EXTRACTION AND ISOLATION OF ANTI-MRSA EXTRACELLULAR COMPOUNDS FROM *Pseudomonas aeruginosa* STRAIN MSO(Y)

SHU CHAI CHING

BACHELOR OF SCIENCE (HONS) BIOTECHNOLOGY

FACULTY OF SCIENCE UNIVERSITI TUNKU ABDUL RAHMAN SEPTEMBER 2015

EXTRACTION AND ISOLATION OF ANTI-MRSA EXTRACELLUAR

COMPOUNDS FROM Pseudomonas aeruginosa STRAIN MSO(Y)

By

SHU CHAI CHING

A project report submitted to the Department of Biological Science Faculty of Science Universiti Tunku Abdul Rahman In partial fulfillment of the requirements for the degree of Bachelor of Science (Hons) Biotechnology

September 2015

ABSTRACT

EXTRACTION AND ISOLATION OF ANTI-MRSA EXTRACELLULAR COMPOUNDS FROM *Pseudomonas aeruginosa* STRAIN MSO(Y)

SHU CHAI CHING

The emergence of methicillin-resistant *Staphylococcus aureus* (MRSA) is threatening the public health. Thus, there is a need to search for new antibiotics and treatments that can combat MRSA. This project was carried out to evaluate the anti-MRSA activity of the extracellular compounds produced by *Pseudomonas aeruginosa* MSO(Y). The spent culture supernatant of *P. aeruginosa* MSO(Y) was obtained after 72 hours of incubation at 37°C and subjected to liquid-liquid extraction using dichloromethane. After verifying the presence of anti-MRSA activity using Kirby-Bauer test, the compounds of interest in dichloromethane phase (DP) were isolated using normal and reversed phase chromatography. All of the fractions were collected and tested on anti-MRSA activity. However, anti-MRSA compounds eluted with mobile phase of polarity 3.3 using normal phase chromatography showed the strongest anti-MRSA activity. This

fraction was then further tested on the viability of MRSA and their time response growth curves were plotted. The result obtained indicated that the higher the concentration of anti-MRSA compounds, the stronger the inhibition effect. It is found that the growth of MRSA was only inhibited for a certain period of time and the effect reduced with prolonged incubation indicating the bacteriostatic effect of the isolated compounds. The subsequent HPLC analysis showed the possible presence of four phenazine compounds which are phenazine-1carboxylic acid, phenazine-1-carboxyamide, pyocyanin and 1-hydroxyphenazine were a comparison was made with the retention times of reference compounds. From this study, *P. aeruginosa* MSO(Y) is found to be able to produce various types of secondary metabolites which possess anti-MRSA activity. Further research is needed to purify the isolated anti-MRSA compounds followed by further evaluation on their anti-MRSA potential.

ACKNOWLEDGEMENTS

First of all, I would like to express my sincere gratitude to my final year project supervisor, Assistant Professor Dr Kho Chiew Ling for her guidance and advice throughout the whole project. Her effort, support and patient enable to motivate me to accomplish my bench work and thesis in most presentable way. I would also like to extent my appreciation to Dr Tong Kim Suan for his invaluable knowledge and suggestion which help me a lot in bench work. Besides, I would also like to thank the master student, Lim Sin Yun for her knowledge and experience sharing.

Next, I would like to thank all the lab offices form both biological science and chemistry departments for their help and assistance in completing the bench work. In addition, I would also like to thank to all my lab mates for their sharing, supporting and encouraging throughout this project.

Last but not least, a million thank to my family members in giving me moral support and encouraging me during the completion of this project. Thank you.

DECLARATION

I hereby declare that the project report is based on my original work except for the quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UTAR or other institutions.

SHU CHAI CHING

APPROVAL SHEET

This project entitled "EXTRACTION AND ISOLATION OF ANTI-MRSA EXTRACELLULAR COMPOUNDS FROM *Pseudomonas aeruginosa* STRAIN MSO(Y)" was prepared by SHU CHAI CHING and submitted as partial fulfillment of the requirements for the degree of Bachelor of Science (Hons) in Biotechnology at Universiti Tunku Abdul Rahman.

Approved by:

(Assistant Professor Dr. Kho Chiew Ling)

Date:....

Supervisor

Department of Biological Science

Faculty of Science

Universiti Tunku Abdul Rahman

FACULTY OF SCIENCE

UNIVERSITI TUNKU ABDUL RAHMAN

Date: _____

PERMISSION SHEET

It is hereby certified that <u>SHU CHAI CHING</u> (ID No: <u>13ADB00284</u>) has completed this final year project entitled "EXTRACTION AND ISOLATION OF ANTI-MRSA EXTRACELLULAR COMPOUNDS FROM *Pseudomonas aeruginosa* STRAIN MSO(Y)" under the supervision of Dr Kho Chiew Ling from the Department of Biological Science, Faculty of Science.

I hereby give permission to the University to upload the softcopy of my final year project in pdf format into the UTAR Institutional Repository, which may be made accessible to the UTAR community and public.

Yours truly,

(SHU CHAI CHING)

TABLE OF CONTENTS

Page

ABSTRACT	ii
ACKNOWLEDGEMENT	iv
DECLARATION	v
APPROVAL SHEET	vi
PERMISSION SHEET	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	xiv

CHAPTER

1	INT	NTRODUCTION	
2	LIT	ERATURE REVIEW	6
	2.1	Pseudomonas	6
		2.1.1 Pseudomonas aeruginosa	7
	2.2	Staphylococcus aureus	8
		2.2.1 Antibiotic Resistance Staphylococcus aureus	9
		2.2.2 Methicillin Resistant Staphylococcus aureus	10
	2.3	Treatments for MRSA	11
		2.3.1 Antibiotics	12
		2.3.2 Natural Antibacterial Agents	13
	2.4	Phenazine Compounds from Pseudomonas aeruginosa	14
		2.4.1 Types of Phenazine Compounds	15
	2.5	Purification and Characterization of Isolated Anti-MRSA	
		Compounds	17
		2.5.1 Normal Phase Chromatography	17
		2.5.2 Reversed Phase Chromatography	18
		2.5.3 High Performance Liquid Chromatography (HPLC)	19

MA	ATERIALS AND METHODS 2			
3.1	Experimental Design 2			
3.2	Apparatus and Materials			
3.3	Bacterial	Strains	21	
3.4	Productio	on of Extracellular Antimicrobial Compounds	21	
		reparation of Overnight Culture of <i>Pseudomonas</i> eruginosa	22	
	3.4.2 Sc	cale-up Production of Extracellular Antimicrobial ompounds	22	
3.5	Extractio	on of Extracellular Antimicrobial Compounds	22	
	3.5.1 Ce	entrifugation	22	
	3.5.2 Li	quid-liquid Extraction	23	
		vaporation and Concentration of Dichloromethane hase (DP)	23	
3.6	Isolation	of Antimicrobial Extracellular compounds	23	
	3.6.1 Is	olation using Reversed Phase Chromatography	24	
	3.	6.1.1 Sample and Mobile Phase Preparation for Reversed Phase Chromatography	24	
	3.	6.1.2 Reversed Phase Chromatography	24	
		olation using Normal Phase Chromatography	26	
		6.2.1 Sample and Mobile Phase Preparation for	26	
		Normal Phase Chromatography		
	3.6	6.2.2 Normal Phase Chromatography	26	
3.7	Evaluatio	on of Anti-MRSA Effect of Extracellular	28	
	Compour	nds		
	3.7.1 Sa	ample Preparation	28	
	3.7.2 Ki	irby-Bauer Test	28	
	3.7.3 Ev	valuation of Isolated Antimicrobial Compounds on	29	
	Ti	me Response Growth Curve and Viability of		
	Μ	IRSA Strain		
3.8	Detection	n of Anti-MRSA compounds using High	31	
	Performa	ance Liquid Chromatography (HPLC)		
	3.8.1 Sa	ample and Mobile Phases Preparation	31	
	3.8.2 H	PLC Analysis	31	
RES	ULTS		33	
4.1	Production and Antimicrobial Extracellular Compounds 33			
4.2	Extractio	on of Antimicrobial Compounds	34	

	4.3	Isolation of Antimicrobial Compounds using Reversed Phase Chromatography	36
	4.4	Isolation of Antimicrobial Compounds using Normal Phase chromatography	40
	4.5	Time Response Growth Curve of Viability of MRSA after treated with Antimicrobial Compounds	44
	4.6	Detection of Antimicrobial Compounds using High	46
		Performance Liquid Chromatography (HPLC)	
5	DIS	CUSSION	48
	5.1	Production of Antimicrobial Extracellular Compounds	48
	5.2	Extraction of Antimicrobial Extracellular Compounds	49
	5.3	Isolation of Antimicrobial Extracellular Compounds using	50
		Reversed Phase and Normal Phase Chromatography	
	5.4	Evaluation of Isolated Antimicrobial Extracellular	51
		Compounds from Reversed Phase and Normal Phase	
		Chromatography	
	5.5	Comparison between Reversed Phase and Normal Phase	55
		Chromatography	
	5.6	Growth Curve of Viability of MRSA after Treatment with	57
		Antimicrobial Compounds	
	5.7	Detection of Antimicrobial Compounds using High	59
		Performance Liquid Chromatography (HPLC)	
	5.8	Future Works	62
6	CO	NCLUSION	63
REFE	REN	CES	64
APPE	NDIC	CES	78

LIST OF TABLES

Table		Page
4.1	Diameter of zone of inhibition obtained from extracellular compounds isolated through reverse phase chromatography using methanol and distilled water as mobile phase	38
4.2	Diameter of zone of inhibition exhibited by extracellular compounds isolated through reverse phase chromatography using acetonitrile and distilled water as mobile phase	40
4.3	Diameter of zone of inhibition obtained from extracellular compounds isolated through normal phase chromatography	42
4.4	The retention time, height and area of peaks of interest from the 5 th fraction isolated using normal phase chromatography as detected by HPLC	47
4.5	The retention time of the reference compounds. Data obtained from Mavrodi, et al. (2001)	47

LIST OF FIGURES

Figure		Page
3.1	Overview of experimental design of this project	20
4.1	Production of extracellular compounds in King B broth	33
4.2	Liquid-liquid extraction using dichloromethane	34
4.3	Kirby-Bauer test on concentrated dichloromethane phase	35
4.4	Isolation of extracellular compounds using reverse phase chromatography	36
4.5	Kirby-Bauer tests performed on the anti-MRSA compounds isolated through reversed phase chromatography using methanol and distilled water as mobile phase	38
4.6	Kirby-Bauer tests performed on the anti-MRSA compounds isolated through reversed phase chromatography using acetonitrile and distilled water as mobile phase	39
4.7	Isolation of antimicrobial extracellular compound using normal phase chromatography	41
4.8	Kirby-Bauer test performed on the isolated antimicrobial extracellular compounds obtained by using normal phase chromatography against MRSA	43
4.9	Drop plate method used in determining the colonies forming unit in anti-MRSA compounds treated and untreated samples	45

4.10	Time response growth curve of viable MRSA when antimicrobial compounds were introduced	45
4.11	The HPLC chromatogram of anti-MRSA compounds from 5 th fraction isolated using normal phase chromatography	46

LIST OF ABBREVATIONS

1-OHPHZ	1-hydroxyphenazine
2,4-DAPG	2,4-diacetylphloroglucinol
API	Analytical profile index
ATCC	American type culture collection
CA-MRSA	Community-acquired methicillin resistant <i>Staphylococcus aerues</i>
CF	Cystic fibrosis
CFF	Cystic Fibrosis Foundation
DP	Dichloromethane phase
FTIR	Fourier transform infrared spectroscopy
HA-MRSA	Healthcare associated methicillin resistant <i>Staphylococcus aerues</i>
HPLC	High performance liquid chromatography
LB	Luria Bertani
LC-MS	Liquid chromatography-mass spectrum
MgSO ₄	Magnesium sulphate
МН	Muller-Hinton

MRSA	Methicillin resistant Staphylococcus aureus
MS	Mass spectrum
MSSA	Methicillin-sensitive Staphylococcus aerues
NMR	Nuclear magnetic resonance
PBP2a	Penicillin binding protein 2a
PCA	Phenazine-1 carboxylic acid
PCN	Phenazine-1-carboxyamide
PVL	Panton-Valentine leukocidin
РҮО	Pyocyanin
rRNA	Ribosomal ribonucleic acid
TLC	Thin layer chromatography
TMP-SMX	Trimethoprim-sulfamethoxazole
UV	Ultraviolet
v/v	volume per volume
VISA	Vancomycin insensitive Staphylococcus aureus