed.  

 

Table 4.1 Properties of the datasets. 

Measurement Dataset Nodes Asymmetry 

Available Bandwidth 
HPS3 dataset  

(2011-11-21) 
98 Yes 

Available Bandwidth 
HPS3 dataset  

(2011-11-22) 
98 Yes 

Available Bandwidth 
HPS3 dataset  

(2011-11-24) 
98 Yes 

Latency 
HPS3 dataset 

(2011-11-24) 
98 Yes 

 

The SSGD algorithm makes an assumption that available bandwidths and 

latencies among network nodes are highly correlated and that the network 

nodes are able to maintain a list of historical measurement.  
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4.2.2 Evaluation Metric 

 

Quality of the prediction algorithm is measured by the cumulative 

distribution function (CDF) of relative error for all pairs of hosts. Relative 

error is defined as 

 

M

PM
RE

yx

yxyx
yx

,

,,
,

|| 
                                            (4.1) 

 

where Mx,y is the measured value and Px,y is the predicted value. The CDF 

plots of relative errors indicate the higher the corresponding plot is, the better 

estimation performance.   

 

The overall fitness of the embedding is measured by stress measure, 

which is used to illustrate the convergence of the algorithm, defined as follows 
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                                      (4.2) 

 

Dataset with high variance is undesirable which will lead to low convergence 

of the prediction algorithm. High prediction errors are normally due to over-

estimation or under-estimation of the bandwidth information. Impacts of 

parameter tuning are shown in the following section. 
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4.2.3 Impact of Parameter Tunings 

 

The main parameters in the proposed SSGD algorithm are 

approximation rank, r, regularization coefficient, λ, learning rates, η, and 

number of neighbor, k.  The stress of the proposed algorithm is observed for 

100 iterations on 98 network nodes. 

 

The regularization coefficient, λ reduces over-fitting in the algorithm 

and drift of the coordinates. The algorithm is simulated with λ = {0.1, 1, 10, 

100}, η = 3x10-5 and r = {10, 30, 50, 80}. The values of λ selected for testing 

are of multiples of 10. η is selected based on the result presented in Figure 4.5. 

The values of r used in the simulation are of increments of 20 or 30 whereby 

larger r involves lesser prediction with more active measurement which yields 

better accuracy. However, the aim of this research is to minimize active 

measurement via prediction algorithm. Therefore, r is selected to be as low as 

possible to achieve acceptable accuracy. It is shown that in Figure 4.3, the 

proposed algorithm achieved best convergence at λ = 1 and r = 50.   

 

 

Figure 4.3 Impact of parameter for r versus λ, with η = 3x10-5. 
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Figure 4.4 Impact of λ and r on algorithm computation time. 

 

The rank constraint in SVD affects the performance of the algorithm 

by changing the number of singular values, which is represented by the 

approximation rank, r. It may affect the algorithm running time. As shown in 

Figure 4.4, with r = 50 and λ = 1 selected from Figure 4.3, the computation 

time is shorter when the parameter values are best suited for the respective 

dataset. Although r = 80 with λ = 100 achieved lower computation time, 

higher r yields more active probing which is unwanted in this research. 
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Figure 4.5 Impact of learning rate, η with k = 32, r = 50, λ = 1. 

 

Learning rate or more often referred to as step size affects the speed of 

convergence of the algorithm. Larger values of η would also lead to 

divergence in the algorithm. The impact of η is tested with η = {3x10-4, 1x10-4, 

3x10-5, 1x10-5}. It is important to observe the algorithm convergence and 

divergence. As shown in Figure 4.5, for η = 1x10-4, the algorithm tend to 

diverge after 70th iteration while η = 3x10-4 gave fluctuating results.  Therefore, 

η is set to be 3x10-5 according to results in Figure 4.5 in order to prevent 

divergence. 
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Figure 4.6 Impact of η versus number of neighbor, k, with λ = 1, r = 50. 

 

Number of neighbor, k, represents the amount of active probing which 

is directly proportional to the algorithm accuracy. Larger values of k involve 

more active measurement with larger measurement overhead. The aim of this 

research is to minimize active measurement via prediction algorithm. The 

proposed algorithm is simulated with k = {8, 16, 32, 64} and η = {3x10-4, 

1x10-4, 3x10-5, 1x10-5} are selected for testing. The number of neighbor used 

for simulation is selected based on the sequence of 2n with n = 3, 4, 5, and 6. 

From Figure 4.6, the stress of the algorithm is the highest at k = 64 and η = 

1x10-4. However, η = 1x10-4 are shown to be diverged after 70th iteration as 

presented in Figure 4.5. Hence, η = 3x10-5 and k = 32 are selected based on the 

results in Figure 4.6. The active measurement is calculated as 32 over 98, 

which is 33% of the data are used to achieve stress as low as 0.3.  

 

The tuning parameters involved in the proposed algorithm depend 

highly on the network environment from where the data is taken and the 

number of network nodes involved. Therefore, the values of the parameters 
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should not be generalized and be applied on other datasets. Hence, the 

optimum training parameters obtained above should be cross-validated and 

tested with other compatible datasets. 

 

4.2.4  Cross-validation of Training Set 

 

In this section, the learning parameters obtained from the training set is 

cross-validated and tested with another compatible set of data. The size of the 

data and the network nodes selected is similar as in training set. Stress plots of 

the proposed SSGD algorithm and the conventional SGD algorithm with 

random initialization is also shown in this section. The parameters were set 

heuristically as λ = 1, η = 3x10-5, r = 50 and k = 32 based on simulations in 

Section 4.2.3. 
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Figure 4.7 Stress plot of SSGD algorithm versus conventional SGD 

algorithm with random initialization for cross validation set. 
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 It is shown in Figure 4.7 that the proposed SSGD algorithm with SVD 

initialization yields better convergence compared to conventional SGD with 

lower number of iteration. Initialization via SVD leads the node’s coordinate 

to start at better initial point rather than random placement. Furthermore, the 

required number of iteration for convergence is lower compared to 

conventional SGD. The cumulative distribution function (CDF) plot shows 

that the plot closer to the upper left corner of the graph represent better 

estimations with smaller relative errors. 

 

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relative Error

C
u

m
u

la
ti

v
e
 D

is
tr

ib
u

ti
o

n
 F

u
n

c
ti

o
n

 (
C

D
F

)

 

 

SSGD

SGD

 

Figure 4.8 Performance comparisons of SSGD and conventional SGD for 

cross validation set. 

 

On the cross-validation dataset, the proposed SSGD algorithm clearly 

outperforms conventional SGD in terms of algorithm convergence and 

prediction accuracy. From Figure 4.8, it can be observed that 90% of all 

source/destination pairs are predicted with an error below 0.5.  
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 The training parameters are further simulated with another test set. On 

the test set, SSGD is able to provide better convergence and prediction 

accuracy compared to conventional SGD, as shown in Figure 4.9 and Figure 

4.10. 
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Figure 4.9 Stress plot of SSGD algorithm versus conventional SGD 

algorithm with random initialization for test set. 
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Figure 4.10 Performance comparisons of SSGD and conventional SGD for 

test set. 

 

It is shown in Figure 4.10 the CDF of relative error is improved whereby 95% 

of the predicted bandwidth information having relative error less than 0.5.  

The training parameters are cross-validated and tested and proved to be 

accurate and suited for prediction in similar network environment.  

 

4.2.5 Performance Comparisons of SSGD, Last-Mile, Sequoia, and 

DMF 

 

Last-mile (Beaumont, et al., 2011), Sequoia (Ramasubramanian, et al., 

2009), and DMF (Liao, et al., 2010) are selected for performance comparison 

with the proposed algorithm based on literature study presented in Chapter 2.  
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The parameter constraints in both algorithms are set to the best fitting 

value for a fair comparison. The approximation rank, r is set to be 50 for DMF 

and SSGD since both algorithms are facing the rank constraint. The accuracy 

and algorithm convergence are proportional to the number of measurement 

probed.  
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Figure 4.11 Performance comparisons of DMF, Last-Mile (LM), Sequoia, 

and SSGD. 

 

Last-mile, Sequoia, DMF and SSGD algorithms are tested with the 

same dataset from bedibe project. The plot nearer to the upper left corner of 

the graph has a better accuracy. In Figure 4.11, it is shown that SSGD has 

better accuracy compared to Last-Mile and Sequoia and slightly better than 

DMF with approximately 98% of the source/destination pairs having 

prediction error between 0 and 1.  
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4.2.6 SSGD for Latency Prediction 

 

In order to show the applicability of the proposed algorithm to other 

network performance metrics, such as latency, this section presents the 

simulation results for latency prediction. The dataset used are the latency 

measurement from bedibe project (Eyraud-Dubois & Uznanski, 2012), 

consisting of 98 network nodes. The laerning parameters are λ = 1, η = 3x10-5, 

r = 50 and k = 32. The experiment is executed for 100 iterations. 
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Figure 4.12 The stress plot of algorithm embedding for SSGD versus 

conventional SGD for latency prediction. 
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Figure 4.13 CDF plot of the proposed SSGD algorithm for latency 

prediction. 

 

The stress plot of the SSGD algorithm presented in Figure 4.12 is able to 

converge to good prediction accuracy at 0.18. The CDF of SSGD shown in 

Figure 4.13 produces low relative error with approximately 95% of the node 

pairs have error smaller than 0.5.  
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Figure 4.14 Performance comparisons of DMF, Last-mile, Sequoia, and 

SSGD for latency prediction. 

 

Last-mile, Sequoia, DMF and SSGD algorithms are tested with bedibe 

latency dataset with same network nodes as of available bandwidth dataset. In 

Figure 4.14, it is shown that SSGD has better accuracy compared to Last-mile 

and Sequoia and comparable with DMF with approximately 95% of the node 

pairs having prediction error smaller than 0.5. This proved that SSGD is 

compatible for both available bandwidth and latency prediction.  

 

 

4.3 End-to-end Link Quality Prediction 

 

In this section, end-to-end network link quality is classified based on 

the measured and prediction results obtained in the first part of the algorithm. 

This provide us with an O(nxn) look-up table with n number of network links 
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as opposed to one single link. Link quality prediction in this thesis is 

performed via Logistic Regression (LR) and Support Vector Machine (SVM) 

to classify the network path in binary and multiclass, and suggest next hop or 

neighbor selection based on the dynamic network condition. The performance 

of both classification algorithms was evaluated and it is found that SVM 

outperformed LR in link quality classification by 20%. 

 

4.3.1 Evaluation Methodology 

 

The aim of machine learning algorithm is to train a set of training 

samples to obtain the best fitting parameter which can be used as a model to 

the other compatible dataset. The accuracy of learning algorithms is evaluated 

as: 

 

%100
m

P
Accuracy correct                                        (3) 

 

where Pcorrect is the number of correctly predicted data, m is the total number 

of data. The datasets used for this evaluation were extracted from the bedibe 

project (Eyraud-Dubois & Uznanski, 2012), same as the one used in first part 

of the proposed algorithm. The available bandwidth and latency on the 

respective paths are formed as pairs. The dataset is divided in the ratio of 

600:200:200 for training set, cross-validation set and test set. The parameter 

obtained in training set is cross-validated and tested with another compatible 

set of data.  
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Tuning parameters such as regularization parameter are essential in 

machine learning algorithm to obtain a best fit training model. The 

regularization parameter, λ in regularized logistic regression (RLR) is 

experimented with different values to obtain the best learning model. The 

learning model generated from the training set was cross-validated and tested 

for its accuracy. 

 

There are two training parameters for SVM with RBF (radial basis 

function) kernel, which is C and γ. This pair of parameter is obtained via grid 

search and the pair with best cross-validation accuracy is picked. This thesis 

applied 5-fold cross-validation and LIBSVM (Chang & Lin, 2001) is deployed 

to run the experiment. In SVM with linear kernel, large values of C tend to 

minimize misclassification while smaller C values would maximize the 

margin between boundaries. This in turns too large C values will lead to over-

fitting.  

 

4.3.2 Classification Threshold 

 

The quality of video content may be adjusted based on changing 

network condition. The available bandwidth classification threshold is 

classified based on the sample distribution in the dataset. Latency is crucial in 

ensuring quality of audio-video in interactive communication. The acceptable 

values for one-way delay are within 150ms to 400ms (Karlson, 1996). For 

instance, scenario with latency larger than 500ms but 5Mbps available 

bandwidth is still classified as poor due to the delay in audio packets. In this 
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condition, images may have been received with out-of-sync audio message 

under the respective scenario.  

 

With video conferencing being the interest of this thesis, the threshold 

is set according to Table 4.4 for simulation purposes. For example, with a very 

good quality predicted, the video content is delivered with encoder maximum 

bit rate of 4096bps. 

 

Table 4.4 Threshold setting for binary and multiclass classification 

Classification 
Link 

Quality 

Available 

bandwidth 
Latency 

Encoder 

Maximum 

Bitrate (bps) 

Binary 

Good ≥ 1Mbps ≤ 0.05s 4096 

Poor < 1Mbps > 0.05s 512 

Multiclass 

Very Good ≥ 3Mbps ≤ 0.03s 4096 

Good ≥ 1Mbps ≤ 0.05s 2048 

Moderate ≥ 100kbps ≤ 0.5s 1024 

Poor < 100kbps > 0.5s 512 

 

 

4.3.3 Logistic Regression (LR) for Classification 

 

This section shows simulation accuracy of LR.  The simulation results 

for binary classification through LR are shown in Table 4.5 below. 
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Table 4.5 Binary classification by LR 

 Training Set Cross Validation Set Test Set 

Accuracy (%) 98.17 99.00 99.50 

 

The binary classification obtained through LR presents high accuracy as 

shown in Table 4.5, with 98.17% of training data correctly classified. The 

training set data is plotted as shown in Figure 4.15 to illustrate the binary link 

quality classification. 
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Figure 4.15  Binary classification by LR. 

 

The two axes in Figure 4.15 are the corresponding performance metrics 

(available bandwidth and latency), which act as the input features to the 

learning algorithm. The points scattered above the decision boundary are 

classified as good while points distributed below the decision boundary are 

classified as poor.  
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For regularized logistic regression (RLR), different value of 

regularization coefficient λ is tested and the accuracy is shown in Table 4.6 

respectively. 

 

Table 4.6 Binary classification by RLR tested with different λ 

Regularization coefficient, λ Accuracy (%) 

Training Set 

1 97.33 

10 95.33 

100 92.67 

 

Results in Table 4.6 show that λ = 1 yields the best accuracy. The 

regularization parameter is included in the training set to prevent over-fitting 

of the algorithm. Hence, the simulation shows that training accuracy for RLR 

is slightly lower than normal LR for binary classification. The selected λ is 

further cross-validated and tested and the results are shown in Table 4.7. 

 

Table 4.7 Binary classification by RLR 

  Training Set Cross Validation Set Test Set 

Accuracy (%) 97.33 96.50 98.00 

 

The decision boundary generated for RLR as shown in Figure 4.16 produces a 

straight line from the training model. 
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Figure 4.16 Classification by RLR with λ = 1. 

 

As observed in Figure 4.16 above, decision boundary plotted tend to mis-

classify a few outliers and points around the boundary. This is to prevent over-

fitting by allowing more misclassification to occur with lesser bias to either 

side of the classification. 

 

In a multiclass learning algorithm, the goal is to train a classifier that 

predicts one of n classes for each training samples. The multiclass 

classification via regularized logistic regression is performed through one-

against-all method. The regularization parameter, λ = 1 for this simulation is 

selected based on the best accuracy shown in Table 4.8. 
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Table 4.8 Multiclass classification by RLR tested with different λ 

Regularization coefficient, λ Accuracy (%) 

Training Set 

1 78.33 

10 78.16 

100 76.50 

 

The accuracy for multiclass RLR is further cross-validated and tested with λ = 

1 and the results are presented in Table 4.9.  

 

Table 4.9 Multiclass classification by RLR. 

  Training Set Cross Validation Set Test Set 

Accuracy (%) 78.33 78.00 73.50 

 

The illustration of multiclass classification by RLR is plotted in Figure 4.17. 

The points were classified based on latency and available bandwidth on the 

respective network link. The classification threshold is set in accordance to 

Table 4.4.  
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Figure 4.17 Multiclass classification by one-against-all RLR with λ = 1. 
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This section presents binary and multiclass classification 

implementation via LR together with their respective accuracies. In 

conclusion, the training parameters obtained from the training samples 

produces high accuracy for both the test set and cross-validation set in binary 

classification. In order to prevent over-fitting, λ is included as regularization 

parameter. While for multiclass classification, best achievable accuracy 

obtained from training samples is 78.33%. 

 

4.3.4 Support Vector Machine (SVM) Classification 

 

This section presented the simulation results for binary and multiclass 

classification via SVM. In this thesis, only SVM with linear and RBF (radial 

basis function) kernel are studied to examine if the sample distribution is 

linearly or non-linearly separable. Linear kernel is best applied on linearly 

separable data while RBF kernel uses a non-linear function to provide better 

accuracy on non-linearly separable data. 

 

4.3.4.1 Simulation Results (SVM with Linear Kernel) 

 

The parameter C acts similarly with the regularization parameter in LR, 

and experimented with different value shown in Table 4.10. 
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Table 4.10 SVM with linear kernel experimented with difference 

values of C 

log2c Training Set Accuracy (%) 

-10 86.67 

0 97.50 

5 99.00 

10 99.50 

15 99.67 

20 99.67 

 

The simulation results show that C = 215 and 220 achieved highest training 

accuracy of 99.67%. It is to note that too large value of C will lead to over-

fitting of the algorithm for small training data size. In order to prevent over-

fitting, the parameter C is set to 25 and applied in cross-validation set and test 

set. 

 

Table 4.11 Simulation results for SVM with linear kernel 

 Training Set Cross-validation Set Test Set 

Accuracy (%) 

(Binary) 
99.00 99.50 98.50 

Accuracy (%) 

(Multiclass) 
98.83 98.00 99.00 

 

Table 4.11 shows that SVM with linear kernel is able to achieve high accuracy 

of 99% for binary and 98.83% for multiclass classification in training set. 

Cross-validation and test results yield high accuracy of 98% of the samples are 

correctly classified. 
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Figure 4.18 Decision boundary plotted for SVM with linear kernel. 

 

The decision boundary for SVM with linear kernel is plotted as in Figure 4.18. 

The points scattered above the decision boundary are classified as good while 

the points below the decision boundary are considered as poor. In other words, 

the sample can be labeled as poor but yet it falls above the decision boundary. 

Therefore, 1% of misclassification is observed from the simulation results in 

Table 4.11. It is shown that the training data is not linearly separable, thus 

RBF kernel is applied to classify the data in a higher dimensional space in the 

following section. 

 

4.3.4.2 Simulation Results (SVM with RBF Kernel) 

 

There are two important parameters (C, γ) in SVM with RBF kernel 

simulation. Grid search is performed to find the best suited pairs and the result 

is shown in contour plot in Figure 4.19 and Figure 4.20 for binary and 
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multiclass classification respectively. Five-fold grid search is applied as 5 

distributions of lines can be observed in the following figures. 
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Figure 4.19 Contour of cross-validation accuracy via grid-search for binary 

classification with SVM. 
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Figure 4.20 Contour of cross-validation accuracy via grid-search for 

multiclass classification with SVM. 
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The best cross-validation accuracy is achieved at C = 26 and γ = 24 for binary 

classification while C = 212 and γ = 22 for multiclass classification. Then, the 

pair of parameter (C, γ) will be used to train a model and test it again with test 

set.  

 

Table 4.12 Simulation results for SVM with RBF kernel 

 Training Set 
Cross-

validation Set 
Test Set 

Accuracy (%) 

(Binary) 
99.17 99.80 99.50 

Accuracy (%) 

(Multiclass: one-against-all) 
99.83 99.70 100.00 

 

SVM with RBF kernel is able to achieve high accuracy of 99% for 

both binary and multiclass classification, as shown in Table 4.12. The 

accuracy for test set in multiclass classification is 100% with all the sample 

links are correctly classified. This can be over-fit as well since the test set is 

small but C is set to be large. From the results obtained, SVM is proved to 

outperform LR in both binary (with slightly higher accuracy) and multiclass 

classification (with average of 20% higher accuracy).  

 

 

4.4 Conclusion 

 

This section concludes the simulation results and discussion with 

performance comparisons among the popular network prediction approaches. 

In conclusion, as indicated in Section 4.2, the proposed SSGD algorithm 
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manages to improve the convergence and prediction performance by around 

20% by initializing SGD using historical bandwidth information. SGD is 

affected by the setting of parameters as presented in earlier discussion for 

Figure 4.3 to Figure 4.6. There is no one optimum setting of the parameters 

which is suitable for all sizes of dataset. Hence, parameter tunings is required 

to perform on different set of data and cross validated. 

 

In the second part of the thesis, binary and multiclass classification was 

implemented to classify the link quality between two network nodes. By 

taking available bandwidth and latency into consideration for link quality 

prediction, the video quality is adjusted based on the network condition. In this 

thesis, two major classification approaches, i.e. logistic regression and SVM is 

implemented to perform the classification task. Logistic regression is easier to 

be implemented with only one parameter, the regularization coefficient. SVM 

is able to give high accuracy even with small training dataset. Furthermore, it 

is also suitable for large classification problem since it is able to classify the 

data in higher dimensions with the use of kernel function. In the simulations 

carried out, SVM outperforms logistic regression in both binary and multiclass 

classification. The training parameters obtained in the simulations are not 

generalizable as it depends highly on the nature of the dataset, including the 

network environment and number of network nodes. 

 

The next chapter will discuss on the future work and conclude the 

thesis. 
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CHAPTER 5 

 

CONCLUSION AND FUTURE WORK 

 

 

5.1 Conclusions 

 

Network performance prediction poses various challenges such as 

network stability, metric diversity and costly intrusive measurement. This 

research was motivated by the growing need to enable best effort Quality of 

Service on interactive applications via predictable network metrics. The 

comparison and performance analytics of Euclidean embedding, prediction 

tree construction, last-mile observation, and matrix factorization approaches 

for latency and/or available bandwidth prediction is presented in this thesis. 

 

With the recent advances in machine learning, the approach developed 

in this thesis extends the conventional matrix factorization framework by 

integrating initialization stage in prior to the stochastic updates of the 

prediction over time. The initialization stage uses advance network historical 

data to improve over random initialization which able to improve algorithm 

convergence. The predicted network metrics are further utilized for network 

link quality prediction via supervised learning algorithm, namely support 

vector machine.  
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An assumption of the SSGD algorithm is made whereby historical data 

is collected and the network nodes are correlated. The convergence of the 

algorithm has proved to be improved by 20% as presented in Chapter 4. In 

real-time implementation, each node will measures to random subset of 

neighbours before initialization of SSGD algorithm. Aside from the simulation 

results, real implementation with 4 network nodes is shown in Chapter 5 as 

well to enable adaptive streaming. Furthermore, it is also shown that SSGD 

algorithm is able to handle small scale network prediction with less traffic and 

increased efficiency. 

 

Qualitative optimization enables binary and multiclass classification 

which is advantageous by reflecting user experience on network performance 

and also classifies respective link quality with more than one metric. Link 

quality classification proposed in this thesis is a unique feature which 

distinguishes it from binary classification presented by (Liao, et al., 2011). It 

can be easily extended to other network metrics such as packet loss and able to 

perform multiclass classification with more than one feature.  

 

The objective of this research has been achieved by enabling adaptive 

streaming utilizing SSGD algorithm. SSGD algorithm is integrated into video 

conference system which is currently carried out by MIMOS for medical 

conferencing purpose. The quality of the content delivery is adjusted based on 

the dynamic network condition to ensure smooth streaming experience. 
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5.2 Future Work 

 

 One of the future directions for this research is the prediction of other 

network metrics, to study whether the proposed algorithm able to work for 

other metrics such as packet loss as well. The research can be further extended 

to perform multiclass classification by involving more than two metrics.  

 

Apart from that, it would be interesting to further study how to adapt 

the tuneable parameters such as regularization parameter and learning rate in 

machine learning algorithms to the respective learning environment. This is 

motivated by the fact that tuneable parameters always pose dilemma by having 

to pre-set them to fit to a certain learning environment.  

 

Furthermore, it would be good to implement machine learning based 

classification in practical use for multimedia streaming and also online 

learning. This is useful for real-time video conference system where large 

number of nodes communicate frequently. Data can be collected from 

historical data and update the streaming quality periodically. Moreover, online 

learning is appropriate for dynamic route convergence for spontaneous 

connections between large numbers of new nodes.  
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ABSTRACT 

Predicting network bandwidth of large systems based 

on a few pairs of network nodes is essential to 

overcome large measurement overhead over full- 

mesh active measurements. Recently, prediction 

using low-rank matrix factorization has gained 

attention. The algorithm is fully decentralized where 

no explicit matrix constructions or special nodes such 

as landmarks and central server is needed. Prediction 

error and convergence to global minimum are two 

major concerns of this type of algorithm. In this 

paper, we propose to enhance low-rank matrix 

factorization by Stochastic Gradient Descent (SGD) 

initialized with Singular Value Decomposition 

(SVD). Experimental results show enhanced 

prediction error and convergence performance is 

achieved through our approach. 

KEYWORDS 

Available bandwidth prediction, matrix factorization, 

historical network distance, Singular Value 

Decomposition, Stochastic gradient descent 

1. INTRODUCTION

Available bandwidth between two nodes is the 

maximum throughput that a flow between two 

hosts can achieve in the presence of cross-traffic. 

Data-intensive applications such as multimedia 

streaming are directly impacted by the available 

bandwidth. Heterogeneous network environment 

may cause streaming quality to vary 

significantly, and hence, affect the overall 

quality. This will lead to fluctuation of the clarity 

of the multimedia content. The knowledge of 

available bandwidth information can be used as 

optimization parameter in the changing network 

condition to deliver predictable results in order 

to achieve good Quality-of-Service (QoS). 

However, performing active probing between all 

network nodes is expensive and incurs large 

measurement overhead. Hence, it is imperative 

to measure only a subset of the network nodes 

for QoS support without having to probe every 

network node. 

This paper aims to present an enhanced 

low-rank matrix factorization algorithm for 

available bandwidth prediction through 

Stochastic Gradient Descent (SGD) initialized 

with Singular Value Decomposition  (SVD). 

SGD is a fully decentralized consisting of only 

vector operation. With its simplicity, each node 

will equally probe the same number of nodes 

known as neighbour nodes iteratively to update 

distance measurement one at a time. In real 

network environment, nodes join and leave a 

network frequently and the measurements vary 

over time. So, SGD is highly adaptive and 

simple to implement in actual Internet 

applications. 

In this work, the low-rank matrix 

factorization algorithm is initialized with 

historical  available  bandwidth  data  to  achieve 
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better convergence to global minimum and 

prediction error. Since SVD cannot handle 

missing element in the available bandwidth 

information, matrix row and column mean 

normalization were applied on the missing 

elements. The predicted distance matrix is 

approximated by two smaller matrices. SVD 

provides these two smaller matrices by 

decomposing the matrix based on historical 

bandwidth information. 

In the following section, we summarize 

some of related work in this research area. 

2. RELATED WORK

This section discusses the existing network 

distance prediction approaches by focusing on 

matrix factorization based approaches. These 

approaches adopt either landmark-based or 

decentralized-based methods. For landmark- 

based methods, the network distances between 

the landmark nodes are measured and ordinary 

nodes only probe landmark nodes. In the 

decentralized-based methods each network node 

equally probes a number of other nodes known 

as neighbour nodes. Matrix factorization was 

first introduced in Internet Distance Estimation 

Service (IDES) [1] for latency prediction. IDES 

is a landmark-based matrix factorization method 

where the algorithm predicts large number of 

network distances from limited samples of 

Internet measurements. Landmark-based system 

often suffers from several drawbacks including 

landmark node overload and failures. The 

landmark selection is crucial as it can also affect 

the accuracy of the prediction. 

SGD is a method often used for online 

machine learning [2]. Instead of collecting all 

training samples, each epoch of SGD chooses 

one random sample and updates the estimated 

network distance along the negative gradients. 

Decentralized-based matrix factorization 

approach is adopted in Decentralized matrix 

factorization by Stochastic Gradient Descent 

(DMFSGD) [3] to perform network distance 

prediction. The algorithm is fully decentralized 

implement as measurements can be acquired on 

demand and processed locally at each node. 

Furthermore, the update rules only  involve 

vector operations and are able to deal with large- 

scale dynamic measurements. As far as we 

know, DMFSGD algorithms had been 

implemented and tested based on latency 

information but is yet to be implemented and 

tested on available bandwidth. Hence, this work 

aims to enhance the algorithm and implement it 

for the prediction of available bandwidth 

information. 

3. CONTRIBUTION

In this paper, we propose an algorithm named 

SVD-SGD (SSGD) based on matrix factorization 

by stochastic gradient descent (SGD) which 

makes use of the network historical distances as 

initialization to allow better convergence to 

global minimum and improve prediction error. 

4. SSGD ALGORITHM

The SSGD algorithm is presented in this section. 

Each network node is assumed to keep a set of 

bandwidth information. In a changing network 

condition, a random node will be selected at each 

epoch to update the bandwidth information. The 

missing elements in historical bandwidth 

information can be estimated by mean 

normalization as in function (1). The n nodes in 

the network will form an n × n distance matrix 

with some distances between nodes measured 

and others unmeasured. The distance matrix D is 

treated  as   historical     ork      es.  The 

missing           ents                                              n 

norma             using t 

min )
ng  data  from  node  i  to 

e  mean  of  row  i
th   

and

i e j
th 

column.

Details of the algorithm are listed as follows: 
where each node exchanges messages with other 
nodes and processes local measurement without 

explicit matrix construction or landmark node. In 

DMFSGD, the algorithm operates at each node 

with measurement carried out one-by-one. 

DMFSGD algorithm is efficient and simple to 

SSGDAlgorithm 

1: Input: D distance matrix 

2: Predict the missing element in D using 

mean normalization function in (1) 
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i) search zero elements in distance

matrix

ii) replace zero with the minimum of

average of row and column vector

3: Execute SVD to obtain the two smaller 

matrices X and Y 

i) decompose historical distance

matrix using SVD function in (2)

ii) initialize X and Y based on i)

4: Node i retrieves incoming and outgoing 

available bandwidth actively or passively 

5: Perform SGD: 

i) select  a  random  node  at  each

iteration

ii) update xi  and yi to minimize loss

function in (3)

SVD is implemented as the initialization 

step to guarantee better convergence of the 

algorithm. Generally, SVD decomposes a given 

matrix D into three smaller matrices of the form 

[4] 

(4) 

When SGD is used, each node measures 

with  respect  to  one  neighbour  at  a  time  and 

(1 − (5) 

(1 − (6) 
whereη is the learning rate which controls the 
speed of the updates. 

With the decomposition of the two 

smaller matrices from the historical bandwidth 

information by SVD, the algorithm is able to 

enhance the convergence of SGD to global 

minimum and improve prediction error. 

5. EVALUATION RESULTS AND 

DISCUSSIONS

 Evaluation setup 

D = USV
T

(2) 

where U and V are unitary matrices, S is a 

diagonal matrix with nonnegative real numbers 

on the diagonal, which are called singular values. 

This number is equal to the rank of D. To obtain 

a low-rank factorization, only the r large singular 

value in S are kept and the rest                      by 

ee smaller matri ed 

r initialization m Y 

r  be the new S, nd 

the predicted d  trix 

then the optimal low-rank 

on to D. 
The goal of the above mentioned steps is 

t e network distance with two 

s                           y minimizing the regularized 

lo 

The algorithm is illustrated in Fig. 1. 

Initialize historical dataset with missing 

elements 

Mean normalization 

Compute full historical data 

i. Initialization by SVD

ii. k random neighbours selection

Compute partial measured data 

Matrix factorization by SGD 

Compute full measured and predicted 

distance 

whereλ is the regularization coefficient to avoid 
over-fitting, ωij is the weight representing 1 if dij

is measured and 0 otherwise, each row of X and 
of Y is denoted by xiand yi and called x and 

ycoordinates. The loss function, l is the most 
commonly used square loss function, 

Figure 1: Overview of the algorithm flow 

Input datasets are adopted from the S- 

cube project [5], a project implemented with 

scalable sensing service for real-time and 

configurable monitoring and management 

system   for   large   networked   systems.   The 
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available bandwidth dataset consists of 

asymmetric measurement of 99 nodes with 

11.23% of missing element. Mean normalization 

is performed over the missing elements to 

construct a full historical data. With this full 

historical distance data, we are able to initialize 

the two smaller matrices X and Y by SVD which 

yields better initial position to converge to global 

minimum. This results in getting better starting 

point for convergence rather than random 

initialization which requires more iterations of 

the algorithm. 

A random node is selected at each 

iteration of the algorithm update the coordinates 

along negative gradient. Finally, a full distance 

matrix can be obtained with measured and 

predicted bandwidth information. The relative 

error of measured and predicted bandwidth 

information are calculated based on the input 

matrix and the full measured and predicted 

distance matrix. 

 Evaluation metrics 

Quality of the prediction algorithm is measured 

by the cumulative distribution function (CDF) of 

relative error f                            The relative 

error is defined 

(6) 

where Mx,y is the measured value and Px,y is the 

predicted value. The CDF plots of relative errors 

indicate better estimation performance the higher 

the corresponding plot is. 

The overall fitness of the embedding is 

measured by stress, which is used to illustrate the 

convergen                                                    llows 

against conventional SGD are presented in the 

following section. 

 Results and discussions 

The stress plots are shown below with 

comparison of different ranks of approximation, 

r regularization coefficients, λ and learning rates, 

η for the available bandwidth dataset. The 

number of neighbours selected, k is set to 32 in 

this experiment and run on 100 iterations for 

different parameter settings. Larger values of k 

would improve the prediction accuracy. 

1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
0 20 40 60 80 100 

Iteration 

Figure 2: Stress of the algorithm embeddings with 

different λ. η = 3x10-5, r = 10. 

1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

(7) 
0.3 

=1e-4 
0.2 

=3e-4 

High variance in the available bandwidth 
0.1 

0 

=1e-5 

=3e-5 

dataset is undesirable and will lead to low 

convergence of the prediction algorithm. High 

prediction errors are normally due to over- 

estimated or under-estimated of the bandwidth 

information. This should be avoided since it 

affects the quality of AV delivery with poor 

bandwidth responsiveness. Performance results 

and discussions of the proposed SSGD algorithm 

0 20 40 60 80 100 

Iteration 

Figure 3: Stress of the algorithm embeddings with 

different η. λ = 3x10-5, r = 10. 
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0 

rank 10 

rank 20 

rank 30 

rank 40 

rank 50 

rank 60 

rank 70 

rank 80 

rank 90 

rank 99 

higher r will render better result as shown in Fig. 

4. Lower values of r require less matrix

operation as rows and columns indexed higher 

than r are filled with zeros and this enable faster 

computation of the algorithm. 

It is evident from Fig. 5 and Fig. 6 that 

using SVD as initialization over random 

initialization improves the convergence and 

prediction error. The parameters were set as λ = 

1, η = 3x10
-5

, r = 10 and k = 32 based on earlier
0 10 20 30 40 50 60 70 80 90 100 

Iteration 

Figure 4: Stress of the algorithm with different r. λ = 1, η = 

3x10-5. 

tests to optimize the algorithm. 
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SSGD 
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SGD 
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Iteration 

Figure 5: Detail view of stress of the algorithm with 

different r. λ = 1, η = 3x10-5. 

The regularization coefficient, λ reduces 

over-fitting in the algorithm and drift of the 

coordinates. Besides, too large λ may lead to 

over-fitting which introduced higher bias in the 

estimate for dataset with high variance. We 

experimented with λ = {0.01, 0.1, 1, 5}, η = 

3x10
-5 

and r = 10. It is clear from Fig. 2 that λ =

1 shows better convergence. With λ being too 

small (<1) poor convergence is experienced. 

Thus, λ is set to 1 for the rest of the experiments. 

0 1 2 3 4 5 6 7 8 9 10 

Relative Error 
Figure 6: CDF of relative error for SGD and SSGD 

algorithm. 

1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

The learning rate or often referred to as 

step size affects the speed of convergence of the 
0.1 

0 

SSGD 

SGD 

algorithm. Too large value for η may also lead to 
divergence in the algorithm. As shows in Fig. 3, 

with η = 1x10
-4 

and η = 3x10
-4

, the algorithm
diverges after some iterations. There is no 

optimum setting of this parameter but η = 3x10
-5

is set in our tests since it shows best performance 
for this dataset. 

The rank-constraint in SVD affects the 

performance of the algorithm by changing the 

number of singular values, which represents the 

approximation rank. The approximation rank, r 

is set to 10 for the ease of comparison although 

0 20 40 60 80 100 

Iteration 
Figure 7: Stress of the SSGD algorithm embeddings 

compared to SGD after each iteration. 

It is shown in Fig.5 the CDF of relative 

error is improved when SVD initialization is 

performed through stochastic gradient descent 

(SGD) method using historical network distances 

with approximately 95% of the predicted 

bandwidth information having relative error of 0 

to 1. Furthermore, convergence also shows 

improvement via SSGD as shown in Fig. 6. 
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To sum up, as indicated in Fig. 5 and Fig. 

6, the proposed SSGD algorithm manages to 

improve the convergence and prediction 

performance by around 10% by initializing SGD 

using historical bandwidth information. The 

convergence of the algorithm also shows 

improvement with approximately 50% compared 

to SGD algorithm. SGD is affected by the setting 

of parameters as presented in earlier discussion 

for Fig. 2 to Fig. 4. There is no one optimum 

setting of the parameters which is suitable for all 

sizes of dataset. 

6. CONCLUSION

Predicting available bandwidth between a 

transmitting and a receiving node in a large scale 

network is crucial in delivering better QoS for 

data intensive application such as multimedia 

streaming. In this regard, mesh measurement is 

computationally expensive and hence it is an 

ongoing challenge for the research community to 

predict the bandwidth information from a subset 

of nodes. However, ensuring good convergence 

of predicted values as well as achieving high 

accuracy is challenging. In this paper, we have 

proposed to enhance conventional matrix 

factorization by SGD by the use of SVD where 

each node maintains a set of historical data and 

the matrix is decomposed into two smaller 

matrices as pre-processing step. Convergence 

and prediction accuracy of the proposed SSGD 

algorithm are significantly improved with the 

proposed enhancements. In the future, we are 

going to investigate on the influence of variance 

in dataset and the neighbour selection and run 

the tests with larger dataset. 
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Abstract—Network performance  metrics  such  as   available 
bandwidth and latency are essential to achieve  good Quality of 
Service  (QoS)   in  multimedia   streaming.   There   are   unique 
requirements   in    network   performance   metrics   for   media 
applications, such as audio conferencing, video streaming, video 
conferencing,   and   high-definition   (HD)   video   conferencing. 
In this paper, we focus on conference call type suggestion based 
on link quality prediction. The link’s quality is classified based on 
the available bandwidth and latency between two network nodes. 
We have implemented and compared two of the most popular 
supervised learning based classification methods, i.e. logistic 
regression and support vector machine (SVM). We have 
compared the performance of both methods and their 
suitability to apply in link quality prediction. The experimental 
results show that SVM outperforms logistic regression for binary 
and multiclass classification in terms of accuracy. 

 
Keywords – multimedia streaming, classification, logistic 

regression, support vector machine. 

I. INTRODUCTION 
The on-growing usability in video conferencing system 

has led to high demand for better quality Audio/Video (AV) 
transmission. Network constraints are the major problem in 
multimedia streaming. Network performance metrics serve as 
optimization parameters for adaptive streaming. Available 
bandwidth is the maximum throughput between two hosts that 
can be achieved in the presence of cross traffic while latency 
is often referred to as time delay between two network nodes. 
Available bandwidth is important for video conferencing over 
the Internet to ensure a smooth image quality received. 
Meanwhile, latency is an essential metric in synchronizing 
between video and audio received. High latency would cause 
deteriorated call quality on the receiver and out-of-sync with 
the video images.  

Due to these these considerations and requirements in 
video conferencing, we propose to predict the link quality 
between network nodes based on classification of network 
link based on available bandwidth and latency. Most of the 
existing approaches only consider either bandwidth or latency 
solely in their algorithm. Through our proposed supervised 
learning classification approach, we are able to consider both 
network performance metrics at once. We suggest to combine 
both metrics in evaluation based on the requirement of the 
application. For example, in video conferencing system, 
available bandwidth and latency plays equally important role 
in ensuring AV quality in synchronized pattern. 

We apply logistic regression and SVM in this paper. These 
supervised-learning algorithms acquire knowledge from the 
previous training samples and adapt the system with a new 
model which is used for prediction on a new input data. 
Logistic regression (LR) analysis [1] with sigmoid function 
produces results between 0 to 1. These results can be classified 
into binomial or multinomial by setting the classification 
threshold. LR is frequently used to estimate qualitative 
response models in which the dependent variable is a 
dichotomy, such as email spam filtering [2], fraudulent 
detection for online transactions [3], and tumor malignancy 
classification [4]. The advanced optimization algorithms, such 
as gradient descent, are often applied in LR analysis to 
minimize the cost function iteratively. 

Support Vector Machine (SVM) [5] is a statistical machine 
learning technique which learns from a training dataset and 
attempts to generalize and make correct predictions on new 
input data. The kernel-based SVMs are able to handle many 
types of data within the same model which encourage the 
flexibility of the learning algorithm. SVM has been 
successfully applied in many applications, such as TCP traffic 
classification [6], text classification [7] and more commonly in 
bioinformatics [8].  

The key research contributions of this paper are listed as 
follows: 

• Novel link quality prediction via LR and SVM 
classification are performed. 

• Network performance metrics (available bandwidth 
and latency) are associated in pairs in classification 
which is useful for interactive AV applications. 

The rest of this paper is organized as follows. In Section 
II, the related works of link quality prediction are discussed. It 
is followed by the implementation detail of logistic regression 
and support vector machine in Sections III and IV. The 
evaluation methodology used in this paper is explained in 
Section V. The experimental results and discussion are 
presented and discussed in Section VI and finally concluded in 
Section VII. 

II. RELATED WORK 
Network performance prediction is very relevant to the 

reduction of the overhead associated with continuous 
measurements. Current approaches for carrying out network 
performance prediction are based on network latency and 
available bandwidth normally measured and analyzed 
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separately. Related works for latency prediction include 
Vivaldi [9], Global Network Positioning (GNP) [10], and 
Internet Distance Estimation Service (IDES) [11]. Vivaldi 
faces challenge in violation of triangle inequality while the 
accuracy of GNP and IDES are influenced by the landmark 
node selection. The prediction of available bandwidth as 
proposed by Last-Mile Model [12] is only limited to small 
scale of data where the accuracy is highly dependent on the 
number of neighbours selected to iteratively minimize the 
discrepancies between measured and predicted values. The 
tree embedding approach, introduced in Sequoia [13] faces 
constraints on triangle inequality violation, inability to predict 
asymmetric information, and the influence of the node 
selection process. Direction-aware embedding is proposed in 
[14] separating upstream from downstream properties of the 
hosts to tackle the limitations faced in Sequoia. 

Work presented in [15] is the only related work that 
predicts end-to-end performance classes through decentralized 
approach based on stochastic gradient descent. The algorithm 
performs matrix completion with binary performance 
measures between network nodes with known and unknown 
nodes to be filled. This approach can be applied on both 
available bandwidth and latency, but the implementation for 
latency and available bandwidth is separated. The prediction is 
also performed in quantitative way, by filling the matrix with 
measured distance metric and predict the unmeasured through 
matrix completion (DMFSGD) [16]. The authors have recently 
extended their work to perform ordinal rating of network 
performance by network inference based on performance 
ratings [17].  

We have performed linear regression analysis, by 
optimizing matrix completion problem with stochastic gradient 
descent in our previous work [18]. The unmeasured distance 
metrics are first predicted through interpolation, and initialized 
with singular value decomposition (SVD) before the 
optimization step. It has proven to be effective in improving 
the convergence of algorithm to global minimum. This paper 
is an extension to our previous work, to further enhance the 
prediction and adapt the algorithm to AV streaming 
applications through binomial and multinomial classification. 
The available bandwidth and latency are associated in pairs 
from our prediction algorithm previously. 

LR and SVM classification approaches are described in the 
following section. 

III. LOGISTIC REGRESSION (LR) 
Logistic regression [19] is a regression technique suitable 

for data with binary outcomes {0, 1}. It builds a model from 
training samples and predicts the probability of the network 
link to be 0 (Good) or 1 (Bad). The input features are the 
available bandwidth and latency. In this section, we discuss 
how the class-based link quality is predicted through LR, 
whereby a set of training samples will be trained to obtain 
learning parameter, θ and regularization coefficient, λ for 
regularized logistic regression through gradient descent. 

A. LR Model 

Let X be a dataset with dichotomous outcome, y = {0, 1}. 
For each training sample xi in X, the outcome is either yi = 1 or 
yi = 0. The experiments outcome with yi = 1 are said to have 
‘Good’ link quality, while for yi = 0 for ‘Bad’ quality.  

In supervised-learning, to make sure the input dataset is 
learnable, a differentiable function is needed to do the fitting 
instead of using two line segments. The probability that y = 1, 
given x, parameterized by θ or often referred to as logistic 
regression hypothesis is defined as:  

)()();|1( xgxhxyp Tθθ θ ===                   (1) 

where function g is the sigmoid function and hθ(x) is 
interpreted as the estimated probability that y = 1 on input x. 
Before executing the actual cost function, a sigmoid function 
is employed. The sigmoid function is defined as: 

       
e

zg z−+
=

1
1)(                                  (2) 

The training set {(x(1), y(1)), (x(2), y(2)), …, (x(m), y(m))} with m 
samples where Txxx ],[ 21∈  is the set of input features 
(available bandwidth and latency) used to obtain the fitting 
parameter, θ to minimize the cost function J(θ) as follows [19]:            
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In order to optimize the algorithm, gradient descent is applied 
iteratively as follows: 
Optimization algorithm:_____________________________ 

i. Compute cost function J(θ). 
ii. To minθJ(θ), perform gradient descent: 
iii. Repeat { 

iv.     )(: θ
θ

αθθ J
d

d

j
jj −=   (for j = 0, 1, .... n) 

v. } 
________________________________________________ 

The gradient of the cost function is calculated iteratively to 
achieve convergence to global minimum. The gradient of the 
cost is defined as follows: 
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The trained dataset will output a model with decision 
boundary and trained parameter for new input samples. For the 
non-linearly separable dataset, features are mapped into higher 
dimension with higher polynomial terms of x1 and x2 to fit it, 
and regularization term is use to do parameter tuning, θ. The 
polynomial is expanded up to the sixth power which is best fit 
in this case. The learning problem can be difficult if the 
dimension is too high. 
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Features x1 and x2 correspond to the available bandwidth and 
latency on certain link in the network. The cost function with 
regularization term is as follows [19]:  
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This allows us to build a more expressive classifier which is 
not susceptible to under-fitting or over-fitting. Gradient 
descent is applied for optimization as well. The gradient of the 
cost is defined as follows: 
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for j = 1, 2, 3,…, n.  

B. Multiclass Logistic Regression (Multiclass LR) 
To enable better classification, we implemented four classes 

by applying “one-against-all” multiclass LR. The hypothesis 
of multiclass LR is different from that of binary LR while the 
cost function is similar in both cases. The hypothesis of N-
class multiclass logistic regression is: 

);|()( θθ xiypxh i ==   (for i = 1, 2,…,N)        (8) 

where a logistic regression classifier hθi(x) is trained for each 
class i to predict the probability that y = i. In “one-against-all” 
multiclass LR, for a new input x, prediction is made by picking 
the class i that maximizes maxi hθi(x).  

IV. SUPPORT VECTOR MACHINE 

SVM is suitable for classification problems with high 
dimensional feature space and small training set size [20]. 
There are four common kernels in SVM: linear, polynomial, 
radial basis function (RBF), and sigmoid. In this paper, we 
focus on C-support vector classification with linear and RBF 
kernel to study if the distribution is linearly separable or non-
linearly separable. 

A. C-Support Vector Classification (C-SVC) 

The main parameter in C-SVC is C, the balance parameter, 
which plays the role similar to 1/λ, regularization parameter in 
RLR. The training features with l samples are interpreted as 
vectors in C-SVC, such that liRx n

i ,...,1, =∈ , and the label 

vector lRy ∈  such that }1,0{∈iy , as introduced in [21] to 
solve the following primal optimization problem. 
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where the kernel function, )( ixφ , maps xi into a higher-
dimensional space, C > 0 is the regularization parameter, b is a 
bias, ω is the feature vector and ∑ =

l
i i1ζ  is the sum of errors in 

addition to ωωT . Due to the possible high dimensionality of 
vector variable ω, usually the dual problem is solved as 
follows: 
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where e = [1,...,l]T is the vector of all ones, Q is an l by l 
positive semi-definite matrix, ),( jijiij xxKyyQ ≡ , and 

)()(),( j
T

iji xxxxK φφ≡  is the kernel function. 

After solving the equation in (10), by using the primal-dual 
relationship, the optimal ω satisfies                                                               

∑=
=

l

i
iii xy

1
)(φαω                              (11) 

and the decision function is  

.)),(sgn())(sgn(
1
∑ +=+
=

l

i
iii bxxKybxT αφω       (12)                 

Then, we store ,, iiiy ∀α  b, class label names, support vectors, 
and other information such as kernel parameters in the model 
for prediction. In this paper, we compare linear and RBF 
kernel to fit our problem.  

Linear kernel:  j
T
iji xxxxK =),(                                           (13) 

RBF kernel:    0,||||exp()( 2
, >−−= γγ xxxxK jiji              (14) 

The balance parameter C and kernel parameters are then 
chosen according to the selected kernel. RBF kernel is able to 
map samples into higher dimensional space with non-linear 
attributes, while linear kernel is able to handle linear relation 
between class labels and attributes only. 

WNM 2013, The 7th IEEE Workshop on Network Measurements

1027



TABLE I.  BANDWIDTH REQUIREMENT FOR SKYPE[22] AND TRUECONF[23] 

Application Call type Minimum download speed (kbps) Minimum upload speed (kbps) 

Skype Calling 30 30 
  Video calling/scree sharing 128 128 

  Video calling (high-quality) 400 400 
  Video calling (HD) 1200 1200 
  Group video (3 people) 512 128 

TrueConf Video Call HD 128 128 
  Video lecture (speaker) 1920 128 

  Video lecture (listener) 128 128 
  Virtual meeting (speaker) 384 128 
  Virtual meeting (listener) 512 - 

TABLE II.  THRESHOLD SETTINGS FOR BINARY AND MULTICLASS CLASSIFICATION 

Classification Link Quality Available bandwidth Latency Suggested call type 

Binary 
Good ≥ 1Mbps ≤ 0.05s Video calling (high-quality), conferencing 

Bad < 1Mbps > 0.05s Video calling (2 people) 

Multiclass 

Very Good ≥ 3Mbps ≤ 0.03s Video calling (HD), conferencing 

Good ≥ 1Mbps ≤ 0.05s Video calling (high-quality), conferencing 

Moderate ≥ 100kbps ≤ 0.5s Video calling (2 people) 

Bad < 100kbps > 0.5s Calling (audio) 

V. EVALUATION METHODOLOGY 
The aim of a learning algorithm is to train a set of training 

samples to obtain the best fitting parameter. For both 
classification methods, we evaluate the accuracy as: 

%100×=
m

PAccuracy correct                    (15) 

where Pcorrect is the number of correctly predicted data, m is 
the total number of data. If a trained model has high accuracy 
on the cross-validated training dataset, then it is assumed to fit 
to all other new samples, and can be used to classify new 
samples. The datasets used are from the bedibe project [23] 
and is divided in the ratio of 600:200:200 for training set, 
cross-validation set and test set. 

A. Cross-validation and Grid Search 
There is no tuning parameter in LR, while the only 

parameter λ, regularization parameter in regularized LR, is 
trained with different values to obtain the best fitting 
parameter for the algorithm. The learning model is generated 
from the training set, and the model is validated with cross-
validation dataset. 

The regularization parameter, C in C-SVC with linear 
kernel is experimented in the same way, by generating 
learning model with different parameter. Using linear kernel, 
large value of C will tend to minimize misclassification which 
smaller C values would maximize the margin between 
boundaries.  

For C-SVC with RBF kernel, there are two parameters: C 
and γ. The selection of parameters for C-SVC with RBF kernel 
is performed through grid search. The different pairs of (C, γ) 
values are tested and the one with the best cross-validation 
accuracy is picked. We used 5-fold cross-validation in the 
experiments to prevent over-fitting problem. We have 
deployed LIBSVM [22] to run our experiment C-SVC. 

B. Classification Threshold 
The classification threshold settings are based on the 

applications requirement, such as bandwidth requirement for 
Skype [24] and TrueConf [25] as shown in Table I. The 
incoming bandwidth requirement for video lecture (speaker) in 
TrueConf is higher to support the continuous media streaming. 
Interactive communications have stringent requirement in 
delay. The acceptable values for one-way delay are within 150 
to 400ms [26]. Therefore, link with latency larger than 500ms 
with 5Mbps available bandwidth is predicted as bad. Though 
with high available bandwidth, the video image received is 
good but the high latency is causing the audio to be out-of-
sync. 

In order to secure maximum performance, we have added 
50% safety margin to the network performance metrics. With 
video conferencing being the key interest in our research, the 
threshold is set accordingly as in Table II. For example, with 
the 'Very Good' quality, we are able to start a group video with 
three parties while if the quality is 'Bad', only audio calling is 
preferable. 
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VI. RESULTS AND DISCUSSIONS 
This section shows experimental results in terms of 

accuracy for both LR and SVM respectively. 

C. Experimental Results for LR 
The experimental results for binary classification through 

LR are shown in Table III. 

TABLE III. BINARY CLASSIFICATION BY LOGISTIC REGRESSION 

 Training Set Cross Validation Set Test Set

Accuracy (%) 98.17 99.00 99.50 

The binary classification obtained through LR presents high 
accuracy as shown in Table III, with 98.17% of training data 
are correctly classified. The training set data is plotted as 
shown in Fig. 1 to illustrate the binary link quality 
classification. The two axes in Fig. 1 are the corresponding 
performance metrics (available bandwidth and latency), which 
act as the input features to the learning algorithm.  
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Fig. 1. Binary classification by LR 

For regularized logistic regression, we have tested it with 
different value of regularization coefficient, λ and obtain the 
respective accuracy as in Table IV. 

TABLE IV. BINARY CLASSIFICATION BY RLR EXPERIMENTED 
WITH DIFFERENT λ. 

Regularization coefficient, λ Accuracy (%) 

Training Set 

1 97.33 

10 95.33 

100 92.67 

The experiment where λ = 1 yields the highest accuracy as 
shown in Table IV. The regularization parameter is included in 
training set to prevent over-fitting of the algorithm. Hence, the 
experimental results show training accuracy for RLR is 
slightly lower than normal LR for binary classification.  

TABLE V. BINARY CLASSIFICATION BY RLR 

  Training Set 
Cross Validation 

Set Test Set 

Accuracy (%) 97.33 96.50 98.00 

 We further cross validated and tested the accuracy with the 
trained parameter from training set where λ = 1 and the results 
are shown in Table V. The decision boundary generated for 
RLR in Fig. 2 produces a straight line from the training model.  
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Fig. 2. Classification by RLR with λ=1. 

We have implemented the multiclass regularized logistic 
regression through “one-against-all” method. The 
experimental results for multiclass classification by RLR as 
presented in Table VI. The illustration of multiclass 
classification by RLR is plotted in Fig. 3. 

TABLE VI. MULTICLASS CLASSIFICATION BY ONE-AGAINST-ALL 
RLR EXPERIMENTED WITH DIFFERENT λ. 

Regularization coefficient, λ Accuracy (%) 

Training Set 

1 78.33 

10 78.16 

100 76.50 

The results in Table VI show highest accuracy is achieved 
when λ = 1 for training data set. The training model is cross 
validated and tested as shown in Table VII. 

TABLE VII. MULTICLASS CLASSICIATION BY RLR 

  Training Set 
Cross Validation 

Set Test Set 

Accuracy (%) 78.33 78.00 73.50 

The accuracy for multiclass RLR as shown in Table VII is 
lower, with around 78% of correctly predicted samples. 
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Fig. 3. Multiclass classification by one-against-all RLR with λ=1. 

D. Experimental Results (C-SVC with Linear Kernel) 
We have experimented with different values of the balance 

parameter, C of C-SVC as shown in Table VIII. 

Table VIII. C-SVC WITH LINEAR KERNEL EXPERIEMENTED WITH 
DIFFERENT VALUES OF C  

log2c Training Set Accuracy (%) 

-10 86.67 

0 97.50 

5 99.00 

10 99.50 

15 99.67 

20 99.67 

The experimental results show that C=220 is the best fit for the 
classification. It is known that large value of C will lead to 
over-fitting of the algorithm for smaller data size. To prevent 
this, the parameter C is set to 25 and applied in cross-
validation set and test set. 

Table VIIII. EXPERIMENTAL RESULTS FOR C-SVC WITH LINEAR 
KERNEL 

 Training Set Cross-validation 
Set 

Test Set

Accuracy (%) 
(Binary) 

99.00 99.50 98.50 

Accuracy (%) 
(Multiclass) 

98.83 98.00 99.00 

From Table VIIII, C-SVC is able to achieve high accuracy in 
binary classification compared to multiclass classification. We 
have further cross-validated the respective training model 
obtained, which achieved 98% of accuracy.  
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Fig. 4. Decision boundary plotted for C-SVC with linear kernel. 

The decision boundary for C-SVC with linear kernel is plotted 
as in Fig. 4. It is shown that in Fig 4 the training data is not 
linearly separable, thus we applied kernel function (RBF 
kernel) to divide the data in a higher dimensional space in the 
following section. 

E. Experimental Results (C-SVC with RBF kernel) 
Since there are two important parameters (C, γ) in C-SVC 

with RBF kernel, we implemented grid search to find the best 
suited parameter and the result is shown in contour plot in Fig. 
5 and Fig. 6. 
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Fig. 5 Contour of cross-validation accuracy via grid-search for binary 

classification with SVM. 

The best cross-validation accuracy is achieved at C = 26 and γ 
= 24 for binary classification while C = 212 and γ = 22 for 
multiclass classification. Then, the parameters (C, γ) will be 
used to train a model and test it again with test set. 
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Fig. 6 Contour of cross-validation accuracy via grid-search for multiclass 

classification with SVM. 

Table X. EXPERIMENTAL RESULTS FOR C-SVC WITH RBF KERNEL 

 Training 
Set 

Cross-
validation Set 

Test Set

Accuracy (%) 
(Binary) 

99.17 99.80 99.50 

Accuracy (%) 
(Multiclass: one-against-all) 

99.83 99.70 100.00 

C-SVC with RBF kernel is able to achieve high accuracy for 
both binary and multiclass classification, as shown in Table X. 
The accuracy for test set in multiclass classification gives 
100% accuracy with all the sample links are correctly 
classified. This can be over-fit as well since the test set is 
small but C is set to be very large.  

F. Discussions 
We have implemented both binary and multiclass 

classification for logistic regression with the results shown in 
Section VI. The training parameter obtained from the training 
samples produces high accuracy for both the test set and the 
cross-validation set in binary classification. To further verify 
that the prediction algorithm does not over-fit, regularization 
coefficient, λ is included. We have tested it with different 
values of λ. As shown in Table IV, the accuracy is best 
achievable at λ = 1. While for multiclass classification with 
RLR, the accuracy is not comparable with C-SVC, with 
highest achievable accuracy of 78.33%. 

For binary classification with C-SVC linear kernel, the 
regularization parameter, C, is experimented with different 
values, and shown high accuracy when C=220 in Table VIII. In 
order to prevent algorithm from over-fitting, C is set to 25. 
While for RBF kernel, we have performed the parameter 
selection through grid search, which provides high accuracy 
on training, cross-validation and test set as shown in Table X. 
It is observed that test set in multiclass classification achieved 
100% accuracy. This is due to the large C trained from the 
training data over-fit the algorithm with smaller samples. C-
SVC with RBF kernel gives higher accuracy compared to C-

SVC with linear kernel. From the results obtained, we are able 
to prove that SVM outperforms logistic regression in both 
binary (with slightly higher accuracy) and multiclass 
classification (with average of 20% higher accuracy).  

The training parameters obtained in the experiments are 
not generalizable as it depends highly on the nature of the 
dataset, including the network environment and number of 
network nodes.  

G. LR vs. SVMs 
The difference between LR and SVMs is that LR predicts a 

link’s quality based on probabilistic function, while SVMs are 
statistical learning theory of finding a predictive function 
based on training data. LR is a regression analysis which 
maximizes the likelihood of data iteratively. SVM generates a 
model function and directly maximize the accuracy [5]. 
Kernelized SVM works better than linear SVM for non-linear 
separable data. LR does not require tuning parameter, except 
the regularization parameter in RLR to prevent over-fitting, 
but it is unable to achieve comparable accuracy in multiclass 
classification. While SVM is able to achieve high accuracy 
with small training dataset size and outperform LR especially 
in multiclass classification. 

The metrics pair is constructed via our previous prediction 
algorithm [18], in which prediction is performed in a large 
scale network by measuring to a few and predicts the rest. This 
provide us with O(nxn) look-up table with n number of 
network links rather than depend solely on one single link. As 
network metrics varied over time, the future link condition can 
be predicted via the updated metrics value from the network 
resource prediction algorithm [18]. In real implementation, 
these classification approaches are integrated into the video 
conferencing system to suggest the supported call type to user 
based on the link quality. 

VII. CONCLUSIONS 
Knowledge of network performance metrics such as 

available bandwidth and latency are important for the 
scalability and Quality of Service in multimedia streaming. 
Existing prediction approaches involve only either available 
bandwidth or latency with real values. By taking available 
bandwidth and latency into consideration for link quality 
prediction, we are able to predict the quality of the link and 
suggest supported conference call type to the users. In this 
paper, we have implemented two major classification 
approaches, i.e. logistic regression and SVM to perform the 
classification task. Logistic regression is easier to be 
implemented with only one parameter, the regularization 
coefficient. SVM is able to give high accuracy even with small 
training dataset. Furthermore, it is also suitable for large 
classification problem since it is able to classify the data in 
higher dimensions with the use of kernel function. Through 
our experiments, SVM outperforms logistic regression in both 
binary and multiclass classification. In the future, we plan to 
experiment classification through SVM in practical use for 
multimedia streaming and also the online learning (real-time 
learning). 
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