
PREFIX-BASED ADVERTISING AND SEARCHING

SCHEMES FOR DISTRIBUTED SERVICE DISCOVERY

IN LARGE-SCALE P2P NETWORKS

TEOH EE NA

Master of Computer Science

Faculty of Information and Communication Technology
UNIVERSITI TUNKU ABDUL RAHMAN

DECEMBER 2014

PREFIX-BASED ADVERTISING AND SEARCHING SCHEMES

FOR DISTRIBUTED SERVICE DISCOVERY IN LARGE-SCALE P2P

NETWORKS

By

TEOH EE NA

A dissertation submitted to the Faculty of Information and Communication

Technology,

Universiti Tunku Abdul Rahman,

in partial fulfillment of the requirements for the degree of

Master of Computer Science

December 2014

ii

ABSTRACT

Service discovery is one of the most critical features in resource sharing

over a large-scale network to ensure every service available in the network can

be delivered when requested. Traditional approaches may employ a server to

index a pool of resources so that users are able to query the server for the

available resources. However, these approaches are not scalable and could risk

the network performance by introducing single point failure. To resolve these

issues, different algorithms have been proposed for distributed service

discovery based on peer-to-peer architecture. However, they either adopt a

brute-force method that floods a query over the network to search for a

requested service, or are unable to provide locality awareness in which service

providers in the close proximity should have better chance to be located than

those that are far.

In this dissertation, a novel approach based on Pastry, a structured peer-

to-peer system is introduced to address the aforementioned issues by using

prefix-based advertising and searching for distributed service discovery. With

the approach, two algorithms are further proposed. Simulation results

demonstrate that the proposed algorithms are able to reduce the query traffic

generated in a network with yet achieving high service discovery rate.

Moreover, the algorithms are also able to support locality awareness with low

routing complexity when compared with other approaches.

iii

ACKNOWLEDGEMENT

I am deeply grateful to my main supervisor, Dr. Liew Soung Yue for his

endless guidance and support that has helped me to finish this dissertation and

completing my research. I would also like to express my gratitude to my co-

supervisor, Dr. Lau Phooi Yee who has been a delightful person to work with.

Being a postgraduate student in Kampar has been a pleasant experience as

I get to be friends with lecturers in UTAR. The experiences they have shared

with me are priceless. Special thanks to Dr. Alex Ooi Boon Yaik who has

encouraged me to pursue postgraduate studies, and Mr. Wong Chee Siang who

is so kind to lend me his thesis.

I would also like to thank both Dr. Amril Nurman Mohd Nazir and Ms.

Yazsrina Mohammad Yassin from Mimos Berhad who have been cooperating

with us in this research. Their guidance and advices have been a great help in

completing this research.

Finally, I would like to thank my parents, Mr. Teoh Seng Guan and

Madam Chew Poh Soon for always encouraging me to pursue my studies and

have never given me any pressure in my studies. Their advices are always the

best and practical when making life decisions. Great parents like them are the

best gift that has been given to me. I also want to thank my sister and brothers,

Li Na, Ji Mi, and To Mi for playing with me and buying me stuffs.

iv

APPROVAL SHEET

This dissertation entitled “PREFIX-BASED ADVERTISING AND

SEARCHING SCHEMES FOR DISTRIBUTED SERVICE DISCOVERY

IN LARGE-SCALE P2P NETWORKS” was prepared by TEOH EE NA

and submitted as partial fulfillment of the requirements for the degree of

Master of Computer Science at Universiti Tunku Abdul Rahman.

Approved by:

(Dr. Liew Soung Yue) Date:…………………..

Main Supervisor

Department of Computer and Communication Technology

Faculty of Information and Communication Technology

Universiti Tunku Abdul Rahman

(Dr. Lau Phooi Yee) Date:…………………..

Co-supervisor

Department of Computer and Communication Technology

Faculty of Information and Communication Technology

Universiti Tunku Abdul Rahman

v

SUBMISSION SHEET

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: __________________

SUBMISSION OF DISSERTATION

It is hereby certified that Teoh Ee Na (ID No: 12ACM06064) has completed dissertation

entitled “PREFIX-BASED ADVERTISING AND SEARCHING SCHEMES FOR

DISTRIBUTED SERVICE DISCOVERY IN LARGE-SCALE P2P NETWORKS” under

the supervision of Dr. Liew Soung Yue (Supervisor) from the Department of Computer and

Communication Technology, Faculty of Information and Communication Technology, and

Dr. Lau Phooi Yee (Co-Supervisor) from the Department of Computer and Communication

Technology, Faculty of Information and Communication Technology.

I understand that University will upload softcopy of my dissertation in pdf format into

UTAR Institutional Repository, which may be made accessible to UTAR community and

public.

Yours truly,

(TEOH EE NA)

*Delete whichever not applicable

vi

DECLARATION

I hereby declare that the dissertation is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare

that it has not been previously or concurrently submitted for any other degree

at UTAR or other institutions.

 (TEOH EE NA)

Date ______________________

vii

LIST OF TABLES

Table Page

4.1 Latency range between nodes 47

5.1 Comparison of discovery success rate between prefix-based

scheme (PASS) and cumulative prefix-based scheme (CPASS)

on Pastry network

69

5.2 Comparison of average traffic generated per query between

distributed service discovery scheme and cumulative prefix-

based scheme on Pastry network

70

5.3 Chord finger table example for Chord with node identifier of 5,

with M = 8

72

5.4 Service discovery success rate of CPASS on Pastry and Chord 77

5.5 Service discovery success rate of PASS on Pastry 77

5.6 Locality failure success rate of CPASS on Pastry and Chord 78

5.7 Locality failure rate of PASS on Pastry 78

6.1 Service discovery success rate in a network of 6000 nodes 88

6.2 Average service discovery traffic generated in a network of

6000 nodes

89

6.3 Average latency generated from service consumer to directory

node in a network of 6000 nodes

89

6.4 Average latency generated from service consumer to service

provider in a network of 6000 nodes

90

viii

LIST OF FIGURES

Figure

Page

3.1 Success rate for RBFS simulation

22

3.2 Average traffic generated per query

23

3.3 Success rate for modified random BFS with k = 10

24

3.4 Average traffic per query generated in modified random BFS

in network of 6000 nodes with k = 10

25

3.5 Success rate for distributed service discovery using structured

P2P system

29

3.6 Average traffic generated in distributed service discovery

using structured P2P

30

3.7 Average number of directory nodes per service type

31

3.8 Locality search failure of service discovery using structured

P2P

32

4.1 Service advertisement and service discovery

34

4.2 Example of routing table state for Pastry node with nodeId =

3302, B = 4, and n = 4 digits

37

4.3 Service advertisement example where B = 4, n = 8 bits (4

digits), and m = 4 bits (2 digits)

40

4.4 Service discovery example where B = 4, n = 8 bits (4 digits),

and m = 4 bits (2 digits)

42

4.5 Impact of small m

43

4.6 Impact of large m

44

4.7 Success rate in identifying a directory node

45

4.8 Probability that a directory node contains the required list of

service providers

46

4.9 Service discovery success rate

46

4.10 Simulation-I result 48

ix

4.11 Simulation-I: Average latency of prefix-based service

discovery

49

4.12 Simulation-I: Locality search failure of prefix-based service

discovery

50

4.13 Simulation-I result with 0.1% of service providers

52

4.14 Average latency for 0.1% of service provider simulation-I

52

4.15 Simulation-I: Service discovery success rate when m = 3 and

N = 6000

53

4.16 Simulation-I: Locality failure rate when m = 3 and N = 6000

53

4.17 Simulation-II results

54

4.18 Simulation-II: Average latency of prefix-based service

discovery

55

4.19 Simulation-II: Locality search failure of prefix-based service

discovery

55

4.20 Simulation-II with 0.1% of service providers

56

4.21 Simulation-II: Average latency for 0.1% of service provider

57

4.22 Simulation-II: Service discovery success rate when m = 1 and

N = 6000

57

4.23 Simulation-II: Locality failure rate when m = 1 and N = 6000

58

5.1 Cumulative prefix-based service advertisement

61

5.2 Cumulative prefix-based service discovery

64

5.3 Service discovery success rate in cumulative prefix-based

scheme on Pastry network

68

5.4 Service discovery success rate in network size of 6000 nodes

on Pastry network

68

5.5 Average traffic generated in service discovery of cumulative

prefix-based scheme on Pastry network

69

5.6 Locality search failure of prefix-based cumulative prefix-

based scheme on Pastry network

70

5.7 Average latency of cumulative prefix-based scheme on Pastry 71

x

network

5.8 Service discovery success rate of CPASS on Chord network

74

5.9 Service discovery success rate in network size of 6000 nodes

on Chord network

74

5.10 Traffic generated in service discovery of CPASS on Chord

network

75

5.11 Locality search failure of cumulative prefix-based scheme on

Chord network

76

5.12 Average latency of cumulative prefix-based scheme on Chord

network

76

6.1 Service discovery success rate for resiliency test in a Pastry

network

80

6.2 Success rate in a network that consist of 6000 nodes after

10% of the nodes departed

81

6.3 Traffic generated in a network that consist of 6000 nodes

after 10% of the nodes departed

81

6.4 Locality failure in a network that consist of 6000 nodes after

10% of the nodes departed

82

6.5 Average latency in a network that consist of 6000 nodes after

10% of the nodes departed

83

6.6 Example of routing table repairing process 85

6.7 Service discovery success rate after routing table repairing

procedure

86

6.8 Success rate in a network that consist of 6000 nodes after

routing table repairing process

86

6.9 Traffic generated in a network that consist of 6000 nodes

after routing table repairing process

87

6.10 Locality search failure in a network that consist of 6000

nodes after routing table repairing process

87

6.11 Average latency in a network that consist of 6000 nodes after

routing table repairing process

88

xi

LIST OF ABBREVIATIONS

P2P Peer-to-peer

DN Directory node

SC Service consumer

SP Service provider

TTL Time to live

BFS Breadth first search

PASS Prefix-based advertising and searching

scheme

CPASS Cumulative prefix-based advertising and

searching scheme

xii

TABLE OF CONTENTS

 Page

ABSTRACT ii

ACKNOWLEDGEMENT iii

APPROVAL SHEET iv

SUBMISSION SHEET v

DECLARATION vi

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF ABBREVIATIONS xi

CHAPTER

1.0 INTRODUCTION 1

 1.1 Background Information 1

 1.2 Problem Statement 2

 1.3 Motivation 3

 1.4 Objectives 5

 1.5 Research Contributions 5

 1.6 Organisation of dissertation 6

2.0 LITERATURE REVIEW 8

 2.1 Basic concepts 8

 2.2 Unstructured P2P 8

 2.3 Structured P2P 14

 2.4 Discussion 19

3.0 DISTRIBUTED SERVICE DISCOVERY SCHEMES IN

P2P NETWORKS

20

 3.1 Introduction 20

 3.1.1 Breadth first search (BFS) 20

 3.1.2 Modified random BFS 23

 3.1.3 Observation and discussion 25

 3.2 Distributed service discovery in structured P2P

network

27

xiii

4.0 PREFIX-BASED ADVERTISING AND SEARCHING

SCHEME FOR DISTRIBUTED SERVICE

DISCOVERY IN STRUCTURED P2P NETWORKS

33

 4.1 Introduction 33

 4.2 Service advertisement and service discovery 38

 4.2.1 Service advertisement 38

 4.2.2 Service discovery 40

 4.3 The selection of m 42

 4.3.1 Smaller m 43

 4.3.2 Larger m 43

 4.4 Performance measure 44

 4.5 The prefix-based advertising and searching scheme

simulations

46

 4.5.1 Simulation-I results and discussion 47

 4.5.2 Simulation-I with only 0.1% of service

providers

51

 4.5.3 Simulation-II results and discussion 53

 4.5.4 Simulation-II with only 0.1% of service

providers

55

5.0 CUMULATIVE PREFIX-BASEDADVERTISING AND

SEARCHINGFOR DISTRIBUTED SERVICE

DISCOVERY IN STRUCTURED P2P NETWORKS

59

 5.1 Introduction 59

 5.1.1 Service advertisement 59

 5.1.2 Service discovery 63

 5.2 Simulation results and discussion 66

 5.2.1 Simulation on Pastry network 67

 5.2.2 Simulation on Chord network 71

6.0 THE RESILIENCY OF CUMULATIVE PREFIX-

BASEDADVERTISING AND SEARCHING SCHEME

79

xiv

 6.1 The resiliency simulation 79

 6.2 Repairing the Pastry routing table 83

 6.3 Discussion 88

7.0 CONCLUSION 91

REFERENCES 94

1

CHAPTER 1

INTRODUCTION

1.1 Background Information

Distributed service discovery has become a future trend due to the advent

of sophisticated applications that require high computing power and

communication between users. Over the Internet, sources of data can come

from different part of the world due to the overwhelming number of networks

and normally the data collected need extensive processing in order to produce

useful information or specific services for users. In the past, such tasks were

normally carried out in servers associated with expensive hardware. Quite

many computers are nowadays equipped with server-grade computing

capability as the cost of computing devices are getting lower and affordable,

thus they can render their services to other users. As these computers could be

located anywhere over a wide geographical area, or even over the world, hence

there is a need for an efficient service discovery system that enables such tasks

to be processed by using distributed resources available over the Internet.

Conventional service discovery approaches for resource sharing require

centralised registries. The registries are usually managed by a dedicated server

designed to hold information about the resources available in the network

including the types and locations of the resources. However, centrally

controlled servers usually come with such issues as traffic congestion at the

servers and the risk of single-point failure. One of the solutions to resolve the

2

issues is to replicate the servers (Bowman, et al., 1994). For example, the name

servers that translate domain names into IP addresses where each domain name

must have at least two name servers and the second server will be used as a

backup server in case the first server is down (Christensson, n.d.). However,

having multiple servers in the domain name system (DNS) requires

synchronization between the servers and additional expensive hardware to

achieve good performance. Furthermore, with the tremendous growth of new

and much more complicated applications, it is difficult for such an approach to

handle a huge number of new queries which are for a wide variety of services.

Thus, the future trend in service discovery requires distributed servers that

offer users with alternatives to ensure the issues that come with centralised

servers will not occur. In order to have a distributed service discovery approach,

many researchers have started to integrate peer-to-peer (P2P) system with

service discovery (Awan, et al., 2004; Guo, et al., 2006; Zhou, et al., 2011).

The reason is three-fold. First, all peers in a P2P network is cooperative and

plays equal roles. Secondly, each peer could host different resources and share

the resources with other peers in the network. Thirdly, they can also serve as

query servers, which host part of the network information, for each other.

Using P2P systems in service discovery can fully utilize the computers in

the network that possess various computational capabilities, and largely reduce

the dedicated resources required. Another advantage of using P2P network is

that it offers better scalability and robustness compared with centralised

registries.

3

1.2 Problem Statement

There are several issues that need to be addressed in using P2P system as

an approach for service discovery in a large scale network. First, there should

be a systematic routing procedure for service advertisement and discovery by

peers in the network. This is to ensure that any peers are able to find and use

the services in the network.

Second, the peers should be enabled, where it is possible, to find and use

the resources in their close proximity in order to reduce the processing delay

and the traffic of sending jobs over long distance in the network. Hence,

locality awareness is important in service discovery.

Third, P2P system is commonly and intensively used for file sharing. The

searching performance for file sharing can be improved by duplicating and

storing the files in different peers thus making it easier for users to find the

files they need. However, resources or services such as storage, computational

power and peripherals cannot be duplicated from one peer to another. Hence,

the performance in searching may greatly degrade causing high traffic and low

success rate.

1.3 Motivation

There are only a few of distributed service systems available currently.

One famous example is grid computing. In grid computing, each computer’s

resources such as compute power, memory and storage can be shared among

each other in the network. However, a control node or dedicated server must be

put in place to administrate the pool of resource in the network (Strickland,

4

n.d.), which may suffers from the issue of single-point failure. A popular

example is the SETI@home project by Cobb, et al. (2002).

Another example is Domain Name System (DNS), a distributed database

implemented in a hierarchy of name servers. A DNS client sends a query to a

DNS server in order to resolve hostnames to IP addresses. Initially, local name

servers are queried first and if the local name servers are unable to resolve the

query, the query will be sent to dozens of root servers. The bottleneck and

single point of failure issues are prevented when a network of name server

exists (Young, 2013). However, a query may take a long time to resolve as the

query must follow each level of the hierarchy and repeat the request on each

level if the local name server does not have the information required.

One of the main issues that need to be resolved in distributed service

discovery on P2P network is, without a centralised server, the service of a peer

may not be discovered by another peer who needs it. Generally, when a peer

has services or resources to share with other peers, it has to advertise its

capabilities at a server. Otherwise, the peers who are in need of services will

have to resolve it with a brute force method by flooding the network.

In order to achieve a completely distributed service discovery, an

approach is to have all peers in the network to be a part of the service discovery

system. In this way, all peers in the network are able to not only share

resources but also cooperate among each other for service queries. Besides, the

hardware and software capabilities of each machine connected to the network

can be fully utilised.

5

Since there is no centralised server to control the resources in the network,

each node is responsible to control their own resources, resulting in better load

distribution. Besides, nodes leaving the network may have little effect in

resource sharing as there may be other nodes in the network that can provide

the same service. Furthermore, service discovery using P2P is more scalable

when compared with centralised service discovery.

1.4 Objectives

The following are the objectives of this research:

1. To investigate the existing approaches in distributed service

discovery that can be integrated with peer-to-peer systems in order

to demonstrate the efficiency of those approaches.

2. To design efficient approaches for distributed service discovery

that is able to provide:

a. Low complexity in routing

b. Locality awareness in routing

c. High success discovery rate

3. To analyse and compare performance, efficiency of the existing

approaches with the proposed solution.

1.5 Research Contributions

The major contributions of this research are as follows:

(1) The proposed approaches introduce a prefix-based method to define

“directory node”, and uses the directory nodes as a platform for service

providers to advertise their capabilities and to allow other nodes to find

these service providers. As the directory nodes are chosen based on the

6

prefix of the node identifier, this enables any node in the network to

become a directory node hence, the service discovery is more

distributed and scalable.

(2) Based on the directory node scenario, two distributed service discovery

schemes are proposed in this dissertation, namely Prefix-based

Advertising and Searching Scheme (PASS) and Cumulative Prefix-

based Advertising and Searching Scheme (CPASS). In particular,

CPASS is a novel approach and a patent has been filed for the scheme.

(3) Simulations are conducted in order to measure the performance of

PASS and CPASS compared with the existing approaches. Through

these experiments, PASS and CPASS are shown to have superior

performance based on the simulation results. That is, both PASS and

CPASS are able to:

a. Maintain locality and deterministic routing with log order

complexity using Pastry as the underlying P2P system

b. Achieve good success rate without generating high volume of

traffic in the network

1.6 Organisation of dissertation

The remainder of this dissertation is organised as follows. In Chapter 2,

thorough literature review is presented in order to justify the research design.

In Chapter 3, the discussion on unstructured and structured P2P for distributed

service discovery is presented. Simulation results are also shown to verify our

argument regarding the shortcoming of unstructured P2P service discovery

approaches. In Chapter 4, the proposed scheme, PASS is described and

simulation results of PASS are also shown. In Chapter 5, PASS is improved

7

and CPASS is introduced and the simulation results of CPASS are discussed as

well. The resiliency of CPASS is tested and the simulation results are shown in

Chapter 6. Finally, Chapter 7 is the concluding chapter and future work is also

described here.

8

CHAPTER 2

LITERATURE REVIEW

2.1 Basic concepts

In general, P2P systems can be categorized into unstructured and

structured P2P. Structured P2P networks maintain a logical structure among all

the peer nodes at the P2P layer (Lua, et al., 2005). As such, they require certain

proactive coordination among nodes prior to nodes being able to forward

messages. Compared to unstructured P2P, however, structured P2P provide

more efficient routing when a node needs to forward its updates or queries to

the corresponding nodes which host the resources. In this project, a structured

P2P network, namely Pastry (Rowston & Druschel, 2001), is employed as the

underlying network architecture to support the distributed service discovery

schemes that we propose. Although our work can also be extended to other

structured P2P approaches, Pastry shows its superiority in providing locality

awareness. In the following subsections, existing P2P systems and some

distributed service discovery approaches are reviewed and discussed in order to

justify our design.

2.2 Unstructured P2P

Searching in unstructured P2P system is simple and straightforward as

there is no rule that define neighbours’ nodes or where files should be stored

(Li & Wu, 2005). Hence, many researchers proposed using unstructured P2P to

solve the bottleneck and scalability issues in resource sharing because

9

unstructured P2P system requires less maintenance and there is no special

network structure as nodes join and leave as they wish. However, there are

several issues with unstructured P2P networks. Firstly, the searching strategy in

unstructured P2P involves blind search or informed search, i.e., nodes in the

P2P network have no information about other peers whereas nodes in informed

search keep some data location information. Secondly, when searching for

certain resources in a network, unstructured P2P uses message flooding by

broadcasting messages to all directly connected peers in the network. When

there exist too many requests, in unstructured P2P, the number of messages in

the network would be too many and this could cause traffic congestion.

Besides, unstructured P2P systems are usually for file sharing application.

Popular files will have better availability and stability because more peers are

sharing them (P2PNews, 2012). However, this could become a problem when

peers are sharing information about one popular resource provider as this could

cause the popular resource provider to become more popular, causing

unbalanced load distribution among providers who can offer the same resource.

One of the examples of distributed service discovery on unstructured P2P

network was proposed by Awan, et al., (2004). The author proposed a

distributed architecture for sharing processor cycles in an unstructured P2P

network. One of the assumptions made in the proposed approach is that a job,

can be broken down into a few independent subtasks and these subtasks can be

grouped into batches. The consumer will submit each batch job to a neighbour

node chosen randomly by performing a random walk. In order to protect the

resiliency of the proposed method, a replication factor, r is attached with each

batch job to enable a batch job to be processed by r different nodes. The author

10

argued that redundancy in such an approach is important to account for node

failures and validate the reported results. However, this approach could result

in decreased productivity and wasted resource. Besides, since the approach

only focuses on sharing processor cycles, selecting peer nodes for job

submission using random walk may be appropriate but this may become a

problem in successfully finding peer nodes if the required resource is anything

other than processor cycles.

Tie, et al. (2006) proposed a Peer-Tree approach that consists of two

layers which are the peer layer and the tree layer. Similar service types are

grouped into a tree and the root of the tree is named as a super peer. The peer

layer consists of only super peers and uses unstructured P2P as the routing

protocol for searching. The approach is able to minimize the number of nodes

in the peer layer by grouping peers who can provide similar services into a tree,

hence may result in less traffic in routing. However, single-point failure may

occur if the super peer for a requested service leaves the network. Besides,

there may be overhead in searching as there are two layers that need to be

searched sequentially, i.e. searching in peer layer and then searching in tree

layer. This approach may work well in a small-scaled network however, in a

large-scale network with many different types of services that cannot be

grouped into a tree will require high traffic and higher depth to achieve a good

success rate.

ASAP (Gu, et al., 2007) is a search algorithm for unstructured P2P

network that uses Bloom filters across the network enabling nodes to search for

services without sending anything other than confirmation messages.

Advertisement will be sent by new nodes as they join the network or when any

11

node in the network requests them. Nodes in the network can also choose to

only save information on topics that they are interested in. With the help of

Bloom filters enables traffic to be reduced during the searching phase.

However, a service consumer still has to expand its search radius according to

the maximum time-to-live if its nearest neighbours do not have the

advertisement requested. Besides, some nodes could keep so many

advertisements locally and may not even use it. On the other hand, publishing

advertisement is only done one time as new node join causing newer consumer

nodes the need to request for advertisement by the means of flooding.

Clustella, an approach proposed by Stefan and Roger (2007) attempts to

improve the efficiency of flooding by decomposing the network into different

clusters. Each cluster has its own beacon that enables peers in the network to

identify other clusters. A peer is elected to become a beacon if there is no

existing beacon in the peer’s cluster. The beacon is used to ensure the routing

table entries of a peer are far from each other but are near to the peer itself.

Hence, when routing for a certain key in the network, a message can be

forwarded quickly to peers that are far from the local peer. However, a

message could be forwarded back and forth to the same cluster which may not

be reliable. Besides, Clustella has a system that enables a packet to continue to

be routed to its destination even after its time-to-live (TTL) is reached by

enabling the packet to be piggybacked on another packet. Although this

approach can help to extend the flood coverage without increasing network

traffic but the size of the packets that have to piggyback another packet will

also increase. A big packet that has to be passed and broadcasted may need to

12

be fragmented into smaller packets which could result in increase in network

traffic and reduce throughput.

Search+ is a distributed service discovery scheme by Skjegstad & Johnson,

(2009) that uses unstructured P2P for routing. The overall architecture is

simply an enhanced version of ASAP. However, instead of broadcasting

advertisements to the network like ASAP, new nodes in Search+ are given the

option to only subscribe to advertisements they are interested in as they join the

network. This will establish subscriptions of advertisements that it is interested

in and the new nodes will be informed as new advertisements of their topic of

interest comes in. This method is very effective in reducing bandwidth and

traffic generated in service searching but flooding is still unavoidable when the

node changes its topic of interest. Maintenance process is provided in Search+

where queries will be sent to the network, requesting advertisements from

neighbouring nodes but this method is still similar to blind search.

As searching in unstructured P2P systems are usually blind, Anusuya, et al

(2010) proposed using an enhanced guided search protocol to model user’s

common interest pattern by using a probability-theoretic framework that is able

to guide the searching in service discovery. However, this approach requires a

lot of global information about past events and intensive computing power to

calculate the probabilities in order to have an accurate guidance for the peers

during service discovery. On the other hand, the author also discussed another

approach to improve the searching in unstructured P2P systems through the

peers’ routing tables. In the event of successful service discovery where a

requested service provider has been identified, the sending peer and the peers

that the message passed through will update their routing tables to include the

13

identified service provider including the information about the service it can

provide. Although this approach can help to guide future discovery that

eventually may be able to reduce overall traffic generated in a network, this

advantage may become an issue for service provisioning because popular

service providers tend to be discovered easily and become more popular, and

vice versa for less popular services. This will result in an inefficient and

unbalanced service load distribution among those peer nodes which provide

those similar service.

Zhou, et al. (2011) proposed each peer in the network using kd-tree to

establish a data space for indexing the service descriptions. Then, all nodes will

use one-hop replication to share the service indexes with their neighbour nodes.

Eventually, when the service indexes in a node reach a threshold, it can

promote itself to become super peer. The normal routing protocol is to

broadcast the query message to all neighbours of the requesting peer, but the

existence of super peer works as a shortcut. If any super peer exists in the

network, the query message will be forwarded to that super peer. The

experimental results from this approach shows that the number of traffic could

be reduced to half when compared to other unstructured approaches. However,

the message flooding of using unstructured P2P still would not be totally

prevented as the simulation results provided by the author shows that each

discovery query requires on average 3625.554 messages, which is still very

high compared to structured P2P approach.

Another author (Saleem, et al., 2011) proposed the idea of using

autonomous systems (AS) to clusterize the P2P network, and Application

Oriented Networking (AON) for inter-AS routing. Although the proposed

14

framework can help to reduce the number of broadcast messages and to

improve the scalability of the system even by using unstructured P2P system, it

requires a rather complex maintenance scheme for the AON routers as the

routers will need to learn the service-classification specific routing. Besides, if

a router along the routing path is not AON-enabled, message flooding would

not be avoidable for inter-AS service discovery.

2.3 Structured P2P

2.3.1 Overview

Structured P2P systems, or sometimes referred to as Distributed Hash

Tables (DHTs), are scalable network infrastructure that supports large-scale

distributed systems. Structured P2P systems provide deterministic query search

because the neighbourhood links are better defined.

There are many existing structured P2P algorithms available that can be

integrated in distributed service discovery. For example, Plaxton, Chord,

Tapestry, Pastry, Kademlia, and CAN (Lua, et al., 2005).

Generally, the performance of P2P depends on the size of each node’s

routing table where the information about the network is stored. Clearly, a node

cannot store all details of all other nodes for the algorithm to be scalable. From

the literature review conducted on distributed service discovery using

structured P2P, many approaches have chosen to use Chord and Pastry.

Chord, a structured P2P algorithm by Stoica, et al., (2001) arranges its

identifier space in a circular fashion. Each node uses its own finger table that

contains nodes spaced exponentially around the identifier circle. The routing in

Chord works by forwarding the query to the node closest to the key. If no such

15

node exists, the query will be forwarded to the node preceding it in the finger

table. Chord has a stabilization process that validates the joining and leaving of

Chord network to ensure the finger table of each node is well maintained.

On the other hand, Pastry, proposed by Druschel and Rowstron (2001)

generates its node identifier randomly as new node joins a network resulting in

a uniformly distributed identifier space in the network. The entries in routing

tables are chosen based on their locality and are sorted based on their

identifiers. The routing in Pastry works by forwarding the query to the node

that is numerically closest to the key. Each Pastry node also maintains a

neighbourhood set that enables each node to repair their own routing tables

when departed node is found.

In conclusion, both Pastry and Chord are fault tolerant and able to achieve

logarithmic routing complexity. However, Pastry is better in providing locality

awareness in routing when compared with Chord.

2.3.2 Existing service discovery approaches

The following describes various approaches using structured P2P in

service discovery.

An approach by Castro, et al. (2002) applied Pastry to implement a design

that uses universal P2P overlay for service discovery and for service binding in

structured P2P overlay networks. The core proposal here is to group service

providers according to the services offered in a sub overlay, and for each of

these services, a small list of contact node can be obtained from the universal

overlay that enables a node the join the specific service overlay. The strength

of this solution is that it allows service consumers to find the specific service

16

overlay more easily, including joining that overlay in order to get the services.

However, the cost of maintenance of contact nodes list would be very high

because it would requires frequent updates among peers in order to avoid

service unreachable due to contact node failure. As each node may offer more

than one type of service resulting in several sub-overlay identities, this would

complicate the maintenance process.

CompuP2P, proposed by Gupta and Somani (2004) is a scheme that uses

structured P2P, specifically Chord (Stoica, et al., 2001) for computing resource

discovery and trading. The seller (or service provider) hashes its available

compute power (i.e., CPU cycles) as a key, and uses the key to determine and

locate the market owner. On the other hand, the buyer (or service consumer)

can use the same hash function to find the market owner, where a seller can

trade the compute resource with a buyer. However, the service provided in this

scheme is only limited to the compute resource and a buyer therefore ought to

know the required compute power being the key in order to identify the

corresponding market owner. Besides, if a buyer only knows the minimum

requirement, or needs a range of compute powers rather than just a specific one,

it may need to perform lookup many times in order to find market owners for

different specifications, which results in a higher complexity of the approach.

Guo, et al. (2006) introduced DINPeer to identify most powerful nodes,

known as the Data-In-Network Nodes (DIN Nodes) and form an inner ring that

consist of only DIN Nodes. Multiple DIN Nodes are used to replace a single

registry to avoid the single-point failure issue. This approach enables every

node in the network to find their nearest DIN Node and join the Steiner tree

that each DIN Node maintains. In searching, a requesting node will search

17

from the tree that it is in first. However, if the local area does not have the

service that it needs, the query is forwarded to the inner ring that requires each

DIN Node in the inner ring to send multicast messages to their children node

that may cause high routing traffic in the network. Besides, the issue of single-

point failure will still exist if some of the DIN Nodes leave the network. When

a DIN Node dies, no new DIN Node is elected. Instead, the author proposed

that the children nodes of the failed DIN Node to find other alive DIN Nodes

and join their trees. The existing DIN Nodes would be too occupied because

service request query that cannot be found in the local area will have to pass

through them.

Aneka-Federation proposed by Ranjan (2007) is the first attempt that

integrates P2P with cloud based on P2P infrastructure. It provides a

decentralised and distributed system which combines enterprise Clouds,

overlay networking, and structured P2P techniques to create a scalable wide-

area networking of compute nodes for high-throughput computing. The Aneka-

Federation integrates numerous small scale Aneka Enterprise Cloud services

and nodes that are distributed over multiple control and enterprise domains as

parts of a single coordinated resource leasing abstraction. The service

discovery and update here are performed by using spatial indices to handle

multidimensional queries where the indices are formed by hashing multiple

attributes. However, multidimensional query requires users to provide values

for all pre-defined attributes, which may not be flexible. Besides, service query

may not return any result if the query is too specific at one value where the

network may return only a potential service provider to the consumer. If the

service query can range from a minimum to a higher requirement, this will

18

increase the complexity of the implementation. Another issue is that the

locality may not be well preserved while performing P2P lookup routing

because of the way how the indices are mapped.

Chord4S proposed by Qiang, et al. (2008) is a structured P2P based

decentralised service discovery that is the closest to this research. It uses Chord

to utilize the data distribution and lookup capabilities to discover and distribute

services in a decentralised manner. Chord4S improves data availability by

distributing service descriptions of functionally equivalent services to different

successor nodes that are organized into a virtual segment in the Chord circle.

Although using service descriptions to be embedded into the node’s identifiers

may promote efficiency in searching for a particular service provider, locality

may be a challenge where the service consumers may need to be routed to a

service provider located far away when there is a nearer one geographically.

Caron, et al. (2011) proposed using Distributed Lexicographic Placement

Table (DLPT) prefix tree for service discovery. The DLPT tree grows

dynamically as services are declared where each black node in the tree is

labelled by the service name and stores a list of the service providers providing

that service. In order to reveal the prefix tree pattern, white nodes are used and

are labelled by the greatest common prefix of their children labels. This

approach is convenient and easy in searching because each service request

query can be routed up to the root of the prefix tree and then down to the

service requested, hence supporting range queries. However, any root in the

tree that leaves the tree may cause broken parent-children paths hence resulting

in searching failure. Each node that built the tree must be in stable state and

should not leave the network to avoid this issue.

19

2.4 Discussion

In this chapter, a brief discussion about the differences between

unstructured and structured P2P as well as the distributed service discovery

approaches on these two P2P systems are conducted. The service discovery

approaches of using unstructured P2P has lower complexity in maintaining the

network but high complexity in routing thus not fit for a large scale network.

On the other hand, the service discovery approaches on structured P2P

discussed have systematic way of mapping the services to peers, enabling

service consumers to find the service providers more easily. However, the

approaches discussed emphasized more on the discovery success rate.

Although the routing complexity is low when using structured P2P, some of

the approaches that uses tree for service mapping are still in the risk of single-

point failure. Besides that, the approaches that do not use tree may have

locality issues in searching.

In the next chapter, the discussion on using unstructured and structured

P2P for distributed service discovery will be conducted. Besides, simulation

results will also be shown in order to measure the performance of the discussed

approaches.

20

CHAPTER 3

DISTRIBUTED SERVICE DISCOVERY SCHEMES IN P2P

NETWORKS

3.1 Introduction

This chapter verifies our arguments regarding the shortcoming of

unstructured P2P service discovery approaches by providing some theoretical

discussions as well as simulation results as performance evaluation. The focus

of this chapter proceeds to discuss about the usage of structured P2P for service

discovery. A simulation using structured P2P for service discovery is also

carried out to demonstrate its superiority in terms of achieving satisfactory

success rate with less traffic generated.

3.1.1 Breadth first search (BFS)

There are many different searching techniques in unstructured P2P.

However, most of them employed brute-force search for discovery such as

breath first search (Li & Wu, 2005). The breadth first search (BFS) approach is

simple, where a request query is forwarded to every neighbour of the sending

peer. Then each of these neighbours that receive the request query will check if

they have the file or service requested and return the result back to the sending

peer. If none of these neighbours has the file or service requested, each of these

neighbours will forward the request query to its neighbours as well, until the

file or service requested is found.

21

This search method requires a mechanism in each query to stop routing at

a conditional time by using time-to-live (TTL). The TTL can also be

represented as the maximum depth, D that limits the maximum number of

overlay hops of each query message. If the maximum depth is reached during

searching and the file or service requested is yet to be found, then the request

query will be considered as a failure.

The searching in BFS can be used as the routing protocol in service

discovery as the maintenance cost is low and the structure of routing is simple

to implement. Besides, as brute force search is used where each peer may

receive the service request query, the service discovery success rate may be

very high as well.

In order to measure the performance of service discovery in an

unstructured P2P network using BFS, simulations are carried out in networks

that consist of number of nodes from 1,000 to 10,000 nodes, with increment

1000 nodes. The neighbours of each node are randomly generated in the

neighbourhood set and each neighbourhood set could contain 30 entries to 40

entries. During the searching phase, the sending peer will broadcast the query

to all nodes inside its neighbourhood set.

The following are the settings used in the simulation:

1. Each node in the network has a unique node identifier (nodeId).

2. Each service type in the network has a unique service identifier

(serviceId)

3. The total number of service type in the network is 500 and each

node can provide two to three different service types.

22

4. The total number of request queries generated in the network is

100,000 and each querying node is randomly selected to send the

request query message.

Figure 3.1 shows the simulation result of the BFS scheme. As shown in

the figure, the success rate of the BFS can reach almost 100% when the

network size is 4,000 nodes and above, especially when the depth of searching

is 3. As the depth is increased, the search range will keep expanding until it

covers all the nodes in the network. Hence, BFS approach can guarantee

successful search if the depth or TTL is large enough.

Figure 3.1 Success rate for BFS simulation

The BFS scheme shows that it can produce great results in searching

however, the downside of this scheme is that the volume of traffic produced is

very high. As shown in Figure 3.2, the average traffic (or messages) generated

per query can reach as high as above 40000 messages for a network that

consists of only 3000 nodes at D = 3. This is also a general drawback of most

message flooding searching schemes.

0

20

40

60

80

100

0 2000 4000 6000 8000 10000

S
u

cc
es

s
ra

te
 (

%
)

Network size

Depth = 1

Depth = 2

Depth = 3

23

Figure 3.2 Average traffic generated per query

In conclusion, the flooding approach can result in too much traffic

generated in the network although high success rate can be achieved. This

condition will cause congestion in message routing as the network will be filled

with high volume of traffic.

3.1.2 Modified random BFS

In order to address the flooding issue in the BFS scheme, one of the

alternatives proposed is the modified random BFS (Li & Wu, 2005). In this

approach, the querying node will send query requests to a subset of its

neighbour. These neighbours are randomly chosen by the querying node. Each

of the neighbour nodes will process the query and forwards the query to a

randomly chosen subset of their neighbours until the stopping condition is met.

A simulation is carried out in order to compare the performance of the

modified random BFS approach with the BFS approach. Instead of forwarding

the request to all neighbours, the simulation is set to randomly select k number

of neighbours to forward the request message. The simulation results show that

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 3

A
v

er
a

g
e

tr
a

ff
ic

 /
 q

u
er

y

Depth

N = 3000 nodes

N = 6000 nodes

N = 9000 nodes

24

the amount of traffic generated by each query is significantly reduced but the

overall success rate in searching is not that promising.

Figure 3.3 and Figure 3.4 show the simulation results of the modified

random BFS where each peer forwards the request query to 10 randomly

selected neighbours. As shown, modified random BFS can reach high success

rate when D = 3. However, the searching complexity of this approach is O(𝑘𝐷)

where 𝐷 represents depth of searching or TTL and 𝑘 represents the number of

neighbours each node is connected to send a query to. Hence, the average

messages generated per query is more than 1000 messages for this depth

when 𝑘 = 10. Although the message generated in modified random BFS is

significantly reduced when compared to BFS approach, the total messages

flooding in the network is still too high.

Figure 3.3 Success rate for modified random BFS with k = 10

0

20

40

60

80

100

0 2000 4000 6000 8000 10000

S
u

cc
es

s
ra

te
 (

%
)

Network size

Depth = 1

Depth = 2

Depth = 3

25

Figure 3.4 Average traffic per query generated in modified random BFS

in network of 6000 nodes with k = 10

3.1.3 Observation and discussion

Observing the simulation results, the use of brute-force in searching will

flood the network causing too much traffic generated although more traffic can

produce higher discovery rate. Despite that, even if the size of each message

generated in the network is so small that it may seem to have little effect on the

traffic flowing in the network, the traffic will still be highly congested if all

nodes in the network broadcast service discovery request query.

One of the reasons why searching in unstructured P2P generates high

traffic is because only the querying node is active in searching for the files or

services in need. The file or service providers would remain passive in the

network and waiting for query requests causing high number of traffic

generated.

In order to reduce the traffic generated of searching in unstructured P2P,

many researchers proposed different replication techniques for file sharing

(Sabu & Chandra, 2010). However, it should be noted that only files can be

replicated and stored in different nodes. Resources such as compute power,

0

200

400

600

800

1000

0 1 2 3A
v

er
a

g
e

tr
a

ff
ic

 /
 q

u
er

y

Depth

26

storage, and bandwidth cannot be duplicated because such resources come

from physical peripherals.

Although resources cannot be duplicated, the information about resources

can be duplicated and shared among nodes to help with the searching. Hence,

we proposed a solution in which a new term, named the directory node is

introduced in our research work. A directory node can act as a platform for the

service providers to advertise their capabilities. Besides, a directory node is

also a platform for service consumer to find the services they need.

It should be noted that any nodes in the network can become a directory

node if those nodes are given information about a particular resource. This is

because all peers in a P2P network are cooperative and equal. Hence, any node

can assume three roles in the proposed scheme:

1. Service providers:

 Nodes that can provide the service.

2. Service consumer:

 Nodes that need the service.

3. Directory node:

 Nodes that serve as a platform for service providers to

advertise their capabilities and for services consumer to

find the information about the service providers who can

provide the requested services.

However, even with directory nodes, the flooding approach in

unstructured P2P is still unavoidable. For instance, when a service provider has

services to offer, it still has to flood the network and advertise to every

27

neighbour node so that the nodes that received the service advertisement

request can become the directory node for the service. The service consumer

will have to go through the same process as well in service discovery to find

any directory nodes. The amount of messages generated from each service

discovery query will still be high and may cause traffic congestion in a P2P

network.

3.2 Distributed service discovery in structured P2P network

As discussed earlier in this chapter regarding using unstructured P2P for

service discovery, the flooding approach used in unstructured P2P results in

high volume of traffic in the network. Hence, structured P2P is proposed to

reduce the traffic generated from the result of flooding in unstructured P2P.

The reason that structured P2P is chosen in the proposed scheme is

because the routing protocol in structured P2P is systematic and well defined.

In structured P2P, each data key is mapped to a peer hence enabling discovery

of data by using only the key, avoiding the need to flood the network. There

are many types of structured P2P systems such as Chord, Pastry, Tapestry,

CAN (Content Addressable Network), and Kademlia (Lua, et al., 2005), each

with its own routing protocol.

One of the aims of this project is to enable both service provider and

service consumer to take part in the distributed service discovery. By allowing

service providers to advertise their capabilities to directory nodes may improve

the service discovery success rate without generating high volume of traffic

during service discovery.

28

The idea of service advertisement and service discovery here was

discussed earlier by Hautakorpi, et al. (2012). In this approach, service

providers perform service advertisement by randomly selecting directory nodes

to advertise their capabilities. Here, the number of directory nodes is

determined based on the probability that requires some global information. The

approach in discussion chose Chord proposed by Stoica, et al. (2001) to be

used as the routing protocol.

On the other hand, the author proposed using brute force for service

discovery. Here, the service consumer divides the Chord overlay into M

locations’ sector head and forwards the service discovery request to each of

sector heads. Each of these sector heads then randomly forward the request to

another node until TTL runs out.

A simulation is carried out in this research work to test the efficiency of

using directory nodes using the approach by Hautakorpi, et al. (2012). As there

is no global information to determine how many directory nodes for each

service should be planted in the simulator, the simulator will be set to randomly

select 10 neighbours of the service provider to become the directory node for

the service type.

The following is the settings used in the simulation:

1. Each node has a unique node identifier (nodeId) generated

randomly

2. Each service type has a unique service identifier (serviceId)

generated randomly.

29

3. There are 10 regions in the network and each node will be

randomly assigned with one region.

4. The total number of service type in the network is 500 and each

node can provide two to three different service types.

5. The total number of service request query generated in the network

is 100,000 and each querying node is randomly selected to send the

request query message.

Figure 3.5 shows the success rate of simulating the distributed service

discovery using Chord. Notice that the success rate when D = 1 has increased

from less than 5% to above 50% when compared with the unstructured

approach at section 3.1.2. Furthermore, the performance in terms of success

rate has improved in all depths when compared with service discovery using

unstructured P2P in section 3.1.1 and section 3.1.2.

Figure 3.5 Success rate for distributed service discovery using structured

P2P system

40

50

60

70

80

90

100

0 2000 4000 6000 8000 10000

S
u

cc
es

s
ra

te
 (

%
)

Network size

Depth = 1

Depth = 2

Depth = 3

30

Figure 3.6 Average traffic generated in distributed service discovery

using structured P2P

The reason is both service provider and service consumer are active in the

distributed service discovery approach using structured P2P. Note that the

service providers only choose 10 random nodes from their own neighbourhood

to become directory nodes for each service they can provide. However, as the

number of nodes in the network is increased, the number of directory nodes

will also increase as shown in Figure 3.7. The reason is, each service type will

be advertised to 10 different directory nodes according to the service providers’

routing list. The service providers have more choice of directory nodes to

choose from, preventing overlapping in advertisement requests to the same

directory node.

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3

A
v

er
a

g
e

m
es

sa
g

e/
q

u
er

y

Depth

N = 3000 nodes

N = 6000 nodes

N = 9000 nodes

31

Figure 3.7 Average number of directory nodes per service type

On the other hand, there are exactly 10 regions in the simulated network

and each node in the network is randomly labelled with a region of their own.

In service discovery, it is better to have a service provider that is near the

service consumer to make sure the connection delay and the traffic generated

are at minimum for both service provider and service consumer to

communicate with each other.

A case is considered as the failure of locality search if it obeys either of

the following conditions:

1. Service consumer is unable to find a service provider in its region

when both service provider and service consumer are in the same

region

2. Service consumer is unable to find directory node that hosts the

type of service it needs when both service provider and service

consumer are in the same region

0

100

200

300

400

500

600

0 2000 4000 6000 8000 10000
A

v
er

a
g

e
D

N
 /

S
er

v
ic

eT
y

p
e

Network size

32

The locality search failure percentage in service discovery is also focused

in this simulation and the result is shown in Figure 3.8.

Figure 3.8 Locality search failure of service discovery using structured

P2P

Although the success rate of using directory node for service discovery

shows improvement when compared with approaches without directory nodes,

as shown in Figure 3.8, the locality failure is mostly above 80% for all depths.

Due to the structure of Chord’s finger table that does not emphasize on locality

awareness, when brute force searching is applied on such finger (i.e., routing)

table caused most of the service consumers fail to locate service provider that

is in their proximity and this happens frequently when the network size is

increased. Hence, a better and systematic service searching approach is needed

in order to find suitable and nearer service providers for the service consumers.

40

50

60

70

80

90

100

0 2000 4000 6000 8000 10000

L
o

ca
li

ty
 f

a
il

u
re

 (
%

)

Network size

Depth = 1

Depth = 2

Depth = 3

33

CHAPTER 4

PREFIX-BASEDADVERTISING AND SEARCHING SCHEME FOR

DISTRIBUTED SERVICE DISCOVERY IN STRUCTURED P2P

NETWORKS

4.1 Introduction

In this chapter, prefix-based searching for service discovery and service

advertisement (PASS) is proposed to improve the overall discovery

performance. That is, in the proposed solution, the prefix of an identifier is

used as a key for identifying directory nodes and for routing on the underlying

P2P network. Directory nodes should not be randomly selected like the

approach discussed in section 3.2 because it would require the brute force

search for them to be identified, which in turn would create the flood of query

traffic. When a directory node can be identified using only the key, the

efficiency in searching can be improved more strategically.

Figure 4.1 shows a summary on the service advertisement and service

discovery process that is proposed. First, the service provider will advertise one

of its services to a directory node. This is done by performing hashing on the

service type in order to obtain a service identifier. A key is extracted from the

service identifier to search for a directory node. Next, the directory node will

add the service provider into a list of service provider. Then when a service

consumer is in need of the service, it will hash the service type to obtain a

service identifier and extract the key from the service identifier to search for

34

the directory node. The directory node will send a copy of the list of service

provider and forwards it back to the service consumer. Finally, the service

consumer can use the list to identify service provider and request service from

the service provider.

Figure 4.1 Service advertisement and service discovery

One of the focuses of this project is to emphasize on locality awareness in

searching for service discovery because it is better for a service consumer to be

able to find a service provider in close proximity. This is to ensure that the

distance in between service provider and service consumer is as close as

possible to avoid delay in delivering the services requested.

Hence, a structured P2P system that is suitable to be integrated with the

proposed system must have locality awareness in its routing protocol. The

Pastry routing P2P network (Rowston & Druschel, 2001) is one of the good

candidates because in Pastry the routing table at each node is constructed

according to the proximity to its neighbours.

In Pastry, each node in the network is identified by a randomly generated

unique node identifier (nodeId) with length of n bits using a hash function. The

Directory node

Service

provider
Service

consumer

(4) Request service

35

nodeId can also be generated by hashing the IP address of the node and

expressed in n digits, each digit has a radix of B. When given a key, a Pastry

node can efficiently route the message to any Pastry node that is numerically

closest to the key.

The randomness of nodeId generated and assigned to each node can result

in a uniformly distributed Pastry network. Hence, nodes with adjacent nodeIds

are diverse geographically and nodes in close proximity have diverse nodeId

prefixes. For example, a node with nodeId of 3302 is supposed to be physically

far away from node with nodeId of 3301. Besides this, a node with nodeId of

0123 may be in the same neighbourhood as a node with nodeId of 3012.

Each Pastry node maintains three states as follows:

i. Leaf set

 Consist of peer nodes with adjacent nodeIds.

ii. Routing table

 Consist of peer nodes that are in close proximity.

iii. Neighbourhood set

 Consist of other nodes in close proximity but not listed in

the routing table.

Each Pastry node maintains L nodes in its own leaf set. Note that 𝐿/2

entries are numerically closest smaller than the local nodeId whereas 𝐿/2

entries are numerically closest larger than the local nodeId. The size of routing

table consists of 𝑙𝑜𝑔𝐵𝑁 × (𝐵 − 1) entries where N represents the number of

nodes in the network.

36

In Pastry, when presented a message with a numeric key, a node will use

the key to search from its routing table in order to forward the message to the

next hop. Since all nodes shown in the routing table are physically close to the

node, based on the construction principle of routing table in Pastry, this enables

the searching to start from its close proximity.

The Pastry routing process requires leaf set and routing table. Given a

message, the node first checks to see if the key is within the range of nodeIds

covered by its leaf set. If such node exists, then it is the nodeId that is

numerically closest to the key and the message will be forwarded to that node.

The routing table is used if the key is not covered by the leaf set. The message

is forwarded to the node that shares a common prefix with the key by at least

one more digit. In cases where no such node exists, the message is forwarded

to the node that shares a prefix with the key at least as long as the local node

and is numerically closer to the key than the current node.

The node entries in Pastry routing table is arranged according to the

prefixes of nodeIds. The nodeId in row 𝑝 column 𝑞 has the same first digits

with that of the local node, and the 𝑝 + 1𝑠𝑡 bit is 𝑞, where 0 ≤ 𝑝 ≤ 𝑙𝑜𝑔2𝐵 − 1,

and 0 ≤ 𝑞 ≤ 𝐵 − 1. For example, given a Pastry network that is assigned with

16-bit node identifier space and is identified by a sequence of digits with base,

B where B = 4. The routing table can be expressed as shown in Figure 4.2

where the first row of a Pastry node routing table contains nodeIds that have a

distinct first digit. The distinct value is taken from the set{0, 1, 2, 3} . The

second row of a Pastry node routing table contains nodeIds that share the first

digit prefix with the Pastry nodeId but different in the second digit. A simpler

explanation is, nodes in row 0 share 0 prefix with the nodeId, nodes in row 1

37

share only 1 digit prefix with the nodeId, nodes in row 2 share 2 digits prefix

with the nodeId, and so forth.

Figure 4.2 Example of routing table state for Pastry node with nodeId =

3302, B = 4, and n = 4 digits

When a new node N joins a Pastry network, it has to go through node A

that is already in the network. Node A is known as the contact node of node N.

The joining process continues as node N performs lookup using its own

identifier as the key. As Pastry routing will bring the lookup message to the

node that is numerically closest to the key, hence the information of each node

along the path from node A to the targeted destination will be used to help

node N builds its own routing table.

For example, given the join request of node N has passed through node A,

B, C and finally reaching the node Z whose nodeId is numerically closest to

node N. The leaf set of node N can be constructed based on the leaf set of node

Z. As node A is usually in the proximity of node N, hence the neighbourhood

set of node A is suitable for node N.

If node N does not share any common prefix with node A, then entries in

row zero of node A routing table can be used to construct row zero of node N

routing table as row zero of the routing tables are not dependent on one’s

38

nodeId. Next, row one of node N routing table can be obtained from row one of

node B routing table, given that both N and B share one digit common prefix in

their nodeId. Similarly, row two of node N routing table can be obtained from

row two of node C routing table if both node N and C share two digit common

prefix in their nodeId.

4.2 Service advertisement and service discovery

This sub-section discusses the in-depth of service advertisement and

service discovery using prefix based routing.

4.2.1 Service advertisement

In the prefix based routing scheme, the key is generated by hashing the

service type a service provider can provide. The hashed service type will return

the serviceId that will be used as the key for routing. In service advertisement,

searching for a directory node only requires the first m bits of the serviceId,

where 𝑙𝑜𝑔2𝐵 ≤ 𝑚 ≤ 𝑛. Note that any nodes that share the same m prefix bits

with the key are eligible to become a directory node.

The following are the steps for service advertisement:

(1) Service provider hashes the service type to get the serviceId.

(2) The first m bits of serviceId are extracted and used as the key.

(3) The service provider sends a service advertisement message using

Pastry routing to search for any directory nodes that share the same

prefix of m bits as the key.

(4) The directory node that receives this service advertisement message

will add the information of the service provider and capability of the

39

service provider into a list of service provider hosted by the directory

node.

(5) The directory node then forwards the service advertisement message to

all nodes from its routing table whose nodeId also share the same

prefix of m bits as the key and those nodes that receive this message

will also add the information of service provider into the list of service

provider.

Figure 4.3 shows an example of service advertisement. Step 1 shows node

A, the service provider hashes the service type that it can provide to obtain a

serviceId, say in this example, serviceId of 1230. Then the first m bits of the

serviceId are extracted to become the key. At step 2, Pastry routing using the

key is shown as node A forwards the service advertisement request to node B

whose nodeId is numerically closest to the key according to node A’s routing

table. At step 3, node B forwards the service advertisement request to node D

because node D has a nodeId that is numerically closest to the key and that it

also shares the same prefix with the key. Finally, node D becomes the directory

node for the service type of 1230 and the information about the service

provider, node A is added into the list of service type 1230 as shown in the

figure. On the other hand, node D is also the directory node for service type

1201 as well because they share the same prefix of 2 digits as the key. The

service advertisement continues as shown in the figure where the directory

node D further forwards the service advertisement request to all nodes in its

routing table that share the same prefix key as highlighted in blue.

40

Figure 4.3 Service advertisement example where B = 4, n = 8 bits (4

digits), and m = 4 bits (2 digits)

4.2.2 Service discovery

The overall concept of service discovery is almost similar with service

advertisement. The service discovery starts with a service consumer who is in

need of a particular service. Then the service consumer hashes the service type

that it needs to get the serviceId and then extract the first m bits of the serviceId

to be the key.

The following are the steps for service discovery:

(1) Service consumer hashes the service type to get the serviceId.

(2) The first m bits of serviceId are extracted and used as the key.

Routing table of Node 1212:

Routing table of Node 1101:

Routing table of Node 3302: Service Type: GPU

Hash(GPU): 1230

Key: 12

Node A (3302)

Node B (1101)

Service Provider

Directory Node

Node D (1212)

Node O (1203)

Node P (1221) Node Q (1233)

(1)

(2)

(3)

Row 0 0123 1101 2000 -

Row 1 3032 3112 3231 -

Row 2 - 3312 3322 3330

Row 3 3300 3301 - 3303

Row 0 0233 - 2000 3001

Row 1 1003 - 1212 1321

Row 2 - 1111 1121 1130

Row 3 1100 - 1102 1103

Row 0 0212 - 2300 3120

Row 1 1021 1133 - 1300

Row 2 1203 - 1221 1233

Row 3 1210 1211 - 1213

Service 1230

Node A 3302

Service 1230

Node A 3302

Service 1230

Node A 3302

Service 1230

Node A 3302

Node K 2103

41

(3) The service consumer sends a service discovery message using Pastry

routing to search for any directory nodes that share the same prefix of

m bits as the key.

(4) The directory node that receives this service discovery message will

send a copy of the service provider list to the service consumer.

(5) If the directory node does not have the list of service provider

requested, the directory node forwards the service discovery request to

all nodes in its routing table whose nodeId share the same prefix of m

bits as the key. These nodes that received the service discovery request

will forward a copy of the service provider list to the service consumer.

An example of service discovery is illustrated in Figure 4.4. At step 1, the

service consumer, node P hashes the service type that it needs to get a serviceId,

say in this example, serviceId of 1230. Then, the key is extracted and is used

for routing at step 2 where the service consumer forwards the service discovery

query to node Q whose nodeId is 1102 because node Q is numerically closest

to the key. When node Q receives the service discovery request, it continues to

forward the service discovery request to node D whose nodeId is numerically

closest to the key from node Q’s routing table of at step 3. Finally, the service

discovery message arrives at node D whose nodeId shares the same 2 digit

prefix with the key, which also indicate that node D is the directory node for

the service type 1230.

42

Figure 4.4 Service discovery example where B = 4, n = 8 bits (4 digits),

and m = 4 bits (2 digits)

As shown in Figure 4.4, node D is currently the directory node for both

serviceId of 1201 and serviceId 1230. At step 4, since the requested service

type is 1230, hence node D will make a copy for the service list 1230 that

contains both node A and node K back to the service consumer, node P. Note

that, if the directory node D does not have the list of service provider requested,

the directory node can forward the service discovery request to all nodes in its

routing table that share the same 2 digit prefix with the key. These nodes that

received the service discovery request will forward a copy of the service

provider list to the service consumer if they have the list.

4.3 The selection of m

The selection of m bits as the prefix key will affect the number of

directory nodes in the network. Although more directory nodes in the network

Routing table of Node 2131:
Service Type: GPU

Hash(GPU): 1230

Key: 12

Node P (2131)

Node Q (1002)

Service Consumer

Directory Node

Node D (1212)

Routing table of Node 1002:

(1)

(2)

(3)
(4)

Row 0 0312 1002 - 3100

Row 1 2032 - 2200 2323

Row 2 2100 2111 - 2131

Row 3 2130 - 2132 2133

Row 0 0012 - 2000 3101

Row 1 - 1132 1212 1323

Row 2 - 1101 1020 1032

Row 3 - 1001 - 1003

Service 1201

Node G 2000

Service 1230

Node A 3302

Node K 2103

43

may increase the success rate, also other factors have to be analysed before

determining what should be the value of m.

4.3.1 Smaller m

A smaller m can result in more directory nodes in the network. For

example, when the value of m is set to 0, any node in the network is eligible to

become the directory node of any service type. This is typically the brute force

advertisement because the service providers can advertise their capabilities to

any nodes in the network. Hence, smaller m enables more choices to map

between services and directory nodes.

Since smaller m can result in directory nodes to be closer to the service

providers, the travelling path to locate a directory node is shorter. However, a

small m may cause the service providers and service consumer to be unable to

meet at a common directory node. This event is illustrated in Figure 4.5.

Figure 4.5 Impact of small m

4.3.2 Larger m

Larger m may result in smaller number of directory nodes in the network.

This is because there will be fewer choices to map between services and

Service

Provider

Service

Consumer

Directory nodes

44

directory nodes in the network. Besides, larger m may cause the services to be

mapped to directory nodes that are far from the service provider. Thus a

directory node may not be located in the close proximity of service provider.

However, if m is sufficiently large, it would be easier for service provider and

service consumer to meet at a common directory node. Figure 4.6 illustrates

this example where a common directory node is found.

Figure 4.6 Impact of large m

4.4 Performance measure

The service discovery success rate of the proposed scheme is bounded by

two factors:

1. Success rate in identifying a directory node

The success rate in identifying a directory node shown in Figure

4.7 is higher when the value of m is small and the success rate will

start to decrease as the value of m increases. This phenomenon has

been explained in the previous sub-section 4.3.

Service Provider Service

Consumer

Directory nodes

45

Figure 4.7 Success rate in identifying a directory node

2. Probability that a directory node contains the required list of

service providers

There could be many nodes in the network that can become the

directory node for a particular service type as long as the directory

nodes share the same prefix as the key. However, not all of the

potential directory nodes are chosen by the service providers to

advertise their services. Hence, directory nodes that are found by

service consumers may or may not contain the required list of

service providers. Figure 4.8 shows the probability that a directory

node contains the required list of service provider increases as the

value of m increases. This shows that when the value of m is small,

it is harder for service provider and service consumer to meet at the

common directory node.

0

20

40

60

80

100

0 2 4 6 8S
u

cc
es

s
ra

te
 (

%
)

m (digits)

46

Figure 4.8 Probability that a directory node contains the required

list of service providers

The combination of these two factors will yield the service

discovery success rate shown in Figure 4.9. This shows that there is

an optimal point of m where 0 ≤ m ≤ n.

Figure 4.9 Service discovery success rate

4.5 The prefix-based advertising and searching scheme simulations

In order to test the performance of the proposed scheme (PASS),

simulations are carried out in a Pastry network that consists of 6000 active

nodes. The node identifier address field used in the simulation is 16 bits. It is

assumed that there are 500 types of services and their unique serviceIds are

randomly generated. Each node in the network can provide two or three service

0

20

40

60

80

100

0 2 4 6 8P
ro

b
a

b
il

it
y

 a
 D

N

co
n

ta
in

s
th

e

re
q

u
ir

ed
 l

is
t

m (digits)

0

20

40

60

80

100

0 2 4 6 8

P
er

ce
n

ta
g

e
(%

)

m (digits)

Factor #1

Factor #2

Discovery Success

rate(%)

47

types and the serviceIds are randomly chosen from the pool of 500 serviceIds.

There are in total 10 regions and each node is randomly assigned with one

region. In order to measure the latency between nodes in the simulation, the

latency between each node is generated according to the region they are

assigned to. The following table shows the latency range between nodes:

Table 4.1 Latency range between nodes

Type Latency

Contact node 1-5 ms

Same region 6-20 ms

Different region 100-200 ms

The simulation starts with service advertisement. Each service provider

advertises the services they can provide to directory nodes. For service

discovery request, service consumer is randomly chosen to perform service

discovery. The service consumers are set to randomly choose a serviceId as the

requested service. In the simulation, 100,000 of service discovery requests will

be generated.

Two simulations with different settings are conducted to measure the

performance of the proposed scheme in a large node identifier space. In the

first simulation, known as Simulation-I, the value of its base is set to 4 whereas

in the second simulation, known as Simulation-II will have the value of its base

set to 16.

4.5.1 Simulation-I results and discussion

The specific setting used in this experiment is that the node identifier

space is 16 bits and is represented in 8 digits, where each digit is presented

with 2 bits. Besides that, the base that is used in the simulation is 4 (B = 4)

48

hence, the routing table size of each Pastry node consist of 4 columns and 8

rows, giving each node a maximum number of 24 neighbours which is around

0.4% of the network information.

Figure 4.10 shows the influence of m value to the performance of PASS in

terms of service advertisement success rate and service discovery success rate.

The figure shows that as the value of m increase, it is harder for the service

provider to find directory nodes that share the same prefix as the key hence

causing the success rate in advertisement to decrease.

Figure 4.10: Simulation-I result

Figure 4.10 shows as the value of m increases, the value of the probability

of non-empty directory node lists also increases. This is because the service

advertisement by service providers starts from a smaller distance to a larger

distance as m increases. From the results, it seems that most of the service

providers and service consumers are able to meet at common directory nodes

when m = 3, implying that the optimal value of m in this experiment is 3 digits.

Finally, Figure 4.10 also shows that the service discovery success rate is

bounded by the service advertisement success rate and the probability of non-

0

20

40

60

80

100

0 2 4 6 8

P
er

ce
n

ta
g

e
(%

)

m (digit)

Advertisement Success

rate(%)

Probability of non-

empty DN list

Discovery Success

rate(%)

49

empty directory node lists. The figure shows that the highest discovery success

rate is 91.7%.

Figure 4.11 shows the performance of PASS in terms of latency. The

figure demonstrates that as m increases, both average latency from service

consumer to directory node and average latency from service provider to

directory node also increase. This is because the range of service advertisement

and service discovery also increases with m. On the other hand, the average

latency from service consumer to service provider is less than 64 ms. This

shows that most service consumers are able to locate a nearby service provider.

Figure 4.11 Simulation-I: Average latency of prefix-based service

discovery

Figure 4.12 shows the locality failure of prefix-based searching in the

proposed scheme. When m = 3, the service discovery records the highest

success rate at 91.7% but the locality failure at this point is 43.4%. This means

that there are around 43% of the successful service discovery cases where the

service consumers are unable to find a nearby service provider, even it exists in

the region.

0

50

100

150

200

250

300

350

0 2 4 6 8

A
v

er
a

g
e

la
te

n
cy

 (
m

s)

m (digit)

Average Latency SC

to DN

Average Latency SP

to DN

Average Latency SC

to SP

50

Figure 4.12 Simulation-I: Locality failure of prefix-based service

discovery

Furthermore, at m = 0, the locality search failure is the lowest when

compared with other values of m. This is because both service providers and

service consumer will tend to advertise and search from their own region.

Although the success rate of service discovery for m = 0 is low, this shows that

whenever a service consumer found a directory node to get the service provider

that it needs, the service providers found will be nearby.

However, the locality search failure slowly decreasing from m = 1 to m =

4 which means that service providers and service consumers are able to

gradually meet at the common directory node and the optimal point is at m = 4.

The locality search failure starts to increase after m = 4 because the service

consumer would tend to find service providers that are far from it as the radius

of service advertisement and service discovery becoming bigger.

Even so, the prefix-based service discovery approach has much lower

percentage in locality search failure compared with the distributed service

discovery scheme in section 3.2. This means that the proposed approach, PASS

has achieved the objective of locality awareness.

0

20

40

60

80

100

0 2 4 6 8

L
o

ca
li

ty
 f

a
il

u
re

 (
%

)
m (digit)

51

4.5.2 Simulation-I with only 0.1% of service providers

In this sub-section, the performance of PASS in terms of effectiveness is

evaluated by limiting the number of available service providers in the network.

In this simulation, we test whether rare services can be located by the proposed

approach or not.

The simulation is carried out by inducing only 6 service providers for each

service type resulting in only 0.1% of service providers are made available in a

network of 6000 nodes. The setting used in this experiment consists of 16 bits

of node identifier space, represented in 8 digits where each digit is presented

with 2 bits. The base, B is set to 4 and there are 6000 number of active nodes

simulated in the network. The assignment of each serviceId to service

providers is done by randomly choosing six nodes from the network and each

service provider can only be assigned with a maximum number of 3 serviceId.

The simulation will induce 100,000 service discovery requests and each

request is performed by randomly selecting service consumers from the

network.

Figure 4.13 shows the simulation results in terms of service advertisement

and service discovery success rate. The simulation with only 0.1% of service

providers available in the network can achieve 70.14% of discovery success

rate at m = 3 digits. Besides, the discovery success rate is again bounded by the

advertisement success rate and the probability of non-empty directory node list

as shown in the figure.

52

Figure 4.13 Simulation-I result with 0.1% of service providers

Figure 4.14 shows that the average latency from service consumer to

service provider remains under 100 ms for most of the time except when m = 3.

This shows that in most of the successful discovery cases, the service

consumers are able to locate a nearby service provider even though there are

only 0.1% of service providers available in the network.

Figure 4.14 Average latency for 0.1% of service provider simulation-I

The above simulation results shows that highest service discovery rate is

achieved when m = 3. Figure 4.15 shows discovery success rate increases when

the number of service providers for each service is increased when m = 3.

Furthermore, Figure 4.16 shows that the locality failure rate is between 40%

0

20

40

60

80

100

0 2 4 6 8
P

er
ce

n
ta

g
e

(%
)

m (digit)

Advertisement

Success rate(%)

Probability of

non-empty DN list

Discovery Success

rate(%)

0

100

200

300

400

0 2 4 6 8

A
v

er
a

g
e

la
te

n
cy

 (
m

s)

m (digit)

Average Latency SP

to DN

Average Latency SC

to DN

Average Latency SC

to SP

53

and 60% where the locality failure rate decreases when the number of service

provider for each type of service is increased.

Figure 4.15 Simulation-I: Service discovery success rate when m = 3 and

N = 6000

Figure 4.16 Simulation-I: Locality failure rate when m = 3 and N = 6000

4.5.3 Simulation-II results and discussion

The setting in this simulation is almost the same as Simulation-I, which is

conducted in a network of 6000 nodes. The differences are the base, B that is

used in this section is 16 (B = 16), and the node identifier is represented in 4

digits. For example, given the length of node address space is 16 bits and is

represented in 4 digits where each digit is equal to 4 bits. The Pastry routing

0

20

40

60

80

100

1 6 11 16 21 26

D
is

co
v

er
y

 s
u

cc
e
ss

 r
a

te

(%
)

Number of SP for each type of service

0

20

40

60

80

100

1 6 11 16 21 26

L
o

ca
li

ty
 f

a
il

u
re

 r
a

te
 (

%
)

Number of SP for each type of service

54

table for each node in this simulation consists of 16 columns and 4 rows. This

means that the maximum entries in a routing table are 60 entries, which is

around 1% of the network information.

Figure 4.17 shows the results from the experiment. The highest service

discovery success rate here is able to reach 99.05% which is higher than the

experiment in Simulation-I. This shows that the settings must be defined

carefully in order to achieve high service discovery success rate.

Figure 4.17 Simulation-II results

Besides that, Figure 4.18 shows that the average latency from both service

consumer and service provider to directory node is less than 50 ms. This shows

that the average latency has decreased nearly half from Simulation-I, which

means that the settings of parameters B and m can affect the performance of

PASS.

60

70

80

90

100

0 1 2 3 4

P
er

ce
n

ta
g

e
(%

)

m (digit)

Advertisement Success

Rate

Probability of non-

empty DN list

Discovery Success

Rate

55

Figure 4.18 Simulation-II: Average latency of prefix-based service

discovery

Figure 4.19 shows at m = 1, the locality failure is at 12.51% when the

successful service discovery rate is at 92.96% as shown in Figure 4.17.

Compared with Simulation-I, the locality failure at the highest service

discovery rate has dropped from 43.4% to 12.51%.

Figure 4.19 Simulation-II: Locality failure of prefix-based service

discovery

4.5.4 Simulation-II with only 0.1% of service providers

Using the same settings in as previous sub-section 4.5.3, another

simulation is conducted using only 6 service providers for each service type in

the network of 6000 active nodes yields the following results:

0

50

100

150

200

250

0 1 2 3 4
A

v
er

a
g

e
la

te
n

cy
 (

m
s)

m (digit)

Average Latency SC

to DN

Average Latency SP

to DN

Average Latency SC

to SP

0

20

40

60

80

100

0 1 2 3 4L
o

ca
li

ty
 f

a
il

u
re

 (
%

)

m (digit)

56

Figure 4.20 below shows that even with 0.1% of the service providers are

available, PASS can still reach 92.96% of successful discovery rate at m = 1.

This shows that the proposed solution is able to locate rare services with high

success rate.

Figure 4.20 Simulation-II with 0.1% of service providers

Figure 4.21 shows that even with 0.1% of service providers, average

latency from service consumer to service provider is 83 ms while the average

latency from both service providers and service consumers to directory node is

less than 20 ms. This shows that in most of the successful service discovery

cases, the service consumers are able to locate a nearby service provider even

though there are only 0.1% of service providers available in the network.

30

40

50

60

70

80

90

100

0 1 2 3 4

P
er

ce
n

ta
g

e
(%

)

m (digit)

Advertisement

Success rate(%)

Probability of non-

empty DN list

Discovery Success

rate(%)

57

Figure 4.21 Simulation-II: Average latency for 0.1% of service provider

As shown in all the results above, when the prefix key for service

discovery and advertisement, m is equal to 1, the service discovery success rate

is at its highest. The following Figure 4.22 shows the discovery success rate

increases when the number of service providers for each service is increased

when m = 1. Furthermore, Figure 4.23 shows that the locality failure rate is

below 20%. This means that the locality awareness of PASS is preserved.

Figure 4.22 Simulation-II: Service discovery success rate when m = 1 and

N = 6000

0

50

100

150

200

250

0 1 2 3 4
L

a
te

n
cy

 (
m

s)

m (digit)

Average Latency SP to

DN

Average Latency SC to

DN

Average Latency SC to

SP

50

60

70

80

90

100

1 6 11 16 21 26D
is

co
v

er
y

 s
u

cc
e
ss

 r
a

te
 (

%
)

Number of SP for each type of service

58

Figure 4.23 Simulation-II: Locality failure rate when m = 1 and N = 6000

In conclusion, the prefix-based advertising and searching scheme (PASS)

shows superior performance when compared with the approaches discussed in

the previous chapter. In this chapter, we have proved that PASS is able to

provide locality awareness in searching with lower volume of traffic in the

network and can maintain high service discovery success rate. Besides that,

the simulation of PASS in a network that consists of 0.1% of service providers

further proved the effectiveness of PASS in locating rare services as 92.9% of

service discovery success rate is achieved.

0

5

10

15

20

25

1 6 11 16 21 26L
o

ca
li

ty
 f

a
il

u
re

 r
a

te
 (

%
)

SP for each service type

59

CHAPTER 5

CUMULATIVE PREFIX-BASED ADVERTISING AND SEARCHING

SCHEME FOR DISTRIBUTED SERVICE DISCOVERY IN

STRUCTURED P2P NETWORKS

5.1 Introduction

From the simulation study, PASS for distributed service discovery

proposed in Chapter 4 has satisfactory performance in all aspects as compared

with the existing schemes. However, the scheme can be further improved by

slightly modifying the algorithm service advertising and searching. For

example, instead of searching only for directory nodes of which the nodeIds

share the same prefix of m bits with the serviceId, the performance can be

enhanced by enabling the search cumulatively from the nodes sharing 0 prefix

bits incrementally to m prefix bits. That would greatly increase the number of

directory nodes along the path to the destination nodes and thus increasing the

chances of service capabilities to be found. In this chapter, we introduce a

cumulative prefix-based advertising and searching scheme (CPASS).

The following sub-sections describe service advertisement and service

discovery in CPASS. Next, the simulation results of CPASS and the

comparison between PASS and CPASS are shown and discussed.

5.1.1 Service advertisement

The steps taken in service advertisement are almost similar to the steps in

PASS. A new variable, r is introduced in CPASS where 0 ≤ r ≤ m. Here, r will

60

act as a running variable in both service advertisement and service discovery.

In order to provide a better explanation, the term main-branch node is

introduced. In Pastry, when presented a message with a numeric key, a node

will use the key to search from its routing table in order to forward the message

to the next node until the message reaches its destination. Each node along the

path is known as the main-branch node. A level-r main-branch node shares the

same r prefix bits with the key.

Given m = 2 and the variable r is initialised with 0, Figure 5.1 illustrates

an example of service advertisement by the service provider where the main-

branch directory nodes are node A, B and D. The numbers of bits in the node

identifier space are presented in digits in the example (i.e., 2 bits in 1 digit).

As shown in Figure 5.1, the service advertisement starts with the service

provider, node A hashes the service type that it can provide at step 1 and the

key 12 is extracted from the serviceId 1230. The main-branch nodes A, B, and

D are shown in the figure and these nodes will be responsible to do the service

advertisement. The service provider (node A) is known as the level-0 main

branch node. Hence, it will become the directory node for the service it can

provide. Besides, the all routing table entries in row-0 of node A, as

highlighted in blue, will also become the directory node for the service 1230 as

they currently share zero digit prefix with the key. When proceeding to the next

main-branch node, the value of r in digit is incremented by 1.

At step 2, using Pastry routing, the next main branch node is node B,

whose nodeId is 1101 because it is numerically closest to the key according to

node A’s routing table. The current variable of r is 1, as node B shares 1 digit

61

prefix as the key. Thus, node B will forward the service advertisement request

to all nodes of row 1 in its routing table and these nodes will also become the

directory node for service 1230. When proceeding to the next main-branch

node, the value of r will be incremented with 1 again, producing r = 2, as

shown at step 3 in the figure.

Figure 5.1 Cumulative prefix-based service advertisement

Note that the current variable is r = 2 at the main-branch node D (1212),

hence the service provider has to advertise service 1230 to every node that

shares r digit prefix as the key. Shown in the routing table of Node D, every

node in row 2 is eligible to become the directory node for service 1230 because

Node A (3302)

Node B (1101)

Service Provider

Node D (1212)

Service Type: GPU

Hash(GPU): 1230

Key: 12

Routing table of Node 1212:

Routing table of Node 1101:

Routing table of Node 3302:

Node M (0123) Node N (2000)

Node L (1003) Node K (1321)

Node P (1221)
Node O (1203) Node Q (1233)

(1)

(2)

(3)

𝑟 = 0

𝑟 = 1

𝑟 = 2

Row 0 0123 1101 2000 -

Row 1 3032 3112 3231 -

Row 2 - 3312 3322 3330

Row 3 3300 3301 - 3303

Row 0 0233 - 2000 3001

Row 1 1003 - 1212 1321

Row 2 - 1111 1121 1130

Row 3 1100 - 1102 1103

Row 0 0212 - 2300 3120

Row 1 1021 1133 - 1300

Row 2 1203 - 1221 1233

Row 3 1210 1211 - 1213

62

they also share 2 digit prefix with the key. The service advertisement stops now

because the value of r has been incremented until it is equal to the value of m.

The following describes the algorithm for service advertisement in

CPASS:

1. Service provider (SP) hashes the service type it can provide to

generate a serviceId and then extract the first m bits of serviceId to

be the key.

2. Service provider performs lookup search for any directory nodes of

which the nodeIds share the same prefix of m bits with the

serviceId. Note that the path from service provider to the node

sharing the same prefix of m bits with the serviceId is referred to as

the main-branch of advertisement. All nodes along this path are

called the main-branch nodes, and the service provider itself is

defined as the level-0 main-branch node. Besides, all the main-

branch nodes help the service provider to do advertisement.

3. A running variable, r is set with an initial value of 0 where 0 ≤ r ≤

m.

4. If a service advertisement request from a service provider reaches a

main-branch directory node who shares at least r bits prefix with

the key, the information of the service provider will be added into

a service provider list in that particular directory node. Note that if

the directory node is not found, then the service advertisement

stops and this particular service advertisement request is consider

failed and shall not proceed to the next step.

63

5. The main-branch directory node will forward the service

advertisement request message to nodes in the r-th row of its

routing table where all nodes in the r-th row share the same r bits

prefix with the key.

6. The r-th row directory nodes that receive the service advertisement

request query from the main-branch directory node will add the

information of the service provider to their own list of service

provider.

7. If r ≤ m, increment the value of r by 1 and repeat step 4, 5, and 6.

Stop the service advertisement request if the value of r exceeds m.

5.1.2 Service discovery

Given m = 2 and the variable r is initialised with 0, Figure 5.2 illustrates

an example of service discovery by the service consumer:

The service discovery starts with the service consumer node P hashes the

service type that it can provide at Step 1 and the key 12 is extracted from the

serviceId 1230. The main-branch nodes, P, Q, and D are shown in Figure 5.2

and these nodes will be responsible to help the service consumer to do service

discovery. As the service consumer, node P is known as the level-0 main

branch node, hence it will check its own list of service provider for the service

it needs. Besides, node P will also forward the service discovery message to all

routing table entries in row-0 of node P, highlighted in blue, for the service

1230 as they currently share 0 digit prefix as the key. If any of these directory

nodes have the list of service providers requested, the list of service provider

will be forwarded back to the service consumer node P and the service

discovery stops here without proceeding to Step 2.

64

Figure 5.2 Cumulative prefix-based service discovery

However, if none of the directory nodes in level-0 has the list of service

providers requested, the service discovery request will be forwarded to the next

main-branch node, with an incremented value of r as shown at Step 2 in Figure

5.2. As node Q receives the service discovery request, it forwards the request to

all level-1 directory nodes in its routing table, as highlighted in blue in the

figure. If any of these directory nodes has the list of service provider requested,

the list will be forwarded to the service consumer and the service discovery

shall stop here without proceeding to Step 3.

Note that each time the service discovery proceeds from one main-branch

directory node to the next main-branch directory node, the value of r must be

(1)

(2)

(3)

Node P (2131)

Node Q (1002)

Service Consumer

Node D (1212)

Routing table of Node 1212:

Routing table of Node 1002:

Routing table of Node 2131:
Service Type: GPU

Hash(GPU): 1230

Key: 12

Node G (0312) Node H (3100)

Node L (1132) Node K (1323)

Node O (1203) Node Q (1233) Node O (1203)

𝑟 = 0

𝑟 = 1

𝑟 = 2

Row 0 0312 1002 - 3100

Row 1 2032 - 2200 2323

Row 2 2100 2111 - 2131

Row 3 2130 - 2132 2133

Row 0 0012 - 2000 3101

Row 1 - 1132 1212 1323

Row 2 - 1101 1020 1032

Row 3 - 1001 - 1003

Row 0 0212 - 2300 3120

Row 1 1021 1133 - 1300

Row 2 1203 - 1221 1233

Row 3 1210 1211 - 1213

65

incremented by 1. The service discovery shall continue to proceed until the

value of r is equal to the value of m or at any phase where the list of service

provider is found.

The following describes the algorithm for service discovery in the

cumulative scheme:

1. When a service consumer (SC) is in need of a specific service, it hashes

the service type in need to generate the serviceId by using a hashing

algorithm and then extract the first m bits of serviceId to be the key.

2. Service consumer performs lookup search for any directory nodes that

shares the same prefix of m bits with the serviceId. Note that the path

from service consumer to the node sharing the same prefix of m bits

with the key is referred to as the main-branch of discovery. All nodes

along this path are called the main-branch nodes, and the service

consumer itself is defined as the level-0 main-branch node. Similar to

service advertisement, all the main-branch nodes help the service

consumer to do service discovery.

3. A running variable, r is set with an initial value of 0 where 0 ≤ r ≤ m.

4. If a service discovery request from a service consumer reaches a main-

branch directory node who shares at least r bits prefix with the key, the

list of service providers will be retrieved from the main-branch

directory node and forwarded back to the service consumer. Note that if

the directory node is not found, then the service discovery request is

considered failed and shall not proceed to the next step.

66

5. If the directory node does not have the list of service provider requested,

the main-branch directory node will forward the service discovery

request to nodes in the r-th row of its routing table where all nodes in

the r-th row shares the same prefix bits as the key.

6. The r-th row directory nodes that receive the service discovery request

query from the first directory node will forward the list of service

providers back to the service consumer.

7. If none of these directory nodes have the list of service provider

requested by the service consumer and r ≤ m, then increment the value

of r by 1 and repeat step 4, 5, 6, and 7. Note that if the value of r is

larger than m, and the list of service provider is not found, then the

service discovery is considered failed.

5.2 Simulation results and discussion

Simulations are carried out to test the performance of cumulative prefix-

based service advertisement and searching scheme (CPASS). The settings in

the simulation consist of 16 bits of node identifier address space, represented in

4 digits. The base, B is 16 and the other settings will be similar to the

simulation settings in 4.5.3 except the network size will vary from 1000 nodes

to 10000 nodes but the focus is on network with size 6000 nodes. The reason is,

given the node identifier space is 16 bits where there are 2
16

, or 65536 unique

node identifiers that can be assigned to each node before collision in

assignment of node identifiers take place. Thus, in a full network that consist of

65536 nodes with each node has a unique node identifier, 6000 nodes is almost

10% of the maximum network size.

67

Note that our proposed schemes can actually be implemented on both

Pastry and Chord. However, as discussed in the literature review, although

Chord is also a popular structured P2P approach for resource sharing, it does

not provide locality awareness. Hence, two simulations on CPASS are

conducted where Pastry will be used in the first simulation and Chord will be

used in the second simulation in order to compare the performance of CPASS

on the two P2P protocols. Note that both simulations on Chord and Pastry have

the same settings as described in section 4.5. Both simulations have the base of

the node address identifier space set to 16, and the node identifier is

represented in 4 digits.

5.2.1 Simulation on Pastry network

The bounding first factor discussed in PASS (section 4.4) is not applicable

here because every service advertisement should be successful considering the

service provider is the directory node for the service type that it can provide as

well as all row-0 nodes from its routing table, unless there is no entry at all in

the routing table of the service provider, which cannot be true since the

provider already joined the network. Due to this, the service discovery success

rate in CPASS will definitely outperform PASS described in Chapter 4.

Figure 5.3 shows the simulation conducted in networks that consist of

numbers of nodes from 1,000 to 10,000 nodes, with increment 1000 nodes.

From the figure, it is shown that higher success rate is achieved when the value

of m is more than one and when the network size increases.

68

Figure 5.3 Service discovery success rate in CPASS on Pastry network

The following simulation results focus on the network service discovery

success rates with respect to different values of m in the network that consists

of 6000 nodes as this represents 10% of the entire network.

As shown in Figure 5.4, the service discovery success rate in CPASS

shows some improvement at all digit of m. The comparison Table 5.1 shows

that the service discovery rate can reach as high as 99% in both PASS and

CPASS but CPASS shows that the success rate is more stable when the value

of m is increased.

Figure 5.4 Service discovery success rate in network size of 6000 nodes

on Pastry network

75

80

85

90

95

100

0 2000 4000 6000 8000 10000
S

u
cc

es
s

ra
te

 (
%

)
Network size

m = 0

m = 1

m = 2

m = 3

86

88

90

92

94

96

98

100

0 1 2 3 4

S
u

cc
es

s
ra

te
 (

%
)

m (digit)

69

Table 5.1 Comparison of discovery success rate between prefix-based

scheme (PASS) and cumulative prefix-based scheme (CPASS) on Pastry

network

m
Prefix-based advertising and searching

scheme

Cumulative prefix-based advertising

and searching scheme

0 86.38 % 87.54 %

1 99.56 % 99.87 %

2 98.70 % 99.86 %

3 59.07 % 99.88 %

On the other hand, Figure 5.5 shows the average traffic in terms of the

number of query messages generated per service discovery request in CPASS.

This figure shows the significant improvement of this scheme when compared

with the distributed scheme in section 3.2.

Figure 5.5 Traffic generated in service discovery of cumulative prefix-

based scheme on Pastry network

Furthermore, Table 5.2 shows the comparison of both schemes traffic

generated in network of 6000 nodes. The table also shows that there is no need

to flood the network as using the cumulative prefix-based scheme can achieve

99% of discovery success rate. When the value of m increases, the search

radius and success rate will also increase but it will not increase the traffic

0

10

20

30

40

50

0 1 2 3 4

T
ra

ff
ic

 g
en

er
a

te
d

m (digits)

Average service

discovery traffic

Average service

advertisement traffic

70

generated in the network. However when compared with the distributed service

discovery scheme, as the search radius (or depth) increases, the traffic

generated will increase exponentially. Even so, the only trade-off of CPASS is

that the traffic (or messages) generated in service advertisement is slightly

higher than the distributed service discovery in structured P2P scheme using

Chord discussed in section 3.2.

Table 5.2 Comparison of average traffic generated per query between

distributed service discovery scheme and cumulative prefix-based scheme on

Pastry network

Distributed service discovery in

structured P2P

Cumulative prefix-based advertising and

searching scheme

12.85 (Depth = 1) 13.98 (m = 0)

218.50 (Depth = 2) 14.47 (m = 1)

3448.81 (Depth = 3) 14.42 (m = 2)

- 14.42 (m = 3)

Figure 5.6 shows that the locality failure has significantly decreased when

compared to the prefix-based searching scheme in Chapter 4. This means that

the current cumulative scheme gives higher probability of enabling the service

consumer to discover nearby service providers.

Figure 5.6 Locality search failure of prefix-based cumulative scheme on

Pastry network

5

6

7

8

9

0 1 2 3 4

L
o

ca
li

ty
 f

a
il

u
re

 (
%

)

m (digit)

71

Figure 5.7 shows the average latency from service consumer to directory

node and the average latency from service consumer to service provider. As

explained in Table 4.1, the latency generated between nodes according to the

node’s region where two nodes in the same region should have 6 ms to 20 ms

latency, the average latency from service consumer to service provider is below

20 ms. This means that the service consumer is able to find service providers

that exist in the same region as shown in Figure 5.7. Hence, the locality of

service discovery is preserved, or even enhanced, in this cumulative scheme.

Figure 5.7 Average latency of cumulative scheme on Pastry network

5.2.2 Simulation on Chord network

5.2.2.1 Prefix-based cumulative service advertisement and discovery searching on

Chord network

This sub-section briefly describes Chord routing and how the prefix-based

advertising and searching scheme (CPASS) is implemented on Chord system.

As the simulation on Chord will only use Chord’s finger table to do

routing, hence the structure of a Chord’s finger table is focused here. Each

Chord node has a pointer pointing to a successor node and a predecessor node,

hence Chord network is assumed to be constructed on a circular identifier

0

10

20

30

0 1 2 3 4

L
a

te
n

cy
 (

m
s)

m (digit)

Average latency SC to

DN

Average latency SC to

SP

72

space (El-Ansary & Haridi, 2005). Furthermore, each Chord node keeps a set

of pointers of node called the finger table and the size of finger table is equal to

the node identifier length, M in bits. The set of pointers are chosen by

positioning the node itself at the start of the identifier space and find fill up

finger table entries such that 𝐹𝑖 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑢 + 2𝑖−1), 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑖 ≤

𝑀and u represents the node identifier.

For example, given M = 8 bits and the following shows the finger table

entries for Chord node with the identifier of 5, where u = 5. The Chord network

consists of 10 nodes with identifiers of 4, 5, 9, 40, 66, 78, 99, 130, and 240.

Table 5.3 Chord finger table example for Chord with node identifier of 5,

with M = 8

𝑭𝒊 𝑺𝒖𝒄𝒄𝒆𝒔𝒔𝒐𝒓(𝒖 + 𝟐𝒊−𝟏)

𝐹1 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(6) = 9

𝐹2 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(7) = 9

𝐹3 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(9) = 9

𝐹4 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(13) = 40

𝐹5 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(21) = 40

𝐹6 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(37) = 40

𝐹7 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(69) = 78

𝐹8 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(133) = 240

When a Chord node needs to route to a specific target, it first checks its

finger table for any entries that is closest preceding to the key and forwards the

message to that node entry. For instance, if node 5 has a message with the key

27, the node will select node 9 to send the message because node 9 has a Chord

identifier that immediately precedes the key 27.

73

The service advertisement using Chord is the same as service

advertisement algorithm using Pastry in section 5.1.1. The only difference is in

Pastry, routing table is used whereas in Chord, finger table is used. The

algorithm for service discovery stated in section 5.1.2 can also be applied on

Chord.

For example, the algorithm of service advertisement discussed in section

5.1.1 is to forward the service advertisement query to all nodes in row-r

because those nodes shares r prefix with the key. Here, the finger table entries

are not arranged according to prefix. Hence, the advertisement query will be

forwarded to any node entry that shares the first r digits with the key.

5.2.2.2 Simulation results and discussion

The Chord finger table has at most 16 entries as the size of finger table

depends on the bit length of the Chord’s node identifier address space.

Shown in Figure 5.8 and Figure 5.9, both service advertisement and

service discovery are performed using brute force hence the lower success rate

at m = 0. The reason is Chord’s finger table which consist of only at most 16

entries, causing the lower chances in achieving successful discovery. Besides,

the routing table size for Pastry in the previous simulation (section 5.2.1) is

bigger than Chord where Pastry has at most 60 entries. Hence m = 0 has lower

success rate in discovery compared with the same scheme on Pastry network.

74

Figure 5.8 Service discovery success rate of CPASS on Chord network

Figure 5.9 Service discovery success rate in network size of 6000 nodes

on Chord network

On the other hand, the success rate for other values of m records higher

success rate in discovery when compared to Pastry. This is because the links

between Chord nodes are perfectly constructed and whatever key used to do

the routing will send the message to the successor of the key, unless hop limit

is specified in the system.

20

30

40

50

60

70

80

90

100

0 2000 4000 6000 8000 10000 12000

S
u

cc
es

s
ra

te
 (

%
)

Network size

m = 0

m = 1

m = 2

m = 3

60

70

80

90

100

0 1 2 3 4

S
u

cc
es

s
ra

te
 (

%
)

m (digit)

75

Figure 5.10 Average traffic generated in service discovery of CPASS on

Chord network

The traffic generated for both service discovery and service advertisement

on Chord network is slightly lower than the traffic generated on Pastry network.

This is because Chord’s finger table is not structured according to prefixes like

Pastry’s routing table thus the number of entries that shares the same prefix in

Chord’s finger table are lesser than Pastry’s. Hence the traffic generated is also

lesser than Pastry.

Besides that, the number of directory nodes for each service type are lower

when compared with Pastry because in most cases of service discovery and

service advertisement, the service provider or service consumer tend to find the

same directory node when the same key is used for routing. Due to this the

success rate on Chord is higher than Pastry.

Although with higher success rate, the locality search failure is high on

Chord network. As shown in Figure 5.11, the locality failure is at the highest at

88% when m = 0. Besides that, the locality failure is still around 72% for other

values of m. This means that Chord system is unable to preserve locality when

routing for a certain node.

0

5

10

15

20

25

30

0 1 2 3 4
T

ra
ff

ic
 g

en
er

a
te

d

m (digit)

Average service

discovery traffic

Average service

advertisement traffic

76

Figure 5.11 Locality search failure of cumulative prefix-based scheme on

Chord network

Figure 5.12 shows that the average latency from service consumer to

service provider is always above 100 ms. This means that almost all the cases

of successful discovery, the service consumers are only able to contact service

providers that are not in the same region. Besides, the average latency from

service consumer to directory node is also higher when compared with the

same approach running on Pastry network.

Figure 5.12 Average latency of cumulative prefix-based scheme on Chord

network

70

75

80

85

90

0 1 2 3 4L
o

ca
li

ty
 f

a
il

u
re

 (
%

)
m (digit)

100

300

500

700

900

1100

1300

1500

0 1 2 3 4

L
a

te
n

cy
 (

m
s)

m (digit)

Average latency SC to

DN

Average latency SC to

SP

77

In conclusion, when the same searching algorithm CPASS is applied on

Chord and Pastry, CPASS on Chord shows slightly better result in service

discovery success rate than that of CPASS on Pastry, but both actually can

achieve 99% of service discovery success rate as shown in Table 5.4. Both

simulations of CPASS on Pastry and Chord have significant improvement

when compare against PASS on Pastry when the prefix key m increased as

shown in Table 5.5.

Table 5.4 Service discovery success rate of CPASS on Pastry and Chord

Network

Size

Service discovery success rate of CPASS (%)

m = 0 m = 1 m = 2 m = 3

Pastry Chord Pastry Chord Pastry Chord Pastry Chord

3000 82.30 62.95 98.70 99.29 98.85 100.00 98.76 100.00

6000 87.54 68.13 99.87 99.43 99.86 100.00 99.88 100.00

9000 88.38 72.40 99.91 99.65 99.92 100.00 99.93 100.00

Table 5.5 Service discovery success rate of PASS on Pastry

Network Size
Service discovery success rate of PASS (%)

m = 0 m = 1 m = 2 m = 3

3000 81.64 98.91 96.01 34.33

6000 88.33 99.31 98.06 64.68

9000 88.94 99.43 98.31 67.82

Although CPASS on Chord gives better success rate but CPASS on Pastry

gives much better locality awareness when compared with CPASS on Chord.

This can be seen in Table 5.6 where the locality failure of CPASS on Pastry is

much lower than CPASS on Chord. However, when comparing locality

awareness, CPASS is better than PASS as shown in Table 5.7 where higher

value of m results in lower locality failure in CPASS.

78

Table 5.6 Locality failure success rate of CPASS on Pastry and Chord

Network

Size

Locality failure rate of CPASS (%)

m = 0 m = 1 m = 2 m = 3

Pastry Chord Pastry Chord Pastry Chord Pastry Chord

3000 10.86 87.75 8.93 69.41 8.78 67.76 8.81 68.34

6000 8.14 88.43 7.05 72.40 6.91 70.77 6.85 71.23

9000 7.87 87.60 7.23 73.89 6.82 72.24 7.03 72.58

Table 5.7 Locality failure rate of PASS on Pastry

Network Size
Locality failure rate of PASS (%)

m = 0 m = 1 m = 2 m = 3

3000 9.30 18.94 18.41 68.06

6000 6.85 12.51 13.34 38.86

9000 6.29 12.23 13.14 35.92

In the next chapter, the resiliency of CPASS on Pastry is tested.

79

CHAPTER 6

THE RESILLIENCY OF CUMULATIVE PREFIX-BASED

ADVERTISING AND SEARCHING SCHEME

This chapter describes the resiliency of the cumulative prefix-based

service advertisement and service discovery scheme (CPASS) by performing

simulation where nodes are set to leave the network. In the following sub-

chapters, the performance of CPASS will be tested and discussed in the event

of 10% nodes encountered failure (or departed from the network) after the

routing tables have been set up for all nodes. Next, the routing tables of the

remaining active nodes will be repaired and the results of both simulations are

compared. It should be noted that the resiliency of prefix-based service

advertisement and service discovery scheme (PASS) is not tested because the

performance of CPASS has already proved to outperform PASS in the previous

chapter.

6.1 The resiliency simulation

In this simulation, 10% of the active nodes are randomly chosen to leave

the network. It should be noted that these leaving nodes are considered failed

and will not inform the remaining active nodes in the network about their

departure. Hence, the node identifiers of these departed nodes will still exist in

the remaining active nodes’ routing tables. In the case where a departed node is

encountered during the Pastry routing process, the routing will cease and

should not be able to carry on hence will result in a failed search.

80

Figure 6.1 shows the simulation of running CPASS on Pastry in a network

that consist of numbers of nodes from 1,000 to 10,000 nodes with increment

1000 nodes. The simulation settings are the same as described in section 5.2.

The difference here is that 10% of the active nodes are set to depart from the

network. For example, in a network that consists of 6000 nodes, 600 randomly

chosen nodes are set to leave the network. As shown in Figure 6.1, the

cumulative prefix-based scheme shows that even when 10% of the nodes have

left the network, good success rate is still achievable. Although the success rate

shows declination when compared with the simulation shown in section 5.2.1

however this is expected due to the existence of node identifiers of failed nodes

in the remaining active nodes’ routing tables.

Figure 6.1 Service discovery success rate for resiliency test in a Pastry

network

Figure 6.2 shows that the success rate has also declined when compared

with the simulation shown in Figure 5.4 in section 5.2.1. Although at the

beginning where m = 0, the success rate has dropped from 88% to 82% but as

m increases, the service discovery success rate gradually goes back to a higher

60

65

70

75

80

85

90

95

100

0 2000 4000 6000 8000 10000

S
u

cc
es

s
ra

te
 (

%
)

Network size

m = 0

m = 1

m = 2

m = 3

81

rate which is comparable with the result by the cumulative prefix-based

scheme (CPASS).

Figure 6.2 Success rate in a network that consist of 6000 nodes after 10%

of the nodes departed

The traffic generated in this resiliency test in a 6000 nodes network is

almost the same as in the normal network. This shows that the proposed

scheme is able to withhold against node failure even when 10% of the network

population have failed.

Figure 6.3 Traffic generated in a network that consist of 6000 nodes after

10% of the nodes departed

80

85

90

95

100

0 1 2 3 4

S
u

cc
es

s
ra

te
 (

%
)

m (digit)

0

10

20

30

40

50

0 1 2 3 4

T
ra

ff
ic

 g
en

er
a

te
d

m (digits)

Average service

discovery traffic

Average service

advertisement traffic

82

Overall, the low locality failure shown in Figure 6.4 indicates that most of

the successful service discovery cases are able to locate a nearby service

provider as well.

Figure 6.4 Locality search failure in a network that consist of 6000 nodes

after 10% of the nodes departed

Figure 6.5 shows that the average latency in successful service discovery

queries from service consumer to service provider are between 10 ms to 20 ms.

This means that the majority of the service consumers are able to locate service

providers in their own proximity. However, when compared with the average

latency shown at Figure 5.7 in section 5.2.1, a rise in latency occurs. This is

because the time taken to locate a directory node has become longer due to the

failed node identifier entries in the routing tables of the remaining active nodes.

Besides, the average latency from service consumer to service provider also

increase as the value of m increases. The declining number of active node

entries in the service consumer’s routing table has forced the service consumer

to widen its search radius.

2

4

6

8

10

12

0 1 2 3 4

L
o

ca
li

ty
 f

a
il

u
re

 (
%

)

m (digit)

83

Figure 6.5 Average latency in a network that consist of 6000 nodes after

10% of the nodes departed

In conclusion, the resiliency test shows that even with 10% of nodes have

departed from the network, the proposed cumulative scheme is still able to

perform well by achieving high success rate, i.e., 99% when m = 3. However,

this has caused the increase in latency between service consumer and service

provider as a result of forcing the service consumer to expand its search radius.

Hence, in order to reduce such effect, repairing the routing tables of remaining

active nodes by replacing the departed nodes identifiers with active nodes

identifiers is important in the real network.

6.2 Repairing the Pastry routing table

The Pastry routing protocol comes with routing table repairing system that

enables each node to repair its routing table when departed or failed node is

identified during the occasional node checking process. However, the original

Pastry’s process of repairing the routing table requires the neighbourhood set

maintained by each node. The neighbourhood set consist of nodes that are in

close proximity but not listed in the routing table.

0

5

10

15

20

25

30

35

0 1 2 3 4
L

a
te

n
cy

 (
m

s)

m (digit)

Average latency SC to

DN

Average latency SC to

SP

84

As the neighbourhood set is not configured in the simulation system, an

alternative way of repairing the routing table is performed. The following

describes the steps performed by each node for repairing routing table.

1. Identify the failed node from the routing table.

2. Query the first active node that is in the same row as the failed

node.

3. Request routing table from the active node and use the routing

table entries from the active node to replace the failed node.

4. If the failed node is not appropriate to be replaced by the node

entry in the retrieved routing table, then request routing table from

the next active node in the same row as the failed node.

5. After the failed node identifier is replaced by the active node

identifier, the active node will send copies of relevant service lists

to the replaced node.

Given node X whose nodeId is 1212 and has a failed node entry whose

nodeId is 1133 in its routing table as shown in Figure 6.6. In order to replace

the failed node entry, node 1212 sends a request to node Y whose nodeId is

1021 for its routing table because node Y is the first active node that is in the

same row as the failed node 1133. When node X receives a copy of node Y’s

routing table, it finds a suitable replacement for 1133. Then the entry 1133 is

replaced by the entry 1111 retrieved from node Y’s routing table.

Note that the replacement of failed node will be equipped with service lists

that are relevant to it. For example, node 1111 will receive service lists with

serviceIds that share the same prefix of m bits with node 1111 from node X.

85

This is a step to enable the replacement node to become a directory node and

resume its responsibilities of providing information about service providers.

Although the replacement might already become a directory node but it may

not contain as much information about service provider as the failed node that

it replaced. Thus, this step may help to ensure high success discovery rate is

still achievable and the average latency is lowered.

Figure 6.6 Example of routing table repairing process

The following describes the simulation results and discussions. As shown

in Figure 6.7, the service discovery success rate at m = 0 has shown 10%

improvement after repairing the routing table. However, the success rate also

slowly increased (as the network size increased) to be at the same rate even

without repairing procedure. This may be caused by the completeness of

routing table entries in higher network size and 10% of departed nodes in the

network did not affect much on the service discovery process.

Node X (1212)

Node Y (1021)

86

Figure 6.7 Service discovery success rate after the repairing procedure

Figure 6.8 shows the service discovery success rate after the routing table

repairing process, where the success rate slowly increases to 99% as the value

of m increases.

Figure 6.8 Success rate in a network that consist of 6000 nodes after

repairing process

According to Figure 6.9, the average traffic generated at m = 0 is slightly

lower than m = 1, 2, and 3. As most of the successful service discovery cases

occurred at m = 0 hence the traffic generated is low at first. However as the

search radius expands, the traffic generated also increased.

60

65

70

75

80

85

90

95

100

0 2000 4000 6000 8000 10000
S

u
cc

es
s

ra
te

 (
%

)

Network size

m = 0

m = 1

m = 2

m = 3

80

85

90

95

100

0 1 2 3 4

S
u

cc
es

s
ra

te
 (

%
)

m (digit)

87

Figure 6.9 Traffic generated in a network that consists of 6000 nodes

after repairing process

The locality search failure in this simulation as shown in Figure 6.10 has

gotten higher after the routing repairing process is conducted. This is the result

of the repairing procedure done to the routing tables as the replacements of

failed nodes are chosen from a neighbour’s neighbour. Although the service

discovery success rate is still high, the locality search failure has shown the

effects of repairing the routing table. Furthermore, repairing the routing table

has also caused the average latency to increase as shown in Figure 6.11.

Figure 6.10 Locality search failure in a network that consist of 6000

nodes after repairing process

0

10

20

30

40

50

0 1 2 3 4

T
ra

ff
ic

 g
en

er
a

te
d

m (digits)

Average service

discovery traffic

Average service

advertisement traffic

1

3

5

7

9

11

13

0 1 2 3 4

L
o

ca
li

ty
 f

a
il

u
re

 (
%

)

m (digit)

88

Figure 6.11 Average latency in a network that consist of 6000 nodes after

repairing process

6.3 Discussion

This chapter describes the performance of the cumulative service

discovery scheme in a dynamic network. Even with 10% of the nodes in the

network departed, the simulation result in section 6.1 has shown that 99% of

service discovery success rate is achievable. Table 6.1 compares the results of

service discovery success rate before any of the nodes in the network are set to

fail, after 10% of nodes are set to fail, and after repairing the routing tables.

The resiliency test simulation and has shown that nodes leaving the network

have little effect on the success rate. On the other hand, Table 6.2 shows that

the average service discovery traffic generated per query is almost the same

before and after the repairing process.

Table 6.1 Service discovery success rate in a network of 6000 nodes

m Before resiliency test
Resiliency test with

10% of failed node

Resiliency test after

routing table repairing

process

0 87.54 % 81.92 % 81.92 %

1 99.87 % 99.09 % 99.10 %

2 99.86 % 99.67 % 99.68 %

3 99.88 % 99.64 % 99.65 %

0

10

20

30

40

0 1 2 3 4
L

a
te

n
cy

 (
m

s)

m (digit)

Average latency SC to

DN

Average latency SC to

SP

89

Even after repairing the routing tables by replacing the failed nodeId

entries with active nodeId entries, there is only small increase in the service

discovery success rate and the average traffic generated shows no changes.

Table 6.2 Average service discovery traffic generated in a network of

6000 nodes

m Before resiliency test
Resiliency test with

10% of failed node

Resiliency test after

routing table repairing

process

0 15.93 12.63 12.63

1 13.31 13.38 13.38

2 13.02 13.39 13.39

3 12.83 13.51 13.51

The existence of departed nodes in the network has forced the service

consumers to expand search radius causing higher average latency between the

service provider and service consumer as shown in Table 6.3 and Table 6.4.

However, the average traffic generated in service discovery still maintained the

same in both simulations. The increase of latency between service consumer

and directory node could be caused by the routing table repairing process

where the failed nodes are replaced with active nodes that are much farther

than the local node. Even so, the average latency between service consumer

and service provider has slightly improved.

Table 6.3 Average latency generated from service consumer to directory

node in a network of 6000 nodes

m Before resiliency test
Resiliency test with

10% of failed node

Resiliency test after

routing table repairing

process

0 15.93 ms 18.55 ms 18.55 ms

1 13.31 ms 16.64 ms 16.72 ms

2 13.02 ms 16.64 ms 16.65 ms

3 12.83 ms 16.72 ms 16.73 ms

90

Table 6.4 Average latency generated from service consumer to service

provider in a network of 6000 nodes

m Before resiliency test
Resiliency test with

10% failed node

Resiliency test after

routing table repairing

process

0 24.35 ms 29.26 ms 29.26 ms

1 24.65 ms 30.35 ms 30.34 ms

2 24.43 ms 30.08 ms 30.04 ms

3 24.33 ms 30.07 ms 30.10 ms

In conclusion, the resiliency test has shown that CPASS is able to achieve

99% service discovery success rate even when 10% of the nodes have failed to

work. Besides, the average traffic generated per query and the locality search

failure maintained low. Furthermore, the simulation experiments have shown

that both PASS and CPASS rely on the underlying P2P routing protocol to

achieve good performance in terms of service discovery success rate, locality

awareness, and others. Thus, the performance of PASS and CPASS could

inherit the limitations of the routing protocol used.

91

CHAPTER 7

CONCLUSION

This research has studied about resource sharing in a large scale

decentralised network. The conventional approaches are often centralised and

subject to the single-point failure risk. This issue leads to a distributed

approach in service discovery using P2P system.

This dissertation has presented some existing approaches of distributed

service discovery schemes and introduced new distributed service discovery

schemes and its simulation study. Besides that, this research has also

introduced a new term, named the directory node that act as a platform for

service advertisement and service discovery by peer nodes.

The finding of the simulation studies has shown that the existing

approaches of using unstructured P2P and structured P2P can achieve high

success rate but either can result in (1) high traffic generated as brute force

technique is usually applied, or (2) cannot provide locality awareness while

perform searching for a service provider.

In order to tackle the above two issues, we have proposed two Prefix-

based Advertising and Searching Schemes, namely PASS and CPASS, based

on the Pastry P2P architecture. Through simulation, we showed that both PASS

and CPASS are able to achieve 99% success rate with only 1% of active nodes

in the network. Furthermore, when compared with other existing approaches,

92

the proposed schemes, especially CPASS have superior performance as they

are able to maintain locality awareness with locality success rate of more than

90% and deterministic routing with log order complexity using Pastry as the

underlying routing protocol. The simulation studies have also shown that the

proposed schemes are able to achieve high success rate without generating high

number of traffic in the network.

This dissertation also compares the performance of using two most

popular structured P2P system i.e., Pastry and Chord. The simulation result has

revealed that although the Chord routing protocol is able to achieve higher

service discovery success rate, Pastry is better in providing locality awareness.

In addition, resiliency test has also been conducted in order to measure the

resiliency of CPASS. The simulation result has shown that even with 10% of

active nodes having left the network, 99% of service discovery success rate is

still achievable. This shows that the proposed schemes are able to withstand the

dynamicity of a peer-to-peer network.

One issue that comes with the proposed framework is when a requesting

peer receives a list of potential providers that can deliver the same service,

which provider it will choose to minimize the cost in terms of delay, bandwidth,

charge, and etc. Besides, security issues are yet to be addressed in the proposed

scheme such as phishing where the directory node may return a list of

malicious addresses to the service consumer. On the other hand, the

maintenance of the proposed scheme has to be carefully planned to avoid the

risk of returning outdated results. Hence, future work may include (1)

simulating both proposed schemes (i.e., PASS and CPASS) in a large Pastry

93

network with 128 bits of identifier space, (2) address the issue to select the best

service provider from the list of potential providers, and (3) implement both

proposed schemes on similar structured P2P protocol that can provide locality

awareness such as Kademlia and Tapestry.

94

REFERENCES

Anusuya, R., Kavitha, V. & Golden, J. E., 2010. Enhancing and analyzing

search performance in unstructured peer to peer networks using enhanced

guided search protocol (EGSP). Journal of Computing, 2(6), pp. 59-65.

Awan, A., A. Ferreira, R., Jagannathan, S. & Y. Grama, A., 2004.

Unstructured Peer-to-Peer Networks for Sharing Processor Cycles, s.l.:

Purdue University Purdue e-Pubs.

Bowman, C. M., Peter B., D., Udi, M. & Michael, F. S., 1994. Scalable internet

resource discovery: Research problems and approaches. Communications of

the ACM-Association for Computing Machinery-CACM, 37(8), pp. 98-107.

Brain, M. & Crawford, S., 2014. howstuffworks. [Online]

Available at: http://www.howstuffworks.com/dns.htm

[Accessed 9 January 2014].

Caron, E., Chuffart, F., He, H. & Tedeschi, C., 2011. Implementation and

Evaluation of a P2P Service Discovery System Application in a Dynamic Large

Scale Computing Infrastructure. Pafos, IEEE 11th International Conference on

Computer and Information Technology (CIT).

Caron, E., Frederic, D. & Cedric, T., 2006. A dynamic prefix tree for service

discovery within large scale grids. Cambridge, Sixth IEEE International

Conference on Peer-to-Peer Computing, pp. 106-116.

95

Castro, M., Druschel, P. & Kermar, 2002. One Ring to Rule them All: Service

Discovery and Binding in Structured Peer-to-Peer Overlay Networks. Saint-

Emilion, France, SIGOPS European Workshop.

Christensson, P., n.d. TechTerms.com. [Online]

Available at: http://www.techterms.com/definition/nameserver

[Accessed 29 July 2013].

Cobb, J., Korpela, E., Lebofsky, M. & Wethimer, D., 2002. SETI@home: an

experiment in public-resource computing. Communications of the ACM, 45(11),

pp. 56-61.

Datta, S., Bhaduri, K., Giannella, C. & Wolff, R., 2006. Distributed Data

Mining in Peer-to-Peer Networks. IEEE Internet Computing, 10(4), pp. 18-26.

Ding, A. et al., 2012. A distributed framework for mining financial data. Taipei,

2012 IEEE 4th International Conference on Cloud Computing Technology and

Science (CloudCom).

Drost, N. et al., 2010. JEL: unified resource tracking for parallel and

distributed applications. Concurrency and Computation: Practice and

Experience, 23(1), pp. 17-37.

Druschel, P. et al., 2001. Pastry: A substrate for peer-to-peer applications.

[Online]

Available at: http://www.freepastry.org/

[Accessed 9 January 2014].

96

Eclipse, 2014. Eclipse. [Online]

Available at: http://www.eclipse.org/

[Accessed 5 January 2014].

El-Ansary, S. & Haridi, S., 2005. An overview of structured P2P overlay

networks, s.l.: s.n.

Guo, H. et al., 2006. An Optimized Peer-to-Peer Overlay Network for Service

Discovery. s.l., 11th IEEE Symposium on Computers and Communications,

2006. ISCC '06. Proceedings.

Gupta, R. & Somani, A., 2004. CompuP2P: An Architecture for Sharing of

Compute Power in Peer-to-Peer Networks with Selfish Nodes. s.l., s.n.

Gu, P., Wang, J. & Cai, H., 2007. ASAP: An advertisement-based search

algorithm for unstructured peer-to-peer systems. Xian, China, International

Conference on Parallel Processing (ICPP).

Hautakorpi, J., KERÄNEN, A. & MÄENPÄÄ, J., 2012. Method and

arrangement for locating services in a peer-to-peer network. STOCKHOLM,

Patent No. 498,323.

Hsu, C.-Y., Wang, K. & Shih, H.-C., 2012. Decentralized structured peer-to-

peer network and load balancing methods thereof. United States of America,

Patent No. 166,493.

Liew, S.-Y., 2012. An overlay approach for service discovery in a large-scale

decentralized cloud. Shen Zhen, Cloud Computing Congress (APCloudCC),

2012 IEEE Asia Pacific.

97

Li, X. & Wu, J., 2005. Searching Techniques in Peer-to-Peer Networks.

Handbook on Theoretical and Algorithmic Aspects of Sensor, Ad Hoc

Wireless, and Peer-to-Peer Networks ed. Boston: Auerbach Publications,

Talyor and Francis Group.

Lua, E. K. et al., 2005. A survey and comparison of peer-to-peer overlay

network schemes. IEEE Communications Surveys and Tutorials, 7(1-4), pp.

72-93.

Luca, G., Giuseppe, L. R. & Salvatore, G., 2005. An adaptive routing

mechanism for efficient resource discovery in unstructured P2P networks.

Berlin Heidelberg, Computational Science and Its Applications–ICCSA.

Mark, J., Alberto, M., Gian, P. J. & Spyros, V., 2013. PeerSim: A Peer-to-Peer

Simulator. [Online]

Available at: http://peersim.sourceforge.net/

[Accessed 5 January 2014].

P2PNews, 2012. P2PNEWS The File Sharing News Authority. [Online]

Available at: http://www.p2pnews.net/2012/06/14/art-thou-a-peer/

[Accessed 11 July 2013].

Qiang, H. et al., 2008. Chord4S: A P2P-based Decentralised Service Discovery

Approach. Honolulu, HI, IEEE International Conference on Service

Computing.

Ranaivo-ravonison, G. & Sabourin, A., 2007. P2P simulation with PeerSim.

TELECOMINT.

98

Ranjan, R., 2007. Coordinated Resource Provisioning in Federated Grids. s.l.,

s.n.

Rowston, A. & Druschel, P., 2001. Pastry: Scalable , decentralized object

location and routing for large-scale peer-to-peer systems. Heidelberg,

Germany, s.n.

Sabu, M. T. & Chandra, S. K., 2010. Survery of search and replication schemes

in unstructured P2P networks. Network Protocols and Algorithms.

Saleem, H. M., Hassan, M. F. & Asirvadam, V. S., 2011. Distributed Service

Discovery Architecture: A Bottom-Up Approach with Application Oriented

Networking. s.l., s.n.

Skjegstad, M. & Johnson, F. T., 2009. Search+: An efficient peer-to-peer

service discovery mechanism, s.l.: s.n.

Stefan, S. & Roger, W., 2007. Structuring unstructured peer-to-peer networks.

Heidelberg, Springer-Verlag Berlin, pp. 432-442.

Stoica, I. et al., 2001. Chord: A scalable peer-to-peer lookup service for

internet applications. ACM SIGCOMM Computer Communication Review,

31(4), pp. 149-160.

Strickland, J., n.d. howstuffworks. [Online]

Available at: http://computer.howstuffworks.com/grid-computing.htm

[Accessed 2 September 2013].

99

Tie, J. et al., 2006. Peer-Tree: A Hybrid Peer-to-Peer Overlay for Service

Discovery*. Vienna, Advanced Information Networking and Applications,

2006. AINA 2006. 20th International Conference (Volume:1).

Ting, N. S., 2003. A generic peer-to-peer network simulator. saskatchewan:

Proceedings of the 2002-2003 Grad Symposium, CS Dept, University of

Saskatchewan.

Young, B., 2013. Navigating Cyberspace: The Domain Name System. Austin:

s.n.

Zhou, J., Abdullah, N. A. & Shi, Z., 2011. A Hybrid P2P Approach to Service

Discovery in the Cloud. International Journal of Information Technology and

Computer Science (IJITCS), Volume 3, pp. 1-9.

