CULTURE ASSESSMENT OF THE BACTERIAL QUALITY OF AIR IN THE FOOD PREPARATION AREAS OF A CAFETERIA AND CHARACTERISATION OF THE GRAM-POSITIVE BACTERIAL SPECIES ISOLATED

YAP MING ZHE

BACHELOR OF SCIENCE (HONS)

BIOTECHNOLOGY

FACULTY OF SCIENCE

UNIVERSITI TUNKU ABDUL RAHMAN

SEPTEMBER 2015
CULTURE ASSESSMENT OF THE BACTERIAL QUALITY OF AIR IN THE FOOD PREPARATION AREAS OF A CAFETERIA AND CHARACTERISATION OF THE GRAM-POSITIVE BACTERIAL SPECIES ISOLATED

By

YAP MING ZHE

A project report submitted to the Department of Biological Science
Faculty of Science
Universiti Tunku Abdul Rahman
In partial fulfilment of the requirement for the degree of
Bachelor of Science (Hons) Biotechnology
September 2015
ABSTRACT

CULTURE ASSESSMENT OF THE BACTERIAL QUALITY OF AIR IN THE FOOD PREPARATION AREAS OF A CAFETERIA AND CHARACTERISATION OF THE GRAM-POSITIVE BACTERIAL SPECIES ISOLATED

YAP MING ZHE

The exact role of bioaerosols in the spread of disease and spoilage of food remains poorly understood despite their significant impacts. This study aimed to assess the levels of culturable airborne bacteria in the food preparation areas, of a UTAR Perak Campus cafeteria and characterise the Gram-positive bacteria species isolated. The airborne bacteria were collected via the culture impaction method. The levels of culturable bacteria in the air were determined and their association with the temperature and relative humidity at the sampling points was investigated. Gram-positive bacteria were selected from among the primary isolates obtained and identified via the 16S rDNA sequencing. The Gram-positive bacterial species that are potentially associated with foodborne illness were confirmed via the API tests. They were then further characterised via the [CONFIDENTIAL], [CONFIDENTIAL], antibiotic susceptibility test, and pulsed-field gel electrophoresis (PFGE) subtyping. The findings from this study showed that the levels of airborne bacteria were higher in [CONFIDENTIAL] than in [CONFIDENTIAL] on average. Statistical analysis
showed that the levels of airborne bacteria in the air were correlated to the temperature and relative humidity. The identities of the Gram-positive bacteria were successfully determined via the 16S rDNA sequencing and they were clustered into: [CONFIDENTIAL]. Out of the six [CONFIDENTIAL] isolates, five (1A1, 1A10, 1D9, 3B4, and 3D2) were identified as [CONFIDENTIAL] and one (2E5) was identified as [CONFIDENTIAL]. All these isolates are potentially diarrhoeagenic since they were shown to possess various [CONFIDENTIAL] in their genome. Besides, they were also tested to be resistant to both ampicillin and penicillin. Therefore, the [CONFIDENTIAL] species isolated in this study are a concern to food safety and quality due to their pathogenic and spoilage potentials, respectively.
ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Dr. Eddy Cheah Seong Guan for his excellent guidance, care, and patience, as well as providing me with an excellent atmosphere for doing research. He has been supportive since the days I began working on this project. He helped me to come up with the thesis structure and guided me over almost a year of this project.

Besides, I would like to express my appreciation to Ms. Saw Seow Hoon, Dr. Tan Gim Cheong, Dr. Loo Keat Wei, Mr. Ting Chee Siong, Ms. Ho Lai Yee, Dr. Chew Choy Hoong, and Mr. Pung Wee Liang for their advice and guidance during this project.

Lastly, I would like to express my gratitude to my lovely family and friends, especially Ooi Eu Hock, Wong Yii Soon, and Chang Meng An. Thank you for standing by my side at difficult times. Thank you for making me to laugh when I didn’t even want to smile. Thank you.
For my aunt,

Yap Siew Hun;

Without her, I would not be here today.

Thank You.
DECLARATION

I hereby declare that the project report is based on my original work except for quotation and citation which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UTAR or other institution.

(YAP MING ZHE)
This project report entitled “CULTURE ASSESSMENT OF THE BACTERIAL QUALITY OF AIR IN THE FOOD PREPARATION AREAS OF A CAFETERIA AND CHARACTERISATION OF THE GRAM-POSITIVE BACTERIAL SPECIES ISOLATED” was prepared by YAP MING ZHE and submitted as partial fulfilment of the requirement of degree of Bachelor of Science (Hons) Biotechnology at Universiti Tunku Abdul Rahman.

Approved by:

Date: ………………………………
(DR. EDDY CHEAH SEONG GUAN)
Supervisor
Department of Biological Science
Faculty of Science
Universiti Tunku Abdul Rahman
FACULTY OF SCIENCE

UNIVERSITI TUNKU ABDUL RAHMAN

Date: ________________

PERMISSION SHEET

It is hereby certified that **YAP MING ZHE** (ID No: **12ADB06987**) has completed this final year project entitled “**CULTURE ASSESSMENT OF THE BACTERIAL QUALITY OF AIR IN THE FOOD PREPARATION AREAS OF A CAFETERIA AND CHARACTERISATION OF THE GRAM-POSITIVE BACTERIAL SPECIES ISOLATED**” under the supervision of Dr. Eddy Cheah Seong Guan from the Department of Biological Science, Faculty of Science.

I hereby give permission to the University to upload the softcopy of my final year project in pdf format into the UTAR Institutional Repository, which may be made accessible to the UTAR community and public.

Yours truly,

(YAP MING ZHE)
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL SHEET</td>
<td>vii</td>
</tr>
<tr>
<td>PERMISSION SHEET</td>
<td>viii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION

2. LITERATURE REVIEW

 2.1 Bioaerosols
 2.1.1 General Overview
 2.1.2 Bacterial Composition in the Air

 2.2 Bioaerosol Sampling Methods
 2.2.1 Impactors
 2.2.2 Filtration and Impingers

 2.3 Gram-Positive Bacteria Associated with Foodborne Illnesses
 2.3.1 *Bacillus cereus*
 2.3.2 *Staphylococcus aureus*
 2.3.3 *Listeria monocytogenes*
 2.3.4 *Clostridium* spp.

 2.4 Recent Development in Rapid Detection Methods
 2.4.1 Nucleic Acid-based Assays
 2.4.2 Immunological Assays
2.5 Molecular Subtyping of Foodborne Pathogens
 2.5.1 Pulsed-field Gel Electrophoresis
 2.5.2 Ribotyping
 2.5.3 Multilocus Sequence Typing

3 METHODOLOGY
 3.1 Experimental Design
 3.2 Apparatus and Consumables
 3.3 Preparation of Culture Media
 3.3.1 Brain-Heart Infusion Broth with Glucose
 3.3.2 Fortified Nutrient Agar
 3.3.3 Müller-Hinton Agar
 3.3.4 Tryptic Soy Agar with Cycloheximide
 3.4 Preparation of Reagents
 3.4.1 Cell Lysis Buffer
 3.4.2 Cycloheximide Solution
 3.4.3 Modified Mineral Solution
 3.4.4 Tris-EDTA Buffer
 3.5 Air Sampling
 3.5.1 Sampling Location
 3.5.2 Sampling Strategies
 3.5.3 Environmental Parameters
 3.5.4 Statistical Analysis
 3.6 Bacterial Isolation
 3.7 Genotypic Identification of Bacterial Isolates
 3.7.1 DNA Extraction
 3.7.2 Universal 16S rDNA PCR Assay
 3.7.3 Gel Analysis of PCR Amplicons
 3.7.4 Purification of PCR Amplicons
 3.7.5 DNA Sequencing and Analysis
 3.8 Identification of Bacterial Isolates via the API Tests
3.9 [CONFIDENTIAL] PCR Assay
3.10 [CONFIDENTIAL]
3.11 Antibiotic Susceptibility Test by the Kirby-Bauer Assay
3.12 Pulsed-field Gel Electrophoresis
 3.12.1 Preparation of Plugs
 3.12.2 Lysis of Bacterial Cells in Plugs
 3.12.3 Washing of Plugs
 3.12.4 Restriction Enzyme Digestion of Genomic DNA in the Plugs
 3.12.5 PFGE of Restriction Digests

4 RESULTS
4.1 Bioaerosol Sampling
 4.1.1 Quantitative Evaluation of the Distribution of Culturable Airborne Bacteria in the Food Preparation Areas
 4.1.2 [CONFIDENTIAL]
4.2 Culture-based Assessment of Bacterial Isolates
 4.2.1 Gram Stain Appearance and Colony Morphology
4.3 Genotypic Identification of Bacterial Isolates
 4.3.1 Universal 16S rDNA PCR Assay and DNA Sequencing
 4.3.2 Phylogenetic Diversity Analysis of the Bacterial Isolates
4.4 Identification of the Bacterial Isolates via the API Tests
4.5 [CONFIDENTIAL] of the Bacterial Isolates
4.6 [CONFIDENTIAL] of the Bacterial Isolates
4.7 Antibiotic Susceptibility Profiles of the Bacterial Isolates
4.8 PFGE Subtyping of the Bacterial Isolates

5 DISCUSSION
5.1 Bioaerosols in Food Preparation Areas
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Sequences of the primers used in the PCR assay</td>
</tr>
<tr>
<td>4.1</td>
<td>Levels of culturable airborne bacteria in the food preparation areas of the Student Pavilion I Cafeteria, UTAR Perak Campus</td>
</tr>
<tr>
<td>4.2</td>
<td>Gram stain appearance and colony morphology on TSA for the bacterial isolates</td>
</tr>
<tr>
<td>4.3</td>
<td>BLASTn analysis results of partial 16S rDNA amplicons for the bacterial isolates</td>
</tr>
<tr>
<td>4.4</td>
<td>Identification of bacterial isolates by the API tests</td>
</tr>
<tr>
<td>4.5</td>
<td>[CONFIDENTIAL]</td>
</tr>
<tr>
<td>4.6</td>
<td>Antibiotic susceptibility profiles of the bacterial isolates</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Overview of the experimental design of this project</td>
<td>18</td>
</tr>
<tr>
<td>3.2</td>
<td>Layout of the sampling area and sampling points</td>
<td>22</td>
</tr>
<tr>
<td>4.1</td>
<td>Comparison between the levels of culturable airborne bacteria in the food preparation areas at different sampling times</td>
<td>32</td>
</tr>
<tr>
<td>4.2</td>
<td>Gram-positive bacterial isolates observed under oil immersion at 1000x magnification</td>
<td>34</td>
</tr>
<tr>
<td>4.3</td>
<td>Gel analysis of 16S PCR amplicons</td>
<td>36</td>
</tr>
<tr>
<td>4.4</td>
<td>Phylogenetic tree of the bacterial isolates based on their partial 16S rDNA sequences</td>
<td>38</td>
</tr>
<tr>
<td>4.5</td>
<td>[CONFIDENTIAL]</td>
<td>41</td>
</tr>
<tr>
<td>4.6</td>
<td>[CONFIDENTIAL]</td>
<td>42</td>
</tr>
<tr>
<td>4.7</td>
<td>[CONFIDENTIAL]</td>
<td>43</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACGIH</td>
<td>American Conference of Governmental Industrial Hygienists</td>
</tr>
<tr>
<td>API</td>
<td>Analytical Profile Index</td>
</tr>
<tr>
<td>BHIG</td>
<td>brain-heart infusion broth with glucose</td>
</tr>
<tr>
<td>BLAST</td>
<td>Basic Local Alignment Search Tool</td>
</tr>
<tr>
<td>CaCl$_2$</td>
<td>calcium chloride</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control and Prevention</td>
</tr>
<tr>
<td>CFU</td>
<td>colony-forming unit</td>
</tr>
<tr>
<td>CLSI</td>
<td>Clinical and Laboratory Standard Institute</td>
</tr>
<tr>
<td>CuSO$_4$</td>
<td>copper sulphate</td>
</tr>
<tr>
<td>CytK</td>
<td>cytotoxin K</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>deoxyribonucleoside triphosphate</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EFSA</td>
<td>European Food Safety Authority</td>
</tr>
<tr>
<td>EntFM</td>
<td>enterotoxin FM</td>
</tr>
<tr>
<td>E-value</td>
<td>expect value</td>
</tr>
<tr>
<td>FeSO$_4$</td>
<td>iron sulphate</td>
</tr>
<tr>
<td>FNA</td>
<td>fortified nutrient agar</td>
</tr>
<tr>
<td>Hbl</td>
<td>haemolytic toxin</td>
</tr>
<tr>
<td>MgCl$_2$</td>
<td>magnesium chloride</td>
</tr>
<tr>
<td>MgSO$_4$</td>
<td>magnesium sulphate</td>
</tr>
<tr>
<td>MH</td>
<td>Müller-Hinton</td>
</tr>
<tr>
<td>MLST</td>
<td>multilocus sequence typing</td>
</tr>
<tr>
<td>NaCl</td>
<td>sodium chloride</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Center for Biotechnology Information</td>
</tr>
<tr>
<td>Nhe</td>
<td>non-haemolytic toxin</td>
</tr>
<tr>
<td>NIOSH</td>
<td>National Institute of Occupational Safety and Health</td>
</tr>
<tr>
<td>NTC</td>
<td>no-template control</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
</tbody>
</table>
PCR polymerase chain reaction
PFGE pulsed-field gel electrophoresis
rDNA ribosomal deoxyribonucleic acid
TSA tryptic soy agar
UV ultraviolet
WHO World Health Organization
ZnSO₄ zinc sulphate

°C degree Celsius
× times
bp base pair
G gramme
h hour
L litre
µL microlitre
µM micromolar
min minute
mL millilitre
mm millimetre
mM millimolar
ng nanogramme
nm nanometre
U unit
V volt
v/v volume per volume
w/v weight per volume