
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Exception Handling for 5-Stage Pipeline Micro-Architecture

BY

ARTHUR PUAN CHOK HO

Supervised by

Mr. Mok Kai Ming

A Report

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONS)

COMPUTER ENGINEERING

Faculty of Information and Communication Technology

(Perak Campus)

JUNE 2015

1
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

2
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

DECLARATION OF ORIGINALITY

I declare that this report entitled “Exception Handling for 5-Stage Pipeline Micro-

Architecture ” is my own work except as cited in the references. The report has not been

accepted for any degree and is not being submitted concurrently in candidature for any

degree or other award.

Signature : _________________________

Name : ____________________________

3
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

ACKNOWLEDGEMENT

I would like to express my sincere appreciation to my final year project supervisor, Mr

Mok Kai Ming for his guidance throughout the whole project with good patience and also

clear explanation of all sorts of problems to help me to complete my project. This project

might not be able to finish without his guidance. A million thanks to you for spending so

much time to guide me throughout the project.

Secondly, I want to say thank you to my friends who give a lot of help when I face

problem, comfort me when I am stressed, encourage and support me during hard times.

Lastly, I must say thanks to my parents and my family for their love, unconditional

support and continuous encouragement throughout the course.

4
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

ABSTRACTS

 This project, as stated in the title of the project, is to develop exception handling

for 5-stage pipeline Micro-Architecture. Coprocessor (CP0) is implemented

independently to receive and decode exception and interrupt signal which come from

CPU or external device. In this project, coprocessor 0 (CP0) is developed. Component

and exception/interrupt handling mechanism for software and hardware are developed.

CP0 architecture and micro-architecture specification will be developed and implemented

with HDL (Hardware Description Language) VERILOG. A series of test cases are

developed to verify CP0 functionality. Lastly, the CP0 will integrate with RISC32 core.

Test program will be developed to verify CP0 functionality. An exception handler is also

developed to complete the whole exception/interrupt handling mechanism. Exception

handler will examine the causes and dispatch CPU to appropriate ISR.

5
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Table of Contents

DECLARATION OF ORIGINALITY...2

ACKNOWLEDGEMENT...3

ABSTRACTS...4

List of Figures...8

List of Table..8

List of Abbreviation..9

Chapter 1 Introduction...10

1.1 Background Information..10

1.1.1 MIPS – RISC Processor..10

1.1.2 Coprocessor 0 (CP0)...10

1.1.4 Exception...10

1.1.4 Interrupt...11

1.2 Project Motivation...12

Chapter 2 Literature Review..13

2.1 Exception and interrupt..13

2.1.1 Precise Exception...14

2.1.2 Vectored interrupt...14

2.1.3 Interrupt Service Routine (ISR)...15

2.1.4 Interrupt Processing..15

2.1.5 Exception Handling..17

2.1.6 Exception Handling by MIPS..17

2.2 Coprocessor 0 (CP0)..18

2.2.1 MIPS CP0 Implemented Register..18

2.2.2 BusCtrl Register...19

Figure 2.2 Bus control (BusCtrl) register...19

2.2.3 BadVAddr Register..20

2.2.4 Count and Compare Register..20

2.2.4 PortSize Register..20

2.2.4 Status Register (SR)..21

6
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

2.2.5 Cause Register..21

2.2.6 EPC..22

2.2.7 Instructions Associate with Exception Handling..23

2.3 MIPS Memory Map...24

Chapter 3 Problem Statement, Project Scope and Objectives..26

3.1 Problem Statement...26

3.2 Project Scope...26

3.3 Project Objective...27

3.4 Impact and Significance...28

3.5 Project Plan...29

Chapter 4 Methods/Technologies Involved..30

4.1 Design Methodology...30

4.1.1 System Level Design..31

4.1.2 Architecture Level Design..31

4.1.3 RTL Design..32

4.2 Design Tools...33

4.3 Exception/Interrupt Handling Mechanism..35

4.3.1 Exception/Interrupt Handling..35

4.3.2 RISC32 Exception/Interrupt Handling Mechanism..35

4.3.2.1 Hardware Handling..35

4.3.2.1 Software Handling...38

4.4 Instruction used in Exception/Interrupt Handling ...40

4.5 Pipeline Flushing...41

Chapter 5 System Specification...42

5.1 System Feature..42

5.1.1 System Functionality..43

5.2 Operating Procedure..44

5.3 Naming Convention...44

5.4 RISC32 Pipeline Processor with CP0 and I/O Description..45

5.4.1 Processor Interface...45

5.4.2 I/O Pin Description...45

5.5 Memory Map...46

7
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

5.5.1 Memory map description..46

5.6 System Register...48

5.6.1 General Purpose Register..48

5.6.2 Special Purpose Register...48

5.6.3 Program Counter Register...49

5.7 Instruction Formats and Addressing Modes..50

5.7.1 Instruction Formats...50

5.7.2 Addressing Modes..51

5.8 Supported Instructions Set...53

Chapter 6 Micro Architecture Specification...56

6.1 Design Hierarchy and Partitioning...56

6.2 Micro-Architecture (Block Level)..57

6.2.1 Micro-Architecture without CP0...57

6.2.2 Micro-Architecture with CP0..58

6.3 Coprocessor 0 Block..59

6.3.1 Coprocessor 0 Block interface..59

6.3.2 I/O Pin Description...60

6.3.3 Internal Operation...62

Chapter 7 Verification...64

7.1 CP0 Test Program...64

7.1.1 Exception Handler..65

7.1.2 Simulation Result...67

Chapter 8 Conclusion..80

8.1 Conclusion..80

8.2 Discussion and Future Work..81

REFERENCE..82

Appendix..83

8
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

List of Figures
Figure 2.1 Interrupt Handling Process 16
Figure 2.2 Bus control (BusCtrl) register 19
Figure 2.3 Status Register Layout 21
Figure 2.4 Cause Register Layout 21
Figure 2.5 Instruction used to access CP0 register 23
Figure 2.6 MIPS Memory Map 24
Figure 2.7 Kernel Segment 25
Figure 3.1 Gantt Chart for Project 1 29
Figure 3.2 Gantt Chart for Project 2 29
Figure 4.1 General Design Flow without Logic Synthesis and Physical Design 30
Figure 4.2 Hardware Exception Handling Flow Chart 36
Figure 4.3 Hardware Interrupt Handling Flow Chart 37
Figure 4.4 Software Exception Handling Flow Chart 39
Figure 4.5 mfc0 Instruction Format 40
Figure 4.6 mtc0 Instruction Format 40
Figure 4.7 EPC Instruction Format 40
Figure 5.1 Memory Map 47
Figure 5.2 Instruction Format 50
Figure 6.1 Block Partitioning 56
Figure 6.2 System Micro-Architecture Without CP0 57
Figure 6.3 System Micro-Architecture With CP0 58

List of Table
Table 2.1 Examples of event and type of exception 13
Table 2.2 Standard CP0 register and usage 18
Table 2.3 Exception code and causes 22
Table 4.1 Comparison Between Simulators 34
Table 5.1 RISC32 Features 42
Table 5.2 Naming Convention 44
Table 5.3 RISC32 Processor I/O Description 45
Table 5.4 Memory Map 46
Table 5.5 General Purpose Register 48
Table 5.6 Special Purpose Register 48
Table 5.7 CP0 Register 49
Table 5.8 Instruction Format Definition 50
Table 5.9 Instruction Set 53
Table 6.1 Design Hierarchy 56
Table 6.2 CP0 I/O Pin Description 62

9
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

List of Abbreviation
MIPS Microprocessor without Interlocked Pipeline Stages

RISC Reduced Instruction Set Computing

CPU Central Processing Unit

CP0 Coprocessor 0

IP Intellectual Property

ISA Instruction Set Architecture

RTL Register Transfer Level

I/O Input output

ISR Interrupt service routine

10
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Chapter 1 Introduction

1.1 Background Information

1.1.1 MIPS – RISC Processor
MIPS(Microprocessor without Interlocked Pipeline Stages) is a RISC(Reduced

Instruction Set Computing) based processor developed by MIPS Technologies which

executes instructions directly using hardware implementation without microprogrammed

control. MIPS implementations are primarily used in embedded systems such as routers,

residential gateways in networking and video games console such as Sony Playstation,

Playstation 2, Playsation Portable and later used in many of Silicon Graphics computer

products.

1.1.2 Coprocessor 0 (CP0)

MIPS exceptions/interrupts are handled by a peripheral device to the CPU known as

coprocessor 0 (CP0). It is named as Coprocessor because it is separated from the main

core and it is meant to handle the exceptional situation. Coprocessor 0 contains several

registers used to configure exception handling and report the status of current exceptions.

When exception occurs, CPU will suspend normal instruction execution and CP0 will

save the exception states. The exception handler will examine the cause and handle the

exception by providing appropriate service [1].

1.1.4 Exception
Exception is something that disrupts the normal flow of instruction. There are two type of

exception which is asynchronous exception and synchronous exception. Asynchronous

exception is the exception that occurs with no relation to the program executed while

synchronous exception is exception that occurs at the same place every time the program

is executed with the same data and memory allocation.

11
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

1.1.4 Interrupt
Interrupt is an event external to the current instruction execution that causes a change to

the normal flow of instruction execution. Interrupts are asynchronous exception.

Interrupts can be either software or hardware. For hardware interrupts, external devices

such as mouse, keyboard, printers need CPU service. These interrupts are handled by

Coprocessor 0 (CP0).

12
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

1.2 Project Motivation

A 32-bit 5-stage pipeline RISC soft-core can be advantageous in creating a core–based

environment to assist research and development work in the area of developing

Intellectual Properties (IP) cores. However, there are limitations in obtaining such

workable core-based design environment.

Microchip design companies develop microprocessors cores as IP for commercial

purposes. The microprocessor IP includes information on the entire design process for the

front – end (modelling and verification) and back – end (layout and physical design) IC

design. These are trade secrets of a company and certainly not made available in the

market at an affordable price for research purposes.

Several freely available microprocessor cores are freely available from source such as the

miniMIPS (www.opencores.org), the PH processor (Leicester University), uCore, Yellow

Star (Manchester University), etc. Unfortunately, these processors do not implement the

entire MIPS Instruction Set Architecture (ISA) and lack of comprehensive documentation.

This makes them unsuitable for reuse and customization.

Verification is vital for proving the functionality of any digital design. The

microprocessor cores mentioned above are handicapped by incomplete and poorly

developed verification specifications. This hampers the verification process, slowing

down the overall design process.

The lack of well – developed verification specifications for these microprocessor cores

will inevitably affect the physical design phase. A design needs to be functionally proven

before the physical design can proceed smoothly. Otherwise, if the front – end design

needs to be changed, the physical process also needs to be redone.

The RISC32 project will look into all the above problems and create a 32-bit RISC core-

based development environment to assist research work in the area of application specific

hardware modeling. In the RISC32 project, it is divided into several units based on MIPS

architecture.

13
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Chapter 2 Literature Review

2.1 Exception and interrupt

In MIPS, exception is described as something that disrupts the normal flow of execution.

Exception is divided into two types which are asynchronous exception and synchronous

exception. Asynchronous exception is exception that occurs with no relation to the

program executed and normally caused by hardware such as I/O module called interrupt,

memory error and power supply failure. Synchronous exception occurs every time when

a program executed with the same data and same memory allocation which normally

caused by arithmetic overflow, undefined instruction and traps.

In detail, exception can be differentiated into:

1. External events: event outside CPU core which send interrupt signal to CPU to get

attention. These are interrupts. Interrupts are used to direct the attention of the CPU to

some external event [2]. Interrupts are the only exception conditions that arise from

something independent from CPU’s normal instruction execution.

2. Memory translation exception: happens when memory address decoding error, a

program tried to write to a write-protected page.

3. Program or hardware-detected error: arise when nonexistent instruction is detected

(invalid instruction format), instruction that illegal in user-privilege is used, co-processor

instruction executed when appropriate status register flag is disabled and integer overflow.

4. Data integrity problem: caused by bus to bus transferred data error (parity errors)

5. System calls and traps: caused by instruction themselves, for example system call

instruction, conditional traps and breakpoints. These instructions are used to generate

exception to interrupt the program for certain purpose.

Table 2.1 Examples of event and type of exception [3].

14
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

2.1.1 Precise Exception

MIPS architecture implements precise exception. Precise exception means when

exception occurred, the particular exception will only point to the instruction that cause

the exception. Besides, all the instructions before will be executed while all the later

instructions will not be executed. This method eases the programmer work because they

can ignore the timing effect of the CPU implementation.

The features provided with Precise Exception are:

• Unambiguous proof of cause: EPC will point only to the instruction that cause the

exception. However, EPC might also point to the preceding branch for an

instruction is in a branch delay slot, but will signal occurrence of this using the

BD bit.

• Exceptions are seen in instruction sequence: In pipeline CPU, exception can arise

in several different stage of execution. For example, a lw(load word) instruction

suffer Memory Translation Exception will only arise exception signal in MEM

stage (4th stage in pipeline), but at the same time, a later instruction that cause

decoding error in ID stage (Instruction decode, 2nd stage in pipeline CPU) will

arise exception first. To avoid this problem, MIPS only serve the exception if all

previous instruction is complete successfully.

• Subsequent Instructions Nullified: Because of pipelining, instructions lying in

sequence after the victim at EPC have been started. But MIPS guarantee no effect

on visible register or CPU after return from Exception Handler.

2.1.2 Vectored interrupt

Vectored interrupt is an interrupt handling method in which the causes of interrupt will

directly affect the address to be dispatch. Each interrupt input will be given a unique

address, corresponding to its causes. This interrupt handling method is not implemented

in MIPS processor.

15
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

2.1.3 Interrupt Service Routine (ISR)
Interrupt service routine is software that hardware or software invokes in response to an

interrupt [4]. Interrupt service routine then will examine the interrupt and determine ways

to handle it. After handle the interrupt, it will return from interrupt and then continue the

program execution.

2.1.4 Interrupt Processing
Most processors generally share the same process of interrupt processing but only minor

differences in how the processors save their status and call the interrupt service routine.

When an interrupt occurs, the processor will finish the current instruction and store status

and return address. Then the processor will call the corresponding interrupt service

routine and start executes the interrupt service routine. Finally, when the processor done

the execution of interrupt service routine, it will return from the interrupt and resume the

program execution.

16
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Figure 2.1 Interrupt Handling Process

Exception/interrupt is issued

Processor finishes current instruction

Store status/contents and return address

Jump to address of interrupt service routine

Execute Interrupt service routine

Return from interrupt and continue program
execution

17
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

2.1.5 Exception Handling
Any MIPS exception handler routine has to go through the same stages.

• Bootstrapping: When enter the exception handler, very little of the state of the

interrupted program has been saved. So the first step is make yourself a enough

room to do whatever you want without overwriting something vital to the

software that has just been interrupted [2].

• Dispatching different exceptions: Get the exception code from the cause register.

It tells what and why the exceptions occur [2].

• Constructing the exception processing environment: Complex exception handling

routines will probably be written in high level language and will want to be able

to use standard library routines. A piece of stack memory that isn’t be used by any

other piece of software has to be provided and save all the values of any CPU

registers that might be vital to the interrupted program and that called subroutines

are allowed to change [2].

• Processing the exception: Here is where you can do whatever you like.

• Preparing to return: Return into low level dispatch code from subroutine (high

level function). Saved registers are restored and CPU return to its safe (kernel

mode, exceptions off) state by changing status register value to its postexception

value [2].

• Returning from an exception: instruction eret is used. It clears the status register

EXL bit and return to the address stored in EPC [2].

2.1.6 Exception Handling by MIPS
When exception occurs, CPU suspends normal instructions execution. CP0 will save the

exception states. CP0 records the cause of exception in cause register. It then saves the

return address in exception program counter (EPC). Processor will go into kernel mode.

MIPS fixed the exception handling code at 0x8000 0180 where the exception handler

18
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

examine the cause of exception and jump to a more specific code also in kernel to handle

exception. Lastly, eret is used to resume normal program execution if not terminated.

2.2 Coprocessor 0 (CP0)

MIPS coprocessor 0 is a piece of hardware implementation that implements

independently from the main processor core that functions to handle interrupt from

hardware or exception from program or the instruction that is executing.

2.2.1 MIPS CP0 Implemented Register

For commercial product, MIPS co-processor 0 implemented 32 registers according to

MIPS R4000 specification [5]. There is only few registers which are important for all

type of processor while most of the registers implemented only for dedicated function of

specific processor. The registers that are important for all processors are Status Register

(SR), Exception Program Counter (EPC) , Cause Register, Count Register, Compare

Register, Bus Control Register (BusCtr), Port Size Register and Bad Virtual Address

(BadVAddr Register).

Name Register no. Usage

BusCtrl $2 Configure bus interface signals. Needs to be setup

to match hardware implementation

BadVAddr $8 Offending memory reference

Count $9 Current Timer, which increment every 10ms

PortSize $10 Used to flag some program address regions as 8-bit

or 16-bits wide. Must be programmed to match

hardware implementation.

Compare $11 Interrupt when Count Register ≡ Compare Register

Status $12 Interrupt mask, enable bits and status when

exception occurred

Cause $13 Exception type and pending interrupt

EPC $14 Address of instruction that caused exception

Table 2.2 Standard CP0 register and usage

19
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

2.2.2 BusCtrl Register

This register configures buses in a cheap and simple way, without involving extra

circuitry. Figure below shows the layout of BusCtrl register.

Figure 2.2 Bus control (BusCtrl) register.

• Lock [31]: Is used to prevent changes of the register field after initialized is done.

Clear when system is reset.

• 10 (can be other value) [30:28]: Specified bit pattern is written in this field.

• Mem [27:26]: “MemStrobe Control”. Set in bit position 27 is to enable memory reads

while set in bit position 26 is to enable memory write.

• ED [25:24]: “ExtDataEn control”. Encoded as for memory. In order to make this pin

as output, BR[10] field must be zero[R3000 spec].

• IO [23:22]: “IOStrobe control”. Encoded as for memory. In order to make this pin as

output, BR[10] field must be zero[R3000 spec].

• BE16: “BE16(1:0) read control”. “0” to make these pins active on write cycles

only[R3000 spec].

• BE: “BE(3:0) read control”. “0” to make these pins active on write cycles only

[R3000 spec].

• BTA [15:14]: “Bus Turn Around Time”. Program with a binary number between 0

and 3 for 0-3 cycle of guaranteed delay between the end of a read cycle and the start

of the address phase of the next cycle. This field enables the use of devices with slow

tri-state time, and enables the system designer to save cost by omitting data

transceivers [R3000 spec].

20
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

• DMA [13]: “DMA Protocol Control”. When is set, CPU uses its DMA control pins to

communicate its desire for the bus even while a DMA is in progress[R3000 spec].

• TC [12]: “TC Negation Control”. TC is the output pin which is activated when the

internal timer register Count reaches the value stored in Compare. Clear this field

make TC pin just pulse for a couple of clock periods; set this field TC pin will be

asserted on a compare and remain asserted until software explicitly clears it (BY re-

writing Compare with any value) [R3000 spec].

• BR[11]: “SBrCond(3:2) control”. Clear to recycle the SBrCond(3:2) pins as IOStrobe

and ExtDateEn respectively [R3000 spec].

2.2.3 BadVAddr Register

This register is used to store memory address where the exceptions were occurred. For

example, instruction LW (Load Word) from data memory address X which lead to

memory address translate error (which the address provided is not valid, wrongly aligned

or outside the range that supposed to be) will store in this register.

2.2.4 Count and Compare Register

This is a 24-bit counter/timer that running at CPU cycle rate. Count register is counting

up and reset to zero when the count has reached the value in the Compare register. When

Count Register is reset, TC in BusCtrl register will asserted high for a clock cycle. This is

meant to generate an interrupt signal when TC is connected to interrupt input. After reset,

the Compare register value will set to 0xFF_FFFF, which is maximum value of 24-bit,

hence, the counter can runs up to 224-1 (1677215).

2.2.4 PortSize Register

This register is used to flag different part of the program address space for accesses to 8,

16 or 32 bit wide memory. This register must be programmed to match hardware

implementation.

21
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

2.2.4 Status Register (SR)

This register contains the interrupt masking bit which enable/disable particular interrupt

and status information. The layout of status register is shown below.

Figure 2.3 Status Register Layout

status[15:10] is external hardware Interrupt Masking bit, which used to enable/disable

interrupt level. For example, if IMi is set to “1”, interrupt of level i is enable. On the other

hand, status[9:8] (IM1-IM0) is software writeable bit, which allowed software to

mask/unmask the interrupt level.

status[1] is exception level (EXL) bit, is used to determine whether the processor is in

kernel or user mode. It is set by any exception. When set to “1”, it indicates that the

processor is in kernel mode, and hence, disables all the interrupt. When set to “0”, it

indicates that processor is in user mode, which allows interrupt happen.

Status[0] is global interrupt enable (IE). When it is set to “1”, processor permits interrupt;

else no interrupt will be permitted. This bit usually configured by OS to control the

process whether accept interrupt or not.

2.2.5 Cause Register
Cause of any exception and pending exception are stored in Cause Register. The

exception code is stored as an unsigned integer in cause[6:2] while pending exception is

stored in cause[15:8]. Figure below shows the Cause Register layout.

Figure 2.4 Cause Register Layout

22
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

When an interrupt occurs, the particular interrupt level field will be set to “1” and clear

after the interrupt is served. However, SPIM only simulate 6 out of 8 pending interrupt

which is IP7-IP2. IP1 and IP0 are software interrupt bit and not visible in SPIM.

The exception code, cause[6:2] is used to indicate the cause of particular interrupt. Table

Below shows the exception code implemented by SPIM corresponding to different

exception causes.

Table 2.3 Exception code and causes [6]

The left over part, exception code 1-3 is reserved for virtual memory (TLB exception),

exception code 11 is to indicate particular coprocessor is missing while exception code

above 12 are used for floating point exception or reserved.

2.2.6 EPC
EPC is used to store the return point when return from exception. In other word, EPC is

used to store the address of the instruction that cause exception.

23
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

2.2.7 Instructions Associate with Exception Handling

Some instructions are dedicated to access the register in MIPS coprocessor 0. In order to

access coprocessor 0 register, the code must have kernel privilege. Table below shows

the instruction and usage of the instructions.

Figure 2.5 Instruction used to access CP0 register [6].

24
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

2.3 MIPS Memory Map
Memory map in MIPS is not implemented in hardware. It just a convention followed by

most programmer. However, in real world, this convention is applied to almost all the

MIPS CPU. Figure below shows MIPS memory map.

Figure 2.6 MIPS Memory Map [1]

25
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Figure 2.7 Kernel Segment [1]

MIPS partition memory into 2 major parts, User Space and Kernel Space, where
0x0000_0000 to 0x7FFF_FFFC is user space and everything above 0x7FFF_FFFC is
kernel space. Below are the functions of each memory space.

0x0000_0000 – 0x7FFF_FFFC: This lower 2GB memory allocation is permitted in user

mode. It contains stack segment, data segment, text segment and reserved memory space.

kseg0 0x8000_0000 – 0x9FFF_FFFC: This 512MB memory region is normally accessed

through cache. Exception and page table base register are allocated here. Here is also the

exception entry point (software exception handling).

kseg1 0xA000_0000 – 0xBFFF_FFFC: Boot ROM, 512MB memory region which

initialize CPU after reset.

26
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

kseg2 0xC000_0000 – 0xFFFF_FFFC: Kernel module, only accessible in kernel mode.

Chapter 3 Problem Statement, Project Scope and Objectives

3.1 Problem Statement
Up to date, a new micro architecture is re-implemented. There is a need to port CP0 to

the newly implemented micro architecture. The new micro architecture only contains

datapath unit, control unit, memory unit. CP0 is added to the new micro architecture in

this project. After port in CP0 into the new micro architecture, the functionality is

verified again to make sure every part is functioning properly. Kernel text segment cache

and kernel data segment cache is added to the processor to store exception handler

instruction. This project aims to implement CP0 which is able to handle 4 exceptions

which are sign overflow, undefined instruction, syscall and I/O interrupt. The CP0

needed to be implemented to handle exception which may be caused by hardware or

software. Hence, this RISC32 Coprocessor project is initiated.

3.2 Project Scope
This project aims design a coprocessor 0, implements into RISC32 microprocessor. The

coprocessor worked as exception handler to handle exception for 5-stage pipeline

microarchitecture. Specifications at architecture level and micro architecture level will be

developed and the modeling of design will be constructed using Verilog. Functional

behavior verification will be constructed using testbench and lastly integrate the design

into 32-bit RISC processor. A set of test program will be used to verify the whole system.

Lastly a report will be written. The report will document chip specification, architecture

specification, microarchitecture specification, verification specification, test plan and

verification result.

27
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

3.3 Project Objective
The objectives of this project are as follows:

• To analyze the existing implementation cp0 done by senior.

• To develop a new coprocessor 0.

• To develop a testbench to verify the functionality of coprocessor 0.

• To develop exception handler to handle exceptions.

• To design kernel text segment cache and kernel data segment cache.

• To integrate Coprocessor 0 into the RISC-32 processor.

• To develop test program to test the functionality of coprocessor 0 to handle 4 type

of exceptions which are sign overflow, undefined instruction, syscall and I/O

interrupt.

28
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

3.4 Impact and Significance
As a summary to the problem statement, there is a lack of well-developed and well-

founded 32-bit RISC microprocessor core-based development environment. The

development environment refers to the availability of the following:

• A well-developed design document, which includes the chip specification,

architecture specification and micro-architecture specification.

• A fully functional well-developed 32-bit RISC architecture core in the form of

synthesis-ready RTL written in Verilog HDL.

• A well-developed verification environment for the 32-bit RISC core. The

verification specification should contain suitable verification methodology,

verification techniques, test plans, testbench architectures etc.

• A complete physical design in Field Programmable Gate Array (FPGA) with

documented timing and resource usage information.

With the available well-developed basic 32-bit RISC RTL model (which has been fully

functional verified), the verification environment and the design documents, researchers

can develop their own specific RTL model as part of the development environment

(whether directly modifying the internals of the processor or interface to the processor)

and can quickly verify their model to obtain results, without having to worry about the

development of the verification environment and the modeling environment. This can

speed up the research work significantly. For example, a researcher may have developed

an image-processing algorithm and modified the algorithm to obtain a structure that suits

the hardware implementation. The structure can be modeled in Verilog as part of a

specialized datapath or as a coprocessor interfacing to the RISC processor.

29
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

3.5 Project Plan

Figure 3.1 Gantt Chart for Project 1

Figure 3.2 Gantt Chart for Project 2

30
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Chapter 4 Methods/Technologies Involved

4.1 Design Methodology

Design methodology is the method of development of a system. It provides guideline to

successfully carry out a design work. Good Design methodology needs to ensure correct

functionality, catching bugs early, satisfaction of performance and power goals, good

documentation [7]. There are two type of design methodology which are Top-down and

Bottom-up. In this project, Top-down design methodology is used since digital system

always uses the abstraction concepts to simplify the design process.

Figure 4.1 General Design Flow without Logic Synthesis and Physical Design [8].

31
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

4.1.1 System Level Design

System level design includes Written Specifications and Executable Specification is level

where chip specifications are developed.

Written Specification- using English to write out the function, performance, cost and time

constrain of a design.

Executable Specification-features and functionalities are described in high level

programming language such as System C, Verilog.

4.1.2 Architecture Level Design

Architecture level design includes Architecture Specification and Architecture Level

Modelling and Verification.

Architecture Specification- describes the internal of a chip and may contain design

hierarchy, functional partitioning of the chip into units and inter-unit signaling and worst

case timing.

Architecture Level Modelling and Verification- Algorithms are developed based on

information from architecture specification to model the units that make up the

architecture. The algorithms are then coded using hardware description language (HDL).

Each unit is verified for functional correctness.

32
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

4.1.3 RTL Design

Micro-Architecture Specification- describes internal of a unit and may include:

• Unit interfaces and I/O pin description

• Unit functionality description

• Unit internal operation, function table etc to assist test plan

• Timing requirement

• Test plan

• Unit functional partitioning into blocks and inter-blocks signaling

• For each blocks/sub-blocks, may include

i. Block interfaces and I/O pin description

ii. A description of functionality of each block

iii. Internal operation such as function table and text description

iv. Finite-state machine (FSM) and Algorithmic-state machine (ASM)

v. Timing requirements

vi. Test Plan

RTL Modeling and Verification- RTL coding can begin after the micro-architecture

specification has been developed. After models have been coded, they are verified for

functional correctness.

33
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

4.2 Design Tools

Since this project is implemented using Verilog HDL, simulation tools that support

Verilog HDL is needed. There are a lot simulation tools created by different companies

which has their own advantages and disadvantages. Among them, 3 of the famous

simulation tools will be discussed here.

(i) VCS

-Developed by Synopsys

-based on multi-core technology which cuts down verification time

-supports all popular design and verification languages

- Powerful debug and visualization environment

(ii) ModelSim

-Developed by Mentor Graphics

-Complete HDL simulation and debugging environment

-Provide Student Edition (SE) which limits to 10,000 lines of code

(iii) Quartus II

-Developed by Altera

-Provides complete design environment for system on a programmable chip (SOPC)

-Can work with multiple files at the same time.

34
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Simulator VCS ModelSim Quartus II

Company

Language

Supported

VHDL-2002

V2001

SV2005

VHDL-2002

V2002

SV2005

VHDL

Verilog HDL

Platform

Supported

Linux -Windows

XP/Vista/7/8

-Linux

-Windows XP/7/8

-Linux

Availability for

free

No YES (SE Edition

only)

No

Table 4.1 Comparison Between Simulators

Based on Table 4.1, ModelSim PE Student Edition 10.2b is chosen because it is available

for free while other simulators may need to pay for license which may not be affordable.

35
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

4.3 Exception/Interrupt Handling Mechanism

4.3.1 Exception/Interrupt Handling
Exception/interrupt handling is very vital for a processor to function well and interface

with external devices. Without exception/interrupt handling mechanism, processor may

not be able to deal with event which is not belongs to normal program execution. For

example, arithmetic overflow, syscall function, undefined instruction and external device

interrupt request.

4.3.2 RISC32 Exception/Interrupt Handling Mechanism
RISC32 exception/interrupt handling mechanism is categorized into 2 parts, which is

hardware handling and software handling.

4.3.2.1 Hardware Handling
When exception/interrupt arises in processor, CP0 will first check the EXL and IE bit of

the status register (status [1] and status [0]). Exception/interrupt will be prohibited if EXL

bit is set to “1”. All interrupt can be further prohibited if IE bit is set to “0”, which means

no interrupt is allowed.

After ensure the exception/interrupt can be process, CP0 will update the cause register

with value associate to the causes. Then current program counter (PC) value will be

stored in EPC as a return point after exception handling. Exception handler entry address

will be output to PC to force the processor into exception handler. Finally, EXL bit will

be set to “1” to prevent any other exception/interrupt service.

36
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Exception arise

CP0 identify the causes
of exception

CP0 set cause register
[6:2] with appropriate

value

CP0 save current PC
value to EPC

CP0 output exception
handler entry address to

PC

CP0 set status [1] to “1”
to disable further

interrupt

CP0 output flush control
to flush the pipeline

(IF/ID, ID/EX &
EX/MEM)

To software Handling

Figure 4.2 Hardware Exception Handling Flow Chart

37
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Figure 4.3 Hardware Interrupt Handling Flow Chart

Interrupt arise

CP0 check status [1] to
see whether in user or

kernel mode

External interrupt is
pending, wait until status

[1] become “0”.

CP0 update exception code (cause [6:2])
and interrupt pending bit (cause [15:8]) in

cause register with appropriate value

CP0 save current PC into
EPC

CP0 output exception
handler entry address to

PC

CP0 set status [1] to “1”
to disable further

interrupt

To software Handling

Status [1]

1: kernel mode

0: user mode

38
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

4.3.2.1 Software Handling
In software handling, cause of exception/interrupt will be determined in Exception

Handler and appropriate service routine will be selected. The handler code is placed in

kernel segment in memory, which starts from 0x8000_0180.

The sequence of process:

1. Save register state into memory stack to clear up register space so that register can be

used by interrupt process.

2. Load CP0 cause register into register k0 using instruction mfc0.

3. Extract and mask the exception code (cause [6:2]) to determine the cause of exception.

4. Jump to appropriate service routine.

5. Clear cause register and reset status register.

5. Restore register from memory stack.

6. Return to user program execution using instruction eret.

39
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Exception Handler entry

Exception Handler load
cause register into

register file using mfc0

Check cause register by extract
and mask exception code to

determine causes

Jump to appropriate
service routine

Clear cause register and
reset status register

Restore register from
memory stack

Return to user program
execution using
instruction eret

Figure 4.4 Software Exception Handling Flow Chart

40
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

4.4 Instruction used in Exception/Interrupt Handling
Two register accessing instructions are mtc0 and mfc0 to transfer data between CP0

register and processor register. A special instruction eret is used to return processor to

normal program. The instruction format is shown below:

mfc0 rt,rd : move data from CP0 register to CPU register.

31-26 25-21 20-16 15-11 10-0

010000 00000 rt rd 00000000000

Figure 4.5 mfc0 Instruction Format

mtc0 rt,rd : move data from CPU register to CP0 register.

Figure 4.6 mtc0 Instruction Format

31-26 25 24-6 5-0

010000 1 0000000000000000000 011000

Figure 4.7 EPC Instruction Format

31-26 25-21 20-16 15-11 10-0

010000 00100 rt rd 00000000000

41
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

4.5 Pipeline Flushing
When an exception occurs, there are different instructions in different pipeline stages.

Since, we don’t want the instruction causing exception to save any of its state into

processor, either memory or register file, we need to use pipeline flushing to9 flush the

pipeline stage. When exception occurs, CP0 will receive signal from processor, decode

and update register and output exception handler address to PC. At the same time, CP0

will send signal to flush the pipeline. Only instruction come after the exception is flushed.

The instructions before the instruction which caused exception is left to be finished. For

sign overflow, IF/ID, ID/EX and EX/MEM are flushed. For undefined instruction, IF/ID

and ID/EX are flushed while for syscall, only IF/ID need to be flushed. I/O interrupt does

not need to flush the pipeline but let the normal instruction finishes only jump to

exception handler to handle interrupt. Pipeline flushing is just simply change all the

control signal in pipeline to “0” which turn the instruction into nop (no operation). Thus,

it can prevents faulty value to be written into register or memory.

42
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Chapter 5 System Specification

5.1 System Feature
 RISC32 with CP0

Dummy Instruction Cache (KB) 16

Dummy Data Cache (KB) 16

Data width (bits) 32

Instruction width (bits) 32

General Purpose Register 32

Special Purpose Register HILO, PC

Co-Processor Register 32

Pipelined Stage 5

Data Hazard Handling Yes

Control Hazard Handling Yes

Interlock Handling Yes

Exception Handling Yes (4)

Data Dependency Forwarding Yes

Branch Prediction Dynamic – 2bits scheme

Multiplication (size of multiplier

and multiplicand)

yes – 32 bits

Branch Delay Slot Not supported

Instruction supported 40

Table 5.1 RISC32 Features

43
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

5.1.1 System Functionality
1. Divide execution of instruction into 5 stages:

2. Resolve data hazard by data forwarding.

3. Resolve load-use instructions problem using stalling.

4. Resolve structural hazards using separating data and instruction cache.

5. Resolve control hazards by branch prediction.

6. Resolve exception/interrupt using CP0 and exception handler.

- IF(Instruction Fetch) Fetch instruction from instruction cache into the datapath.

- ID(Instruction Decode) Decode instruction and fetch $rs & $rt registers.

- EX(Execute) Execute instruction in the ALB.

- MEM(Memory) Access data cache, load or store.

- WB(Write Back) Write back the result to the register file.

44
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

5.2 Operating Procedure
1. Start the system.

2. Porting sequence of instruction into instruction cache.

3. Reset the system for at least 2 clocks.

4. After the reset, the system will automatically fetch and run the program inside

instruction cache.

5. Observe the waveform from the development tools (Modelsim).

5.3 Naming Convention
Module – [lvl]_[mod. name]

Instantiation – [lvl]_[abbr. mod. name]

Pin – [lvl][type]_[abbr. mod. name]_[pin name]

Signal – [type]_[abbr. mod. name]_<stage>_[pin name]

Abbreviation Description Case Available Remark
lvl level lower c: Chip

u: Unit
b: block

mod. name Module name Lower all Any
abbr. Mod.
name

Abbreviated
module name

Lower all Any Maximum 3 characters

Type Pin type Lower o: output
i: input
r: register
w: wire

Stage Stage name Lower all If, id, ex, mem, wb Optional
Pin name Pin name Lower all any Several word separate by “_”

Table 5.2 Naming Convention

45
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

c_risc

ui_cd_clk

ui_cd_rst

5.4 RISC32 Pipeline Processor with CP0 and I/O Description

5.4.1 Processor Interface

5.4.2 I/O Pin Description
c_risc

Input:

Pin name : ui_cd_clk
Pin Class : Global
Registered: Yes
Source->Destination: External �c_risc
Pin Function: Provide clock signal for the pipeline processor.
Pin name : ui_cd_rst
Pin Class : Global
Registered: Yes
Source->Destination: External �c_risc
Pin Function: Provide reset signal for the pipeline processor.

Table 5.3 RISC32 Processor I/O Description

46
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

5.5 Memory Map
Purpose start address Direction Segment
Kernel module 0xC000 0000 Up Kseg2
Boot Rom Up
I/O register(if below 512MB) 0xA000 0000 Up

Kseg1

Direct view of memory to 512MB linux
kernel code and data

 Up

Exception Entry point 0x8000 0000 Up
Kseg0

Stack 0x7FFF FFFC Down
Program heap 0x1000 8000 Up
Dynamic library code and data 0x1000 0000 Up
Main program 0x0040 0000 Up
Reserved 0x0000 0000 Up

Kuseg

Table 5.4 Memory Map

5.5.1 Memory map description
Kernel module

 -Accessible by kernel*

Boot Rom

 -Start-up ROM which keep the system configuration*

I/O registers (if below 512MB)

 -External IO device register*

Direct view of memory to 512MB linux kernel code and data

 -Memory allocation to view linux kernel code and data*

Exception Entry point

 -Software exception handling *

Stack

 -Use for argument passing

Program heap

 -Dynamic memory allocation such as malloc()

Dynamic library code and data

 -Data segment which is access by variable

Main program

 -Text segment which contain the main program

Note *: required CP0

47
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Figure 5.1 Memory Map

However, due to the limitation of modelsim student edition which only support up to 8k
memory, the cache size will set text segment from 32'h0040_0000 to 32'h0040_1FFC,
data segment from 32'h1000_0000 to 32'h1000_1FFC, kernel text segment from
32'h8000_0000 to 32'h8000_1FFC and kernel data segment from 32'h9000_0000 to
32'h9000_0FFC.

48
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

5.6 System Register

5.6.1 General Purpose Register
Width : 32-bits

Size : 32 units

Retrieving method : 5-bits address as index

Name Address Use Preserved Across A Call?

$zero 0 Constant Value 0 (hardwired) N.A.

$at 1 Assembler Temporary No

$v0 - $v1 2 - 3
Value for Function Results and

Expression Evaluation
No

$a0 - $a3 4 - 7 Arguments No

$t0 - $t7 8 – 15 Temporaries No

$s0 - $s7 16 - 23 Saved temporaries Yes

$t8 - $t9 24 – 25 Temporaries No

$k0 - $k1 26 -27 Reserved for OS kernel No

$gp 28 Global Pointer Yes

$sp 29 Stack Pointer Yes

$fp 30 Frame Pointer Yes

$ra 31 Return Address Yes

Table 5.5 General Purpose Register

5.6.2 Special Purpose Register
Width : 32-bits

Size : 2 units

Retrieving method : Via instructions: MFHI, MTHI, MFLO, MTLO, MULT or MULTU

Name definition location in double [64:0]
HI Most Significant Word Double [63:32]
LO Least Significant Word Double [31:0]

Table 5.6 Special Purpose Register

49
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

5.6.3 Program Counter Register
Width : 32-bits

Size : 1 unit

Retrieving method : Control by instruction address generator control.

5.6.4 CP0 Register

Name Address Use

$b_cp0_stat 12
Interrupt mask, enable bits and status when exception

occurred

$b_cp0_cause 13 Exception type and pending interrupt

$b_cp0_epc 14 Address of instruction that caused exception

Table 5.7 CP0 Register

50
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

5.7 Instruction Formats and Addressing Modes

5.7.1 Instruction Formats

Figure 5.2 Instruction Format

Abbreviation Definitiion Width
op Operation code 6
rs Source register 5
rt Target register 5
rd Destination register 5
shamt Shift amount 5
funct Function field 6
immediate Immediate 16
data address offset Data address offset 16
branch address offset Branch address offset 16
jump address Jump address 26

Table 5.8 Instruction Format Definition

51
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

5.7.2 Addressing Modes
a) R-format

Register addressing: Perform operation on source and target register and store the result
into destination register.

b) I-format

i. Immediate addressing: Perform operation on source register and immediate and store
the result into target register.

ii. Based displacement addressing: Perform operation on source register and immediate,
the result is then uses as address to access the data memory to load/store data to/from
target register.

52
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

iii. PC-relative addressing: Perform operation on source and target register to determine
next PC condition, the immediate is uses as address offset for next PC.

c) J-format

Pseudo-direct addressing: Perform operation by concatenating the upper bits of PC with
the jump address.

53
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

5.8 Supported Instructions Set
Machine Language Instruction

Format Addr. Mode

OpCo
de

Rs Rt Rd Shamt Func
Register Transfer Notation Assembly Format Over

flow

sll R Register 0x00 0 $rt $rd n 0x01 R[rd] =R[rs] << n sll $rd, $rt, n no
srl R Register 0x00 0 $rt $rd n 0x03 R[rd] =R[rs] >> n srl $rd, $rt, n no
sra R Register 0x00 0 $rt $rd n 0x04 R[rd] =R[rs] >>> n sra $rd, $rt, n no
jr R Register 0x00 $rs 0 0 0 0x0

A
PC = R[rs] jr $rs no

jalr R Register 0x00 $rs 0 0 0 0x0
B

PC = R[rs], R[31] = PC + 4 jalr $rs no

mfhi R Register 0x00 0 0 $rd 0 0x10 R[rd] = HI mfhi $rd no
mthi R Register 0x00 $rs 0 0 0 0x11 HI = R[rs] mthi $rs no
mflo R Register 0x00 0 0 $rd 0 0x12 R[rd] = LO mflo $rd no
mtlo R Register 0x00 $rs 0 0 0 0x13 LO = R[rs] mtlo $rs no
mult R Register 0x00 $rs $rt 0 0 0x24 HILO = R[rs] * R[rt] mult $rs, $rt no
multu R Register 0x00 $rs $rt 0 0 0x24 HILO = U(R[rs]) * U(R[rt]) multu $rs, $rt no
add R Register 0x00 $rs $rt $rd 0 0x20 R[rd] = R[rs] + R[rt] add $rd, $rs, $rt yes
addu R Register 0x00 $rs $rt $rd 0 0x21 R[rd] = U(R[rs]) + U(R[rt]) addu $rd, $rs, $rt no
sub R Register 0x00 $rs $rt $rd 0 0x22 R[rd] = R[rs] - R[rt] sub $rd, $rs, $rt yes
subu R Register 0x00 $rs $rt $rd 0 0x23 R[rd] = U(R[rs]) - U(R[rt]) subu $rd, $rs, $rt no
and R Register 0x00 $rs $rt $rd 0 0x24 R[rd] = R[rs] & R[rt] and $rd, $rs, $rt no
or R Register 0x00 $rs $rt $rd 0 0x25 R[rd] = R[rs] | R[rt] or $rd, $rs, $rt no
xor R Register 0x00 $rs $rt $rd 0 0x26 R[rd] = R[rs] ^ R[rt] xor $rd, $rs, $rt no
nor R Register 0x00 $rs $rt $rd 0 0x27 R[rd] = ~(R[rs] | R[rt]) nor $rd, $rs, $rt no
slt R Register 0x00 $rs $rt $rd 0 0x2

A
R[rd] = (R[rs] < R[rt]) ? 1 : 0 slt $rd, $rs, $rt no

sltu R Register 0x00 $rs $rt $rd 0 0x2
B

R[rd] = (U(R[rs]) < U(R[rt])) ?
1 : 0

sltu $rd, $rs, $rt no

j J Pseudo- 0x02 JumpAddr (Label) PC = {(PC+4) [31:28], j label no

54
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Direct JumpAddr, 2’b00}
jal J Pseudo-

Direct
0x03 JumpAddr (Label) PC = {(PC+4) [31:28],

JumpAddr, 2’b00}
R[31] = PC + 4

jal label no

beq I PC-Relative 0x04 $rs $rt BranchAddr
(Label)

PC = (R[rs] == R[rt]) ?
(PC + 4 +
(SE(BranchAddr)<<2)) :
(PC + 4)

beq $rs, $rt, label no

bne I PC-Relative 0x05 $rs $rt BranchAddr
(Label)

PC = (R[rs] != R[rt]) ?
(PC + 4 +
(SE(BranchAddr)<<2)) :
(PC + 4)

bne $rs, $rt, label no

blez I PC-Relative 0x06 $rs 0 BranchAddr
(Label)

PC = (R[rs] <=0) ?
(PC + 4 +
(SE(BranchAddr)<<2)) :
(PC + 4)

blez $rs, $rt, label no

bgtz I PC-Relative 0x07 $rs 0 BranchAddr
(Label)

PC = (R[rs] > 0) ?
(PC + 4 +
(SE(BranchAddr)<<2)) :
(PC + 4)

bgtz $rs, $rt, label no

addi I Immediate 0x08 $rs $rt Imm R[rt] = R[rs] + SE(Imm) addi $rt, $rs, imm yes
addiu I Immediate 0x09 $rs $rt Imm R[rt] = U(R[rs]) +

U(ZE(Imm))
addiu $rt, $rs, imm no

slti I Immediate 0x0A $rs $rt Imm R[rt] = (R[rs] < SE(Imm)) ? 1 :
0

slti $rt, $rs, imm no

sltiu I Immediate 0x0B $rs $rt Imm R[rt] = (U(R[rs]) <
U(SE(Imm))) ? 1 : 0

sltiu $rt, $rs, imm no

andi I Immediate 0x0C $rs $rt Imm R[rt] = R[rs] & ZE(Imm) andi $rt, $rs, imm no
ori I Immediate 0x0D $rs $rt Imm R[rt] = R[rs] | ZE(Imm) ori $rt, $rs, imm no
xori I Immediate 0x0E $rs $rt Imm R[rt] = R[rs] ^ ZE(Imm) xori $rt, $rs, imm no

55
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

lui I Immediate 0x0F $rs $rt Imm R[rt] = Imm << 16 lui $rt, imm no
lw I Based-

Displaceme
nt

0x23 $rs $rt Imm R[rt] = MEM[R[rs] +
SE(Imm)]

lw $rt, imm($rs) no

sw I Based-
Displaceme
nt

0x2B $rs $rt Imm MEM[R[rs] + SE(Imm)] =
R[rt]

sw $rt, imm($rs) no

mfc0 Register 0x10 0x00 $rt $rd 0x00 0x00 R[rt] = R[rd] (from CP0) mfc0 $rt, $rd no

mtc0 Register 0x10 0x04 $rt $rd 0x00 0x00 R[rd] (from CP0) = R[rt] mtc0 $rt, $rd no

eret Register 0x10 0x10 0x
00

0x00 0x00 0x18 PC = R[epc] (from CP0) eret no

Table 5.9 Instruction Set

56
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

c_risc

u_ctrl_path

b_main_ctrl b_alb_ctrl

u_data_path

b_alb b_rf b_mult32 b_itl_ctrl

b_bp b_fw_ctrl b_cp0

u_cache u_cache u_cache u_cache

Chapter 6 Micro Architecture Specification

6.1 Design Hierarchy and Partitioning
Chip Partitioning
(Top Level) at
Architecture Level

Unit Partitioning at
Micro-
Architecture Level

Block and Functional Block Partitioning
at RTL (Micro-Architecture Level)

Branch Predictor (b_bp_4way)
Register File (b_rf)
Interlock Control (b_itl_ctrl)
Forward Control (b_fw_ctrl)
32-bit Multiplier (b_mult32)
ALB (b_alb)

Datapath
(u_dp)

Coprocessor0(b_cp0)
Main Control (b_main_ctrl) Controlpath

(u_cp) ALB Control (b_alb_ctrl)

RISC32 Pipeline
Processor
(c_risc)

Cache
(u_cache)

Cache(u_cache)

Table 6.1 Design Hierarchy

 Figure 6.1 Block Partitioning

57
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

6.2 Micro-Architecture (Block Level)

6.2.1 Micro-Architecture without CP0

Figure 6.2 System Micro-Architecture Without CP0

58
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

6.2.2 Micro-Architecture with CP0

 Figure 6.3 System Micro-Architecture With CP0

CP0
Flush
ID,EX,MEM

Exc addr

3

2

1

0

80000180

59
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

b_cp0

bi_cp0_read_addr [4:0] bo_cp0_flush_id

bi_cp0_wr_addr [4:0] bo_cp0_flush_ex

bi_cp0_wr_data [31:0] bo_cp0_flush_mem

bi_cp0_current_pc [31:0] bo_cp0_exc_addr[31:0]

bi_cp0_eret bo_cp0_read_data[31:0]

bi_cp0_mtc0

bi_cp0_undef_instr

bi_cp0_syscall

bi_cp0_irq[5:0]

bi_cp0_sovf

bi_cp0_clk

bi_cp0_rst

32

32

32 32

5

5

6

6.3 Coprocessor 0 Block

6.3.1 Coprocessor 0 Block interface

60
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

6.3.2 I/O Pin Description
b_cp0
Input:
Pin name : bi_cp0_read_addr[4:0]
Pin Class : Address
Registered: No
Source->Destination: Datapath(ID) � b_cp0
Pin Function: 5 bit rd address to indicate CP0 register file location.

Pin name : bi_cp0_wr_addr[4:0]
Pin Class : Address
Registered: No
Source->Destination:Datapath(ID) � b_cp0
Pin Function: 5 bit rd address to indicate CP0 register file location.
Pin name : bi_cp0_wr_data[31:0]
Pin Class : Data
Registered: No
Source->Destination: Datapath(ID) � b_cp0
Pin Function: 32 bit data to be stored to CP0 register file.
Pin name : bi_cp0_current_pc[31:0]
Pin Class : Address
Registered: No
Source->Destination: Datapath(ID) � b_cp0
Pin Function: 32 bit current Program Counter (PC) value.

Pin name : bi_cp0_eret
Pin Class : Control
Registered: No
Source->Destination: Control � Datapath � b_cp0
Pin Function: Indicate current instruction is eret when asserted high.

Pin name : bi_cp0_mtc0
Pin Class : Control
Registered: No
Source->Destination: Control � Datapath � b_cp0
Pin Function: Indicate current instruction is mtc0 when asserted high.

Pin name : bi_cp0_undef_instr
Pin Class : Control
Registered: No
Source->Destination: Control � Datapath � b_cp0
Pin Function: Indicate current instruction is undefined when asserted high.

61
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Pin name : bi_cp0_syscall
Pin Class : Control
Registered: No
Source->Destination: Control � Datapath � b_cp0
Pin Function: Indicate current instruction is syscall when asserted high.

Pin name : bi_cp0_irq[5:0]
Pin Class : Control
Registered: No
Source->Destination: Datapath � b_cp0
Pin Function: Each bit indicates interrupt signal from external device.
Pin name : bi_cp0_sovf
Pin Class : Control
Registered: No
Source->Destination: Control � Datapath � b_cp0
Pin Function: Indicate sign overflow has occurred when asserted high.
Pin name : bi_cp0_clk
Pin Class : Global
Registered: No
Source->Destination: System � b_cp0
Pin Function: Clock signal for CP0

Pin name : bi_cp0_rst
Pin Class : Global
Registered: No
Source->Destination: System � b_cp0
Pin Function: Reset signal for the CP0.

Output:
Pin name : bo_cp0_flush_id
Pin Class : Control
Registered: No
Source->Destination: b_cp0 � Datapath
Pin Function: Flush IF/ID pipe when asserted high.

Pin name : bo_cp0_flush_ex
Pin Class : Control
Registered: No
Source->Destination: b_cp0 � Datapath
Pin Function: Flush ID/EX pipe when asserted high.
Pin name : bo_cp0_flush_mem
Pin Class : Control
Registered: No
Source->Destination: b_cp0 � Datapath
Pin Function: Flush EX/MEM pipe when asserted high.

62
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Pin name : bo_cp0_exc_addr[31:0]
Pin Class : Address
Registered: No
Source->Destination: b_cp0 � Datapath
Pin Function: Contain EPC value to be passed to PC.
Pin name : bo_cp0_read_data[31:0]
Pin Class : Data
Registered: No
Source->Destination: b_cp0 � Datapath
Pin Function: Data read out from CP0 register.

Table 6.2 CP0 I/O Pin Description

6.3.3 Internal Operation
CP0 is a block that used to process and store exception/interrupt information. CP0 is

placed in ID stage. Once mtc0 is decoded, the control signal, address and dat will travel

straight into CP0 block, which means CP0 will process and store exception/interrupt

information at next clock cycle. While for mfc0, the signal and address will go straight

into CP0 block in ID stage but the data will travel towards the end of WB stage then only

it will store into register file at negative edge of clock. The data cannot direct store into

register in ID stage to prevent 2 data write into register at the same time (one from CP0

output, one from WB stage).

Overflow Exception: Detected by ALB block in stage EX and overflow signal is

generated. Flush If/ID, ID/EX and EX/MEM pipe to prevent wrong update of information

into register file and data cache. Then jump to exception handler to handle exception.

Undefined Instruction Exception: Detected in stage ID by main control and

undefined_instr signal is generated. Flush IF/ID and EX/MEM pipe to prevent update

wrong information into register file and data cache. Then jump to exception handler to

handle exception.

Syscall Exception: Detected in stage ID by main control and syscall signal is generated.

Flush IF/ID pipe to prevent update wrong information into register file and data cache.

Then jump to exception handler to handle exception.

63
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

I/O interrupt: Interrupt is asynchronous relative to a program execution. No need pipeline

flushing, but let the current instruction in the stages complete their execution. Then jump

to exception handler to handle exception.

64
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Chapter 7 Verification

7.1 CP0 Test Program
The following program is designed to verify the functionality of CP0 block.

Instruction Address Instruction Code Instruction Explanation
0x00400024 00008824 and $s1,$0,$0
0x00400028 00000000 sll $zero,$zero,0
0x0040002C 00000000 sll $zero,$zero,0
0x00400030 40916800 mtc0 $s1,$13

Initialize cause register.
Cause register = $13.

0x00400034 34116601 ori $s1,$0,0xff01
0x00400038 00000000 sll $zero,$zero,0
0x0040003C 00000000 sll $zero,$zero,0
0x00400040 40916000 mtc0 $s1,$12

Initialize status
register.
status register = $12.

0x00400044 00000000 sll $zero,$zero,0 Nop
0x00400048 3C107FFF lui $s0,0x7fff $s0 = 7fff_0000
0x0040004C 3612FFFF ori $s2,$s0,0xffff $s2 = 7fff_ffff
0x00400050 3C148000 lui $s4,0x8000 $s4 = 8000_0000
0x00400054 36940300 ori $s4,$s4,0x0300 $s4 = 8000_0300

Address of selected
case item in exception
handler.

0x00400058 3C158000 lui $s5,0x8000 $s5 = 8000_0000
0x0040005C 36B501C0 ori $s5,$s5,0x01c0 $s5 = 8000_01C0

Address of clean_up in
exception handler

0x00400060 00000000 sll $zero,$zero,0 Nop
0x00400064 FFFFFFFF Undefined

instruction
Creating undefined
instruction to test
exception.

0x00400068 0000000C Syscall Creating syscall to test
exception.

0x0040006C 02524020 add $t0,$s2,$s2 Sign overflow
0x00400070 00000000 sll $zero,$zero,0 Nop
0x00400074 20120012 addi $s2,$zero,19 Create normal

instruction and I/O
interrupt occurs at
same time.

0x00400078 00000000 sll $zero,$zero,0 Nop

65
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

7.1.1 Exception Handler

Instruction Address Instruction Code Instruction Explanation
0x80000180 0020D820 add $k1,$at,$0
0x80000184 AC040000 sw $a0,0($zero)
0x80000188 AC050004 sw $a1,4($zero)

Save register in data
memory so
exception handler
can use it.

0x8000018C 401A6800 mfc0 $k0,$13 Move casue register
to $k0

0x80000190 00000000 sll $zero,$zero,0 Nop
0x80000194 00000000 sll $zero,$zero,0 Nop
0x80000198 001A2082 srl $a0,$k0,2 Extract ExcCode

field
0x8000019C 3084001F andi $a0,$a0,0x1f Mask cause register

[6:2]
0x800001A0 0080502A slt $t2,$a0,$0 Test if $a0 < 0
0x800001A4 15400006 bne $t2,$0,clean_up If $a0 < 0 branch to

clean_up
0x800001A8 288A000D slti $t2,$a0,13 Test if $a0 > = 13
0x800001AC 11400004 beq $t2,$0,clean_up If $a0 >= 13 branch

to clean_up
0x800001B0 00844820 add $t1,$a0,$a0 Turn $a0 into byte

address.
0x800001B4 01294820 add $t1,$t1,$t1 $t1 = 4*$t1
0x800001B8 01344820 add $t1,$t1,$s4 Determine address

of ISR
0x800001BC 01200008 jr $t0 Jump to the address

of selected case
item

clean_up
0x800001C0 401A7000 mfc0 $ko,$14 Move EPC to

register file
0x800001C4 00000000 sll $zero,$zero,0 Nop
0x800001C8 00000000 sll $zero,$zero,0 Nop
0x800001CC 275A0004 addiu $k0,$k0 EPC + 4. Donot re-

execute faulting
instruction when
return

0x800001D0 00000000 sll $zero,$zero,0 Nop
0x800001D4 00000000 sll $zero,$zero,0 Nop
0x800001D8 409A7000 mtc0 $k0,$14 Update EPC
0x800001DC 40806800 mtc0 $0,$13 Clear cause register
0x800001E0 401A6000 mfc0 $k0,$12 Move status register

to register file

66
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

0x800001E4 00000000 sll $zero,$zero,0 Nop
0x800001E8 00000000 sll $zero,$zero,0 Nop
0x800001EC 335AFFFD andi $k0,0xfffd Mask status register
0x800001F0 375A0001 ori $k0,0x1 Set status[0] to 1
0x800001F4 00000000 sll $zero,$zero,0 Nop
0x800001F8 00000000 sll $zero,$zero,0 Nop
0x800001FC 409A6000 mtc0 $k0,$12 Update status

register
0x80000200 8C040000 lw $a0,0($zero) Restore register

value
0x80000204 8C050004 lw $a1,4($zero) Restore register

value
0x80000208 03600820 add $at,$k1,$0 Restore register

value
0x8000020C 42000018 eret Eret. Return to

normal program
execution

0x80000210 00000000 sll $zero,$zero,0 Nop
TEST CASE SELECTED ITEM
0x80000300 02A00008 jr $s5 Jump to clean_up
0x80000304 02A00008 jr $s5 Jump to clean_up
0x80000308 02A00008 jr $s5 Jump to clean_up
0x8000030C 02A00008 jr $s5 Jump to clean_up
0x80000310 02A00008 jr $s5 Jump to clean_up
0x80000314 02A00008 jr $s5 Jump to clean_up
0x80000318 02A00008 jr $s5 Jump to clean_up
0x8000031C 02A00008 jr $s5 Jump to clean_up
0x80000320 02A00008 jr $s5 Jump to clean_up
0x80000324 02A00008 jr $s5 Jump to clean_up
0x80000328 02A00008 jr $s5 Jump to clean_up
0x8000032C 02A00008 jr $s5 Jump to clean_up
0x80000330 02A00008 jr $s5 Jump to clean_up

67
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

7.1.2 Simulation Result
Instructions Cache (Text Segment)

Data Cache (Data Segment)

68
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Exception Handler (ktext Segment)

69
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Test Program waveform

Reset for 2 clock
cycle

Initialize cause register to 0.
Move $s1 to cause $13.
$s1 = 0

Initialize status register
to 0xff01.

Immediately update
after $s1 become 0xff01

70
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Using load upper immediate to
create 7fff_ffff, 80000300 and
800001c0 and save in register $s2,
$s4 and $s5

Undefined instruction
detected. Flush IF/ID and
ID/EX pipe

Update status, cause and
EPC register

Go to Exception Handler at
address 80000180

71
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Go to Exception Handler at
address 80000180

Syscall instruction detected.
Flush IF/IF pipeline.

Update status, cause and
EPC register

72
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Go to Exception Handler at
address 80000180

Add 7fff_ffff with 7fff_ffff.
Sign overflow detected.
Flush IF/ID, ID/EX and
EX/MEM pipe.

Update status, cause and
EPC register

73
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Go to Exception
Handler at address
80000180

Update status,
cause and EPC
register

Execute normal instruction. Add 19 to $s2. At the same
time I/O interrupt come in. Processor finishes normal
instruction and goes to exception handler.

74
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Exception Handler Waveform

 Save register $a0 and
$a1 before use. Examine cause of exception. Move

cause register to register $k0, extract
exception code field and mask them

Move cause register to $k0, extract exception code and
mask it.

Extracted and
masked value of
exception code.

75
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Calculate and
determine the
address of ISR.

Jump to ISR
address.

Switch case
statement.

76
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Clear
cause
register

Move EPC to register file $k0 and
update EPC EPC + 4

77
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Reset status register
to enable interrupt

Move status register value to register file
$k0 and reset value of status register.

78
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Restore Register

eret. Return to
address saved in
EPC.

79
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Register File

Register file when first start up and reset.

Register file after $s0, $s1, $s2, $s4, $s5 is written with value. (partial test program
before exception)

80
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Chapter 8 Conclusion

8.1 Conclusion
Exception/interrupt handling is essential for a processor to work and function properly.

Without exception handling, processor may not be able to handle and solve

exception/interrupt.

Coprocessor 0 implemented in this project is able to solve this problem. CP0

implemented is capable of save the return address, and decode the cause of incoming

interrupt. As for software handling part, the exception handler is working well and

proven to be working.

There are 3 instructions added to the RISC32 architecture to support exception/interrupt

handling mechanism. The 3 instructions added are mfc0, mtc0 and eret. Modification of

datapath unit and control unit are done to enable the processor to decode and process the

added instruction.

There are 2 caches added to the RISC32 architecture also which are kernel segment and

kernel data segment to enable exception handler to work.

Lastly, all the objective of this project is achieved. A complete interrupt handling

mechanism is developed and proven to be work well. The Co-processor 0 is developed in

RTL (Register Transfer Level) form and modeled in synthesizable Verilog. The Co-

processor 0 functionality is verified as well.

81
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

8.2 Discussion and Future Work
The exception/interrupt handling developed is not yet in complete and perfect form. It

currently only able to process 4 type of exceptions which are undefined instruction,

syscall, sign overflow and I/O interrupt. The future improvement should include more

functionality, let the CP0 able to process all kind of exception and interrupt. Other than

that, the software part for exception handling is not yet completed. The interrupt service

for each exception/interrupt is not developed. It currently only able to detect, examine the

cause and then return to normal instruction execution. Kernel programmer will be

responsible to develop the whole exception handling mechanism to handle exception.

Furthermore, due to limitation of simulation tool, modelsim student edition, the memory

map used in this project is not able to use standard memory map convention. The

memory limitation only allow up to 8k memory. The system should simulate as standard

practice, which similar to industrial product.

Lastly, the CP0 currently developed can only handle single exception/interrupt at every

particular time. Improvement should be done to allow CP0 to process with more the 1

exception/interrupt at the same time. This will be able to speed up processor’s processing

power.

82
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

REFERENCE
[1] K.M Mok, Computer Organisation and Architecture Notes, University of Tunku

Abdul Rahman, Faculty of Information and Communication Technology, 2009.

[2] Sweetman, D. (2007). See MIPS Run. San Francisco: Morgan Kaufmann.

[3] David A. Patterson and John L. Hennessy (Edition 2004). Computer Organization

and Design: The Hardware/Software Interface 3rd, Morgan Kaufman, 2004

[4] https://msdn.microsoft.com/en-us/library/ms892408.aspx [Accessed: 20 August 2015]

[5] Joe H., “MIPS R4000 Microprocessor User’s Manual”, Second Edition, 2011.

[6] Virgil B., Lab 7 - MIPS interrupt and exception handling, 1996

[7] W. Wolf, FPGA-Based System Design, 1st edition, Prentice Hall, 2004.

[8] K.M Mok, Digital System Design Notes, University of Tunku Abdul Rahman, Faculty

of Information and Communication Technology, 2009.

83
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

Appendix

c_risc.v

`include "macro.v"
`default_nettype none

module c_risc
(// === in out port declaration =====
//OUTPUT
/*
// Input / Output from VGA controller

// Input / Output from PS2 Mouse controller

// Input / Output from PS2 Keyboard controller

// Input / Output from UART controller

*/
//INPUT
input wire ui_cd_clk,
input wire ui_cd_rst
);

//===================================
//======== internal wire ===========
//===================================
//main control signal
wire u_cd_alb_src;
wire u_cd_rd_src;
wire u_cd_mult_en;
wire u_cd_sign_mult;
wire u_cd_rf_wr;
wire u_cd_mem_wr;
wire u_cd_mem_re;
wire u_cd_sign_ext;
wire u_cd_hi_wr;
wire u_cd_lo_wr;
wire u_cd_alb_to_rf;

84
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

wire u_cd_hi_to_rf;
wire u_cd_mem_to_rf;
wire u_cd_jump;
wire u_cd_jr;
wire u_cd_jal;
wire u_cd_jalr;
wire u_cd_beq;
wire u_cd_bne;
wire u_cd_blez;
wire u_cd_bgtz;

//alb
wire [`ALB_CTRL_NB-1:0] u_cd_alb_ctrl;

//main control
wire [`OPCODE_NB-1:0] u_cd_opcode;
wire [`FUNCT_NB-1:0] u_cd_funct;
wire [4:0] u_cd_rs;

// Memory unit
wire [`WORD_NB-1:0] u_cd_pc;
wire [`WORD_NB-1:0] u_cd_dmem_addr;
wire [`WORD_NB-1:0] u_cd_store_data;

// Mem unit and forwarding
reg [`WORD_NB-1:0] u_cd_instr;
wire [`WORD_NB-1:0] u_cd_text_instr;
wire [`WORD_NB-1:0] u_cd_ktext_instr;
reg [`WORD_NB-1:0] u_cd_loaded_data;
wire [`WORD_NB-1:0] u_cd_loaded_ndata;
wire [`WORD_NB-1:0] u_cd_loaded_kdata;

//datapath output
wire u_dp_mem_re;
wire u_dp_mem_wr;

//IO(UART)
reg u_cd_intr_uart;
//IO(PS2 Mouse)
reg u_cd_intr_ps2_mouse;
//IO(PS2 Keyboard)
reg u_cd_intr_ps2_keyboard;

//cp0 wire
//control
wire u_cd_mfc0;

85
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

wire u_cd_mtc0;
wire u_cd_eret;
wire u_cd_syscall;
wire u_cd_undef_inst;

//===================================
//======== controlpath ===========
//===================================
u_ctrl_path u_control(//control_u
 //output signal
 .uo_cp_alb_src(u_cd_alb_src),
 .uo_cp_rd_src(u_cd_rd_src),
 .uo_cp_mult_en(u_cd_mult_en),
 .uo_cp_sign_mult(u_cd_sign_mult),
 .uo_cp_rf_wr(u_cd_rf_wr),
 .uo_cp_mem_wr(u_cd_mem_wr),
 .uo_cp_mem_re(u_cd_mem_re),
 .uo_cp_sign_ext(u_cd_sign_ext),
 .uo_cp_hi_wr(u_cd_hi_wr),
 .uo_cp_lo_wr(u_cd_lo_wr),
 .uo_cp_alb_to_rf(u_cd_alb_to_rf),
 .uo_cp_hi_to_rf(u_cd_hi_to_rf),
 .uo_cp_mem_to_rf(u_cd_mem_to_rf),
 .uo_cp_jump(u_cd_jump),
 .uo_cp_jr(u_cd_jr),
 .uo_cp_jal(u_cd_jal),
 .uo_cp_jalr(u_cd_jalr),
 .uo_cp_beq(u_cd_beq),
 .uo_cp_bne(u_cd_bne),
 .uo_cp_blez(u_cd_blez),
 .uo_cp_bgtz(u_cd_bgtz),
 .uo_cp_alb_ctrl(u_cd_alb_ctrl),
 .uo_cp_mfc0(u_cd_mfc0),
 .uo_cp_mtc0(u_cd_mtc0),
 .uo_cp_eret(u_cd_eret),
 .uo_cp_syscall(u_cd_syscall),
 .uo_cp_undef_inst(u_cd_undef_inst),

 //input signal
 .ui_cp_opcode(u_cd_opcode),
 .ui_cp_funct(u_cd_funct),
 .ui_cp_rs(u_cd_rs));

//===================================
//======== datapath ===========
//===================================

86
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

u_data_path u_datapath
(//*********** INSTANTIATION *************
 //======= OUTPUT =======
 // Main control
 .uo_dp_opcode(u_cd_opcode),
 .uo_dp_funct(u_cd_funct),
 .uo_dp_rs(u_cd_rs),

 // Memory unit
 .uo_dp_im_addr(u_cd_pc),
 .uo_dp_dm_addr(u_cd_dmem_addr),
 .uo_dp_dm_store(u_cd_store_data),
 .uo_dp_mem_wr(u_dp_mem_wr),
 .uo_dp_mem_re(u_dp_mem_re),

 //======= INPUT =======
 // Main control
 .ui_dp_alb_src(u_cd_alb_src), //aluSrc
 .ui_dp_rd_src(u_cd_rd_src), //regDst
 .ui_dp_mult_en(u_cd_mult_en),
 .ui_dp_sign_mult(u_cd_sign_mult),
 .ui_dp_rf_wr(u_cd_rf_wr), //regWr
 .ui_dp_mem_wr(u_cd_mem_wr), //mem_wr
 .ui_dp_mem_re(u_cd_mem_re), //mem_re
 .ui_dp_sign_ext(u_cd_sign_ext), //extOp
 .ui_dp_hi_wr(u_cd_hi_wr),
 .ui_dp_lo_wr(u_cd_lo_wr),
 .ui_dp_hi_to_rf(u_cd_hi_to_rf),
 .ui_dp_mem_to_reg(u_cd_mem_to_rf), //mem_to_reg0
 .ui_dp_beq(u_cd_beq),
 .ui_dp_bne(u_cd_bne),
 .ui_dp_blez(u_cd_blez),
 .ui_dp_bgtz(u_cd_bgtz),
 .ui_dp_jump(u_cd_jump),
 .ui_dp_jr(u_cd_jr),
 .ui_dp_jalr(u_cd_jalr),
 .ui_dp_jal(u_cd_jal),

 //ALB
 .ui_dp_alb_ctrl(u_cd_alb_ctrl), //aluCtr
 // Memory_unit
 .ui_dp_instr(u_cd_instr), //instr
 .ui_dp_loaded_data(u_cd_loaded_data),//pc4
 //cp0
 .ui_dp_intr_vector({1'b0,1'b0,1'b0,u_cd_intr_uart,u_cd_intr_ps2_mouse,u_cd_intr_ps2_
keyboard}),

87
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 .ui_dp_cp0_mfc0(u_cd_mfc0),
 .ui_dp_cp0_mtc0(u_cd_mtc0),
 .ui_dp_cp0_eret(u_cd_eret),
 .ui_dp_cp0_syscall(u_cd_syscall),
 .ui_dp_cp0_undef_inst(u_cd_undef_inst),
 // System signal
 .ui_dp_clk(ui_cd_clk),
 .ui_dp_rst(ui_cd_rst)
);

//===================================
//======== memory unit ===========
//===================================

 u_cache
 u_text_seg(
 .uo_cm_rd_data (u_cd_text_instr),
 .ui_cm_addr (u_cd_pc),
 .ui_cm_wr_data ({`WORD_NB{1'b0}}),
 .ui_cm_re (1'b1), // i-cache always read
 .ui_cm_wr (1'b0),
 .ui_cm_clk (ui_cd_clk));

 u_cache
 u_data_seg(
 .uo_cm_rd_data (u_cd_loaded_ndata),
 .ui_cm_addr (u_cd_dmem_addr),
 .ui_cm_wr_data (u_cd_store_data),
 .ui_cm_re (u_dp_mem_re),
 .ui_cm_wr (u_dp_mem_wr),
 .ui_cm_clk (ui_cd_clk));

 u_cache
 u_ktext_kseg0(
 .uo_cm_rd_data (u_cd_ktext_instr),
 .ui_cm_addr (u_cd_pc),
 .ui_cm_wr_data ({`WORD_NB{1'b0}}),
 .ui_cm_re (1'b1), // i-cache always read
 .ui_cm_wr (1'b0),
 .ui_cm_clk (ui_cd_clk));

 u_cache
 u_kdata_kseg0(
 .uo_cm_rd_data (u_cd_loaded_kdata),
 .ui_cm_addr (u_cd_dmem_addr),

88
BIT(Hons) Computer Engineering
Faculty of Information and Communication Technology, UTAR

 .ui_cm_wr_data (u_cd_store_data),
 .ui_cm_re (u_dp_mem_re),
 .ui_cm_wr (u_dp_mem_wr),
 .ui_cm_clk (ui_cd_clk));

endmodule

