INVESTIGATION OF THE ANTIBACTERIAL POTENTIALS OF THE

BLACK SOLDIER FLY (HERMETIA ILLUCENS) LARVAE

By

YANG SHUN KAI

A project report submitted to the Department of Biological Science

Faculty of Science

University Tunku Abdul Rahman

in partial fulfillment of the requirement for the degree of

Bachelor of Science (Hons) Microbiology

September 2015

ABSTRACT

INVESTIGATION OF THE ANTIBACTERIAL POTENTIALS OF THE BLACK SOLDIER FLY (*HERMETIA ILLUCENS*) LARVAE

YANG SHUN KAI

The black soldier fly larvae (BSFL) can be used for waste management as they are detrivores, thus enabling them to carry out bioconversion. The ability to thrive in pathogen-infested environment suggests that BSFL have antimicrobial potentials. This study hypothesized and investigated the possible antibacterial strategies of BSFL, which could be mediated by the symbiotic microflora, the symbiotic bacteriophages or the chemical compounds that they produce. The panel of bacterial species tested for each of these hypothesized strategy include [CONFIDENTIAL]. The larval microflora were isolated and identified via both the API tests and the 16S rDNA sequencing. Six isolates were successfully identified as [CONFIDENTIAL]. Three isolates were identified as [CONFIDENTIAL] via the 16S rDNA sequencing and based on their colony morphology. The identities of the other four isolates need further confirmation as multiple identities were given by both identification methods. The bacterial isolates were assessed for their antimicrobial potentials via the cross streak test.

No inhibition zones were observed but several isolates might have promoted or suppressed the growth of certain test bacterial species. However, further validation is required due to the qualitative nature of this assessment. In addition, the larvae (freeze dried and oven dried larvae) were subjected to sequential solvent extraction and the resulting crude extracts were assessed for their antimicrobial potentials via the resazurin microplate assay. The [CONFIDENTIAL] of the freeze dried larvae and the [CONFIDENTIAL] of the oven dried larvae were active against [CONFIDENTIAL]. Besides, the [CONFIDENTIAL] of the oven dried larvae were active against [CONFIDENTIAL]; the latter was also active against [CONFIDENTIAL]. However, only partial inhibition was observed, all at [CONFIDENTIAL]. Finally, bacteriophage isolation was attempted via the double-layer plaque assay. Only the phage against [CONFIDENTIAL] was successfully isolated from the larvae. The findings from this study suggest that BSFL exhibit antibacterial potentials and more tests should be performed to validate this.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my project supervisor, Dr. Eddy Cheah Seong Guan, for his continuous support and advices given throughout this project. His guidance has helped me throughout the bench work and writing of this thesis. I could not have imagined having a better supervisor and mentor for my final year project.

In addition, I would like to thank my postgraduate senior, Mr. Ting Chee Siong, who had always been there to provide technical support and share his personal experiences. His ability to clear my doubts and correct my mistakes never fails. Besides, I would also like to thank my fellow bench mates, Ming Zhe and Yong Syuan, for their companionship and unconditional help.

Other than that, I would like to convey my appreciation towards the laboratory officers, Ms. Choo, Ms. Luke, Ms. Nurul and Ms. Nisah, for providing adequate materials for my bench work and helping me in times of need. Last but not least, I would like to thank my dearest family and friends for their moral support throughout this project.

DECLARATION

I hereby declare that the project report is based on my original work except for quotation and citation which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UTAR or other institution.

⁽YANG SHUN KAI)

APPROVAL SHEET

This project entitled <u>"INVESTIGATION OF THE ANTIBACTERIAL</u> <u>POTENTIALS OF BLACK SOLDIER FLY (HERMETIA ILLUCENS)</u> <u>LARVAE</u>"was prepared by YANG SHUN KAI and submitted as partial fulfillment of the requirements for the degree of Bachelor of Science (Hons) Microbiology at Universiti Tunku Abdul Rahman.

Approved by:

(DR. EDDY CHEAH SEONG GUAN)	(MS. LEONG SIEW YOONG)
Date:	Date:
Supervisor	Co-supervisor
Department of Biological Science	Department of Petrochemical Engineering
Faculty of Science	Faculty of Engineering and Green Technology
Universiti Tunku Abdul Rahman	Universiti Tunku Abdul Rahman

FACULTY OF SCIENCE

UNIVERSITI TUNKU ABDUL RAHMAN

Date:

PERMISSION SHEET

It is hereby certified that <u>YANG SHUN KAI</u> (ID No: <u>12ADB06146</u>) has completed this final year project entitled "INVESTIGATION OF THE ANTIBACTERIAL POTENTIALS OF BLACK SOLDIER FLY (*HERMETIA ILLUCENS*) LARVAE" under the supervision of Dr. Eddy Cheah Seong Guan (supervisor) from the Department of Biological Science, Faculty of Science and Ms. Leong Siew Yoong (co-supervisor) from the Department of Petrochemical Engineering, Faculty of Engineering and Green Technology.

I hereby give permission to the University to upload the softcopy of my final year project in pdf format into the UTAR Institutional Repository, which may be made accessible to the UTAR community and public.

Yours truly,

(YANG SHUN KAI)

TABLE OF CONTENTS

	Page
ABSTRACT	ii
ACKNOWLEDGEMENTS	iv
DECLARATION	v
APPROVAL SHEET	vi
PERMISSION SHEET	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	xiii

CHAPTER

1	INTF	RODUCT	ION	1
2	LITE	RATUR	E REVIEW	5
	2.1	General	Overview	5
	2.2	Black S	oldier Fly in General	6
		2.2.1	Taxonomy	6
		2.2.2	Appearance of Black Soldier Fly	6
		2.2.3	Geographical and Ecological Distribution	7
		2.2.4	Biology and Life Cycle	8
	2.3	Benefits	s of Black Soldier Fly Larvae	10
		2.3.1	Role in Waste Management and Bioconversion	10
		2.3.2	Role as Agricultural Feeds	12
		2.3.3	Role in Pest Control	13
		2.3.4	Medicinal Values and Possible Antimicrobial Drugs	13
3	MAT	TERIALS	AND METHODS	15
	3.1	Experin	nental Design	15
	3.2	Test Ma	aterials	16
		3.2.1	Black Soldier Fly Larvae	16
		3.2.2	Test Bacterial Species	16
		3.2.3	Apparatus and Consumables	16
	3.3	Prepara	tion of Culture Media and Reagents	16
	3.4	Feeding	g and Maintenance of Larvae	17
	3.5	Isolatio	n and Identification of Larval Microflora	17
		3.5.1	Preparation of Larvae	17
		3.5.2	Isolation of Larval Microflora	17

	3.5.3	Identification of Bacterial Isolates via API Tests	18
	3.5.4	Identification of Bacterial Isolates via 16S rDNA	18
		Sequencing	
		3.5.4.1 Genomic DNA Extraction	18
		3.5.4.2 Universal 16S rDNA PCR Assay	19
		3.5.4.3 Gel Analysis and Purification of PCR	19
		Amplicons	-
		3.5.4.4 DNA Sequencing and Analysis	20
3.6	Evaluat	tion of the Antibacterial Potentials of Larval	$\frac{-0}{20}$
0.0	Microfl	lora Isolates via the Cross Streak Test	_0
37	Sequen	tial Solvent Extraction of Larvae	22
5.7	3 7 1	Sample Prenaration for Extraction	22
	5.7.1	3711 Washing of Live Larvae	22
		3.7.1.2 Freeze Drving of Live Larvae	22
		3.7.1.2 Pulverization of Dried Larvae	22
	272	Sequential Solvent Extraction of Lervac	22
	3.1.2	Determinal Solvent Extraction of Calvert Extracts	22
20	3./.3 Camaani	Kotary Evaporation of Solvent Extracts	23
3.8	Screeni	ng for the Antibacterial Potentials of Crude Larval	23
	Extract		22
	3.8.1	Preparation of Crude Extracts for REMA	23
•	3.8.2	Resazurin Microplate Assay	24
3.9	Isolatio	n of Potential Bacteriophages from Larvae	26
	3.9.1	Bacteriophage Isolation by the Double-layer Plaque	26
	• • •	Assay	• •
	3.9.2	Confirmation of Viral Plaques in Primary Plates	26
DEG			20
RES	ULTS		28
4.1	Mainter	nance and Observation of Live Larvae	28
4.2	Isolatio	n and Identification of Larval Microflora	29
	4.2.1	Phenotypic Identification of Larval Microflora	29
		Isolates	
		4.2.1.1 Assessment of Colony Morphology of	29
		Bacterial Isolates	30
		4.2.1.2 Gram Stain Appearance	31
		4.2.1.3 Identification of Bacterial Isolates via	
		API Tests	33
	4.2.2	Genotypic Identification of Larval Microflora	
		Isolates via 16S rDNA Sequencing	37
	4.2.3	Final Identification of Larval Microflora Isolates	39
4.3	Evaluat	tion of the Antibacterial Potentials of Larval	
	Microfl	lora via the Cross Streak Test	40
4.4	Evaluat	tion of the Antibacterial Potentials of Crude Larval	2
	Extract	s	40
	4.4.1	Yields of Crude Larval Extracts via Sequential	
		Solvent Extraction	

4

4.4.2	Use	of	the	Resazurin	Microplate	Assay	to
Determine the Inhibitory Potentials of Crude Larva			val				
	Extracts against Selected Bacterial Species						

4.5 Evaluation of the Potential Presence of Bacteriophages in the Larvae

5	DIS	CUSSION	I	45
	5.1	Mainter	nance and Observation of Live Larvae	45
	5.2	Isolation	n and Identification of Larval Microflora	46
		5.2.1	Phenotypic Identification of Larval Microflora	46
			Isolates	
			5.2.1.1 Gram Stain Appearance	46
			5.2.1.2 Identification of Bacterial Isolates via	46
			API tests	
		5.2.2	Genotypic Identification of Larval Microflora	48
			Isolates	
			5.2.2.1 Universal 16S rDNA PCR Assay and	48
			Gel Analysis	
			5.2.2.2 DNA Sequencing and BLAST Analysis	49
		5.2.3	Final Identification of Bacterial Isolates	51
	5.3	Evaluat	ion of the Antibacterial Potentials of Larval	52
		Microfl	ora via the Cross Streak Test	
	5.4	Evaluat	ion of the Antibacterial Potentials of Crude Larval	54
		Extracts	3	
		5.4.1	Harvesting and Preparation of Live Larvae for	54
			Sequential Solvent Extraction	
		5.4.2	Yields of Crude Larval Extracts via Sequential	55
		5.4.0	Solvent Extraction	
		5.4.3	Use of the Resazurin Microplate Assay to	55
			Determine the Inhibitory Potentials of Crude Larval	
	55	Evolut	Extracts against Selected Bacterial Species	57
	5.5	Evaluat	ion of the Potential Presence of Bacteriophages in the	57
	56	Euture V	Works	58
	5.0	Tuture	W OIKS	50
6	CON	ICLUSIO	NS	61
RE	EFERE	NCES		64
AF	PEND	ICES		71

LIST OF TABLES

Table		Page
2.1	Taxonomy of the black soldier fly	6
3.1	Polarity of and pressure applied to respective solvents	23
4.1	Colony morphology of the bacterial isolates on LB agar	29
4.2	API identification results for the bacterial isolates	32
4.3	BLASTn analysis of partial 16S rDNA sequences of the bacterial isolates	36
4.4	Comparison between API and 16S rDNA sequencing identification results for the bacterial isolates	38
A1	List of apparatus and their respective manufacturers	70
A2	List of consumables and their respective manufacturers	72
C1	Dry weight and percentage yield of crude larval extracts via sequential solvent extraction	73 76

LIST OF FIGURES

Figure		Page
2.1	Appearance of black soldier fly	7
2.2	Life cycle of a black soldier fly	10
3.1	Overview of the experimental design of this study	10
3.2	An illustration of the cross streak method to evaluate the	15
0.12	antibacterial potentials of the bacterial isolates	21
3.3	The layout of the 96-well microplate for resazurin microplate assay	25
4.1	Mini compost of black soldier fly larvae	28
4.2	Gram stain appearance of thebacterial isolates observed under oil immersion at 1000× objective magnification	30
4.3	Identification of bacterial isolates via the API tests	32
4.4	Gel analysis of 16S rDNA PCR amplicons of the bacterial isolates	33
4 5		34
4.5	165 rDNA PCR inhibition for Isolate L8	40
4.6	Cross streak test of larval microflora isolates against test	
	bacterial species	41
4.7	Percentage yields of crude extracts of freeze dried and oven dried larvae via sequential solvent extraction	
4.8	Assessment of the antibacterial potentials of crude larval	43
	extracts via REMA	A A
4.9	Phage amplification from a single plaque formed in the	44
	[CONFIDENTIAL] test plate	

LIST OF ABBREVIATIONS

API	Analytical Profile Index
ATCC	American Type Culture Collection
BLAST	Basic Local Alignment Search Tool
BSA	bovine serum albumin
BSF/BSFL	black soldier fly/ black soldier fly larvae
CFU	colony forming unit
DMSO	dimethyl sulfoxide
DNA	deoxyribonucleic acid
dNTP	deoxyribonucleoside triphosphate
E-value	expect value
LB	Luria-Bertani
MH	Mueller-Hinton
MIC	minimum inhibitory concentration
MRSA	methicillin-resistant Staphylococcus aureus
NADP/NADPH	nicotinamide adenine dinucleotide phosphate
NCBI	National Center for Biotechnology Information
NTC	no-template control
OF	oxidative-fermentative
PBS	phosphate-buffered saline
PCR	polymerase chain reaction
REMA	resazurin microplate assay

sp. /spp.	species
Taq	Thermus aquaticus
UTAR	University Tunku Abdul Rahman
UV	ultraviolet

°C	degree Celcius
bp	base pair
rpm	revolution per minute
U	Unit
V	volt
g	gram
ng	nanogram
nm	nanometer
μg	microgram
μl	microliter
μm	micrometer
μM	micromolar
ml	milliliter
mm	millimeter
kg	kilogram
w/w	weight per weight
w/v	weight per volume