
 

 

 

DATA ANALYSIS USING PARTICLE SWARM  

OPTIMIZATION ALGORITHM 

 

 

 

 

 

 

 

TAI ZU JIE 

 

 

 

 

 

 

 

A project report submitted in partial fulfilment of the 

requirements for the award of the degree of 

Bachelor of Engineering (Hons) Electronics Engineering 

 

 

 

 

 

Faculty of Engineering and Green Technology 

Universiti Tunku Abdul Rahman 

 

 

September 2015 



ii 

 

 

 

DECLARATION 

 

 

 

 

 

I hereby declare that this project report is based on my original work except for 

citations and quotations which have been duly acknowledged.  I also declare that it 

has not been previously and concurrently submitted for any other degree or award at 

UTAR or other institutions. 

 

 

 

 

 

Signature : _________________________ 

 

Name : __TAI ZU JIE______________ 

 

ID No. : __11AGB06591____________ 

 

Date  : __1/9/2015________________ 

 

 



iii 

 

 

 

APPROVAL FOR SUBMISSION 

 

 

 

 

 

I certify that this project report entitled “DATA ANALYSIS USING 

PARTICLESWARM OPTIMIZATION ALGORITHM” was prepared by TAI 

ZU JIE has met the required standard for submission in partial fulfilment of the 

requirements for the award of Bachelor of Engineering (Hons) Electronics 

Engineering at Universiti Tunku Abdul Rahman. 

 

 

 

 

 

Approved by, 

 

 

Signature :   _________________________ 

 

Supervisor :   Dr. Lai Koon Chun 

 

Date  :   _________________________ 

 

 



iv 

 

 

 

 

 

 

 

 

 

 

 

The copyright of this report belongs to the author under the terms of the 

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku 

Abdul Rahman.  Due acknowledgement shall always be made of the use of any 

material contained in, or derived from, this report. 

 

 

© 2015, Tai Zu Jie. All right reserved. 



v 

 

 

 

 

 

 

 

 

 

 

 

Specially dedicated to  

my beloved grandmother, sister, mother and father 

 

 

 

 



vi 

 

 

 

ACKNOWLEDGEMENTS 

 

 

 

I would like to thank everyone who had contributed to the successful completion of 

this project.  I would like to express my gratitude to my research supervisor, Dr. Lai 

Koon Chun for his invaluable advice, guidance and his enormous patience 

throughout the development of the research. 

 

 

 



vii 

 

 

 

DATA ANALYSIS USING PARTICLE SWARM  

OPTIMIZATION ALGORITHM 

 

 

ABSTRACT 

 

 

Particle Swarm Optimization (PSO) basically using the method that more 

tending to social behaviour, for example fish schooling, bird flocking, bees swarming. 

This is effective since each particle’s solution seems like know each position and its 

movement. At the end of the swarming, the particle’s solution supposed to confined 

to one optimal solution. In this paper, some mathematical function and mechanical 

components with subject to constraint were introduced to perform optimization using 

PSO. Furthermore, a modified PSO(Accelerated PSO) were also introduced to 

compare the results with Basic PSO. Some concern parameters for PSO such as the 

swarm particle(population size), swarm iterations, self and swarm-confidence factor, 

weight factor also been introduced in this paper, and have been found the best fitness 

values for each case problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 

 

TABLE OF CONTENTS 

 

 

 

DECLARATION ii 

APPROVAL FOR SUBMISSION iii 

ACKNOWLEDGEMENTS vi 

ABSTRACT vii 

TABLE OF CONTENTS viii 

LIST OF TABLES x 

LIST OF FIGURES xii 

LIST OF SYMBOLS / ABBREVIATIONS xv 

LIST OF APPENDICES xvi 

 

 

CHAPTER 

1 INTRODUCTION 1 

1.1 Background 1 

1.2 Problem Statements 2 

1.3 Aims and Objectives 3 

2 LITERATURE REVIEW 4 

2.1 Optimization algorithms 4 

2.1.1 Genetic Algorithm(GA) 4 

2.1.2 Simulated Annealing (SA) 5 

2.1.3 Evolutionary Algorithm (EA) 7 

2.2 Particle Swarm Optimization (PSO) 8 

2.2.1 Swarm Intelligence 8 

2.3 Unique PSO 9 

2.4 PSO Algorithm Flowchart 11 



ix 

3 METHODOLOGY 12 

3.1 Optimization of Rosenbrock function 12 

3.2 Optimization of Matyas function 13 

3.3 Weight Minimization of Speed Reducer(WMSR) 14 

3.4 Weight Cost Minimization of Pressure Vessel (WMPL) 16 

3.5 Volume Minimization of  Compression Spring (VMCS) 18 

3.6 Particle Swarm Optimization (PSO) Algorithm 19 

3.6.1 Basic Particle Swarm Optimization (BPSO) 20 

3.6.2 Accelerated PSO (APSO) 21 

4 RESULTS AND DISCUSSIONS 23 

4.1 Optimization of Rosenbrock function 23 

4.2 Optimization of Matyas function 29 

4.3 Weight Minimization of Speed Reducer (WMSR) 32 

4.4 Weight Minimization of Pressure Vessel (WMPV) 39 

4.5 Volume Minimization of Compression Spring (VMCS) 46 

5 CONCLUSION AND RECOMMENDATIONS 52 

5.1 Conclusions 52 

5.2 Recommendations 53 

5.2.1 Rosenbrock functions 53 

5.2.2 Matyas function 54 

5.2.3 Weight Minimization of Speed Reducer (WMSR) 54 

5.2.4 Weight Minimization of Pressure Vessel(WMPV)54              

5.2.5 Volume Minimization of  Compression Spring 

(VMCS)  54 

REFERENCES 55 

APPENDICES 57 

 

 

 



x 

 

LIST OF TABLES 

 

 

 

 TABLE TITLE PAGE 

Table 4.1: Comparison results  and   between BPSO and 

APSO algorithms, n= 20 (Rosenbrock). 23 

Table 4.2: Comparison results  and   between BPSO and 

APSO algorithms, n=40 (Rosenbrock). 24 

Table 4.3: Comparison results  and  between BPSO and APSO 

algorithms, n=60 (Rosenbrock). 25 

Table 4.4: Comparison results  and   between BPSO and 

APSO algorithms, n=80 (Rosenbrock). 26 

Table 4.5:Comparison results  and  between BPSO and APSO 

algorithms, n=100 (Rosenbrock). 27 

Table 4.6:Accuracy results of x and y  between BPSO and APSO 

algorithms (Rosenbrock). 29 

Table 4.7:Comparison results  and   between BPSO and APSO 

algorithms, n=20 (Matyas). 30 

Table 4.8: Comparison results  and  between BPSO and APSO 

algorithms, n=40 (Matyas). 30 

Table 4.9:Accuracy results  and  between BPSO and APSO 

algorithms (Matyas). 31 

Table 4.10:Comparison overall global best between BPSO and 

APSO algorithms  with population, n =20 

(WMSR). 33 

Table 4.11:Comparison overall global best between BPSO and 

APSO algorithms  with population, n =40 

(WMSR). 34 



xi 

Table 4.12:Comparison overall global best between BPSO and 

APSO algorithm with population, n =60 (WMSR). 35 

Table 4.13:Comparison overall global best between BPSO and 

APSO algorithm with population, n =80 (WMSR). 36 

Table 4.14:Comparison overall global best between BPSO and 

APSO algorithm with population, n =100 (WMSR).

 37 

Table 4.15:Comparison overall  best solutions(WMSR)  by 

BPSO, APSO,EA-Coello (WMSR). 38 

Table 4.16:Comparison overall global best between BPSO and 

APSO algorithm with population, n =20 (WMSR). 39 

Table 4.17:Comparison overall global best between BPSO and 

APSO algorithm with population, n =40 (WMSR). 40 

Table 4.18:Comparison overall global best between BPSO and 

APSO algorithm with population, n =60 (WMSR). 41 

Table 4.19:Comparison overall global best between BPSO and 

APSO algorithm with population, n =80 (WMSR). 42 

Table 4.20:Comparison overall global best between BPSO and 

APSO algorithm with population, n =100 (WMSR).

 43 

Table 4.21:Comparison overall  best solutions  by BPSO, APSO 

and EA-Coello algorithm (WMSR). 45 

Table 4.22:Comparison overall global best between BPSO and 

APSO algorithm with population, n =20 (VMCS). 46 

Table 4.23;Comparison overall global best between BPSO and 

APSO algorithm with population, n =40 (VMCS). 47 

Table 4.24:Comparison overall global best between BPSO and 

APSO algorithm with population, n =6 (VMCS). 48 

Table 4.25:Comparison overall global best between BPSO and 

APSO algorithm with population, n =80 (VMCS). 49 

Table 4.26:Comparison overall  best solutions  by BPSO, APSO 

and Coello algorithm (VMCS). 50 

 

 

 



xii 

 

 

 

 

LIST OF FIGURES 

 

 

 

 FIGURE TITLE PAGE 

Figure 1.1: Fish schooling which inspired the creation of Particle 

Swarm Optimization. 2 

Figure 2.1: Evolution flow of genetic algorithm (Copyright 

Ying-Hong Liao, and Chuen-Tsai Sun, Member, 

IEEE) 5 

Figure 2.2: Evolution flow of Simulated Annealing (Reference 

from intechopen.com) 6 

Figure 2.3: Evolution flow of Evolutionary Algorithm 

(Reference from 

http://www.geatbx.com/docu/algindex-01.html) 7 

Figure 2.4: Multi-peaks function as mentioned as above. 

(Copyright Swagatam Das) 10 

Figure 3.1: Rosenbrock function 13 

Figure 3.2: Matyas function 13 

Figure 3.3: Speed reducer design actual diagram 14 

Figure 3.4: Speed reducer design structure diagram 14 

Figure 3.5: Pressure vessel design actual diagram (Reference 

from libertyengg.com) 16 

Figure 3.6: Pressure vessel design structure diagram 17 

Figure 3.7: Tension/Compression Spring actual diagram 

(Reference from globalsources.com) 18 

Figure 3.8: Tension/Compression Spring structure diagram 18 



xiii 

Figure 4.1: Convergence graph of global optimum, fmin by 

BPSO and APSO using population size of 20 over 

200 iterations. 24 

Figure 4.2: Figure 4.1.2: Convergence graph of global optimum, 

fmin by BPSO and APSO using population size of 

40 over 200 iterations (Rosenbrock). 25 

Figure 4.3: Convergence graph of global optimum, fmin by 

BPSO and APSO using population size of 60 over 

200 iterations (Rosenbrock). 26 

Figure 4.4:Convergence graph of global optimum, fmin by 

BPSO and APSO using population size of 80 over 

200 iterations (Rosenbrock). 27 

Figure 4.5: Convergence graph of global optimum, fmin by 

BPSO and APSO using population size of 100 

over 200 iterations (Rosenbrock). 28 

Figure 4.6:Elapsed time by simulation of BPSO and APSO 

against population size (Rosenbrock). 28 

Figure 4.7:Convergence graph of global optimum, fmin by 

BPSO and APSO using population size of 20 over 

140 iterations (Matyas). 30 

Figure 4.8:Convergence graph of global optimum, fmin by 

BPSO and APSO using population size of 40 over 

140 iterations (Matyas). 31 

Figure 4.9:Elapsed time by simulation of BPSO and APSO 

against population size (Matyas). 31 

Figure 4.10:Convergence graph of global optimum, fmin by 

BPSO and APSO using population size of 20 over 

160 iterations (WMSR). 33 

Figure 4.11:Convergence graph of global optimum, fmin by 

BPSO and APSO using population size of 40 over 

160 iterations (WMSR). 34 

Figure 4.12:Convergence graph of global optimum, fmin by 

BPSO and APSO using population size of 60 over 

160 iterations (WMSR). 35 

Figure 4.13;Convergence graph of global optimum, fmin by 

BPSO and APSO using population size of 80 over 

160 iterations (WMSR). 36 



xiv 

Figure 4.14:Convergence graph of global optimum, fmin by 

BPSO and APSO using population size of 100 

over 160 iterations (WMSR). 37 

Figure 4.15:Elapsed time by simulation of BPSO and APSO 

against population size (WMSR). 38 

Figure 4.16:Convergence graph of global optimum, fmin by 

BPSO and APSO using population size of 20 over 

200 iterations (WMSR). 40 

Figure 4.17:Convergence graph of global optimum, fmin by 

BPSO and APSO using population size of 40 over 

200 iterations (WMSR). 41 

Figure 4.18:Convergence graph of global optimum, fmin by 

BPSO and APSO using population size of 60 over 

200 iterations (WMSR). 42 

Figure 4.19:Convergence graph of global optimum, fmin by 

BPSO and APSO using population size of 80 over 

200 iterations (WMSR). 43 

Figure 4.20:Convergence graph of global optimum, fmin by 

BPSO and APSO using population size of 100 

over 200 iterations (WMSR). 44 

Figure 4.21:Elapsed time by simulation of BPSO and APSO 

against population size (WMSR). 44 

Figure 4.22:Convergence graph of global optimum, fmin by 

BPSO and APSO using population size of 20 over 

200 iterations (VMCS). 46 

Figure 4.23:Convergence graph of global optimum, fmin by 

BPSO and APSO using population size of 40 over 

200 iterations (VMCS). 47 

Figure 4.24:Convergence graph of global optimum, fmin by 

BPSO and APSO using population size of 60 over 

200 iterations (VMCS). 48 

Figure 4.25:Convergence graph of global optimum, fmin by 

BPSO and APSO (VMCS). 49 

Figure 4.26:Elapsed time by simulation of BPSO and APSO 

against population size (VMCS). 50 
 

 



xv 

 

 

 

 

 

LIST OF SYMBOLS / ABBREVIATIONS  

 

 

 

BPSO                  Basic Particle Swarm Optimization 

APSO                  Accelerated Particle Swarm Optimization 

WMSR Weight Minimization  of Speed Reducer 

WMPV Weight Minimization of Pressure Vessel 

VMCS                 Volume Minimization of Compression Spring 

                          self-confidence factor 

                          swarm-confidence factor  

                  randomness factor for individual best 

                  randomness factor for global best 

                    velocity of particle  at time  

                        velocity of particle  at time  

                         best position of each particle over time 

                        best global solution in the current swarm 

                        current best fitness location 

                         initial value of randomness parameter 

                           random numbers for APSO 

  n                        population size 

                          iterations 

 

 



xvi 

 

 

 

 

 

 

 

LIST OF APPENDICES  

 

 

 

 APPENDIX TITLE PAGE 

APPENDIX A: MATLAB codes(BPSO) 57 

APPENDIX B: MATLAB codes(APSO) 61 



1 

 

 

CHAPTER 1 

 

 

 

1 INTRODUCTION 

 

 

 

1.1 Background 

 

Particle Swarm Optimization (PSO) was published by Kennedy, Eberhart in 

1995. He was intended for simulating social behaviour. The method can be used to 

optimize single/multiple problems iteratively with trying to improve the solution to 

the best known solutions. The method was inspired by the social behaviour, such as 

bird-flocking, fish-pooling and bees swarming. Birds or fish trying to do their 

movement to avoid predators, seek food and mates, optimize environmental 

parameters such as temperature. 

 

The solution’s particles must be moving with its known velocity within the 

search space. Every best known solution it’s reach, it will continue search the better 

best known particle solution. The iteration means that how many times the particle 

moving to the updated position. Once, the best known solution found, the iteration 

will be terminated. The iteration could be terminated by settings the parameters. 

 

PSO has many similarities with Genetic Algorithms (GA). PSO optimizes by 

bounded for solution’s search space and swarm over the space to updated the best 

known solutions. However, PSO has no evolution operators such as crossover and 

mutation. PSO has been used widely on several fields, such as machine design, 

mathematical function optimization, biotechnology, software engineering. 



2 

 

 

Figure 1.1: Fish schooling which inspired the creation of Particle Swarm 

Optimization. 

 

 

 

1.2 Problem Statements 

 

Why Particle Swarm Optimization is powerful? 

 

PSO method was widely applying on many fields nowadays, This is due to it’s 

several advantages. One of the advantage that is there are few variable parameters 

need to be changed compare to GA or other optimization method. The parameters 

such as lower boundary, upper boundary, population size, iteration. And it doesn’t 

use the filtering operation such as crossover or mutation. 

 

Furthermore, PSO has better memory capacity than Genetic Algorithm. For 

the PSO, the particle swarming over a certain iterations, with this, every particle will 

remembers its own previous best value. The PSO was designed as a artificial 

intelligence, so it could be applied on various different field such as medical, science, 

face recognition, mathematics optimization, evolving neural networks to optimize 

problem. 

 

Moreover, the ability of optimization of PSO will be higher than other 

optimization algorithms. So, it can be completed the process easily with high speed. 

 

 

 



3 

 

1.3 Aims and Objectives 

 

The objectives of the thesis are shown as following: 

i) Data analysis for performing optimization using                                            

Particle Swarm Optimization (PSO) by MATLAB software. 

ii) Implement and improve data output of the process by using PSO. 

iii) Investigate and perform comparison of PSO algorithm with other algorithms.



4 

 

 

CHAPTER 2 

 

 

 

2 LITERATURE REVIEW 

 

Particle Swarm Optimization was using widely nowadays. Such fields like 

Science, Medical, Business and Mathematical based are using the systems to 

optimize it’s own solution. The particles system basically used to optimize the 

solution within the problem’s search space, and the particles moves around the space 

to find best solution of certain problems. There have several rules required to be 

obeyed to optimize problems such as lower boundary, upper boundary, swarm size, 

iteration of swarming, velocity of swarming. The particles system is basically deals 

with swarm intelligence. 

 

 

 

2.1 Optimization algorithms 

 

Besides PSO, there have some other optimization algorithms were using from 

previous. There have its own characteristics and benefits for different fields and 

applications. Some algorithms were introduced as below. 

 

2.1.1 Genetic Algorithm(GA) 

 

The GA is same as the PSO algorithms. It’s begin by searching the optimal 

solutions from a randomly generated population which evolve over iterations, 

removing the required for user-supplied beginning point. In order to perform its 

optimization such a process, the algorithm execute three steps which able to 

propagate its population from one generation to another. The first step is “Selection” 

operator that will mimics principal of the “Survival of the Fittest’. The second step is 

executing “Crossover” operator, which mimics mating the populations of the 



5 

 

biological. The crossover operator executing propagation of features of the good 

surviving lostion points from current population to the future population, which 

supposed to result a better optimum value. The third or final step will be the 

“Mutation”, which executing the promotion of diversity in population characteristics. 

Moreover, this step allows for global searching within the design space and avoids 

the algorithm by trapped in the local minima. The specifics of the GA algorithm 

implemented in this related study were partially according to the empirical studies, 

which recommend the combination of selection with 50 percent uniform crossover 

probability. Compare to PSO, the population size kept uniform at 40 chromosomes to 

all problems. Mutation of 0.5% was implemented. 

 

 

Figure 2.1: Evolution flow of genetic algorithm (Copyright Ying-Hong Liao, and 

Chuen-Tsai Sun, Member, IEEE) 

 

 

2.1.2 Simulated Annealing (SA)  

 

Annealing indicates the process being occurs when the physical substances, 

for example metal, were raised and get a high energy level after that gradually cooled 

down until some solid state level is reach. The objective for process is to achieve the 

minimum energy state. In this process, physical substances or materials were usually 

move from higher energy level to lower. If the cooling process is slow certainly, the 

minimization will be happened. Since the algorithm is a natural process, the natural 

variability was be concerned. There are some probabilities at each stage for the 

cooling process could be a chance of transition to a higher energy state will happen. 



6 

 

However, as energy state being naturally decline, the probability that moving to 

higher energy state will be decreased.  

 

The simulated annealing randomly choose an initial point to start within its 

search space. From this point, the search space will be predetermined by user. The 

new optimum point acquired is then compared to the initial point in order to check if 

the new optimum point is better. For minimization case, if the optimum value is tend 

to be decreasing, it will be accepted and the algorithm will keep going to search the 

better optima.  

 

Higher optima value for the objective function may be accepted with a certain 

probability that will be determined by Metropolis criteria. To accept the points with 

higher optima values, the algorithm is able to escape the local optima. As the 

algorithm being processing, the length of the steps became shorter, and the final 

solutions will be close.  

 

Basically, the Mertropolis criteria using the initial user defined parameters, T 

which refers to temperature, and RT refers to temperature reduction factor, to 

precisely determine the probability of accepting the higher optimum value of the 

relating objective function. 

 

 

Figure 2.2: Evolution flow of Simulated Annealing (Reference from intechopen.com) 



7 

2.1.3 Evolutionary Algorithm (EA) 

 

The EA algorithm was suggested to modify to many different variants in 

various field. However, all these techniques used is the same, it’s given a population 

size of the individuals with the environmental pressure lead to natural selection, and 

this can cause a rise in the population size. In order to maximize the quality of related 

solution, we can create a set of candidate solutions randomly, for example, function’s 

search space’s domain. From this, the EA algorithm can choose better candidates to 

seed for next generation by using recombination or/and mutation to them. 

Recombination operator applied to at least two candidates (so called parents) and this 

will results at least one new candidate (children). Mutation operator was applied to a 

candidate and results a one new candidate. In summation, execution of 

recombination and mutation results to a new set of candidates. One iteration will 

having one process of this. The process could be iterated until a candidate with best 

quality is found or predetermine iteration setting by user is reached. There have two 

fundamental forces which form the EA basis, there are:  

 Variation operators that create the diversity. 

 Selection that will be consider act as force pushing to better quality. 

The applications with variations and selection usually lead to an improved optimum 

solution.  It is simple to see whether the EA algorithm is optimising by observed the 

results whether is approaching optimal values closer and closer. 

 

 

Figure 2.3: Evolution flow of Evolutionary Algorithm (Reference from 

http://www.geatbx.com/docu/algindex-01.html) 



8 

2.2 Particle Swarm Optimization (PSO) 

 

Particle Swarm Optimization was introduced in 1995 by Kennedy and 

Eberhart. The first antecedent of this system were in 1983, working by Reeves. He 

proposed the particle systems to model objects that are dynamic and the objects are 

very abstract which cannot be known as polygon or surface. Such objects like fire, 

smoke and clouds. The moving position of each particle is independent, and the 

direction of movement was governed by the rules. In 1987, Reynolds used the system 

to simulate the behaviour of bird flocking. In 1990, the Heppner and Grenander 

included a roost that was attractive to the simulated birds. Set of rules was inspired 

by these two models and been using on this system nowadays. 

 

Based on the social psychology research, the dynamic theory of social impact, 

was the another first inspiration to build up the particle’s system. The algorithms and 

rules governed the direction and movement of the particles in particular search space, 

it also can be treated as a model of social behaviour. 

 

 

 

2.2.1 Swarm Intelligence 

 

Swarm intelligence was widely using on the Particle Swarm Optimization, It 

also can said to be core of Particle Swarm Optimization. Swarm intelligence is refer 

to the dealing of naturals and artificials system composed to multiple individuals 

using decentralized and self-organization. In particular, the collective of the particles 

depends on locals interaction with each other and also with their environments 

culture. For such, the particles systems studied by swarm intelligence are bird 

flocking, nest swarming, fish schooling and herds of land animal. Some human 

artifacts also behave with swarm intelligence such as some multi-robots system and 

some programmes were written to simulate some optimization or data analysis. 

 

The swarm intelligence has few properties that made the Particle Swarm 

Optimization powerful. 

1) It is composed of multiple individuals. 



9 

2) The individuals are relatively homogenous, they are all similar or 

identical either they are belongs to a few topologies. 

3) Their interactions are based on the simple behavioural rules and only 

interact with using their local information that they exchange directly. 

4) The overall interactions are based on their environmental information and 

conditions. 

 

The swarm intelligence have no coordinate for the individual to interact each 

other. Furthermore, each of the individuals interact each other by without any 

controller. Each individual are self-adjust interactions with their known local 

information. Many animals interact with each other using the swarm intelligence, 

such as when the bird is flocking, the birds interacts with each other without any 

collision and crossing to each other due to the self-controlled within their search 

space. 

Due to the properties of swarm intelligence in above, it is possible to design swarm 

intelligence with characteristics of scalable, parallel and fault tolerant. 

 

 

 

2.3 Unique PSO 

 

Kennedy and Eberhart introduced optimization of mathematical function by 

PSO. Assume there is an n-dimensional multivariable function to be optimized. The 

function may be represented as, 

 

 

 

where  is vector of search space variable, which represents the vector of the 

variables of the given function.  This could be help to find out the function’s local 

optimum is whether minimum or maximum point. 

 



10 

Example: Simple two-dimensional sphere function was considered and the equation 

given as below, 

 

 

 

It is obviously to show that the optimum point is minimum (0,0) to get  = 0. It’s 

even does not require to use handwritten calculation due to its single global optimum. 

It’s tough to optimize multivariable function with multi-peaks. For such function as 

below, 

 

 

 

For such function, there have peaks and a rough fitness lands. The function was 

plotted in Figure 2.4. It is complicate to optimize the function using handwritten 

calculation and its take a long time to finish. To search for the function’s global 

optimum, Kennedy and Eberhart adapting the PSO method into the function. The 

system’s particles swarm over the rough lands of function with their own information. 

So every peaks of the function could be swarmed by the particles. It’s called multi-

agent parallel search technique. Every particle has its own velocity and position. And 

they do sharing about their information to each other. Hence, they could swarm in 

more effectively and efficiently. 

 

 

Figure 2.4: Multi-peaks function as mentioned as above. (Copyright Swagatam Das) 



11 

2.4 PSO Algorithm Flowchart 

 

 

 

 

 

 

 

 

                  Yes                                                                                     No 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                               

 

 

 

 

                                                                                                            Yes 

             No

Initialize particles 

Calculate each fitness 

value for particles 

Is it the current value 

better than Pbest? 

Assign the value to 

Pbest 

Keep previous 

Pbest as current 

Pbest 

Assign Pbest to 

Gbest 

Calculate velocity 

for each particle 

Use each particle’s velocity value 

to calculate the own value 

Maximum epochs 

reached? 
End 



12 

 

 

CHAPTER 3 

 

 

 

3 METHODOLOGY 

 

The optimization problems were concerned on some mathematical functions 

and mechanical/mechatronics components with subject to nonlinear constraints 

equations. The problem’s methodology consists of the designed equation and fitness 

function which required to be optimized by the PSO method. Some designed 

parameters for PSO were introduced on the following topics, for such parameters are 

iterations, population size and others PSO variables parameters. 

 

 

 

3.1 Optimization of Rosenbrock function 

 

This function also known as banana function, due to its shape looks like banana 

shape and have a pattern of non-convex. The global minimum is inside a long, 

narrow and shape parabolic. It basically have two variables which are  and . The 

function’s equation is described as follows,  

 

      (3.1) 

 

where a  and b are 1 and 100 respectively. The global minimum point is (1,1), and 

will results  to 0 of . The shape of the function simulated as follows, 

 

 

 

 

 



13 

 

 

 

Figure 3.1: Rosenbrock function 

 

 

 

3.2 Optimization of Matyas function 

 

The Matyas function have a shape same as the rosenbrock function. However, the 

global minimum is different. The function defined as, 

 

               (3.2) 

 

The global minimum point is (0,0), and will results  to 0 of . The shape of the 

function simulated as follows, 

 

 

Figure 3.2: Matyas function 

 



14 

 

 

3.3 Weight Minimization of Speed Reducer(WMSR) 

 

The objective of the problem is minimization of speed reducer weight. 

Effectively, it could maintain the maximum efficiency of rotational speed of two 

shafts. The speed reducer structure contains of a gear, pinion and two shafts. There 

are one fitness function,  and 11 constraints equations with 7 design variables. 

 

 

Figure 3.3: Speed reducer design actual diagram 

 

 

 

Figure 3.4: Speed reducer design structure diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shaft 1 
Shaft 2 

Gear 1 

Gear 2 

Bearing 1 

Bearing 2 



15 

 

The design variables required to be optimized are the width of the face (b = ), the 

teeth model (m = ), number of teeth on the pinion (n = ), length of the shaft 1 

between the bearings ( = ), length of the shaft 2 between the bearings ( ), 

shaft 1 diameter ( ), shaft 2 diameter ( ). The fitness function and its 

constraints formulae were given as follows, 

 

 

 

   (3.3.1) 

 

Subject to 

 

 

 

 

 

 

 

 

 



16 

 

 

 

The ranges of the design variables were used as follows, 

 

 

 

 

 

3.4 Weight Cost Minimization of Pressure Vessel (WMPL) 

 

The objective of the problem is to minimize total weight of the pressure 

vessel. Vessel with shape of cylindrical is capped at both ends with hemispherical 

heads as shown figure 1.  

 

 

Figure 3.5: Pressure vessel design actual diagram (Reference from libertyengg.com) 

 

 



17 

 

 

 

Figure 3.6: Pressure vessel design structure diagram 

 

Weight that need to be minimized including cost material, forming and the 

welding. There are four design variables which are thickness of the shell ( ), 

thickness of the head ( ), radius of the inner part of the cylinder tube ( ), 

length of the part of the cylindrical tube ( ).  and  are integers multiplies 

of 0.0625 inch, which made the thicknesses of rolled steel plates available.  and  

are continuous values. The fitness function and its constraints formulae were given as 

follows, 

 

 

 

Subject to 

 

 

 

 

 

The ranges of the design variables were used as follows, 

 

 

 

 

 

 



18 

 

 

3.5 Volume Minimization of  Compression Spring (VMCS) 

 

The objective is to minimize the volume  of the compression spring. The 

structure of the spring was shown as figure 1. 

 

Figure 3.7: Tension/Compression Spring actual diagram (Reference from 

globalsources.com) 

 

 

 

 

Figure 3.8: Tension/Compression Spring structure diagram 

 

 

 

Free Length 

Displacement 



19 

 

 

There are three design variables which are the number of active coils of the spring 

( ), the winding diameter ( ), the wire diameter ( ). The fitness 

function and its constraints formulae were given as follows, 

 

 

 

Subject to 

 

 

 

 

 

The ranges of the design variables were used as follows, 

 

 

 

 

 

3.6 Particle Swarm Optimization (PSO) Algorithm 

 

There have two algorithms were used to optimize the above mechanical 

components problems, which are Basic PSO and Accelerated PSO. Accelerated PSO 

algorithm is a modified version of Basic PSO, it were used to improve the speed of 

convergence, which could save a lot time. In this paper, BPSO and APSO were 

implemented on the above optimization problems, and comparison for these both 

results was worked out. 



20 

 

 

3.6.1 Basic Particle Swarm Optimization (BPSO) 

 

BPSO is original algorithm which proposed by Kennedy and Eberhart. 

Furthermore, it is a population based evolutionary algorithm. Development of the 

algorithm was inspired by the social nature behavior such as bird flocking. It 

simulates a group of individuals called particles in a problem’s search space. The 

particles swarm over the search space to find the optimal solution. The way of 

swarming was fixed by the velocity update equations and be described as follows, 

 

 

 

 

 

where  and  is self-confidence factor and swarm-confidence factor respectively. 

 and  required to be set for ensuring better coverage of the design space 

and reduce the possibility of entrapment in local optima. The  is the velocity of 

particle  at time . The  is the velocity of particle  at time . The  is the 

best position of each particle over time. The   is the best global solution in the 

current swarm. The   is the best fitness location has been achieved so far. Previous 

research papers were using the values of 2 and 2 for   and  respectively to get best 

optimum solutions. In this paper, in order to improve the convergence rate, reduced 

 and  factors values to an acceptable range of 0-1 were implemented by reducing 

the randomness of the particles as iterations proceed. The algorithm can be described 

by monotonically decreasing function as follows, 

 

 

 

or 



21 

 

 

 

 

where  is the initial value of randomness parameter which in the range of 0.5~1. 

The  is number of iterations or the time steps.  is a control parameter. In 

this paper,  and were used to implement reduction of randomness. 

Hence, the equation can be concluded as, 

 

 

 

where  is the maximum iterations. 

 

 

 

3.6.2 Accelerated PSO (APSO) 

 

 The basic particle swarm optimization uses both global best,  and 

individual best,  to determine optimal solution of the related problems. The reason 

of using the individual best,  is for the purpose of increasing the diversity in the 

quality of the solutions. However, this diversity can be simulated using some 

randomness. There is no compelling reason to use the individual best, unless the 

optimization problem is highly non-linear and multimodal. 

 

In order to accelerate the convergence speed, APSO algorithm were 

developed by using the global best only. Reduction of randomness also was 

implemented in this algorithm to improve the convergence. The algorithm equation 

is described as follows, 

 

 



22 

 

 

where  is drawn from random numbers in range of 0~1. The position update 

equation is just simply as follows, 

 

 

 

Reduction of randomness also was implemented in this algorithm to improve the 

convergence. The decreasing function’s parameters were same as the BPSO 

algorithm mentioned. 



23 

 

 

 

CHAPTER 4 

 

 

 

4 RESULTS AND DISCUSSIONS 

 

In this chapter, simulation results for the optimization problems which 

mentioned above were recorded. The recorded results included some concerned 

parameters, such as iterations, population size, and also fixed value for self-

confidence factor and swarm-confidence factor. Those parameters could hugely 

affect the simulation results. Moreover, the comparisons of the BPSO and APSO 

were discussed in this chapter for each of the problems. The recommended PSO  

parameters for each problems were also concluded in this paper. 

 

 

 

4.1 Optimization of Rosenbrock function 

 

The results for this problem is including three variables that needed to be 

optimized, which are and . Following tables give the numerical results 

using population size of 20, 40, 60, 80 and 100. 

 

Table 4.1: Comparison results  and   between BPSO and APSO algorithms, n= 20 

(Rosenbrock).  

  
Global best,  Global best,  Global best, fmin 

BPSO APSO BPSO APSO BPSO APSO 

20 200 0.9952 0.9969 0.9904 0.9926 0.0000 0.0001 

Elapsed time, (seconds) 0.004236 0.002589 

 



24 

 

 

 

Figure 4.1: Convergence graph of global optimum, fmin by BPSO and APSO using 

population size of 20 over 200 iterations. 

 

 

Table 4.2: Comparison results  and   between BPSO and APSO algorithms, n=40 

(Rosenbrock). 

  
Global best,  Global best,  Global best, fmin 

BPSO APSO BPSO APSO BPSO APSO 

40 180 1.0044 1.0004 1.0088 1.0008 0.0000 0.0000 

Elapsed time, (seconds) 0.002396 0.001935 

 

 



25 

 

 

Figure 4.2: Figure 4.1.2: Convergence graph of global optimum, fmin by BPSO and 

APSO using population size of 40 over 200 iterations (Rosenbrock). 

 

 

Table 4.3: Comparison results  and  between BPSO and APSO algorithms, n=60 

(Rosenbrock). 

  
Global best,  Global best,  Global best, fmin 

BPSO APSO BPSO APSO BPSO APSO 

60 200 1.0000 0.9999 0.9999 0.9998 0.0000 0.0000 

Elapsed time, (seconds) 0.003558 0.003987 

 

 



26 

 

 

Figure 4.3: Convergence graph of global optimum, fmin by BPSO and APSO using 

population size of 60 over 200 iterations (Rosenbrock). 

 

 

Table 4.4: Comparison results  and   between BPSO and APSO algorithms, n=80 

(Rosenbrock). 

  
Global best,  Global best,  Global best, fmin 

BPSO APSO BPSO APSO BPSO APSO 

80 200 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 

Elapsed time, (seconds) 0.002821 0.001651 

 

 

 



27 

 

 

Figure 4.4:Convergence graph of global optimum, fmin by BPSO and APSO using 

population size of 80 over 200 iterations (Rosenbrock). 

 

 

Table 4.5:Comparison results  and  between BPSO and APSO algorithms, n=100 

(Rosenbrock). 

  
Global best,  Global best,  Global best, fmin 

BPSO APSO BPSO  APSO BPSO APSO 

100 200 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 

Elapsed time, (seconds) 0.002973 0.002301 

 

 



28 

 

 

Figure 4.5: Convergence graph of global optimum, fmin by BPSO and APSO using 

population size of 100 over 200 iterations (Rosenbrock). 

 

 

 

Figure 4.6:Elapsed time by simulation of BPSO and APSO against population size 

(Rosenbrock). 

 

 

 

 

 



29 

 

Table 4.6:Accuracy results of x and y  between BPSO and APSO algorithms 

(Rosenbrock). 

Exact value, fmin Overall global best, fmin 

BPSO APSO 

0.0000 0.0000 0.0000 

Accuracy (%) 99.9999 99.9999 

 

 

Overall view of the results show the global optimum, fmin were fast reach over 

200 iterations when the population size was increasing, since the population size 

refers to the number of particles that responsible to swarm over the problem’s search 

space to the optimum point. Figure 4.1 shows the global optimum’s convergence 

using APSO algorithm is faster reach to convergence point compared to BPSO 

algorithm as it using the population size of 20. As the population size increasing, the 

acceleration for convergence using BPSO exceeded the acceleration using APSO. 

Figure 4.5 shows the BPSO algorithm was converging to the global optimum faster 

than APSO algorithm. Using 20, 40, 60, and 80 of population size was yield for 

fluctuation results for BPSO. This unstable situation can be explained by the BPSO 

algorithm is using both current global best, and individual best,  that need use 

more particles than APSO which just using global best,  to find the optimum point. 

From the Figure 4.1.6, the elapsed time for BPSO was about fluctuated within 

0.0025-0.0045 seconds over 100 population size. And the elapsed time for APSO 

was about fluctuated within 0.0015 – 0.0040 seconds over population size. These 

small changes of time for both algorithms may due to the low complexity of the 

fitness function. 

 

 

 

4.2 Optimization of Matyas function 

 

The results for this problem also including three variables that needed to be 

optimized, which are and . Theoretically, the results give 0, 0, and 0 



30 

 

and  respectively. Following tables give the numerical results using 

population size of 20 and population size of 40. 

 

Table 4.7:Comparison results  and   between BPSO and APSO algorithms, n=20 

(Matyas). 

  
Global best,  Global best,  Global best, fmin 

BPSO APSO BPSO  APSO BPSO APSO 

20 140 0.0000 0.0019 0.0000 0.0022 0.0000 0.0000 

Elapsed time, (seconds) 0.003638 0.002635 

 

 

 

Figure 4.7:Convergence graph of global optimum, fmin by BPSO and APSO using 

population size of 20 over 140 iterations (Matyas). 

 

 

Table 4.8: Comparison results  and  between BPSO and APSO algorithms, n=40 

(Matyas). 

  
Global best,  Global best,  Global best, fmin 

BPSO  APSO BPSO APSO BPSO APSO 

40 140 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Elapsed time, (seconds) 0.002989 0.002930 

 



31 

 

 

Figure 4.8:Convergence graph of global optimum, fmin by BPSO and APSO using 

population size of 40 over 140 iterations (Matyas). 

 

 

 

Figure 4.9:Elapsed time by simulation of BPSO and APSO against population size 

(Matyas). 

 

 

Table 4.9:Accuracy results  and  between BPSO and APSO algorithms (Matyas). 

Exact value, fmin Overall global best, fmin 

BPSO APSO 

0.0000 0.0000 0.0000 

Accuracy (%) 99.9999 99.9999 



32 

 

 

In this optimization, the BPSO gives the results for faster converge to the 

optimum point compared to APSO results even using 20 and 40 of population size. 

In figure 4.6, the exact value of optimum point, 0 was reached at iteration of 40
th

 by 

using BPSO, which is faster convergence compared to APSO which reach optimum 

point at iterations of 60
th

. In figure 4.7, BPSO converge to optimum point at 20
th

 of 

iterations and remain constant to the end of the iterations, while the APSO results a 

converging point at 40
th

 of iterations. This can be concluded that, in this case 

problem, BPSO algorithm gives better convergence speed since it needed less 

population size to optimize even 20. The elapsed time for BPSO was about 

fluctuated within 0.0029-0.0037 seconds over 100 population size.  And the elapsed 

time for APSO was about fluctuated within 0.0025 – 0.0030 seconds over 100 

population size. 

 

 

 

4.3 Weight Minimization of Speed Reducer (WMSR) 

 

The results for this problem is including 7 variables that needed to be 

optimized, which are the width of the face (b = 𝑥1), the teeth model (m = 𝑥2), number 

of teeth on the pinion (n = 𝑥3), length of the shaft 1 between the bearings (𝑙1 = 𝑥4), 

length of the shaft 2 between the bearings (𝑙2 =𝑥5), shaft 1 diameter (𝑑1=𝑥6), shaft 2 

diameter (𝑑2=𝑥7) and .  

 

 

 

 

 

 

 

 

 



33 

 

Table 4.10:Comparison overall global best between BPSO and APSO algorithms  

with population, n =20 (WMSR). 

n 
 

Global best BPSO  APSO 

20 160 ( ) 3.5000 3.5000 

( ) 0.7000 0.7000 

( ) 17.0000 17.0011 

( ) 7.3000 7.9903 

( ) 7.8000 7.8053 

( ) 3.3502 3.3516 

( ) 5.2867 5.2869 

( ) 2996.3000 3003.1000 

 

 

 

Figure 4.10:Convergence graph of global optimum, fmin by BPSO and APSO using 

population size of 20 over 160 iterations (WMSR). 

 

 

 

 



34 

 

Table 4.11:Comparison overall global best between BPSO and APSO algorithms  

with population, n =40 (WMSR). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11:Convergence graph of global optimum, fmin by BPSO and APSO using 

population size of 40 over 160 iterations (WMSR). 

 

 

 

n 
 

Global best BPSO  APSO 

40 160 ( ) 3.5000 3.5001 

( ) 0.7000 0.7000 

( ) 17.0000 17.0000 

( ) 7.3000 7.8000 

( ) 7.8000 7.3058 

( ) 3.3502 3.3504 

( ) 5.2867 5.2869 

( ) 2996.4000 3000.2000 



35 

Table 4.12:Comparison overall global best between BPSO and APSO algorithm with 

population, n =60 (WMSR). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12:Convergence graph of global optimum, fmin by BPSO and APSO using 

population size of 60 over 160 iterations (WMSR). 

 

 

 

 

n 
 

Global best BPSO  APSO 

60 160 ( ) 3.5004 3.5001 

( ) 0.7000 0.7000 

( ) 17.0000 17.0000 

( ) 7.3062 7.8002 

( ) 7.8002 7.3798 

( ) 3.3504 3.3504 

( ) 5.2867 5.2868 

( ) 2996.7000 3004.0000 



36 

Table 4.13:Comparison overall global best between BPSO and APSO algorithm with 

population, n =80 (WMSR). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13;Convergence graph of global optimum, fmin by BPSO and APSO using 

population size of 80 over 160 iterations (WMSR). 

 

 

 

 

n 
 

Global best BPSO  APSO 

80 160 ( ) 3.5000 3.5001 

( ) 0.7004 0.7000 

( ) 17.0000 17.0000 

( ) 7.3006 7.8000 

( ) 7.8000 8.1543 

( ) 3.3503 3.3520 

( ) 5.2867 5.2867 

( ) 2996.4000 3000.1000 



37 

Table 4.14:Comparison overall global best between BPSO and APSO algorithm with 

population, n =100 (WMSR). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14:Convergence graph of global optimum, fmin by BPSO and APSO using 

population size of 100 over 160 iterations (WMSR). 

 

 

n 
 

Global best BPSO  APSO 

100 160 ( ) 3.5000 3.5000 

( ) 0.7004 0.7000 

( ) 17.0000 17.0000 

( ) 7.3001 7.6242 

( ) 7.8000 7.9011 

( ) 3.3502 3.3509 

( ) 5.2867 5.2868 

( ) 2996.4000 3001.7000 



38 

 

Figure 4.15:Elapsed time by simulation of BPSO and APSO against population size 

(WMSR). 

 

 

Table 4.15:Comparison overall  best solutions(WMSR)  by BPSO, APSO,EA-Coello 

(WMSR). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Overall best solution BPSO APSO EA-Coello 

( ) 3.5000 3.5001 3.506163 

( ) 0.7004 0.7000 0.700831 

( ) 17.0000 17.0000 17.0000 

( ) 7.3006 7.8000 7.460181 

( ) 7.8000 8.1543 7.9632 

( ) 3.3503 3.3520 3.3629 

( ) 5.2867 5.2867 5.3089 

( ) 2996.4000 3000.1000 3.025.0051 



39 

From the results shown, the weight needed to be minimized is around 3000kg. 

Both algorithms were used to perform the optimization and both gives global 

optimum at around 3000kg. However, the global optimum obtained by BPSO is 

slightly lower than the global optimum obtained by APSO, which the best global 

optimum obtained is 2996.4000kg for BPSO and 3001.7000kg for APSO.  BPSO has 

increasing its convergence speed as the population size was increasing and also its 

convergence becoming stable over iterations. From the Figure 4.3.6, the elapsed time 

for BPSO and APSO over population size is almost the same. Both algorithm elapsed 

times rapidly increasing from population size of 60 to 100. 

 

 

 

4.4 Weight Minimization of Pressure Vessel (WMPV) 

 

The results for this problem is including the thickness of the shell ( ), 

thickness of the head ( ), radius of the inner part of the cylinder tube ( ), 

length of the part of cylindrical tube ( ) and . Table 4.4.1-4.4.10 gives results 

using population size of 20, 40, 60, 80 and 100 by two algorithms BPSO and APSO. 

Below figures give line graph of global minimum,  over 160 iterations. 

 

Table 4.16:Comparison overall global best between BPSO and APSO algorithm with 

population, n =20 (WMSR). 

 

 

 

 

 

 

 

 

 

 

n 
 

Global best BPSO  APSO 

20 200 ( ) 0.8111 0.8087 

(  0.4013 0.3993 

( ) 42.0116 41.2638 

( ) 177.7085 177.8766 

( ) 5946.4000 6103.7000 



40 

 

Figure 4.16:Convergence graph of global optimum, fmin by BPSO and APSO using 

population size of 20 over 200 iterations (WMSR). 

 

 

Table 4.17:Comparison overall global best between BPSO and APSO algorithm with 

population, n =40 (WMSR). 

 

 

 

 

 

 

 

 

 

 

 

n 
 

Global best BPSO  APSO 

40 200 ( ) 0.7781 0.7827 

(  0.3846 0.3869 

( ) 40.3173 40.5450 

( ) 200.0000 197.1924 

( ) 5884.5000 5900.7000 



41 

 

Figure 4.17:Convergence graph of global optimum, fmin by BPSO and APSO using 

population size of 40 over 200 iterations (WMSR). 

 

 

Table 4.18:Comparison overall global best between BPSO and APSO algorithm with 

population, n =60 (WMSR). 

 

 

 

 

 

 

 

 

 

 

 

n 
 

Global best BPSO  APSO 

60 200 ( ) 0.7781 0.7938 

(  0.3846 0.3942 

( ) 40.3173 41.1259 

( ) 200.0000 189.4270 

( ) 5884.6000 5926.3000 



42 

 

Figure 4.18:Convergence graph of global optimum, fmin by BPSO and APSO using 

population size of 60 over 200 iterations (WMSR). 

 

 

Table 4.19:Comparison overall global best between BPSO and APSO algorithm with 

population, n =80 (WMSR). 

 

 

 

 

 

 

 

 

 

 

 

n 
 

Global best BPSO APSO 

80 200 ( ) 0.8028 0.8140 

(  0.3968 0.4025 

( ) 41.5966 42.1728 

( ) 182.9249 175.7244 

( ) 5928.1000 5950.3000 



43 

 

Figure 4.19:Convergence graph of global optimum, fmin by BPSO and APSO using 

population size of 80 over 200 iterations (WMSR). 

 

 

Table 4.20:Comparison overall global best between BPSO and APSO algorithm with 

population, n =100 (WMSR). 

 

 

 

 

 

 

 

 

 

 

 

n 
 

Global best BPSO  APSO 

100 200 ( ) 0.7781 0.7872 

(  0.3846 0.3902 

( ) 40.3173 40.7853 

( ) 200.0000 193.6048 

( ) 5884.5000 5904.0000 



44 

 

Figure 4.20:Convergence graph of global optimum, fmin by BPSO and APSO using 

population size of 100 over 200 iterations (WMSR). 

 

 

 

Figure 4.21:Elapsed time by simulation of BPSO and APSO against population size 

(WMSR). 

 

 

 

 

 

 



45 

Table 4.21:Comparison overall  best solutions  by BPSO, APSO and EA-Coello 

algorithm (WMSR). 

 

 

 

 

 

 

 

 

 

From the results shown, the weight needed to be minimized is around 6000kg. 

Both algorithms were used to perform the optimization and both gives global 

optimum at around 6000kg. However, the global optimum obtained by BPSO is 

slightly lower than the global optimum obtained by APSO, which the best global 

optimum obtained is 5884.5000kg for BPSO and 5904.0000kg for APSO.  BPSO has 

increasing its convergence speed as the population size was increasing and also its 

convergence becoming stable over iterations. In this problem optimization, the 

convergence using APSO has much more higher acceleration than the BPSO, 

particularly when increasing the population size. As the population size was set to 

100, the convergence to the optimal point using APSO was started at almost at 

around 20
th

 iterations. On the other side, the convergence using BPSO was started at 

lately around 100
th

 iterations. This may due to the settings of the various lower and 

upper boundaries for every type of the problems. From the Figure 4.4.6, the elapsed 

time for BPSO and APSO over population size is almost the same. The time 

increasing time over the population size for both algorithms are almost the same. 

 

 

 

 

 

 

 

Overall best solution BPSO APSO EA-Coello 

( ) 0.7781 0.7872 0.8125 

(  0.3846 0.3902 0.4375 

( ) 40.3173 40.7853 40.3239 

( ) 200.0000 193.6048 200.0000 

( ) 5884.5000 5904.0000 6288.7445 



46 

4.5 Volume Minimization of Compression Spring (VMCS) 

 

The results for this problem is including 3 variables and one global best,  

that were been optimized, which are the number of active coils of the spring 

( ), the winding diameter ( ), the wire diameter ( ) and the volume 

need to be optimized, . Table 4.5.1-4.5.10 gives the numerical results using 

population size of 20, 40, 60, 80 and 100 by two algorithms BPSO and APSO. Below 

figures give line graph of global minimum,  over 200 iterations. 

 

Table 4.22:Comparison overall global best between BPSO and APSO algorithm with 

population, n =20 (VMCS). 

 

 

 

 

 

 

 

 

 

 

Figure 4.22:Convergence graph of global optimum, fmin by BPSO and APSO using 

population size of 20 over 200 iterations (VMCS). 

n 
 

Global best BPSO  APSO 

20 200 (Ts) 0.0526 0.0500 

(Tb) 0.3792 0.3174 

(Ts) 10.0854 14.0301 

( ) 0.0127 0.0127 



47 

Table 4.23;Comparison overall global best between BPSO and APSO algorithm with 

population, n =40 (VMCS). 

 

 

 

 

 

 

 

 

 

 

Figure 4.23:Convergence graph of global optimum, fmin by BPSO and APSO using 

population size of 40 over 200 iterations (VMCS). 

 

 

 

 

 

 

 

 

n 
 

Global best BPSO  APSO 

40 200 (Ts) 0.0501 0.0500 

(Tb) 0.3191 0.3174 

(Ts) 13.8917 14.0358 

( ) 0.0127 0.0127 



48 

Table 4.24:Comparison overall global best between BPSO and APSO algorithm with 

population, n =6 (VMCS). 

 

 

 

 

 

 

 

 

 

 

Figure 4.24:Convergence graph of global optimum, fmin by BPSO and APSO using 

population size of 60 over 200 iterations (VMCS). 

 

 

 

 

 

 

 

 

 

 

n 
 

Global best BPSO  APSO 

60 200 (Ts) 0.0500 0.0500 

(Tb) 0.3174 0.3174 

(Ts) 14.0278 14.0281 

( ) 0.0127 0.0127 



49 

Table 4.25:Comparison overall global best between BPSO and APSO algorithm with 

population, n =80 (VMCS). 

 

 

 

 

 

 

 

 

 

 

Figure 4.25:Convergence graph of global optimum, fmin by BPSO and APSO 

(VMCS). 

 

 

n 
 

Global best BPSO  APSO 

80 200 (Ts) 0.0500 0.0522 

(Tb) 0.3174 0.3684 

(Ts) 14.0278 10.6366 

( ) 0.0127 0.0127 



50 

 

Figure 4.26:Elapsed time by simulation of BPSO and APSO against population size 

(VMCS). 

 

 

Table 4.26:Comparison overall  best solutions  by BPSO, APSO and Coello 

algorithm (VMCS). 

 

 

 

 

 

 

 

 

 

Both algorithms were used to perform the optimization and both gives global 

optimum at around 0.013kg. Both algorithms have the best optimum point of 

0.0127kg.  BPSO has increasing its convergence speed as the population size was 

increasing and also its convergence becoming stable over iterations. In this problem 

optimization, Most of the simulations give the convergence of range in 0.0127 to 

0.02 for population size 20, 40, 60, and 80. At population size of 20, there is a larger 

fluctuation of the optimum point at between 160
th

 and 200
th

 iterations, this may due 

to the insufficient of the population size needed to be swarm over the optimum point. 

Overall best solution BPSO APSO Coello 

(Ts) 0.0500 0.0522 0.0514 

(Tb) 0.3174 0.3684 0.3516 

(Ts) 14.0278 10.6366 11.6322 

( ) 0.0127 0.0127 0.0127 



51 

From the Figure 4.5.5, the trend of time increasing time over the population size is 

almost the same as the previous pressure vessel’s optimization result. Overview of all 

these results, it can be concluded that, the optimization problem consists of multiple 

constraints needed more time to be optimized particularly the population was set is 

larger.



52 

 

CHAPTER 5 

 

 

 

5 CONCLUSION AND RECOMMENDATIONS 

 

 

 

5.1 Conclusions 

 

According to results, all related problems were optimized successfully, and 

some recommendations were introduced at below. From the results simulated, 

mathematical function (Rosenbrock and Matyas function)  require lesser population 

size to achieve their optimum point compared to the mechanical optimization 

problems (WMSR, WMPV,VMCS). This may due to the dependence of simplicity of 

the functions, which the WMSR, WMPV and VMCS problems involving the 

inequalities constraints.  

 

Due to the exist only one objective function of Rosenbrock and Matyas, the 

complication for the optimization also tend to decrease, this lead to a short time 

elapsed for optimization. The elapsed times for both mathematical functions are quite 

stable when the population size was increasing, and was not exceed 0.005 seconds. 

Compared to WMSR, WMPV and VMCS, due to its problem including a lot of 

inequalities constraints, the time elapsed was increasing over the population size. As 

we can complexity of the design problems was higher, the time elapsed for 

optimization will be longer. Such as the WMSR, there have one objective function 

and 11 inequalities constraints, the time elapsed also the highest among these three 

mechanical optimization problems which the time taken at around 4.4 seconds. 

 

For the optimization of the Rosenbrock and Matyas function, the APSO 

acceleration was not stable, meant sometimes it accelerating slower than BPSO over 

the population size. This may due to the complexity of the mathematical function are 

extremely low, so the population size used for BPSO can be as low as APSO to 



53 

achieve convergence in same time or even faster than APSO.  For the mechanical 

optimization, due to the high complexity with subject to constraints, the BPSO 

require more particles solution (population size) to converge to the optimal solutions. 

On the other hand, WMSR and WMPV optimized by APSO algorithm were 

successfully accelerated compared to BPSO, since the APSO only using the global 

best, , therefore the population size could be decreased. In summation, the APSO 

using less population size then BPSO to converge to optimal solutions, this could 

save some elapsed time. However, for VMCS problem, both algorithm were 

converge in same acceleration, this may due to the search space set by the boundaries 

were small enough to converge at the beginning of the convergence, therefore both 

algorithms were not limited by the population size. 

 

 

 

5.2 Recommendations 

 

The optimization method is tend be subjective. The setting parameters for 

PSO method would depend on what target that user want to achieve. The modified 

algorithm was not achieved better result at all the concerned problems. Therefore, 

there are several recommendations for the setting parameters for each optimization 

problems. The best setting parameters was chose which depend on the convergence 

stability which led by population size and iterations. 

 

 

 

5.2.1 Rosenbrock functions 

 

APSO is recommended to this function since APSO gives a more stable convergence 

than BPSO even in low population size. The population size and iterations 

recommended for this is 80 and 140 respectively.  

 

 

 



54 

 

5.2.2 Matyas function 

 

APSO is recommended to this function since APSO gives a more stable convergence 

than BPSO even in low population size. The population size and iterations 

recommended for this is 50 and 140 respectively. 

 

 

 

5.2.3 Weight Minimization of Speed Reducer (WMSR) 

 

BPSO is recommended for this optimization problem since it gives best optimal 

solution compared to APSO and EA-Coello. The population size and iterations 

recommended for this is 80 and 120 respectively. 

 

 

 

5.2.4 Weight Minimization of Pressure Vessel (WMPV) 

 

BPSO is recommended for this optimization problem since it gives best optimal 

solution compared to APSO and EA-Coello. The population size and iterations 

recommended for this is 100 and 120 respectively. 

 

 

 

5.2.5 Volume Minimization of  Compression Spring (VMCS) 

 

In this problems both algorithm gives same results and the stability of the 

convergence are almost the same. Therefore, both algorithm is recommended to this 

problem The population size and iterations recommended for this is 100 and 100 

respectively. 

 



55 

 

REFERENCES 

 

 

 

Afonso C.C. Lemongea, H. J. B. C. C. B. a. F. B., 2010. Constrained optimization 

problems in mechanical engineering design using a real-coded steady-state genetic 

algorithm.  

 

al., m. D. e., 2008. Particle Swarm Optimization. Particle Swarm Optimization, 

Volume 1486, p. 3(11). 

 

Bakshi, A. P. P. a. G. J., n.d. Pullulanase and alpha-amylase production by a Bacillus 

cereus isolate. Issue Letter in Applied Microbiology, pp. 210-213. 

 

Birattari, M. D. a. M., 2007. Swarm inteliigence. Swarm Intelliigence, Volume 1462, 

p. 2(9). 

 

Cohanim, R. H. a. B., n.d. A comparison of Particle Swarm optimization and Genetic 

Algorithm. 

 

Ketan Tambolia*, S. P. P. R. S., 2014. Optimal Design of a Heavy Duty Helical Gear 

Pair using Particle. 2nd International Conference on Innovations in Automation and 

Mechatronics Engineering,, pp. 513-519. 

 

Report, M. E. H. P. H. L. T., 201. Good parameters for Particle swarm optimization. 

Rossana M. S. Cruz1, H. M. P. a. R. M. M., n.d. Artificial Neural Networks and 

Efficient Optimization Techniques for Applications in Engineering.  

 

Sexton, R. S., n.d. Optimization of Neural Networks: A Comparative Analysis of the 

Genetic Algorithm and Simulated Annealing.  

 



56 

Swagatam das, A. A. a. A. K., n.d. Particle Swarm optimization and Differential 

Evolution Algorithm. Technicall Analysis, Applications and Hybridisation 

Perspectives. 

 

Xiaobui Hu, R. C. E. Y. S., n.d. Engineering optimization with Particle Swarm.  

Yangyang Li, L. J. R. S. R. S., 2015. Dynamic-context cooperative quantum-behaved 

particle swarm optimization based on multilevel thresholding applied to medical 

image segmentation. pp. 408-422. 



57 

APPENDICES 

 

 

 

APPENDIX A: MATLAB codes(BPSO) 

 

  
% Optimization of speed reducer using Basic PSO 
function bpso 

  
tic 
%% Lower and upper bounds  
Lb=[2.6 0.7  17  7.3 7.8 2.9 5]; 
Ub=[3.6 0.8  28  8.3 8.3 3.9 5.5]; 
% Default parameters [number of particles, number of iterations] 
para=[100 160 0.95]; 

  
% Call the baic PSO optimizer 
[gbest,fmin]=pso_mincon(@cost,@constraint,Lb,Ub,para); 

  
% Display results 

  
Bestsolution=gbest 
fmin 
toc 

  

  
%% Objective function 
function f=cost(x) 
f=0.7854*x(1)*(x(2)^2)*(3.3333*(x(3)^2)+14.9334*x(3)-43.0934)-

1.508*x(1)*((x(6)^2)+(x(7)^2))+7.4777*(x(6)^3+x(7)^3)+0.7854*(x(4)*(

x(6)^2)+x(5)*(x(7)^2)); 

  
% Nonlinear constraints 
function [g,geq]=constraint(x) 
% Inequality constraints 

  
g(1) = (27/(x(1)*(x(2)^2)*x(3)))-1; 
g(2) = (397.5/(x(1)*(x(2)^2)*(x(3)^2)))-1; 
g(3) = (1.93*(x(4)^3)/(x(2)*x(3)*(x(6)^4)))-1; 
g(4) = (1.93*(x(5)^3)/(x(2)*x(3)*(x(7)^4)))-1; 
g(5) = (((((745*x(4))/(x(2)*x(3)))^2 + 

(16.9*10^6))^0.5)/(0.1*(x(6)^3)))-1100; 
g(6) = (((((745*x(5))/(x(2)*x(3)))^2 + 

(157.5*10^6))^0.5)/(0.1*(x(7)^3)))-850; 
g(7) = x(2)*x(3)-40; 
g(8) = 5-(x(1)/x(2)); 
g(9) = (x(1)/x(2))-12; 
g(10) = (1.5*x(6) +1.9)/x(4) - 1; 
g(11) = (1.1*x(7) +1.9)/x(5) - 1; 
% If no equality constraint at all, put geq=[] as follows 
geq=[]; 

  

  

  



58 

%% === BPSO Solver starts here ================================ 

  
function [gbest,fbest]=pso_mincon(fhandle,fnonlin,Lb,Ub,para) 
if nargin<=4, 
    para=[100 150 0.95]; 
end 
% Populazation size, time steps and gamma 
n=para(1); time=para(2); gamma=para(3); 
% ----------------------------------------------------------------- 
%% Scalings 
 scale=abs(Ub-Lb); 
% Validation constraints 
if abs(length(Lb)-length(Ub))>0, 
    disp('Constraints must have equal size'); 
    return 
end 

  
% ----------------------------------------------------------- 
% Setting  parameters alpha, beta 
% Randomness amplitude of roaming particles alpha=[0,1] 
% Speed of convergence (0->1)=(slow->fast); % beta=0.5  
  alpha=0.9; beta=0.9;  
% A potential improvement of convergence is to use a variable 
% alpha & beta. For example, to use a reduced alpha, we have 
% gamma in [0.7, 1]; 
% ----------------------------------------------------------- 

  
%% ------------- Start Particle Swarm Optimization ----------- 
% generating the initial locations of n particles 
best=init_pso(n,Lb,Ub); 

  
fbest=1e+100; 

  

  
% ----- Iterations starts ------  
for t=1:time,      

    
% Find which particle is the global best 
  for i=1:n,    
    fval=Fun(fhandle,fnonlin,best(i,:));   

     
   if fval>fbest,  
      pbest=best(i,:); 
       %fbest=fval; 
    end 
    % Update the best 
    if fval<=fbest,  
        gbest = best(i,:); 
        fbest=fval; 
    end 

        
  end 
% ----------------------------------------------------------- 
% Randomness reduction 
alpha=newPara(alpha,gamma); 
%beta=newPara2(beta,gamma); 

  
% Move all particles to new locations     
  best=pso_move(best,gbest,pbest,alpha,beta,Lb,Ub);   



59 

  
% Output the results to screen 
    str=strcat('Best estimates: gbest=',num2str(gbest)); 
    str=strcat(str,'  iteration='); str=strcat(str,num2str(t)); 
    disp(str); 

  
end  %%%%% end of main program 

  
% ------------------------------------------------- 
% All subfunctions are listed here 
%  
% Intial locations of particles 
function [guess]=init_pso(n,Lb,Ub) 
ndim=length(Lb); 
for i=1:n, 
guess(i,1:ndim)=Lb+rand(1,ndim).*(Ub-Lb); 
end 

  
% Move all the particles toward (xo,yo) 
function ns=pso_move(best,gbest,pbest,alpha,beta,Lb,Ub) 
% This scale is important as it increases the mobility of particles 
n=size(best,1); ndim=size(best,2); 
scale=(Ub-Lb); 
for i=1:n, 
ns(i,:)=best(i,:)+beta.*randn(1,ndim).*(gbest-

best(i,:))+alpha.*randn(1,ndim).*(pbest-best(i,:)); 
end 
ns=findrange(ns,Lb,Ub); 

  

  
% Application of simple lower and upper bounds 
function ns=findrange(ns,Lb,Ub) 
n=length(ns); 
for i=1:n, 
  % Apply the lower bound 
  ns_tmp=ns(i,:); 
  I=ns_tmp<Lb; 
  ns_tmp(I)=Lb(I); 

   
  % Apply the upper bounds  
  J=ns_tmp>Ub; 
  ns_tmp(J)=Ub(J); 
  % Update this new move  
  ns(i,:)=ns_tmp; 
end 

  
% Reduction of the randomness 
function alpha=newPara(alpha,gamma); 
% More elaborate scheme can be used. 
alpha=alpha*gamma; 

  
%function beta=newPara2(beta,gamma); 
% More elaborate scheme can be used. 
%beta=beta*gamma; 

  
% ------------------------------------------------------------------

--- 
% Computing the d-dimensional objective function with constraints 
function z=Fun(fhandle,fnonlin,u) 



60 

% Objective 
z=fhandle(u); 

  
% Apply nonlinear constraints by the penalty method 
% Z=f+sum_k=1^N lam_k g_k^2 *H(g_k) where lam_k >> 1  
z=z+getconstraints(fnonlin,u); 

  
function Z=getconstraints(fnonlin,u) 
% Penalty constant >> 1 
PEN=10^15; 
lam=PEN; lameq=PEN; 

  
Z=0; 
% Get nonlinear constraints 
[g,geq]=fnonlin(u); 

  
% Apply all inequality constraints as a penalty function  
for k=1:length(g), 
    Z=Z+ lam*g(k)^2*getH(g(k)); 
end 
% Apply all equality constraints (when geq=[], length->0) 
for k=1:length(geq), 
   Z=Z+lameq*geq(k)^2*geteqH(geq(k)); 
end 

  
% Test if inequalities hold so as to get the value of the Index 

function 
% H(g) which is something like the Index in the interior-point 

methods 
function H=getH(g) 
if g<=0,  
    H=0;  
else 
    H=1;  
end 

  
% Test if equalities hold 
function H=geteqH(g) 
if g==0, 
    H=0; 
else 
    H=1;  
end 

  

  
%% -----------------------------------------------------------------

------ 
%% End of this program ---------------------------------------------

------ 

 

 

 

 

 

 



61 

APPENDIX B: MATLAB codes(APSO) 

 

 

  
% Optimization of speed reducer using Accelerated PSO 
function apso 

  
tic 
%% Lower and upper boundaries  
Lb=[2.6 0.7  17  7.3 7.8 2.9 5]; 
Ub=[3.6 0.8  28  8.3 8.3 3.9 5.5]; 

  
% Default parameters para=[number of particles, number of iterations] 
para=[100 160 0.95]; 

  
% Call accelerated PSO optimizer function 
[gbest,fmin]=pso_mincon(@cost,@constraint,Lb,Ub,para); 

  
% Display result 

  
Bestsolution=gbest 
fmin 
toc 

  

  
%% Objective function 
function f=cost(x) 
f=0.7854*x(1)*(x(2)^2)*(3.3333*(x(3)^2)+14.9334*x(3)-43.0934)-

1.508*x(1)*((x(6)^2)+(x(7)^2))+7.4777*(x(6)^3+x(7)^3)+0.7854*(x(4)*(

x(6)^2)+x(5)*(x(7)^2)); 

  
% constraints 
function [g,geq]=constraint(x) 
% Inequality constraints 

  
g(1) = (27/(x(1)*(x(2)^2)*x(3)))-1; 
g(2) = (397.5/(x(1)*(x(2)^2)*(x(3)^2)))-1; 
g(3) = (1.93*(x(4)^3)/(x(2)*x(3)*(x(6)^4)))-1; 
g(4) = (1.93*(x(5)^3)/(x(2)*x(3)*(x(7)^4)))-1; 
g(5) = (((((745*x(4))/(x(2)*x(3)))^2 + 

(16.9*10^6))^0.5)/(0.1*(x(6)^3)))-1100; 
g(6) = (((((745*x(5))/(x(2)*x(3)))^2 + 

(157.5*10^6))^0.5)/(0.1*(x(7)^3)))-850; 
g(7) = x(2)*x(3)-40; 
g(8) = 5-(x(1)/x(2)); 
g(9) = (x(1)/x(2))-12; 
g(10) = (1.5*x(6) +1.9)/x(4) - 1; 
g(11) = (1.1*x(7) +1.9)/x(5) - 1; 
% no equality constraint at all 
geq=[]; 
%% === End functions ============================== 

  

  
%% === APSO algorithm ================================ 

  
function [gbest,fbest]=pso_mincon(fhandle,fnonlin,Lb,Ub,para) 
if nargin<=4, 



62 

    para=[100 150 0.95]; 
end 
% Population size, iterations and gamma 
n=para(1); time=para(2); gamma=para(3); 
% ----------------------------------------------------------------- 
%% Scalings 
 scale=abs(Ub-Lb); 
% Validation constraints 
if abs(length(Lb)-length(Ub))>0, 
    disp('Constraints must have equal size'); 
    return 
end 

  
% ----------------------------------------------------------- 
% Setting  parameters alpha, beta 
  alpha=0.9; beta=0.9;  

  
% gamma in [0.7, 1] is the best; 
% ----------------------------------------------------------- 

  
%% ------------- Start Particle Swarm Optimization ----------- 
% generating the initial locations of n particles 
best=init_pso(n,Lb,Ub); 

  
fbest=1.0e+100; 
% ----- Iterations starts ------  
for t=1:time,      

    
% Find which particle is the global best 
  for i=1:n,    
    fval=Fun(fhandle,fnonlin,best(i,:));  
    % Update the best 
    if fval<=fbest,  
        gbest=best(i,:); 
        fbest=fval; 
    end 

         
  end 
% ----------------------------------------------------------- 
% Randomness reduction 
alpha=newPara(alpha,gamma); 

  
% Move all particles to new locations     
  best=pso_move(best,gbest,alpha,beta,Lb,Ub);   

  
% Output the results to screen 
    str=strcat('Best estimates: gbest=',num2str(gbest)); 
    str=strcat(str,'  iteration='); str=strcat(str,num2str(t)); 
    disp(str); 

  
end  %%%%% end of main program 

  
% ------------------------------------------------- 
% All subfunctions are listed here 
%  
% Intial locations of particles 
function [guess]=init_pso(n,Lb,Ub) 
ndim=length(Lb); 
for i=1:n, 



63 

guess(i,1:ndim)=Lb+rand(1,ndim).*(Ub-Lb); 
end 

  
% Move all the particles toward (xo,yo) 
function ns=pso_move(best,gbest,alpha,beta,Lb,Ub) 
% This scale is important as it increases the mobility of particles 
n=size(best,1); ndim=size(best,2); 
scale=(Ub-Lb); 
for i=1:n, 
ns(i,:)=best(i,:)+beta*(gbest-best(i,:))+alpha.*randn(1,ndim).*scale; 
end 
ns=findrange(ns,Lb,Ub); 

  
% Application of simple lower and upper bounds 
function ns=findrange(ns,Lb,Ub) 
n=length(ns); 
for i=1:n, 
  % Apply the lower bound 
  ns_tmp=ns(i,:); 
  I=ns_tmp<Lb; 
  ns_tmp(I)=Lb(I); 

   
  % Apply the upper bounds  
  J=ns_tmp>Ub; 
  ns_tmp(J)=Ub(J); 
  % Update this new move  
  ns(i,:)=ns_tmp; 
end 

  
% Reduction of the randomness 
function alpha=newPara(alpha,gamma); 
% More elaborate scheme can be used. 
alpha=alpha*gamma; 
% ------------------------------------------------------------------

--- 
% Computing the d-dimensional objective function with constraints 
function z=Fun(fhandle,fnonlin,u) 
% Objective 
z=fhandle(u); 

  
% Apply nonlinear constraints by the penalty method 
% Z=f+sum_k=1^N lam_k g_k^2 *H(g_k) where lam_k >> 1  
z=z+getconstraints(fnonlin,u); 

  
function Z=getconstraints(fnonlin,u) 
% Penalty constant >> 1 
PEN=10^15; 
lam=PEN; lameq=PEN; 

  
Z=0; 
% Get nonlinear constraints 
[g,geq]=fnonlin(u); 

  
% Apply all inequality constraints as a penalty function  
for k=1:length(g), 
    Z=Z+ lam*g(k)^2*getH(g(k)); 
end 
% Apply all equality constraints (when geq=[], length->0) 
for k=1:length(geq), 
   Z=Z+lameq*geq(k)^2*geteqH(geq(k)); 



64 

end 

  
% Test if inequalities hold so as to get the value of the Index 

function 
% H(g) which is something like the Index in the interior-point 

methods 
function H=getH(g) 
if g<=0,  
    H=0;  
else 
    H=1;  
end 

  
% Test if equalities hold 
function H=geteqH(g) 
if g==0, 
    H=0; 
else 
    H=1;  
end 

  

  
%% -----------------------------------------------------------------

------ 
%% End of this program ---------------------------------------------

------ 

 


