Exception Handling for 5-Stage Pipeline Micro-Architecture

BY

ARTHUR PUAN CHOK HO

Supervised by

Mr. Mok Kai Ming

A Report

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONS)

COMPUTER ENGINEERING

Faculty of Information and Communication Technology (Perak Campus)

JUNE 2015

UNIVERSITI TUNKU ABDUL RAHMAN

Title:	
	······································
Acade	mic Session:
I	(CAPITAL LETTER)
declare that I allow this Final Year Pr	roject Report to be kept in
Universiti Tunku Abdul Rahman Lib	rary subject to the regulations as follows:
1. The dissertation is a property of the second sec	the Library.
7 The Librony is allowed to realize	onias of this dissertation for assidentia numeros
The Library is allowed to make c	copies of this dissertation for academic purposes.
The Library is allowed to make on the compared to make on the compared to make on the compared to the	copies of this dissertation for academic purposes.
The Library is allowed to make c	copies of this dissertation for academic purposes.
The Library is allowed to make of the contract of the	copies of this dissertation for academic purposes. Verified by,
The Library is allowed to make of the comparison of the co	copies of this dissertation for academic purposes. Verified by,
 The Library is allowed to make of the second se	copies of this dissertation for academic purposes. Verified by,
 The Library is allowed to make of the comparison of t	copies of this dissertation for academic purposes. Verified by, (Supervisor's signature)
 The Library is allowed to make a (Author's signature) Address: 	copies of this dissertation for academic purposes. Verified by, (Supervisor's signature)
2. The Library is allowed to make o (Author's signature) Address:	copies of this dissertation for academic purposes. Verified by, (Supervisor's signature)
2. The Library is allowed to make o (Author's signature) Address:	copies of this dissertation for academic purposes. Verified by, (Supervisor's signature)
2. The Library is allowed to make a (Author's signature) Ad dress:	copies of this dissertation for academic purposes. Verified by, (Supervisor's signature)

DECLARATION OF ORIGINALITY

I declare that this report entitled "**Exception Handling for 5-Stage Pipeline Micro-Architecture**" is my own work except as cited in the references. The report has not been accepted for any degree and is not being submitted concurrently in candidature for any degree or other award.

Signature : _____

Name : _____

ACKNOWLEDGEMENT

I would like to express my sincere appreciation to my final year project supervisor, Mr Mok Kai Ming for his guidance throughout the whole project with good patience and also clear explanation of all sorts of problems to help me to complete my project. This project might not be able to finish without his guidance. A million thanks to you for spending so much time to guide me throughout the project.

Secondly, I want to say thank you to my friends who give a lot of help when I face problem, comfort me when I am stressed, encourage and support me during hard times.

Lastly, I must say thanks to my parents and my family for their love, unconditional support and continuous encouragement throughout the course.

ABSTRACTS

This project, as stated in the title of the project, is to develop exception handling for 5-stage pipeline Micro-Architecture. Coprocessor (CP0) is implemented independently to receive and decode exception and interrupt signal which come from CPU or external device. In this project, coprocessor 0 (CP0) is developed. Component and exception/interrupt handling mechanism for software and hardware are developed. CP0 architecture and micro-architecture specification will be developed and implemented with HDL (Hardware Description Language) VERILOG. A series of test cases are developed to verify CP0 functionality. Lastly, the CP0 will integrate with RISC32 core. Test program will be developed to verify CP0 functionality. An exception handler is also developed to complete the whole exception/interrupt handling mechanism. Exception handler will examine the causes and dispatch CPU to appropriate ISR.

Table of Contents

	DECLARATION OF ORIGINALITY	2
	ACKNOWLEDGEMENT	3
	ABSTRACTS	4
	List of Figures	8
	List of Table	8
	List of Abbreviation	9
	Chapter 1 Introduction	10
	1.1 Background Information	10
	1.1.1 MIPS – RISC Processor	10
	1.1.2 Coprocessor 0 (CP0)	10
	1.1.4 Exception	10
	1.1.4 Interrupt	11
	1.2 Project Motivation	12
	Chapter 2 Literature Review	13
	2.1 Exception and interrupt	13
	2.1.1 Precise Exception	14
	2.1.2 Vectored interrupt	14
	2.1.3 Interrupt Service Routine (ISR)	15
	2.1.4 Interrupt Processing	15
	2.1.5 Exception Handling	17
	2.1.6 Exception Handling by MIPS	17
	2.2 Coprocessor 0 (CP0)	18
	2.2.1 MIPS CP0 Implemented Register	18
	2.2.2 BusCtrl Register	19
	Figure 2.2 Bus control (BusCtrl) register.	19
	2.2.3 BadVAddr Register	20
	2.2.4 Count and Compare Register	20
	2.2.4 PortSize Register	20
	2.2.4 Status Register (SR)	21
BI Fa	T(Hons) Computer Engineering aculty of Information and Communication Technology, UTAR	5

2.2.5 Cause Register	21
2.2.6 EPC	22
2.2.7 Instructions Associate with Exception Handling	23
2.3 MIPS Memory Map	24
Chapter 3 Problem Statement, Project Scope and Objectives	26
3.1 Problem Statement	26
3.2 Project Scope	26
3.3 Project Objective	27
3.4 Impact and Significance	28
3.5 Project Plan	29
Chapter 4 Methods/Technologies Involved	30
4.1 Design Methodology	30
4.1.1 System Level Design	31
4.1.2 Architecture Level Design	31
4.1.3 RTL Design	32
4.2 Design Tools	33
4.3 Exception/Interrupt Handling Mechanism	35
4.3.1 Exception/Interrupt Handling	35
4.3.2 RISC32 Exception/Interrupt Handling Mechanism	35
4.3.2.1 Hardware Handling	35
4.3.2.1 Software Handling	38
4.4 Instruction used in Exception/Interrupt Handling	40
4.5 Pipeline Flushing	41
Chapter 5 System Specification	42
5.1 System Feature	42
5.1.1 System Functionality	43
5.2 Operating Procedure	44
5.3 Naming Convention	44
5.4 RISC32 Pipeline Processor with CP0 and I/O Description	45
5.4.1 Processor Interface	45
5.4.2 I/O Pin Description	45
5.5 Memory Map	46
BIT(Hons) Computer Engineering Faculty of Information and Communication Technology, UTAR	6

5.5.1 Memory map description	46
5.6 System Register	48
5.6.1 General Purpose Register	48
5.6.2 Special Purpose Register	48
5.6.3 Program Counter Register	49
5.7 Instruction Formats and Addressing Modes	50
5.7.1 Instruction Formats	50
5.7.2 Addressing Modes	51
5.8 Supported Instructions Set	53
Chapter 6 Micro Architecture Specification	56
6.1 Design Hierarchy and Partitioning	56
6.2 Micro-Architecture (Block Level)	57
6.2.1 Micro-Architecture without CP0	57
6.2.2 Micro-Architecture with CP0	58
6.3 Coprocessor 0 Block	59
6.3.1 Coprocessor 0 Block interface	59
6.3.2 I/O Pin Description	60
6.3.3 Internal Operation	62
Chapter 7 Verification	64
7.1 CP0 Test Program	64
7.1.1 Exception Handler	65
7.1.2 Simulation Result	67
Chapter 8 Conclusion	80
8.1 Conclusion	80
8.2 Discussion and Future Work	81
REFERENCE	82
Appendix	83

List of Figures

Figure 2.1 Interrupt Handling Process	16
Figure 2.2 Bus control (BusCtrl) register	19
Figure 2.3 Status Register Layout	21
Figure 2.4 Cause Register Layout	21
Figure 2.5 Instruction used to access CP0 register	23
Figure 2.6 MIPS Memory Map	24
Figure 2.7 Kernel Segment	25
Figure 3.1 Gantt Chart for Project 1	29
Figure 3.2 Gantt Chart for Project 2	29
Figure 4.1 General Design Flow without Logic Synthesis and Physical Design	30
Figure 4.2 Hardware Exception Handling Flow Chart	36
Figure 4.3 Hardware Interrupt Handling Flow Chart	37
Figure 4.4 Software Exception Handling Flow Chart	39
Figure 4.5 mfc0 Instruction Format	40
Figure 4.6 mtc0 Instruction Format	40
Figure 4.7 EPC Instruction Format	40
Figure 5.1 Memory Map	47
Figure 5.2 Instruction Format	50
Figure 6.1 Block Partitioning	56
Figure 6.2 System Micro-Architecture Without CP0	57
Figure 6.3 System Micro-Architecture With CP0	58

List of Table

Table 2.1 Examples of event and type of exception	13
Table 2.2 Standard CP0 register and usage	18
Table 2.3 Exception code and causes	22
Table 4.1 Comparison Between Simulators	34
Table 5.1 RISC32 Features	42
Table 5.2 Naming Convention	44
Table 5.3 RISC32 Processor I/O Description	45
Table 5.4 Memory Map	46
Table 5.5 General Purpose Register	48
Table 5.6 Special Purpose Register	48
Table 5.7 CP0 Register	49
Table 5.8 Instruction Format Definition	50
Table 5.9 Instruction Set	53
Table 6.1 Design Hierarchy	56
Table 6.2 CP0 I/O Pin Description	62

List of Abbreviation

- MIPS Microprocessor without Interlocked Pipeline Stages
- RISC Reduced Instruction Set Computing
- CPU Central Processing Unit
- CP0 Coprocessor 0
- IP Intellectual Property
- ISA Instruction Set Architecture
- RTL Register Transfer Level
- I/O Input output
- ISR Interrupt service routine

Chapter 1 Introduction

1.1 Background Information

1.1.1 MIPS – RISC Processor

MIPS(Microprocessor without Interlocked Pipeline Stages) is a RISC(Reduced Instruction Set Computing) based processor developed by MIPS Technologies which executes instructions directly using hardware implementation without microprogrammed control. MIPS implementations are primarily used in embedded systems such as routers, residential gateways in networking and video games console such as Sony Playstation, Playstation 2, Playsation Portable and later used in many of Silicon Graphics computer products.

1.1.2 Coprocessor 0 (CP0)

MIPS exceptions/interrupts are handled by a peripheral device to the CPU known as coprocessor 0 (CP0). It is named as Coprocessor because it is separated from the main core and it is meant to handle the exceptional situation. Coprocessor 0 contains several registers used to configure exception handling and report the status of current exceptions. When exception occurs, CPU will suspend normal instruction execution and CP0 will save the exception states. The exception handler will examine the cause and handle the exception by providing appropriate service [1].

1.1.4 Exception

Exception is something that disrupts the normal flow of instruction. There are two type of exception which is asynchronous exception and synchronous exception. Asynchronous exception is the exception that occurs with no relation to the program executed while synchronous exception is exception that occurs at the same place every time the program is executed with the same data and memory allocation.

1.1.4 Interrupt

Interrupt is an event external to the current instruction execution that causes a change to the normal flow of instruction execution. Interrupts are asynchronous exception. Interrupts can be either software or hardware. For hardware interrupts, external devices such as mouse, keyboard, printers need CPU service. These interrupts are handled by Coprocessor 0 (CP0).

1.2 Project Motivation

A 32-bit 5-stage pipeline RISC soft-core can be advantageous in creating a core–based environment to assist research and development work in the area of developing Intellectual Properties (IP) cores. However, there are limitations in obtaining such workable core-based design environment.

Microchip design companies develop microprocessors cores as IP for commercial purposes. The microprocessor IP includes information on the entire design process for the front – end (modelling and verification) and back – end (layout and physical design) IC design. These are trade secrets of a company and certainly not made available in the market at an affordable price for research purposes.

Several freely available microprocessor cores are freely available from source such as the miniMIPS (<u>www.opencores.org</u>), the PH processor (Leicester University), uCore, Yellow Star (Manchester University), etc. Unfortunately, these processors do not implement the entire MIPS Instruction Set Architecture (ISA) and lack of comprehensive documentation. This makes them unsuitable for reuse and customization.

Verification is vital for proving the functionality of any digital design. The microprocessor cores mentioned above are handicapped by incomplete and poorly developed verification specifications. This hampers the verification process, slowing down the overall design process.

The lack of well – developed verification specifications for these microprocessor cores will inevitably affect the physical design phase. A design needs to be functionally proven before the physical design can proceed smoothly. Otherwise, if the front – end design needs to be changed, the physical process also needs to be redone.

The RISC32 project will look into all the above problems and create a 32-bit RISC corebased development environment to assist research work in the area of application specific hardware modeling. In the RISC32 project, it is divided into several units based on MIPS architecture.

Chapter 2 Literature Review

2.1 Exception and interrupt

In MIPS, exception is described as something that disrupts the normal flow of execution. Exception is divided into two types which are asynchronous exception and synchronous exception. Asynchronous exception is exception that occurs with no relation to the program executed and normally caused by hardware such as I/O module called interrupt, memory error and power supply failure. Synchronous exception occurs every time when a program executed with the same data and same memory allocation which normally caused by arithmetic overflow, undefined instruction and traps.

In detail, exception can be differentiated into:

1. External events: event outside CPU core which send interrupt signal to CPU to get attention. These are interrupts. Interrupts are used to direct the attention of the CPU to some external event [2]. Interrupts are the only exception conditions that arise from something independent from CPU's normal instruction execution.

2. Memory translation exception: happens when memory address decoding error, a program tried to write to a write-protected page.

3. Program or hardware-detected error: arise when nonexistent instruction is detected (invalid instruction format), instruction that illegal in user-privilege is used, co-processor instruction executed when appropriate status register flag is disabled and integer overflow.

4. Data integrity problem: caused by bus to bus transferred data error (parity errors)

5. System calls and traps: caused by instruction themselves, for example system call instruction, conditional traps and breakpoints. These instructions are used to generate exception to interrupt the program for certain purpose.

Type of event	From where?	MIPS terminology
I/O device request	External	Interrupt
Invoke the operating system from user program	Internal	Exception
Arithmetic overflow	Internal	Exception
Using an undefined instruction	Internal	Exception
Hardware malfunctions	Either	Exception or interrupt

Table 2.1 Examples of event and type of exception [3].

2.1.1 Precise Exception

MIPS architecture implements precise exception. Precise exception means when exception occurred, the particular exception will only point to the instruction that cause the exception. Besides, all the instructions before will be executed while all the later instructions will not be executed. This method eases the programmer work because they can ignore the timing effect of the CPU implementation.

The features provided with Precise Exception are:

- Unambiguous proof of cause: EPC will point only to the instruction that cause the exception. However, EPC might also point to the preceding branch for an instruction is in a branch delay slot, but will signal occurrence of this using the *BD* bit.
- Exceptions are seen in instruction sequence: In pipeline CPU, exception can arise in several different stage of execution. For example, a lw(load word) instruction suffer Memory Translation Exception will only arise exception signal in MEM stage (4th stage in pipeline), but at the same time, a later instruction that cause decoding error in ID stage (Instruction decode, 2nd stage in pipeline CPU) will arise exception first. To avoid this problem, MIPS only serve the exception if all previous instruction is complete successfully.
- Subsequent Instructions Nullified: Because of pipelining, instructions lying in sequence after the victim at EPC have been started. But MIPS guarantee no effect on visible register or CPU after return from Exception Handler.

2.1.2 Vectored interrupt

Vectored interrupt is an interrupt handling method in which the causes of interrupt will directly affect the address to be dispatch. Each interrupt input will be given a unique address, corresponding to its causes. This interrupt handling method is not implemented in MIPS processor.

2.1.3 Interrupt Service Routine (ISR)

Interrupt service routine is software that hardware or software invokes in response to an interrupt [4]. Interrupt service routine then will examine the interrupt and determine ways to handle it. After handle the interrupt, it will return from interrupt and then continue the program execution.

2.1.4 Interrupt Processing

Most processors generally share the same process of interrupt processing but only minor differences in how the processors save their status and call the interrupt service routine. When an interrupt occurs, the processor will finish the current instruction and store status and return address. Then the processor will call the corresponding interrupt service routine and start executes the interrupt service routine. Finally, when the processor done the execution of interrupt service routine, it will return from the interrupt and resume the program execution.

Figure 2.1 Interrupt Handling Process

2.1.5 Exception Handling

Any MIPS exception handler routine has to go through the same stages.

- Bootstrapping: When enter the exception handler, very little of the state of the interrupted program has been saved. So the first step is make yourself a enough room to do whatever you want without overwriting something vital to the software that has just been interrupted [2].
- Dispatching different exceptions: Get the exception code from the cause register. It tells what and why the exceptions occur [2].
- Constructing the exception processing environment: Complex exception handling routines will probably be written in high level language and will want to be able to use standard library routines. A piece of stack memory that isn't be used by any other piece of software has to be provided and save all the values of any CPU registers that might be vital to the interrupted program and that called subroutines are allowed to change [2].
- Processing the exception: Here is where you can do whatever you like.
- Preparing to return: Return into low level dispatch code from subroutine (high level function). Saved registers are restored and CPU return to its safe (kernel mode, exceptions off) state by changing status register value to its postexception value [2].
- Returning from an exception: instruction eret is used. It clears the status register EXL bit and return to the address stored in EPC [2].

2.1.6 Exception Handling by MIPS

When exception occurs, CPU suspends normal instructions execution. CP0 will save the exception states. CP0 records the cause of exception in cause register. It then saves the return address in exception program counter (EPC). Processor will go into kernel mode. MIPS fixed the exception handling code at 0x8000 0180 where the exception handler

examine the cause of exception and jump to a more specific code also in kernel to handle exception. Lastly, eret is used to resume normal program execution if not terminated.

2.2 Coprocessor 0 (CP0)

MIPS coprocessor 0 is a piece of hardware implementation that implements independently from the main processor core that functions to handle interrupt from hardware or exception from program or the instruction that is executing.

2.2.1 MIPS CP0 Implemented Register

For commercial product, MIPS co-processor 0 implemented 32 registers according to MIPS R4000 specification [5]. There is only few registers which are important for all type of processor while most of the registers implemented only for dedicated function of specific processor. The registers that are important for all processors are Status Register (SR), Exception Program Counter (EPC), Cause Register, Count Register, Compare Register, Bus Control Register (BusCtr), Port Size Register and Bad Virtual Address (BadVAddr Register).

Name	Register no.	Usage
BusCtrl	\$2	Configure bus interface signals. Needs to be setup
		to match hardware implementation
BadVAddr	\$8	Offending memory reference
Count	\$9	Current Timer, which increment every 10ms
PortSize	\$10	Used to flag some program address regions as 8-bit
		or 16-bits wide. Must be programmed to match
		hardware implementation.
Compare	\$11	Interrupt when Count Register ≡ Compare Register
Status	\$12	Interrupt mask, enable bits and status when
		exception occurred
Cause	\$13	Exception type and pending interrupt
EPC	\$14	Address of instruction that caused exception

2.2.2 BusCtrl Register

This register configures buses in a cheap and simple way, without involving extra circuitry. Figure below shows the layout of BusCtrl register.

31	30-28	27-26	25-24	23-22	21	20	19	18-16	15-14	13	12	11	10-0
LOCK	10	Mem	ED	I/O	BE	1	BE	11	BTA	DMA	TC	BR	0x300

Figure 2.2 Bus control (BusCtrl) register.

- Lock [31]: Is used to prevent changes of the register field after initialized is done. Clear when system is reset.
- 10 (can be other value) [30:28]: Specified bit pattern is written in this field.
- Mem [27:26]: "MemStrobe Control". Set in bit position 27 is to enable memory reads while set in bit position 26 is to enable memory write.
- ED [25:24]: "ExtDataEn control". Encoded as for memory. In order to make this pin as output, BR[10] field must be zero[R3000 spec].
- IO [23:22]: "IOStrobe control". Encoded as for memory. In order to make this pin as output, BR[10] field must be zero[R3000 spec].
- BE16: "BE16(1:0) read control". "0" to make these pins active on write cycles only[R3000 spec].
- BE: "BE(3:0) read control". "0" to make these pins active on write cycles only [R3000 spec].
- BTA [15:14]: "Bus Turn Around Time". Program with a binary number between 0 and 3 for 0-3 cycle of guaranteed delay between the end of a read cycle and the start of the address phase of the next cycle. This field enables the use of devices with slow tri-state time, and enables the system designer to save cost by omitting data transceivers [R3000 spec].

- DMA [13]: "DMA Protocol Control". When is set, CPU uses its DMA control pins to communicate its desire for the bus even while a DMA is in progress[R3000 spec].
- TC [12]: "TC Negation Control". TC is the output pin which is activated when the internal timer register *Count* reaches the value stored in *Compare*. Clear this field make TC pin just pulse for a couple of clock periods; set this field TC pin will be asserted on a compare and remain asserted until software explicitly clears it (BY rewriting *Compare* with any value) [R3000 spec].
- BR[11]: "SBrCond(3:2) control". Clear to recycle the SBrCond(3:2) pins as IOStrobe and ExtDateEn respectively [R3000 spec].

2.2.3 BadVAddr Register

This register is used to store memory address where the exceptions were occurred. For example, instruction LW (Load Word) from data memory address X which lead to memory address translate error (which the address provided is not valid, wrongly aligned or outside the range that supposed to be) will store in this register.

2.2.4 Count and Compare Register

This is a 24-bit counter/timer that running at CPU cycle rate. Count register is counting up and reset to zero when the count has reached the value in the Compare register. When Count Register is reset, TC in BusCtrl register will asserted high for a clock cycle. This is meant to generate an interrupt signal when TC is connected to interrupt input. After reset, the Compare register value will set to $0xFF_FFFF$, which is maximum value of 24-bit, hence, the counter can runs up to 2^{24} -1 (1677215).

2.2.4 PortSize Register

This register is used to flag different part of the program address space for accesses to 8, 16 or 32 bit wide memory. This register must be programmed to match hardware implementation.

2.2.4 Status Register (SR)

This register contains the interrupt masking bit which enable/disable particular interrupt and status information. The layout of status register is shown below.

15-10	9-8	1	0
IM7-IM2	IM1-IM0	EXL	IE

Figure 2.3 Status Register Layout

status[15:10] is external hardware Interrupt Masking bit, which used to enable/disable interrupt level. For example, if IM*i* is set to "1", interrupt of level *i* is enable. On the other hand, status[9:8] (IM1-IM0) is software writeable bit, which allowed software to mask/unmask the interrupt level.

status[1] is exception level (EXL) bit, is used to determine whether the processor is in kernel or user mode. It is set by any exception. When set to "1", it indicates that the processor is in kernel mode, and hence, disables all the interrupt. When set to "0", it indicates that processor is in user mode, which allows interrupt happen.

Status[0] is global interrupt enable (IE). When it is set to "1", processor permits interrupt; else no interrupt will be permitted. This bit usually configured by OS to control the process whether accept interrupt or not.

2.2.5 Cause Register

Cause of any exception and pending exception are stored in Cause Register. The exception code is stored as an unsigned integer in cause[6:2] while pending exception is stored in cause[15:8]. Figure below shows the Cause Register layout.

31-16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	IP7	IP6	IP5	IP4	IP3	IP2	IP1	IP0		E	lxc	:Co	de	е		

Figure 2.4 Cause Register Layout

When an interrupt occurs, the particular interrupt level field will be set to "1" and clear after the interrupt is served. However, SPIM only simulate 6 out of 8 pending interrupt which is IP7-IP2. IP1 and IP0 are software interrupt bit and not visible in SPIM.

The exception code, cause[6:2] is used to indicate the cause of particular interrupt. Table Below shows the exception code implemented by SPIM corresponding to different exception causes.

Code	Name	Description
0	INT	Interrupt
4	ADDRL	Load from an illegal address
5	ADDRS	Store to an illegal address
6	IBUS	Bus error on instruction fetch
7	DBUS	Bus error on data reference
8	SYSCALL	syscall instruction executed
9	BKPT	break instruction executed
10	RI	Reserved instruction
12	OVF	Arithmetic overflow

Table 2.3 Exception code and causes [6]

The left over part, exception code 1-3 is reserved for virtual memory (TLB exception), exception code 11 is to indicate particular coprocessor is missing while exception code above 12 are used for floating point exception or reserved.

2.2.6 EPC

EPC is used to store the return point when return from exception. In other word, EPC is used to store the address of the instruction that cause exception.

2.2.7 Instructions Associate with Exception Handling

Some instructions are dedicated to access the register in MIPS coprocessor 0. In order to access coprocessor 0 register, the code must have kernel privilege. Table below shows the instruction and usage of the instructions.

Instruction	Comment
mfc0 Rdest, C0src	Move the content of coprocessor's register COsrc to Rdest
mtc0 Rsrc, C0dest	Integer register Rsrc is moved to coprocessor's register Codest
lwc0 C0dest, address	Load word from address in register Codest
swc0 COsrc, address	Store the content of register COSTC at address in memory

Figure 2.5 Instruction used to access CP0 register [6].

2.3 MIPS Memory Map

Memory map in MIPS is not implemented in hardware. It just a convention followed by most programmer. However, in real world, this convention is applied to almost all the MIPS CPU. Figure below shows MIPS memory map.

Figure 2.6 MIPS Memory Map [1]

Figure 2.7 Kernel Segment [1]

MIPS partition memory into 2 major parts, User Space and Kernel Space, where 0x0000_0000 to 0x7FFF_FFFC is user space and everything above 0x7FFF_FFFC is kernel space. Below are the functions of each memory space.

0x0000_0000 – 0x7FFF_FFC: This lower 2GB memory allocation is permitted in user mode. It contains stack segment, data segment, text segment and reserved memory space.

kseg0 0x8000_0000 – 0x9FFF_FFC: This 512MB memory region is normally accessed through cache. Exception and page table base register are allocated here. Here is also the exception entry point (software exception handling).

kseg1 0xA000_0000 – 0xBFFF_FFC: Boot ROM, 512MB memory region which initialize CPU after reset.

kseg2 0xC000_0000 - 0xFFFF_FFFC: Kernel module, only accessible in kernel mode.

Chapter 3 Problem Statement, Project Scope and Objectives

3.1 Problem Statement

Up to date, a new micro architecture is re-implemented. There is a need to port CP0 to the newly implemented micro architecture. The new micro architecture only contains datapath unit, control unit, memory unit. CP0 is added to the new micro architecture in this project. After port in CP0 into the new micro architecture, the functionality is verified again to make sure every part is functioning properly. Kernel text segment cache and kernel data segment cache is added to the processor to store exception handler instruction. This project aims to implement CP0 which is able to handle 4 exceptions which are sign overflow, undefined instruction, syscall and I/O interrupt. The CP0 needed to be implemented to handle exception which may be caused by hardware or software. Hence, this RISC32 Coprocessor project is initiated.

3.2 Project Scope

This project aims design a coprocessor 0, implements into RISC32 microprocessor. The coprocessor worked as exception handler to handle exception for 5-stage pipeline microarchitecture. Specifications at architecture level and micro architecture level will be developed and the modeling of design will be constructed using Verilog. Functional behavior verification will be constructed using testbench and lastly integrate the design into 32-bit RISC processor. A set of test program will be used to verify the whole system. Lastly a report will be written. The report will document chip specification, architecture specification, microarchitecture specification, verification specification, test plan and verification result.

3.3 Project Objective

The objectives of this project are as follows:

- To analyze the existing implementation cp0 done by senior.
- To develop a new coprocessor 0.
- To develop a testbench to verify the functionality of coprocessor 0.
- To develop exception handler to handle exceptions.
- To design kernel text segment cache and kernel data segment cache.
- To integrate Coprocessor 0 into the RISC-32 processor.
- To develop test program to test the functionality of coprocessor 0 to handle 4 type of exceptions which are sign overflow, undefined instruction, syscall and I/O interrupt.

3.4 Impact and Significance

As a summary to the problem statement, there is a lack of well-developed and wellfounded 32-bit RISC microprocessor core-based development environment. The development environment refers to the availability of the following:

- A well-developed design document, which includes the chip specification, architecture specification and micro-architecture specification.
- A fully functional well-developed 32-bit RISC architecture core in the form of synthesis-ready RTL written in Verilog HDL.
- A well-developed verification environment for the 32-bit RISC core. The verification specification should contain suitable verification methodology, verification techniques, test plans, testbench architectures etc.
- A complete physical design in Field Programmable Gate Array (FPGA) with documented timing and resource usage information.

With the available well-developed basic 32-bit RISC RTL model (which has been fully functional verified), the verification environment and the design documents, researchers can develop their own specific RTL model as part of the development environment (whether directly modifying the internals of the processor or interface to the processor) and can quickly verify their model to obtain results, without having to worry about the development of the verification environment and the modeling environment. This can speed up the research work significantly. For example, a researcher may have developed an image-processing algorithm and modified the algorithm to obtain a structure that suits the hardware implementation. The structure can be modeled in Verilog as part of a specialized datapath or as a coprocessor interfacing to the RISC processor.

3.5 Project Plan

Task Name	Duration	Start	Finish	Predecessors	Resource I	1	25	Jun	'14 • 1	5 22	Jul	14	20 27	Auc	g '14	7 24	Sep) '14	21	
						10	25	1 (0 JI.	22	29 0	15	20 21	5	101	1 24	51	14	21	2
Project 1	65 days	Mon 26/5/14	Fri 22/8/14																	
Scope, Objective and Impact	8 days	Mon 26/5/14	Wed 4/6/14				Ċ													
Research and fact findings	15 days	Thu 5/6/14	Wed 25/6/14																	
Project Methodology	9 days	Wed 25/6/14	Mon 7/7/14								þ									
Preliminary Report	10 days	Mon 7/7/14	Fri 18/7/14								(
Correction for Report	10 days	Mon 21/7/14	Fri 1/8/14																	
Correction and Proposal	6 days	Fri 1/8/14	Fri 8/8/14																	
Ready for Presentation	8 days	Mon 11/8/14	Wed 20/8/14																	
End of Project 1	1 day	Fri 22/8/14	Fri 22/8/14													I.				

Figure 3.1 Gantt Chart for Project 1

Task Name	Duration	Start	Finish	Predecessors	Jun	15			Jul '	15		Au	g '1	5		Sep	15	
					31	7 1	4 21	. 28	5	12	19 26	2	9	16	23 3	30 6	13 2	20 27
Project 2	70 days	Mon 8/6/15	Fri 11/9/15									:						
Specification Development	35 days	Mon 8/6/15	Fri 24/7/15															
Test and verification	16 days	Fri 24/7/15	Fri 14/8/15											h				
Documentation	6 days	Mon 17/8/15	Mon 24/8/15	3	0 0 0 0 0 0 0 0 0 0 0 0 0 0										h			
FYP Submission	9 days	Tue 25/8/15	Fri 4/9/15	4														
												:						

Figure 3.2 Gantt Chart for Project 2

Chapter 4 Methods/Technologies Involved

4.1 Design Methodology

Design methodology is the method of development of a system. It provides guideline to successfully carry out a design work. Good Design methodology needs to ensure correct functionality, catching bugs early, satisfaction of performance and power goals, good documentation [7]. There are two type of design methodology which are Top-down and Bottom-up. In this project, Top-down design methodology is used since digital system always uses the abstraction concepts to simplify the design process.

Figure 4.1 General Design Flow without Logic Synthesis and Physical Design [8].

BIT(Hons) Computer Engineering Faculty of Information and Communication Technology, UTAR

4.1.1 System Level Design

System level design includes Written Specifications and Executable Specification is level where chip specifications are developed.

Written Specification- using English to write out the function, performance, cost and time constrain of a design.

Executable Specification-features and functionalities are described in high level programming language such as System C, Verilog.

4.1.2 Architecture Level Design

Architecture level design includes Architecture Specification and Architecture Level Modelling and Verification.

Architecture Specification- describes the internal of a chip and may contain design hierarchy, functional partitioning of the chip into units and inter-unit signaling and worst case timing.

Architecture Level Modelling and Verification- Algorithms are developed based on information from architecture specification to model the units that make up the architecture. The algorithms are then coded using hardware description language (HDL). Each unit is verified for functional correctness.

4.1.3 RTL Design

Micro-Architecture Specification- describes internal of a unit and may include:

- Unit interfaces and I/O pin description
- Unit functionality description
- Unit internal operation, function table etc to assist test plan
- Timing requirement
- Test plan
- Unit functional partitioning into blocks and inter-blocks signaling
- For each blocks/sub-blocks, may include
 - i. Block interfaces and I/O pin description
 - ii. A description of functionality of each block
 - iii. Internal operation such as function table and text description
 - iv. Finite-state machine (FSM) and Algorithmic-state machine (ASM)
 - v. Timing requirements
 - vi. Test Plan

RTL Modeling and Verification- RTL coding can begin after the micro-architecture specification has been developed. After models have been coded, they are verified for functional correctness.

4.2 Design Tools

Since this project is implemented using Verilog HDL, simulation tools that support Verilog HDL is needed. There are a lot simulation tools created by different companies which has their own advantages and disadvantages. Among them, 3 of the famous simulation tools will be discussed here.

(i) VCS

-Developed by Synopsys

-based on multi-core technology which cuts down verification time

-supports all popular design and verification languages

- Powerful debug and visualization environment

(ii) ModelSim

-Developed by Mentor Graphics

-Complete HDL simulation and debugging environment

-Provide Student Edition (SE) which limits to 10,000 lines of code

(iii) Quartus II

-Developed by Altera

-Provides complete design environment for system on a programmable chip (SOPC)

-Can work with multiple files at the same time.

Simulator	VCS	ModelSim	Quartus II
Company	SYNOPSYS® Predictable Success	Graphics	
Language	VHDL-2002	VHDL-2002	VHDL
Supported	V2001	V2002	Verilog HDL
	SV2005	SV2005	
Platform	Linux	-Windows	-Windows XP/7/8
Supported		XP/Vista/7/8	-Linux
		-Linux	
Availability for	No	YES (SE Edition	No
free		only)	

 Table 4.1 Comparison Between Simulators

Based on Table 4.1, ModelSim PE Student Edition 10.2b is chosen because it is available for free while other simulators may need to pay for license which may not be affordable.

4.3 Exception/Interrupt Handling Mechanism

4.3.1 Exception/Interrupt Handling

Exception/interrupt handling is very vital for a processor to function well and interface with external devices. Without exception/interrupt handling mechanism, processor may not be able to deal with event which is not belongs to normal program execution. For example, arithmetic overflow, syscall function, undefined instruction and external device interrupt request.

4.3.2 RISC32 Exception/Interrupt Handling Mechanism

RISC32 exception/interrupt handling mechanism is categorized into 2 parts, which is hardware handling and software handling.

4.3.2.1 Hardware Handling

When exception/interrupt arises in processor, CP0 will first check the EXL and IE bit of the status register (status [1] and status [0]). Exception/interrupt will be prohibited if EXL bit is set to "1". All interrupt can be further prohibited if IE bit is set to "0", which means no interrupt is allowed.

After ensure the exception/interrupt can be process, CP0 will update the cause register with value associate to the causes. Then current program counter (PC) value will be stored in EPC as a return point after exception handling. Exception handler entry address will be output to PC to force the processor into exception handler. Finally, EXL bit will be set to "1" to prevent any other exception/interrupt service.

Figure 4.2 Hardware Exception Handling Flow Chart

Figure 4.3 Hardware Interrupt Handling Flow Chart

BIT(Hons) Computer Engineering Faculty of Information and Communication Technology, UTAR

4.3.2.1 Software Handling

In software handling, cause of exception/interrupt will be determined in Exception Handler and appropriate service routine will be selected. The handler code is placed in kernel segment in memory, which starts from 0x8000_0180.

The sequence of process:

1. Save register state into memory stack to clear up register space so that register can be used by interrupt process.

- 2. Load CP0 cause register into register k0 using instruction mfc0.
- 3. Extract and mask the exception code (cause [6:2]) to determine the cause of exception.
- 4. Jump to appropriate service routine.
- 5. Clear cause register and reset status register.
- 5. Restore register from memory stack.
- 6. Return to user program execution using instruction eret.

Figure 4.4 Software Exception Handling Flow Chart

4.4 Instruction used in Exception/Interrupt Handling

Two register accessing instructions are mtc0 and mfc0 to transfer data between CP0 register and processor register. A special instruction eret is used to return processor to normal program. The instruction format is shown below:

mfc0 rt,rd : move data from CP0 register to CPU register.

31-26	25-21	20-16	15-11	10-0
010000	00000	rt	rd	00000000000

Figure 4.5 mfc0 Instruction Format

mtc0 rt,rd : move data from CPU register to CP0 register.

31-26	25-21	20-16	15-11	10-0
010000	00100	rt	rd	00000000000

Figure 4.6 mtc0 Instruction Format

31-26	25	24-6	5-0
010000	1	000000000000000000000000000000000000000	011000

Figure 4.7 EPC Instruction Format

4.5 Pipeline Flushing

When an exception occurs, there are different instructions in different pipeline stages. Since, we don't want the instruction causing exception to save any of its state into processor, either memory or register file, we need to use pipeline flushing to9 flush the pipeline stage. When exception occurs, CP0 will receive signal from processor, decode and update register and output exception handler address to PC. At the same time, CP0 will send signal to flush the pipeline. Only instruction come after the exception is flushed. The instructions before the instruction which caused exception is left to be finished. For sign overflow, IF/ID, ID/EX and EX/MEM are flushed. For undefined instruction, IF/ID and ID/EX are flushed while for syscall, only IF/ID need to be flushed. I/O interrupt does not need to flush the pipeline but let the normal instruction finishes only jump to exception handler to handle interrupt. Pipeline flushing is just simply change all the control signal in pipeline to "0" which turn the instruction into nop (no operation). Thus, it can prevents faulty value to be written into register or memory.

Chapter 5 System Specification

5.1 System Feature

	RISC32 with CP0
Dummy Instruction Cache (KB)	16
Dummy Data Cache (KB)	16
Data width (bits)	32
Instruction width (bits)	32
General Purpose Register	32
Special Purpose Register	HILO, PC
Co-Processor Register	32
Pipelined Stage	5
Data Hazard Handling	Yes
Control Hazard Handling	Yes
Interlock Handling	Yes
Exception Handling	Yes (4)
Data Dependency Forwarding	Yes
Branch Prediction	Dynamic – 2bits scheme
Multiplication (size of multiplier	yes – 32 bits
and multiplicand)	
Branch Delay Slot	Not supported
Instruction supported	40

Table 5.1 RISC32 Features

5.1.1 System Functionality

1. Divide execution of instruction into 5 stages:

- IF(Instruction Fetch)	Fetch instruction from instruction cache into the datapath.
- ID(Instruction Decode)	Decode instruction and fetch \$rs & \$rt registers.
- EX(Execute)	Execute instruction in the ALB.
- MEM(Memory)	Access data cache, load or store.
- WB(Write Back)	Write back the result to the register file.

- 2. Resolve data hazard by data forwarding.
- 3. Resolve load-use instructions problem using stalling.
- 4. Resolve structural hazards using separating data and instruction cache.
- 5. Resolve control hazards by branch prediction.
- 6. Resolve exception/interrupt using CP0 and exception handler.

5.2 Operating Procedure

- 1. Start the system.
- 2. Porting sequence of instruction into instruction cache.
- 3. Reset the system for at least 2 clocks.
- 4. After the reset, the system will automatically fetch and run the program inside instruction cache.
- 5. Observe the waveform from the development tools (Modelsim).

5.3 Naming Convention

Module	$- [lvl]_[mod. name]$
Instantiation	- [lvl]_[abbr. mod. name]
Pin	- [lvl][type]_[abbr. mod. name]_[pin name]
Signal	<pre>- [type]_[abbr. mod. name]_<stage>_[pin name]</stage></pre>

Abbreviation	Description	Case	Available	Remark
lvl	level	lower	c: Chip	
			u: Unit	
			b: block	
mod. name	Module name	Lower all	Any	
abbr. Mod.	Abbreviated	Lower all	Any	Maximum 3 characters
name	module name			
Туре	Pin type	Lower	o: output	
			i: input	
			r: register	
			w: wire	
Stage	Stage name	Lower all	If, id, ex, mem, wb	Optional
Pin name	Pin name	Lower all	any	Several word separate by "_"

Table 5.2 Naming Convention

5.4 RISC32 Pipeline Processor with CP0 and I/O Description

5.4.1 Processor Interface

5.4.2 I/O Pin Description

c_risc
Input:
Pin name : ui_cd_clk
Pin Class : Global
Registered: Yes
Source->Destination: External \rightarrow c_risc
Pin Function: Provide clock signal for the pipeline processor.
Pin name : ui_cd_rst
Pin Class : Global
Registered: Yes
Source->Destination: External \rightarrow c_risc
Pin Function: Provide reset signal for the pipeline processor.
Table 5.3 RISC32 Processor I/O Description

5.5 Memory Map

Purpose	start address	Direction	Segment
Kernel module	0xC000 0000	Up	Kseg2
Boot Rom		Up	Keeg1
I/O register(if below 512MB)	0xA000 0000	Up	Ksegi
Direct view of memory to 512MB linux		Un	
kernel code and data	Op		Kseg0
Exception Entry point	0x8000 0000	Up	
Stack	0x7FFF FFFC	Down	
Program heap	0x1000 8000	Up	
Dynamic library code and data	0x1000 0000	Up	Kuseg
Main program	0x0040 0000	Up	
Reserved	0x0000 0000	Up	

Table 5.4 Memory Map

5.5.1 Memory map description

Kernel module

-Accessible by kernel*

Boot Rom

-Start-up ROM which keep the system configuration*

I/O registers (if below 512MB)

-External IO device register*

Direct view of memory to 512MB linux kernel code and data

-Memory allocation to view linux kernel code and data*

Exception Entry point

-Software exception handling *

Stack

-Use for argument passing

Program heap

-Dynamic memory allocation such as malloc()

Dynamic library code and data

-Data segment which is access by variable

Main program

-Text segment which contain the main program

Note *: required CP0

BIT(Hons) Computer Engineering Faculty of Information and Communication Technology, UTAR

Figure 5.1 Memory Map

5.6 System Register

5.6.1 General Purpose Register

Width : 32-bits

Size : 32 units

Retrieving method : 5-bits address as index

Name	Address	Use	Preserved Across A Call?
\$zero	0	Constant Value 0 (hardwired)	N.A.
\$at	1	Assembler Temporary	No
\$v0 - \$v1	2 - 3	Value for Function Results and Expression Evaluation	No
\$a0 - \$a3	4 - 7	Arguments	No
\$t0 - \$t7	8 – 15	Temporaries	No
\$s0 - \$s7	16 - 23	Saved temporaries	Yes
\$t8 - \$t9	24 – 25	Temporaries	No
\$k0 - \$k1	26 - 27	Reserved for OS kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
\$ra	31	Return Address	Yes

Table 5.5 General Purpose Register

5.6.2 Special Purpose Register

Width	: 32-bits

Size : 2 units

Retrieving method : Via instructions: MFHI, MTHI, MFLO, MTLO, MULT or MULTU

Name	definition	location in double [64:0]
HI	Most Significant Word	Double [63:32]
LO	Least Significant Word	Double [31:0]

Table 5.6 Special Purpose Register

5.6.3 Program Counter Register

Width : 32-bits Size : 1 unit

Retrieving method : Control by instruction address generator control.

5.6.4 CP0 Register

Name	Address	Use
\$b_cp0_stat	12	Interrupt mask, enable bits and status when exception
\$b_cp0_cause	13	Exception type and pending interrupt
\$b_cp0_epc	14	Address of instruction that caused exception

Table 5.7 CP0 Register

5.7 Instruction Formats and Addressing Modes

5.7.1 Instruction Formats

2	6 bits	5 bits	5 bits	5 bits	5 bits	6 bits	-
	ор	rs	rt	rd	shamt	funct	R-format
[ор	rs	rt	imm	ediate (16-	-bit)	I-format (Immediate Instructions)
[ор	rs	rt	data	address of	fset	I-format (Data Transfer Instructions)
[ор	rs	rt	bran	ch address	offset] I-format (Branch Instructions)
[ор		jump	address (J-format		

Figure 5.2 Instruction Format

Abbreviation	Definitiion	Width
ор	Operation code	6
rs	Source register	5
rt	Target register	5
rd	Destination register	5
shamt	Shift amount	5
funct	Function field	6
immediate	Immediate	16
data address offset	Data address offset	16
branch address offset	Branch address offset	16
jump address	Jump address	26

Table 5.8 Instruction Format Definition

5.7.2 Addressing Modes

a) R-format

Register addressing: Perform operation on source and target register and store the result into destination register.

b) I-format

i. Immediate addressing: Perform operation on source register and immediate and store the result into target register.

ii. Based displacement addressing: Perform operation on source register and immediate, the result is then uses as address to access the data memory to load/store data to/from target register.

iii. PC-relative addressing: Perform operation on source and target register to determine next PC condition, the immediate is uses as address offset for next PC.

c) J-format

Pseudo-direct addressing: Perform operation by concatenating the upper bits of PC with the jump address.

5.8 Supported Instructions Se	5.	.8	Supported	Instructions	Set
-------------------------------	----	----	-----------	--------------	-----

Instruction	Format	Addr. Mode	Machin	ne Lang	uage				Register Transfer Notation	Assembly Format	Over
			OpCo	Rs	Rt	Rd	Shamt	Func			flow
			de								
sll	R	Register	0x00	0	\$rt	\$rd	n	0x01	$R[rd] = R[rs] \ll n$	sll \$rd, \$rt, n	no
srl	R	Register	0x00	0	\$rt	\$rd	n	0x03	R[rd] = R[rs] >> n	srl \$rd, \$rt, n	no
sra	R	Register	0x00	0	\$rt	\$rd	n	0x04	R[rd] = R[rs] >>> n	sra \$rd, \$rt, n	no
jr	R	Register	0x00	\$rs	0	0	0	0x0	PC = R[rs]	jr \$rs	no
								Α			
jalr	R	Register	0x00	\$rs	0	0	0	0x0	PC = R[rs], R[31] = PC + 4	jalr \$rs	no
								В			
mfhi	R	Register	0x00	0	0	\$rd	0	0x10	R[rd] = HI	mfhi \$rd	no
mthi	R	Register	0x00	\$rs	0	0	0	0x11	HI = R[rs]	mthi \$rs	no
mflo	R	Register	0x00	0	0	\$rd	0	0x12	R[rd] = LO	mflo \$rd	no
mtlo	R	Register	0x00	\$rs	0	0	0	0x13	LO = R[rs]	mtlo \$rs	no
mult	R	Register	0x00	\$rs	\$rt	0	0	0x24	HILO = R[rs] * R[rt]	mult \$rs, \$rt	no
multu	R	Register	0x00	\$rs	\$rt	0	0	0x24	HILO = U(R[rs]) * U(R[rt])	multu \$rs, \$rt	no
add	R	Register	0x00	\$rs	\$rt	\$rd	0	0x20	R[rd] = R[rs] + R[rt]	add \$rd, \$rs, \$rt	yes
addu	R	Register	0x00	\$rs	\$rt	\$rd	0	0x21	R[rd] = U(R[rs]) + U(R[rt])	addu \$rd, \$rs, \$rt	no
sub	R	Register	0x00	\$rs	\$rt	\$rd	0	0x22	R[rd] = R[rs] - R[rt]	sub \$rd, \$rs, \$rt	yes
subu	R	Register	0x00	\$rs	\$rt	\$rd	0	0x23	R[rd] = U(R[rs]) - U(R[rt])	subu \$rd, \$rs, \$rt	no
and	R	Register	0x00	\$rs	\$rt	\$rd	0	0x24	R[rd] = R[rs] & R[rt]	and \$rd, \$rs, \$rt	no
or	R	Register	0x00	\$rs	\$rt	\$rd	0	0x25	R[rd] = R[rs] R[rt]	or \$rd, \$rs, \$rt	no
xor	R	Register	0x00	\$rs	\$rt	\$rd	0	0x26	$R[rd] = R[rs] \wedge R[rt]$	xor \$rd, \$rs, \$rt	no
nor	R	Register	0x00	\$rs	\$rt	\$rd	0	0x27	$R[rd] = \sim (R[rs] R[rt])$	nor \$rd, \$rs, \$rt	no
slt	R	Register	0x00	\$rs	\$rt	\$rd	0	0x2	R[rd] = (R[rs] < R[rt]) ? 1 : 0	slt \$rd, \$rs, \$rt	no
								А			
sltu	R	Register	0x00	\$rs	\$rt	\$rd	0	0x2	R[rd] = (U(R[rs]) < U(R[rt])) ?	sltu \$rd, \$rs, \$rt	no
								В	1:0		
i	J	Pseudo-	0x02	Jump/	Addr (Label)		$PC = \{(PC+4) [31:28],$	i label	no

		Direct					JumpAddr, 2'b00}		
jal	J	Pseudo- Direct	0x03	Jump.	Addr (Label)	$PC = \{(PC+4) [31:28], \\ JumpAddr, 2'b00\} \\ R[31] = PC + 4$	jal label	no
beq	Ι	PC-Relative	0x04	\$rs	\$rt	BranchAddr (Label)	PC = (R[rs] == R[rt]) ? (PC + 4 + (SE(BranchAddr)<<2)) : (PC + 4)	beq \$rs, \$rt, label	no
bne	Ι	PC-Relative	0x05	\$rs	\$rt	BranchAddr (Label)	PC = (R[rs] != R[rt]) ? $(PC + 4 + (SE(BranchAddr) << 2)) :$ $(PC + 4)$	bne \$rs, \$rt, label	no
blez	Ι	PC-Relative	0x06	\$rs	0	BranchAddr (Label)	PC = (R[rs] <=0) ? (PC + 4 + (SE(BranchAddr)<<2)): (PC + 4)	blez \$rs, \$rt, label	no
bgtz	Ι	PC-Relative	0x07	\$rs	0	BranchAddr (Label)	PC = (R[rs] > 0) ? (PC + 4 + (SE(BranchAddr)<<2)): (PC + 4)	bgtz \$rs, \$rt, label	no
addi	Ι	Immediate	0x08	\$rs	\$rt	Imm	R[rt] = R[rs] + SE(Imm)	addi \$rt, \$rs, imm	yes
addiu	Ι	Immediate	0x09	\$rs	\$rt	Imm	R[rt] = U(R[rs]) + U(ZE(Imm))	addiu \$rt, \$rs, imm	no
slti	Ι	Immediate	0x0A	\$rs	\$rt	Imm	R[rt] = (R[rs] < SE(Imm)) ? 1 : 0	slti \$rt, \$rs, imm	no
sltiu	Ι	Immediate	0x0B	\$rs	\$rt	Imm	R[rt] = (U(R[rs]) < U(SE(Imm))) ? 1 : 0	sltiu \$rt, \$rs, imm	no
andi	Ι	Immediate	0x0C	\$rs	\$rt	Imm	R[rt] = R[rs] & ZE(Imm)	andi \$rt, \$rs, imm	no
ori	Ι	Immediate	0x0D	\$rs	\$rt	Imm	R[rt] = R[rs] ZE(Imm)	ori \$rt, \$rs, imm	no
xori	Ι	Immediate	0x0E	\$rs	\$rt	Imm	$R[rt] = R[rs] \wedge ZE(Imm)$	xori \$rt, \$rs, imm	no

lui	Ι	Immediate	0x0F	\$rs	\$rt	Imm			R[rt] = Imm << 16	lui \$rt, imm	no
lw	Ι	Based-	0x23	\$rs	\$rt	Imm			R[rt] = MEM[R[rs] +	lw \$rt, imm(\$rs)	no
		Displaceme							SE(Imm)]		
		nt									
SW	Ι	Based-	0x2B	\$rs	\$rt	Imm			MEM[R[rs] + SE(Imm)] =	sw \$rt, imm(\$rs)	no
		Displaceme							R[rt]		
		nt									
mfc0		Register	0x10	0x00	\$rt	\$rd	0x00	0x00	R [r t] = R [r d] (from CP0)	mfc0 \$rt, \$rd	no
mtc0		Register	0x10	0x04	\$rt	\$rd	0x00	0x00	R [rd] (from CP0) = R [r t]	mtc0 \$rt, \$rd	no
		_									
eret		Register	0x10	0x10	0x	0x00	0x00	0x18	PC = R[epc] (from CP0)	eret	no
		-			00						

Table 5.9 Instruction Set

Chapter 6 Micro Architecture Specification

8	v 8	<u></u>
Chip Partitioning	Unit Partitioning at	Block and Functional Block Partitioning
(Top Level) at	Micro-	at RTL (Micro-Architecture Level)
Architecture Level	Architecture Level	
RISC32 Pipeline	Datapath	Branch Predictor (b_bp_4way)
Processor	(u_dp)	Register File (b_rf)
(c_risc)		Interlock Control (b_itl_ctrl)
		Forward Control (b_fw_ctrl)
		32-bit Multiplier (b_mult32)
		ALB (b_alb)
		Coprocessor0(b_cp0)
	Controlpath	Main Control (b_main_ctrl)
	(u_cp)	ALB Control (b_alb_ctrl)
	Cache	Cache(u_cache)
	(u_cache)	

6.1 Design Hierarchy and Partitioning

Figure 6.1 Block Partitioning

BIT(Hons) Computer Engineering Faculty of Information and Communication Technology, UTAR

6.2 Micro-Architecture (Block Level)

6.2.1 Micro-Architecture without CP0

Figure 6.2 System Micro-Architecture Without CP0

Figure 6.3 System Micro-Architecture With CP0

6.3 Coprocessor 0 Block

6.3.1 Coprocessor 0 Block interface

6.3.2 I/O Pin Description

1
b_cp0
Input:
Pin name : bi_cp0_read_addr[4:0]
Pin Class : Address
Registered: No
Source->Destination : Datapath(ID) \rightarrow b_cp0
Pin Function: 5 bit rd address to indicate CP0 register file location.
Pin name : bi cp0 wr addr[4:0]
Pin Class : Address
Registered: No
Source->Destination :Datapath(ID) \rightarrow b cp0
Pin Function : 5 bit rd address to indicate CP0 register file location.
Pin name : bi_cp0_wr_data[31:0]
Pin Class : Data
Registered: No
Source->Destination : Datapath(ID) \rightarrow b_cp0
Pin Function: 32 bit data to be stored to CP0 register file.
Pin name : bi_cp0_current_pc[31:0]
Pin Class : Address
Registered: No
Source->Destination : Datapath(ID) \rightarrow b cp0
Pin Function : 32 bit current Program Counter (PC) value.
Din nome this and sent
Pin name : Di_cp0_eret
Pin Class : Control
Registered: NO
Source->Destination : Control \rightarrow Datapath \rightarrow b_cp0
Pin Function : Indicate current instruction is eret when asserted high.
Pin name : bi_cp0_mtc0
Pin Class : Control
Registered: No
Source->Destination : Control \rightarrow Datapath \rightarrow b cp0
Pin Function : Indicate current instruction is mtc ⁰ when asserted high.
Pire result is and sum define the
Pin name : b1_cp0_unde1_instr
Pill Class : Control Desistant de Na
Kegistered: NO
Source->Destination : Control \rightarrow Datapath \rightarrow b_cp0
Pin Function : Indicate current instruction is undefined when asserted high.

Pin name : bi_cp0_syscall Pin Class : Control Registered: No **Source->Destination**: Control \rightarrow Datapath \rightarrow b_cp0 Pin Function: Indicate current instruction is syscall when asserted high. **Pin name** : bi_cp0_irq[5:0] **Pin Class** : Control Registered: No **Source->Destination**: Datapath \rightarrow b_cp0 Pin Function: Each bit indicates interrupt signal from external device. **Pin name** : bi_cp0_sovf Pin Class : Control Registered: No **Source->Destination**: Control \rightarrow Datapath \rightarrow b_cp0 Pin Function: Indicate sign overflow has occurred when asserted high. **Pin name** : bi cp0 clk Pin Class : Global Registered: No **Source->Destination**: System \rightarrow b_cp0 **Pin Function**: Clock signal for CP0 **Pin name** : bi_cp0_rst Pin Class : Global Registered: No **Source->Destination**: System \rightarrow b_cp0 **Pin Function**: Reset signal for the CP0. Output: **Pin name** : bo_cp0_flush_id Pin Class : Control Registered: No **Source->Destination**: $b_cp0 \rightarrow Datapath$ Pin Function: Flush IF/ID pipe when asserted high. **Pin name** : bo_cp0_flush_ex Pin Class : Control Registered: No **Source->Destination**: b cp0 \rightarrow Datapath Pin Function: Flush ID/EX pipe when asserted high. **Pin name** : bo_cp0_flush_mem Pin Class : Control Registered: No **Source->Destination**: $b_cp0 \rightarrow Datapath$ Pin Function: Flush EX/MEM pipe when asserted high.

Pin name : bo_cp0_exc_addr[31:0] Pin Class : Address Registered: No Source->Destination: b_cp0 → Datapath Pin Function: Contain EPC value to be passed to PC. Pin name : bo_cp0_read_data[31:0] Pin Class : Data Registered: No Source->Destination: b_cp0 → Datapath Pin Function: Data read out from CP0 register.

Table 6.2 CP0 I/O Pin Description

6.3.3 Internal Operation

CP0 is a block that used to process and store exception/interrupt information. CP0 is placed in ID stage. Once mtc0 is decoded, the control signal, address and dat will travel straight into CP0 block, which means CP0 will process and store exception/interrupt information at next clock cycle. While for mfc0, the signal and address will go straight into CP0 block in ID stage but the data will travel towards the end of WB stage then only it will store into register file at negative edge of clock. The data cannot direct store into register in ID stage to prevent 2 data write into register at the same time (one from CP0 output, one from WB stage).

Overflow Exception: Detected by ALB block in stage EX and overflow signal is generated. Flush If/ID, ID/EX and EX/MEM pipe to prevent wrong update of information into register file and data cache. Then jump to exception handler to handle exception.

Undefined Instruction Exception: Detected in stage ID by main control and undefined_instr signal is generated. Flush IF/ID and EX/MEM pipe to prevent update wrong information into register file and data cache. Then jump to exception handler to handle exception.

Syscall Exception: Detected in stage ID by main control and syscall signal is generated. Flush IF/ID pipe to prevent update wrong information into register file and data cache. Then jump to exception handler to handle exception. I/O interrupt: Interrupt is asynchronous relative to a program execution. No need pipeline flushing, but let the current instruction in the stages complete their execution. Then jump to exception handler to handle exception.

Chapter 7 Verification

7.1 CP0 Test Program

The following program is designed to verify the functionality of CP0 block.

Instruction Address	Instruction Code	Instruction	Explanation
0x00400024	00008824	and \$s1,\$0,\$0	Initialize cause register.
0x00400028	0000000	sll \$zero,\$zero,0	Cause register = $$13$.
0x0040002C	00000000	sll \$zero,\$zero,0	
0x00400030	40916800	mtc0 \$s1,\$13	
0x00400034	34116601	ori \$s1,\$0,0xff01	Initialize status
0x00400038	0000000	sll \$zero,\$zero,0	register.
0x0040003C	0000000	sll \$zero,\$zero,0	status register $=$ \$12.
0x00400040	40916000	mtc0 \$s1,\$12	
0x00400044	00000000	sll \$zero,\$zero,0	Nop
0x00400048	3C107FFF	lui \$s0,0x7fff	$s0 = 7ff_{0000}$
0x0040004C	3612FFFF	ori \$s2,\$s0,0xffff	$s2 = 7fff_fff$
0x00400050	3C148000	lui \$s4,0x8000	$s4 = 8000_{0000}$
0x00400054	36940300	ori \$s4,\$s4,0x0300	\$s4 = 8000_0300
			Address of selected
			case item in exception
			handler.
0x00400058	3C158000	lui \$s5,0x8000	\$s5 = 8000_0000
0x0040005C	36B501C0	ori \$s5,\$s5,0x01c0	$s5 = 8000_01C0$
			Address of clean_up in
			exception handler
0x00400060	0000000	sll \$zero,\$zero,0	Nop
0x00400064	FFFFFFFF	Undefined	Creating undefined
		instruction	instruction to test
			exception.
0x00400068	0000000C	Syscall	Creating syscall to test
			exception.
0x0040006C	02524020	add \$t0,\$s2,\$s2	Sign overflow
0x00400070	00000000	sll \$zero,\$zero,0	Nop
0x00400074	20120012	addi \$s2,\$zero,19	Create normal
			instruction and I/O
			interrupt occurs at
			same time.
0x00400078	00000000	sll \$zero,\$zero,0	Nop

7.1.1 Exception Handler

Instruction Address	Instruction Code	Instruction	Explanation
0x80000180	0020D820	add \$k1,\$at,\$0	Save register in data
0x80000184	AC040000	sw \$a0,0(\$zero)	memory so
0x80000188	AC050004	sw \$a1,4(\$zero)	exception handler
			can use it.
0x8000018C	401A6800	mfc0 \$k0,\$13	Move casue register
			to \$k0
0x80000190	0000000	sll \$zero,\$zero,0	Nop
0x80000194	0000000	sll \$zero,\$zero,0	Nop
0x80000198	001A2082	srl \$a0,\$k0,2	Extract ExcCode
			field
0x8000019C	3084001F	andi \$a0,\$a0,0x1f	Mask cause register
			[6:2]
0x800001A0	0080502A	slt \$t2,\$a0,\$0	Test if \$a0 < 0
0x800001A4	15400006	bne \$t2,\$0,clean_up	If $a0 < 0$ branch to
			clean_up
0x800001A8	288A000D	slti \$t2,\$a0,13	Test if \$a0 > = 13
0x800001AC	11400004	beq \$t2,\$0,clean_up	If $a0 \ge 13$ branch
			to clean_up
0x800001B0	00844820	add \$t1,\$a0,\$a0	Turn \$a0 into byte
			address.
0x800001B4	01294820	add \$t1,\$t1,\$t1	t1 = 4*t1
0x800001B8	01344820	add \$t1,\$t1,\$s4	Determine address
			of ISR
0x800001BC	01200008	jr \$tO	Jump to the address
			of selected case
			item
clean_up			
0x800001C0	401A7000	mfc0 \$ko,\$14	Move EPC to
			register file
0x800001C4	00000000	sll \$zero,\$zero,0	Nop
0x800001C8	00000000	sll \$zero,\$zero,0	Nop
0x800001CC	275A0004	addiu \$k0,\$k0	EPC + 4. Donot re-
			execute faulting
			instruction when
			return
0x800001D0	0000000	sll \$zero,\$zero,0	Nop
0x800001D4	0000000	sll \$zero,\$zero,0	Nop
0x800001D8	409A7000	mtc0 \$k0,\$14	Update EPC
0x800001DC	40806800	mtc0 \$0,\$13	Clear cause register
0x800001E0	401A6000	mfc0 \$k0,\$12	Move status register
			to register file

0x800001E4	00000000	sll \$zero,\$zero,0	Nop
0x800001E8	00000000	sll \$zero,\$zero,0	Nop
0x800001EC	335AFFFD	andi \$k0,0xfffd	Mask status register
0x800001F0	375A0001	ori \$k0,0x1	Set status[0] to 1
0x800001F4	00000000	sll \$zero,\$zero,0	Nop
0x800001F8	00000000	sll \$zero,\$zero,0	Nop
0x800001FC	409A6000	mtc0 \$k0,\$12	Update status
			register
0x80000200	8C040000	1w \$a0,0(\$zero)	Restore register
			value
0x80000204	8C050004	1w \$a1,4(\$zero)	Restore register
			value
0x80000208	03600820	add \$at,\$k1,\$0	Restore register
			value
0x8000020C	42000018	eret	Eret. Return to
			normal program
			execution
0x80000210	00000000	sll \$zero,\$zero,0	Nop
TEST CASE SELE	CTED ITEM		
0x80000300	02A00008	jr \$s5	Jump to clean_up
0x80000304	02A00008	jr \$s5	Jump to clean_up
0x80000308	02A00008	jr \$s5	Jump to clean_up
0x8000030C	02A00008	jr \$s5	Jump to clean_up
0x80000310	02A00008	jr \$s5	Jump to clean_up
0x80000314	02A00008	jr \$s5	Jump to clean up
0x80000318		J .	
	02A00008	jr \$s5	Jump to clean_up
0x8000031C	02A00008 02A00008	jr \$s5 jr \$s5	Jump to clean_up Jump to clean_up
0x8000031C 0x80000320	02A00008 02A00008 02A00008	jr \$s5 jr \$s5 jr \$s5	Jump to clean_up Jump to clean_up Jump to clean_up
0x8000031C 0x80000320 0x80000324	02A00008 02A00008 02A00008 02A00008	jr \$s5 jr \$s5 jr \$s5 jr \$s5	Jump to clean_up Jump to clean_up Jump to clean_up Jump to clean_up
0x8000031C 0x80000320 0x80000324 0x80000328	02A00008 02A00008 02A00008 02A00008 02A00008	jr \$s5 jr \$s5 jr \$s5 jr \$s5 jr \$s5	Jump to clean_up Jump to clean_up Jump to clean_up Jump to clean_up Jump to clean_up
0x8000031C 0x80000320 0x80000324 0x80000328 0x8000032C	02A00008 02A00008 02A00008 02A00008 02A00008 02A00008	jr \$s5 jr \$s5 jr \$s5 jr \$s5 jr \$s5 jr \$s5	Jump to clean_up Jump to clean_up Jump to clean_up Jump to clean_up Jump to clean_up Jump to clean_up

7.1.2 Simulation Result Instructions Cache (Text Segment)

Memory Dat	ta - /	/tb_r	32_	ipeline/dut_c_risc/u_text_seg/u_cm_r_memory - Default	= >>>> = + 🖻 >	×
00400018	xx	xx	xx	xx		h.
0040001c	xx	xx	xx	xx		_
00400020	xx	xx	xx	xx		
00400024	00	00	88	24		
00400028	00	00	00	00		
0040002c	00	00	00	00		
00400030	40	91	68	00		
00400034	34	11	ff	01		
00400038	00	00	00	00		
0040003c	00	00	00	00		
00400040	40	91	60	00		
00400044	00	00	00	00		
00400048	3c	10	7f	ff		
0040004c	36	12	ff	ff		
00400050	3c	14	80	00		
00400054	36	94	03	00		
00400058	3c	15	80	00		
0040005c	36	b5	01	c0		
00400060	00	00	00	00		
00400064	ff	ff	ff	ff		
00400068	00	00	00	0c		
0040006c	02	52	40	20		
00400070	00	00	00	00		
00400074	20	12	00	12		
00400078	00	00	00	00		
0040007c	xx	xx	xx	xx		
00400000				**		-
	4					٣

Data Cache (Data Segment)

📑 ut_c_risc/u_	data_	_seg	ı/u_	cm_r_	memor	y - I	Defa	ult 🔅	999 -	- 2	×
10000000	00	00	00	00							-
10000004	00	00	00	00							_
10000008	xx :	xx	xx	xx							
1000000c	XX :	xx	хх	xx							
10000010	XX :	xx	хх	xx							
10000014	XX :	хx	хх	xx							
10000018	XX :	хx	xx	xx							
1000001c	XX :	хx	хх	XX							
10000020	XX :	хx	xx	xx							
10000024	XX :	хx	хx	xx							
10000028	XX :	хx	хx	xx							
1000002c	XX :	хx	xx	XX							
10000030	XX :	хx	хx	xx							
10000034	XX :	XX	xx	xx							
10000038	XX :	xx	xx	xx							
10000036	XX :	xx	xx	xx							
10000040	XX 3	xx	xx	xx							
10000044	×× :	**	**	xx							
10000048		~~	~~	~~							
10000040	ICC 1										
10000054	ICC :	~~	~~	~~							
10000058	xx :	xx	xx	xx							
1000005c	xx	xx	xx	xx							
10000060	XX :	xx	xx	xx							
10000064	xx :	xx	xx	xx							
10000068	xx :	xx	xx	xx							
1000006c	xx :	хх	xx	xx							
										- F	-

Exception Handler (ktext Segment)

🧾 Memory Dat	- /tb_r32_pipeline/dut_c_risc/u_kte	ext_kseg0/u_cm_r_memory - Default 🛲 🛃 🗶
🛛 🖹 + 🚅 🖡	8 8 X B 8 2 C	💿 • 🗛 🖭
80000180	0 20 48 20	
80000184		
80000188		
80000180	0 00 00 00	
80000194		
80000198	0 1a 20 82	
8000019c	0 84 00 1f	
800001a0	0 80 50 2a	
800001a4	5 40 00 06	
800001a8	28 8a 00 0d	
800001ac	1 40 00 04	
800001b0	0 84 48 20	
800001b4	1 29 48 20	
800001b8	1 34 48 20	
800001bc	1 20 00 08	
800001c0	0 1a 70 00	
800001c4	0 00 00 00	
800001c8	0 00 00 00	
800001cc	27 5a 00 04	
800001d0		
80000104		
800001ds	0 90 69 00	
80000140	0 1a 60 00	
800001e4		
800001e8	0 00 00 00	
800001ec	3 5a ff fd	
800001f0	7 5a 00 01	
800001f4	0 00 00 00	
800001f8	0 00 00 00	
800001fc	0 9a 60 00	
80000200	c 04 00 00	
80000204	c 05 00 04	
80000208	3 60 08 20	
8000020c	2 00 00 18	
80000210		
80000214		

Test Program waveform

🚛 Wave - Default 🚃								-	
🍫 -	Msgs								
🍌 bi_cp0_clk	0					\square		F	
🍌 bi_cp0_rst	1								
🖃 🔷 u_dp_id_pc	XXXXXXXXX	8 0040	006c	00400070	0000000		80000180		
🖃 🔷 u_dp_id_instr	XXXXXXXXX	0 0252	4020	00000000			0020d820		Go to Exception Handler at
CP0									addraga 90000190
🔷 bo_cp0_flush_id	x				1			\mathcal{V}	address 80000180
🔷 bo_cp0_flush_ex	x				1			Ĺ	
🔷 bo_cp0_flush_mem	x				1			L	
🕀 🐟 bo_cp0_exc_addr	XXXXXXXXX	0040006c						t	
🕀 🐟 bo_cp0_read_data	XXXXXXXXX	<u> </u>						ł	
🕀 🌧 bi_cp0_read_addr	xx	00 08		00			1b	1	
🕀 🌧 bi_cp0_wr_data	XXXXXXXXX	0 7fffff	ff	00000000				t i	
🕀 🌧 bi_cp0_wr_addr	xx	00 08		00			1b		Add 7fff_ffff with 7fff_ffff.
숽 bi_cp0_mtc0	x							L	Sign overflow detected.
🔈 bi_cp0_eret	x							L	Flush IF/ID ID/FX and
숽 bi_cp0_undef_instr	x							L	
卖 bi_cp0_syscall	x							L	EX/MEM pipe.
🔷 bi_cp0_sovf	x				7/			L	
🕀 🍌 bi_cp0_irq	00	00						t	
🕀 🧼 bi_cp0_current_pc	XXXXXXXXX	8 0040	006c	00400070	00000000		80000180		
🖃 🔷 b_cp0_stat	XXXXXXXXX	0000ff01			0000ff02			t	
🖃 🔷 b_cp0_cause	XXXXXXXXX	00000000			00000030			t	
🖃 🔷 b_cp0_epc	XXXXXXXXX	0040006c						E	Undete status, souse and
Register used					\vdash				Update status, cause and
🛨 🔷 \$s0	00000000	7fff0000						t	EPC register
🗄 🔷 \$s1	00000000	0000ff01						t	
🗄 🔷 \$s2	00000000	7fffffff						t	
🗄 🔷 \$s4	00000000	80000300						t	
🛨 🔷 \$s5	00000000	800001c0						t	
🛨 🔷 \$t0	00000000	00000000						t	
🗄 🔷 \$t1	00000000	80000320						t	
🖽 🔷 \$t2	0000000	00000001						ţ.	72
				L	 			L	

Faculty of Information and Communication Technology, UTAR

🚛 Wave - Default 🚞						_							
\$⊇.+	Msgs												
bi_cp0_clk	0				<u> </u>					<u> </u>	1		
🌧 bi_cp0_rst	1	32	252 20	_	24	~		542		-9-4 -		12	Go to Exception
🕀 🔷 u_dp_id_pc	XXXXXXXXX	80000210	00400070	(1	00400074		00400078	80000180	800	00184	80000	188	Go to Exception
🕀 🔷 u_dp_id_instr	XXXXXXXXX	00000000		1	20120012		00000000	0020d820	act	40000	ac050	004	Handler at address
CP0													90000190
💠 bo_cp0_flush_id	x	95	4	- 201			5	-			25		80000180
bo_cp0_flush_ex	x												
<pre>bo_cp0_flush_mem</pre>	x	(0) 2. 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	1	21			12 				342		
🛨 🐟 bo_cp0_exc_addr	XXXXXXXXX	00400070		Ĵ.									
🕀 🔷 bo_cp0_read_data	XXXXXXXXXX	0	<u> </u>	- 234			6	2	- 8		10		
🕀 🤣 bi_cp0_read_addr	xx	00	3	- 81			ŝ.	1b	00		8		
🕀 🧼 bi_cp0_wr_data	XXXXXXXXX	00000000	- <u>2</u>		7fffffff		00000000				10		
🕀 🤣 bi_cp0_wr_addr	xx	00		- 51				1b	00				
bi_cp0_mtc0	x	9 <u>.</u>	4	- 20			4	4	~		15		
bi_cp0_eret	x												
bi_cp0_undef_instr	x	-01 		- 21			14.	Č.			2		
bi_cp0_syscall	x		1	- î					1		1		Undate status
bi_cp0_sovf	x	2011	1	Ĵ				_ 0	1				opulie status,
🕀 🌛 bi_cp0_irg	00	00	Ś.		04	(00		8		8		▶ cause and EPC
🕀 🌧 bi_cp0_current_pc	XXXXXXXX	80000210	00400070		00400074		00400078	80000180	800	00184	80000	188	ragistar
🕀 🔷 b_cp0_stat	XXXXXXXXX	0000ff01		~		1	0000ff02						Tegister
🕀 🔷 b_cp0_cause	XXXXXXXXX	00000000	1	- 8			00001000	i i i i i i i i i i i i i i i i i i i	8		12		
庄 🔷 b_cp0_epc	XXXXXXXXX	00400070	20				00400074				E		
Register used	-	10							i i	(12		
🛨 🔷 \$s0	00000000	7fff0000	0								1		
🕀 🔷 \$s1	00000000	0000ff01											
🛨 🔷 \$s2	00000000	7fffffff	- C					ž.	8	(000000)	12		
🛨 🔷 \$s4	00000000	80000300		1						-			
🛨 🔷 \$s5	00000000	800001c0								\leftarrow		/	
🛨 🔷 \$t0	00000000	00000000	1	- 8			8	ŝ	8	/_	12		
🛨 🔷 \$t1	00000000	80000330	Ð.				1.	÷.	-		12		
+ 🔶 \$t2	00000000	00000001		1						/			
4					a					1			
(1) (mail and)	0000	protectas	1111111	1.1.1	Terreterer	1.31				7		1 11 13 1	
		_	-		•					¥			

Execute normal instruction. Add 19 to \$s2. At the same time I/O interrupt come in. Processor finishes normal instruction and goes to exception handler.

Exception Handler Waveform

🔢 Wave - Default 🚃													_
\$	Msgs												
bi_cp0_clk	0	1											
bi_cp0_rst	1												
🗉 🔶 u_dp_id_pc	XXXXXXXX	80000	800001a0	800001a4	800001a8	800001ac	80000 1b0	800001b4	800001b8	800001bc	80000328	800001c0	8
🖃 🔶 u_dp_id_instr	XXXXXXXXX	30840	0080502a	15400006	288a000d	11400004	00844820	01294820	01344820	01200008	02a00008	401a7000	0
🔶 bo_cp0_flush_id	x				· / · · ·		-					4	-
🔶 bo_cp0_flush_ex	x				⊢ /						⊢/		+
🔶 bo_cp0_flush_mem	x				⊢/								
🕀 🐟 bo_cp0_exc_addr	XXXXXXXX	0000000	0		/						/		
🕀 🐟 bo_cp0_read_data	XXXXXXXX				/						/	00400064	
🕀 🌧 bi_cp0_read_addr	xx	00	0a	00	1		09			00		0e	0
🕀 🌧 bi_cp0_wr_data	XXXXXXXXX	0000000	0	/-			0000000a	00000000	80000300	00000000		00000028	0
<u>+</u>	xx	_00	0a				09					l Oe	10
bi_cp0_mtc0	x			├ ──/──						<u>├ / </u>		+	+
Di_cpu_eret	x						-			+ /		+	+
bi_cp0_under_instr	x			- /						+/		+	+
bi_cp0_systall	x			-/						/		-	+
bi_cp0_sovr	x			-/						4		+	=
ight bi_cp0_irq	00	80000	800001-0	200001-4	900001-9	800001-5	80000 th0	900001b4	1900001b9	900001bc	90000339	800001-0	
	******	0000ff02	00000140	200001a4	. 00000180	. 80000 Iac	.80000100	, 80000104	100000100	. 80000 IDC	.80000328	.80000100	-
⊕ ↓ b_cp0_stat	*****	0000002	/	/			_					+	+
	XXXXXXXX	0040006					_					+	+
- Register used		0010000											+
	00000000	7fff0000	<u>├──/</u> ──				-		+ /			+	+
	00000000	0000ff01							1/			+	+
	00000000	7ffffff							/				+
	00000000	8000030							/				+
+ 🔶 \$s5	00000000	800001c0											Ŧ.
🕀 🔶 \$t0	00000000	0000000								1			-
🕀 🔶 \$t1	00000000	0000000	/							(000000	14 (000000	28 (80000	328
🛨 🔶 \$t2	00000000	000000	D					(000000	01				
🕀 🔶 \$a0	32'h00000000	32'h0000	0000	(32'h0000	000a								
🔶 \$k0	32'h00000000	32'h0000	0028										—
		₩	1	1		1	1	¥	1		/	,	
	Switch c	ase					Jump to]	ISR					
	statemen	t.					address			~			
							auuress.			Calculate a	and ^r		
									(determine	the		
										address of	ISR.		

📰 Wave - Default											_
\$	Msgs										
→ bi_cp0_clk	0										\square
bi_cp0_rst	1										
🕀 🔶 u_dp_id_pc	XXXXXXXX	800001dc	800001e0	800001e4	800001e8	800001ec	800001f0	800001f4	800001f8	800001fc	8000
🕀 🔶 u_dp_id_instr	XXXXXXXXX	40806800	401a6000	00000000		335afffd	375a0001	0000000		409a6000	8c04
CP0											
🔷 bo_cp0_flush_id	x				,						1
🔷 bo_cp0_flush_ex	x										<u> </u>
💠 bo_cp0_flush_mem	x				-/						<u> </u>
🕀 🔶 bo_cp0_exc_addr	XXXXXXXXX	00000000			/						
🕀 🔷 bo_cp0_read_data	XXXXXXXX	00000028	0000ff02	/	ſ					0000ff02	\vdash
🕀 🌧 bi_cp0_read_addr	xx	0d	0c	00		1f	.00			0c	00
🕀 🌧 bi_cp0_wr_data	XXXXXXXX	00000000	00400068	00000000		0040 0000ff02		00000000		0000 10000	10000
🕀 🌧 bi_cp0_wr_addr	xx	_0d	0c	00		1f	00			<u>0c</u>	00
bi_cp0_mtc0	x			├ / ──						-	<u> </u>
bi_cp0_eret	x										
bi_cp0_undef_instr	x										+
bi_cp0_syscall	x			/							+
DI_CDU_SOVT	x		/	1							╞──
H DI_COU_IR	00	00		000004-4	000004-0	000004	00000460	00000454	00000460	0000046	
H b cp0_current_pc	XXXXXXXX	80000100	800001e0	800001e4	800001e8	800001ec	800001f0	80000114	80000178	800001fc	18000
$\pm \rightarrow b_{cp0}$ stat	*****	00000028	00000000							<u> </u>	10000
	******	00000028	0000000								+
D_cp0_epc D_cp0_epc D_cp0_epc		00400088	-/								-
	00000000	7fff0000									<u> </u>
	00000000	0000ff01	/							<u> </u>	+
	00000000	7									+
+ \$\$4	00000000	80000300									
+ 🔥 \$s5	00000000	800001c0									
+ 🕹 \$t0	00000000	00000000									
🗐 🔶 št1	00000000	80000328								<u> </u>	—
	00000000	00000001								<u> </u>	
	32'h00000000	32'h0000000	a								
. 🕀 🔶 \$k0	32'h000000000	32'h0040006	8			(32'h0000	ff02		(32'h000	0ff00 (32'h0000	ff01
P											
Move	e status re	gister val	ue to registe	er file				×			

\$k0 and reset value of status register.

Reset status register to enable interrupt

· Mgg · Mgg Mgg · Mgg Mgg · Mgg Mgg Mgg · Mgg Mgg Mgg Mgg · Mgg Mgg Mgg Mgg Mgg · Mgg Mgg Mgg Mgg Mgg <	📰 Wave - Default 🚞									
big0_dk 0 big0_dk 1 cv u.gb.jd.pc cv u.gb.jd.pc cv u.gb.jd.pc cv u.gb.jd.pc cv u.gb.jd.pc cv u.gb.jd.net cv u.gb.jd.net cv u.gb.jd.net cv u.gb.jd.pc cv u.gb.gb.mc u.gb.gb.gb.mc u.gb.gb.gb.mc u.gb.gb.gb.gb.gb.mc u.gb.gb.gb.gb.gb.gb.gb.gb.gb.gb.gb.gb.gb.	\$ -	Msgs								
b lg00_st 1 0000000 80000200 80000200 80000200 00000000 00000000 b lg00_st x 000001fc 80000200 80000200 80000200 0000000 00000000	🌛 bi_cp0_clk	0	7							
u dp.jd.jc xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	🍌 bi_cp0_rst	1		(
u u	🕀 🕁 u_dp_id_pc	XXXXXXXX	800001fc	80000200	80000204	80000208	8000020c	80000210	00400068	<u>i</u> l
CO Co Bo _cp0_flush_dex X Bo _cp0_flush_mem X Bo _cp0_read_data XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	🕀 🕁 u_dp_id_instr	XXXXXXXXX	409a6	8c040000	8c050004	03600820	42000018	0000000	000000c	
bo.go0_fluki_jd x x c 0000000 00000008 cert. Return to address saved in BCPC. B. bo.go0_sxc.addr xxxxxxxxx 0000000 01 00 address saved in BCPC. BCPC. B. bl.go0_wr.dat xxx 0000000 01 00 address saved in BCPC. BCPC. B. bl.go0_wr.dat xxx 0000000 01 00 address saved in BCPC. B. bl.go0_wr.dat xx 000 01 00 address saved in BCPC. B. bl.go0_wr.dat xx 000 01 00 address saved in BCPC. B. bl.go0_wr.dat xx 000 01 00 address saved in BCPC. B. bl.go0_wr.dat xx 00 00 address saved in BCPC. BCPC. B. bl.go0_wr.dat xx 00 00 address saved in BCPC. BCPC. B. bl.go0_sort xx 00 00 address saved in BCPC. BCPC. B. bl.go0_sort xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	— СРО —							(
bb.go0_flush_ex x bb.go0_flush_ex x bb.go0_pol_ext_add xx bb.go0_read_adat xxx bb.go0_wr_adat xx bb.go0_wradat xx px px px px bb.go0_wradat xx px	🖕 bo_cp0_flush_id	x								_ \
bb.cp0_function x x constrained constrai	🐟 bo_cp0_flush_ex	x								
1 bb_cp0_exc_addr xxxxxxxxx 0000000 10000008 address saved in 1 bb_cp0_read_adat xx 0000000 01 00 address saved in 1 bb_cp0_read_addr xx 0000000 01 00 address saved in 1 bb_cp0_wr_addr xx 0000000 01 00 address saved in 1 bb_cp0_wr_addr xx 0000000 01 00 address saved in 1 bb_cp0_wr_addr xx 0000000 01 00 address saved in 1 bb_cp0_wr_addr xx 0000000 01 00 address saved in bb_cp0_wr_addr xx 0000000 01 00 address saved in bb_cp0_wr_addr x 0000000 0000000 address saved in bb_cp0_wr_adwr_a 0000000 a	🐟 bo_cp0_flush_mem	x								anat Datum to
 bi_cp0_red_adat xx xx	🕀 🕁 bo_cp0_exc_addr	XXXXXXXX	00000000				00400068			elet. Return to
• bi_p0_red_addr xx 0c 00 01 00 Image: constraint of the second of	🕀 🕁 bo_cp0_read_data	XXXXXXXX	0000ff02	<u> </u>	-/				1	address saved in
• bicp0.wr_data xx xx bicp0_wr_addr xx xx bicp0_wr_addr xx bicp0_mtc0 x bicp0_cret xx bicp0_cret xx bicp0_syscal xx bicp0_syscal xx bicp0_syscal xx bicp0_syscal xx bicp0_syscal xx bicp0_syscal xx bicp0_cret xx bicp0_cret xx bicp0_cret xx bicp0_cret xx bicp0_syscal xx bicp0_syscal xx bicp0_syscal xx bicp0_syscal xx bicp0_cret xx bicp0_syscal xx bicp0_syscal xx bicp0_cret xx xx bicp0_cret xx xx xx	🕀 🌧 bi_cp0_read_addr	xx	0c	00		01	00			EDC
	🕞 🌧 bi_cp0_wr_data	XXXXXXXX	0000	0000000a	00000000					EPC.
bi _cp0_mtc0 x bi _cp0_mtc1 x bi _cp0_mtc1 x bi _cp0_mtc1 x bi _cp0_syscal x bi _cp0_syscal x bi _cp0_mtc1 x bi _cp0_mtc1 x bi _cp0_syscal x bi _cp0_urrent_pc xxxxxxxx bi _cp0_syscal xxxxxxxx bi _cp0_urrent_pc xxxxxxxx bi _cp0_stat xxxxxxxx b _cp0_stat xxxxxxxx v > b_cp0_cause xxxxxxxx 00000f0 00000f0 00000f0 00000f0 00000f0 00000f0 00000f0 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 00000000 00000000 00000000 00000000 </td <td>🖃 🧼 bi_cp0_wr_addr</td> <td>xx</td> <td>0c</td> <td>00</td> <td></td> <td>01</td> <td>00</td> <td></td> <td></td> <td>-</td>	🖃 🧼 bi_cp0_wr_addr	xx	0c	00		01	00			-
bi_cp0_eret x bi_cp0_syscal x columnotic x x bi_cp0_syscal x x x columnotic x x x x columnotic x x x x x columnotic x x x x x columnotic x <t< td=""><td>i_cp0_mtc0</td><td>x</td><td></td><td> /</td><td></td><td></td><td></td><td></td><td></td><td>-</td></t<>	i_cp0_mtc0	x		/						-
bl_cp0_undef_instr x bl_cp0_syscal x bl_cp0_systal x bl_cp0_systal xxxxxxx 00 00 00 00 00 00 00 00 00 00 00 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 00000000 00000000	i_cp0_eret 🌧	x								-
b i_cp0_syscall x b i_cp0_sovf x c b_cp0_irq 00 c b_cp0_urrent_pc xxxxxxxx b b_cp0_stat xxxxxxxx c b_cp0_stat c b_cp0_stat c stat c cp0000000 c stat c cp	⇒ bi_cp0_undef_instr	x				,				-
⇒ bi_cp0_sovf x	⇒ bi_cp0_syscall	x		L						-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	⇒ bi_cp0_sovf	x		L /						-
+ ::>:::::::::::::::::::::::::::::::::	🖃 🤙 bi_cp0_irq	00	00							-
$\bullet \ b_{cp0} stat$ xxxxxxx 0000ff01	🕞 🥠 bi_cp0_current_pc	XXXXXXXX	800001fc	80000200	80000204	80000208	8000020c	80000210	00400068	, +
	🖃 🔷 b_cp0_stat	XXXXXXXX	0000ff02	0000ff01						- -
$\bullet \ b_{cp0}_{epc}$ xxxxxxx 00420068 Register used ////////////////////////////////////	🖃 🔷 b_cp0_cause	XXXXXXXX	00000000							r F
Register used ////////////////////////////////////	🖃 🔷 b_cp0_epc	XXXXXXXX	00400068							-
$\bullet \$ \$\$0 0000000 $\overline{fff0000}$ $\bullet \$ </td <td> Register used</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Register used									
	🖃 🔶 \$s0	0000000	7fff0000							-
$\bullet \$ \$\$2 0000000 $\overline{7ffffff}$	🖃 🔶 \$s1	00000000	0000ff01							·
$\bullet \diamond \$ 4$ 0000000 8000300 8000300 $\bullet \diamond \$ 5$ 0000000 80001c0 80001c0 $\bullet \diamond \$ 0$ 0000000 8000328 9000328 $\bullet \diamond \$ 1$ 0000000 8000328 9000001 $\bullet \diamond \$ 2$ 0000000 9000001 9000001 $\bullet \diamond \$ 0$ 32'h000000a 32'h000000a 32'h000000a	🖃 🔶 \$s2	00000000	7 ffffff							-
★ \$\$5 0000000 80001c0 0000000 ★ \$\$1 0000000 8000328 0000000 ★ \$\$2 0000000 0000001 0000001 ★ \$\$2 0000000 0000001 0000000 ★ \$\$0 32'h000000a 32'h000000a 32'h000000a ★ \$\$0 32'h0000000a 32'h000000a 32'h0000000	🕒 🔶 \$s4	0000000	80000300							-
★ \$t0 0000000 0000000 ★ \$t1 0000000 8000328 ★ \$t2 0000000 0000001 0000000 32'h000000a 32'h000000a 32'h000000a 32'h000000a	🛨 🔶 \$s5	00000000	800001c0							-
• ◆ \$t1 • ↓ \$t2 • ↓ \$t3 • ↓ \$t3 • ↓ \$t3 • ↓ \$t1 • ↓ \$t3 • ↓ \$t1 • ↓	🖃 🔶 \$t0	00000000	00000000							·
• ◆ \$t2 • ◆ \$a0 • ◆	📃 🔶 \$t1	0000000	80000328							-
★ ◆ \$a0 32'h0000000a 32'h0000000a ★ ◆ \$k0 32'h00000000 32'h0000000a	🕒 🔶 \$t2	0000000	00000001							-
. · · · · · · · · · · · · · · · · · · ·	🔄 🕁 💠 \$a0 🛛 🗸 🖌	32'h00000000	32'h00000	00a			(32'h0000	0000		-
	📃 🕁 💠 🐝 🛛 🖊	32'h00000000	32'h0000	ff01						-

Restore Register

Register File

Register file when first start up and reset.

📑 ry Data - /t	b_r32_pipelin	e/dut_c_risc/	/u_datapath/t	o_rf/b_rf_reg	_ram - Defaul	t 2000 🛨 🗗 🗙
00000001 00000006 0000000b 00000010 00000015 0000001a 0000001f						
< >	4					•

Register file after \$s0, \$s1, \$s2, \$s4, \$s5 is written with value. (partial test program before exception)

Chapter 8 Conclusion

8.1 Conclusion

Exception/interrupt handling is essential for a processor to work and function properly. Without exception handling, processor may not be able to handle and solve exception/interrupt.

Coprocessor 0 implemented in this project is able to solve this problem. CP0 implemented is capable of save the return address, and decode the cause of incoming interrupt. As for software handling part, the exception handler is working well and proven to be working.

There are 3 instructions added to the RISC32 architecture to support exception/interrupt handling mechanism. The 3 instructions added are mfc0, mtc0 and eret. Modification of datapath unit and control unit are done to enable the processor to decode and process the added instruction.

There are 2 caches added to the RISC32 architecture also which are kernel segment and kernel data segment to enable exception handler to work.

Lastly, all the objective of this project is achieved. A complete interrupt handling mechanism is developed and proven to be work well. The Co-processor 0 is developed in RTL (Register Transfer Level) form and modeled in synthesizable Verilog. The Co-processor 0 functionality is verified as well.

8.2 Discussion and Future Work

The exception/interrupt handling developed is not yet in complete and perfect form. It currently only able to process 4 type of exceptions which are undefined instruction, syscall, sign overflow and I/O interrupt. The future improvement should include more functionality, let the CPO able to process all kind of exception and interrupt. Other than that, the software part for exception handling is not yet completed. The interrupt service for each exception/interrupt is not developed. It currently only able to detect, examine the cause and then return to normal instruction execution. Kernel programmer will be responsible to develop the whole exception handling mechanism to handle exception.

Furthermore, due to limitation of simulation tool, modelsim student edition, the memory map used in this project is not able to use standard memory map convention. The memory limitation only allow up to 8k memory. The system should simulate as standard practice, which similar to industrial product.

Lastly, the CP0 currently developed can only handle single exception/interrupt at every particular time. Improvement should be done to allow CP0 to process with more the 1 exception/interrupt at the same time. This will be able to speed up processor's processing power.

REFERENCE

[1] K.M Mok, *Computer Organisation and Architecture Notes*, University of Tunku Abdul Rahman, Faculty of Information and Communication Technology, 2009.

[2] Sweetman, D. (2007). See MIPS Run. San Francisco: Morgan Kaufmann.

[3] David A. Patterson and John L. Hennessy (Edition 2004). *Computer Organization and Design: The Hardware/Software Interface 3rd*, Morgan Kaufman, 2004

[4] https://msdn.microsoft.com/en-us/library/ms892408.aspx [Accessed: 20 August 2015]

[5] Joe H., "MIPS R4000 Microprocessor User's Manual", Second Edition, 2011.

[6] Virgil B., Lab 7 - MIPS interrupt and exception handling, 1996

[7] W. Wolf, FPGA-Based System Design, 1st edition, Prentice Hall, 2004.

[8] K.M Mok, *Digital System Design Notes*, University of Tunku Abdul Rahman, Faculty of Information and Communication Technology, 2009.

Appendix

c_risc.v

`include "macro.v"
`default_nettype none

module c_risc
(// === in out port declaration =====
//OUTPUT
/*
// Input / Output from VGA controller

// Input / Output from PS2 Mouse controller

// Input / Output from PS2 Keyboard controller

// Input / Output from UART controller

*/

//INPUT
input wire
ui_cd_clk,
input wire
ui_cd_rst
);

//______ internal wine

//main control signal wire u_cd_alb_src; wire u_cd_rd_src; wire u_cd_mult_en; wire u_cd_sign_mult; wire u_cd_rf_wr; wire u_cd_mem_wr; wire u_cd_mem_re; wire u_cd_sign_ext; wire u_cd_hi_wr; wire u_cd_lo_wr; wire u_cd_alb_to_rf;

wire u_cd_hi_to_rf; wire u_cd_mem_to_rf; wire u_cd_jump; wire u_cd_jr; wire u_cd_jal; wire u_cd_jalr; wire u_cd_beq; wire u_cd_bne; wire u_cd_blez; wire u_cd_bgtz; //alb wire [`ALB_CTRL_NB-1:0] u_cd_alb_ctrl; //main control wire [`OPCODE_NB-1:0] u_cd_opcode; wire [`FUNCT_NB-1:0] u_cd_funct; wire [4:0] u_cd_rs; // Memory unit wire [`WORD_NB-1:0] u_cd_pc; u_cd_dmem_addr; wire [`WORD_NB-1:0] wire [`WORD_NB-1:0] u_cd_store_data; // Mem unit and forwarding reg [`WORD_NB-1:0] u cd instr; wire [`WORD_NB-1:0] u_cd_text_instr; wire [`WORD_NB-1:0] u_cd_ktext_instr; reg [`WORD_NB-1:0] u cd loaded data; wire [`WORD_NB-1:0] u cd loaded ndata; wire [`WORD_NB-1:0] u_cd_loaded_kdata; //datapath output wire u_dp_mem_re; wire u_dp_mem_wr; //IO(UART) u_cd_intr_uart; reg //IO(PS2 Mouse) u_cd_intr_ps2_mouse; reg //IO(PS2 Keyboard) reg u_cd_intr_ps2_keyboard; //cp0 wire //control wire u_cd_mfc0;

u_cd_mtc0;
u_cd_eret;
u_cd_syscall;
u_cd_undef_inst;
u_cd_undef_inst

//===== controlpath ========

u_ctrl_path u_control(//control_u //output signal .uo_cp_alb_src(u_cd_alb_src), .uo_cp_rd_src(u_cd_rd_src), .uo_cp_mult_en(u_cd_mult_en), .uo_cp_sign_mult(u_cd_sign_mult), .uo_cp_rf_wr(u_cd_rf_wr), .uo_cp_mem_wr(u_cd_mem_wr), .uo_cp_mem_re(u_cd_mem_re), .uo_cp_sign_ext(u_cd_sign_ext), .uo_cp_hi_wr(u_cd_hi_wr), .uo_cp_lo_wr(u_cd_lo_wr), .uo_cp_alb_to_rf(u_cd_alb_to_rf), .uo_cp_hi_to_rf(u_cd_hi_to_rf), .uo_cp_mem_to_rf(u_cd_mem_to_rf), .uo_cp_jump(u_cd_jump), .uo_cp_jr(u_cd_jr), .uo_cp_jal(u_cd_jal), .uo_cp_jalr(u_cd_jalr), .uo_cp_beq(u_cd_beq), .uo_cp_bne(u_cd_bne), .uo_cp_blez(u_cd_blez), .uo_cp_bgtz(u_cd_bgtz), .uo_cp_alb_ctrl(u_cd_alb_ctrl), .uo_cp_mfc0(u_cd_mfc0), .uo_cp_mtc0(u_cd_mtc0), .uo_cp_eret(u_cd_eret), .uo_cp_syscall(u_cd_syscall), .uo_cp_undef_inst(u_cd_undef_inst),

//input signal .ui_cp_opcode(u_cd_opcode), .ui_cp_funct(u_cd_funct), .ui_cp_rs(u_cd_rs));

//====== datapath ========

//_____

u_data_path u_datapath //====== OUTPUT ======= // Main control .uo_dp_opcode(u_cd_opcode), .uo_dp_funct(u_cd_funct), .uo_dp_rs(u_cd_rs), // Memory unit .uo_dp_im_addr(u_cd_pc), .uo_dp_dm_addr(u_cd_dmem_addr), .uo_dp_dm_store(u_cd_store_data), .uo_dp_mem_wr(u_dp_mem_wr), .uo_dp_mem_re(u_dp_mem_re), //====== INPUT ====== // Main control .ui_dp_alb_src(u_cd_alb_src), //aluSrc .ui_dp_rd_src(u_cd_rd_src), //regDst .ui_dp_mult_en(u_cd_mult_en), .ui_dp_sign_mult(u_cd_sign_mult), .ui_dp_rf_wr(u_cd_rf_wr), //regWr .ui_dp_mem_wr(u_cd_mem_wr), //mem_wr .ui_dp_mem_re(u_cd_mem_re), //mem re .ui_dp_sign_ext(u_cd_sign_ext), //extOp .ui_dp_hi_wr(u_cd_hi_wr), .ui_dp_lo_wr(u_cd_lo_wr), .ui_dp_hi_to_rf(u_cd_hi_to_rf), .ui_dp_mem_to_reg(u_cd_mem_to_rf), //mem to reg0 .ui_dp_beq(u_cd_beq), .ui_dp_bne(u_cd_bne), .ui_dp_blez(u_cd_blez), .ui_dp_bgtz(u_cd_bgtz), .ui_dp_jump(u_cd_jump), .ui_dp_jr(u_cd_jr), .ui_dp_jalr(u_cd_jalr), .ui_dp_jal(u_cd_jal), //ALB .ui_dp_alb_ctrl(u_cd_alb_ctrl), //aluCtr // Memory_unit .ui_dp_instr(u_cd_instr), //instr .ui_dp_loaded_data(u_cd_loaded_data),//pc4 //cp0 .ui_dp_intr_vector({1'b0,1'b0,u_cd_intr_uart,u_cd_intr_ps2_mouse,u_cd_intr_ps2_

keyboard}),

```
.ui_dp_cp0_mfc0(u_cd_mfc0),
.ui_dp_cp0_mtc0(u_cd_mtc0),
.ui_dp_cp0_eret(u_cd_eret),
.ui_dp_cp0_syscall(u_cd_syscall),
.ui_dp_cp0_undef_inst(u_cd_undef_inst),
// System signal
.ui_dp_clk(ui_cd_clk),
.ui_dp_rst(ui_cd_rst)
);
```

u_cache u_text_seg(.uo_cm_rd_data (u_cd_text_instr), .ui_cm_addr (u_cd_pc), .ui_cm_wr_data ({`WORD_NB{1'b0}}), .ui_cm_re (1'b1), // i-cache always read .ui_cm_wr (1'b0), .ui_cm_clk (ui_cd_clk));

u_cache u_data_seg(.uo_cm_rd_data (u_cd_loaded_ndata), .ui_cm_addr (u_cd_dmem_addr), .ui_cm_wr_data (u_cd_store_data), .ui_cm_re (u_dp_mem_re), .ui_cm_wr (u_dp_mem_wr), .ui_cm_clk (ui_cd_clk));

```
u_cache
u_ktext_kseg0(
.uo_cm_rd_data (u_cd_ktext_instr),
.ui_cm_addr (u_cd_pc),
.ui_cm_wr_data ({`WORD_NB{1'b0}}),
.ui_cm_re (1'b1), // i-cache always read
.ui_cm_wr (1'b0),
.ui_cm_clk (ui_cd_clk));
```

u_cache u_kdata_kseg0(.uo_cm_rd_data (u_cd_loaded_kdata), .ui_cm_addr (u_cd_dmem_addr),

.ui_cm_wr_data (u_cd_store_data), .ui_cm_re (u_dp_mem_re), .ui_cm_wr (u_dp_mem_wr), .ui_cm_clk (ui_cd_clk));

endmodule