
DESIGN AND DEVELOPMENT OF MEMORY SYSTEM FOR 32-BIT 5 STAGE

PIPELINE RISC:

MEMORY SYSTEM INTEGRATION

BY

GOH DIH JIANN

A REPORT

SUBMITTED TO

UniversitiTunku Abdul Rahman

in partial fulfilment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONS)

COMPUTER ENGINEERING

Faculty of Information and Communication Technology (Perak Campus)

OCTOBER 2015

 1

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 2

DESIGN AND DEVELOPMENT OF MEMORY SYSTEM FOR 32-BIT 5

STAGE PIPELINE RISC:

MEMORY SYSTEM INTEGRATION

BY

GOH DIH JIANN

A REPORT

SUBMITTED TO

UniversitiTunku Abdul Rahman

in partial fulfilment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONS)

COMPUTER ENGINEERING

Faculty of Information and Communication Technology (Perak Campus)

OCTOBER 2015

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 3

DECLARATION OF ORIGINALITY

I declare that this report entitled “DESIGN AND DEVELOPMENT OF MEMORY

SYSTEM FOR 32-BIT 5 STAGE PIPELINE RISC: MEMORY SYS TEM

INTEGRATION” is my own work except as cited in the references. The report has not

been accepted for any degree and is not being submitted concurrently in candidature for

any degree or other award.

Signature : _________________________

Name : ____GOH DIH JIANN______

Date : ________14/12/2015________

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 4

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my gratitude to my final year project

supervisor, Mr. Mok Kai Ming, who encourage me when I lost confidence, comfort me

when I am stressed, and enlighten me when I lost my way. A million appreciation and

thank for his guidance and wisdom during the entire course of this project. Lastly, I

would like to say thanks to my parents for their unconditional support during my hard

time throughout the course.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 5

ABSTRACTS

This project is to enhance the current RISC32 architecture that developed in Universiti

Tunku Abdul Rahman under Faculty of Information and Communication Technology

by redesigning the memory system. After reviewing the previous work, the RISC32

processor memory system cache unit using write-through scheme which is able to

improve more of it efficiency.

 Hence, this project is initiated to redesign the cache unit into write-back cache

and adding a write buffer(FIFO) in the cache unit to handling the data transferring back

to SDRAM when read miss and write miss occur. Some modification on memory

arbiter was done in order for the new cache unit worked in the memory system. This

project is modelled using Verilog HDL and a test program will be developed in order to

test the functionality and compatibility of the newly design write-back cache with the

rest of memory system (memory arbiter, SDRAM controller, SDRAM).

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 6

TABLE OF CONTENTS

Contents
Chapter 1 Introduction... 11

1.1 Background Information... 12

1.2 Motivation and Problem Background.. 13

1.3 Problem Statement... 14

Chapter 2 Literature Review.. 15

2.1 Write-through Scheme vs Write-back Scheme.. 15

2.2 Write buffer... 15

2.2.1 Write Buffer Saturation.. 15

2.2.2 Write-back Scheme with Write Buffer... 16

2.3 Reduce Miss Rate via Larger Block Size: Multiword Block Direct Mapped Cache.... 16

2.4 Cache Unit... 17

2.4.1 Cache Associative... 17

2.4.2 Scenarios to Represent Cache Behaviours.. 18

2.4.3 Block Partitioning of Cache Unit... 20

2.5 SDRAM... 22

2.6 SDRAM Controller.. 25

2.6.1 Block partitioning of SDRAM Controller... 26

2.7 Memory Arbiter... 27

2.7.1 I/O Description.. 28

2.7.2 Memory Arbiter State Diagram.. 31

2.7.3 State Definition.. 31

2.7.4 Output or Behaviors Corresponding to the States... 32

Chapter 3 Project Scope and Objectives... 34

3.1 Project Objectives.. 34

3.2 Impact and Significance... 35

Chapter 4 Method and Technologies Involved.. 36

4.1 Design Methodology.. 36

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 7

4.1.1 Micro-architecture Level Design (Unit Level).. 37

4.1.2 Micro-architecture Level Design (Block Level)... 37

4.2 Design Tools.. 38

4.2.1 Verilog HDL Simulator - Mentor Graphics ModelSim SE-64 10.1c....................... 38

Chapter 5 Memory System Specification.. 39

5.1 Partitioning and Design Hierarchy.. 39

5.2 Memory System Specifications... 40

5.3 Memory Map... 41

5.4 Architecture of Memory System... 43

Chapter 6 Micro-Architecture Specification... 44

6.1 Cache Unit... 44

6.2 Scenarios to Represent Cache Behaviors............................Error! Bookmark not defined.

6.3 Cache Design Protocol...Error! Bookmark not defined.

6.4 Cache Unit I/O Description.. 46

6.5 Block Partitioning of Cache Unit.. 49

6.6 Cache Controller Block.. 49

6.6.1 Cache Controller block I/O description.. 50

6.6.2 Cache Controller State Diagram... 54

6.6.3 Cache Controller State Definition................................Error! Bookmark not defined.

6.6.4 Cache Controller Output behavior................................Error! Bookmark not defined.

6.7 FIFO Controller Block... 55

6.7.1 FIFO Controller block I/O description... 55

6.7.2 FIFO Controller State Diagram.. 57

6.7.3 FIFO Controller State Definition..................................Error! Bookmark not defined.

6.7.4 Cache Controller Output behavior................................Error! Bookmark not defined.

6.8 FIFO Block.. 58

6.8.1 FIFO Controller block I/O description... 59

Chapter 7 Verification.. 62

7.1 Test Plan.. 62

7.2 Testbench Verilog Code... 66

7.3 Simulation Result... 82

Chapter 8 Conclusion..100

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 8

8.1 Conclusion..100

8.2 Discussion and Future Work..100

References..101

Appendices...103

Appendix A..103

System Specification ...103

A.2 Naming Convention..103

A.3 Basic RISC32 processor...105

A.3.1 Processor Interface...105

A.3.2 I/O Pin Description ..105

A.4 System Register..106

A.4.1 General Purpose Register...106

A.4.2 Special Purpose Register..106

A.5 Instruction Format..107

A.6 Addressing Mode...108

A.7 Instruction Set and Description...109

A.8 Memory Map...112

A.9 Operating Procedure...114

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 9

LIST OF FIGURES

Figure 1-1-1 starting with 1980 performance as a baseline, the gap in performance
between memory and processors is plotted over time.
Figure 2-2-1 Write-back scheme with write buffer
Figure 2-2-2 Multiword block direct mapped cache (block size = 32 bytes)
Figure 2-4-1 Cache Unit designed by Ching Li-lynn
Figure 2-4-2 Block Partitioning of Cache Unit designed by Ching Li-lynn
Figure 2-5-1 Block diagram of MT48LC4M32B2 (Oon Zhi Kang 2008)
Figure 2-5-2 Mode Register definitions to configure SDRAM (Micron)
Figure 2-6-1: SDRAM Controller Block Diagram designed by Chin Chun Lek
Figure 2-6-2: The Micro-Architecture of the SDRAM Controller designed by Chin
Chun Lek
Figure 2-7-1: Memory Arbiter Block Diagram
Figure 2-7-2: Memory Arbiter State Diagram
Figure 4-1-1 General Design Flow without Synthesis and Physical Design
Figure 5-1-1 Memory System Partitioning
Figure 5-4-1 Architecture of Memory System
Figure 6-1-1 Block diagram of cache unit
Figure 6-3-1 Read Protocol of Cache
Figure 6-3-2 Write Protocol of Cache
Figure 6-5-1 Block Partition of Cache Unit
Figure 6-6-1 Block diagram of Cache Controller Block
Figure 6-6-2 State Diagram of Cache Controller
Figure 6-7-1 Block diagram of FIFO Controller Block
Figure 6-7-2 State Diagram of Cache Controller
Figure 6-8-1 Block diagram of FIFO Block

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 10

LIST OF TABLES

Table 2-5-1 List of SDRAM commands and function. (Micron datasheet)

Table 2-7-1: Memory Arbiter I/O Descriptions

Table 2-7-4: Memory Arbiter Output or Behaviours Corresponding to the States

Table 5-1-1 Design hierarchy for 32-bit Memory System

Table 5-2-1 Specifications of the Memory System

Table 5-3-1 Virtual memory map of 32-bits MIPS

Table 6-4-1: Cache Unit I/O Descriptions

Table 6-6-1: Cache Controller Block I/O Descriptions

Table 6-6-2: Cache Controller State Definition

Table 6-6-3: Cache Controller Output or Behaviors Corresponding to the State

Table 6-7-1: Cache Controller Block I/O Descriptions

Table 6-7-2: Cache Controller State Definition

Table 6-7-3: Cache Controller Output or Behaviors Corresponding to the State

Table 6-8-1: FIFO Block I/O Descriptions

Table 7-1-1: Memory system Full Chip Test Plan

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 11

LIST OF ABBREVIATIONS

MIPS Microprocessor without Interlocked Pipeline Stages

RISC Reduced Instruction Set Computing

CPU Central Processing Unit

RTL Register Transfer Level

I/O Input output

FIFO First In First Out

SOC System On Chip

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 12

Chapter 1 Introduction

1.1 Background Information
The growing disparity between microprocessor and memory cause by the division of the

semiconductor industry into CPU fields and memory fields which their technology have

focus on different achievement, the first one has concentrated on increased in speed,

while the latter one has concentrated on increased in capacity. Thus the improvement

rate in microprocessor speed by far exceeds the one in memory. The continuous

growing gap between CPU and memory speeds is a crucial flaw in the overall computer

performance. Throughout the history, CPU speeds have been improving at an average

of 55% per year, while memory latency has only been improving at 7% per year

(Hennessy and Patterson 2007, p. 289).

The performance gap grows exponentially. This make increasing processor-

memory performance gap is now the leading direction to improved computer system

performance.

Figure 1-1-1 starting with 1980 performance as a baseline, the gap in performance
between memory and processors is plotted over time.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 13

Memory Hierarchy was introduced in the late of sixties to provide decreased

average latency and reduced bandwidth requirements to speed up memory system. The

performance of a memory-hierarchy analyse through the average memory access time,

using the following expression:

average memory access time = hit time + miss rate * miss penalty.

 (Araújo 2002, p.146)

Thus the effort to decrease the performance gap between processor and physical

memory has been concentrated on efficient implementations of a memory hierarchy to

reduce miss rate, miss penalty and hit time.

1.2 Motivation and Problem Background
A 32-bit RISC processor has been developed in Faculty of Information and

Communication Technology, University Tunku Abdul Rahman (UTAR). The project is

based on Reduced Instruction Set Computing (RISC) architecture. There are several

purposes to initiate this project.

• Microchip design companies develop microprocessor cores as IP (Intellectual

Property) for commercial purposes only. This simply means that the

microprocessor IP which includes information of the entire design process for

front-end and back-end IC design are trade secrets of the company and certainly

not available in market at affordable price. Hence, RISC32 project is started at

University Tunku Abdul Rahman few years ago and still working to complete

the design.

• There are several freely available microprocessor cores from open source such

as OpenCores (opencores.org) which is the largest site for development of

hardware IP cores as open source. However these processors are not complete

and did not implement the entire MIPS Instruction Architecture (ISA).

Furthermore, they are lack of comprehensive documentation which makes them

not suitable for reuse and further customization.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 14

• Verification is important for proving the functionality of any digital design. The

microprocessors mentioned above are handicapped by incomplete and poorly

developed verification specifications. This hampers the verification process,

slowing down the overall design process.

• The lack of well-developed verification specifications for these microprocessor

cores will certainly affect the physical design phase. A design need to be

functionally proven before the physical design phase can proceed smoothly.

Otherwise, if front-end design requires changing, the entire physical design

needs to be redone.

1.3 Problem Statement
This project is aim to provide a solution to the above problems by creating a 32-bit

RISC core-based development environment to assist research work in the area of soft-

core and also application specific hardware modelling. Currently, a SDRAM Controller

and SDRAM provided by MICRON Technology Inc. has been modelled at the Register

Transfer Level (RTL) using Verilog HDL and both of them have been combined

together and had gone through a series of simulation test. There is also a cache and a

TLB modelled at RTL using Verilog HDL, both of them were integrated together with

the SDRAM controller as a complete memory system.

Seniors of UTAR FICT computer engineering implemented cache unit, memory

arbiter and SDRAM controller. In previous implementation, cache unit is a write-

through 2-way set associative caches which it can be improved. Thus this project aim to

redesign the cache unit into a write-back multiword direct mapped cache with write

buffer (FIFO). The cache unit’s protocol need to redesign because of the inclement of

write-back ability in cache unit. After implemented the new cache unit, a little

modification needs to be done in memory arbiter unit in order to compatible with the

new cache unit. After that the functionality need to verify so that every unit is working

as expected.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 15

Chapter 2 Literature Review

2.1 Write-through Scheme vs Write-back Scheme
Write-through cache: Data are written into the cache and sent to the main memory (in

this project is SDRAM) as operation is executed. This ensures that the contents of the

cache and main memory are always the same, but it has downside that it experiences

latency based on writing to SDRAM. This cache is good for application that writes and

then re-read data frequently.

Write-back cache: Write-back cache keep stored data in the cache, and when a block

that has been written is evicted from the cache, the contents of the block are then

written back (copied) into the main memory (SDRAM). Write-back cache keep stored

data in the cache, the main memory become the same after the contents of the block are

written back (copied) into main memory. The disadvantage is there is data availability

exposure risk because the only copy of the written data is in cache. Write-back cache is

the best performing solution for mixed workloads as both read and write have similar

response time levels. (Carter 2002)

This mean that if use write-through cache system performance is limited by memory

speed whereas if use write-back cache the cache will get the full performance.

2.2 Write buffer
Data is not written to the main memory directly but into the write buffer first. Once the

data is written into the write buffer and assuming cache hit, the CPU is done with the

write, then the SDRAM controller will move the write buffer’s contents to the real

memory behind the scene. This work as long as the frequency of store is not too high.

2.2.1 Write Buffer Saturation
When store frequency approaching main memory write frequency it leads to write

buffer saturation. In this case no matter how big the write buffer it is it will still

overflow because data simply come in faster than it can empty it, thus CPU will running

at main memory cycle time, which is very slow. The solution for write buffer saturation

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 16

is to get rid of this write buffer and replace this write through cache with a write back

cache. (Mok KM 2009)

2.2.2 Write-back Scheme with Write Buffer
Write buffer allow cache to proceed as soon as data is placed in buffer rather than wait

the full latency to write the data into memory. Write-back scheme write data to cache

only. It makes main memory is not updated and allow cache and memory to be

inconsistent. Since data in cache and memory is inconsistent, each block of data

requires a dirty bit to indicate a block is modified. If block replacement happen in cache,

only evicted dirty block is kept in a write buffer so that it can write-back to memory

later. The drawback of this is it has complex hardware.

Figure 2-2-1 Write-back scheme with write buffer

2.3 Reduce Miss Rate via Larger Block Size: Multiword Block Direct Mapped
Cache
Using multiword block direct mapped cache is the simplest way to reduce miss rate.

This take advantage of spatial locality which mean if a word is accessed, nearby words

are likely to be accessed soon, thus it is better to move more words per block from

memory to cache. However when miss happen it takes more cycle to handle the miss

(miss penalty increase).

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 17

Figure 2-2-2 Multiword block direct mapped cache (block size = 32 bytes)

2.4 Cache Unit
A 2-way set associative write-through cache of 2MB has been modelled by Ching Li-

lynn. This cache can be used as both Instruction Cache and Data Cache. Inside of cache

unit consists of cache controller block and cache datapath block.

Figure 2-4-1 Cache Unit designed by Ching Li-lynn

2.4.1 Cache Associative
• The current cache is a 2-way set associative cache

• N-Way set associative - uses N cache, data RAMs and N cache-tag RAMs (built

out of N RAMs and N comparators, a cache controller, and isolation buffers. It

is actually separate the memory into different set of caches and ease the

replacement and searching policy.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 18

• 1-way set associative cache = direct mapped cache

2.4.2 Scenarios to Represent Cache Behaviours
Basically there are just 4 scenarios might be happened on cache, we need to decide what

to do when these scenarios happen.

1. Read Miss

• Receive physical address and instructions of read from the main

controller of the CPU.

• Check validity and tag for the index of the physical address points to. A

miss signal is produced due to either it is invalid or the tag is different.

• Cache controller asserts strobe, cycle, and read signals to SDRAM

controller to fetch new black of data.

• Meanwhile, the pipelines of the CPU are stalled.

• Check LRU to determine which slot is least recently used, store the

newly fetched block of data in it.

• Set valid bit for the index pointed.

• Update LRU.

• Deassert the miss, strobe, cycle and read signal, the pipelines are

un-stalled.

2. Read Hit

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 19

• Receive physical address and instruction of read from the main controller

of CPU.

• Check validity and tag for index of the physical address points to. Miss

signal is active low.

• Load the selected instruction or data by determining the byte offset to

host.

• Update LRU.

3. Write Miss (For D-Cache only)

• Receive physical address, data, and instruction of write from the main

controller of CPU.

• Check validity and tag for the index of the physical address points to. A

miss signal is produced due to either it is invalid or the tag is different.

• Stall the pipelines.

• Check LRU to determine which is least recently used.

• Cache controller asserts strobe, cycle, and read to SDRAM controller to

access the data in SDRAM.

• If the block of data was dirty, send the block of 8 words back to SDRAM.

• Fetch new block of data from SDRAM.

• After the new block is updated from SDRAM, strobe, cycle, read and

miss signals are deasserted.

• Perform the write.

• Update LRU.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 20

4. Write Hit (For D-Cache only)

• Receive physical address, data, and instruction of write from main

controller of CPU.

• Check validity of tag for index of the physical address points to. Miss

signal is active low.

• Update the selected instruction or data.

• Update LRU.

2.4.3 Block Partitioning of Cache Unit

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 21

Figure 2-4-2 Block Partitioning of Cache Unit designed by Ching Li-lynn

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 22

2.5 SDRAM
Synchronous Dynamic Random Access Memory (SDRAM) is a type of DRAM that is

synchronised with the system bus. This project uses a SDRAM that is provided by

MICRON Technology Inc. It is MT48LC4M32B2, with 16MB of storage. (Micron

datasheet, n.d.) SDRAM control by SDRAM controller modelled by Chin Chun Lek

thus in this project just need to focus on function of SDRAM and it configuration – load

mode definition.

Figure 2-5-1 Block diagram of MT48LC4M32B2 (Oon Zhi Kang 2008)

The cs (active low) pin is used to select the SDRAM, while we, cas and ras are used to

request operations from the SDRAM.

Table 2-5-1 List of SDRAM commands and function. (Micron datasheet)

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 23

Figure 2-5-2 Mode Register definitions to configure SDRAM (Micron)

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 24

• Burst Length

Determine the maximum number of column locations that can be accessed for a

given READ or WRITE operation.

• Burst Type

Select either sequential or interleaved burst to be adopted by SDRAM. The

ordering of accesses within a burst is determined by burst length, burst type,

starting column address.

• CAS Latency

Delay in clock cycles between registration of a READ command and the

availability of the first piece of output data. It can only be set to 2 or 3 clock

cycles.

• Operating Mode

Select which operating mode should the SDRAM be. Currently there is only

normal operating mode is available for use.

• Writing Burst Mode

When it is ‘0’, the burst length is programmed via M0-M2 applies to both

READ and WRITE burst.

When it is ‘1’, the programmed burst length applies to READ bursts, but write

accesses are single-location (non-burst) accesses.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 25

32

ui_sdc_read

ui_sdc_write

ui_host_ld_mode

ui_sdc_sel

ui_sdc_addr

ui_sdc_dat

ui_sdc_clk

ui_sdc_rst

uo_sdc_dat
uo_sdc_ack
uio_sdc_dq
uo_sdc_ba

uo_sdc_dqm
uo_sdc_addr
uo_sdc_cs_n

uo_sdc_ras_n
uo_sdc_cas_n

uo_sdc_we_n

u_sdram_controller

4

32

32

2

4

12

32

Destination name:

SDRAM

Source name:

u_mem_arbiter

Destination name:

u_mem_arbiter

2.6 SDRAM Controller
A SDRAM controller had been modelled by Chin Chun Lek. The SDRAM controller

acts as an intermediary between the SDRAM and the CPU. It handles SDRAM

operations using some protocols. It has no longer been modeled based on Industry

standard HOST SoC interface due to the current design needs.

The main features of SDRAM Controller are:

1) Burst transfers and burst termination

2) SDRAM initialization support

3) Performance optimization by leaving active rows open

4) Load mode control

Figure 2-6-1: SDRAM Controller Block Diagram designed by Chin Chun Lek

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 26

ui_sdc_sel

uo_sdc_ack

uo_sdc_cs_n

uo_sdc_ras_n

uo_sdc_cas_n

uo_sdc_we_n

uo_sdc_dqm

uo_sdc_ba

uo_sdc_addr

uo_sdc_dat

uio_sdc_dq

[11:10]

[23:12]

bi_obrt_bank_act
bi_obrt_bank_clr
bi_obrt_bank_clr_all
bi_obrt_row_addr
bi_obrt_bank_addr
bi_sdc_clk
bi_sdc_rst

bo_obrt_bank_open
bo_obrt_any_bank_open

bo_obrt_row_same
12

b_sdc_obrt_top

2

bi_amx_addr
bi_amx_sel
bi_amx_cfg_mode
bi_amx_a10_cmd
bi_amx_lmr_sel
bi_amx_row_sel

bo_amx_dqm
bo_amx_ba

bo_amx_addr

32

b_sdc_addr_mux

4

12

4

2

14

ui_sdc_clk

ui_sdc_rst

ui_sdc_dat

ui_sdc_ld_mode
ui_sdc_read

ui_sdc_write

ui_sdc_addr

bi_sdif_dqm
bi_sdif_ba
bi_sdif_addr
bi_sdif_cmd
bi_sdif_woe
bi_sdif_roe
bi_sdif_dat
bi_sdc_clk
bi_sdc_rst

bo_sdif_cs_n
bo_sdif_ras_n
bo_sdif_cas_n
bo_sdif_we_n
bo_sdif_dqm

bo_sdif_ba
bo_sdif_addr
bo_sdif_dat
bio_sdif_dq

b_sdc_sdram_if

4

2

14

4
4

2

12
32

32

32

bi_fsm_newcfg
bi_fsm_ld_mode
bi_fsm_read
bi_fsm_write
bi_fsm_bank_open
bi_fsm_any_bank_open
bi_fsm_row_same
bi_sdc_rst
bi_sdc_clk

[11:0]

4

bo_fsm_cfg_mode
bo_fsm_bank_act
bo_fsm_bank_clr

bo_fsm_bank_clr_all
bo_fsm_a10_cmd

bo_fsm_lmr_sel
bo_fsm_row_sel

bo_fsm_woe
bo_fsm_roe

bo_fsm_cmd
bo_fsm_ack

12

b_sdc_fsm

12

2.6.1 Block partitioning of SDRAM Controller

Figure 2-6-2: The Micro-Architecture of the SDRAM Controller designed by Chin Chun Lek

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 27

ui_ma_sdc_data

ui_ma_sdc_ack

uo_ma_sdc_read

uo_ma_sdc_write

uo_ma_sdc_host_ld_mode

uo_ma_sdc_sel

uo_ma_sdc_addr

uo_ma_sdc_data

u_mem_arbiter

32 32

32

4

32

32

4

32

4

32

32

32

32

4

32

32

32

4

32

32

ui_ma_cac_read3

ui_ma_cac_write3

ui_ma_cac_host_ld_mode3

ui_ma_cac_sel3

ui_ma_cac_addr3

ui_ma_cac_data3

ui_ma_cac_miss3

uo_ma_cac_ack3

uo_ma_cac_data3

ui_ma_cac_read2

ui_ma_cac_write2

ui_ma_cac_host_ld_mode2

ui_ma_cac_sel2

ui_ma_cac_addr2

ui_ma_cac_data2

ui_ma_cac_miss2

uo_ma_cac_ack2

uo_ma_cac_data2

ui_ma_cac_read1

ui_ma_cac_write1

ui_ma_cac_host_ld_mode1

ui_ma_cac_sel1

ui_ma_cac_addr1

ui_ma_cac_data1

ui_ma_cac_miss1

uo_ma_cac_ack1

uo_ma_cac_data1

ui_ma_cac_read0

ui_ma_cac_write0

ui_ma_cac_host_ld_mode0

ui_ma_cac_sel0

ui_ma_cac_addr0

ui_ma_cac_data0

ui_ma_cac_miss0

uo_ma_cac_ack0

uo_ma_cac_data0

Destination name:

u_sdram_controller

Source name:

u_sdram_controller

Destination name:

cache3

Source name:

cache3

Destination name:

cache2

Source name:

cache2

Destination name:

cache1

Source name:

cache1

Destination name:

cache0

Source name:

cache0

2.7 Memory Arbiter
Chin Chun Lek had modelled a new memory arbiter. This memory arbiter allows

multiple caches to access single SDRAM by given priority. The block diagram below

shows a memory arbiter that can support up to 4 caches. Some modification needs to be

done after that in order to compatible with this project newly designed cache unit.

Figure 2-7-1: Memory Arbiter Block Diagram

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 28

2.7.1 I/O Description
Pin name: ui_ma_cac_read

Pin class: Control

Path: TLB or Cache � Memory Arbiter

Description: read signals from the TLBs and Caches.

Pin name: ui_ma_cac_write

Pin class: Control

Path: TLB or Cache � Memory Arbiter

Description: write signal from the TLBs and Caches.

Pin name: ui_ma_cac_host_ld_mode

Pin class: Control

Path: TLB or Cache � Memory Arbiter

Description: Host Load Mode signals from the TLBs and Caches.

Pin name: ui_ma_cac_sel

Pin class: Control

Path: TLB or Cache � Memory Arbiter

Description: Byte Select signals from the TLBs and Caches.

Pin name: ui_ma_cac_addr

Pin class: Address

Path: TLB or Cache � Memory Arbiter

Description: Addresses from the TLBs and Caches.

Pin name: ui_ma_cac_data

Pin class: Data

Path: TLB or Cache � Memory Arbiter

Description: Data from the TLBs and Caches.

Pin name: ui_ma_cac_miss

Pin class: Control

Path: TLB or Cache � Memory Arbiter

Description: Miss signals from the TLBs and Caches.

Pin name: uo_ma_cac_ack

Pin class: Control

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 29

Path: Memory Arbiter � TLB or Cache

Description: Acknowledge signal (active HIGH) to indicate read or write to SDRAM

is done, and send to Caches or TLB.

Pin name: uo_ma_cac_data

Pin class: Data

Path: Memory Arbiter � TLB or Cache

Description: 32-bits data that goes to Cache or TLB.

Pin name: ui_ma_sdc_data

Pin class: Data

Path: Memory Arbiter � SDRAM Controller

Description: 32-bits data that comes from SDRAM.

Pin name: ui_ma_sdc_ack

Pin class: control

Path: Memory Arbiter � SDRAM Controller

Description: Acknowledge signal (active HIGH) to indicate read or write to SDRAM

is done.

Pin name: uo_ma_sdc_host_ld_mode

Pin class: control

Path: Memory Arbiter � SDRAM Controller

Description: Host Load Mode signals that send to SDRAM Controller.

Pin name: uo_ma_sdc_read

Pin class: control

Path: Memory Arbiter � SDRAM Controller

Description: read signal that goes to SDRAM Controller

Pin name: uo_ma_sdc_write

Pin class: control

Path: Memory Arbiter � SDRAM Controller

Description: Write signal that goes to SDRAM Controller.

Pin name: uo_ma_sdc_sel

Pin class: control

Path: Memory Arbiter � SDRAM Controller

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 30

Description: 4-bits control signals to mask which byte of the 4 bytes (32-bits) data

goes in or comes out from SDRAM.

When it is ‘1’, the corresponding byte will enable.

When it is ‘0’, the corresponding byte will be masked and the output becomes ‘z’.

Pin name: uo_ma_sdc_addr

Pin class: control

Path: SDRAM Controller � Memory Arbiter

Description: 32-bits address to indicate which location in the SDRAM to be

accessed.

Pin name: uo_ma_sdc_data

Pin class: control

Path: SDRAM Controller � Memory Arbiter

Description: 32-bits data that goes into the SDRAM.

When wants to configure the operating mode of the SDRAM, the configuration values

goes into SDRAM via this port too.

Table 2-7-1: Memory Arbiter I/O Descriptions

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 31

else

miss3’.miss2’.miss1’.miss0

else

else miss3’.miss2’.miss1

miss3’.miss2

else

miss3

cache3

idle cache2 cache0

cache1

miss3

miss2
miss0

miss1

2.7.2 Memory Arbiter State Diagram

Figure 2-7-2: Memory Arbiter State Diagram

2.7.3 State Definition

 State Name Definition

cache3 First priority cache given to perform operation

cache2 Second priority cache given to perform operation

cache1 Third priority cache given to perform operation

cache0 Last priority cache given to perform operation

Memory

Arbiter

idle Wait for new operation

Table 2-7-2: State Definition of Memory Arbiter

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 32

2.7.4 Output or Behaviors Corresponding to the States
State Name Correspondence Output Behaviors

cache3

When ui_ma_cac_miss3 = 1,

from cache3 to SDRAM controller:

uo_ma_sdc_read = ui_ma_cac_read3,

uo_ma_sdc_write = ui_ma_cac_write3,

uo_ma_sdc_host_ld_mode = ui_ma_cac_host_ld_mode3

uo_ma_sdc_sel = ui_ma_cac_sel3,

uo_ma_sdc_addr = ui_ma_cac_addr3,

uo_ma_sdc_data = ui_ma_cac_data3

from SDRAM controller to cache3:

ui_ma_sdc_ack = uo_ma_cac_ack3,

ui_ma_sdc_data = uo_ma_cac_data3

cache2 When ui_ma_cac_miss3 = 0 and

ui_ma_cac_miss2 = 1,

from cache2 to SDRAM controller:

uo_ma_sdc_read = ui_ma_cac_read2,

uo_ma_sdc_write = ui_ma_cac_write2,

uo_ma_sdc_host_ld_mode = ui_ma_cac_host_ld_mode2

uo_ma_sdc_sel = ui_ma_cac_sel2,

uo_ma_sdc_addr = ui_ma_cac_addr2,

uo_ma_sdc_data = ui_ma_cac_data2

from SDRAM controller to cache2:

ui_ma_sdc_ack = uo_ma_cac_ack2,

ui_ma_sdc_data = uo_ma_cac_data2

cache1 When ui_ma_cac_miss3 = 0 and

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 33

ui_ma_cac_miss2 = 0 and

ui_ma_cac_miss1 = 1,

from cache1 to SDRAM controller:

uo_ma_sdc_read = ui_ma_cac_read1,

uo_ma_sdc_write = ui_ma_cac_write1,

uo_ma_sdc_host_ld_mode = ui_ma_cac_host_ld_mode1

uo_ma_sdc_sel = ui_ma_cac_sel1,

uo_ma_sdc_addr = ui_ma_cac_addr1,

uo_ma_sdc_data = ui_ma_cac_data1

from SDRAM controller to cache1:

ui_ma_sdc_ack = uo_ma_cac_ack1,

ui_ma_sdc_data = uo_ma_cac_data1

cache0 When ui_ma_cac_miss3 = 0 and

ui_ma_cac_miss2 = 0 and

ui_ma_cac_miss1 = 0 and

ui_ma_cac_miss0 = 1,

from cache0 to SDRAM controller:

uo_ma_sdc_read = ui_ma_cac_read0,

uo_ma_sdc_write = ui_ma_cac_write0,

uo_ma_sdc_host_ld_mode = ui_ma_cac_host_ld_mode0

uo_ma_sdc_sel = ui_ma_cac_sel0,

uo_ma_sdc_addr = ui_ma_cac_addr0,

uo_ma_sdc_data = ui_ma_cac_data0

from SDRAM controller to cache0:

ui_ma_sdc_ack = uo_ma_cac_ack0,

ui_ma_sdc_data = uo_ma_cac_data0

idle All outputs are received zero.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 34

Table 2-7-4: Memory Arbiter Output or Behaviours Corresponding to the States

Chapter 3 Project Scope and Objectives
This project aims to redesign existing memory system by changing write-through

scheme to write-back scheme by adding a write buffer (FIFO) to improve the efficiency

of previous memory system. A fully functionality verified and synthesis-ready model

will be modelled in RTL using the Verilog HDL at the end of this project including the

development of test specification, test plan, test vector and testbench which are written

in Verilog HDL to ensure functional correctness and the performance.

3.1 Project Objectives
This project’s objectives include:

• Design the write-back scheme direct mapped cache unit.

• Design the protocol of cache unit (cache controller block).

• Design the write buffer (FIFO).

• Design the protocol of write buffer (FIFO controller block).

• Modification on memory arbiter to compatible with new cache unit.

• Integration of cache unit, memory arbiter, SDRAM controller and SDRAM.

• Verified the functionality of the integrated unit (cache unit, memory arbiter,

SDRAM controller and SDRAM) by construct proper test cases.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 35

3.2 Impact and Significance
As a summary to the problem statement, there is a lack of well-developed and well-

founded 32-bit RISC microprocessor core-based development environment. The

development environment refers to the availability of the following:

• A well-developed design document, which includes the chip specification,

architecture specification and micro-architecture specification.

• A fully functional well-developed 32-bit RISC architecture core in the form of

synthesis-ready RTL written in Verilog HDL.

• A well-developed verification environment for the 32-bit RISC core. The

verification specification should contain suitable verification methodology,

verification techniques, test plans, testbench architectures etc.

• A complete physical design in Field Programmable Gate Array (FPGA) with

documented timing and resource usage information.

With the available well-developed basic 32-bit RISC RTL model (which has been fully

functional verified), the verification environment and the design documents, researchers

can develop their own specific RTL model as part of the development environment

(whether directly modifying the internals of the processor or interface to the processor)

and can quickly verify their model to obtain results, without having to worry about the

development of the verification environment and the modeling environment. This can

speed up the research work significantly. For example, a researcher may have

developed an image-processing algorithm and modified the algorithm to obtain a

structure that suits the hardware implementation. The structure can be modeled in

Verilog as part of a specialized datapath or as a coprocessor interfacing to the RISC

processor.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 36

Chapter 4 Method and Technologies Involved

4.1 Design Methodology
There are several types of design methodologies for design process:

• Top-down design methodology

• Bottom-up design methodology

• Mixed design methodology

A top down design approach was adopted as the main design methodology in this

project as shown in the following figure.

Figure 4-1-1 General Design Flow without Synthesis and Physical Design

This methodology put design partition reduces a complex design into smaller

and a manageable piece thus provides step to step guideline that leading to a good

design work and development of systems A good design methodology can ensure that

functionality correctness in design, satisfaction in term of performance and power goals,

can catches bugs at early stage, and provide good documentation for future references

(Wolf 2004, p.22).

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 37

This project only involved in micro-Architecture level design (Unit Level and

Block Level) since higher architecture level had been complete and waiting for

integration only.

4.1.1 Micro-architecture Level Design (Unit Level)
The alternate appellation of this level is RTL (Register Transfer Level). This level

describes the internal design of architecture unit module with data flow. The unit

module is partition into several blocks which each block have its own functionality to

carry out the sub-function of the unit module to reduce complexity of design process.

4.1.2 Micro-architecture Level Design (Block Level)
This level further describes each partition from previous level which is block. Their

specification are written in this level, normally carry following information such as:

• Functionality / Feature

• Block interface and I/O pin description

• Internal operation which include function table

• Schematic and block diagram

• Test plan

• Timing requirement

 Once done with the micro-architecture specification, with the information in the

specification, RTL modelling with High Level Language or Hardware Description

Language (HDL) can be start. It is combination of behaviour and data flow

synthesizable HDL model. Throughout the RTL modelling, Verilog will be use as the

design language in this project. The model can be simulate and synthesis. The model is

then need to go through verification process which verify the functionality of the design

which need to meet the micro-architecture specification. Verification includes

development of testbench, timing verification and functionality verification.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 38

4.2 Design Tools

4.2.1 Verilog HDL Simulator - Mentor Graphics ModelSim SE-64 10.1c
Develop using Verilog Hardware Description Language (HDL) require a simulator tool

that can provide simulation environment to verify the functional behaviours and

waveform simulation. With multiple choices of HDL simulator in the market, a research

had been to choose the most appropriate design tools for this project which affect by

language supported, availability, price and etc. From the consideration above,

ModelSim from Mentor Graphic is the best choice as a design tools for this project as

they offer a free license for Student Edition, can found in internet and support Microsoft

Windows platform. Although with some limitation, which is slower simulation speed

than full version and have code limitation, but it is sufficient for this project as the

scope of this project would not reach the limit.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 39

Chapter 5 Memory System Specification

5.1 Partitioning and Design Hierarchy

Figure 5-1-1 Memory System Partitioning

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 40

Chip Partitioning at
Architecture level

Unit Partitioning at Micro-
Architecture Level

Block and Functional Block
Partitioning at RTL level

(Micro-Architecture level)
b_cache_ctrl

b_fifo_ctrl

u_cache (for data)

b_fifo

b_cache_ctrl

b_fifo_ctrl

u_cache (for instruction)

b_fifo

u_mem_arbiter -

b_sdc_fsm

b_sdc_sdram_if

b_sdc_addr_mux

u_sdram_controller

b_sdc_obrt_top

Memory System unit

sdram (mt48lc4m32b2) -

Table 5-1-1 Design hierarchy for 32-bit Memory System

5.2 Memory System Specifications
 RISC32 with Integrated Main Memory

SDRAM 16MB

Instruction Cache Direct mapped write-back cache, 2MB

Data Cache Direct mapped write-back cache, 2MB

Data Bus Width 32-bits

Instruction Width 32-bits

Table 5-2-1 Specifications of the Memory System

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 41

5.3 Memory Map
Segment Address Purpose

kseg2 – 1GB 0xFFFF FFFF

0xC000 0000

Kernel module,
Page Table allocated here

kseg1 – 512MB 0xBFFF FFFF

0xA000 0000

Boot Rom
I/O Register (if below 512MB)

kseg0 – 512MB 0x9FFF FFFF

0x8000 0000

Direct view of memory to 512MB
kernel code and data.
Exception and Page Table Base
Register allocated here.

0x7FFF FFFF

0x1000 8000

Stack Segment starts from the ending
address and expand down.
Heap Segment starts from the starting
address and expand top.

0x1000 7FFF

0x1000 0000

Data segment and Dynamic library
code.

0x09FFF FFFF

0x0040 0000

Code Segment, where the main
program stored.

kuseg – 2GB

0x003F FFFF

0x0000 0000

Reserved

Table 5-3-1 Virtual memory map of 32-bits MIPS

• Stack Segment

o Use for storing automatic variables, which are variables that allocated

and de-allocated automatically when program flow.

• Heap Segment

o Use for dynamic memory allocation such as malloc(), realloc() and free().

• Data Segment

o Use for storing global or static variables that initialize by programmer.

• Code Segment

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 42

o Use for storing codes of main program or main program instructions.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 43

5.4 Architecture of Memory System

Figure 5-4-1 Architecture of Memory System

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 44

Chapter 6 Micro-Architecture Specification

6.1 Cache Unit

Figure 6-1-1 Block diagram of cache unit

This is a direct mapped write-back cache with write buffer. The functionalities of Cache

Unit are:

1. Store a small fraction of data (for D-Cache) or instructions (for I-Cache) of main

memory.

2. Output desired data or instruction to CPU when it issues a READ.

3. Write data into desired location as instructed by CPU (D-Cache only).

4. Send signal to stall the CPU when read miss or write miss.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 45

5. Communicate with SDRAM Controller to write back ‘dirty’ block of data back

into SDRAM and fetch new block of data from it.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 46

6.4 Cache Unit I/O Description
Input pins

Pin name: ui_cac_clk

Pin class: Global

Path: External � Cache

Description: System clock signal.

Pin name: ui_cac_rst

Pin class: Global

Path: External � Cache

Description: System reset signal.

Pin name: ui_cac_cpu_data[31:0]

Pin class: Data

Path: CPU� Cache

Description: 32-bits data from CPU that to be written into the cache.

Pin name: ui_cac_cpu_addr[31:0]

Pin class: Address

Path: CPU� Cache

Description: 32-bits address from CPU that indicates the location that to be accessed.

Pin name: ui_cac_cpu_read

Pin class: Control

Path: CPU� Cache

Description: A control signal that enables the read from cache based on

ui_cac_cpu_addr[31:0] when it is asserted (HIGH).

Pin name: ui_cac_cpu_write

Pin class: Control

Path: CPU� Cache

Description: A control signal that enables the write of data into cache based on

ui_cac_cpu_addr[31:0] when asserted (HIGH).

Pin name: ui_cac_mem_ack

Pin class: Control

Path: Memory Arbiter � Cache

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 47

Description: Acknowledge signal (active HIGH) to indicate read data is ready from

SDRAM (read from SDRAM) or SDRAM prepare to receive data (write to SDRAM).

Pin name: ui_cac_mem_data[31:0]

Pin class: Data

Path: Memory Arbiter � Cache

Description: 32-bits data that is read from SDRAM.

Pin name: ui_cac_mem_lmc_same

Pin class: Status

Path: Memory Arbiter � Cache

Description: Indicate the configuration of SDRAM is same when asserted (HIGH).

Output pins

Pin name: uo_cac_cpu_data[31:0]

Pin class: Data

Path: Cache� CPU

Description: 32-bits data that to be output to CPU.

Pin name: uo_cac_cpu_stall

Pin class: Control

Path: Cache� CPU

Description: A status signal that used to stall the pipelines.

Pin name: uo_cac_miss

Pin class: Status

Path: Cache� Memory Arbiter

Description: A status signal indicates cache miss.

Pin name: uo_cac_mem_read

Pin class: Control

Path: Cache� Memory Arbiter

Description: Read signal that indicate need read from SDRAM.

Pin name: uo_cac_mem_write

Pin class: Control

Path: Cache� Memory Arbiter

Description: Write signal that indicate need write data into SDRAM.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 48

Pin name: uo_cac_mem_sel[3:0]

Pin class: Control

Path: Cache� Memory Arbiter

Description: 4-bits control signals to mask which byte of the 4 bytes (32-bits) data

goes in or comes out from SDRAM.

When it is ‘1’, the corresponding byte will enable.

When it is ‘0’, the corresponding byte will be masked and the output becomes ‘z’.

Pin name: uo_cac_mem_addr[31:0]

Pin class: Address

Path: Cache� Memory Arbiter

Description: 32-bits address that indicates which location in the SDRAM to be

accessed.

Pin name: uo_cac_mem_data[31:0]

Pin class: Data

Path: Cache� Memory Arbiter

Description: 32-bits data that to be written in to the SDRAM.

Pin name: uo_cac_mem_lmc_data[31:0]

Pin class: Data

Path: Cache� Memory Arbiter

Description: 32-bits data that configure the SDRAM.

Pin name: uo_cac_mem_data_ready

Pin class: Status

Path: Cache� Memory Arbiter

Description: When asserted (HIGH), data is ready write back from FIFO to SDRAM.

Pin name: uo_cac_mem_complete

Pin class: Status

Path: Cache� Memory Arbiter

Description: Indicates one block of data was written into SDRAM when HIGH.

Table 6-4-1: Cache Unit I/O Descriptions

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 49

6.5 Block Partitioning of Cache Unit

Figure 6-5-1 Block Partition of Cache Unit

6.6 Cache Controller Block

Figure 6-6-1 Block diagram of Cache Controller Block

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 50

Functionalities of Cache Controller:

1. Control main activity of cache unit.

2. Determine data to read when read hit.

3. Determine data to be updated when write hit.

4. Determine data to read from SDRAM when miss.

5. Output control signal and status signal to write back data from FIFO to cache.

6. Output control signal to move dirty data from cache to FIFO.

7. Output control signal and status signal out to CPU and SDRAM.

6.6.1 Cache Controller block I/O description
Input pins

Pin name: bi_cac_ctrl_clk

Pin class: Global

Path: External � Cache � Cache Controller

Description: System clock signal.

Pin name: bi_cac_ctrl_rst

Pin class: Global

Path: External � Cache � Cache Controller

Description: System reset signal.

Pin name: bi_cac_ctrl_lmc_same

Pin class: Status

Path: Memory Arbiter � Cache � Cache Controller

Description: Indicates the configuration of SDRAM is same when asserted (HIGH).

Pin name: bi_cac_ctrl_mem_ack

Pin class: Control

Path: SDRAM controller � Memory Arbiter � Cache � Cache Controller

Description: Acknowledge signal (active HIGH) to indicate read data is ready from

SDRAM(read from SDRAM) or SDRAM prepare to receive data (write to SDRAM).

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 51

Pin name: bi_cac_ctrl_cpu_write

Pin class: Control

Path: CPU� Cache � Cache Controller

Description: A control signal that enables the write of data into cache based on

ui_cac_cpu_addr[31:0] when asserted (HIGH).

Pin name: bi_cac_ctrl_cpu_read

Pin class: Control

Path: CPU� Cache � Cache Controller

Description: A control signal that enables the read from cache based on

ui_cac_cpu_addr[31:0] when it is asserted (HIGH).

Pin name: bi_cac_ctrl_hit

Pin class: Status

Path: Cache � Cache Controller

Description: Asserted when (tag == tag_ram) && (valid_ram == 1).

Pin name: bi_cac_ctrl_dirty

Pin class: Status

Path: Cache � Cache Controller

Description: Asserted when dirty_ram == 1.

Pin name: bi_cac_ctrl_fifo_busy

Pin class: Status

Path: FIFO � Cache Controller

Description: HIGH when FIFO is writing into SDRAM.

Pin name: bi_cac_ctrl_fifo_full

Pin class: Status

Path: FIFO � Cache Controller

Description: Status signal that indicate FIFO is full.

Pin name: bi_cac_ctrl_fifo_hit

Pin class: Status

Path: FIFO � Cache Controller

Description: Status Signal that FIFO contain same tag and index with the physical

address tag and index.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 52

Output pins

Pin name: bo_cac_ctrl_cpu_data_output_en

Pin class: Control

Path: Cache Controller� Cache

Description: When asserted (HIGH), data is enabled to be output to CPU.

Pin name: bo_cac_ctrl_counter[2:0]

Pin class: Control

Path: Cache Controller� Cache

Description: 3-bits counter value. This is used to count the data when transferring a

whole block (8 words) of data.

Pin name: bo_cac_ctrl_cache_data_select

Pin class: Control

Path: Cache� Cache Controller� Cache

Description: Instruct the cache datapath which data (data from cpu or data from

SDRAM) to be written into.

When HIGH, choose data from SDRAM.

When LOW, choose data from CPU.

Pin name: bo_cac_ctrl_mem_read

Pin class: Control

Path: Cache Controller�Cache�Memory Arbiter�SDRAM Controller �SDRAM

Description: Read signal that indicate need read from SDRAM.

Pin name: bo_cac_ctrl_mem_write

Pin class: Control

Path: Cache Controller�FIFO controller

Description: Write signal that indicate need write data into SDRAM.

Pin name: bo_cac_ctrl_mem_sel [3:0]

Pin class: Control

Path: Cache Controller� Cache �Memory Arbiter

Description: 4-bits control signals to mask which byte of the 4 bytes (32-bits) data

goes in or comes out from SDRAM.

When it is ‘1’, the corresponding byte will enable.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 53

When it is ‘0’, the corresponding byte will be masked and the output becomes ‘z’.

Pin name: bo_cac_ctrl_update_en

Pin class: Control

Path: Cache Controller� Cache

Description: Enables the update of cache when asserted (HIGH).

Pin name: bo_cac_ctrl_update_dirty

Pin class: Control

Path: Cache Controller� Cache

Description: Enables the update of ‘Dirty’ when asserted (HIGH).

Pin name: bo_cac_ctrl_fifo_buffer_en

Pin class: Control

Path: Cache Controller� Cache

Description: Enable to move write back data from FIFO to temporary buffer.

Pin name: bo_cac_ctrl_cac_fifo_en

Pin class: Control

Path: Cache Controller� Cache

Description: Enable to move cache data to FIFO.

Pin name: bo_cac_ctrl_buffer_cac_en

Pin class: Control

Path: Cache Controller� Cache

Description: Enable to move write back data from temporary buffer to cache.

Pin name: bo_cac_ctrl_fifo_update_valid

Pin class: Control

Path: Cache Controller� FIFO

Description: Control signal that update the valid bit in FIFO.

Table 6-6-1: Cache Controller Block I/O Descriptions

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 54

6.6.2 Cache Controller State Diagram

Figure 6-6-2 State Diagram of Cache Controller

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 55

6.7 FIFO Controller Block

Figure 6-7-1 Block diagram of FIFO Controller Block

Functionalities of FIFO Controller:

1. Control main activity of FIFO block.

2. Send control signal to FIFO to write data back to SDRAM behind the scene.

6.7.1 FIFO Controller block I/O description
Input pins

Pin name: bi_fifo_ctrl_cpu_clk

Pin class: Global

Path: External � Cache � FIFO Controller

Description: System clock signal.

Pin name: bi_fifo_ctrl_cpu_rst

Pin class: Global

Path: External � Cache � FIFO Controller

Description: System reset signal.

Pin name: bi_fifo_ctrl_hit

Pin class: Status

Path: FIFO � FIFO Controller

Description: Status Signal that FIFO contain same tag and index with the physical

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 56

address tag and index.

Pin name: bi_fifo_ctrl_mem_write

Pin class: Control

Path: Cache Controller � FIFO controller

Description: Write signal that indicate need write data into SDRAM

Pin name: bi_fifo_ctrl_mem_ack

Pin class: Control

Path: SDRAM controller � Memory Arbiter � Cache � FIFO Controller

Description: Acknowledge signal (active HIGH) to indicate read data is ready from

SDRAM(read from SDRAM) or SDRAM prepare to receive data (write to SDRAM).

Pin name: bi_fifo_ctrl_lmc_same

Pin class: Status

Path: Memory Arbiter � FIFO Controller

Description: Indicate the configuration of SDRAM is same when asserted (HIGH).

Pin name: bi_fifo_ctrl_empty

Pin class: Status

Path: FIFO � FIFO Controller

Description: When asserted, it indicate FIFO is empty.

Output pins

Pin name: bo_fifo_ctrl_counter [2:0]

Pin class: Control

Path: FIFO Controller� FIFO

Description: 3-bits counter value. This is used to count the data when transferring a

whole block (8 words) of data.

Pin name: bo_fifo_ctrl_mem_write

Pin class: Control

Path: FIFO Controller� Memory Arbiter

Description: Write signal that indicate need write data from FIFO into SDRAM.

Pin name: bo_fifo_ctrl_data_ready

Pin class: Status

Path: FIFO Controller �Memory Arbiter

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 57

Description: When asserted (HIGH), data is ready write back from FIFO to SDRAM.

Pin name: bo_fifo_ctrl_mem_output_en

Pin class: Control

Path: FIFO Controller � FIFO

Description: Enable data in FIFO to be written into SDRAM

Pin name: bo_fifo_ctrl_complete

Pin class: Control

Path: FIFO Controller� Memory Arbiter

Description: Indicates one block of data was written into SDRAM when HIGH.

Table 6-7-1: Cache Controller Block I/O Descriptions

6.7.2 FIFO Controller State Diagram

Figure 6-7-2 State Diagram of Cache Controller

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 58

6.8 FIFO Block

Figure 6-8-1 Block diagram of FIFO Block

This FIFO block consists of 4 entries to store data block from cache. The functionalities

of FIFO block are:

1. Store dirty block from cache that need to written back to SDRAM

2. Data able to written back to cache or back to SDRAM.

3. Communicate with SDRAM to written data back to SDRAM when SDRAM is

free.

4. Compare tag and index to indicate whether same block of data need to accessed

next in cache.

5. Output a full signal when 4 entries are used.

6. Output an empty signal when FIFO contains no data.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 59

6.8.1 FIFO Controller block I/O description
Input pins

Pin name: bi_fifo_cpu_clk

Pin class: Global

Path: External � Cache � FIFO

Description: System clock signal.

Pin name: bi_fifo_cpu_rst

Pin class: Global

Path: External � Cache � FIFO

Description: System reset signal.

Pin name: bi_fifo_update_valid

Pin class: Control

Path: Cache Controller � FIFO

Description: Control signal that update the valid bit in FIFO.

Pin name: bi_fifo_write

Pin class: Control

Path: Cache Controller � FIFO

Description: Write signal that indicate data write from cache to FIFO.

Pin name: bi_fifo_mem_output_en

Pin class: Control

Path: FIFO controller � FIFO

Description: Enable data in FIFO to be written into SDRAM

Pin name: bi_fifo_complete

Pin class: Status

Path: FIFO controller � FIFO

Description: Indicates one block of data was written into SDRAM when HIGH.

Pin name: bi_fifo_tag_compare[10:0]

Pin class: Address

Path: Cache � FIFO

Description: Tag from physical address that used to compare FIFO_hit signal

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 60

Pin name: bi_fifo_counter [2:0]

Pin class: Control

Path: FIFO Controller� FIFO

Description: 3-bits counter value. This is used to count the data when transferring a

whole block (8 words) of data.

Pin name: bi_fifo_data [284:0]

Pin class: Data

Path: Cache� FIFO

Description: contain index from physical address, tag_ram, data_ram and byte_ram

from cache.

Output pins

Pin name: bo_fifo_hit

Pin class: Status

Path: FIFO Controller� Cache Controller

Description: Status Signal that FIFO contain same tag and index with the physical

address tag and index.

Pin name: bo_fifo_full

Pin class: Status

Path: FIFO � Cache Controller and FIFO Controller

Description: Status signal that indicate FIFO is full.

Pin name: bo_fifo_empty

Pin class: Status

Path: FIFO � Cache Controller

Description: When asserted, it indicate FIFO is empty.

Pin name: bo_fifo_mem_addr[31:0]

Pin class: Address

Path: FIFO � Memory Arbiter � SDRAM controller � SDRAM

Description: 32-bits address that indicates which location in the SDRAM to be

accessed.

Pin name: bo_fifo_mem_data [31:0]

Pin class: Data

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 61

Path: FIFO � Memory Arbiter � SDRAM controller � SDRAM

Description: : 32-bits data that to be written in to the SDRAM.

Pin name: bo_fifo_wb_data [268:0]

Pin class: Data

Path: FIFO � Cache

Description: Contain all data that need to write back to cache (data, tag and byte).

Table 6-8-1: FIFO Block I/O Descriptions

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 62

Chapter 7 Verification

7.1 Test Plan
Function To be Tested Test Case

Test 1: System Reset tb_r_rst is asserted to high at least one clock
cycle

Test 2: Testing Cache priority and
reading in different burst length

Different load mode configuration with burst
length 1, 2, 4 and 8.

tb_r_BL_sel[3] = 3'd3;//burst length = 8
tb_r_BL_sel[2] = 3'd2; ;//burst length = 4
tb_r_BL_sel[1] = 3'd1; ;//burst length = 2
tb_r_BL_sel[0] = 3'd1; ;//burst length = 2
tb_r_cpu_cac_addr3 = 32'h00567000 ;
tb_r_cpu_cac_addr2 = 32'h00567000 ;
tb_r_cpu_cac_addr1 = 32'h00567000 ;
tb_r_cpu_cac_addr0 = 32'h00567000;

tb_r_cpu_cac_read3 = 1;
tb_r_cpu_cac_write3 = 0;
tb_r_cpu_cac_read2 = 1;
tb_r_cpu_cac_write2 = 0;
tb_r_cpu_cac_read1 = 1;
tb_r_cpu_cac_write1 = 0;
tb_r_cpu_cac_read0 = 1;
tb_r_cpu_cac_write0 = 0;

Test 3 : Write Hit in Cache 3 and
continuous Write Hit

First write instruction,
tb_r_cpu_cac_data3 = 32'h07070707;
tb_r_cpu_cac_addr3 = 32'h00567004;

tb_r_cpu_cac_read3 = 0;
tb_r_cpu_cac_write3 = 1;

Second write instruction,
tb_r_cpu_cac_data3 = 32'h04404404;
tb_r_cpu_cac_addr3 = 32'h00567000;

tb_r_cpu_cac_read3 = 0;
tb_r_cpu_cac_write3 = 1;

Test 4: Read Hit in Cache 3 and
continuous Read Hit

First read instruction,
tb_r_cpu_cac_data3 = 32'h0;
tb_r_cpu_cac_addr3 = 32'h00567004;

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 63

tb_r_cpu_cac_read3 = 1;
tb_r_cpu_cac_write3 = 0;

Second read instruction,
tb_r_cpu_cac_data3 = 32'h0;
tb_r_cpu_cac_addr3 = 32'h00567000;

tb_r_cpu_cac_read3 = 1;
tb_r_cpu_cac_write3 = 0;

Test 5: Write Miss with FIFO miss
in Cache 3

First read a data from SDRAM by trying write
miss in @89A00 (where valid = 0),
tb_r_cpu_cac_data3 = 32'h00B00177;
tb_r_cpu_cac_addr3 = 32'h0089A000;

tb_r_cpu_cac_read3 = 0;
tb_r_cpu_cac_write3 = 1;

Then try to write a data with same index but
different tag with @56700, (tag different),
tb_r_cpu_cac_data3 = 32'h06070809;
tb_r_cpu_cac_addr3 = 32'h00167000;

tb_r_cpu_cac_read3 = 0;
tb_r_cpu_cac_write3 = 1;

with FIFO miss,@56700 data evict to FIFO

Test 6: Write Miss with FIFO hit in
Cache 3

FIFO hit,@56700 data write back from FIFO
tb_r_cpu_cac_data3 = 32'hF1FA0000;
tb_r_cpu_cac_addr3 = 32'h00567000;

 tb_r_cpu_cac_read3 = 0;
 tb_r_cpu_cac_write3 = 1;

@16700 move to FIFO

Test 7: Auto Write Back to SDRAM
in Cache 3 with FIFO busy

Give an instruction that give hit cache for 6
clock cycle
tb_r_cpu_cac_data3 = 32'h0;
tb_r_cpu_cac_addr3 = 32'h00567004;

tb_r_cpu_cac_read3 = 1;
tb_r_cpu_cac_write3 = 0;

@16700 move from FIFO to SDRAM

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 64

Then give miss cache instruction, cache
controller wait for FIFO finish writing

Test 8: Read Miss with FIFO miss in
Cache 3

tb_r_cpu_cac_data3 = 32'h0;
tb_r_cpu_cac_addr3 = 32'h00E9A000;

tb_r_cpu_cac_read3 = 1;
tb_r_cpu_cac_write3 = 0;

Data read back from SDRAM,@89A00 move
to FIFO (same index different tag)

Test 9: Read Miss with FIFO hit in
Cache 3

tb_r_cpu_cac_data3 = 32'h0;
tb_r_cpu_cac_addr3 = 32'h0089A000;

tb_r_cpu_cac_read3 = 1;
tb_r_cpu_cac_write3 = 0;

Since previous instruction is read only so dirty
is 0. @E9A00 did not move to FIFO

Test 10: Miss happen and FIFO full //FIFO status: *,*,*,*
Try a write miss instruction where valid = 0,
tb_r_cpu_cac_data3 = 32'h26100AAA;
tb_r_cpu_cac_addr3 = 32'h00261000;

tb_r_cpu_cac_read3 = 0;
tb_r_cpu_cac_write3 = 1;

Write miss and @26100 move to FIFO,
tb_r_cpu_cac_data3 = 32'h46100BBB;
tb_r_cpu_cac_addr3 = 32'h00461000;

tb_r_cpu_cac_read3 = 0;
tb_r_cpu_cac_write3 = 1;
//FIFO after this: 26100,*,*,*

Write miss and @46100 move to FIFO,
tb_r_cpu_cac_data3 = 32'h66100CCC;
tb_r_cpu_cac_addr3 = 32'h00661000;

tb_r_cpu_cac_read3 = 0;
tb_r_cpu_cac_write3 = 1;
//FIFO after this: 26100,46100,*,*

Write miss and @66100 move to FIFO,
tb_r_cpu_cac_data3 = 32'h86100DDD;
tb_r_cpu_cac_addr3 = 32'h00861000;

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 65

tb_r_cpu_cac_read3 = 0;
tb_r_cpu_cac_write3 = 1;
//FIFO after this: 26100,46100,66100,*

Write miss and @86100 move to FIFO,
tb_r_cpu_cac_data3 = 32'hA6100EEE;
tb_r_cpu_cac_addr3 = 32'h00A61000;

tb_r_cpu_cac_read3 = 0;
tb_r_cpu_cac_write3 = 1;
//FIFO after this: 26100,46100,66100,86100

Write miss and FIFO is full, @ 26100 write
back to SDRAM, after that @A6100 move to
FIFO, and cache resumes write operation
tb_r_cpu_cac_data3 = 32'hC6100FFF;
tb_r_cpu_cac_addr3 = 32'h00C61000;

tb_r_cpu_cac_read3 = 0;
tb_r_cpu_cac_write3 = 1;
//FIFO after this: A6100,46100,66100,86100

Table 7-1-1: Memory system Full Chip Test Plan

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 66

7.2 Testbench Verilog Code
`include "././util/sdc_macro.v"
`timescale 1ns / 10ps
module tb_cac_ma_sdc();
//CPU to 4 caches
//cache3
wire [31:0] tb_w_cpu_cac_data3;
reg [31:0] tb_r_cpu_cac_addr3,

tb_r_cpu_cac_data3;
reg tb_r_cpu_cac_read3,
 tb_r_cpu_cac_write3;
//cache2
wire [31:0] tb_w_cpu_cac_data2;
reg [31:0] tb_r_cpu_cac_addr2,
 tb_r_cpu_cac_data2;
reg tb_r_cpu_cac_read2,
 tb_r_cpu_cac_write2;
//cache1
wire [31:0] tb_w_cpu_cac_data1;
reg [31:0] tb_r_cpu_cac_addr1,
 tb_r_cpu_cac_data1;
reg tb_r_cpu_cac_read1,
 tb_r_cpu_cac_write1;
//cache0
wire [31:0] tb_w_cpu_cac_data0;
reg [31:0] tb_r_cpu_cac_addr0,
 tb_r_cpu_cac_data0;
reg tb_r_cpu_cac_read0,
 tb_r_cpu_cac_write0;
reg tb_r_clk;
reg tb_r_rst;

//between caches and memory arbiter
//4 caches
//cache3
wire w_ma_cac_read3,

 w_ma_cac_write3,
 w_data_ready3,
 w_ma_cac_miss3;
wire [3:0] w_ma_cac_sel3;
wire [31:0] w_ma_cac_addr3,

 w_ma_cac_o_data3;
reg [31:0] r_ma_cac_lmc_data3;
wire w_ma_cac_complete3;

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 67

reg [31:0] r_ma_cac_i_data3;
wire w_cac_mem_ack3;
wire w_cac_mem_lmc_same3;
//cache2
wire w_ma_cac_read2,

 w_ma_cac_write2,
 w_data_ready2,

 w_ma_cac_miss2;
wire [3:0] w_ma_cac_sel2;
wire [31:0] w_ma_cac_addr2,
 w_ma_cac_o_data2;
reg [31:0] r_ma_cac_lmc_data2;
wire w_ma_cac_complete2;
reg [31:0] r_ma_cac_i_data2;
wire w_cac_mem_ack2;
wire w_cac_mem_lmc_same2;
//cache1
wire w_ma_cac_read1,
 w_ma_cac_write1,

 w_data_ready1,
 w_ma_cac_miss1;
wire [3:0] w_ma_cac_sel1;
wire [31:0] w_ma_cac_addr1,
 w_ma_cac_o_data1;
reg [31:0] r_ma_cac_lmc_data1;
wire w_ma_cac_complete1;
reg [31:0] r_ma_cac_i_data1;
wire w_cac_mem_ack1;
wire w_cac_mem_lmc_same1;
//cache0
wire w_ma_cac_read0,
 w_ma_cac_write0,

w_data_ready0,
w_ma_cac_miss0;

wire [3:0] w_ma_cac_sel0;
wire [31:0] w_ma_cac_addr0,
 w_ma_cac_o_data0;
reg [31:0] r_ma_cac_lmc_data0;
wire w_ma_cac_complete0;
reg [31:0] r_ma_cac_i_data0;
wire w_cac_mem_ack0;
wire w_cac_mem_lmc_same0;

//between memory arbiter and sdram controller
wire w_ma_sdc_host_ld_mode,
 w_ma_sdc_read,

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 68

 w_ma_sdc_write;
wire [3:0] w_ma_sdc_sel;
wire [31:0] w_ma_sdc_addr,
 w_ma_sdc_i_data,
 w_ma_sdc_o_data;
wire w_ma_sdc_ack;

//between sdram controller and sdram
wire [31:0] w_sc_sdc_dq;
wire [11:0] w_sc_sdc_addr;
wire [1:0] w_sc_sdc_ba;
wire w_sc_sdc_cs_n;
wire w_sc_sdc_ras_n;
wire w_sc_sdc_cas_n;
wire w_sc_sdc_we_n;
wire [3:0] w_sc_sdc_dqm;

//Change burst length of caches to test different mode configuration
reg [2:0] tb_r_BL_sel[0:3];
wire [31:0] w_i_data3,
 w_i_data2,
 w_i_data1,
 w_i_data0;

//indicates current test status in waveform
reg [300:0] status;

//To generate ASCII value in the waveform to ease debugging
bfm_wave_monitor bfm_monitor();

u_cache cache_3
 (//memory arbiter connection
 .uo_cac_mem_addr(w_ma_cac_addr3),
 .uo_cac_mem_data(w_i_data3),
 .uo_cac_mem_lmc_data(),
 .uo_cac_miss(w_ma_cac_miss3),
 .uo_cac_mem_read(w_ma_cac_read3),
 .uo_cac_mem_write(w_ma_cac_write3),
 .uo_cac_mem_data_ready(w_data_ready3),
 .uo_cac_mem_sel(w_ma_cac_sel3),
 .uo_cac_mem_complete(w_ma_cac_complete3),
 .ui_cac_mem_data(w_ma_cac_o_data3),
 .ui_cac_mem_ack(w_cac_mem_ack3),
 .ui_cac_mem_lmc_same(w_cac_mem_lmc_same3),
 // CPU connection
 .uo_cac_cpu_stall(),

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 69

 .uo_cac_cpu_data(tb_w_cpu_cac_data3),
 .ui_cac_cpu_addr(tb_r_cpu_cac_addr3),
 .ui_cac_cpu_data(tb_r_cpu_cac_data3),
 .ui_cac_cpu_read(tb_r_cpu_cac_read3),
 .ui_cac_cpu_write(tb_r_cpu_cac_write3),
 .ui_cac_rst(tb_r_rst),
 .ui_cac_clk(tb_r_clk)) ;

 u_cache cache_2
 (//memory arbiter connection
 .uo_cac_mem_addr(w_ma_cac_addr2),
 .uo_cac_mem_data(w_i_data2),
 .uo_cac_mem_lmc_data(),
 .uo_cac_miss(w_ma_cac_miss2),
 .uo_cac_mem_read(w_ma_cac_read2),
 .uo_cac_mem_write(w_ma_cac_write2),
 .uo_cac_mem_data_ready(w_data_ready2),
 .uo_cac_mem_sel(w_ma_cac_sel2),
 .uo_cac_mem_complete(w_ma_cac_complete2),
 .ui_cac_mem_data(w_ma_cac_o_data2),
 .ui_cac_mem_ack(w_cac_mem_ack2),
 .ui_cac_mem_lmc_same(w_cac_mem_lmc_same2),
 // CPU connection
 .uo_cac_cpu_stall(),
 .uo_cac_cpu_data(tb_w_cpu_cac_data2),
 .ui_cac_cpu_addr(tb_r_cpu_cac_addr2),
 .ui_cac_cpu_data(tb_r_cpu_cac_data2),
 .ui_cac_cpu_read(tb_r_cpu_cac_read2),
 .ui_cac_cpu_write(tb_r_cpu_cac_write2),
 .ui_cac_rst(tb_r_rst),
 .ui_cac_clk(tb_r_clk));

u_cache cache_1
 (//memory arbiter connection
 .uo_cac_mem_addr(w_ma_cac_addr1),
 .uo_cac_mem_data(w_i_data1),
 .uo_cac_mem_lmc_data(),
 .uo_cac_miss(w_ma_cac_miss1),
 .uo_cac_mem_read(w_ma_cac_read1),
 .uo_cac_mem_write(w_ma_cac_write1),
 .uo_cac_mem_data_ready(w_data_ready1),
 .uo_cac_mem_sel(w_ma_cac_sel1),
 .uo_cac_mem_complete(w_ma_cac_complete1),
 .ui_cac_mem_data(w_ma_cac_o_data1),
 .ui_cac_mem_ack(w_cac_mem_ack1),
 .ui_cac_mem_lmc_same(w_cac_mem_lmc_same1),

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 70

 // CPU connection
 .uo_cac_cpu_stall(),
 .uo_cac_cpu_data(tb_w_cpu_cac_data1),
 .ui_cac_cpu_addr(tb_r_cpu_cac_addr1),
 .ui_cac_cpu_data(tb_r_cpu_cac_data1),
 .ui_cac_cpu_read(tb_r_cpu_cac_read1),
 .ui_cac_cpu_write(tb_r_cpu_cac_write1),
 .ui_cac_rst(tb_r_rst),
 .ui_cac_clk(tb_r_clk));

 u_cache cache_0
 (//memory arbiter connection
 .uo_cac_mem_addr(w_ma_cac_addr0),
 .uo_cac_mem_data(w_i_data0),
 .uo_cac_mem_lmc_data(),
 .uo_cac_miss(w_ma_cac_miss0),
 .uo_cac_mem_read(w_ma_cac_read0),
 .uo_cac_mem_write(w_ma_cac_write0),
 .uo_cac_mem_data_ready(w_data_ready0),
 .uo_cac_mem_sel(w_ma_cac_sel0),
 .uo_cac_mem_complete(w_ma_cac_complete0),
 .ui_cac_mem_data(w_ma_cac_o_data0),
 .ui_cac_mem_ack(w_cac_mem_ack0),
 .ui_cac_mem_lmc_same(w_cac_mem_lmc_same0),
 // CPU connection
 .uo_cac_cpu_stall(),
 .uo_cac_cpu_data(tb_w_cpu_cac_data0),
 .ui_cac_cpu_addr(tb_r_cpu_cac_addr0),
 .ui_cac_cpu_data(tb_r_cpu_cac_data0),
 .ui_cac_cpu_read(tb_r_cpu_cac_read0),
 .ui_cac_cpu_write(tb_r_cpu_cac_write0),
 .ui_cac_rst(tb_r_rst),
 .ui_cac_clk(tb_r_clk));

 u_mem_arbiter mem_arbiter
 (//caches connection
 //cache3
 .ui_ma_cac_miss3(w_ma_cac_miss3),
 .ui_ma_cac_data_ready3(w_data_ready3),
 .ui_ma_cac_read3(w_ma_cac_read3),
 .ui_ma_cac_write3(w_ma_cac_write3),
 .ui_ma_cac_sel3(w_ma_cac_sel3),
 .ui_ma_cac_addr3(w_ma_cac_addr3),
 .ui_ma_cac_data3(w_i_data3),
 .ui_ma_cac_lmc_data3(r_ma_cac_lmc_data3),
 .ui_ma_cac_complete3(w_ma_cac_complete3),

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 71

 .uo_ma_cac_ack3(w_cac_mem_ack3),
 .uo_ma_cac_lmc_same3(w_cac_mem_lmc_same3),
 .uo_ma_cac_data3(w_ma_cac_o_data3),
 //cache2
 .ui_ma_cac_miss2(w_ma_cac_miss2),
 .ui_ma_cac_data_ready2(w_data_ready2),
 .ui_ma_cac_read2(w_ma_cac_read2),
 .ui_ma_cac_write2(w_ma_cac_write2),
 .ui_ma_cac_sel2(w_ma_cac_sel2),
 .ui_ma_cac_addr2(w_ma_cac_addr2),
 .ui_ma_cac_data2(w_i_data2),
 .ui_ma_cac_lmc_data2(r_ma_cac_lmc_data2),
 .ui_ma_cac_complete2(w_ma_cac_complete2),
 .uo_ma_cac_ack2(w_cac_mem_ack2),
 .uo_ma_cac_lmc_same2(w_cac_mem_lmc_same2),
 .uo_ma_cac_data2(w_ma_cac_o_data2),
 //cache1
 .ui_ma_cac_miss1(w_ma_cac_miss1),
 .ui_ma_cac_data_ready1(w_data_ready1),
 .ui_ma_cac_read1(w_ma_cac_read1),
 .ui_ma_cac_write1(w_ma_cac_write1),
 .ui_ma_cac_sel1(w_ma_cac_sel1),
 .ui_ma_cac_addr1(w_ma_cac_addr1),
 .ui_ma_cac_data1(w_i_data1),
 .ui_ma_cac_lmc_data1(r_ma_cac_lmc_data1),
 .ui_ma_cac_complete1(w_ma_cac_complete1),
 .uo_ma_cac_ack1(w_cac_mem_ack1),
 .uo_ma_cac_lmc_same1(w_cac_mem_lmc_same1),
 .uo_ma_cac_data1(w_ma_cac_o_data1),
 //cache0
 .ui_ma_cac_miss0(w_ma_cac_miss0),
 .ui_ma_cac_data_ready0(w_data_ready0),
 .ui_ma_cac_read0(w_ma_cac_read0),
 .ui_ma_cac_write0(w_ma_cac_write0),
 .ui_ma_cac_sel0(w_ma_cac_sel0),
 .ui_ma_cac_addr0(w_ma_cac_addr0),
 .ui_ma_cac_data0(w_i_data0),
 .ui_ma_cac_lmc_data0(r_ma_cac_lmc_data0),
 .ui_ma_cac_complete0(w_ma_cac_complete0),
 .uo_ma_cac_ack0(w_cac_mem_ack0),
 .uo_ma_cac_lmc_same0(w_cac_mem_lmc_same0),
 .uo_ma_cac_data0(w_ma_cac_o_data0),

 //sdram controller connection
 .ui_ma_sdc_ack(w_ma_sdc_ack),
 .ui_ma_sdc_data(w_ma_sdc_i_data),

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 72

 .uo_ma_sdc_read(w_ma_sdc_read),
 .uo_ma_sdc_write(w_ma_sdc_write),
 .uo_ma_sdc_host_ld_mode(w_ma_sdc_host_ld_mode),
 .uo_ma_sdc_sel(w_ma_sdc_sel),
 .uo_ma_sdc_addr(w_ma_sdc_addr),
 .uo_ma_sdc_data(w_ma_sdc_o_data),
 .ui_ma_clk(tb_r_clk),
 .ui_ma_rst(tb_r_rst));

 u_sdram_controller u_sdram_controller
 (.ui_sdc_clk(tb_r_clk),
 .ui_sdc_rst(tb_r_rst),
 //memory arbiter connection
 .ui_host_ld_mode(w_ma_sdc_host_ld_mode),
 .ui_sdc_read(w_ma_sdc_read),
 .ui_sdc_write(w_ma_sdc_write),
 .ui_sdc_sel(w_ma_sdc_sel),
 .ui_sdc_addr(w_ma_sdc_addr),
 .ui_sdc_dat(w_ma_sdc_o_data),
 .uo_sdc_dat(w_ma_sdc_i_data),
 .uo_sdc_ack(w_ma_sdc_ack),
 //sdram connection
 .uio_sdc_dq(w_sc_sdc_dq),
 .uo_sdc_ba(w_sc_sdc_ba),
 .uo_sdc_dqm(w_sc_sdc_dqm),
 .uo_sdc_addr(w_sc_sdc_addr),
 .uo_sdc_cs_n(w_sc_sdc_cs_n),
 .uo_sdc_ras_n(w_sc_sdc_ras_n),
 .uo_sdc_cas_n(w_sc_sdc_cas_n),
 .uo_sdc_we_n(w_sc_sdc_we_n)) ;

 //MICRON SDRAM Instantiation
 mt48lc4m32b2 sdram(
 .Dq(w_sc_sdc_dq),
 .Addr(w_sc_sdc_addr),
 .Ba(w_sc_sdc_ba),
 .Clk(tb_r_clk),
 .Cke(1'b1), //cke always activated
 .Cs_n(w_sc_sdc_cs_n),
 .Ras_n(w_sc_sdc_ras_n),
 .Cas_n(w_sc_sdc_cas_n),
 .We_n(w_sc_sdc_we_n),
 .Dqm(w_sc_sdc_dqm));

//initialize clock signal
initial tb_r_clk = 1;

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 73

always #10 tb_r_clk = ~tb_r_clk;

always@* begin
 r_ma_cac_lmc_data3 = {29'h4,tb_r_BL_sel[3]};
 r_ma_cac_lmc_data2 = {29'h4,tb_r_BL_sel[2]};
 r_ma_cac_lmc_data1 = {29'h4,tb_r_BL_sel[1]};
 r_ma_cac_lmc_data0 = {29'h4,tb_r_BL_sel[0]};
end

initial begin
//~~~
//Signals initialization
//~~~
 status = "Signals initialization";
 tb_r_cpu_cac_addr3 = 32'b0;
 tb_r_cpu_cac_data3 = 32'b0;
 tb_r_cpu_cac_write3 = 1'b0;
 tb_r_cpu_cac_read3 = 1'b0;

 tb_r_cpu_cac_addr2 = 32'b0;
 tb_r_cpu_cac_data2 = 32'b0;
 tb_r_cpu_cac_write2 = 1'b0;
 tb_r_cpu_cac_read2 = 1'b0;

 tb_r_cpu_cac_addr1 = 32'b0;
 tb_r_cpu_cac_data1 = 32'b0;
 tb_r_cpu_cac_write1 = 1'b0;
 tb_r_cpu_cac_read1 = 1'b0;

 tb_r_cpu_cac_addr0 = 32'b0;
 tb_r_cpu_cac_data0 = 32'b0;
 tb_r_cpu_cac_write0 = 1'b0;
 tb_r_cpu_cac_read0 = 1'b0;

 tb_r_rst = 0;

 repeat(2) @(posedge tb_r_clk);

//~~~
 //Test 1: System Reset
//~~~
 status = "System Reset";
 tb_r_rst = 1;
 repeat(1) @(posedge tb_r_clk);

 tb_r_rst = 0;

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 74

 repeat(20) @(posedge tb_r_clk);

 //~~~
// Prepare data in sdram
//~~~
 $readmemh("rtl/micron SDRAM/sdram_bank0_data.txt" , sdram.Bank0) ;

 status = "Read data (Cache3->Cache2->Cache1->Cache0)";

 //select brust length 0,1,2,3 = 1,2,4,8
 tb_r_BL_sel[3] = 3'd3;
 tb_r_BL_sel[2] = 3'd2;
 tb_r_BL_sel[1] = 3'd1;
 tb_r_BL_sel[0] = 3'd1;

 //~~~
// Test 2: Testing Cache priority and reading in different burst length
//~~~
 // All 4 cache read misses in same clock cycle
 tb_r_cpu_cac_data3 = 0;
 tb_r_cpu_cac_data2 = 0;
 tb_r_cpu_cac_data1 = 0;
 tb_r_cpu_cac_data0 = 0;

 tb_r_cpu_cac_addr3 = 32'h00567000 ;
 tb_r_cpu_cac_addr2 = 32'h00567000 ;
 tb_r_cpu_cac_addr1 = 32'h00567000 ;
 tb_r_cpu_cac_addr0 = 32'h00567000 ;

 tb_r_cpu_cac_read3 = 1;
 tb_r_cpu_cac_write3 = 0;
 tb_r_cpu_cac_read2 = 1;
 tb_r_cpu_cac_write2 = 0;
 tb_r_cpu_cac_read1 = 1;
 tb_r_cpu_cac_write1 = 0;
 tb_r_cpu_cac_read0 = 1;
 tb_r_cpu_cac_write0 = 0;

 @(posedge tb_r_clk);
 // Expecting cache misses
 // Wait until they are done
 while(w_ma_cac_miss3||w_ma_cac_miss2||w_ma_cac_miss1||w_ma_cac_miss0
 ||w_data_ready3||w_data_ready2||w_data_ready1||w_data_ready0)
 @(posedge tb_r_clk);

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 75

//~~~
//Test 3: Write Hit in Cache 3
//~~~
 status = "Write Hit";
 tb_r_cpu_cac_data3 = 32'h07070707;
 tb_r_cpu_cac_addr3 = 32'h00567004;

 tb_r_cpu_cac_read3 = 0;
 tb_r_cpu_cac_write3 = 1;

 @(posedge tb_r_clk);
 status = "Write Hit";
 tb_r_cpu_cac_data3 = 32'h04404404;
 tb_r_cpu_cac_addr3 = 32'h00567000;

 tb_r_cpu_cac_read3 = 0;
 tb_r_cpu_cac_write3 = 1;

 /*@56700
 0440_4404
 0707_0707
 24A6_0004
 0004_1080
 00C2_3021
 0020_0900
 0100_0750
 3402_000A*/

 @(posedge tb_r_clk);

//~~~
//Test 4: Read Hit in Cache 3
//~~~
 status = "Read Hit";
 tb_r_cpu_cac_data3 = 32'h0;
 tb_r_cpu_cac_addr3 = 32'h00567004;

 tb_r_cpu_cac_read3 = 1;
 tb_r_cpu_cac_write3 = 0;

 @(posedge tb_r_clk);
 status = "Read Hit";
 tb_r_cpu_cac_data3 = 32'h0;
 tb_r_cpu_cac_addr3 = 32'h00567000;

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 76

 tb_r_cpu_cac_read3 = 1;
 tb_r_cpu_cac_write3 = 0;

 //~~~
//Test 5: Write Miss with FIFO miss in Cache 3
//~~~
 @(posedge tb_r_clk);
 status = "Write Miss"; // with dirty = 0; after write dirty = 1;

 tb_r_cpu_cac_data3 = 32'h00B00177;
 tb_r_cpu_cac_addr3 = 32'h0089A000;

 tb_r_cpu_cac_read3 = 0;
 tb_r_cpu_cac_write3 = 1;

 /*@89A00
 00B0_0177
 1234_ABCD
 5678_7654
 3456_789A
 9876_3210
 FAFA_FAFA
 BEEF_BEEF
 DEAD_DEAD*/

 @(posedge tb_r_clk);
 while(w_ma_cac_miss3)@(posedge tb_r_clk);

 status = "Check";
 tb_r_cpu_cac_data3 = 32'h0;
 tb_r_cpu_cac_addr3 = 32'h0089A000;

 tb_r_cpu_cac_read3 = 1;
 tb_r_cpu_cac_write3 = 0;

 @(posedge tb_r_clk);
 status = "Write Miss"; // dirty =1; with FIFO m iss,@56700 data erect to FIFO
 tb_r_cpu_cac_data3 = 32'h06070809;
 tb_r_cpu_cac_addr3 = 32'h00167000; //same index different tag (@56700)

 tb_r_cpu_cac_read3 = 0;
 tb_r_cpu_cac_write3 = 1;

 /*@16700
 0607_0809
 5201_314B

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 77

 5201_314C
 5201_314D
 5201_314E
 5201_314F
 5201_3140
 5201_315A
 5201_315B */

 @(posedge tb_r_clk);
 while(w_ma_cac_miss3)@(posedge tb_r_clk);

 status = "Check";
 tb_r_cpu_cac_data3 = 32'h0;
 tb_r_cpu_cac_addr3 = 32'h00167000;

 tb_r_cpu_cac_read3 = 1;
 tb_r_cpu_cac_write3 = 0;
 @(posedge tb_r_clk);

//~~~
//Test 6: Write Miss with FIFO hit in Cache 3
//~~~
 status = "Write Miss"; //with FIFO hit,@56700 data write back from FIFO
 tb_r_cpu_cac_data3 = 32'hF1FA0000;
 tb_r_cpu_cac_addr3 = 32'h00567000; // @16700 move to FIFO

 tb_r_cpu_cac_read3 = 0;
 tb_r_cpu_cac_write3 = 1;

 /*@56700
 F1FA_0000
 0707_0707
 24A6_0004
 0004_1080
 00C2_3021
 0020_0900
 0100_0750
 3402_000A*/

 @(posedge tb_r_clk);
 while(w_ma_cac_miss3)@(posedge tb_r_clk);

 status = "Check";
 tb_r_cpu_cac_data3 = 32'h0;
 tb_r_cpu_cac_addr3 = 32'h00567000;

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 78

 tb_r_cpu_cac_read3 = 1;
 tb_r_cpu_cac_write3 = 0;

//~~~
//Test 7: Auto Write Back to SDRAM in Cache 3 with FIFO busy
//~~~
 @(posedge tb_r_clk);
 status = "FIFO WB to SDRAM"; //(@16700 move from FIFO to SDRAM)
 tb_r_cpu_cac_data3 = 32'h0;
 tb_r_cpu_cac_addr3 = 32'h00567004;

 tb_r_cpu_cac_read3 = 1;
 tb_r_cpu_cac_write3 = 0;

 @(posedge tb_r_clk);
 tb_r_cpu_cac_data3 = 32'h0;
 tb_r_cpu_cac_addr3 = 32'h00567008;

 tb_r_cpu_cac_read3 = 1;
 tb_r_cpu_cac_write3 = 0;

 @(posedge tb_r_clk);
 tb_r_cpu_cac_data3 = 32'h0;
 tb_r_cpu_cac_addr3 = 32'h0056700C;

 tb_r_cpu_cac_read3 = 1;
 tb_r_cpu_cac_write3 = 0;

 @(posedge tb_r_clk);
 tb_r_cpu_cac_data3 = 32'h0;
 tb_r_cpu_cac_addr3 = 32'h00567010;

 tb_r_cpu_cac_read3 = 1;
 tb_r_cpu_cac_write3 = 0;

 @(posedge tb_r_clk);
 tb_r_cpu_cac_data3 = 32'h0;
 tb_r_cpu_cac_addr3 = 32'h00567014;

 tb_r_cpu_cac_read3 = 1;
 tb_r_cpu_cac_write3 = 0;

 @(posedge tb_r_clk);
 tb_r_cpu_cac_data3 = 32'h0;

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 79

 tb_r_cpu_cac_addr3 = 32'h00567018;

 tb_r_cpu_cac_read3 = 1;
 tb_r_cpu_cac_write3 = 0;

 @(posedge tb_r_clk);
 tb_r_cpu_cac_data3 = 32'h0;
 tb_r_cpu_cac_addr3 = 32'h0056701C;

 tb_r_cpu_cac_read3 = 1;
 tb_r_cpu_cac_write3 = 0;

 @(posedge tb_r_clk);

//~~~
//Test 8: Read Miss with FIFO miss in Cache 3
//~~~
 status = "Read Miss"; //data read back from SDRAM,@89A00 move to FIFO
 tb_r_cpu_cac_data3 = 32'h0;
 tb_r_cpu_cac_addr3 = 32'h00E9A000;

 tb_r_cpu_cac_read3 = 1;
 tb_r_cpu_cac_write3 = 0;

 /*@89A00 @E9A00
 00B0_0177 39A8_776F
 1234_ABCD 5555_5555
 5678_7654 7777_7777
 3456_789A FFFF_FFFF
 9876_3210 1212_3434
 FAFA_FAFA 0000_0001
 BEEF_BEEF BAD0_ADD8
 DEAD_DEAD 2345_5432*/

 @(posedge tb_r_clk);
 while(w_ma_cac_miss3)@(posedge tb_r_clk);

//~~~
//Test 9: Read Miss with FIFO hit in Cache 3
//~~~

status = "Read Miss"; //@89A00 move from FIFO to cache
tb_r_cpu_cac_data3 = 32'h0;

 tb_r_cpu_cac_addr3 = 32'h0089A000;

 tb_r_cpu_cac_read3 = 1;

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 80

 tb_r_cpu_cac_write3 = 0;

 @(posedge tb_r_clk);
 while(w_ma_cac_miss3)@(posedge tb_r_clk);

//~~~
//Test 10: Miss happen and FIFO full
//~~~
 status = "FIFO Full,Write Miss1"; //FIFO status : *,*,*,*
 tb_r_cpu_cac_data3 = 32'h26100AAA;
 tb_r_cpu_cac_addr3 = 32'h00261000;

 tb_r_cpu_cac_read3 = 0;
 tb_r_cpu_cac_write3 = 1;

 @(posedge tb_r_clk);
 while(w_ma_cac_miss3)@(posedge tb_r_clk);
 status = "Write Miss2"; //FIFO after this: 26100,*,*,*
 tb_r_cpu_cac_data3 = 32'h46100BBB;
 tb_r_cpu_cac_addr3 = 32'h00461000;

 tb_r_cpu_cac_read3 = 0;
 tb_r_cpu_cac_write3 = 1;

 @(posedge tb_r_clk);
 while(w_ma_cac_miss3)@(posedge tb_r_clk);
 status = "Write Miss3"; //FIFO after this: 26100,46100,*,*
 tb_r_cpu_cac_data3 = 32'h66100CCC;
 tb_r_cpu_cac_addr3 = 32'h00661000;

 tb_r_cpu_cac_read3 = 0;
 tb_r_cpu_cac_write3 = 1;

 @(posedge tb_r_clk);
 while(w_ma_cac_miss3)@(posedge tb_r_clk);
 status = "Write Miss4"; //FIFO after this: 26100,46100,66100,*
 tb_r_cpu_cac_data3 = 32'h86100DDD;
 tb_r_cpu_cac_addr3 = 32'h00861000;

 tb_r_cpu_cac_read3 = 0;
 tb_r_cpu_cac_write3 = 1;

 @(posedge tb_r_clk);
 while(w_ma_cac_miss3)@(posedge tb_r_clk);
 status = "Write Miss5"; //FIFO after this: 26100,46100,66100,86100

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 81

 tb_r_cpu_cac_data3 = 32'hA6100EEE;
 tb_r_cpu_cac_addr3 = 32'h00A61000;

 tb_r_cpu_cac_read3 = 0;
 tb_r_cpu_cac_write3 = 1;

 @(posedge tb_r_clk);
 while(w_ma_cac_miss3)@(posedge tb_r_clk); //@26100 wb to SDRAM
 status = "Write Miss6"; //FIFO after this: A6100,46100,66100,86100
 tb_r_cpu_cac_data3 = 32'hC6100FFF;
 tb_r_cpu_cac_addr3 = 32'h00C61000;

 tb_r_cpu_cac_read3 = 0;
 tb_r_cpu_cac_write3 = 1;

 @(posedge tb_r_clk);
 while(w_ma_cac_miss3)@(posedge tb_r_clk);
 repeat(5) @(posedge tb_r_clk);
 $stop;
end

endmodule

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 82

7.3 Simulation Result
Test 1 and Test 2 overall Timing Diagram

Test 1: System Reset

Signal Initialization and System Reset

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 83

Test 2: Testing Cache priority and reading in different burst length

Priority is given to cache_3 to run first according to the priority arrangement in Memory Arbiter. Here SDRAM configuration is burst

length = 8.

Load mode to configure
SDRAM, acknowledge signal
= 1when load mode finish

Performing read burst,
length = 8, continue for

8 clock cycle

Miss signal de-asserted
after finish read

Cache_2 repeat the
process by performing
load mode to SDRAM

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 84

Then, priority is given to cache_2 to run. SDRAM configuration is burst length = 4.

Performing Load Mode

Cache_1 repeat the
process by performing
load mode to SDRAM

Performing read burst, length = 4

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 85

Then, priority is given to cache_1 to run. SDRAM configuration is burst length = 2.

Performing read burst, length = 2

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 86

Performing read burst, length = 2 Ack signal did not asserted
mean configuration is same

Then, priority is given to cache_0 to run. SDRAM configuration is burst length = 2. The configuration same as previous thus SDRAM

no need to load mode again.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 87

Test 3: Write Hit in Cache 3 and continuous Write Hit and

Test 4: Read Hit in Cache 3 and continuous Read Hit

Data had been written into cache in previous test. Thus write hit occur here with same tag and index. Data were
written into cache continuously (data become dirty because not updated to SDRAM) and then for next two clock
cycle data were read out to uo_cac_cpu_data.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 88

Test 5: Write Miss with FIFO misses in Cache 3

Write miss occur and FIFO_hit is
de-asserted because trying to write
into cache location that valid=0.

Read data from SDRAM to cache Then write data into cache

Read back that location for checking
writing is successful or not

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 89

FIFO entries: @56700, *, *, *

Read back that location for checking
writing is successful or not.

Read data from SDRAM to
cache.

Write miss occur and FIFO_hit is de-
asserted because trying to write into
cache location that tag is different.

Since cache location that need to be
written is dirty the block is evict and
copy to FIFO.

Then write data into cache. Dirty = 1

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 90

Test 6: Write Miss with FIFO hit in Cache 3

Write miss occur and FIFO_hit is
asserted because trying to write into
cache location that tag is different.

Since it is FIFO hit, data written back from FIFO to cache. The
location in cache to be written is dirty thus move that data block
from cache to FIFO.

Read back that cache location for
checking writing is successful or not.

FIFO entries: @16700, *, *, *

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 91

Test 7: Auto Write Back to SDRAM in Cache 3 with FIFO busy

A series of read hit operation is given and now
SDRAM is free. FIFO is written back to SDRAM
while read operation is in progress.

FIFO wait for SDRAM to prepare
receive data, then when ack signal is
asserted data were written back to
SDRAM.

During writing into SDRAM, read miss
occur, thus pipeline was stalled until
data block is finish written into

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 92

Test 8: Read Miss with FIFO misses in Cache 3

After wait for data written
finish into SDRAM, read
instruction was resume.

Read miss and FIFO miss (fifo_hit de-
asserted) happen since tag is different; data
need read back from SDRAM to cache and
@89A00 move to FIFO (Test 5 had made
dirty to 1).

Data is then read
out to CPU

FIFO entries: @89A00, *, *, *

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 93

Test 9: Read Miss with FIFO hit in Cache 3

Data in respective location
@89A00 @E9A00
00B0_0177 39A8_776F
1234_ABCD 5555_5555
5678_7654 7777_7777
3456_789A FFFF_FFFF
9876_3210 1212_3434
FAFA_FAFA 0000_0001
BEEF_BEEF BAD0_ADD8
DEAD_DEAD 2345_5432

FIFO entries: *, *, *, *

Since previous instruction is
read only so dirty is 0.
@E9A00 did not move to
FIFO

Read miss because tag is different
and fifo_hit asserted, data written
back from FIFO to SDRAM

Data is then read out to CPU

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 94

Test 10: Miss happen and FIFO full

FIFO entries:@26100,*,*,*

FIFO entries: @26100, @46100,*,*

FIFO entries: @26100, @46100, @66100,*

FIFO entries: @26100, @46100, @66100, @86100

FIFO full thus FIFO write data back to
SDRAM first to free up a space, and
then continue it write miss process.

FIFO entries: @A6100, @46100, @66100, @86100

 100

Chapter 8 Conclusion

8.1 Conclusion
Cache unit had successfully redesigned with write-back scheme and write buffer

(FIFO) from previous work. With this cache unit, data no longer always need to

written back to SDRAM since SDRAM accessing taking 40 to 50 cycles

Now with the new cache unit dirty data able to written back to SDRAM if

SDRAM is free while CPU is can do other process. In order to suit in this new ability,

a little modification on memory arbiter was made while still keeping the same good

feature and functionality of memory arbiter modelled by Chin Chun Lek.

At the end, all the objective of this project is achieved. The cache unit is

developed in RTL (Register Transfer Level) form and modeled in synthesizable

Verilog. A series of test cases and scenarios has been carried to verified memory

system functionality. All the expected results are obtained.

8.2 Discussion and Future Work
With the newly designed cache unit, data no longer always need to written back to

SDRAM. In worst case scenario if a miss happen, cache need to access SDRAM

twice by writing the dirty data into SDRAM and read another data from SDRAM.

With write-back write buffer (FIFO) it can reduce to only read data from SDRAM

since dirty data was written into FIFO. Also, if data found in write buffer (FIFO) data

can always write back from write buffer (FIFO) and skip the writing from SDRAM.

Now with the new cache unit dirty data in FIFO able to written back to SDRAM if

SDRAM is free while CPU is can do other process, thus it increase the efficiency use

of clock cycle.

Some modifications need to be done in the future work. One is in SDRAM,

the acknowledgement signal had two functions in one signal, it indicates load mode is

done and data was ready. It is better in to split in two signals to prevent confusion.

Next is implementation of Load Mode Instruction in CPU since now did not have a

method to change the configuration mode of SDRAM. This need look into pipeline

and cache unit and modified both of them.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 101

References

� Araújo J.P.(2002) Intelligent RAM’s: a Radical Solution? In Proceedings of

the 3rd Internal Conference on Computer Architecture, Universidade do

Minho http://gec.di.uminho.pt/discip/minf/ac0102/1600IRAM.pdf

� Chin Chun Lek (2015) “32-Bit Memory System Design: Design of Memory

Controller for Micron SDR SDRAM” University of Tunku Abdul Rahman,

Faculty of Information and Communication Technology

� Ching Yi-lynn (2008) “Memory System Design: Integration of Caches,

Translation Lookaside Buffer (TLB) and SDRAM” University of Tunku

Abdul Rahman, Faculty of Information and Communication Technology

� Hennessy, J.L. and Patterson, D.A. (2007) Computer Architecture: A

Quantitative Approach, 4th ed., San Francisco, California: Morgan Kauffmann

Publisher

� Micron (n.d) 128Mb x 32 Synchronous DRAM [online] Available at:

https://www.micron.com/~/media/documents/products/data-

sheet/dram/128mb_x32_sdram.pdf

� MOK, K. M. (2009) Computer organization and architecture 201210 –

memory-basic cache design note, University of Tunku Abdul Rahman, Faculty

of Information and Communication Technology

� Nick Carter (2002) Schaum’s Outline of Theory and Problems of Computer

Architecture First Edition, McGraw-Hill Education Publisher

� Oon Zhi Kang (2008) “SDRAM Enhancement: Design of a SDRAM

Controller WISHBONE Industrial Standard” University of Tunku Abdul

Rahman, Faculty of Information and Communication Technology

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 102

� Wolf, W.(2004), FPGA-Based System Design, Upper Saddle River, New

Jersey: Prentice-Hall

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 103

Appendices

Appendix A

System Specification

Chip level design: RISC32 processor

A.1 Feature

 Basic RISC32 Full RISC32
Dummy Instruction Cache (KB) 16 16
Dummy Data Cache (KB) 16 16
Data width (bits) 32 32
Instruction width (bits) 32 32
General Purpose Register 32 32
Special Purpose Register HILO, PC HILO, PC
Pipelined Stage 5 5
Hazard Handling No Yes
Interlock Handling No Yes
Data Dependency Forwarding No Yes
Branch Prediction Fixed – always

invalid
Dynamic – 2bits
scheme

Multiplication (size of multiplier
and multiplicand)

yes – 32bits yes – 32 bits

Branch Delay Slot Not supported Not supported
Instruction supported 38 38

Table A-1 RISC32 features

A.2 Naming Convention
Module – [lvl]_[mod. name]

Instantiation – [lvl]_[abbr. mod. name]

Pin – [lvl] [Type] _[abbr. mod. name] _ [pin name]

 – [lvl]_[abbr. mod. name]_[Type]_[stage]_[pin name]

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 104

Abbreviation:

 Description Case Available Remark
lvl level lower c : Chip

u : Unit
b : Block
tb: Test
Bench

mod. name Module
Name

lower all any

abbr. mod.
name

Abbreviated
module
name

lower all any maximum 3 characters

Type Pin type lower o : output
i : input
r : register
w : wire
f- :function

stage Stage name lower all if, id, ex,
mem, wb

pin name Pin name lower all any Several word separate by
“_”

Table A-2 Naming Convention

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 105

A.3 Basic RISC32 processor

A.3.1 Processor Interface

Figure A.3 Block diagram for RISC32-basic processor

A.3.2 I/O Pin Description

Pin Name:
c_r32_i_reset

Source � Destination:
External Source � RISC32 processor

Registered:
No

Pin Function:
System reset for the RISC32 microprocessor. It is synchronous to the system clock.
Pin Name:
c_r32_i_clk

Source � Destination:
External Source � RISC32 processor

Registered:
No

Pin Function:
System clock for the RISC32 microprocessor.

Table A-3 Basic RISC32 Input Pins Description

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 106

A.4 System Register

A.4.1 General Purpose Register
Width : 32-bits

Size : 32 units

Retrieving method : 5-bits address as index

Name Address Use
Preserved Across A
Call?

$zero 0 Constant Value 0 N.A.
$at 1 Assembler Temporary No

$v0 - $v1 2 - 3
Value for Function Results
and Expression Evaluation

No

$a0 - $a3 4 - 7 Arguments No
$t0 - $t7 8 – 15 Temporaries No
$s0 - $s7 16 - 23 Saved temporaries Yes
$t8 - $t9 24 – 25 Temporaries No
$k0 - $k1 26 -27 Reserved for OS kernel No
$gp 28 Global Pointer Yes
$sp 29 Stack Pointer Yes
$fp 30 Frame Pointer Yes
$ra 31 Return Address Yes

Table A-4-1 Register file

A.4.2 Special Purpose Register
Width : 32-bits

 Size : 2-units

Retrieving method : access using MFHI, MTHI, MFLO, MTLO, MULT and

 MULTU instructions

Name definition
location in double
[64:0]

HI
Most Significant
Word

Double [63:32]

LO
Least Significant
Word

Double [31:0]

Table A-4-2 HILO Register

A.4.3 Program Counter Register

Width : 32-bits

Size : 1 unit

Retrieving method : Control by instruction address generator control

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 107

A.5 Instruction Format
R-type (Register)
Op [31:26] Rs [25:21] Rt [20:16] Rd [15:11] Shamt [10:6] Funct [5:0]
I-type (Immediate)
Op [31:26] Rs [25:21] Rt [20:16] Immediate [15:0]
J-type (Jump)
Op [31:26] Target [25:0]

Table A-5 Instruction Type

Abbreviation:

 Definition width

op Operation code (instruction) 6

rs Source register 5

rt Target(source/destination) or branch 5

immediate Immediate, branch displacement or address displacement 16

target Jump target address 26

rd Destination register 5

shamt Shift amount 5

funct Function field 6

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 108

A.6 Addressing Mode

Figure A-6 RISC32 Addressing Mode.

1. Immediate Addressing, where operand is constant within the instruction itself

2. Register Addressing, where operand is a register

3. Based Displacement Addressing, where operand is at the memory location whose

address is the sum of a register and a constant in the instruction

4. PC-relative Addressing, where branch address s the sum of the PC and a constant

in the instruction

5. Pseudodirect Addressing, where the jump address is the 26-bits of the instruction

concatenated with the upper bits of the PC.

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 109

A.7 Instruction Set and Description
Machine Language Instruction

/
Assembly

Format Addr. Mode
OpCod
e

Rs Rt Rd Shamt Func
Register Transfer Notation Assembly

Format
Overflow

nop R Register 0x00 0 0 0 0 0x00 NOP sll $zero, $zero,
0

no

sll R Register 0x00 0 $rt $rd n 0x01 R[rd] =R[rs] << n sll $rd, $rt, n no
srl R Register 0x00 0 $rt $rd n 0x03 R[rd] =R[rs] >> n srl $rd, $rt, n no
sra R Register 0x00 0 $rt $rd n 0x04 R[rd] =R[rs] >>> n sra $rd, $rt, n no
jr R Register 0x00 $rs 0 0 0 0x0

A
PC = R[rs] jr $rs no

jalr R Register 0x00 $rs 0 0 0 0x0
B

PC = R[rs]
R[31] = PC + 4

jalr $rs no

mfhi R Register 0x00 0 0 $rd 0 0x10 R[rd] = HI mfhi $rd no
mthi R Register 0x00 $rs 0 0 0 0x11 HI = R[rs] mthi $rs no
mflo R Register 0x00 0 0 $rd 0 0x12 R[rd] = LO mflo $rd no
mtlo R Register 0x00 $rs 0 0 0 0x13 LO = R[rs] mtlo $rs no
mult R Register 0x00 $rs $rt 0 0 0x24 HILO = R[rs] * R[rt] mult $rs, $rt no
multu R Register 0x00 $rs $rt 0 0 0x24 HILO = U(R[rs]) * U(R[rt]) multu $rs, $rt no
add R Register 0x00 $rs $rt $rd 0 0x20 R[rd] = R[rs] + R[rt] add $rd, $rs, $rt yes
addu R Register 0x00 $rs $rt $rd 0 0x21 R[rd] = U(R[rs]) + U(R[rt]) addu $rd, $rs,

$rt
no

sub R Register 0x00 $rs $rt $rd 0 0x22 R[rd] = R[rs] - R[rt] sub $rd, $rs, $rt yes
subu R Register 0x00 $rs $rt $rd 0 0x23 R[rd] = U(R[rs]) - U(R[rt]) subu $rd, $rs,

$rt
no

and R Register 0x00 $rs $rt $rd 0 0x24 R[rd] = R[rs] & R[rt] and $rd, $rs, $rt no
or R Register 0x00 $rs $rt $rd 0 0x25 R[rd] = R[rs] | R[rt] or $rd, $rs, $rt no
xor R Register 0x00 $rs $rt $rd 0 0x26 R[rd] = R[rs] ^ R[rt] xor $rd, $rs, $rt no

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 110

nor R Register 0x00 $rs $rt $rd 0 0x27 R[rd] = ~(R[rs] | R[rt]) nor $rd, $rs, $rt no
slt R Register 0x00 $rs $rt $rd 0 0x2

A
R[rd] = (R[rs] < R[rt]) ? 1 : 0 slt $rd, $rs, $rt no

sltu R Register 0x00 $rs $rt $rd 0 0x2
B

R[rd] = (U(R[rs]) < U(R[rt])) ?
1 : 0

sltu $rd, $rs, $rt no

j J Pseudo-
Direct

0x02 JumpAddr (Label) PC = {(PC+4) [31:28],
JumpAddr, 2’b00}

j label no

jal J Pseudo-
Direct

0x03 JumpAddr (Label) PC = {(PC+4) [31:28],
JumpAddr, 2’b00}
R[31] = PC + 4

jal label no

beq I PC-Relative 0x04 $rs $rt BranchAddr
(Label)

PC = (R[rs] == R[rt]) ?
(PC + 4 +
(SE(BranchAddr)<<2)) :
(PC + 4)

beq $rs, $rt,
label

no

bne I PC-Relative 0x05 $rs $rt BranchAddr
(Label)

PC = (R[rs] != R[rt]) ?
(PC + 4 +
(SE(BranchAddr)<<2)) :
(PC + 4)

bne $rs, $rt,
label

no

blez I PC-Relative 0x06 $rs 0 BranchAddr
(Label)

PC = (R[rs] <=0) ?
(PC + 4 +
(SE(BranchAddr)<<2)) :
(PC + 4)

blez $rs, $rt,
label

no

bgtz I PC-Relative 0x07 $rs 0 BranchAddr
(Label)

PC = (R[rs] > 0) ?
(PC + 4 +
(SE(BranchAddr)<<2)) :
(PC + 4)

bgtz $rs, $rt,
label

no

addi I Immediate 0x08 $rs $rt Imm R[rt] = R[rs] + SE(Imm) addi $rt, $rs,
imm

yes

addiu I Immediate 0x09 $rs $rt Imm R[rt] = U(R[rs]) + addiu $rt, $rs, no

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 111

U(ZE(Imm)) imm
slti I Immediate 0x0A $rs $rt Imm R[rt] = (R[rs] < SE(Imm)) ? 1 :

0
slti $rt, $rs,
imm

no

sltiu I Immediate 0x0B $rs $rt Imm R[rt] = (U(R[rs]) <
U(SE(Imm))) ? 1 : 0

sltiu $rt, $rs,
imm

no

andi I Immediate 0x0C $rs $rt Imm R[rt] = R[rs] & ZE(Imm) andi $rt, $rs,
imm

no

ori I Immediate 0x0D $rs $rt Imm R[rt] = R[rs] | ZE(Imm) ori $rt, $rs, imm no
xori I Immediate 0x0E $rs $rt Imm R[rt] = R[rs] ^ ZE(Imm) xori $rt, $rs,

imm
no

lui I Immediate 0x0F $rs $rt Imm R[rt] = Imm << 16 lui $rt, imm no
lw I Based-

Displaceme
nt

0x23 $rs $rt Imm R[rt] = MEM[R[rs] +
SE(Imm)]

lw $rt,
imm($rs)

no

sw I Based-
Displaceme
nt

0x2B $rs $rt Imm MEM[R[rs] + SE(Imm)] =
R[rt]

sw $rt,
imm($rs)

no

Table A-7 RISC32 Instruction set

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 112

A.8 Memory Map
Purpose start address Direction Segment

Kernel module
0xC000
0000

Up Kseg2

Boot Rom Up

i/o register(if below 512MB)
0xA000
0000

Up
Kseg1

Direct view of memory to 512MB linux kernel
code and data

 Up

Exception Entry point
0x8000
0000

Up
Kseg0

Stack 0x7fff ffff Down

Program heap
0x1000
8000

Up

Dynamic library code and data
0x1000
0000

Up

Main program
0x0040
0000

Up

Reserved
0x0000
0000

Up

Kuseg

Table A-8 Memory Map

Memory map description

Kernel module

- Accessible by kernel*

Boot Rom

- Start up ROM which keep the system configuration*

I/O registers (if below 512MB)

- External IO device register*

Direct view of memory to 512MB linux kernel code and data

- *

Exception Entry point

- Software exception handling *

Stack

- Use for argument passing

Program heap

- Dynamic memory allocation such as malloc()

Dynamic library code and data

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 113

- Data segment which is access by

Main program

- Text segment which contain the main program

Reserved

Note *: required CP0

Figure A.8 Memory map for Kuseg section, accessible without CP0

BIT (Hons) Computer Engineering
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 114

A.9 Operating Procedure
• Start the system

• Porting sequence of instruction into cache (instruction or data)

• Reset the system for at least 2 clocks

• While release the reset, the system will automatically run the program inside

instruction cache

• Observe the waveform from the development tools.

