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ABSTRACTS 

 

This project is to enhance the current RISC32 architecture that developed in Universiti 

Tunku Abdul Rahman under Faculty of Information and Communication Technology 

by redesigning the memory system. After reviewing the previous work, the RISC32 

processor memory system cache unit using write-through scheme which is able to 

improve more of it efficiency. 

 Hence, this project is initiated to redesign the cache unit into write-back cache 

and adding a write buffer(FIFO) in the cache unit to handling the data transferring back 

to SDRAM when read miss and write miss occur. Some modification on memory 

arbiter was done in order for the new cache unit worked in the memory system. This 

project is modelled using Verilog HDL and a test program will be developed in order to 

test the functionality and compatibility of the newly design write-back cache with the 

rest of memory system (memory arbiter, SDRAM controller, SDRAM). 
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Chapter 1 Introduction 

1.1 Background Information 
The growing disparity between microprocessor and memory cause by the division of the 

semiconductor industry into CPU fields and memory fields which their technology have 

focus on different achievement, the first one has concentrated on increased in speed, 

while the latter one has concentrated on increased in capacity. Thus the improvement 

rate in microprocessor speed by far exceeds the one in memory. The continuous 

growing gap between CPU and memory speeds is a crucial flaw in the overall computer 

performance. Throughout the history, CPU speeds have been improving at an average 

of 55% per year, while memory latency has only been improving at 7% per year 

(Hennessy and Patterson 2007, p. 289).  

 

 

 

 

 

 

 

 

 

 

 

The performance gap grows exponentially. This make increasing processor-

memory performance gap is now the leading direction to improved computer system 

performance. 

Figure 1-1-1 starting with 1980 performance as a baseline, the gap in performance 
between memory and processors is plotted over time. 
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Memory Hierarchy was introduced in the late of sixties to provide decreased 

average latency and reduced bandwidth requirements to speed up memory system. The 

performance of a memory-hierarchy analyse through the average memory access time, 

using the following expression:  

average memory access time = hit time + miss rate * miss penalty.  

             (Araújo 2002, p.146) 

Thus the effort to decrease the performance gap between processor and physical 

memory has been concentrated on efficient implementations of a memory hierarchy to 

reduce miss rate, miss penalty and hit time. 

1.2 Motivation and Problem Background 
A 32-bit RISC processor has been developed in Faculty of Information and 

Communication Technology, University Tunku Abdul Rahman (UTAR). The project is 

based on Reduced Instruction Set Computing (RISC) architecture. There are several 

purposes to initiate this project. 

• Microchip design companies develop microprocessor cores as IP (Intellectual 

Property) for commercial purposes only.  This simply means that the 

microprocessor IP which includes information of the entire design process for 

front-end and back-end IC design are trade secrets of the company and certainly 

not available in market at affordable price. Hence, RISC32 project is started at 

University Tunku Abdul Rahman few years ago and still working to complete 

the design. 

• There are several freely available microprocessor cores from open source such 

as OpenCores (opencores.org) which is the largest site for development of 

hardware IP cores as open source. However these processors are not complete 

and did not implement the entire MIPS Instruction Architecture (ISA). 

Furthermore, they are lack of comprehensive documentation which makes them 

not suitable for reuse and further customization. 
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• Verification is important for proving the functionality of any digital design. The 

microprocessors mentioned above are handicapped by incomplete and poorly 

developed verification specifications. This hampers the verification process, 

slowing down the overall design process. 

• The lack of well-developed verification specifications for these microprocessor 

cores will certainly affect the physical design phase. A design need to be 

functionally proven before the physical design phase can proceed smoothly. 

Otherwise, if front-end design requires changing, the entire physical design 

needs to be redone.  

1.3 Problem Statement 
This project is aim to provide a solution to the above problems by creating a 32-bit 

RISC core-based development environment to assist research work in the area of soft-

core and also application specific hardware modelling. Currently, a SDRAM Controller 

and SDRAM provided by MICRON Technology Inc. has been modelled at the Register 

Transfer Level (RTL) using Verilog HDL and both of them have been combined 

together and had gone through a series of simulation test. There is also a cache and a 

TLB modelled at RTL using Verilog HDL, both of them were integrated together with 

the SDRAM controller as a complete memory system.  

Seniors of UTAR FICT computer engineering implemented cache unit, memory 

arbiter and SDRAM controller. In previous implementation, cache unit is a write-

through 2-way set associative caches which it can be improved. Thus this project aim to 

redesign the cache unit into a write-back multiword direct mapped cache with write 

buffer (FIFO). The cache unit’s protocol need to redesign because of the inclement of 

write-back ability in cache unit. After implemented the new cache unit, a little 

modification needs to be done in memory arbiter unit in order to compatible with the 

new cache unit. After that the functionality need to verify so that every unit is working 

as expected. 
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Chapter 2 Literature Review 

2.1 Write-through Scheme vs Write-back Scheme 
Write-through cache: Data are written into the cache and sent to the main memory (in 

this project is SDRAM) as operation is executed. This ensures that the contents of the 

cache and main memory are always the same, but it has downside that it experiences 

latency based on writing to SDRAM. This cache is good for application that writes and 

then re-read data frequently. 

Write-back cache: Write-back cache keep stored data in the cache, and when a block 

that has been written is evicted from the cache, the contents of the block are then 

written back (copied) into the main memory (SDRAM). Write-back cache keep stored 

data in the cache, the main memory become the same after the contents of the block are 

written back (copied) into main memory. The disadvantage is there is data availability 

exposure risk because the only copy of the written data is in cache. Write-back cache is 

the best performing solution for mixed workloads as both read and write have similar 

response time levels.                  (Carter 2002)  

This mean that if use write-through cache system performance is limited by memory 

speed whereas if use write-back cache the cache will get the full performance. 

2.2 Write buffer 
Data is not written to the main memory directly but into the write buffer first. Once the 

data is written into the write buffer and assuming cache hit, the CPU is done with the 

write, then the SDRAM controller will move the write buffer’s contents to the real 

memory behind the scene. This work as long as the frequency of store is not too high. 

2.2.1 Write Buffer Saturation 
When store frequency approaching main memory write frequency it leads to write 

buffer saturation. In this case no matter how big the write buffer it is it will still 

overflow because data simply come in faster than it can empty it, thus CPU will running 

at main memory cycle time, which is very slow. The solution for write buffer saturation 
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is to get rid of this write buffer and replace this write through cache with a write back 

cache.              (Mok KM 2009) 

2.2.2 Write-back Scheme with Write Buffer 
Write buffer allow cache to proceed as soon as data is placed in buffer rather than wait 

the full latency to write the data into memory. Write-back scheme write data to cache 

only. It makes main memory is not updated and allow cache and memory to be 

inconsistent. Since data in cache and memory is inconsistent, each block of data 

requires a dirty bit to indicate a block is modified. If block replacement happen in cache, 

only evicted dirty block is kept in a write buffer so that it can write-back to memory 

later. The drawback of this is it has complex hardware. 

 

 

 

 

 

 

Figure 2-2-1 Write-back scheme with write buffer 

2.3 Reduce Miss Rate via Larger Block Size: Multiword Block Direct Mapped 
Cache 
Using multiword block direct mapped cache is the simplest way to reduce miss rate. 

This take advantage of spatial locality which mean if a word is accessed, nearby words 

are likely to be accessed soon, thus it is better to move more words per block from 

memory to cache. However when miss happen it takes more cycle to handle the miss 

(miss penalty increase). 
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Figure 2-2-2 Multiword block direct mapped cache (block size = 32 bytes) 

2.4 Cache Unit 
A 2-way set associative write-through cache of 2MB has been modelled by Ching Li-

lynn. This cache can be used as both Instruction Cache and Data Cache. Inside of cache 

unit consists of cache controller block and cache datapath block.   

 

 

 

 

 

 

 

 

 

 

Figure 2-4-1 Cache Unit designed by Ching Li-lynn 

 

2.4.1 Cache Associative 
• The current cache is a 2-way set associative cache 

• N-Way set associative - uses N cache, data RAMs and N cache-tag RAMs (built 

out of N RAMs and N comparators, a cache controller, and isolation buffers. It 

is actually separate the memory into different set of caches and ease the 

replacement and searching policy. 
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• 1-way set associative cache = direct mapped cache 

 

2.4.2 Scenarios to Represent Cache Behaviours 
Basically there are just 4 scenarios might be happened on cache, we need to decide what 

to do when these scenarios happen. 

1. Read Miss 

• Receive physical address and instructions of read from the main 

controller of the CPU. 

• Check validity and tag for the index of the physical address points to. A 

miss signal is produced due to either it is invalid or the tag is different. 

• Cache controller asserts strobe, cycle, and read signals to SDRAM 

controller to fetch new black of data.  

• Meanwhile, the pipelines of the CPU are stalled. 

• Check LRU to determine which slot is least recently used, store the 

newly fetched block of data in it. 

• Set valid bit for the index pointed. 

• Update LRU. 

• Deassert the miss, strobe, cycle and read signal, the pipelines are  

un-stalled. 

 

 

 

2. Read Hit 
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• Receive physical address and instruction of read from the main controller 

of CPU. 

• Check validity and tag for index of the physical address points to. Miss 

signal is active low. 

• Load the selected instruction or data by determining the byte offset to 

host. 

• Update LRU. 

 

3. Write Miss (For D-Cache only) 

• Receive physical address, data, and instruction of write from the main 

controller of CPU. 

• Check validity and tag for the index of the physical address points to. A 

miss signal is produced due to either it is invalid or the tag is different. 

• Stall the pipelines. 

• Check LRU to determine which is least recently used. 

• Cache controller asserts strobe, cycle, and read to SDRAM controller to 

access the data in SDRAM. 

• If the block of data was dirty, send the block of 8 words back to SDRAM. 

• Fetch new block of data from SDRAM. 

• After the new block is updated from SDRAM, strobe, cycle, read and 

miss signals are deasserted. 

• Perform the write. 

• Update LRU. 
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4. Write Hit (For D-Cache only) 

• Receive physical address, data, and instruction of write from main 

controller of CPU. 

• Check validity of tag for index of the physical address points to. Miss 

signal is active low. 

• Update the selected instruction or data. 

• Update LRU. 

 

 

2.4.3 Block Partitioning of Cache Unit 
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Figure 2-4-2 Block Partitioning of Cache Unit designed by Ching Li-lynn 
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2.5 SDRAM 
Synchronous Dynamic Random Access Memory (SDRAM) is a type of DRAM that is 

synchronised with the system bus. This project uses a SDRAM that is provided by 

MICRON Technology Inc. It is MT48LC4M32B2, with 16MB of storage. (Micron 

datasheet, n.d.)  SDRAM control by SDRAM controller modelled by Chin Chun Lek 

thus in this project just need to focus on function of SDRAM and it configuration – load 

mode definition. 

 

 

 

 

 

 

 

Figure 2-5-1 Block diagram of MT48LC4M32B2 (Oon Zhi Kang 2008) 

The cs (active low) pin is used to select the SDRAM, while we, cas and ras are used to 

request operations from the SDRAM. 

 

 

 

 

 

Table 2-5-1 List of SDRAM commands and function. (Micron datasheet) 
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Figure 2-5-2 Mode Register definitions to configure SDRAM (Micron) 
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• Burst Length 

Determine the maximum number of column locations that can be accessed for a 

given READ or WRITE operation. 

• Burst Type 

Select either sequential or interleaved burst to be adopted by SDRAM. The 

ordering of accesses within a burst is determined by burst length, burst type, 

starting column address. 

• CAS Latency 

Delay in clock cycles between registration of a READ command and the 

availability of the first piece of output data. It can only be set to 2 or 3 clock 

cycles. 

• Operating Mode 

Select which operating mode should the SDRAM be. Currently there is only 

normal operating mode is available for use. 

• Writing Burst Mode 

When it is ‘0’, the burst length is programmed via M0-M2 applies to both 

READ and WRITE burst. 

When it is ‘1’, the programmed burst length applies to READ bursts, but write 

accesses are single-location (non-burst) accesses. 
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2.6 SDRAM Controller 
A SDRAM controller had been modelled by Chin Chun Lek. The SDRAM controller 

acts as an intermediary between the SDRAM and the CPU. It handles SDRAM 

operations using some protocols. It has no longer been modeled based on Industry 

standard HOST SoC interface due to the current design needs.  

The main features of SDRAM Controller are: 

1) Burst transfers and burst termination  

2) SDRAM initialization support 

3) Performance optimization by leaving active rows open 

4) Load mode control  

 

 

 

 

 

 

 

 

 

Figure 2-6-1: SDRAM Controller Block Diagram designed by Chin Chun Lek 
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2.6.1 Block partitioning of SDRAM Controller 
 

 

 

 

 

 

 

 

 

 

Figure 2-6-2: The Micro-Architecture of the SDRAM Controller designed by Chin Chun Lek 
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ui_ma_cac_write3

ui_ma_cac_host_ld_mode3

ui_ma_cac_sel3

ui_ma_cac_addr3

ui_ma_cac_data3

ui_ma_cac_miss3

uo_ma_cac_ack3

uo_ma_cac_data3

ui_ma_cac_read2

ui_ma_cac_write2

ui_ma_cac_host_ld_mode2

ui_ma_cac_sel2

ui_ma_cac_addr2

ui_ma_cac_data2

ui_ma_cac_miss2

uo_ma_cac_ack2

uo_ma_cac_data2

ui_ma_cac_read1

ui_ma_cac_write1

ui_ma_cac_host_ld_mode1

ui_ma_cac_sel1

ui_ma_cac_addr1

ui_ma_cac_data1

ui_ma_cac_miss1

uo_ma_cac_ack1

uo_ma_cac_data1

ui_ma_cac_read0

ui_ma_cac_write0

ui_ma_cac_host_ld_mode0

ui_ma_cac_sel0

ui_ma_cac_addr0

ui_ma_cac_data0

ui_ma_cac_miss0

uo_ma_cac_ack0

uo_ma_cac_data0

Destination name:

u_sdram_controller

Source name:

u_sdram_controller

Destination name:

cache3

Source name:

cache3

Destination name:

cache2

Source name:

cache2

Destination name:

cache1

Source name:

cache1

Destination name:

cache0

Source name:

cache0

2.7 Memory Arbiter 
Chin Chun Lek had modelled a new memory arbiter. This memory arbiter allows 

multiple caches to access single SDRAM by given priority. The block diagram below 

shows a memory arbiter that can support up to 4 caches. Some modification needs to be 

done after that in order to compatible with this project newly designed cache unit. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-7-1: Memory Arbiter Block Diagram 
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2.7.1 I/O Description 
Pin name: ui_ma_cac_read 

Pin class: Control 

Path: TLB or Cache � Memory Arbiter 

Description: read signals from the TLBs and Caches. 

Pin name: ui_ma_cac_write 

Pin class: Control 

Path: TLB or Cache � Memory Arbiter 

Description: write signal from the TLBs and Caches. 

Pin name: ui_ma_cac_host_ld_mode 

Pin class: Control 

Path: TLB or Cache � Memory Arbiter 

Description: Host Load Mode signals from the TLBs and Caches. 

Pin name: ui_ma_cac_sel 

Pin class: Control 

Path: TLB or Cache � Memory Arbiter 

Description: Byte Select signals from the TLBs and Caches. 

Pin name: ui_ma_cac_addr 

Pin class: Address 

Path: TLB or Cache � Memory Arbiter 

Description: Addresses from the TLBs and Caches. 

Pin name: ui_ma_cac_data 

Pin class: Data 

Path: TLB or Cache � Memory Arbiter 

Description:  Data from the TLBs and Caches. 

Pin name: ui_ma_cac_miss 

Pin class: Control 

Path: TLB or Cache � Memory Arbiter 

Description: Miss signals from the TLBs and Caches. 

Pin name: uo_ma_cac_ack 

Pin class: Control 
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Path: Memory Arbiter � TLB or Cache 

Description: Acknowledge signal (active HIGH) to indicate read or write to SDRAM 

is done, and send to Caches or TLB. 

Pin name: uo_ma_cac_data 

Pin class: Data 

Path: Memory Arbiter � TLB or Cache 

Description: 32-bits data that goes to Cache or TLB.  

Pin name: ui_ma_sdc_data 

Pin class: Data 

Path: Memory Arbiter � SDRAM Controller 

Description: 32-bits data that comes from SDRAM. 

Pin name: ui_ma_sdc_ack 

Pin class: control 

Path: Memory Arbiter � SDRAM Controller 

Description: Acknowledge signal (active HIGH) to indicate read or write to SDRAM 

is done. 

Pin name: uo_ma_sdc_host_ld_mode 

Pin class: control 

Path: Memory Arbiter � SDRAM Controller 

Description: Host Load Mode signals that send to SDRAM Controller. 

Pin name: uo_ma_sdc_read 

Pin class: control 

Path: Memory Arbiter � SDRAM Controller 

Description: read signal that goes to SDRAM Controller 

Pin name: uo_ma_sdc_write 

Pin class: control 

Path: Memory Arbiter � SDRAM Controller 

Description: Write signal that goes to SDRAM Controller. 

Pin name: uo_ma_sdc_sel 

Pin class: control 

Path: Memory Arbiter � SDRAM Controller 
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Description: 4-bits control signals to mask which byte of the 4 bytes (32-bits) data 

goes in or comes out from SDRAM. 

When it is ‘1’, the corresponding byte will enable. 

When it is ‘0’, the corresponding byte will be masked and the output becomes ‘z’. 

Pin name: uo_ma_sdc_addr 

Pin class: control 

Path: SDRAM Controller � Memory Arbiter 

Description: 32-bits address to indicate which location in the SDRAM to be 

accessed. 

Pin name: uo_ma_sdc_data 

Pin class: control 

Path: SDRAM Controller � Memory Arbiter 

Description:  32-bits data that goes into the SDRAM. 

When wants to configure the operating mode of the SDRAM, the configuration values 

goes into SDRAM via this port too. 

Table 2-7-1: Memory Arbiter I/O Descriptions 
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else 

miss3’.miss2’.miss1’.miss0 

else 

else miss3’.miss2’.miss1 

miss3’.miss2 

else 

miss3 

cache3 

idle cache2 cache0 

cache1 

miss3 
   

miss2      
miss0 

      

miss1       

 

2.7.2 Memory Arbiter State Diagram 
 

 

 

 

 

 
 
 
 

 

 

 

 

Figure 2-7-2: Memory Arbiter State Diagram 

 

2.7.3 State Definition  
 

 State Name Definition 

cache3 First priority cache given to perform operation 

cache2 Second priority cache given to perform operation 

cache1 Third priority cache given to perform operation 

cache0 Last priority cache given to perform operation 

Memory 

Arbiter 

idle Wait for new operation 

 

Table 2-7-2: State Definition of Memory Arbiter 
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2.7.4 Output or Behaviors Corresponding to the States 
State Name Correspondence Output Behaviors 

cache3 

 

When ui_ma_cac_miss3 = 1, 

 

from cache3 to SDRAM controller: 

uo_ma_sdc_read = ui_ma_cac_read3, 

uo_ma_sdc_write = ui_ma_cac_write3, 

uo_ma_sdc_host_ld_mode = ui_ma_cac_host_ld_mode3 

uo_ma_sdc_sel = ui_ma_cac_sel3, 

uo_ma_sdc_addr = ui_ma_cac_addr3, 

uo_ma_sdc_data = ui_ma_cac_data3 

 

from SDRAM controller to cache3: 

ui_ma_sdc_ack = uo_ma_cac_ack3, 

ui_ma_sdc_data = uo_ma_cac_data3 

cache2 When ui_ma_cac_miss3 = 0 and 

ui_ma_cac_miss2 = 1, 

 

from cache2 to SDRAM controller: 

uo_ma_sdc_read = ui_ma_cac_read2, 

uo_ma_sdc_write = ui_ma_cac_write2, 

uo_ma_sdc_host_ld_mode = ui_ma_cac_host_ld_mode2 

uo_ma_sdc_sel = ui_ma_cac_sel2, 

uo_ma_sdc_addr = ui_ma_cac_addr2, 

uo_ma_sdc_data = ui_ma_cac_data2 

 

from SDRAM controller to cache2: 

ui_ma_sdc_ack = uo_ma_cac_ack2, 

ui_ma_sdc_data = uo_ma_cac_data2 

cache1 When ui_ma_cac_miss3 = 0 and 
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ui_ma_cac_miss2 = 0 and 

ui_ma_cac_miss1 = 1, 

 

from cache1 to SDRAM controller: 

uo_ma_sdc_read = ui_ma_cac_read1, 

uo_ma_sdc_write = ui_ma_cac_write1, 

uo_ma_sdc_host_ld_mode = ui_ma_cac_host_ld_mode1 

uo_ma_sdc_sel = ui_ma_cac_sel1, 

uo_ma_sdc_addr = ui_ma_cac_addr1, 

uo_ma_sdc_data = ui_ma_cac_data1 

 

from SDRAM controller to cache1: 

ui_ma_sdc_ack = uo_ma_cac_ack1, 

ui_ma_sdc_data = uo_ma_cac_data1 

cache0 When ui_ma_cac_miss3 = 0 and 

ui_ma_cac_miss2 = 0 and 

ui_ma_cac_miss1 = 0 and 

ui_ma_cac_miss0 = 1, 

 

from cache0 to SDRAM controller: 

uo_ma_sdc_read = ui_ma_cac_read0, 

uo_ma_sdc_write = ui_ma_cac_write0, 

uo_ma_sdc_host_ld_mode = ui_ma_cac_host_ld_mode0 

uo_ma_sdc_sel = ui_ma_cac_sel0, 

uo_ma_sdc_addr = ui_ma_cac_addr0, 

uo_ma_sdc_data = ui_ma_cac_data0 

 

from SDRAM controller to cache0: 

ui_ma_sdc_ack = uo_ma_cac_ack0, 

ui_ma_sdc_data = uo_ma_cac_data0 

idle All outputs are received zero. 
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Table 2-7-4: Memory Arbiter Output or Behaviours Corresponding to the States 

Chapter 3 Project Scope and Objectives 
This project aims to redesign existing memory system by changing write-through 

scheme to write-back scheme by adding a write buffer (FIFO) to improve the efficiency 

of previous memory system. A fully functionality verified and synthesis-ready model 

will be modelled in RTL using the Verilog HDL at the end of this project including the 

development of test specification, test plan, test vector and testbench which are written 

in Verilog HDL to ensure functional correctness and the performance. 

 

3.1 Project Objectives 
This project’s objectives include: 

• Design the write-back scheme direct mapped cache unit. 

• Design the protocol of cache unit (cache controller block). 

• Design the write buffer (FIFO). 

• Design the protocol of write buffer (FIFO controller block). 

• Modification on memory arbiter to compatible with new cache unit. 

• Integration of cache unit, memory arbiter, SDRAM controller and SDRAM. 

• Verified the functionality of the integrated unit (cache unit, memory arbiter, 

SDRAM controller and SDRAM) by construct proper test cases.  
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3.2 Impact and Significance 
As a summary to the problem statement, there is a lack of well-developed and well-

founded 32-bit RISC microprocessor core-based development environment. The 

development environment refers to the availability of the following: 

• A well-developed design document, which includes the chip specification, 

architecture specification and micro-architecture specification. 

• A fully functional well-developed 32-bit RISC architecture core in the form of 

synthesis-ready RTL written in Verilog HDL. 

• A well-developed verification environment for the 32-bit RISC core. The 

verification specification should contain suitable verification methodology, 

verification techniques, test plans, testbench architectures etc. 

• A complete physical design in Field Programmable Gate Array (FPGA) with 

documented timing and resource usage information. 

With the available well-developed basic 32-bit RISC RTL model (which has been fully 

functional verified), the verification environment and the design documents, researchers 

can develop their own specific RTL model as part of the development environment 

(whether directly modifying the internals of the processor or interface to the processor) 

and can quickly verify their model to obtain results, without having to worry about the 

development of the verification environment and the modeling environment. This can 

speed up the research work significantly. For example, a researcher may have 

developed an image-processing algorithm and modified the algorithm to obtain a 

structure that suits the hardware implementation. The structure can be modeled in 

Verilog as part of a specialized datapath or as a coprocessor interfacing to the RISC 

processor. 
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Chapter 4 Method and Technologies Involved 

4.1 Design Methodology 
There are several types of design methodologies for design process: 

• Top-down design methodology 

• Bottom-up design methodology 

• Mixed design methodology 

A top down design approach was adopted as the main design methodology in this 

project as shown in the following figure.  

 

 

 

 

 

 

Figure 4-1-1 General Design Flow without Synthesis and Physical Design 

This methodology put design partition reduces a complex design into smaller 

and a manageable piece thus provides step to step guideline that leading to a good 

design work and development of systems A good design methodology can ensure that 

functionality correctness in design, satisfaction in term of performance and power goals, 

can catches bugs at early stage, and provide good documentation for future references 

(Wolf  2004, p.22).  
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This project only involved in micro-Architecture level design (Unit Level and 

Block Level) since higher architecture level had been complete and waiting for 

integration only. 

 

4.1.1 Micro-architecture Level Design (Unit Level) 
The alternate appellation of this level is RTL (Register Transfer Level). This level 

describes the internal design of architecture unit module with data flow. The unit 

module is partition into several blocks which each block have its own functionality to 

carry out the sub-function of the unit module to reduce complexity of design process.  

4.1.2 Micro-architecture Level Design (Block Level) 
This level further describes each partition from previous level which is block. Their 

specification are written in this level, normally carry following information such as: 

• Functionality / Feature 

• Block interface and I/O pin description 

• Internal operation which include function table 

• Schematic and block diagram 

• Test plan 

• Timing requirement 

 Once done with the micro-architecture specification, with the information in the 

specification, RTL modelling with High Level Language or Hardware Description 

Language (HDL) can be start. It is combination of behaviour and data flow 

synthesizable HDL model. Throughout the RTL modelling, Verilog will be use as the 

design language in this project. The model can be simulate and synthesis. The model is 

then need to go through verification process which verify the functionality of the design 

which need to meet the micro-architecture specification. Verification includes 

development of testbench, timing verification and functionality verification.  
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4.2 Design Tools 

4.2.1 Verilog HDL Simulator - Mentor Graphics ModelSim SE-64 10.1c 
Develop using Verilog Hardware Description Language (HDL) require a simulator tool 

that can provide simulation environment to verify the functional behaviours and 

waveform simulation. With multiple choices of HDL simulator in the market, a research 

had been to choose the most appropriate design tools for this project which affect by 

language supported, availability, price and etc. From the consideration above, 

ModelSim from Mentor Graphic is the best choice as a design tools for this project as 

they offer a free license for Student Edition, can found in internet and support Microsoft 

Windows platform. Although with some limitation, which is slower simulation speed 

than full version and have code limitation, but it is sufficient for this project as the 

scope of this project would not reach the limit.  
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Chapter 5 Memory System Specification 

5.1 Partitioning and Design Hierarchy 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1-1 Memory System Partitioning
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Chip Partitioning at 
Architecture level 

Unit Partitioning at Micro-
Architecture Level 

Block and Functional Block 
Partitioning at RTL level 

(Micro-Architecture level) 
b_cache_ctrl 

b_fifo_ctrl 

u_cache (for data) 

b_fifo 

b_cache_ctrl 

b_fifo_ctrl 

u_cache (for instruction) 

b_fifo 

u_mem_arbiter - 

b_sdc_fsm 

b_sdc_sdram_if 

b_sdc_addr_mux 

u_sdram_controller 

b_sdc_obrt_top 

Memory System unit 

sdram (mt48lc4m32b2) - 

Table 5-1-1 Design hierarchy for 32-bit Memory System 

 

5.2 Memory System Specifications 
 RISC32 with Integrated Main Memory 

SDRAM 16MB 

Instruction Cache Direct mapped write-back cache, 2MB 

Data Cache Direct mapped write-back cache, 2MB 

Data Bus Width 32-bits 

Instruction Width 32-bits 

Table 5-2-1 Specifications of the Memory System 
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5.3 Memory Map 
Segment Address Purpose 

 
kseg2 – 1GB 0xFFFF FFFF 

 
0xC000 0000 

Kernel module,  
Page Table allocated here 

kseg1 – 512MB 0xBFFF FFFF 
 
0xA000 0000 

Boot Rom 
I/O Register (if below 512MB) 

kseg0 – 512MB 0x9FFF FFFF 
 
 
 
0x8000 0000 

Direct view of memory to 512MB 
kernel code and data. 
Exception and Page Table Base 
Register allocated here. 
 

0x7FFF FFFF 
 
 
 
0x1000 8000 

Stack Segment starts from the ending 
address and expand down. 
Heap Segment starts from the starting 
address and expand top. 

0x1000 7FFF 
 
0x1000 0000 

Data segment and Dynamic library 
code. 

0x09FFF FFFF 
 
0x0040 0000 

Code Segment, where the main 
program stored. 

kuseg – 2GB 

0x003F FFFF 
 
0x0000 0000 

Reserved 

Table 5-3-1 Virtual memory map of 32-bits MIPS 

• Stack Segment 

o Use for storing automatic variables, which are variables that allocated 

and de-allocated automatically when program flow.  

• Heap Segment 

o Use for dynamic memory allocation such as malloc(), realloc() and free().  

• Data Segment 

o Use for storing global or static variables that initialize by programmer. 

• Code Segment 
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o Use for storing codes of main program or main program instructions.
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5.4 Architecture of Memory System 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-4-1 Architecture of Memory System 
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Chapter 6 Micro-Architecture Specification 

6.1 Cache Unit 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-1-1 Block diagram of cache unit 

This is a direct mapped write-back cache with write buffer. The functionalities of Cache 

Unit are: 

1. Store a small fraction of data (for D-Cache) or instructions (for I-Cache) of main 

memory. 

2. Output desired data or instruction to CPU when it issues a READ. 

3. Write data into desired location as instructed by CPU (D-Cache only). 

4. Send signal to stall the CPU when read miss or write miss. 



BIT (Hons) Computer Engineering  
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 45 
 

5. Communicate with SDRAM Controller to write back ‘dirty’ block of data back 

into SDRAM and fetch new block of data from it. 
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6.4 Cache Unit I/O Description 
Input pins 

Pin name: ui_cac_clk 

Pin class: Global 

Path: External � Cache 

Description: System clock signal. 

Pin name: ui_cac_rst 

Pin class: Global 

Path: External � Cache 

Description: System reset signal. 

Pin name: ui_cac_cpu_data[31:0] 

Pin class: Data 

Path: CPU� Cache 

Description: 32-bits data from CPU that to be written into the cache. 

Pin name: ui_cac_cpu_addr[31:0] 

Pin class: Address 

Path: CPU� Cache 

Description: 32-bits address from CPU that indicates the location that to be accessed. 

Pin name: ui_cac_cpu_read 

Pin class: Control 

Path: CPU� Cache 

Description: A control signal that enables the read from cache based on 

ui_cac_cpu_addr[31:0]  when it is asserted (HIGH). 

Pin name: ui_cac_cpu_write 

Pin class: Control 

Path: CPU� Cache 

Description: A control signal that enables the write of data into cache based on 

ui_cac_cpu_addr[31:0]  when asserted (HIGH). 

Pin name: ui_cac_mem_ack 

Pin class: Control 

Path: Memory Arbiter � Cache 
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Description: Acknowledge signal (active HIGH) to indicate read data is ready from 

SDRAM (read from SDRAM) or SDRAM prepare to receive data (write to SDRAM). 

Pin name: ui_cac_mem_data[31:0] 

Pin class: Data 

Path: Memory Arbiter � Cache 

Description: 32-bits data that is read from SDRAM.  

Pin name: ui_cac_mem_lmc_same 

Pin class: Status 

Path: Memory Arbiter � Cache 

Description: Indicate the configuration of SDRAM is same when asserted (HIGH). 

Output pins 

Pin name: uo_cac_cpu_data[31:0] 

Pin class: Data 

Path: Cache� CPU 

Description: 32-bits data that to be output to CPU. 

Pin name: uo_cac_cpu_stall 

Pin class: Control 

Path: Cache� CPU 

Description: A status signal that used to stall the pipelines. 

Pin name: uo_cac_miss 

Pin class: Status 

Path: Cache� Memory Arbiter 

Description: A status signal indicates cache miss.  

Pin name: uo_cac_mem_read 

Pin class: Control 

Path: Cache� Memory Arbiter 

Description: Read signal that indicate need read from SDRAM. 

Pin name: uo_cac_mem_write 

Pin class: Control 

Path: Cache� Memory Arbiter 

Description: Write signal that indicate need write data into SDRAM. 
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Pin name: uo_cac_mem_sel[3:0] 

Pin class: Control 

Path: Cache� Memory Arbiter 

Description: 4-bits control signals to mask which byte of the 4 bytes (32-bits) data 

goes in or comes out from SDRAM. 

When it is ‘1’, the corresponding byte will enable. 

When it is ‘0’, the corresponding byte will be masked and the output becomes ‘z’. 

Pin name: uo_cac_mem_addr[31:0] 

Pin class: Address 

Path: Cache� Memory Arbiter 

Description: 32-bits address that indicates which location in the SDRAM to be 

accessed. 

Pin name: uo_cac_mem_data[31:0] 

Pin class: Data 

Path: Cache� Memory Arbiter 

Description: 32-bits data that to be written in to the SDRAM. 

Pin name: uo_cac_mem_lmc_data[31:0] 

Pin class: Data 

Path: Cache� Memory Arbiter 

Description: 32-bits data that configure the SDRAM. 

Pin name: uo_cac_mem_data_ready 

Pin class: Status 

Path: Cache� Memory Arbiter 

Description: When asserted (HIGH), data is ready write back from FIFO to SDRAM. 

Pin name: uo_cac_mem_complete 

Pin class: Status 

Path: Cache� Memory Arbiter 

Description: Indicates one block of data was written into SDRAM when HIGH. 

Table 6-4-1: Cache Unit I/O Descriptions 
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6.5 Block Partitioning of Cache Unit  

 

Figure 6-5-1 Block Partition of Cache Unit 

 

6.6 Cache Controller Block 
 

 

 

 

 

 

 

 

 

Figure 6-6-1 Block diagram of Cache Controller Block 
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Functionalities of Cache Controller: 

1. Control main activity of cache unit. 

2. Determine data to read when read hit. 

3. Determine data to be updated when write hit. 

4. Determine data to read from SDRAM when miss. 

5. Output control signal and status signal to write back data from FIFO to cache. 

6. Output control signal to move dirty data from cache to FIFO. 

7. Output control signal and status signal out to CPU and SDRAM. 

 

6.6.1 Cache Controller block I/O description 
Input pins 

Pin name: bi_cac_ctrl_clk 

Pin class: Global 

Path: External � Cache � Cache Controller 

Description: System clock signal. 

Pin name: bi_cac_ctrl_rst 

Pin class: Global 

Path: External � Cache � Cache Controller 

Description: System reset signal. 

Pin name: bi_cac_ctrl_lmc_same 

Pin class: Status 

Path: Memory Arbiter � Cache � Cache Controller 

Description: Indicates the configuration of SDRAM is same when asserted (HIGH). 

Pin name: bi_cac_ctrl_mem_ack 

Pin class: Control 

Path: SDRAM controller � Memory Arbiter � Cache � Cache Controller 

Description: Acknowledge signal (active HIGH) to indicate read data is ready from 

SDRAM(read from SDRAM) or SDRAM prepare to receive data (write to SDRAM). 
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Pin name: bi_cac_ctrl_cpu_write 

Pin class: Control 

Path: CPU� Cache � Cache Controller 

Description: A control signal that enables the write of data into cache based on 

ui_cac_cpu_addr[31:0]  when asserted (HIGH). 

Pin name: bi_cac_ctrl_cpu_read 

Pin class: Control 

Path: CPU� Cache � Cache Controller 

Description: A control signal that enables the read from cache based on 

ui_cac_cpu_addr[31:0]  when it is asserted (HIGH). 

Pin name: bi_cac_ctrl_hit 

Pin class: Status 

Path: Cache � Cache Controller 

Description: Asserted when (tag == tag_ram) && (valid_ram == 1). 

Pin name: bi_cac_ctrl_dirty 

Pin class: Status 

Path: Cache � Cache Controller 

Description: Asserted when dirty_ram == 1. 

Pin name: bi_cac_ctrl_fifo_busy 

Pin class: Status 

Path: FIFO � Cache Controller 

Description: HIGH when FIFO is writing into SDRAM. 

Pin name: bi_cac_ctrl_fifo_full 

Pin class: Status 

Path: FIFO � Cache Controller  

Description: Status signal that indicate FIFO is full. 

Pin name: bi_cac_ctrl_fifo_hit 

Pin class: Status 

Path: FIFO � Cache Controller 

Description: Status Signal that FIFO contain same tag and index with the physical 

address tag and index. 
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Output pins 

Pin name: bo_cac_ctrl_cpu_data_output_en 

Pin class: Control 

Path: Cache Controller� Cache 

Description: When asserted (HIGH), data is enabled to be output to CPU. 

Pin name: bo_cac_ctrl_counter[2:0] 

Pin class: Control 

Path: Cache Controller� Cache 

Description: 3-bits counter value. This is used to count the data when transferring a 

whole block (8 words) of data. 

Pin name: bo_cac_ctrl_cache_data_select 

Pin class: Control 

Path: Cache� Cache Controller� Cache 

Description: Instruct the cache datapath which data (data from cpu or data from 

SDRAM) to be written into. 

When HIGH, choose data from SDRAM. 

When LOW, choose data from CPU. 

Pin name: bo_cac_ctrl_mem_read 

Pin class: Control 

Path: Cache Controller�Cache�Memory Arbiter�SDRAM Controller �SDRAM 

Description: Read signal that indicate need read from SDRAM. 

Pin name: bo_cac_ctrl_mem_write 

Pin class: Control 

Path: Cache Controller�FIFO controller 

Description: Write signal that indicate need write data into SDRAM. 

Pin name: bo_cac_ctrl_mem_sel [3:0] 

Pin class: Control 

Path: Cache Controller� Cache �Memory Arbiter 

Description: 4-bits control signals to mask which byte of the 4 bytes (32-bits) data 

goes in or comes out from SDRAM. 

When it is ‘1’, the corresponding byte will enable. 
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When it is ‘0’, the corresponding byte will be masked and the output becomes ‘z’. 

Pin name: bo_cac_ctrl_update_en 

Pin class: Control 

Path: Cache Controller� Cache 

Description: Enables the update of cache when asserted (HIGH). 

Pin name: bo_cac_ctrl_update_dirty 

Pin class: Control 

Path: Cache Controller� Cache 

Description: Enables the update of ‘Dirty’ when asserted (HIGH). 

Pin name: bo_cac_ctrl_fifo_buffer_en 

Pin class: Control 

Path: Cache Controller� Cache 

Description: Enable to move write back data from FIFO to temporary buffer. 

Pin name: bo_cac_ctrl_cac_fifo_en 

Pin class: Control 

Path: Cache Controller� Cache 

Description: Enable to move cache data to FIFO. 

Pin name: bo_cac_ctrl_buffer_cac_en 

Pin class: Control 

Path: Cache Controller� Cache 

Description: Enable to move write back data from temporary buffer to cache. 

Pin name: bo_cac_ctrl_fifo_update_valid 

Pin class: Control 

Path: Cache Controller� FIFO 

Description: Control signal that update the valid bit in FIFO. 

Table 6-6-1: Cache Controller Block I/O Descriptions 
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6.6.2 Cache Controller State Diagram 

 

Figure 6-6-2 State Diagram of Cache Controller 
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6.7 FIFO Controller Block 
 

 

 

 

 

 

 

 

Figure 6-7-1 Block diagram of FIFO Controller Block 

Functionalities of FIFO Controller: 

1. Control main activity of FIFO block. 

2. Send control signal to FIFO to write data back to SDRAM behind the scene. 

6.7.1 FIFO Controller block I/O description 
Input pins 

Pin name: bi_fifo_ctrl_cpu_clk 

Pin class: Global 

Path: External � Cache � FIFO Controller 

Description: System clock signal. 

Pin name: bi_fifo_ctrl_cpu_rst 

Pin class: Global 

Path: External � Cache � FIFO Controller 

Description: System reset signal. 

Pin name: bi_fifo_ctrl_hit 

Pin class: Status 

Path: FIFO � FIFO Controller 

Description: Status Signal that FIFO contain same tag and index with the physical 
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address tag and index. 

Pin name: bi_fifo_ctrl_mem_write 

Pin class: Control 

Path: Cache Controller � FIFO controller 

Description: Write signal that indicate need write data into SDRAM 

Pin name: bi_fifo_ctrl_mem_ack 

Pin class: Control 

Path: SDRAM controller � Memory Arbiter � Cache � FIFO Controller 

Description: Acknowledge signal (active HIGH) to indicate read data is ready from 

SDRAM(read from SDRAM) or SDRAM prepare to receive data (write to SDRAM). 

Pin name: bi_fifo_ctrl_lmc_same 

Pin class: Status 

Path: Memory Arbiter � FIFO Controller 

Description: Indicate the configuration of SDRAM is same when asserted (HIGH). 

Pin name: bi_fifo_ctrl_empty 

Pin class: Status 

Path: FIFO � FIFO Controller 

Description: When asserted, it indicate FIFO is empty. 

Output pins 

Pin name: bo_fifo_ctrl_counter [2:0] 

Pin class: Control 

Path: FIFO Controller� FIFO 

Description: 3-bits counter value. This is used to count the data when transferring a 

whole block (8 words) of data. 

Pin name: bo_fifo_ctrl_mem_write 

Pin class: Control 

Path: FIFO Controller� Memory Arbiter 

Description: Write signal that indicate need write data from FIFO into SDRAM. 

Pin name: bo_fifo_ctrl_data_ready 

Pin class: Status 

Path: FIFO Controller �Memory Arbiter 
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Description: When asserted (HIGH), data is ready write back from FIFO to SDRAM. 

Pin name: bo_fifo_ctrl_mem_output_en 

Pin class: Control 

Path: FIFO Controller � FIFO 

Description: Enable data in FIFO to be written into SDRAM 

Pin name: bo_fifo_ctrl_complete 

Pin class: Control 

Path: FIFO Controller� Memory Arbiter 

Description: Indicates one block of data was written into SDRAM when HIGH. 

Table 6-7-1: Cache Controller Block I/O Descriptions 

6.7.2 FIFO Controller State Diagram 

 

Figure 6-7-2 State Diagram of Cache Controller 
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6.8 FIFO Block 
 

 

 

 

 

 

 

 

Figure 6-8-1 Block diagram of FIFO Block 

 

This FIFO block consists of 4 entries to store data block from cache. The functionalities 

of FIFO block are: 

1. Store dirty block from cache that need to written back to SDRAM 

2. Data able to written back to cache or back to SDRAM. 

3. Communicate with SDRAM to written data back to SDRAM when SDRAM is 

free. 

4. Compare tag and index to indicate whether same block of data need to accessed 

next in cache. 

5. Output a full signal when 4 entries are used. 

6. Output an empty signal when FIFO contains no data. 
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6.8.1 FIFO Controller block I/O description 
Input pins 

Pin name: bi_fifo_cpu_clk 

Pin class: Global 

Path: External � Cache � FIFO 

Description: System clock signal. 

Pin name: bi_fifo_cpu_rst 

Pin class: Global 

Path: External � Cache � FIFO 

Description: System reset signal. 

Pin name: bi_fifo_update_valid 

Pin class: Control 

Path: Cache Controller � FIFO 

Description: Control signal that update the valid bit in FIFO. 

Pin name: bi_fifo_write 

Pin class: Control 

Path: Cache Controller � FIFO 

Description: Write signal that indicate data write from cache to FIFO. 

Pin name: bi_fifo_mem_output_en 

Pin class: Control 

Path: FIFO controller � FIFO 

Description: Enable data in FIFO to be written into SDRAM 

Pin name: bi_fifo_complete 

Pin class: Status 

Path: FIFO controller � FIFO 

Description: Indicates one block of data was written into SDRAM when HIGH. 

Pin name: bi_fifo_tag_compare[10:0] 

Pin class: Address 

Path: Cache � FIFO  

Description: Tag from physical address that used to compare FIFO_hit signal 
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Pin name: bi_fifo_counter [2:0] 

Pin class: Control 

Path: FIFO Controller� FIFO 

Description: 3-bits counter value. This is used to count the data when transferring a 

whole block (8 words) of data. 

Pin name: bi_fifo_data [284:0] 

Pin class: Data 

Path: Cache� FIFO 

Description: contain index from physical address, tag_ram, data_ram and byte_ram 

from cache. 

Output pins 

Pin name: bo_fifo_hit 

Pin class: Status 

Path: FIFO Controller� Cache Controller 

Description: Status Signal that FIFO contain same tag and index with the physical 

address tag and index. 

Pin name: bo_fifo_full 

Pin class: Status 

Path: FIFO � Cache Controller and FIFO Controller 

Description: Status signal that indicate FIFO is full. 

Pin name: bo_fifo_empty 

Pin class: Status 

Path: FIFO � Cache Controller 

Description: When asserted, it indicate FIFO is empty. 

Pin name: bo_fifo_mem_addr[31:0] 

Pin class: Address 

Path: FIFO � Memory Arbiter � SDRAM controller � SDRAM 

Description: 32-bits address that indicates which location in the SDRAM to be 

accessed. 

Pin name: bo_fifo_mem_data [31:0] 

Pin class: Data 
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Path: FIFO � Memory Arbiter � SDRAM controller � SDRAM 

Description: : 32-bits data that to be written in to the SDRAM. 

Pin name: bo_fifo_wb_data [268:0] 

Pin class: Data 

Path: FIFO � Cache 

Description: Contain all data that need to write back to cache (data, tag and byte). 

Table 6-8-1: FIFO Block I/O Descriptions 

 

 



BIT (Hons) Computer Engineering  
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 62 
 

 

Chapter 7 Verification 

7.1 Test Plan 
Function To be Tested Test Case 

Test 1: System Reset tb_r_rst is asserted to high at least one clock 
cycle 

Test 2: Testing Cache priority and 
reading in different burst length 

Different load mode configuration with burst 
length 1, 2, 4 and 8. 
 
tb_r_BL_sel[3] = 3'd3;//burst length = 8 
tb_r_BL_sel[2] = 3'd2; ;//burst length = 4 
tb_r_BL_sel[1] = 3'd1; ;//burst length = 2 
tb_r_BL_sel[0] = 3'd1; ;//burst length = 2 
tb_r_cpu_cac_addr3 = 32'h00567000 ; 
tb_r_cpu_cac_addr2 = 32'h00567000 ; 
tb_r_cpu_cac_addr1 = 32'h00567000 ; 
tb_r_cpu_cac_addr0 = 32'h00567000; 
 
tb_r_cpu_cac_read3  = 1; 
tb_r_cpu_cac_write3 = 0; 
tb_r_cpu_cac_read2  = 1; 
tb_r_cpu_cac_write2 = 0; 
tb_r_cpu_cac_read1  = 1; 
tb_r_cpu_cac_write1 = 0; 
tb_r_cpu_cac_read0  = 1; 
tb_r_cpu_cac_write0 = 0; 
 

Test 3 : Write Hit in Cache 3 and 
continuous Write Hit 

First write instruction, 
tb_r_cpu_cac_data3  = 32'h07070707; 
tb_r_cpu_cac_addr3  = 32'h00567004; 
     
tb_r_cpu_cac_read3  = 0; 
tb_r_cpu_cac_write3 = 1; 
 
Second write instruction, 
tb_r_cpu_cac_data3  = 32'h04404404; 
tb_r_cpu_cac_addr3  = 32'h00567000; 
     
tb_r_cpu_cac_read3  = 0; 
tb_r_cpu_cac_write3 = 1; 

Test 4: Read Hit in Cache 3 and 
continuous Read Hit 

First read instruction, 
tb_r_cpu_cac_data3  = 32'h0; 
tb_r_cpu_cac_addr3  = 32'h00567004; 
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tb_r_cpu_cac_read3  = 1; 
tb_r_cpu_cac_write3 = 0; 
 
Second read instruction, 
tb_r_cpu_cac_data3  = 32'h0; 
tb_r_cpu_cac_addr3  = 32'h00567000; 
     
tb_r_cpu_cac_read3  = 1; 
tb_r_cpu_cac_write3 = 0; 
 

Test 5: Write Miss with FIFO miss 
in Cache 3 

First read a data from SDRAM by trying write 
miss in @89A00 (where valid = 0), 
tb_r_cpu_cac_data3  = 32'h00B00177; 
tb_r_cpu_cac_addr3  = 32'h0089A000; 
     
tb_r_cpu_cac_read3  = 0; 
tb_r_cpu_cac_write3 = 1; 
 
Then try to write a data with same index but 
different tag with @56700, (tag different), 
tb_r_cpu_cac_data3  = 32'h06070809; 
tb_r_cpu_cac_addr3  = 32'h00167000; 
     
tb_r_cpu_cac_read3  = 0; 
tb_r_cpu_cac_write3 = 1; 
 
with FIFO miss,@56700 data evict to FIFO 

Test 6: Write Miss with FIFO hit in 
Cache 3  

FIFO hit,@56700 data write back from FIFO 
tb_r_cpu_cac_data3  = 32'hF1FA0000; 
tb_r_cpu_cac_addr3  = 32'h00567000; 
     
 tb_r_cpu_cac_read3  = 0; 
 tb_r_cpu_cac_write3 = 1; 
 
@16700 move to FIFO 

Test 7: Auto Write Back to SDRAM 
in Cache 3 with FIFO busy 

Give an instruction that give hit cache for 6 
clock cycle 
tb_r_cpu_cac_data3  = 32'h0; 
tb_r_cpu_cac_addr3  = 32'h00567004; 
     
tb_r_cpu_cac_read3  = 1; 
tb_r_cpu_cac_write3 = 0; 
 
@16700 move from FIFO to SDRAM 
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Then give miss cache instruction, cache 
controller wait for FIFO finish writing 

Test 8: Read Miss with FIFO miss in 
Cache 3 

tb_r_cpu_cac_data3  = 32'h0; 
tb_r_cpu_cac_addr3  = 32'h00E9A000; 
     
tb_r_cpu_cac_read3  = 1; 
tb_r_cpu_cac_write3 = 0; 
 
Data read back from SDRAM,@89A00 move 
to FIFO (same index different tag) 

Test 9: Read Miss with FIFO hit in 
Cache 3 

tb_r_cpu_cac_data3  = 32'h0; 
tb_r_cpu_cac_addr3  = 32'h0089A000; 
     
tb_r_cpu_cac_read3  = 1; 
tb_r_cpu_cac_write3 = 0; 
 
Since previous instruction is read only so dirty 
is 0. @E9A00 did not move to FIFO  

Test 10: Miss happen and FIFO full //FIFO status: *,*,*,* 
Try a write miss instruction where valid = 0, 
tb_r_cpu_cac_data3  = 32'h26100AAA; 
tb_r_cpu_cac_addr3  = 32'h00261000; 
     
tb_r_cpu_cac_read3  = 0; 
tb_r_cpu_cac_write3 = 1; 
    
Write miss and @26100 move to FIFO, 
tb_r_cpu_cac_data3  = 32'h46100BBB; 
tb_r_cpu_cac_addr3  = 32'h00461000; 
     
tb_r_cpu_cac_read3  = 0; 
tb_r_cpu_cac_write3 = 1; 
//FIFO after this: 26100,*,*,* 
   
Write miss and @46100 move to FIFO, 
tb_r_cpu_cac_data3  = 32'h66100CCC; 
tb_r_cpu_cac_addr3  = 32'h00661000; 
     
tb_r_cpu_cac_read3  = 0; 
tb_r_cpu_cac_write3 = 1; 
//FIFO after this: 26100,46100,*,* 
  
Write miss and @66100 move to FIFO, 
tb_r_cpu_cac_data3  = 32'h86100DDD; 
tb_r_cpu_cac_addr3  = 32'h00861000; 
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tb_r_cpu_cac_read3  = 0; 
tb_r_cpu_cac_write3 = 1; 
//FIFO after this: 26100,46100,66100,* 
 
Write miss and @86100 move to FIFO,  
tb_r_cpu_cac_data3  = 32'hA6100EEE; 
tb_r_cpu_cac_addr3  = 32'h00A61000; 
    
tb_r_cpu_cac_read3  = 0; 
tb_r_cpu_cac_write3 = 1; 
//FIFO after this: 26100,46100,66100,86100 
 
Write miss and FIFO is full, @ 26100  write 
back to SDRAM, after that @A6100 move to 
FIFO, and cache resumes write operation 
tb_r_cpu_cac_data3  = 32'hC6100FFF; 
tb_r_cpu_cac_addr3  = 32'h00C61000; 
     
tb_r_cpu_cac_read3  = 0; 
tb_r_cpu_cac_write3 = 1; 
//FIFO after this: A6100,46100,66100,86100 

Table 7-1-1: Memory system Full Chip Test Plan 
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7.2 Testbench Verilog Code 
`include "././util/sdc_macro.v" 
`timescale 1ns / 10ps 
module tb_cac_ma_sdc(); 
//CPU to 4 caches 
//cache3 
wire [31:0]  tb_w_cpu_cac_data3;  
reg [31:0]  tb_r_cpu_cac_addr3,  

tb_r_cpu_cac_data3; 
reg  tb_r_cpu_cac_read3,  
  tb_r_cpu_cac_write3; 
//cache2 
wire [31:0] tb_w_cpu_cac_data2;  
reg [31:0] tb_r_cpu_cac_addr2,  
  tb_r_cpu_cac_data2; 
reg  tb_r_cpu_cac_read2,  
  tb_r_cpu_cac_write2;  
//cache1 
wire [31:0]  tb_w_cpu_cac_data1;  
reg [31:0] tb_r_cpu_cac_addr1,  
  tb_r_cpu_cac_data1; 
reg  tb_r_cpu_cac_read1,  
  tb_r_cpu_cac_write1;  
//cache0 
wire [31:0]  tb_w_cpu_cac_data0;  
reg [31:0] tb_r_cpu_cac_addr0,  
  tb_r_cpu_cac_data0; 
reg  tb_r_cpu_cac_read0,  
  tb_r_cpu_cac_write0;   
reg  tb_r_clk; 
reg  tb_r_rst; 
 
//between caches and memory arbiter  
//4 caches 
//cache3 
wire   w_ma_cac_read3, 

 w_ma_cac_write3, 
   w_data_ready3, 
   w_ma_cac_miss3; 
wire [3:0]  w_ma_cac_sel3; 
wire [31:0]  w_ma_cac_addr3, 

 w_ma_cac_o_data3; 
reg  [31:0]  r_ma_cac_lmc_data3; 
wire   w_ma_cac_complete3; 



BIT (Hons) Computer Engineering  
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 67 
 

reg [31:0]  r_ma_cac_i_data3; 
wire   w_cac_mem_ack3; 
wire      w_cac_mem_lmc_same3; 
//cache2 
wire   w_ma_cac_read2, 

  w_ma_cac_write2, 
 w_data_ready2, 

   w_ma_cac_miss2; 
wire [3:0]  w_ma_cac_sel2; 
wire [31:0]  w_ma_cac_addr2, 
   w_ma_cac_o_data2; 
reg [31:0]  r_ma_cac_lmc_data2; 
wire    w_ma_cac_complete2; 
reg [31:0]  r_ma_cac_i_data2; 
wire   w_cac_mem_ack2; 
wire       w_cac_mem_lmc_same2; 
//cache1 
wire   w_ma_cac_read1, 
   w_ma_cac_write1, 

   w_data_ready1, 
   w_ma_cac_miss1; 
wire [3:0]  w_ma_cac_sel1; 
wire [31:0]  w_ma_cac_addr1, 
   w_ma_cac_o_data1; 
reg [31:0]  r_ma_cac_lmc_data1; 
wire   w_ma_cac_complete1; 
reg  [31:0]  r_ma_cac_i_data1; 
wire   w_cac_mem_ack1; 
wire     w_cac_mem_lmc_same1; 
//cache0 
wire  w_ma_cac_read0, 
  w_ma_cac_write0, 

w_data_ready0, 
w_ma_cac_miss0; 

wire [3:0] w_ma_cac_sel0; 
wire [31:0] w_ma_cac_addr0, 
             w_ma_cac_o_data0; 
reg [31:0]  r_ma_cac_lmc_data0; 
wire    w_ma_cac_complete0; 
reg [31:0]  r_ma_cac_i_data0; 
wire   w_cac_mem_ack0; 
wire      w_cac_mem_lmc_same0; 
 
//between memory arbiter and sdram controller 
wire  w_ma_sdc_host_ld_mode, 
  w_ma_sdc_read, 
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  w_ma_sdc_write; 
wire [3:0] w_ma_sdc_sel; 
wire [31:0] w_ma_sdc_addr, 
  w_ma_sdc_i_data, 
  w_ma_sdc_o_data; 
wire  w_ma_sdc_ack; 
 
//between sdram controller and sdram 
wire [31:0] w_sc_sdc_dq; 
wire [11:0] w_sc_sdc_addr; 
wire [1:0]  w_sc_sdc_ba; 
wire  w_sc_sdc_cs_n; 
wire  w_sc_sdc_ras_n; 
wire  w_sc_sdc_cas_n; 
wire  w_sc_sdc_we_n; 
wire [3:0] w_sc_sdc_dqm; 
 
//Change burst length of caches to test different mode configuration 
reg  [2:0] tb_r_BL_sel[0:3]; 
wire [31:0] w_i_data3, 
  w_i_data2, 
  w_i_data1, 
  w_i_data0; 
 
//indicates current test status in waveform 
reg [300:0] status; 
 
//To generate ASCII value in the waveform to ease debugging 
bfm_wave_monitor bfm_monitor(); 
 
u_cache cache_3 
 (//memory arbiter connection 
  .uo_cac_mem_addr(w_ma_cac_addr3), 
  .uo_cac_mem_data(w_i_data3), 
  .uo_cac_mem_lmc_data(), 
  .uo_cac_miss(w_ma_cac_miss3), 
  .uo_cac_mem_read(w_ma_cac_read3), 
  .uo_cac_mem_write(w_ma_cac_write3), 
  .uo_cac_mem_data_ready(w_data_ready3), 
  .uo_cac_mem_sel(w_ma_cac_sel3), 
  .uo_cac_mem_complete(w_ma_cac_complete3), 
  .ui_cac_mem_data(w_ma_cac_o_data3), 
  .ui_cac_mem_ack(w_cac_mem_ack3), 
  .ui_cac_mem_lmc_same(w_cac_mem_lmc_same3), 
  // CPU connection 
  .uo_cac_cpu_stall(), 
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  .uo_cac_cpu_data(tb_w_cpu_cac_data3), 
  .ui_cac_cpu_addr(tb_r_cpu_cac_addr3), 
  .ui_cac_cpu_data(tb_r_cpu_cac_data3), 
  .ui_cac_cpu_read(tb_r_cpu_cac_read3), 
  .ui_cac_cpu_write(tb_r_cpu_cac_write3), 
  .ui_cac_rst(tb_r_rst), 
  .ui_cac_clk(tb_r_clk)) ; 
 
 u_cache cache_2 
 (//memory arbiter connection 
  .uo_cac_mem_addr(w_ma_cac_addr2), 
  .uo_cac_mem_data(w_i_data2), 
  .uo_cac_mem_lmc_data(), 
  .uo_cac_miss(w_ma_cac_miss2), 
  .uo_cac_mem_read(w_ma_cac_read2), 
  .uo_cac_mem_write(w_ma_cac_write2), 
  .uo_cac_mem_data_ready(w_data_ready2), 
  .uo_cac_mem_sel(w_ma_cac_sel2), 
  .uo_cac_mem_complete(w_ma_cac_complete2), 
  .ui_cac_mem_data(w_ma_cac_o_data2), 
  .ui_cac_mem_ack(w_cac_mem_ack2), 
  .ui_cac_mem_lmc_same(w_cac_mem_lmc_same2), 
  // CPU connection 
  .uo_cac_cpu_stall(), 
  .uo_cac_cpu_data(tb_w_cpu_cac_data2), 
  .ui_cac_cpu_addr(tb_r_cpu_cac_addr2), 
  .ui_cac_cpu_data(tb_r_cpu_cac_data2), 
  .ui_cac_cpu_read(tb_r_cpu_cac_read2), 
  .ui_cac_cpu_write(tb_r_cpu_cac_write2), 
  .ui_cac_rst(tb_r_rst), 
  .ui_cac_clk(tb_r_clk)); 
 
u_cache cache_1 
 (//memory arbiter connection 
  .uo_cac_mem_addr(w_ma_cac_addr1), 
  .uo_cac_mem_data(w_i_data1), 
  .uo_cac_mem_lmc_data(), 
  .uo_cac_miss(w_ma_cac_miss1), 
  .uo_cac_mem_read(w_ma_cac_read1), 
  .uo_cac_mem_write(w_ma_cac_write1), 
  .uo_cac_mem_data_ready(w_data_ready1), 
  .uo_cac_mem_sel(w_ma_cac_sel1), 
  .uo_cac_mem_complete(w_ma_cac_complete1), 
  .ui_cac_mem_data(w_ma_cac_o_data1), 
  .ui_cac_mem_ack(w_cac_mem_ack1), 
  .ui_cac_mem_lmc_same(w_cac_mem_lmc_same1), 
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  // CPU connection 
  .uo_cac_cpu_stall(), 
  .uo_cac_cpu_data(tb_w_cpu_cac_data1), 
  .ui_cac_cpu_addr(tb_r_cpu_cac_addr1), 
  .ui_cac_cpu_data(tb_r_cpu_cac_data1), 
  .ui_cac_cpu_read(tb_r_cpu_cac_read1), 
  .ui_cac_cpu_write(tb_r_cpu_cac_write1), 
  .ui_cac_rst(tb_r_rst), 
  .ui_cac_clk(tb_r_clk)); 
 
 u_cache cache_0 
 (//memory arbiter connection 
  .uo_cac_mem_addr(w_ma_cac_addr0), 
  .uo_cac_mem_data(w_i_data0), 
  .uo_cac_mem_lmc_data(), 
  .uo_cac_miss(w_ma_cac_miss0), 
  .uo_cac_mem_read(w_ma_cac_read0), 
  .uo_cac_mem_write(w_ma_cac_write0), 
  .uo_cac_mem_data_ready(w_data_ready0), 
  .uo_cac_mem_sel(w_ma_cac_sel0), 
  .uo_cac_mem_complete(w_ma_cac_complete0), 
  .ui_cac_mem_data(w_ma_cac_o_data0), 
  .ui_cac_mem_ack(w_cac_mem_ack0), 
  .ui_cac_mem_lmc_same(w_cac_mem_lmc_same0), 
  // CPU connection 
  .uo_cac_cpu_stall(), 
  .uo_cac_cpu_data(tb_w_cpu_cac_data0), 
  .ui_cac_cpu_addr(tb_r_cpu_cac_addr0), 
  .ui_cac_cpu_data(tb_r_cpu_cac_data0), 
  .ui_cac_cpu_read(tb_r_cpu_cac_read0), 
  .ui_cac_cpu_write(tb_r_cpu_cac_write0), 
  .ui_cac_rst(tb_r_rst), 
  .ui_cac_clk(tb_r_clk)); 
 
 u_mem_arbiter mem_arbiter 
 (//caches connection 
  //cache3 
  .ui_ma_cac_miss3(w_ma_cac_miss3), 
  .ui_ma_cac_data_ready3(w_data_ready3), 
  .ui_ma_cac_read3(w_ma_cac_read3), 
  .ui_ma_cac_write3(w_ma_cac_write3), 
  .ui_ma_cac_sel3(w_ma_cac_sel3), 
  .ui_ma_cac_addr3(w_ma_cac_addr3), 
  .ui_ma_cac_data3(w_i_data3), 
  .ui_ma_cac_lmc_data3(r_ma_cac_lmc_data3), 
  .ui_ma_cac_complete3(w_ma_cac_complete3), 
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  .uo_ma_cac_ack3(w_cac_mem_ack3), 
  .uo_ma_cac_lmc_same3(w_cac_mem_lmc_same3), 
  .uo_ma_cac_data3(w_ma_cac_o_data3), 
  //cache2 
  .ui_ma_cac_miss2(w_ma_cac_miss2), 
  .ui_ma_cac_data_ready2(w_data_ready2), 
  .ui_ma_cac_read2(w_ma_cac_read2), 
  .ui_ma_cac_write2(w_ma_cac_write2), 
  .ui_ma_cac_sel2(w_ma_cac_sel2), 
  .ui_ma_cac_addr2(w_ma_cac_addr2), 
  .ui_ma_cac_data2(w_i_data2), 
  .ui_ma_cac_lmc_data2(r_ma_cac_lmc_data2), 
  .ui_ma_cac_complete2(w_ma_cac_complete2), 
  .uo_ma_cac_ack2(w_cac_mem_ack2), 
  .uo_ma_cac_lmc_same2(w_cac_mem_lmc_same2), 
  .uo_ma_cac_data2(w_ma_cac_o_data2), 
  //cache1 
  .ui_ma_cac_miss1(w_ma_cac_miss1), 
  .ui_ma_cac_data_ready1(w_data_ready1), 
  .ui_ma_cac_read1(w_ma_cac_read1), 
  .ui_ma_cac_write1(w_ma_cac_write1), 
  .ui_ma_cac_sel1(w_ma_cac_sel1), 
  .ui_ma_cac_addr1(w_ma_cac_addr1), 
  .ui_ma_cac_data1(w_i_data1), 
  .ui_ma_cac_lmc_data1(r_ma_cac_lmc_data1), 
  .ui_ma_cac_complete1(w_ma_cac_complete1), 
  .uo_ma_cac_ack1(w_cac_mem_ack1), 
  .uo_ma_cac_lmc_same1(w_cac_mem_lmc_same1), 
  .uo_ma_cac_data1(w_ma_cac_o_data1), 
  //cache0 
  .ui_ma_cac_miss0(w_ma_cac_miss0), 
  .ui_ma_cac_data_ready0(w_data_ready0), 
  .ui_ma_cac_read0(w_ma_cac_read0), 
  .ui_ma_cac_write0(w_ma_cac_write0), 
  .ui_ma_cac_sel0(w_ma_cac_sel0), 
  .ui_ma_cac_addr0(w_ma_cac_addr0), 
  .ui_ma_cac_data0(w_i_data0), 
  .ui_ma_cac_lmc_data0(r_ma_cac_lmc_data0), 
  .ui_ma_cac_complete0(w_ma_cac_complete0), 
  .uo_ma_cac_ack0(w_cac_mem_ack0), 
  .uo_ma_cac_lmc_same0(w_cac_mem_lmc_same0), 
  .uo_ma_cac_data0(w_ma_cac_o_data0), 
 
  //sdram controller connection 
  .ui_ma_sdc_ack(w_ma_sdc_ack), 
  .ui_ma_sdc_data(w_ma_sdc_i_data), 
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  .uo_ma_sdc_read(w_ma_sdc_read), 
  .uo_ma_sdc_write(w_ma_sdc_write), 
  .uo_ma_sdc_host_ld_mode(w_ma_sdc_host_ld_mode), 
  .uo_ma_sdc_sel(w_ma_sdc_sel), 
  .uo_ma_sdc_addr(w_ma_sdc_addr), 
  .uo_ma_sdc_data(w_ma_sdc_o_data), 
  .ui_ma_clk(tb_r_clk), 
  .ui_ma_rst(tb_r_rst)); 
 
 u_sdram_controller u_sdram_controller 
  (.ui_sdc_clk(tb_r_clk), 
   .ui_sdc_rst(tb_r_rst), 
   //memory arbiter connection 
   .ui_host_ld_mode(w_ma_sdc_host_ld_mode), 
   .ui_sdc_read(w_ma_sdc_read), 
   .ui_sdc_write(w_ma_sdc_write), 
   .ui_sdc_sel(w_ma_sdc_sel), 
   .ui_sdc_addr(w_ma_sdc_addr), 
   .ui_sdc_dat(w_ma_sdc_o_data), 
   .uo_sdc_dat(w_ma_sdc_i_data), 
   .uo_sdc_ack(w_ma_sdc_ack), 
   //sdram connection 
   .uio_sdc_dq(w_sc_sdc_dq), 
   .uo_sdc_ba(w_sc_sdc_ba), 
   .uo_sdc_dqm(w_sc_sdc_dqm), 
   .uo_sdc_addr(w_sc_sdc_addr), 
   .uo_sdc_cs_n(w_sc_sdc_cs_n), 
   .uo_sdc_ras_n(w_sc_sdc_ras_n), 
   .uo_sdc_cas_n(w_sc_sdc_cas_n), 
   .uo_sdc_we_n(w_sc_sdc_we_n) ) ; 
  
  //MICRON SDRAM Instantiation 
  mt48lc4m32b2 sdram( 
  .Dq(w_sc_sdc_dq),  
  .Addr(w_sc_sdc_addr),  
  .Ba(w_sc_sdc_ba),  
  .Clk(tb_r_clk),  
  .Cke(1'b1), //cke always activated 
  .Cs_n(w_sc_sdc_cs_n),  
  .Ras_n(w_sc_sdc_ras_n),  
  .Cas_n(w_sc_sdc_cas_n),  
  .We_n(w_sc_sdc_we_n),  
  .Dqm(w_sc_sdc_dqm)); 
 
//initialize clock signal 
initial tb_r_clk = 1; 
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always #10 tb_r_clk = ~tb_r_clk; 
 
always@* begin 
  r_ma_cac_lmc_data3 = {29'h4,tb_r_BL_sel[3]}; 
  r_ma_cac_lmc_data2 = {29'h4,tb_r_BL_sel[2]}; 
  r_ma_cac_lmc_data1 = {29'h4,tb_r_BL_sel[1]}; 
  r_ma_cac_lmc_data0 = {29'h4,tb_r_BL_sel[0]}; 
end 
 
initial begin 
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
//Signals initialization 
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
   status = "Signals initialization"; 
   tb_r_cpu_cac_addr3     = 32'b0; 
   tb_r_cpu_cac_data3     = 32'b0; 
   tb_r_cpu_cac_write3    = 1'b0; 
   tb_r_cpu_cac_read3     = 1'b0; 
 
   tb_r_cpu_cac_addr2     = 32'b0; 
   tb_r_cpu_cac_data2     = 32'b0; 
   tb_r_cpu_cac_write2    = 1'b0; 
   tb_r_cpu_cac_read2     = 1'b0; 
 
   tb_r_cpu_cac_addr1     = 32'b0; 
   tb_r_cpu_cac_data1     = 32'b0; 
   tb_r_cpu_cac_write1    = 1'b0; 
   tb_r_cpu_cac_read1     = 1'b0; 
 
   tb_r_cpu_cac_addr0     = 32'b0; 
   tb_r_cpu_cac_data0     = 32'b0; 
   tb_r_cpu_cac_write0    = 1'b0; 
   tb_r_cpu_cac_read0     = 1'b0; 
    
   tb_r_rst   = 0; 
    
   repeat(2) @(posedge tb_r_clk); 
 
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 //Test 1: System Reset 
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
   status = "System Reset"; 
   tb_r_rst  = 1; 
   repeat(1) @(posedge tb_r_clk); 
    
   tb_r_rst  = 0; 



BIT (Hons) Computer Engineering  
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 74 
 

   repeat(20) @(posedge tb_r_clk); 
  
 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
// Prepare data in sdram 
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  $readmemh("rtl/micron SDRAM/sdram_bank0_data.txt" , sdram.Bank0) ;   
 
  status = "Read data (Cache3->Cache2->Cache1->Cache0)"; 
 
 //select brust length 0,1,2,3 = 1,2,4,8 
 tb_r_BL_sel[3] = 3'd3; 
 tb_r_BL_sel[2] = 3'd2; 
 tb_r_BL_sel[1] = 3'd1; 
 tb_r_BL_sel[0] = 3'd1; 
  
 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
// Test 2: Testing Cache priority and reading in different burst length 
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
    // All 4 cache read misses in same clock cycle 
    tb_r_cpu_cac_data3 = 0; 
    tb_r_cpu_cac_data2 = 0; 
    tb_r_cpu_cac_data1 = 0; 
    tb_r_cpu_cac_data0 = 0; 
 
    tb_r_cpu_cac_addr3 = 32'h00567000 ; 
    tb_r_cpu_cac_addr2 = 32'h00567000 ; 
    tb_r_cpu_cac_addr1 = 32'h00567000 ; 
    tb_r_cpu_cac_addr0 = 32'h00567000 ; 
 
    tb_r_cpu_cac_read3  = 1; 
    tb_r_cpu_cac_write3 = 0; 
    tb_r_cpu_cac_read2  = 1; 
    tb_r_cpu_cac_write2 = 0; 
    tb_r_cpu_cac_read1  = 1; 
    tb_r_cpu_cac_write1 = 0; 
    tb_r_cpu_cac_read0  = 1; 
    tb_r_cpu_cac_write0 = 0; 
   
    @(posedge tb_r_clk); 
    // Expecting cache misses 
    // Wait until they are done 
    while(w_ma_cac_miss3||w_ma_cac_miss2||w_ma_cac_miss1||w_ma_cac_miss0 
    ||w_data_ready3||w_data_ready2||w_data_ready1||w_data_ready0)  
    @(posedge tb_r_clk); 
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//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
//Test 3: Write Hit in Cache 3  
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
    status = "Write Hit"; 
    tb_r_cpu_cac_data3  = 32'h07070707; 
    tb_r_cpu_cac_addr3  = 32'h00567004; 
     
    tb_r_cpu_cac_read3  = 0; 
    tb_r_cpu_cac_write3 = 1; 
     
    @(posedge tb_r_clk); 
    status = "Write Hit"; 
    tb_r_cpu_cac_data3  = 32'h04404404; 
    tb_r_cpu_cac_addr3  = 32'h00567000; 
     
    tb_r_cpu_cac_read3  = 0; 
    tb_r_cpu_cac_write3 = 1; 
     
    /*@56700 
      0440_4404 
      0707_0707 
      24A6_0004  
      0004_1080 
      00C2_3021 
      0020_0900 
      0100_0750 
      3402_000A*/ 
     
    @(posedge tb_r_clk); 
    
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
//Test 4: Read Hit in Cache 3   
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
    status = "Read Hit"; 
    tb_r_cpu_cac_data3  = 32'h0; 
    tb_r_cpu_cac_addr3  = 32'h00567004; 
     
    tb_r_cpu_cac_read3  = 1; 
    tb_r_cpu_cac_write3 = 0; 
     
    @(posedge tb_r_clk); 
    status = "Read Hit"; 
    tb_r_cpu_cac_data3  = 32'h0; 
    tb_r_cpu_cac_addr3  = 32'h00567000; 
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    tb_r_cpu_cac_read3  = 1; 
    tb_r_cpu_cac_write3 = 0; 
 
  //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
//Test 5: Write Miss with FIFO miss in Cache 3  
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
    @(posedge tb_r_clk); 
    status = "Write Miss"; // with dirty = 0; after  write dirty = 1; 
 
    tb_r_cpu_cac_data3  = 32'h00B00177; 
    tb_r_cpu_cac_addr3  = 32'h0089A000; 
     
    tb_r_cpu_cac_read3  = 0; 
    tb_r_cpu_cac_write3 = 1; 
     
    /*@89A00 
      00B0_0177 
      1234_ABCD 
      5678_7654 
      3456_789A 
      9876_3210 
      FAFA_FAFA 
      BEEF_BEEF 
      DEAD_DEAD*/ 
     
    @(posedge tb_r_clk); 
    while(w_ma_cac_miss3)@(posedge tb_r_clk); 
     
    status = "Check"; 
    tb_r_cpu_cac_data3  = 32'h0; 
    tb_r_cpu_cac_addr3  = 32'h0089A000; 
     
    tb_r_cpu_cac_read3  = 1; 
    tb_r_cpu_cac_write3 = 0; 
     
    @(posedge tb_r_clk); 
    status = "Write Miss"; // dirty =1; with FIFO m iss,@56700 data erect to FIFO 
    tb_r_cpu_cac_data3  = 32'h06070809; 
    tb_r_cpu_cac_addr3  = 32'h00167000; //same index different tag (@56700) 
     
    tb_r_cpu_cac_read3  = 0; 
    tb_r_cpu_cac_write3 = 1; 
     
    /*@16700 
      0607_0809 
      5201_314B 
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      5201_314C 
      5201_314D 
      5201_314E 
      5201_314F 
      5201_3140 
      5201_315A 
      5201_315B */ 
       
    @(posedge tb_r_clk); 
    while(w_ma_cac_miss3)@(posedge tb_r_clk); 
     
    status = "Check"; 
    tb_r_cpu_cac_data3  = 32'h0; 
    tb_r_cpu_cac_addr3  = 32'h00167000; 
     
    tb_r_cpu_cac_read3  = 1; 
    tb_r_cpu_cac_write3 = 0; 
    @(posedge tb_r_clk); 
     
    
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
//Test 6: Write Miss with FIFO hit in Cache 3  
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
    status = "Write Miss"; //with FIFO hit,@56700 data write back from FIFO 
    tb_r_cpu_cac_data3  = 32'hF1FA0000; 
    tb_r_cpu_cac_addr3  = 32'h00567000; // @16700 move to FIFO 
     
    tb_r_cpu_cac_read3  = 0; 
    tb_r_cpu_cac_write3 = 1; 
     
    /*@56700 
      F1FA_0000 
      0707_0707 
      24A6_0004  
      0004_1080 
      00C2_3021 
      0020_0900 
      0100_0750 
      3402_000A*/ 
     
    @(posedge tb_r_clk); 
    while(w_ma_cac_miss3)@(posedge tb_r_clk); 
     
    status = "Check"; 
    tb_r_cpu_cac_data3  = 32'h0; 
    tb_r_cpu_cac_addr3  = 32'h00567000; 
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    tb_r_cpu_cac_read3  = 1; 
    tb_r_cpu_cac_write3 = 0; 
     
   
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
//Test 7: Auto Write Back to SDRAM in Cache 3 with FIFO busy  
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
    @(posedge tb_r_clk); 
    status = "FIFO WB to SDRAM"; //(@16700 move from FIFO to SDRAM) 
    tb_r_cpu_cac_data3  = 32'h0; 
    tb_r_cpu_cac_addr3  = 32'h00567004; 
     
    tb_r_cpu_cac_read3  = 1; 
    tb_r_cpu_cac_write3 = 0; 
     
    @(posedge tb_r_clk); 
    tb_r_cpu_cac_data3  = 32'h0; 
    tb_r_cpu_cac_addr3  = 32'h00567008; 
     
    tb_r_cpu_cac_read3  = 1; 
    tb_r_cpu_cac_write3 = 0; 
     
    @(posedge tb_r_clk); 
    tb_r_cpu_cac_data3  = 32'h0; 
    tb_r_cpu_cac_addr3  = 32'h0056700C; 
     
    tb_r_cpu_cac_read3  = 1; 
    tb_r_cpu_cac_write3 = 0; 
     
    @(posedge tb_r_clk); 
    tb_r_cpu_cac_data3  = 32'h0; 
    tb_r_cpu_cac_addr3  = 32'h00567010; 
     
    tb_r_cpu_cac_read3  = 1; 
    tb_r_cpu_cac_write3 = 0; 
     
    @(posedge tb_r_clk); 
    tb_r_cpu_cac_data3  = 32'h0; 
    tb_r_cpu_cac_addr3  = 32'h00567014; 
     
    tb_r_cpu_cac_read3  = 1; 
    tb_r_cpu_cac_write3 = 0; 
     
    @(posedge tb_r_clk); 
    tb_r_cpu_cac_data3  = 32'h0; 
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    tb_r_cpu_cac_addr3  = 32'h00567018; 
     
    tb_r_cpu_cac_read3  = 1; 
    tb_r_cpu_cac_write3 = 0; 
     
    @(posedge tb_r_clk); 
    tb_r_cpu_cac_data3  = 32'h0; 
    tb_r_cpu_cac_addr3  = 32'h0056701C; 
     
    tb_r_cpu_cac_read3  = 1; 
    tb_r_cpu_cac_write3 = 0; 
     
    @(posedge tb_r_clk); 
    
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
//Test 8: Read Miss with FIFO miss in Cache 3  
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
    status = "Read Miss"; //data read back from SDRAM,@89A00 move to FIFO 
    tb_r_cpu_cac_data3  = 32'h0; 
    tb_r_cpu_cac_addr3  = 32'h00E9A000; 
     
    tb_r_cpu_cac_read3  = 1; 
    tb_r_cpu_cac_write3 = 0; 
     
    /*@89A00       @E9A00   
      00B0_0177     39A8_776F 
      1234_ABCD     5555_5555 
      5678_7654     7777_7777 
      3456_789A     FFFF_FFFF 
      9876_3210     1212_3434 
      FAFA_FAFA     0000_0001 
      BEEF_BEEF     BAD0_ADD8 
      DEAD_DEAD     2345_5432*/ 
       
    @(posedge tb_r_clk); 
    while(w_ma_cac_miss3)@(posedge tb_r_clk); 
     
    
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
//Test 9: Read Miss with FIFO hit in Cache 3  
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

status = "Read Miss"; //@89A00 move from FIFO to cache 
tb_r_cpu_cac_data3  = 32'h0; 

    tb_r_cpu_cac_addr3  = 32'h0089A000; 
     
    tb_r_cpu_cac_read3  = 1; 
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    tb_r_cpu_cac_write3 = 0; 
     
    @(posedge tb_r_clk); 
    while(w_ma_cac_miss3)@(posedge tb_r_clk); 
     
    
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
//Test 10: Miss happen and FIFO full 
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
    status = "FIFO Full,Write Miss1"; //FIFO status : *,*,*,* 
    tb_r_cpu_cac_data3  = 32'h26100AAA; 
    tb_r_cpu_cac_addr3  = 32'h00261000; 
     
    tb_r_cpu_cac_read3  = 0; 
    tb_r_cpu_cac_write3 = 1; 
     
    @(posedge tb_r_clk); 
    while(w_ma_cac_miss3)@(posedge tb_r_clk); 
    status = "Write  Miss2"; //FIFO after this: 26100,*,*,* 
    tb_r_cpu_cac_data3  = 32'h46100BBB; 
    tb_r_cpu_cac_addr3  = 32'h00461000; 
     
    tb_r_cpu_cac_read3  = 0; 
    tb_r_cpu_cac_write3 = 1; 
     
    @(posedge tb_r_clk); 
    while(w_ma_cac_miss3)@(posedge tb_r_clk); 
    status = "Write  Miss3"; //FIFO after this: 26100,46100,*,* 
    tb_r_cpu_cac_data3  = 32'h66100CCC; 
    tb_r_cpu_cac_addr3  = 32'h00661000; 
     
    tb_r_cpu_cac_read3  = 0; 
    tb_r_cpu_cac_write3 = 1; 
     
    @(posedge tb_r_clk); 
    while(w_ma_cac_miss3)@(posedge tb_r_clk); 
    status = "Write Miss4"; //FIFO after this: 26100,46100,66100,* 
    tb_r_cpu_cac_data3  = 32'h86100DDD; 
    tb_r_cpu_cac_addr3  = 32'h00861000; 
     
    tb_r_cpu_cac_read3  = 0; 
    tb_r_cpu_cac_write3 = 1; 
     
    @(posedge tb_r_clk); 
    while(w_ma_cac_miss3)@(posedge tb_r_clk);  
    status = "Write Miss5"; //FIFO after this: 26100,46100,66100,86100 
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    tb_r_cpu_cac_data3  = 32'hA6100EEE; 
    tb_r_cpu_cac_addr3  = 32'h00A61000; 
     
    tb_r_cpu_cac_read3  = 0; 
    tb_r_cpu_cac_write3 = 1; 
 
    @(posedge tb_r_clk); 
    while(w_ma_cac_miss3)@(posedge tb_r_clk); //@26100 wb to SDRAM 
    status = "Write Miss6"; //FIFO after this: A6100,46100,66100,86100 
    tb_r_cpu_cac_data3  = 32'hC6100FFF; 
    tb_r_cpu_cac_addr3  = 32'h00C61000; 
     
    tb_r_cpu_cac_read3  = 0; 
    tb_r_cpu_cac_write3 = 1; 
     
    @(posedge tb_r_clk); 
    while(w_ma_cac_miss3)@(posedge tb_r_clk); 
    repeat(5) @(posedge tb_r_clk);  
    $stop; 
end 
 
endmodule
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7.3 Simulation Result 
Test 1 and Test 2 overall Timing Diagram 

 

 

 

 

 

 

 

 

Test 1: System Reset  

Signal Initialization and System Reset 
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Test 2: Testing Cache priority and reading in different burst length  

Priority is given to cache_3 to run first according to the priority arrangement in Memory Arbiter. Here SDRAM configuration is burst 

length = 8. 
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= 1when load mode finish 

Performing read burst, 
length = 8, continue for 

8 clock cycle 

Miss signal de-asserted 
after finish read 

Cache_2 repeat the 
process by performing 
load mode to SDRAM 
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Then, priority is given to cache_2 to run. SDRAM configuration is burst length = 4. 

 

Performing Load Mode 

Cache_1 repeat the 
process by performing 
load mode to SDRAM 

Performing read burst, length = 4 
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Then, priority is given to cache_1 to run. SDRAM configuration is burst length = 2. 

Performing read burst, length = 2 
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Performing read burst, length = 2 Ack signal did not asserted 
mean configuration is same 

 

Then, priority is given to cache_0 to run. SDRAM configuration is burst length = 2. The configuration same as previous thus SDRAM 

no need to load mode again. 

 



BIT (Hons) Computer Engineering  
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 87 
 

 

Test 3: Write Hit in Cache 3 and continuous Write Hit and  

Test 4: Read Hit in Cache 3 and continuous Read Hit 

Data had been written into cache in previous test. Thus write hit occur here with same tag and index. Data were 
written into cache continuously (data become dirty because not updated to SDRAM) and then for next two clock 
cycle data were read out to uo_cac_cpu_data.  
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Test 5: Write Miss with FIFO misses in Cache 3 

Write miss occur and FIFO_hit is 
de-asserted because trying to write 
into cache location that valid=0. 

Read data from SDRAM to cache Then write data into cache 

Read back that location for checking 
writing is successful or not 
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FIFO entries: @56700, *, *, * 

Read back that location for checking 
writing is successful or not. 

 

Read data from SDRAM to 
cache. 

Write miss occur and FIFO_hit is de-
asserted because trying to write into 
cache location that tag is different. 

Since cache location that need to be 
written is dirty the block is evict and 
copy to FIFO. 

Then write data into cache. Dirty = 1 
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Test 6: Write Miss with FIFO hit in Cache 3 

Write miss occur and FIFO_hit is 
asserted because trying to write into 
cache location that tag is different. 

Since it is FIFO hit, data written back from FIFO to cache. The 
location in cache to be written is dirty thus move that data block 
from cache to FIFO. 

Read back that cache location for 
checking writing is successful or not. 

FIFO entries: @16700, *, *, * 
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Test 7: Auto Write Back to SDRAM in Cache 3 with FIFO busy 

A series of read hit operation is given and now 
SDRAM is free. FIFO is written back to SDRAM 
while read operation is in progress. 

FIFO wait for SDRAM to prepare 
receive data, then when ack signal is 
asserted data were written back to 
SDRAM. 

During writing into SDRAM, read miss 
occur, thus pipeline was stalled until 
data block is finish written into 
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Test 8: Read Miss with FIFO misses in Cache 3 

After wait for data written 
finish into SDRAM, read 
instruction was resume. 

Read miss and FIFO miss (fifo_hit de-
asserted) happen since tag is different; data 
need read back from SDRAM to cache and 
@89A00 move to FIFO (Test 5 had made 
dirty to 1). 

Data is then read 
out to CPU 

FIFO entries: @89A00, *, *, * 
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Test 9: Read Miss with FIFO hit in Cache 3 

 

 

Data in respective location 
@89A00           @E9A00   
00B0_0177        39A8_776F 
1234_ABCD     5555_5555 
5678_7654        7777_7777 
3456_789A        FFFF_FFFF 
9876_3210         1212_3434 
FAFA_FAFA    0000_0001 
BEEF_BEEF      BAD0_ADD8 
DEAD_DEAD  2345_5432 

FIFO entries: *, *, *, * 

Since previous instruction is 
read only so dirty is 0. 
@E9A00 did not move to 
FIFO 

Read miss because tag is different 
and fifo_hit asserted, data written 
back from FIFO to SDRAM 

Data is then read out to CPU 
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Test 10: Miss happen and FIFO full 

 

 
 
 

FIFO entries:@26100,*,*,* 

FIFO entries: @26100, @46100,*,* 

FIFO entries: @26100, @46100, @66100,* 

FIFO entries: @26100, @46100, @66100, @86100 

FIFO full thus FIFO write data back to 
SDRAM first to free up a space, and 
then continue it write miss process. 

FIFO entries: @A6100, @46100, @66100, @86100 
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Chapter 8 Conclusion 

8.1 Conclusion 
Cache unit had successfully redesigned with write-back scheme and write buffer 

(FIFO) from previous work. With this cache unit, data no longer always need to 

written back to SDRAM since SDRAM accessing taking 40 to 50 cycles 

Now with the new cache unit dirty data able to written back to SDRAM if 

SDRAM is free while CPU is can do other process. In order to suit in this new ability, 

a little modification on memory arbiter was made while still keeping the same good 

feature and functionality of memory arbiter modelled by Chin Chun Lek. 

At the end, all the objective of this project is achieved. The cache unit is 

developed in RTL (Register Transfer Level) form and modeled in synthesizable 

Verilog. A series of test cases and scenarios has been carried to verified memory 

system functionality. All the expected results are obtained. 

8.2 Discussion and Future Work 
With the newly designed cache unit, data no longer always need to written back to 

SDRAM. In worst case scenario if a miss happen, cache need to access SDRAM 

twice by writing the dirty data into SDRAM and read another data from SDRAM. 

With write-back write buffer (FIFO) it can reduce to only read data from SDRAM 

since dirty data was written into FIFO. Also, if data found in write buffer (FIFO) data 

can always write back from write buffer (FIFO) and skip the writing from SDRAM. 

Now with the new cache unit dirty data in FIFO able to written back to SDRAM if 

SDRAM is free while CPU is can do other process, thus it increase the efficiency use 

of clock cycle. 

Some modifications need to be done in the future work. One is in SDRAM, 

the acknowledgement signal had two functions in one signal, it indicates load mode is 

done and data was ready. It is better in to split in two signals to prevent confusion. 

Next is implementation of Load Mode Instruction in CPU since now did not have a 

method to change the configuration mode of SDRAM. This need look into pipeline 

and cache unit and modified both of them. 
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Appendices 

Appendix A 
 

System Specification 

Chip level design: RISC32 processor 

 

A.1 Feature 

 Basic RISC32 Full RISC32 
Dummy Instruction Cache (KB) 16 16 
Dummy Data Cache (KB) 16 16 
Data width (bits) 32 32 
Instruction width (bits) 32 32 
General Purpose Register 32 32 
Special Purpose Register HILO, PC HILO, PC 
Pipelined Stage 5 5 
Hazard Handling No Yes 
Interlock Handling No Yes 
Data Dependency Forwarding No Yes 
Branch Prediction Fixed – always 

invalid 
Dynamic – 2bits 
scheme 

Multiplication (size of multiplier 
and multiplicand) 

yes – 32bits  yes – 32 bits 

Branch Delay Slot Not supported Not supported 
Instruction supported 38 38 

Table A-1 RISC32 features 

 

A.2 Naming Convention 
Module  – [lvl]_[mod. name] 

Instantiation  – [lvl]_[abbr. mod. name] 

Pin  – [lvl] [Type] _[abbr. mod. name] _ [pin name]  

 – [lvl]_[abbr. mod. name]_[Type]_[stage]_[pin name]  
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Abbreviation: 

 Description Case Available Remark 
lvl level lower c : Chip 

u : Unit 
b : Block 
tb: Test 
Bench 

 

mod. name Module 
Name 

lower all any  

abbr. mod. 
name 

Abbreviated 
module 
name  

lower all any  maximum 3 characters 

Type Pin type lower  o : output 
i : input 
r : register 
w : wire 
f- :function 

 

stage Stage name lower all if, id, ex, 
mem, wb 

 

pin name Pin name lower all any Several word separate by 
“_” 

Table A-2 Naming Convention 
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A.3 Basic RISC32 processor 

A.3.1 Processor Interface 

 

Figure A.3 Block diagram for RISC32-basic processor 

 

A.3.2 I/O Pin Description 

Pin Name: 
c_r32_i_reset 

Source � Destination: 
External Source � RISC32 processor 

Registered:  
No 

Pin Function: 
System reset for the RISC32 microprocessor. It is synchronous to the system clock. 
Pin Name: 
c_r32_i_clk 

Source � Destination: 
External Source � RISC32 processor 

Registered:  
No 

Pin Function: 
System clock for the RISC32 microprocessor. 

Table A-3 Basic RISC32 Input Pins Description 
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A.4 System Register 

A.4.1 General Purpose Register 
Width : 32-bits 

Size : 32 units 

Retrieving method : 5-bits address as index 

Name Address Use 
Preserved Across A 
Call? 

$zero 0 Constant Value 0 N.A. 
$at 1 Assembler Temporary No 

$v0 - $v1 2 - 3 
Value for Function Results 
and Expression Evaluation 

No 

$a0 - $a3 4 - 7 Arguments No 
$t0 - $t7 8 – 15 Temporaries No 
$s0 - $s7 16 - 23 Saved temporaries Yes 
$t8 - $t9 24 – 25 Temporaries No 
$k0 - $k1 26 -27 Reserved for OS kernel No 
$gp 28 Global Pointer Yes 
$sp 29 Stack Pointer Yes 
$fp 30 Frame Pointer Yes 
$ra 31 Return Address Yes 

Table A-4-1 Register file 

A.4.2 Special Purpose Register 
Width : 32-bits 

 Size : 2-units 

Retrieving method  : access using MFHI, MTHI, MFLO, MTLO, MULT and  

  MULTU instructions 

Name definition 
location in double 
[64:0] 

HI 
Most Significant 
Word  

Double [63:32] 

LO 
Least Significant 
Word 

Double [31:0] 

Table A-4-2 HILO Register 

 

A.4.3 Program Counter Register 

Width : 32-bits 

Size : 1 unit 

Retrieving method : Control by instruction address generator control 
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A.5 Instruction Format 
R-type (Register) 
Op [31:26] Rs [25:21] Rt [20:16] Rd [15:11] Shamt [10:6] Funct [5:0] 
I-type (Immediate) 
Op [31:26] Rs [25:21] Rt [20:16] Immediate [15:0] 
J-type (Jump) 
Op [31:26] Target [25:0] 

Table A-5 Instruction Type 

 

Abbreviation: 

 Definition width 

op Operation code (instruction) 6 

rs Source register  5 

rt Target(source/destination) or branch 5 

immediate Immediate, branch displacement or address displacement 16 

target Jump target address 26 

rd Destination register  5 

shamt Shift amount 5 

funct Function field 6 
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A.6 Addressing Mode 

 

Figure A-6 RISC32 Addressing Mode.  

 

1. Immediate Addressing, where operand is constant within the instruction itself 

2. Register Addressing, where operand is a register 

3. Based Displacement Addressing, where operand is at the memory location whose 

address is the sum of a register and a constant in the instruction 

4. PC-relative Addressing, where branch address s the sum of the PC and a constant 

in the instruction 

5. Pseudodirect Addressing, where the jump address is the 26-bits of the instruction 

concatenated with the upper bits of the PC. 
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A.7 Instruction Set and Description  
Machine Language Instruction 

/  
Assembly 

Format Addr. Mode 
OpCod
e 

Rs Rt Rd Shamt Func 
Register Transfer Notation Assembly  

Format 
Overflow 

nop R Register 0x00 0 0 0 0 0x00 NOP sll $zero, $zero, 
0 

no 

sll R Register 0x00 0 $rt $rd n 0x01 R[rd] =R[rs] << n sll $rd, $rt, n no 
srl R Register 0x00 0 $rt $rd n 0x03 R[rd] =R[rs] >> n srl $rd, $rt, n no 
sra R Register 0x00 0 $rt $rd n 0x04 R[rd] =R[rs] >>> n sra $rd, $rt, n no 
jr R Register 0x00 $rs 0 0 0 0x0

A 
PC = R[rs] jr $rs no 

jalr R Register 0x00 $rs 0 0 0 0x0
B 

PC = R[rs] 
R[31] = PC + 4 

jalr $rs no 

mfhi R Register 0x00 0 0 $rd 0 0x10 R[rd] = HI mfhi $rd no 
mthi R Register 0x00 $rs 0 0 0 0x11 HI = R[rs] mthi $rs no 
mflo R Register 0x00 0 0 $rd 0 0x12 R[rd] = LO mflo $rd no 
mtlo R Register 0x00 $rs 0 0 0 0x13 LO = R[rs] mtlo $rs no 
mult R Register 0x00 $rs $rt 0 0 0x24 HILO = R[rs] * R[rt] mult $rs, $rt no 
multu R Register 0x00 $rs $rt 0 0 0x24 HILO = U(R[rs]) * U(R[rt]) multu $rs, $rt no 
add R Register 0x00 $rs $rt $rd 0 0x20 R[rd] = R[rs] + R[rt] add $rd, $rs, $rt yes 
addu R Register 0x00 $rs $rt $rd 0 0x21 R[rd] = U(R[rs]) + U(R[rt]) addu $rd, $rs, 

$rt 
no 

sub R Register 0x00 $rs $rt $rd 0 0x22 R[rd] = R[rs] - R[rt] sub $rd, $rs, $rt yes 
subu R Register 0x00 $rs $rt $rd 0 0x23 R[rd] = U(R[rs]) - U(R[rt]) subu $rd, $rs, 

$rt 
no 

and R Register 0x00 $rs $rt $rd 0 0x24 R[rd] = R[rs] & R[rt] and $rd, $rs, $rt no 
or R Register 0x00 $rs $rt $rd 0 0x25 R[rd] = R[rs] | R[rt] or $rd, $rs, $rt no 
xor R Register 0x00 $rs $rt $rd 0 0x26 R[rd] = R[rs] ^ R[rt] xor $rd, $rs, $rt no 
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nor R Register 0x00 $rs $rt $rd 0 0x27 R[rd] = ~(R[rs] | R[rt]) nor $rd, $rs, $rt no 
slt R Register 0x00 $rs $rt $rd 0 0x2

A 
R[rd] = (R[rs] < R[rt]) ? 1 : 0 slt $rd, $rs, $rt no 

sltu R Register 0x00 $rs $rt $rd 0 0x2
B 

R[rd] = (U(R[rs]) < U(R[rt])) ? 
1 : 0 

sltu $rd, $rs, $rt no 

j J Pseudo-
Direct 

0x02 JumpAddr (Label) PC = {(PC+4) [31:28], 
JumpAddr, 2’b00} 

j label no 

jal J Pseudo-
Direct 

0x03 JumpAddr (Label) PC = {(PC+4) [31:28], 
JumpAddr, 2’b00} 
R[31] = PC + 4 

jal label no 

beq I PC-Relative 0x04 $rs $rt BranchAddr 
(Label) 

PC = (R[rs] == R[rt]) ?  
(PC + 4 + 
(SE(BranchAddr)<<2)) : 
(PC + 4) 

beq $rs, $rt, 
label 

no 

bne I PC-Relative 0x05 $rs $rt BranchAddr 
(Label) 

PC = (R[rs] != R[rt]) ?  
(PC + 4 + 
(SE(BranchAddr)<<2)) : 
(PC + 4) 

bne $rs, $rt, 
label 

no 

blez I PC-Relative 0x06 $rs 0 BranchAddr 
(Label) 

PC = (R[rs] <=0) ?  
(PC + 4 + 
(SE(BranchAddr)<<2)) : 
(PC + 4) 

blez $rs, $rt, 
label 

no 

bgtz I PC-Relative 0x07 $rs 0 BranchAddr 
(Label) 

PC = (R[rs] > 0 ) ?  
(PC + 4 + 
(SE(BranchAddr)<<2)) : 
(PC + 4) 

bgtz $rs, $rt, 
label 

no 

addi I Immediate 0x08 $rs $rt Imm R[rt] = R[rs] + SE(Imm) addi $rt, $rs, 
imm 

yes 

addiu I Immediate 0x09 $rs $rt Imm R[rt] = U(R[rs]) + addiu $rt, $rs, no 
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U(ZE(Imm)) imm 
slti I Immediate 0x0A $rs $rt Imm R[rt] = (R[rs] < SE(Imm)) ? 1 : 

0 
slti $rt, $rs, 
imm 

no 

sltiu I Immediate 0x0B $rs $rt Imm R[rt] = (U(R[rs]) < 
U(SE(Imm))) ? 1 : 0 

sltiu $rt, $rs, 
imm 

no 

andi I Immediate 0x0C $rs $rt Imm R[rt] = R[rs] & ZE(Imm) andi $rt, $rs, 
imm 

no 

ori I Immediate 0x0D $rs $rt Imm R[rt] = R[rs] | ZE(Imm) ori $rt, $rs, imm no 
xori I Immediate 0x0E $rs $rt Imm R[rt] = R[rs] ^ ZE(Imm) xori  $rt, $rs, 

imm 
no 

lui I Immediate 0x0F $rs $rt Imm R[rt] = Imm << 16 lui $rt, imm no 
lw I Based-

Displaceme
nt 

0x23 $rs $rt Imm R[rt] = MEM[ R[rs] + 
SE(Imm) ] 

lw $rt, 
imm($rs) 

no 

sw I Based-
Displaceme
nt 

0x2B $rs $rt Imm MEM[ R[rs] + SE(Imm) ] = 
R[rt] 

sw $rt, 
imm($rs) 

no 

Table A-7 RISC32 Instruction set
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A.8 Memory Map 
Purpose start address Direction Segment 

Kernel module 
0xC000 
0000 

Up Kseg2 

Boot Rom  Up 

i/o register(if below 512MB) 
0xA000 
0000 

Up 
Kseg1 

Direct view of memory to 512MB linux kernel 
code and data 

 Up 

Exception Entry point 
0x8000 
0000 

Up 
Kseg0 

Stack 0x7fff ffff Down 

Program heap 
0x1000 
8000 

Up 

Dynamic library code and data 
0x1000 
0000 

Up 

Main program 
0x0040 
0000 

Up 

Reserved 
0x0000 
0000 

Up 

Kuseg 

Table A-8 Memory Map  

Memory map description 

Kernel module 

- Accessible by kernel* 

Boot Rom 

- Start up ROM which keep the system configuration* 

I/O registers (if below 512MB) 

- External IO device register* 

Direct view of memory to 512MB linux kernel code and data 

- * 

Exception Entry point 

- Software exception handling * 

Stack 

- Use for argument passing 

Program heap 

- Dynamic memory allocation such as malloc()  

Dynamic library code and data 
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- Data segment which is access by 

Main program 

- Text segment which contain the main program 

Reserved 

 

Note *: required CP0 

 

Figure A.8 Memory map for Kuseg section, accessible without CP0 



 

BIT (Hons) Computer Engineering  
Faculty of Information and Communication Technology (Perak Campus), UTAR Page 114 
 

 

A.9 Operating Procedure 
• Start the system 

• Porting sequence of instruction  into cache (instruction or data) 

• Reset the system for at least 2 clocks 

• While release the reset, the system will automatically run the program inside 

instruction cache 

• Observe the waveform from the development tools. 

 

 


