
COMPARISON ON VARIOUS CONCURRENCY PLATFORMS

WITH IO BOUND PROBLEM

(CONCURRENT DATABASE INSERTION ON MULTI-CORE MACHINE)

BY

LOW BOON WEE

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION SYSTEM (HONS)

BUSINESS INFORMATION SYSTEM

Faculty of Information and Communication Technology

(Perak Campus)

APRIL 2011

LOW BOON WEE April 2010

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

Title: COMPARISON ON VARIOUS CONCURRENCY PLATFORMS

WITH IO BOUND PROBLEM

(CONCURRENT DATABASE INSERTION ON MULTI-CORE MACHINE)

Academic Session: JAN 2011

I LOW BOON WEE

 (CAPITAL LETTER)

declare that I allow this Final Year Project Report to be kept in

Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

Verified by,

_________________________ _________________________

(Author‟s signature) (Supervisor‟s signature)

Address:

489, TAMAN ASEAN

JALAN MALIM OOI BOON YAIK

75250 MELAKA Supervisor‟s name:

Date: 8
Th

 APRIL 2010 Date: ____________________

COMPARISON ON VARIOUS CONCURRENCY PLATFORMS

WITH IO BOUND PROBLEM

(CONCURRENT DATABASE INSERTION ON MULTI-CORE MACHINE)

BY

LOW BOON WEE

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION SYSTEM (HONS)

BUSINESS INFORMATION SYSTEM

Faculty of Information and Communication Technology

(Perak Campus)

APRIL 2011

 ii

DECLARATION OF ORIGINALITY

I declare that this report entitled “COMPARISON ON VARIOUS CONCURRENCY

PLATFORMS WITH IO BOUND PROBLEM (CONCURRENT DATABASE

INSERTION ON MULTI-CORE MACHINE)” is my own work except cited in the

references. The report has not been accepted for any degree and is not being

submitted concurrently in candidate for any degree or other award.

Signature : _________________________

Name : LOW BOON WEE

Date : 8
Th

 APRIL 2011

 iii

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisor, Mr. Ooi

Boon Yaik whom has given me this bright opportunity to engage in the research field

of Using Multi-Core to-do Multithreading on Database. I would also like to thank Mr.

Wong Chee Siang as well for his guidance. A million thanks to both of them.

Special thank to those around me, my family members, and Wong Yoot Wen for their

unconditional support and love, in standing by my side during hard and easy times.

Finally, I must say thanks to for everyone‟s encouragement throughout the course of

my study.

I would also thank all my friends whom had been there for me. Without them much of

the work won‟t be possible.

When I asked for strength, He lifts my burden from my shoulders.

When I asked for knowledge, He provides me with what I need.

When I asked for wisdom, He is there constantly with me.

Without Him nothing is possible, I would like to thank God for His faithfulness and

for being with me at all times and providing all my needs. Thank God.

 iv

ABSTRACT

The advancement of multi-core processors and database technologies have enable

database insertion to be implemented concurrently via multithreading programming.

In this work, we evaluate the performance of using multithreading technique to

perform database insertion of large data set with known size. The performance

evaluation includes techniques such as using single database connection, multithreads

the insertion process with respective database connections, single threaded bulk

insertion and multithreaded bulk insertion. MySQL 5.2 and SQL Server 2008 were

used and the experimental results show that for larger datasets bulk insertion of both

databases can drastically be improved with multithreading.

 v

TABLE OF CONTENTS

TITLE ... I

DECLARATION OF ORIGINALITY ... II

ACKNOWLEDGEMENTS ... III

ABSTRACT ... IV

TABLE OF CONTENTS ... V

LIST OF FIGURES ... VIII

LIST OF TABLES .. XI

CHAPTER 1 INTRODUCTION .. 1

1.1 MOTIVATION .. 1

1.2 PROJECT INTRODUCTION ... 3

1.3.1 ADVANCEMENT IN DATABASE ENGINE .. 4

1.3.2 WHAT IS I/O BOUND? ... 4

1.3.3 WHAT IS MULTITHREADING (MT) ... 5

1.3.4 DATA ACCESS LAYER (DAL) ... 6

1.4 METHODOLOGY IN BRIEF ... 8

1.5 OBJECTIVE .. 9

1.6 PROJECT SCOPE ... 9

1.7 PROBLEM STATEMENT .. 10

1.8 CONTRIBUTION.. 10

1.9 TECHNOLOGY INVOLVED ... 11

1.9.1 Technology Involved .. 11

1.9.2 Database .. 11

1.9.3 Programming Language .. 11

1.9.4 Threading Method ... 11

1.9.5 Operating System .. 11

CHAPTER 2 LITRETURE REVIEW ... 13

 vi

2.1 Introduction .. 13

2.2 WHAT IS MULTI-CORE PROCESSOR? .. 14

2.3 WHAT IS MULTITHREADING? .. 16

2.4 PARALLELISM IN MULTITHREADING .. 18

Effect Multithreading on Database .. 21

2.5 DESCRIPTION OF BULK INSERTION.. 25

2.5.1 WHAT IS BULK INSERTION? .. 25

2.5.2 WHAT IS BULK COPY? ... 28

2.5.3 WHAT IS CONNECTION POOLING? ... 34

2.5.3 WHAT IS DATA ACCESS LAYER (DAL)? .. 35

2.6 TECHNIQUES USED IN DAL ... 38

2.6.1 TABLE LOCKING METHOD ... 38

2.6.2 SEQUENTIAL PROCESSING .. 39

2.6.3 PARALLELIZING DATABASE ACCESS ... 40

2.6.4 USING DATA PARALLELISM IN .Net Framework 4 .. 40

2.6.5 PARALLEL LINQ .. 42

2.6.6 CONCURRENT BAG .. 43

2.7 COMPARISON BETWEEN AVAILABLE WAYS TO DO BULK INSERTION 46

2.8 DISCUSSION .. 48

2.8.1 DIFFERENCES BETWEEN SINGLE-THREADED DAL AND MULTI-

THREADED DAL ... 48

2.8.2 DATABASE COMPARIOSN .. 48

2.9 CONCLUSION .. 49

CHAPTER 3 METHODOLOGY ... 50

3.1 INTRODUCTION ... 50

3.2 Implementation of Concept .. 50

3.2.1 Threading Method ... 50

3.2.2 Sequential Insertion .. 51

3.2.3 SQLBulkCopy Insertion ... 52

3.2.4 MySQL Bulk Loader Insertion ... 53

3.2.5 System Utilization ... 53

3.3 TESTING ... 54

3.3.1 DATASET .. 54

 vii

3.3.2 DATABASE ... 54

3. 3.3 TEST MACHINE AND SOFTWARE SPECIFICATION 54

3. 3.4 Program Flow ... 55

3. 3.5 TASK 0: BUILD DATASET ... 56

3. 3.6 TASK 1: CONNECTIONS AND THREADS ... 58

3. 3.7 TASK 2: MULTI THREADED AND CONNECTION .. 60

3. 3.8 TASK 3: THREADING WITH BULK COPY .. 61

3. 3.9 TASK 4: THREADING WITH IMPORT LOADER .. 62

3. 3.10 TASK 5: MACHINE PERFORMANCE ON LOAD .. 63

3. 3.11 TASK 6: MACHINE UTILITY MONITOR ... 63

3.2.12 TASK 7: DEVELOP SMART DAL ... 63

CHAPTER 4 DISCUSSION.. 65

4.1 TEST RESULTS .. 65

4.1.1 TEST RESULT FOR SQL SERVER 2008 .. 65

4.1.2 My SQL 5.2 .. 70

4.2 Performance Monitoring .. 76

4.2.1 SQL Server 2008 Enterprise ... 76

4.2.2 MySQL 5.2 ... 78

4.3 Affects on Performance ... 80

CHAPTER 5 CONCLUSION ... 83

5.1 Future Works ... 83

REFERENCES ... 85

APPENDIX .. A

 viii

LIST OF FIGURES

Figure Number Title Page

FIGURE 1-1: CALCULATION OF INSERT STATEMENT TIME2

FIGURE 1-2: A TYPICAL APPLICATION SHOWING WHERE THE DAL

 AND OTHER COMPONENTS (J.D. MEIER,

CHAPTER 12: DATA ACCESS LAYER GUIDELINES, 2009).8

FIGURE 2-1:ONE PROCESSOR CAN HAVE MULTIPLE CORES AND USUALLY

EACH CORE HAS ONE THREAD. (GRANATIR, 2009)15

FIGURE 2-2: PERFORMANCE INCREASE AS NUMBERS OF CORES INCREASES

 (MARCHAND, 2008). ...16

FIGURE 2-3: LEFT IMAGE ILLUSTRATES SERIAL PROGRAMMING. RIGHT ON

 THE RIGHT ILLUSTRATES PARALLEL PROGRAMMING.

(VADAPARTY, 2008) ..19

FIGURE 2-4: THREAD CLASSIFICATION. ..20

FIGURE 2-5: THREADING COMPARISONS ...21

FIGURE 2-6: SHOWS THE RESULTS FROM ABOVE MENTIONED TWO

APPROACHES (VERENKAR, 2010). ..22

FIGURE 2-7: SCALABILITY AS A FUNCTION OF AVAILABLE HARDWARE

CONTEXTS. (RYAN JOHNSON, 2001) ...23

FIGURE 2-8: BULK INSERT IN TRASACT-SQL FORMAT.

(MSDN LIBRARY (BULK INSERT), 2010).....................................26

FIGURE 2-9: BULK INSERTION FROM A FLAT FILE. (HARINATH, 2006)26

FIGURE 2-10: BULK INSERTION IN STANDARD SQL FORMAT.27

FIGURE 2-11: ILLUSTRATION OF BULK INSERT WITH MULTITHREADING28

FIGURE 2-12: EXAMPLE OF HOW BCP (BULK COPY PROGRAM) LOOKS LIKE. ...29

FIGURE 2-13: SINGLE-THREADED BULK COPY OPERATION FROM ONE

DATABASE TABLE TO ANOTHER. ...31

FIGURE 2-14: MULTI-THREADED BULK COPY OPERATION FROM ONE

DATABASE TABLE TO ANOTHER. ...33

FIGURE 2-15: BULK COPY OF FLAT-FILE TO DATABASE34

FIGURE 2-16: CREATING CONNECTION POOLING ..35

 ix

FIGURE 2-17: DATA ACCESS LAYER (DAL) ...35

FIGURE 2-18: INSERT FUNCTION USING STORED PROCEDURE IN A DAL

(KANJILAL, 2007). ..37

FIGURE 2-19: INSERT COMMAND IN A DAL WRITTEN IN C# (DONALD, 2010). .38

FIGURE 2-20: LOCK TABLE FOR NON-TRANSACTIONAL TABLES38

FIGURE 2-21: SEQUENTIAL DATA INSERTION TO A DATABASE39

FIGURE 2-22: PARALLEL DATABASE ACCESS WITH 3 CONNECTIONS AND

INSERT STATEMENT ...40

FIGURE 2-23: CREATING AN XML FILE USING PARALLEL PROGRAMMING

AND USING STORED PROCEDURE TO PERFORM BULK INSERTION. 42

FIGURE 2-24: EXAMPLE OF HOW PLINQ IS BEING IMPLEMENTED.42

FIGURE 2-25: ILLUSTRATE THE CONCEPT OF CONCURRENT BAG IN .NET 4

(ETHEREDGE, 2010). ..43

FIGURE 2-26: ILLUSTRATE HOW TO ADD ITEM INTO A CONCURRENT BAG.43

FIGURE 2-27: ILLUSTRATE HOW TO REMOVE ITEM FROM A CONCURRENT BAG. 43

FIGURE 2-28: CODE ILLUSTRATES CONCURRENT PROGRAMMING IN

CONCURRENT BAG. ...44

FIGURE 2-29: ILLUSTRATES THE CONCEPT OF CONCURRENT BAG WHEN

THREADED (ETHEREDGE, 2010). ...44

TABLE 2-2: COMPARISONS BETWEEN DAL METHODS.46

FIGURE 3-1: CREATE AND START THREADS ..51

FIGURE 3-2: SEQUENTIAL INSERTION ..51

FIGURE 3-3: AN EXAMPLE OF XML FORMATTING. ..52

FIGURE 3-4: SQLBULKCOPY INSERTION ..52

TABLE 3-1: SYSTEM AND SOFTWARE SPECIFICATION ..55

FIGURE 3-6: FLOW OF THE INSERTION PROCESS ..55

FIGURE 3-7: CODE SNIPPET OF FORMATTING SQL PARAMETERS.56

FIGURE 3-8: SNIPPET OF DATASET BUILDER PROCESS.58

FIGURE 3-9: THREAD‟S AND CONNECTION‟S TESTING COMBINATION.58

FIGURE 3-10: SNIPPET ON SEQUENTIAL SQL INSERTION.59

FIGURE 3-11: CHART SHOWS THE ARCHITECTURE OF THE PROGRAM.60

FIGURE 3-12: PROGRAM ARCHITECTURE FOR MULTI-THREADED SQL SEQUENTIAL

 INSERTION ...61

FIGURE 3-13: PROGRAM ARCHITECTURE FOR MULTI-THREADED BULK COPY. ..62

 x

FIGURE 3-14: PROGRAM ARCHITECTURE FOR MULTI-THREADED IMPORT LOADER. 63

FIGURE 3-15: PROGRAM ARCHITECTURE FOR SMART DAL.64

FIGURE 4-1: COMPARISON BETWEEN 1 & 8 THREADS WITH AND WITHOUT

 TRANSACTION ...68

FIGURE 4-2: COMPARISON BETWEEN BULKCOPY AND SEQUENTIAL

 INSERTION WITH TRANSACTION ..68

FIGURE 4-3: COMPARISON BETWEEN BULKCOPY AND SEQUENTIAL

INSERTION WITH TRANSACTION ...69

FIGURE 4-4: COMPARISON BETWEEN DIFFERENT NUMBERS OF THREADS

USING SEQUENTIAL INSERTION ...73

FIGURE 4-5: COMPARISON BETWEEN INSERT LOADER AND SEQUENTIAL

INSERTION AT 500 TO 10,000 ROWS ..73

FIGURE 4-6: COMPARISON BETWEEN SEQUENTIAL INSERTION WITH

TRANSACTION AND INSERT LOADER ...74

FIGURE 4-7: COMPARISON BETWEEN SEQUENTIAL AND INSERT LOADER

 FROM 1,000 TO 80,000 ROWS ..74

FIGURE 4-8: SYSTEM UTILIZATION BETWEEN DISK IO TRANSFER AND CPU

 USAGE FOR SQL SERVER 2008 ...76

FIGURE 4-9: SYSTEM UTILIZATION BETWEEN DISK IO TRANSFER AND RAM

USAGE FOR SQL SERVER 2008 ..77

FIGURE 4-10: SYSTEM UTILIZATION BETWEEN DISK IO TRANSFER AND CPU

USAGE FOR MYSQL 5.2 ...78

FIGURE 4-11: SYSTEM UTILIZATION BETWEEN DISK IO TRANSFER AND

MEMORY USAGE FOR MYSQL 5.2 ..79

FIGURE 4-12: AFFECT ON PERFORMANCE AT DIFFERENT CPU USAGE FOR

SQL SERVER 2008 ..80

FIGURE 4-13: AFFECT ON PERFORMANCE AT DIFFERENT CPU USAGE FOR

MYSQL ..81

FIGURE 7-2: TRANSACTION VS. BULKCOPY CHART ... A

FIGURE 7-3: TRANSACTION VS. BULK COPY FOR 1,000 TO 80,000 ROWS A

FIGURE 7-4: COMPARISON BETWEEN WITH AND WITHOUT TRANSACTION

CODES ... A

FIGURE 7-5: COMPARISON BETWEEN TRANSACTION AND INSERT LOADER A

FIGURE 7-6: INSERT LOADER VS. TRANSACTION AT 1,000 TO 80,000 ROWS A

 xi

LIST OF TABLES

Table Number Title Page

TABLE 2-1: COMPARISON ON SINGLE AND MULTICORE PROCESSORS

 (MSDN LIBRARY (THREADING), 2010)17

TABLE 2-2: COMPARISONS BETWEEN DAL METHODS.46

TABLE 2-3: COMPARISON BETWEEN SINGLE AND MULTI-THREADED.48

TABLE 2-4: COMPARISON BETWEEN DATABASE ENGINES..................................48

TABLE 3-1: SYSTEM AND SOFTWARE SPECIFICATION ..55

TABLE 4-2: TABLE SHOWS THE RESULT OF SQL SEQUENTIAL

INSERTION WITH TRANSACTION CODE ..66

TABLE 4-3: TABLE SLOWS THE RESULT OF SQL BULK COPY67

TABLE 4-4: NUMBER OF THREADS AND INSERTION METHOD ACCORDING

TO THE NUMBER OF ROWS ..70

TABLE 4-5 : TABLE OF MYSQL INSERTION WITHOUT TRANSACTION CODE71

TABLE 4-6: TABLE OF MYSQL INSERTION WITH TRANSACTION CODE72

TABLE 4-7: TABLE OF MYSQL INSERTION USING INSERT LOADER72

TABLE 4-8: INSERTION AND THREADING METHOD ACCORDING TO AMOUNT

OF DATA ..76

CHAPTER 1 INTRODUCTION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 1

CHAPTER 1 INTRODUCTION

As the amount of data increase and so goes with the processing power, this created a

need for a better solution into INSERTING huge amount of data into the database.

Therefore in this project a research is being done on what is an efficient way into

doing bulk insertion on different database engine. Multi-threading is being used as a

tool to help improve the performance.

1.1 MOTIVATION

Most CPU today comes with more than 1 core, for example in an Intel Xeon

processor has 12 logical cores in a single micro-processor with multi-threading

enabled. In a high end machine it has over 64 cores (Ryan Johnson, Shore-MT: A

Scalable Storage Manager for the Multicore Era, 2009). With such amount of

computational power, processing time is being reduced tremendously with the use of

multi-threading. The issue we looking here is, does multi-threading the Data Access

Layer (DAL) helps reduce bulk insertion cycle time? With size of data is ever

growing, and this has made data storage a challenge. Random Access Memory

(RAM) was once use to be a major issues, but now with RAM in access of over 128

GB (PowerEdge R905, 2010) there is more than sufficient.

With the fall in price of multi-core processors, it has made high-performance

processors affordable to all. This has spark the question if multi-threading would help

improve database insertion performance. It is known that database insertion is slow

compared to how data size is growing. From my research, there are a number of

factors that contribute to this limitation; they are magnetic disk bottleneck, processing

power, RAM, and database architecture. With so much available resources available,

one server-side processing that could take advantage of this is database engine. From

past research, it is possible to improve database insertion speed by using multi-

threading therefore looking for the efficient point in doing bulk insertion on different

database engines would give a clearer picture on performance improvement. The

problem I would like to answer is does multi-threading improves database insertion.

Let‟s take for exam the Large Hadron Collider (LHC) in Switzerland is able to

generate 100 Mbps of data and it has to be stored into a database constantly. The

„raw‟ event data thus emerge from the detector‟s electronic data acquisition (DAQ)

CHAPTER 1 INTRODUCTION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 2

system would have to be stored in a database. By the time the project reaches

maturity, its projected data size would be in excess of 100 PetaBytes (Julian J. Bunn,

2007). Such event have encourage me into looking in the option of multi-threading.

Standard SQL insertion would not able to insert those data fast enough and would

create a backlog.

Many has proven that multi-threading does improve performance but how much is the

question? By some calculations based on MySQL help directory on speed of the

INSERT statement, the factors that contribute to performance speed are shown. The

following are the factors that are involved in an INSERT statement. The numbers in

brackets are approximate proposition of time required (Speed of INSERT Statement,

2010):

 Connection (3)

 Sending query to server (2)

 Parsing query (2)

 Inserting row (1 multiply size of row)

 Inserting indexes (1 multiply number of indexes)

 Closing (1)

Single Threaded

Time = Connection + Sending Query to Server + Parsing Query + Inserting Row +

Inserting Indexes + Closing

 = 3 + 2 + 2 + (1 X 5) + (1 X 5) + 1

 = 18

Double Threaded

Time = Connection + Sending Query to Server + Parsing Query + Inserting Row +

Inserting Indexes + Closing

 = 3 + 2 + 2 + (1 X 5) + (1 X 10) + 1

 = 23

Figure 1-1: Calculation of INSERT statement time

From the calculation in Figure 1, we can see the improvement in terms of time when

the INSERT statement is being threaded. There is an improvement of 28% when it‟s

double threaded. This has motivated me into looking at different database engines to

CHAPTER 1 INTRODUCTION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 3

see what multi-threading does to it then building a DAL to would select the insertion

method and number of threads to create according to the amount of data and also

database engine.

1.2 PROJECT INTRODUCTION

In this project, the aim is to discover if multi-threading does help improve the

efficiency of database bulk insertion. Then it would be is searching for an optimal

insertion method for MySQL 5.2 and SQL Server 2008 Enterprise according to the

number of data to be inserted. With all the data gathered, an intelligent DAL would be

developed. The DAL would select the insertion method to be used according to the

number of data to be inserted and also database engine that‟s it will connect to.

Tests were done on a single database in each engine which contains a table with two

columns. Data inserted are 302 characters on one column and the other is an auto-

generated numerical index. Characters include symbols, space, commas, numeric and

alphabets. This would show if there is a relation between database connections,

threads, SQL command, database engine, system utilization and many other factors

that we would be encountering during the analysis of experiment results.

To benchmark the performance, sequential SQL (Structured Query Language) with

transaction and without transaction are being used. The sequential method would then

be compared to bulk insertion module that has been developed by individual vendors.

All methods would be threaded in the range of 1 to 8 threads. Tests were done on the

same machine in the same environment to maintain consistency. Each test is repeated

5 cycles to maintain consistency. Some are repeated more to reduce anomalies in the

results due to certain factors.

In this project, to the goal is to prove that multi-threading does improve bulk insertion

efficiency. Here we would also like to answer that the theory does not apply to all

database engines. Past research has shown that multi-threading implementation has

solved processor bound tasks (Broberg, 2000), but it is not confirm that it would solve

I/O bounds. From reviews from multiple forums, multi-threading does not solve I/O

bound problems but to what extent this is true? Due to the how the database engines

are designed and developed, the implementation of multi-threading on them would be

different. The emphasis on this project is not to prove which database engine is the

CHAPTER 1 INTRODUCTION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 4

fastest and what method is best to use. Instead it is to prove that multi-threading does

help in improving database bulk insertion performance.

1.3.1 ADVANCEMENT IN DATABASE ENGINE

The advancement in database engine technology has made it possible to inject a huge

amount of data into a database in a relatively short period of time. This could be done

concurrently to reduce the time taken and the engine today supports multiple

concurrent connections. Let‟s take for example Microsoft SQL Server 2008 is able to

handle over thirty thousand connections at the single time. It‟s also able to support

4096 INSERT statement per columns at a single time. Database engine are able to

support eight concurrent applications running (Maximum Capacity Specifications for

SQL Server, 2010) (Rubbelke, 2008). This shows the amount of payload the database

engines are able to support and its capabilities in handling concurrent bulk insertion.

1.3.2 WHAT IS I/O BOUND?

Most of the modern operating system (OS) is capable of supporting multi-core

processor which has the capability to process a huge amount of data concurrently.

This allows more work to be done per cycle time at all level of platform (Moore,

2008). This is another issue to this; the amount of data which such processing power

generates has to be stored somewhere quickly. But another major issue will arise is

the input/output bound which machines today are facing. Such I/O bound could be on

the magnetic disk, memory or the data flow from the application to the database.

This is a brief technology update on magnetic disk technology that has because of the

disk I/O bound. Magnetic disk or flash memory is fast expanding but the transfer rate

of such storage medium has almost reached its maximum performance level. The

development for storage medium is not growing as fast compared to processing

power. Many developers believe that disk technology has changed dramatically. But

sad to say, that is false. Only three things have actually changed since 1970‟s:

 Large data buffer size: - Today DBA can cache a much larger portion of data

in a block and reducing disk I/O.

 Disks with on-board cache: - Almost all of today‟s hard disks have an on-

board RAM cache to hold data going in and out of the disk which is normally

known as data blocks.

 RAID (Redundant Array Independent Disk): - The randomizing of data

block using RAID 0 + 1 has eliminate the need of hard disks load balancing

CHAPTER 1 INTRODUCTION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 5

system, by scrambling data blocks across the disk spindles, for example in

Oracle 10g, the Automatic Storage Management (ASM) feature requires

SAME disk “Stripe And Mirror Everywhere”, which is essentially RAID 1 + 0

and RAID – 10.

However with all this advancement in hand to spare, DBA must still remember that

I/O issue is still the major concern and many are trying to understand how to

maximize the performance of their I/O issues (Zukowski, 2005). This problem has

brought much research to be done on how to improve multithreading processing

methods and new methods are being implemented on databases to increase its data

injection to a much higher I/O rate. What we are trying to solve here is something that

is not widely researched as I was not able to find many journal paper on the internet

which research on this area.

When you multi-thread an application, the other problem would arise is where the

processor is not capable of processing the amount of data and this creates something

called CPU-bound. The CPU (Central Processing Unit) has reached its limit. This

might also cause a bottleneck at the CPU cache where the data is going out of the

processor. This will subsequently cause a major drop in performance level. The other

problem is where a huge amount of data is sitting in the RAM (Random Access

Memory) waiting to enter the database, this would then clog up the RAM and cause a

huge decrease in the machines performance level. If the application has a distributed

processing system then network I/O throughput would also be the problem. This is

few of the main side effects of not threading properly and when I/O is in the way.

1.3.3 WHAT IS MULTITHREADING (MT)

A thread is a sequence of control within a process. A single threaded process follows

a single line of controls while process is being executed. A multi-threading process

has several lines of control; therefore it‟s capable of processing several independent

processes at one time. When multiple CPU is available to be used, those independent

actions could be executed parallel according to the number of threads at your disposal

(Java on Solaris 7 Developer‟s Guide, 1998).

Multithreading is running multiple processes concurrently. This allows processes to

overlap each other and being process concurrently. This improves the efficiency

substantially and this is proven in a journal by Scott R. Taylor 2008 where they used

CHAPTER 1 INTRODUCTION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 6

the Fibonacci function across multiple threading method and also different machines

(Scott R. Taylor‚, 2008). One processor would have multiple threads and this threads

act as trunk in the processor where data flows thru and being process. One thread can

handle one or multiple processes concurrently. One thread can also hold multiple

database connection but this depends on the database engine. Current multi-core

processes have multiple cores and would have multiple threads on a single core. This

would then allow a huge of information flowing thru at a single point of time and able

to support multiple processes concurrently. Processors or I/O are able to overlap and

need not wait for processes to be completed before the next process can enter the CPU

to be process. Multiple processes are able to run parallel and this would then reduce

processing time.

These are the advantages of threading an application:

 Improves the response time needed to complete a process.

 Reduce the processing time as multiple processes are being processed

simultaneously.

 Making full use of available resources on the CPU.

 Using lesser resources as process are being completed in a shorter time.

 Less overhead is being required to manage the queuing processes or inter-

processing items.

1.3.4 DATA ACCESS LAYER (DAL)

DAL is a set of classes with functions for reading and writing to a database or other

data storage medium. It does not contain any business logic for the application or user

interface element. It‟s a background worker that interacts between the application and

the database. It‟s a part of a multi-layer application design that would normally

include items as below (J.D. Meier, Chapter 12: Data Access Layer Guidelines,

2009):

 A User Interface Layer (UI) which contains screens and user interface

components.

 A Business Logic Layer (BLL) which contains the business rules for the

application.

CHAPTER 1 INTRODUCTION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 7

 Data access logic components are abstract logic that are needed to access

underlying data stores. Doing so would then centralize the data access

function. It would then help make the application easier to configure and

maintain.

 Data helpers/utilities are functions and utilities assist in data transformation

and data access in the layer. It contains specialized API and routines that is

designed to improve data access efficiency and reduce the need to develop

logic components and service agents in the layer.

 Service agent is where business component uses functions that are exposed by

external services. The service agent isolates your application from the

idiosyncrasies of calling diverse services and additional services can be

provided.

Features on a DAL which would be implanted in this project would just be the

INSERT operation. The DAL here would be multithreaded and able to support

multiple connections to the database engine. The DAL that we would be

implementing would be portable across different database engines. It would be an API

to be imported into applications. According to codefeatures.com, DAL is the most

efficient and reliable technique for database connectivity.

Figure 1-2 shows where the DAL sits in an application.

CHAPTER 1 INTRODUCTION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 8

Figure 1-2: A typical application showing where the DAL and other components

(J.D. Meier, Chapter 12: Data Access Layer Guidelines, 2009).

DAL is a plug-in that connects the database that the application supposed to connect

to and perform CURD (create, read, update, and delete) operations. Its task is also to

start and close connections to databases, it can also be known as database connection

manager where connection pooling would be implemented or other connection

management algorithms. We are planning to create multiple connections and

threading the DAL to improve its performance. This then would allow it to inject data

asynchronously into the database. The number of connection to be created is would

also be researched. We would be looking for the most efficient number of connection

to be set into our DAL.

1.4 METHODOLOGY IN BRIEF

Tests were conducted on sequential insertion with and without transaction on 1, 2, 4,

and 8 threads. Then it would come compared with bulk insertion modules from the

respective database vendors. Tests on different number of threads would be conducted

as well. The database engine used would be MySQL 5.2 and Microsoft SQL Server

CHAPTER 1 INTRODUCTION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 9

2008 Enterprise. The test data used would range from 1 to 80,000 rows with 302

characters on each row. Each test would be repeated five cycles and time were taken

as a benchmark. The same data is being used on both database engines and it would

be done on the same machine to control the environment. From the elapsed processing

time, an average it is taken. A test data builder is being developed to generate the 302

character test data in each row.

The next test was on CPU (Central Processing Unit), RAM, and hard-disk I/O. The

same data, database and program is being used to insert and the CPU, RAM and hard-

disk I/O is being captured. Sampling method is being used to analyze the data. Each

sample is taken at every half a second interval. The average is taken and used for

analysis. Samples would be saved in a flat file and then processed by a program to get

the average and records it. All tests were being done on the same machine. For this

test, two types of methods were begin used and for further details refer to section

3.2.5.

1.5 OBJECTIVE

The objective of this project is to find a better solution into storing a huge amount of

data into a database in the shortest time possible with the use of multithreading. In this

project, we aim to make full use of the database engine‟s capabilities by running

multiple insertions simultaneously.

Another objective here is also to see the relationship between CPU, RAM and hard-

disk I/O utilization. This would show the role each component plays in multi-

threading an INSERT function. From here a relationship between the database engine

and the three factors plays towards multi-threading is concluded.

1.6 PROJECT SCOPE

The following are the platforms, programming languages and database engines that

we would be doing our research on:

 OS platform: Windows XP SP3 (32-bit)

 Programming Languages: C#

 Database Engine: MySQL by Sun Microsystems, Microsoft SQL Server 2008

 Threading Methods: would be discuss in the Methodology chapter.

CHAPTER 1 INTRODUCTION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 10

1.7 PROBLEM STATEMENT

In this project, we would be looking for the best method to insert a huge amount of

data into the database in the shortest time possible. Many applications with database

engine works in different ways, but no one knows what combination would suit best

the environment that that we would be experimenting on. Many currently ask the

question “What‟s the best method to thread the DAL and which database is the most

efficient?” Another question that arises is weather to leave connections to the database

open throughout the process or each process has its own connection?” the other big

question would be “What threading method suits which database engine and what the

best design and implementation?” The question on what relationship does CPU, RAM

and hard-disk I/O utilization has on database bulk insertion speed would be answered

here. Currently the community doesn‟t exactly know what are the consequences

multi-threading the insertion process when the machine is processing some task.

The search for an optimal method to thread each database engine is being done to find

what they work best with. The problem is all databases are built in different

architecture and will multi-threading suit its environment. There is not much

information on such topic. Therefore a study on which threading and insertion method

suits a particular database is being done.

Many DAL today are not multithreaded and we would like to create our own DAL

which is multithreaded and to fix the database engine we would be experimenting on

and also our task to insert a huge amount of data into the database in the shortest time

possible. A search for a better way to do a DAL for bulk insertion is being done and

in the end of the project a smart DAL was being developed.

1.8 CONTRIBUTION

The contribution of this project is information about which database matches which

threading method to be used for an application which needs to insert a huge amount of

data concurrently or in the shortest time possible. A comparison on different insertion

and threading methods were being tested to find an optimal solution. It would act as a

guideline to database developers when they are dealing with database bulk insertion.

The other contribution would be tocreate a multithreaded DAL to insert a huge

amount of data into the databases we are experimenting on and if possible, an API for

CHAPTER 1 INTRODUCTION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 11

this DAL will be created. The DAL would support bulk insertion on two different

database engines and accept text files to process the insertion.

In the end of the project, a table is being generated to act as a guideline to database

developers into threading database bulk insertion and methods to use according to the

number of rows to be inserted.

1.9 TECHNOLOGY INVOLVED

1.9.1 Technology Involved

In this section technology involved in this research is being discussed. it would be

covering database engine used, threading methods, programming language and

operating systems (OS) being used.

1.9.2 Database

I would be using Microsoft SQL Server 2008. The SQL Server is a very advanced

database which is being widely in industry. This comprise of SAP ERP (Enterprise

Resource Planning), Camstar which uses it for their MES (Manufacturing Executing

System) (SQL Server 2008 Product Information), this are the few examples of

implementation and scalability of the database engine. Finally we would be using

MySQL which is owned by Oracle. Why we are using this database engine is because

it‟s the most popular database and this is proven by the number of download it has per

day (MySQL Overview). It has all the feature at a fraction of the cost and this makes

it a good platform to test on (MySQL Overview).

1.9.3 Programming Language

For the programming languages, C# is being used on Visual Studio 2010. which is

one of the most common languages used today.

1.9.4 Threading Method

Manual threading is being used in this project. Creation and spawning of threads are

being done manually. For more information refer to the methodology section. Due to

time constrain, only this threading method is being used.

1.9.5 Operating System

For the operating system, Microsoft Windows platform is being used in this project. It

is one of the most common platforms for PC (Personal Computers) users these days.

CHAPTER 1 INTRODUCTION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 12

The OS used is Windows XP thru out the research process to maintain a controlled

environment. Due to time and resources constrain, only one operating system is being

used.

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 13

CHAPTER 2 LITRETURE REVIEW

2.1 Introduction

Businesses today generate a huge amount of data which has to be stored as quickly as

possible. This challenges database developers to look into ways of storing all this

data. Let‟s take for example, in a stock exchange environment. Stock price changes

constantly with hundreds or thousands of trading being done every minute, stock price

has to be updated constantly and all this data has to be stored. Let‟s assume all this

data has to be stored every 3 to 5 seconds and this has to be multiplied with the

number of stocks that‟s being traded. This number could be running into the

thousands or not hundreds of thousands every second. In-order to store all this data

efficiently, a quick and efficient way has to be used and multi-threading is one of the

many options. The other example of the use of such database insertion architecture is

being used is in a scientific research environment as mentioned in Chapter 1

(Introduction). With the advancement of multi-core processors and database engine,

which is capable of handling huge amount of data processing, connections,

transactions and etc. this pose a great potential in developing a DAL that‟s able to

cater to such environment needs. With the advancement in database engine insertion

modules by vendors, it has minimized all the trouble into developing a bulk insertion

DAL. Examples of such modules are .Net 4 Framework by Microsoft and MySQL

Connector .Net 3.2.1 by Oracle. Such modules supports bulk insertion and it could be

optimize to give better performance.

Threading is a meticulous task where creation and killing of threads has to be planned

and done correctly. Managing threads is a very important task in multi-threading, if

not done properly it will cause a lot of overhead and wastage.

From findings, current multi-threaded DAL‟s are being developed to application

bound, hardware bound, database bound and still in the research stage. It also does not

take into consideration the number of threads to be used according to the number of

data to be inserted. In this project, I would like to answer this few questions. Would

multi-threaded DAL bring a single core machine to a standstill if implemented? What

is the performance difference when being implemented on a dual core machine

compared to a quad core machine? Does magnetic-disk IO and RAM play a role in

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 14

insertion performance? The DAL is being designed to take into consideration of how

many rows of data are to be inserted as well as what database engine is being used.

From there it would decide the insertion method and number of threads to be used to

perform the task.

Much research had been done on almost similar topic, for example a group of

researcher from Camegie Mellon University United States done similar test with four

open source database engines (Shore, KerkeleyDB, MySQL, and PostgreSQL) and

found that all of them are highly scalable (Ryan Johnson, Shore-MT: A Scalable

Storage Manager for the Multicore Era, 2009). From the data that was presented, two

database engines (Prostgres, MySQL) hit its optimal data throughput performance at

24 concurrent threads.

From forums and blogs, it is known that this project has a great potential in this field

of searching for a more effective or efficient way of doing bulk insertion with the use

of multi-threading. From findings, it is found that there is not much research being

done in this particular field but it does show great potential in its related capability.

The big question that most would ask today is which method works well with which

database engine on how many threads? There is no clear answer for this question,

from my research it‟s related to hardware, magnetic disk IO and also the software.

Previous works have been using all kinds of method but there are no detailed

specifications on how it‟s being done.

Physical disk I/O is one of the main issues in bulk insertion. With magnetic hard disk

rotating at 15,000 rpm, with I/O transfer rate of approximately 78 Mbps (Seagate

Barracude 7200.10 SATA 3.0Gb/s 320-GB Hard Drive, 2010). From the claim by the

manufacturer, it is know that the hard disk is able to support a maximum transfer rate

of 31 Mbps. This makes the physical disk I/O not an issue at this point of research.

RAM has not been the main issue as it‟s expandable up to 128 GB (PowerEdge R905,

2010). These allow a huge amount of RAM at disposal when needed.

2.2 WHAT IS MULTI-CORE PROCESSOR?

In recent years, multi-core processors based their chip on multi-threading/processing

architecture, which has multiple CPU on a single chip. The fact that multi-core

processors are able to give better performance to cost ratio, it has become the building

blocks for high performance applications to be developed in recent years. Application

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 15

with requires high computations power has benefited from this innovation, this allows

tasks to be running parallel instead of serial (Verenkar, 2010).

Figure 2-1:One processor can have multiple cores and usually each core has one

thread. (Granatir, 2009)

Central Processing Unit (CPU) has continuously advanced in silicon process

technology from 108nm to 65nm which is on Intel Pentium 4 processor. For the

Pentium 4 processor starts the multi-threading era with hyper-trading technology.

Then it advanced from 65nm to 45nm which is on the Intel Core 2 Duo processor.

This is where the multi-core technology comes into the picture. For the core-I series

processor from Intel they are using the latest 32nm technology. This technology can

hold up to 6 cores on one die. To illustrate, 6 die on a processor is equivalent to 6

individual processors with the same clock speed running concurrently (Intel Processor

Roadmap, 2010) .

The graph below shows the resource imbalance effect. Multi-core processing is

limited to its inability of existing technology to make full use of the allocated system

resources. Multi-core processing also has its own problems, for example if a single

system resource is being scaled in an imbalance manner, it may exhaust resources and

cause application to take the consequences. This may result in sub-optimal

performance and lower user application performance. The graph below is being

benchmarked using VMWare‟s VMmark clearly illustrate how scaling

disproportionately can affect the performance of the processor. Referring to the graph,

we can see that a single 16 core system yields approximately 30% less aggregate

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 16

processing power compared to a 4 core processer running the same world load

(Marchand, 2008). This comes to proves that even with multi-core, we have to thread

our application carefully can taking into consideration background processes that is

running on the machine or other sub processes that is running concurrently. Threading

overhead is also an important factor to take into consideration when you thread an

application to maintain optimal performance.

Figure 2-2: Performance increase as numbers of cores increases (Marchand,

2008).

2.3 WHAT IS MULTITHREADING?

 Multithreading is running multiple tasks concurrently or parallel, this allow task to be

completed faster compared to traditional method of arranging the task in a serial

format. The number of threads available depends on the processor and also the

Operating System (OS) to allow the threads to be called into service. Most OS today

supports multitasking or multithreading very well. With the advancement in multi-

core processors and the reduction in price of the product has allow more and more

research to be done in the field. Everyone wants to multithread their application but if

it‟s not done correctly, your users would be there asking “Isn‟t this application

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 17

supposed to perform better compare dot the previous version?” or “Why has this

application cause my other application to be on stand still?” and many other question

as their machine start to stand still. This is because the application has not been

threaded properly and is consuming too much processor power and is not allowing the

other applications to run smoothly. There is a things to multithreading which is, if it‟s

done right, it will work great but if not it will kill your application. If threading is

overdone, it might just cause the application performance to drop.

Before threading, it is important to look at what are the application‟s environment and

its usage. Then from there manage some thread overhead as it is proven costly to the

performance (referring to section 1.1). Thread overhead will cause a bottleneck and

that is where the performance will drop drastically. You can have the application

performing at breakneck speed at the start but once it hits the bottleneck, it will jam

the whole system down. Example of bottleneck is, for example you have 4 threads

and the I/O only allows 2 connections. The other 2 threads has to wait for the task to

be completed before being allow to access the I/O and till will cause a bottleneck.

 Single Processor Machine Multiprocessor Machine

Processing Throughput Low High

Concurrent Task One Depends on processor

When call ThreadStart()

Does not start until there is

available thread

May or may not start

immediately depending on

processor activity

Race Condition

Occurs when allowing

another thread to reach a

code block first

Occurs when task on

different thread race to

reach a code block first

Table 2-1: Comparison on single and multicore processors (MSDN Library

(Threading), 2010)

There are two very famous threading strategies which are called OpenMP and Posix

Thread (Pthread). OpenMP was built to be portable and has a compiler in it. It

practices fork-join programming model. Meanwhile PThread is a library itself and

crafted to provide optimum run-time library which support fork-join programming

model (Verenkar, 2010).

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 18

Multithreading is divided into two categories which are explicit threading and implicit

threading. Explicit threading is where the threading libraries require the programmer

to control all aspects of threading, includes creating threads, assigning tasks,

synchronizing or controlling intervention between threads, managing shared resources

and other threading works. Examples of explicit threading are Windows thread,

Pthread, C# thread, and Java threads. Implicit threading is where the library would

control everything from creating threads, assigning tasks, managing threads,

synchronizing threads and all other threading works. The library will do all the work

for the programmer. Examples are threadPool, asynchronous threading method, Intel

Treading Building Block (Intel TBB) and OpenMP.

2.4 PARALLELISM IN MULTITHREADING

Parallelism is running multiple tasks concurrently. This involves multiple threads or

just a single thread. Usually multithreading is done on multi-core processors which

has multiple threads at its disposal. Creating new task on a thread is called

„spawning‟. Usually each thread would perform a task. With 4 threads available, we

are able to perform 4 task concurrently. The diagrams below would illustrate the

scenario that would allow you to better understand what parallelism is in

multithreading.

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 19

Figure 2-3: Left image illustrates serial programming. Right on the right

illustrates parallel programming. (Vadaparty, 2008)

Threading is being divided into 2 categories which are implicit threads and explicit

threads. Implicit threads are where the already available threading method would take

care of everything from thread creation, thread killing, connections and thread

management. While explicit threading method is where the developer has to control

over when to create a thread, when to kill it, manage the thread and also other

threading involvement. Figure 2-4 shows the examples of available technologies for

both threading methods.

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 20

Figure 2-4: Thread Classification.

Threads

Implicit Threads

OpenMP

Intel Threading
Building Block

(Intel TBB)

Explicit Threads

PThread

Windows Thread

Java Thread

C# Thread

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 21

Following are the implementation of threading comparisons.

Challenges for parallel

programming

Windows*

threads

OpenMP* Intel® Threading

Build Blocks

Task level x x

Cross-platform support x x

Scalable runtime libraries x

Threads‟ Control x

Pre-tested and validated x x

C Development support x x

Intel® Threading Tools

support

x x x

Maintenance for tomorrow x x

Scalable memory allocator x

“light” mutex x

Processor affinity x Thread affinity

Figure 2-5: Threading Comparisons

Effect Multithreading on Database

To prove that multithreading would improve the performance of the database and also

data insertion, following are a few test results which had been done over the years

showing the improvement multithreading has contributed to the performance increase

in database.

This test is being done in Microsoft by Akash Verenkar to introduce the .Net

Framework 4 which support multithreading with database. This test compares

sequential processing and data parallelism. The machine the test was being done has

an Intel
®
 Core

TM
 2 Duo CPU TZ7500 @ 2.20 GHz with 4.00 GB of RAM (Random

Access Memory) running on Windows 7 Enterprise (64-bit) OS (Operating System).

(Verenkar, 2010)

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 22

Figure 2-6: Shows the results from above mentioned two approaches (Verenkar,

2010).

From Diagram 2, we are able to see that there is a major improvement in processing

time when the application is being multithreaded. Developers should look into where

they are able to implement parallel programming and make sure your concurrency

does improve the performance and has dependency amount tasks. Threading has to be

done in a proper manner and much testing has to be done before the application is

being rolled out to avoid bottleneck. PLinq, TPL and .Net 4 is being used to perform

parallel programming and to reduce the complexity of code. (Verenkar, 2010)

In this paper they didn‟t describe the best number of threads to create with the number

of connections. It also didn‟t answer weather how portable the application is. What if

the application is being implemented on a single core machine? Would it perform as

in a multi-core machine what is was being tested on. The method that was being

presented only focuses on SQL Server 2008 and what if the user‟s environment is

using Microsoft Access 2010 or MySQL 5.0. Then such methods might not be

feasible in such environment.

The next research is being done in Carnegie Mellon University by Ryan Johnson,

Ippokratis Pandis, Nikos Hardavellas, Anastasia Ailamaki, and Babak Falsafi. The

title of the paper is called Shore-Multithreading: A scalable Storage Management for

Multicore Era. In this paper, they discuss that database storage management have long

been efficient in handling multiple concurrent request. With the arrival of multicore

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 23

chips in the market, more threads could be created and being executed concurrently.

The benchmark is being done on four popular open source storage managers which

are Shore, BerkeleyDB, MySQL and PostgreSQL. The examination of bottlenecks in

various storage engines and the conclusion was Shore-MT has superior scalability.

Experiment was done based on data throughput going into the database against

concurrent threads. Diagram below illustrates the experiment result. (Ryan Johnson,

Shore-MT: A Scalable Storage Manager for the Multicore Era, 2001)

Figure 2-7: Scalability as a function of available hardware contexts. (Ryan

Johnson, 2001)

The conclusion of this paper goes to show that database storage manager has to offer

multithreading to achieve high performance user demands. From the experiment

results, we can conclude by saying there is still room to improve the system and

identifying bottlenecks that inhibit scalability would then improve the multithreading

performance. It also points out that there is much more research to be done in the field

of multithreading with database for there is much more bottlenecks and this paper

would act as a reference to future development. (Ryan Johnson, Shore-MT: A

Scalable Storage Manager for the Multicore Era, 2001)

In the paper above, they didn‟t compare the optimal number of connections to be

created and they didn‟t use bulk insertion. In this paper it also didn‟t specify what

type of data is being inserted and also the machine used to generate the experiment

results. Since 2001 when the paper was being published, there is newer and much

more efficient threading methods and database being developed and this stand to have

even better chance of creating are even more efficient way to thread a database to

improve its performance.

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 24

From the research of Özsu (1991), distributed and parallel DBMSs are a reality today.

It enables natural growth and expansion of database on simple machines. Parallel

DBMSs are one of the most realistic ways into meeting the performance requirements

of application which demands significant throughput on the DBMS (Valduriez 1. M.,

1991).

Based on David J. DeWitt (1992) research, parallel processing is a cheap and fast way

to gain signification gain in performance in database system. Software techniques

such as data partitioning, dataflow, and intra-operator parallelism are needed to be

employed to have an easy migration to parallel processing (Gray, 1992). The

availability of fast processors and inexpensive disk packages is an ideal platform for

parallel database systems.

According to P. Valduriez (1993), parallel database system is the way forward into

making full use of multiprocessor architectures using software-oriented solutions.

This method promises high-performance, high-availability and extensibility power

price compared to mainframes servers (Valduriez P. , 1993). Parallelism is the most

efficient solution into supporting huge databases on a single machine.

In a research to speedup database performance, Daniel Haggander (1999) shows that

by multi-threading the database application it would increase the performance by 4.4

times than of a single threaded engine (Lundberg, Multiprocessor Performance

Evaluation of a Telecommunication Fraud Detection Application, 1999). This

research was done to support a fraud detection application which requires high

performance read and write processes. Therefore they found that by increasing the

number of simultaneous request would speed up the process (Lundberg,

Multiprocessor Performance Evaluation of a Telecommunication Fraud Detection

Application, 1999).

In 2005, Jingren Zhou shows that there is moderate performance increase when

database is being multithreaded. He evaluated its performance, implementation

complexity, and other measures and provides a guideline on how to make use of

various threading method. From the experiment results, multi-threading improves

database performance by 30% to 70% over single threaded implementation (Jingren

Zhou, 2005) (Jingren Zhou, 2005). In this research, it is also found that Naïve

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 25

parallelism is the easiest to implement but only gives a modest performance

improvement.

From all previous research, we can see great potential in multi-threading database

systems. It is proven that by parallelizing the system, it would have a moderate to

significant gain in performance at a lower cost. Therefore with the right threading

method and insertion method, we are able to improve database performance. This

proves the potential in multi-threading database systems.

From all previous research, we can see great potential in multi-threading database

systems. It is proven that by parallelizing the system, it would have a moderate to

significant gain in performance at a lower cost. Therefore with the right threading

method and insertion method, we are able to improve database performance. This

proves the potential in multi-threading database systems.

2.5 DESCRIPTION OF BULK INSERTION

2.5.1 WHAT IS BULK INSERTION?

Bulk insertion is an efficient way to insert large amount of data into the database.

Bulk insertion is being used to ensure high speed data transfer from the memory into

the database. For example, referring to the example above about a stock market which

has to store thousands of rows of data into the database and let‟s assume that they are

using SQL Server. You will have to insert all those data in the shortest time possible

because it‟s currently generating more than you can store. In this case use bulk

insertion.

To ensure high speed data insertion, all data transformation process is being done

before it enters into the insertion layer (MSDN Library (Bulk Insert), 2010). It‟s being

done in the business logic layer. Bulk insertion is transporting data stored in a flat file

onto a database and data are being separated by either RowDelimiter or

ColumnDelimiter. Bulk insert can only transfer data from a flat file into a database

(MSDN Library (Bulk Insert), 2010).

BULK INSERT

 [database_name. [schema_name] . | schema_name.] [table_name | view_name]

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 26

 FROM 'data_file'

 [WITH

 (

 [[,] BATCHSIZE =batch_size]

 [[,] CHECK_CONSTRAINTS]

 [[,] CODEPAGE = { 'ACP' | 'OEM' | 'RAW' | 'code_page' }]

 [[,] DATAFILETYPE =

 { 'char' | 'native'| 'widechar' | 'widenative' }]

 [[,] FIELDTERMINATOR = 'field_terminator']

 [[,] FIRSTROW = first_row]

 [[,] FIRE_TRIGGERS]

 [[,] FORMATFILE ='format_file_path']

 [[,] KEEPIDENTITY]

 [[,] KEEPNULLS]

 [[,] KILOBYTES_PER_BATCH =kilobytes_per_batch]

 [[,] LASTROW =last_row]

 [[,] MAXERRORS =max_errors]

 [[,] ORDER ({ column [ASC | DESC] } [,...n])]

 [[,] ROWS_PER_BATCH =rows_per_batch]

 [[,] ROWTERMINATOR ='row_terminator']

 [[,] TABLOCK]

 [[,] ERRORFILE ='file_name']

)]

Figure 2-8: Bulk insert in Trasact-SQL format. (MSND Library (Bulk Insert),

2010)

SET ANSI_WARNINGS OFF

DECLARE @str_command nvarchar(150)

SET @str_command = 'BULK INSERT [Customer_Sample] FROM ''' +

@SourceFilePath

+ ''' WITH (formatfile = ''' + @FormatFilePath + ''', firstrow =' +

cast(@RowNumber as nvarchar) + ')'

EXEC SP_EXECUTESQL @str_command

Figure 2-9: Bulk insertion from a flat file. (Harinath, 2006)

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 27

Referring to figure above, you will have to specify the batch size of the data you want

to insert type of file or file format and file path. This is configuring the bulk insert

task. The codes above is being used to bulk insert a flat file into a database.

Figure below shows another example of how to do bulk insertion in Transact-SQL

from a flat file.

insert into stu_table values

 (1, 'Komal',10),

 (2, 'Ajay',10),

 (3, 'Santosh',10),

 (4, 'Rakesh',10),

Figure 2-10: Bulk insertion in standard SQL format.

If you cannot imagine how bulk insertion works, Source Code 2 shows a simple

example on how bulk insertion is being done in a standard SQL format. You can

imagine it as a line of SQL code that insert multiple rows into the table at one time.

Bulk insertion only supports OLE (Object Linking and Embedding) DB (Database)

connection to database engine. To manage the connection to the database, a

connection manager is being used to manage the connections and locate the database.

Bulk insertion is very important because it allows a reasonable amount of data to be

inserted into a database on one connection. Let take for example, one bulk can hold

5000 rows and we have 4 connections to the database on 4 different threads. Next we

assume that the insertion takes each bulk insert takes 4 seconds excluding thread

overhead. Then this would allow us to insert 20,000 rows every 4 seconds. Each

connection would sit on one thread and more connections could be created with it

being queued, waiting for an available thread (using the thread-pool concept). Let‟s

now compare the above example to if we insert row-by-row and multithreading the

row-by-row function. Let‟s say each row insert requires 0.5 seconds excluding thread

overhead and we have 4 threads. That is 32 rows for every four seconds on 4 threads.

The figure below would illustrate how bulk insert with multithreading works.

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 28

Database

Thread 1

Thread 2

Thread 3

Thread 4

B1B5

B2B6

B3B7

B4B8

Processor

Connection 1

Connection 2

Connection 3

Connectio
n 4

Figure 2-11: Illustration of bulk insert with multithreading

From the diagram above, we see that each B1 to B4 represents data in bulks.

Referring back to the example above, each bulk is 5000 rows. B5 to B5 are bulk data

which are in queue. Database connection may or may not maintain throughout the

process. This is also one of the questions we are trying to answer in this research. This

goes to show why bulk insert is important in our research to look for a better way to

insert a huge amount of data into a database.

2.5.2 WHAT IS BULK COPY?

Bulk Copy is almost similar to bulk insertion; the difference here is that bulk copy has

an imaginary table that sits in the memory before its bulk injected into the database.

Bulk copy could be multithreaded and has been done before, so this proves it feasible

in our project. Bulk copy is very fast, when run in a non-log mode, it‟s able to

import/export thousands of rows per second. Bulk copy is also powerful; if you run a

bcp.exe (bulk copy program) then you will be able to see that there are dozens of

switches that can be used to specify how data is being threated during the

import/export process (Harper, 2002). These switches can help control how and where

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 29

the data is imported and exported from. BCP is users specify format data format for

the imaginary table and also would be used when injecting the data into the database.

You will have to understand the structure of the table before being able to perform

bulk copy. The source code below illustrates how a BCP looks like.

bcp {[[database_name.][schema].]{table_name | view_name} | "query"}

{in | out | queryout | format} data_file

[-mmax_errors] [-fformat_file] [-x] [-eerr_file]

[-Ffirst_row] [-Llast_row] [-bbatch_size]

[-ddatabase_name] [-n] [-c] [-N] [-w] [-V (70 | 80 | 90)]

[-q] [-C { ACP | OEM | RAW | code_page }] [-tfield_term]

[-rrow_term] [-iinput_file] [-ooutput_file] [-apacket_size]

[-S [server_name[\instance_name]]] [-Ulogin_id] [-Ppassword]

[-T] [-v] [-R] [-k] [-E] [-h"hint [,...n]"]

Figure 2-12: Example of how BCP (Bulk Copy Program) looks like.

To run bulk copy, SQL Server has is it preinstalled and there is an API for it. The

developer has to then specify the file format, batch size, and also data file. SQL

Server and bulk copy can only work in two formats which are native format (SQL

Server proprietary binary file format) or storing the data in a flat file in ASCII

character set. Batch size is the amount of rows to be process at one batch it and be

manipulated. Data files are the source and destination of the data. (Harper, 2002) BCP

is preinstalled in SQL Server and is located at this directory “C:\Program

Files\Microsoft SQL Server\80\Tools\Binn” and the file name is “Bcp.exe”. From

here you‟ll be able to specify the format of the data and all the other utilizes.

To successfully perform bulk copy operation, the system has to have enough

credentials and they are as following. When importing rows from an exported file,

you have to INSERT permission on the destination table (Harper, 2002).

From source, bulk copy is able to inject 300 million rows of data in just 10 minutes

using 8 threads on a 64-bit machine fitted with 8 gigabytes of RAM (Random Access

Memory). According to source, the CPU (Central Processing Unit) was running 100%

usage. (Ltubia, 2008)

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 30

Bulk copy is able to perform multiple bulk copy operations using a single instance of

a SqlBulkCopy class. The source code below illustrates how bulk copy works. The

whole picture of bulk copy is to copy from a flat file to a database in a very short

period of time with huge amount of data.

// Perform an initial count on the destination

// table with matching columns.

SqlCommand countRowHeader = new SqlCommand("SELECT COUNT(*) FROM

dbo.BulkCopyDemoOrderHeader;", connection);

long countStartHeader = System.Convert.ToInt32(countRowHeader.ExecuteScalar());

Console.WriteLine("Starting row count for Header table = {0}",countStartHeader);

// Create the SqlBulkCopy object.

using (SqlBulkCopy bulkCopy = new SqlBulkCopy(connectionString))

{

 bulkCopy.DestinationTableName = "dbo.BulkCopyDemoOrderHeader";

 // Guarantee that columns are mapped correctly by

 // defining the column mappings for the order.

 bulkCopy.ColumnMappings.Add("SalesOrderID", "SalesOrderID");

 bulkCopy.ColumnMappings.Add("OrderDate", "OrderDate");

 bulkCopy.ColumnMappings.Add("AccountNumber", "AccountNumber");

 // Write readerHeader to the destination.

 bulkCopy.WriteToServer(readerHeader);

 readerHeader.Close();

 // Set up the order details destination.

 bulkCopy.DestinationTableName ="dbo.BulkCopyDemoOrderDetail";

 // Clear the ColumnMappingCollection.

 bulkCopy.ColumnMappings.Clear();

 // Add order detail column mappings.

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 31

 bulkCopy.ColumnMappings.Add("SalesOrderID", "SalesOrderID");

 bulkCopy.ColumnMappings.Add("SalesOrderDetailID", "SalesOrderDetailID");

 bulkCopy.ColumnMappings.Add("OrderQty", "OrderQty");

 bulkCopy.ColumnMappings.Add("ProductID", "ProductID");

 bulkCopy.ColumnMappings.Add("UnitPrice", "UnitPrice");

 bulkCopy.WriteToServer(readerDetail);

 readerDetail.Close();

}

//perform the same count again in the destination table to see if the bulk copy is

Perform accordingly.

Figure 2-13: Single-threaded Bulk copy operation from one database table to

another.

//We open the connections

for (int m = 0; m < iNumThreads; m++)

{

 sqlSource[m] = new SqlConnection(sSourceConnectionString);

 sqlSource[m].Open();

 byConnectionsOpened++;

 }

 sqlDest.Open();

//perform copy process

oTc = new clsThreadCopy[iNumThreads];

for (int i = 0; i < iNumThreads; i++)

{

 //We initialize and configure with different source

connection,ranges,size..etc

 //as many clsThreadCopy´s instances as number of threads will execute in

parallel.

 oTc[i] = new clsThreadCopy();

 oTc[i].IdThread = i;

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 32

 oTc[i].SqlSource = sqlSource[i];

 oTc[i].SRangeLowKeys = sRangeLowKeys[i];

 oTc[i].SRangeHighKeys = sRangeHighKeys[i];

 oTc[i].SValuesFilter = sValuesFilter;

 oTc[i].Size = iSize[i];

 oTc[i].SDest = sDestinationConnectionString;

 oTc[i].SSourceTable = sSourceTable;

 oTc[i].SSourceTableScheme = sSourceTableScheme;

 oTc[i].SDestTable = sDestTable;

 oTc[i].SIndexField = sIndexField;

 oTc[i].IBcOptions = iBcOptions;

 oTc[i].INotifyAfter = iNotifyAfter;

 oTc[i].IIndexFieldDataType = iIndexFieldDataType;

 //Each time the clsThreadCopy fires the SqlRowsCopiedThreadEvent

event it will call to the OnSqlRowsCopied function.

 oTc[i].SqlRowsCopiedThreadEvent += new

clsThreadCopy.SqlRowsCopiedEventDelegate(OnSqlRowsCopied);

 WaitCallback w = new WaitCallback(CopyData);

 //For each instance of clsThreadCopy we create one thread which call

CopyData function.

 ThreadPool.QueueUserWorkItem(w, oTc[i]);

}

//We wait until all threads end.

lock (oThreadLocker)

{

 while (iNumThreads > 0)

 {

 Monitor.Wait(oThreadLocker);

 }

}

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 33

//We close connections.

for (int i = 0; i < byConnectionsOpened; i++)

 if (sqlSource[i].State == System.Data.ConnectionState.Open)

 sqlSource[i].Close();

 if (sqlDest.State == System.Data.ConnectionState.Open)

 sqlDest.Close();

Figure 2-14: Multi-threaded Bulk Copy operation from one database table to

another.

private void WriteToDatabase()

{

 // get your connection string

 string connString = "";

 // connect to SQL

 using (SqlConnection connection = new SqlConnection(connString))

 {

 // make sure to enable triggers

 // more on triggers in next post

 SqlBulkCopy bulkCopy = new SqlBulkCopy

 (

 connection,

 SqlBulkCopyOptions.TableLock |

 SqlBulkCopyOptions.FireTriggers |

 SqlBulkCopyOptions.UseInternalTransaction,

 null

);

 // set the destination table name

 bulkCopy.DestinationTableName = this.tableName;

 connection.Open();

 // write the data in the "dataTable"

 bulkCopy.WriteToServer(dataTable);

 connection.Close();

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 34

 }

 // reset

 this.dataTable.Clear();

 this.recordCount = 0;

}

Figure 2-15: Bulk Copy of flat-file to database

2.5.3 WHAT IS CONNECTION POOLING?

Connection pooling is a technique used to create and manage a pool of connections

that are ready to be executed on a thread at any time. What it does is, there will be a

pool of connections being created at the start of the thread. The amount of thread

being created is user define. When the application needs a connection, the connection

pool will provide a connection then when the transaction is done; the connection

would be return to the pool. This is how connection pooling works. It has similar

concept to thread pooling. (MySQL Connection Pooling, 2010)

When the connection is being called by the thread, it is exclusively for the calling

thread only until its being returned to the pool. The benefits of connection pooling

are: it‟s able to reduce connection creation time. This is possible because the

connections are being created once only and its then being recycled. Thus this is able

to reduce the database driver overhead that is involved every time a connection is

being created. By not closing the connection, we are able to reduce the thread

overhead. Next would be simplified programming model. When using connection

pooling, each thread can act as if it has created its own database connection and allow

it to be used instantaneously. Finally it allow user to control resource usage. If

connection pooling is not being used, resources will go to waste by creating and

closing connections to a database. This also will lead to unpredictable behavior under

extreme load. Each connection created to a database involves overhead which consist

of memory, CPU, context switches and many more. Connection pooling can help to

improve system performance by keeping resources utilization below the point where

the application starts to slow down. (MySQL Connection Pooling, 2010)

Source Code below illustrates how to create a connection pooling method in C#.

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 35

SqlConnection conn = new SqlConnection();

conn.ConnectionString = "Integrated Security=SSPI;Initial; Catalog=school;

server=localhost; Min Pool Size = 10; Max Pool Size = 100";

conn.Open();

Figure 2-16: Creating Connection Pooling

The default number of connections created is 100. Users are able to enlist the pool by

using Enlist function where it will automatically enlist the connection in the current

transaction context of the creation thread if transaction context exists. To clear the

pool, used .ClearAllPools function and it will close all connections. To connect to

multiple databases, multiple pools are then created, one pool for one database.

2.5.3 WHAT IS DATA ACCESS LAYER (DAL)?

Data access layer is a back-end-code that links between the application and the

database engine. DAL does not have any business logic nor does it have any function

to manipulate the data that goes thru it. The task of a DAL is to manage the

connection‟s to databases, executes queries and select the database to insert into if

there is multiple database engine available. A DAL is capable of handling multiple

database and we would like to be smart enough to know how many connections to be

made to the database in order to get the optimal performance.

MySQL

SQL

Server

Microsoft

Access

D
a

ta
 A

c
c
e

s
s
 L

a
y
e

r

A
p

p
lic

a
tio

n

Figure 2-17: Data Access Layer (DAL)

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 36

There are three main components in a DAL, they are as following:

 Data access logic components. It‟s a data access component abstract with all

the logic necessary to access underlying data storage. Centralizing the data

access functionality would make the DAL easier to manage and maintain (J.D.

Meier, MSDN Library (DAL), 2009).

 Data helper/utilities. They are help functions that assist developers in data

manipulation, data transformation and data access within the layer. This are

specialized library or custom routines that are specially designed to maximize

data access speed and reduce development of the logic and service agent (J.D.

Meier, MSDN Library (DAL), 2009).

 Service agents. These are services used when business components must use

functionality exposed by an external service. They are used to format the data

to your application requirements (J.D. Meier, MSDN Library (DAL), 2009).

To improve the performance of the DAL, batching is being used to improve its

performance. Batching is done by using bulk insertion method. It would reduce the

overhead by increasing data throughput and reduce latency.

DAL is just a package that house different threading methods, connection

management services and ways of how data is inserted, updated or deleted. Creating

and closing connection can cause a lot of threading overhead, so a DAL has to be able

to manage it efficiently. Data format are very important to ensure that the data is

being stored properly. Your data has to be standardizing to ensure accuracy. DAL‟s

are scalable and also flexible. They are able to communicate with different database

engine and performing multiple tasks but in this project we would be focusing on the

INSERT statement only.

Performance consideration that we have to take is functionality of both DAL and

database design. The DAL has to perform to its maximum data throughput. This

means tuning the system and also the database engine. To manage the connections to

the database, connection pooling could be used. Results from simulated load scenarios

could be used to determine the optimal number of connections to different database

engine. Batch command is important into improve the DAL performance as it reduce

the number of trip it has to do to the database.

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 37

private void InsertData()

{

 IDBManager dbManager = new DBManager(DataProvider.SqlServer);

 dbManager.ConnectionString =ConfigurationSettings.AppSettings[

 "ConnectionString "].ToString();

 Try

 {

 dbManager.Open();

 dbManager.CreateParameters(2);

 dbManager.AddParameters(0, "@id",17);

 dbManager.AddParameters(1,"@name", "Joydip Kanjilal");

 dbManager.ExecuteNonQuery(CommandType.StoredProcedure,

 "Customer_Insert");

 }

 catch (Exception ce)

 {

 //Usual code

 }

 finally

 {

 dbManager.Dispose();

 }

}

Figure 2-18: Insert function using stored procedure in a DAL (Kanjilal, 2007).

IDbCommand InsertCommand =

 DataObjectFactory.CreateStoredProcedureCommand(_DatabaseConnection)

;

InsertCommand.CommandText = "up_Orders_Insert";

InsertCommand.UpdatedRowSource

 = UpdateRowSource.FirstReturnedRecord;

The INSERT stored procedure

INSERT INTO [Orders]

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 38

(

 [CustomerID]

)

VALUES

(

 @CustomerID

)

Figure 2-19: Insert Command in a DAL written in C# (Donald, 2010).

Connection plays a huge role in betting the best performance out of the DAL. All

database connections should be managed by the DAL. This involves creating, closing

and managing the connections using available resources. Retry logics are designed to

manage situations where connection fails (J.D. Meier, MSDN Library (DAL), 2009).

2.6 TECHNIQUES USED IN DAL

2.6.1 TABLE LOCKING METHOD

To speed up insertion operation to a database with multiple statements for into a non-

transactional database table, lock your table.

LOCK TABLE stud_tbl WRITE;

INSERT INTO stud_tbl VALUES (1,23),(2,34),(4,33);

INSERT INTO stud_tbl VALUES(8,26),(6,29);

….

UNLOCK TABLES;

Figure 2-20: Lock table for non-transactional tables

By locking your table, the extra performance comes from the buffer is flushed from

the disk only once after all the INSERT statements have been completed. Normally

the index buffer would be flush after every INSERT statement. Explicit locking is not

needed if you insert all in one single INSERT statement. For transactional tables,

START_TRANSACTION and COMMIT is being used instead of LOCK_TABLES

to obtain optimal performance.

Locking also lowers the time for multiple-connection tests, although the idle time for

individual connection may increase due to lock waits. Let take for example we have

the following insert statement running concurrently:

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 39

Connection 1 does 1000 inserts

Connection 2, 3, and 4 does 1 insert

Connection 5 does 1000 inserts

If locking is not being used, connection 2,3, and 4 would finish before 1 and 5. But if

locking is being used, connection 2m3 and 4 would most likely be done before 1 or 5

but the total time would is 40% faster compared to without locking. Locking would

permits threads to access the table. This applies to MySql server database. (MySql

Speed of INSERT Statement, 2003)

2.6.2 SEQUENTIAL PROCESSING

Sequential processing is a traditional and most common approach to input data into a

database. This means that data is inserted row-by-row. Each command has one row of

data inserted. In this method, you will create one connection and insert multiple rows

of data into the database and each query hold s one row. If you have 1000 rows to

insert, then you have to execute the query 1000 times. The next row cannot be

executed until the current row has been inserted.

X1
DatabaseProcess Connection1

Figure 2-21: Sequential data insertion to a database

This approach has many limitations when it comes to huge amount insertion. The

major limitations are it tends to cause bottleneck when there is other application

sharing the same database. Furthermore if the database is being shared across a

number of applications, it will cause substantial degrading of performance to the other

application that is trying to access the database (Verenkar, 2010). The other limitation

is that data is being processed sequentially. Even though input data is capable of being

processed independently, stored procedure inherently process the data sequentially

(Verenkar, 2010). It is very difficult to perform parallelism in stored procedure. The

final limitation is that it has the high tendency to unevenly distribute load between

system components and this is due to bad architecture (Verenkar, 2010). This

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 40

procedure would be used as a benchmark for all the other methods to be used in the

DAL.

2.6.3 PARALLELIZING DATABASE ACCESS

Most new database engines can support multiple calls simultaneously and support

concurrent access (Verenkar, 2010). This has allow database developers to parallelize

the data input process by increasing the number of database connections and also

multithread the INSERT statement. The following diagram will illustrate how it

works.

Database
Process

X1

Connection 1

X2

Connection 2

X3

Connection 3

Figure 2-22: Parallel Database Access with 3 Connections and INSERT

Statement

From the diagram above, there are three connections being made to the database and

X1, X2 and X3 represents the INSERT statements. From the illustration above, if we

assume that each insert statement has one row in hand, then it can insert 3 rows at a

time. This would then speed up the process by 3 times. This process could be made

even faster if we use bulk insertion on X1, X2 and X3. This process also has its own

limitations, it also face the limitation of chances having performance bottleneck at the

SQL Database. If there are too many connections being made to the database with the

INSERT function taking too much usage from the processor this will definitely cause

a bottleneck. Subsequently cause performance degradation. The optimal number of

connections, threads and bulk size is very important to maintain an optimal

performance.

2.6.4 USING DATA PARALLELISM IN .Net Framework 4

This method will solve all 3 limitations of the parallelizing database access and

sequential database access. In this approach we used stored procedure to perform bulk

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 41

insertion. It will then accept XML input and insert all the rows into the database. This

way all the data in the XML can be processes in parallel and from theory, it would

improve performance. In this method the .Net Framework 4 parallel programing

construct would be used to perform this task. The entire question about how many

threads to create, how many connections to create and application scalability would

be solved by the .Net Framework 4. All the processing would be done in parallel

without having to deal the intricacies of threading. (Verenkar, 2010)

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 42

Process
XML Database

Using Parallel Processing

To create XML file

Use Stored Procedure

For Bulk Insertion

Figure 2-23: Creating an XML file using parallel programming and using stored

procedure to perform bulk insertion.

In this process we will have to store all the data into a XML format file then from

their use store procedure to do bulk insertion into the database. The stored procedure,

we would be using Transact-SQL. The limitation here is that Transact-SQL only

works with SQL Server or .Net Framework.

2.6.5 PARALLEL LINQ

PLinq performs INSERT, UPDATA, and DELETE operation in LINQ to SQL by

updating the database content. By default, LINQ to SQL translates all queries and

non-queries action to SQL and executes the changes. LINQ to SQL if flexible in

manipulating and persisting changes that is made to the object you created. As soon as

an entity object is available, your then allowed to change them as typical object in

your application.

Northwnd db = new Northwnd(@"c:\Northwnd.mdf");

// Query for a specific customer.

var cust = (from c in db.Customers where c.CustomerID == "ALFKI" select c).First();

// Change the name of the contact.

cust.ContactName = "New Contact";

// Create and add a new Order to the Orders collection.

Order ord = new Order { OrderDate = DateTime.Now };

cust.Orders.Add(ord);

// Ask the DataContext to save all the changes.

db.SubmitChanges();

Figure 2-24: Example of how PLinq is being implemented.

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 43

2.6.6 CONCURRENT BAG

The new .Net Framework 4 come with many new namespace and one of the many

new namespaces are located in System.Collections.Concurrent. This new namespace

contains a handful of types which helps in implementing different types of thread safe

collections. This new namespaces focus on multithreading which is the hot topic in

today‟s application development. The name for this new namespace is called

ConcurrentBag<T>. It‟s a typical bag data structure (multiset) which keeps data in an

unordered format with duplicates allowed. (Etheredge, 2010)

Figure 2-25: Illustrate the concept of concurrent bag in .Net 4 (Etheredge, 2010).

Following are source code‟s to illustrate how it works.

var cb = new ConcurrentBag<string>();

cb.Add(“test”);

Figure 2-26: Illustrate how to add item into a concurrent bag.

string val;

if(cb.TryTake(out val))

{

 Console.Writeline(val);

}

Figure 2-27: Illustrate how to remove item from a concurrent bag.

var cb = new ConcurrentBag<string>();

Task.Factory.StartNew(() =>

{

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 44

 for(int i = 0; i < 1000; i++)

 {

 cb.Add(“test”);

 }

 cb.Add(“Last”);

});

Task.Factory.StartNew(() => {

 foreach(string item in cb)

 {

 Console.WriteLine(item);

 }

}

Figure 2-28: Code illustrates concurrent programming in concurrent bag.

In Source Code 15, it illustrates how Concurrent Bag can support parallel

programming. The first block of the code is adding items into the bag and the second

block is being fired up to read what is in the bag. Data that is added after the

enumeration started won‟t be read when the second block is fired. It will only have till

what it was last added before the second block of code is fired.

Figure 2-29: Illustrates the concept of Concurrent Bag when threaded

(Etheredge, 2010).

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 45

This method is usually being used to combine data that is being read from multiple

threads before its being processed into another file or injected into a database. This is

a good way to hold temporary data for it support multithreading and also allows data

specific objects to be stored. The best thing about this method is that its thread safe.

This has a similar concept to how array list works but this support multithreading.

Concurrent bag allows implementation of IEumerable<T>, this allows developers to

iterate over it in the same way as other class that supports IEumerable. LINQ queries

could be executed against it. Developers are able to enumerate it while some other

threads are adding item into it at the same time.

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 46

2.7 COMPARISON BETWEEN AVAILABLE WAYS TO DO BULK

INSERTION

 Bulk Copy Table

Locking

Transact-

SQL

Parallelizing Parallel in

.Net 4

(PLinq)

Chances of

bottleneck

Yes No Yes No

Supports C# Yes Yes Yes Yes Yes

Application

Dependent

 Yes Depends Depends

Supports

Multithreading

Yes (not

stable)

No No Yes Yes

Support

MySQL 5.0

 Yes No Yes Yes

Support SQL

Server 2008

Yes Yes Yes Yes

Microsoft

Access 2010

 Yes

Complexity High Moderate High Moderate

Scalability High High High High High

Speed of

transaction

High High High High High

Multi-

Connection

Application

Define

 No Yes Yes

Threading

Method

Explicit Explicit Implicit &

Explicit

Implicit

Portability Yes No No Yes Yes

Flexibility No No Moderate Yes Moderate

Table 2-2: Comparisons between DAL methods.

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 47

From the comparison in Table 2-2, it is known that parallelizing would improve

performance. It is being supported on most of the platform and is highly flexible as

well as scalable. In parallelizing, the developer is almost in control of how he/she

wants the program to flow and would have more room to work with compared to the

other methods. The next best method would be parallel in .Net 4. This method maybe

highly scalable but there is flexibility to a certain extend where most of the things, it‟s

not in control of the developer. There are pro‟s and con‟s in all of the method but

parallelizing would most likely do the job best of inserting a huge amount of data into

the database in the shortest time possible. Parallelizing has more variables to change

and tweak to get better performance and being in control of threads and connections

which are the most important thing in multithreading with database.

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 48

2.8 DISCUSSION

2.8.1 DIFFERENCES BETWEEN SINGLE-THREADED DAL AND MULTI-

THREADED DAL

 Single-threaded Multi-threaded

Insertion method Serial Parallel

Number of database

Connection

One Multiple

Number of rows per

command

One In Bulk

Processor Utilization

(multi-core processor)
Low High

Insertion Speed

(huge amount of data)
Slow Fast

Number of thread used One Multiple

Complexity Less Complex Complex

Scalability Not Scalable Highly Scalable

Performance (theory) Slow Fast

Table 2-3: Comparison between single and multi-threaded.

2.8.2 DATABASE COMPARIOSN

 Access 2010 SqlServer 2008 MySql 5.0

Speed

Maximum

Connections

255 32,767 4000 (user

define)

Max Worker Thread

(64-bit processor, 4

Cores)

 512 8

Multithreading Yes Yes

Bulk Insert Yes Yes Yes

Transact-SQL Yes

.Net Framework 4 Yes Yes Yes

Stored Procedure Yes Yes

Table 2-4: Comparison between database engines.

CHAPTER 2 LITERATURE REVIEW

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 49

2.9 CONCLUSION

From all the findings, the conclusion is that most database engines today supports

multithreading and some even have built in multithreading methods to reduce the

complexity of developers‟ codes. Research finding has also shown that multithreading

on database will produce a performance improvement when we compare it to a single

threaded application on a database. However none of them have has shown which

threading method is better for which database, number of optimal threads and

connections to open, how to perform bulk insertion with multithreading, create a DAL

that is able to recognize what database and decide the optimal number of threads and

connections to be created. They are also usually application or domain specific, which

makes the application or DAL not portable to change environment. They have not

done much research on multithreading done on top of bulk insertion or on top of what

the database. Bulk insertion itself is already very efficient method but there are still

ways to be able to improve the performance of bulk insertion. Threading method is

also very important, none of them specify which threading method suits which

database and also what other performance tuning is being done on the database or the

application itself to improve the performance. Hereby there is still much room to

improve on multithreading a database engine. This leads to finding a more efficient

and faster way into doing bulk insertion.

CHAPTER 4 DISCUSSION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 50

CHAPTER 3 METHODOLOGY

3.1 INTRODUCTION

In this chapter, an explanation on how the experiments were being carried out as well

as how the DAL is being developed. This project is being classified as a Threading

Methodology in Database. As mentioned in Chapter 1, the purpose of this project is

to find a more efficient way into doing bulk insertion. In this project, it would only be

focusing on the INSERT statement of a DAL. Existing DAL are usually single

threaded and few are industry proven to run on multi-threaded platform. They are

application, database and machine dependent. From the experiment result, the DAL

would be developed according to the number of row to insert and type of database.

From there it would determine the insertion method as well as the number of threads

to be used. The main purpose of this project is to prove that multi-threading does

improve the performance of bulk insertion. Due to time constraint, the experiment

was conducted on a particular machine, two different database engines were being

tested as well, and three insertion method with various numbers of threads were used.

The test includes getting the time taken to insert a specific number of rows. Number

of rows range from 1 to 50,000 rows. Machine utilization is also being monitored to

see the relationship it has with the RAM, CPU and magnetic disk I/O.

A timer is being set in place to take the time to complete the whole processes which

include reading, processing and insertion. The time is being clocked in milliseconds.

It would be used to monitor the performance. The same process would be repeated for

five cycles and an average it taken as the result.

3.2 Implementation of Concept

3.2.1 Threading Method

Throughout the experiments, threads are manually spawned in order to maintain a

controlled environment. The codes below show how the program is being threaded

where two threads are used.

CHAPTER 4 DISCUSSION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 51

//create and start threads

ThreadStart threadDelOne = new ThreadStart (insOne.RunInsertion);

ThreadStart threadDelTwo = new ThreadStart (insTwo.RunInsertion);

Thread threadOne = new Thread(threadDelOne);

Thread threadTwo = new Thread(threadDelTwo);

threadOne.Start();

threadTwo.Start();

//thread join

threadOne.Join();

threadTwo.Join();

Figure 3-1: Create and Start threads

3.2.2 Sequential Insertion

Sequential insertion is done by using the standard SQL insert command and each

command would insert one row. Transaction is being used in this process where the

whole block will be committed after the last data is inserted. Rollback is being used if

there is an error [6]. The same code is being used for 1, 2, 4 and 8 threads. Before

inserting the row, it is being formatted into compatible SQL command by replacing

certain characters to work with SQL command formatting. For sequential, the test is

done with and without transaction.

for (int i = 0; i < dataList.Count; i++)

{

 sqlStr = "INSERT INTO TestTbl(DataCol) VALUES(N" + dataList[i] + ")";

 sqlCmd = new SqlCommand(sqlStr, conn, transaction);

 sqlCmd.ExecuteNonQuery();

}

transaction.Commit();

Figure 3-2: Sequential Insertion

CHAPTER 4 DISCUSSION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 52

3.2.3 SQLBulkCopy Insertion

SQLBulkCopy is a .NET4 function to insert data in bulks into SQL Server 2008 [8]. It

receives XML‟s and inserts them. The format for the XML file is as shown in Figure

3-3. This method is tested by using 1, 2, 4, and 8 threads; where the number of

individual XML‟s are read according to the number of threads used respectively. For

example, if 8 threads are used, they will read from 8 individual XML‟s.

Figure 3-3: An example of XML formatting.

The codes below shows how the SQLBulkCopy insertion is being done.

dataSet dataSet = new DataSet(); dataSet.ReadXml(xmlFileName);

sourceData = dataSet.Tables[0];

//perform insertion

using (SqlConnection conn = new SqlConnection(connStr))

{

 conn.Open();

 using (SqlBulkCopy bulkCopy = new SqlBulkCopy(conn.ConnectionString))

 {

 bulkCopy.ColumnMappings.Add("DataCol", "DataCol");

 bulkCopy.DestinationTableName = "TestTbl";

 bulkCopy.WriteToServer(sourceData);

 }

 conn.Close();

}

Figure 3-4: SQLBulkCopy insertion

CHAPTER 4 DISCUSSION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 53

3.2.4 MySQL Bulk Loader Insertion

MySQL Bulk Loader from the MySQL .NET Connector 6.2.4 [7] is used for this

experiment. It receives flat files and inserts them using the MySQL import loader.

The number of files created would depend on the number of threads used. This

method is being tested with 1, 2, 4, and 8 threads. The following codes illustrate how

the import loader is performed.

//perform import loader

try

{

 MySqlBulkLoader myBulk = new MySqlBulkLoader(conn);

 myBulk.Timeout = 600;

 myBulk.TableName = "testDatabase.testTbl";

 myBulk.Local = true;

 myBulk.FileName = fileName;

 myBulk.FieldTerminator = "";

 myBulk.Load();

 }

Figure 3-5: perform import loader

3.2.5 System Utilization

In the next experiment, the RAM, CPU and hard disk drive utilization are captured

throughout the insertion period. This is done during 70,000 to 80,000 rows on all the

insertion methods, number of threads and database engines as shown in Table 1. A

sample is captured every 30 seconds and the average from the samples would be taken

as the result [9]. Codes below illustrates the system utilization is being captured.

PerformanceCounter cpuUsage = new PerformanceCounter("Processor", "% Processor Time", "_Total", true);

PerformanceCounter memoryAvailable = new PerformanceCounter("Memory", "Available MBytes");

PerformanceCounter physicalDiskTransfer = new PerformanceCounter("PhysicalDisk", "Disk

Bytes/sec", "_Total", true);

startMemory = totalMemoryCapacity - memoryAvailable.NextValue();

CHAPTER 4 DISCUSSION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 54

3.3 TESTING

3.3.1 DATASET

From the research of others, only by inserting at least 3 million rows of data with a

combination of „double‟, „varchar‟, and „integers‟ would it make a difference between

single and multi-threaded. But from the tests done, this is proven to be not true. A

significant difference in performance increase could be seen with much lesser rows. 3

million rows would require a much more complicated data reader with buffer in place;

due to time constraint I didn‟t create such a data reader. I tested my DAL using a data

range of 1 to 50,000 rows. Even from here there is significant difference. The dataset

used in the tests consist of 302 characters that include characters, integers, symbols,

and space.

Below is the number of rows the dataset was being used for testing:

1 2 5 10 15 30 50 100

500 1,000 5,000 10,000 50,000 60,000 70,000 80,000

3.3.2 DATABASE

In the tests, two database engines were used, which are MySQL 5.2 and also Sql

Server 2008 Enterprise. The database is being formatted to have neither rules nor

relationship. This is to reduce complications and making it a controlled environment.

The database has one table and 2 columns. One column would serve as an index with

integer data format and the other is to store the data and „MAX VARCHAR‟ is being

used. Index is automatically generated by the database engine.

3. 3.3 TEST MACHINE AND SOFTWARE SPECIFICATION

The specification of the machine used for testing is in Table 3-1.

CHAPTER 4 DISCUSSION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 55

Item Details

Processor Core 2 Quad 2.66Ghz Q9400

Random Access Memory 3.9 GB

Magnetic Hard Disk Drive Seagate Barracuda 7200rpm 320GB

Development Software Visual Studio 2010 .net4 framework

Programming Language C#

Operating System Windows XP Sp3(32-bit)

Ram Usage at Start 438 MB

CPU Usage at Start 0%

Database Engine Microsoft SQL Server 2008 Enterprise

Oracle MySQL 5.2

Table 3-1: System and Software specification

3. 3.4 Program Flow

Dataset

Read Data into

Memory

Store Data

into

Database

Process Data to

meet Insertion

standard (SQL or

XML)

Repeat Process

Figure 3-6: Flow of the Insertion process

CHAPTER 4 DISCUSSION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 56

Figure 3-6 shows the flow of the insertion process. Dataset is being stored in

individual text files. Time taken includes reading data from the text file into the

memory as well as process the data to meet insertion standard is to convert the data to

meet SQL string insertion. By adding symbols, it will meet SQL statement standard.

Figure 3-7 is the snippet of formatting the string for SQL parameters.

 public string FormatSqlParam(string strParam)

 {

 string newParamFormat = null;

 if (strParam == string.Empty)

 {

 newParamFormat = "'" + "NA" + "'";

 }

 else

 {

 newParamFormat = strParam.Trim();

 newParamFormat = "'" + newParamFormat.Replace("'", "''") + "'";

 }

 return newParamFormat;

 }

Figure 3-7: Code snippet of formatting SQL Parameters.

All the time taken from test is being stored in a text file to be process. A frequency of

5 times is done on each test and an average it taken from it. The same and all dataset

are being used on all tasks. This would maintain consistency and also control the

environment.

3. 3.5 TASK 0: BUILD DATASET

The dataset is build based on comments from eBay.com. Over one thousand

comments were taken and duplicate it for all the dataset used. To make it constant at

302 characters, a program is build to copy and paste the front of the sentence to make

up 302 and remove additional characters. Figure 3-8 shows the codes of the process.

CHAPTER 4 DISCUSSION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 57

 while (reader.Peek() != -1)

 {

 curStr = reader.ReadLine();

 curStr = curStr.Trim();

 curLength = curStr.Length;

 if (curLength < 300)

 {

 copyLength = 300 - curLength;

 copyStr = curStr.ToCharArray();

 x = 0;

 while(curStr.Length <= 300)

 {

 if (x < copyStr.Length)

 {

 curStr = curStr + copyStr[x];

 x++;

 }

 else {

 x = 0;

 curStr = curStr + copyStr[x];

 }

 }

 if (curLength > 300)

 {

 cutLength = 300 - curLength;

 copyStr = curStr.ToCharArray();

 for (int z = 0; z < 300; z++)

 {

 curStr = curStr + copyStr[x];

 }

 }

CHAPTER 4 DISCUSSION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 58

 }

 else if (curLength > 300)

 {

 cutLength = 300 - curLength;

 copyStr = curStr.ToCharArray();

 for (int y = 0; y < 300; y++)

 {

 curStr = curStr + copyStr[y];

 }

 }

 writer.WriteLine(curStr);

 Console.Write(".");

 }

Figure 3-8: Snippet of dataset builder process.

3. 3.6 TASK 1: CONNECTIONS AND THREADS

In the initial plan, there were four types of test to be done before processing with

different insertion methods. But due to some feasibility issues, the plan has been

reduce to only two sections out of four. The two tests done were „single connection,

single thread‟ and „multiple connections, multiple threads‟. The initial plan is shown

in Figure 3-9.

Single Connection

Single Thread

Multiple Connections

Single Thread

Single Connection

Multiple Threads

Multiple Connections

Multiple Threads

Connection

T
h

re
a

d
s

Single Multiple

S
in

g
le

M
u

lt
ip

le

Figure 3-9: Thread’s and Connection’s testing combination.

CHAPTER 4 DISCUSSION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 59

From that the tests, multiple connection to a single thread and also single connection

to multiple threads is not feasible in programming point of view. Therefore only

single connection on single thread and multiple connections to multiple threads were

being tested. The threading method used is manual threading. This allows me to

control the number of threads to create and also have full control over the threading.

The first experiment done was on single connection and thread. The insertion method

used here is sequential insertion method. The data would be inserted row-by-row

using the standard SQL Insert statement. This task is to set a benchmark for the

subsequent test to follow.

for (int i = 0; i < dataList.Count; i++)

{

 sqlStr = "INSERT INTO TestTbl(DataCol) VALUES(N" + dataList[i] + ")";

 sqlCmd = new SqlCommand(sqlStr, conn, transaction);

 sqlCmd.ExecuteNonQuery();

}

transaction.Commit();

Figure 3-10: Snippet on sequential SQL insertion.

The figure above shows how the data is being inserted into the database. Test is being

done with the transaction feature and without it. This is to test if the transaction

feature does make a difference and improve the performance. Codes without

transaction feature share similar code as in Figure 3-10.

CHAPTER 4 DISCUSSION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 60

Figure 3-11: Chart shows the architecture of the program.

The method TestFileList is where all the names of the dataset files are being stored.

The program in main would repeat for every test file. One thread and

InsertionMySQL would recur 5 times to get the average time. This architecture is

being used for both database engines.

3. 3.7 TASK 2: MULTI THREADED AND CONNECTION

The next experiment done was on multi-thread the processes. This is done on 2, 4 and

8 threads. Each thread will hold its own connection. The same insertion method is

being used in task 1. The dataset is being split into the number of threads to be used.

All the data is being stored in the memory to optimize the performance.

CHAPTER 4 DISCUSSION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 61

Figure 3-12: Program architecture for multi-threaded SQL sequential insertion

In the dataReader class, it will split the data into individual arrays according to the

number of threads being used. In this process, the data reader would split the data into

individual arrays according to the number of threads used. This test is being done on

both database engines.

3. 3.8 TASK 3: THREADING WITH BULK COPY

In this test, a package from the .Net 4 Framework is being used. It‟s a module that

supports bulk insertion and it accepts data in XML and does the insertion. Its method

name is called SqlBulkCopy (BCP). BCP provides significant performance jump

compared to the conventional SQL INSERT method (Bulk Copy Operations in SQL

Server (ADO.NET), 2011). The data has to be converted into XML files before

insertion. This is done in the data reader process and it will be split into multiple files

according to the number of threads used. Each thread will take one for to be inserted.

This test would involve testing on 1, 2, 4 and 8 threads. Each thread will hold one

connection.

CHAPTER 4 DISCUSSION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 62

Figure 3-13: Program architecture for multi-threaded bulk copy.

BCP is a specifically build module by Microsoft to do bulk insertion on Microsoft Sql

Server. In this task, testing is done to see if there is a performance increase when BCP

is being multi-threaded. In theory it should have an improvement in performance.

This test will use all the same dataset as all other tests. From here, a comparison

between conventional SQL insertion method is being done to see how much

performance improvement it provides.

3. 3.9 TASK 4: THREADING WITH IMPORT LOADER

Import loader is similar to BCP, but it receives flat file instead of XML files. It‟s a

module develop by Oracle MySQL itself to support bulk insertion. The dataset file is

being separated into multiple flat files according to the number of threads to be used

in the test. This process is being done during the data reading process.

CHAPTER 4 DISCUSSION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 63

Figure 3-14: Program architecture for multi-threaded import loader.

3. 3.10 TASK 5: MACHINE PERFORMANCE ON LOAD

This test is done to see if database insertion performance would suffer when CPU is at

certain load points. Time were taken to measure the performance efficiency. A CPU

loading emulator is being used to load the CPU usage. The CPU is being loaded at

25%, 50% and 75%. The same insertion program is being used while the CPU loading

emulator is being run on the background.

3. 3.11 TASK 6: MACHINE UTILITY MONITOR

This test would monitor the CPU, RAM and hard-disk utilization throughout the

insertion process. In this task a sampling method is being use to monitor the machine

utilization. A sample of each item is taken every half a second. To access the

utilization, .Net 4 Framework Performance Monitor is being used to monitor the

machine utilization. The samples are then being stored in a flat file and an average is

taken as the result. The same insertion program used in task 1, 2, 3, and 4 is used in

this task.

3.2.12 TASK 7: DEVELOP SMART DAL

This is the final task of the project. From the gathered data, I would then develop a

DAL that is able to decide which insertion method to use and how many threads to

use for task. The decision would be based on the number of rows to be inserted. The

user will have to insert necessary information and also the data to be inserted and the

CHAPTER 4 DISCUSSION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 64

DAL would decide based on the information gathered according to the database

engine used.

Figure 3-15: Program architecture for Smart DAL.

The user will only have to select the methods in the Insert class and the DAL would

perform the insertion task by itself. The decision is being develop based on the test

result I gather in task 1, 2, 3 and 4. This is also developed to the specification of one

table and one column insertion. Modifications have to be made to accommodate other

specifications.

CHAPTER 4 DISCUSSION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 65

CHAPTER 4 DISCUSSION

4.1 TEST RESULTS

Test results are gathered from the test done referring to Chapter 3.

4.1.1 TEST RESULT FOR SQL SERVER 2008

Test was done on SQL Server 2008 Enterprise edition.

4.1.1.1 PERFORMANCE TEST

no. of row

single

thread*

2

thread* 4 thread*

8

thread*

1 0

2 0 9

5 1 12 16

10 3 18 21 31

15 4 21 16 30

30 9 13 18 33

50 17 23 20 37

100 29 25 26 74

500 147 73 56 68

1,000 316 112 93 125

5,000 1,428 486 93 513

10,000 3,044 954 562 852

50,000 15,068 4,606 2,839 3,633

* All timing is in milliseconds.

Table 4-1: Table shows the result of SQL sequential insertion

no. of row

single

thread* 2 thread* 4 thread* 8 thread*

1 0

2 1 8

5 1 8 15 28

10 3 9 15 28

CHAPTER 4 DISCUSSION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 66

15 4 9 16 30

30 8 11 16 32

50 14 13 17 32

100 28 24 22 35

500 151 54 42 65

1,000 309 102 68 98

5,000 1,434 463 288 381

10,000 2,834 917 587 736

50,000 23,077 4,518 3714.5 3,781

* All timing is in milliseconds.

Table 4-2: Table shows the result of SQL sequential insertion with transaction

code

no. of row

1 thread bulk

copy*

2 thread bulk

copy*

4 thread bulk

copy*

8 thread bulk

copy*

1 4

2 4 14

5 4 14 25

10 5 15 26 52

15 5 16 26 52

30 5 16 26 56

50 6 17 26 58

100 7 18 45 62

500 23 26 51 89

1,000 36 46 134 99

5,000 175 136 154 220

10,000 359 286 282 372

50,000 4,673 6,627 2,689 4,019

60,000 14,557 20,280 9,445 6,723

70,000 20,947 28,538 29,028 11,480

80,000 33,109 41,976 41,207 18,898

* All timing is in milliseconds.

CHAPTER 4 DISCUSSION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 67

Table 4-3: Table slows the result of SQL Bulk Copy

The additional 60,000, 70,000 and 80,000 rows are only being tested with bulk copy

to show the significance in performance improvement when multi-threading is in

place.

CHAPTER 4 DISCUSSION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 68

Figure 4-1: Comparison between 1 & 8 threads with and without transaction

Figure 4-2: Comparison between BulkCopy and sequential insertion with

transaction

50

500

5,000

50,000

500 1,000 5,000 10,000 50,000

In
se

rt
io

n
 T

im
e

 (
lo

ga
re

m
ic

 s
ca

le
)

Number of Rows

single thread

8 thread

single thread
(transaction)

8 thread
(transaction)

1

10

100

1,000

10,000

El
ap

se
d

 T
im

e
 (

Lo
ga

ri
m

ic
 S

ca
le

)

Number of Rows

single thread
(transaction)

4 thread
(transaction)

single thread
bulk copy

four thread
bulk copy

CHAPTER 4 DISCUSSION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 69

Figure 4-3: Comparison between BulkCopy and sequential insertion with

transaction

4.1.1.2 PERFORMANCE DISCUSSION

From the experiments done, we can see from the charts above that multi-threading

does help improve bulk insertion performance on SQL Server 2008. There is

significant improvement to the performance when the number of rows is above

50,000. At 50,000 rows, it gives at 67% performance boost without the use of

transaction. With the use of bulk insertion, at 80,000 rows it gives a 43% performance

improvement when comparing single thread to 8 threads. When comparing with and

without transaction being used on 8 threads, with transaction gives a 24%

improvement. All this shows that multi-threading does help in improving bulk

insertion performance.

From the results of the experiments; it is found that different methods suits different

amount of data to be inserted. This also depends hugely on the architecture of the

database engine. This proves the theory of multi-threading does help in improving

database insertion performance. For small amount of data, single threaded with

transaction would perform better. This is due to the overhead that multi-threading has.

To create and kill a thread and distribute the data would consume too much overhead

and it‟s too costly to the performance. For the range of 1 to 30 rows, the overhead for

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

10,000 50,000 60,000 70,000 80,000

El
ap

se
d

 T
im

e
 (

M
ill

is
e

co
n

d
s)

Number of Rows

single thread
(transaction)
2 thread
(transaction)
4 thread
(transaction)
8 thread
(transaction)
single thread
bulk copy
two thread
bulk copy
four thread
bulk copy
eight thread
bulk copy

CHAPTER 4 DISCUSSION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 70

threading is too costly and single threaded sequential insertion is more efficient. Refer

to Figure 4-5 for more detail. For small amount of data, it is more efficient to use

sequential insertion method with transaction.

From research, Bulk Copy only works well when there is a large number of data to be

inserted. Bulk Copy is a .NET 4 Framework modules that helps improve bulk

insertion performance. It receives input data in XML format. The overhead of

converting all the raw data into XML is too costly when the amount of data is too

small. At 80,000 rows of data, when compared between single and 8 threads, it gives

a 42% performance increase. From figure 0-6 we are able to see a significant improve

in insertion performance when there are more than 60,000 rows. Therefore it is best

not to multi-thread when the amount of data is below 5001 rows.

From all the research data gathered, we can see that Microsoft SQL Server 2008

supports multi-threading and it does improve its database bulk insert performance.

Below is a table with a breakdown on which method to use according to the number

of rows.

Number of Rows (Rows) Threading Method

1 to 29 Single shread sequential Insertion with transaction

30 to 5000 Single thread BulkCopy

5001 to 50,000 Four threads BulkCopy

50,000 and above Eight threads BulkCopy

Table 4-4: Number of threads and insertion method according to the number of

rows

4.1.2 My SQL 5.2

4.1.2.1 PERFORMANCE TEST

no. of rows one thread two thread

four

thread

1 105

2 108

5 113 91

10 207 173

CHAPTER 4 DISCUSSION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 71

15 327 199

30 788 490

50 1,339 650

100 2,441 1,264

500 12,612 6,188

1,000 24,644 12,829

5,000 131,022 61,763

10,000 260,477 247,901 121,724

50,000 1,491,899 1,274,236

* All times are in milliseconds

* table is not complete as test result is not significant

Table 4-5 : Table of MySQL insertion without transaction code

no. of rows one thread two thread

four

thread

eight

thread

1 24

2 24 49

5 24 49 66

10 24 63 76 72

15 24 54 68 78

30 30 54 69 96

50 34 63 59 84

100 43 70 81 88

500 117 109 97 111

1,000 202 160 132 136

5,000 1,018 589 411 458

10,000 2,051 1,050 870 1,115

50,000 11,126 6,265 4,731 5,469

60,000

70,000

80,000

* All times are in milliseconds

* table is not complete as test result is not significant

CHAPTER 4 DISCUSSION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 72

Table 4-6: Table of MySQL insertion with transaction code

no. of rows

1 thread

 insert

loader

2 thread

insert

loader

4 thread

 insert

loader

8 thread

 insert

loader

1 93

 2 114 78

 5 140 146 96

 10 160 211 177 101

15 180 281 254 203

30 200 355 332 298

50 220 429 406 395

100 246 502 489 490

500 289 652 575 600

1,000 338 734 673 740

5,000 461 1,130 1,089 1,314

10,000 670 1,671 1,886 1,987

50,000 2,564 4,016 3,894 3,867

60,000 6,276 8,391 8,985 8,970

70,000 10,314 13,842 15,130 15,265

80,000 15,072 20,003 21,783 23,063

* All times are in milliseconds

* table is not complete as test result is not significant

Table 4-7: Table of MySQL insertion using insert loader

CHAPTER 5 CONCLUSION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 73

Figure 4-4: Comparison between different numbers of threads using sequential

insertion

4-5: Comparison between insert loader and sequential insertion at 500 to 10,000

rows

20

30

40

50

60

70

80

90

100

110

120

1 2 5 10 15 30 50 100 500

El
ap

se
d

 T
Im

e
 (

M
ill

is
e

co
n

d
s)

Number of Rows

one thread
(transaction)
two thread
(transaction)]
four thread
(transaction)
eight thread
(transaction)

90

900

500 1,000 5,000 10,000

El
ap

se
d

 T
im

e
 (

Lo
ga

ri
m

ic
 S

ca
le

)

No. of Rows

MySQL Bulk Insertion
Insert Loader vs. Sequential Insertion

one thread
(transaction)

four thread
(transaction)

eight thread
(transaction)

one thread
insert loader

CHAPTER 5 CONCLUSION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 74

Figure 4-6: Comparison between sequential insertion with transaction and insert

loader

Figure 4-7: Comparison between sequential and insert loader from 1,000 to

80,000 rows

0

1,000

2,000

3,000

4,000

5,000

6,000

500 1,000 5,000 10,000 50,000

El
ap

se
d

 T
im

e
 (

M
ill

is
e

co
n

d
s)

Number of Rows

four thread
(transaction)

eight thread
(transaction)

one thread
insert loader

two thread
insert loader

eight thread
insert loader

0

5,000

10,000

15,000

20,000

25,000

1,000 5,000 10,000 50,000 60,000 70,000 80,000

El
ap

se
d

 T
im

e
 (

M
ill

is
e

co
n

d
s)

Number of Rows

Bulk Insertion MySQL
(transaction vs. insert loader)

four thread
(transaction)

eight thread
(transaction)

one thread
insert loader

two thread
insert loader

four thread
insert loader

eight thread
insert loader

CHAPTER 5 CONCLUSION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 75

4.1.2.2 PERFORMANCE DISCUSSION

From the experiment‟s that done with MySQL, it does not work really well with

multi-threading. Threading just slows the process down. This proves that multi-

threading does not apply to all database system and its database engine dependent.

MySQL works very well with transaction codes; it‟s not efficient without transaction

code. When comparing with and without transaction codes at 50,000 rows on single

thread there is a 99.25% performance improvement with transaction being used. To

insert 50,000 rows using sequential insertion without transaction codes, it requires

approximately 22 minutes compared to 6.3 seconds with transaction codes. In the data

range of 1 to 500 rows, single threaded with transaction works most efficiently. This

could be referred in Figure 0-10. From the graph patterns, we could see that the more

threads being used, the less efficient it gets. But when the number of rows grows from

500 and above, four threads works more efficiently compared to single threaded. This

could be due to the architecture and threading overheads. At 500 rows, four threads

give a 17.09% performance improvement which gradually increases to 59.63% at

5,000 rows.

At more than 5,000 rows, single threaded insert loader works best. Comparing

between single and eight threaded insert loader; single threaded has a 64.92%

performance advantage at 5,000 rows. At 80,000 rows single threaded has a 34.65%

advantage over 8 threads insert loader. This could be seen in Figure 0-13. From all the

findings, that the results shows that MySQL does not work well with multithreading

expect for certain environment or situation. This proves that multi-threading on

database insertion depends on the architecture it was developed on. This could also

because MySQL database engine is already multi-threaded and if threading is done on

the application level, it would cause a drop in performance.

Because of this scenario, it is not advisable to thread the whole system without test

before implementation. Therefore it is best not to multi-thread MySQL, except for the

data range of 501 to 5000.

From all the data gathered from the tests, the optimal threading methods according to

the number of rows. It is shown in Table 4-8.

CHAPTER 5 CONCLUSION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 76

Number of Rows (Rows) Number of threads and insertion method

1 to 500 Single thread sequential insertion with transaction

501 to 5000 Four threads sequential insertion with transaction

5001 and above Single thread insert loader

Table 4-8: Insertion and threading method according to amount of data

4.2 Performance Monitoring

4.2.1 SQL Server 2008 Enterprise

Figure 4-8: System utilization between Disk IO transfer and CPU Usage for SQL

Server 2008

Referring to Figure 4-8, we can see that the CPU usage increase as the number of

threads increases. This shows that the system is utilizing the available processing

power of the CPU and multi-threading is at work. The CPU usage increases

significantly at 8 threads. From the figure above we could also see that bulk copy

consumes less processing power and this would be very useful in environments where

the server is busy. This information is particularly useful when the server is being

shared by other application on virtual machine and the CPU is constantly at high

0

10

20

30

40

50

60

70

80

0

5

10

15

20

25

30

35

C
P

U
 U

sa
ge

 (
%

)

D
is

k
IO

 T
ra

n
sf

e
r

(M
B

/s
e

c)

Insertion Method

80,000 disk IO

70,000 disk IO

80,000 cpu

70,000 cpu

CHAPTER 5 CONCLUSION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 77

usage. Bulk Copy could solve such problem where if sequential insertion is being

used, it will be inefficient. We could see that Bulk Copy does not consume much

processing power even at 8 threads. This proves that this module supports multi-

threading with reference to the discussion in 4.1.1.2.

The magnetic hard disk usage did not reach maximum as claim capable from the

manufacturer. It only achieves 50% of its capability as maximum capability claim by

Seagate (Seagate Barracude 7200.10 SATA 3.0Gb/s 320-GB Hard Drive, 2010). This

could be due to the architecture that the database engine was developed and restrict

write performance or it has its own I/O limitations. Further research has to be done on

this factor to maximize the magnetic disk I/O which is believe would further enhance

the INSERT performance.

Figure 4-9: System utilization between Disk IO transfer and RAM usage for SQL

Server 2008

From Figure 4-9 we can see that the RAM usage decreases the number of threads

used increases. This is because the amount of backlogs is being reduced. This is a

positive sign for developers as the INSERT statement won‟t be RAM hungry. On

single thread, the RAM usage is high due to the huge amount of data being stored in

3200

3250

3300

3350

3400

3450

3500

3550

0

5

10

15

20

25

30

35

M
e

m
o

ry
 U

sa
ge

 (
M

B
)

D
Is

k
IO

 (
M

B
/S

ec
)

Insertion Method

80,000 Disk IO

70,000 Disk IO

80,000 Memory Usage

70,000 Memory Usage

CHAPTER 5 CONCLUSION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 78

the RAM waiting to be inserted. From the analysis, bulk copy consumes more RAM

compared to sequential insertion and this could be due to how the module was being

developed. The difference between the highest and lowest of the RAM usage is very

slim at only 4.3% of difference. The average RAM usage is at 3.3 GB. We the result

we could see that Bulk Copy consumes more RAM, less CPU usage and it gives the

highest disk I/O rate.

From all the analysis above, it can be concluded that there is a close relationship

between HDD I/O, RAM, and CPU usage and bulk insertion process. When there is

insufficient RAM, there will definitely be a drop in insertion performance. This goes

the same when the CPU is busy. HDD I/O is the core and if there is insufficient I/O,

there will be a bottleneck on the HDD. This is because all the data is being channeled

into the disk at the same time. For more information, section 4.3 would show a

simulated effect when CPU is being loaded at certain percentage of usage.

4.2.2 MySQL 5.2

Figure 4-10: System Utilization between Disk IO Transfer and CPU usage for

MySQL 5.2

0

10

20

30

40

50

60

0

2

4

6

8

10

12

14

16

18

20

C
P

U
 U

sa
ge

 (
%

)

D
Is

k
IO

 T
ra

n
sf

e
r

(M
B

/s
e

c)

Insertion Method

70,000 Disk IO

80,000 Disk IO

70,000 CPU

80,000 CPU

CHAPTER 5 CONCLUSION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 79

From Figure 4-10 we can see a rather similar pattern found in SQL Server 2008. The

CPU usage is relatively low compared and its usage does not vary a lot when

compared between single and 8 threads insert loader. This proves that MySQL is light

on CPU usage. It is a surprise to know that there is no significant increase in CPU

usage when it‟s being threaded. From the graph, the disk IO is highest at 2 thread

insert loader but performance timing proves otherwise. This could be the insertion

rate is not constant and cause of it is not known at this moment of research. The disk

I/O usage is below 50% of what is claim capable by Seagate (Seagate Barracude

7200.10 SATA 3.0Gb/s 320-GB Hard Drive, 2010). This could be due to the

architecture of the database engine. To further enhance and know why it‟s limited to

this rate, further analysis on the database engine‟s architecture has to be done. From

the graph we can see that the performance variation between different numbers of

threads for insert loader is not very big. This show‟s that multi-threading does not

help a lot or contributes very little to MySQL bulk insertion process. For sequential

insertion method, the disk IO does improve but not the performance time, as before it

could be some I/O architecture that is limiting the performance.

Figure 4-11: System utilization between Disk IO transfer and Memory usage for

MySQL 5.2

1900

1920

1940

1960

1980

2000

2020

2040

0

2

4

6

8

10

12

14

16

18

20

M
e

m
o

ry
 U

sa
ge

 (
M

B
)

D
is

k
IO

 (
M

B
/s

e
c)

Insertion Method

70,000 Disk IO

80,000 Disk IO

70,000 Memory Usage

80,000 Memory Usage

CHAPTER 5 CONCLUSION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 80

The pattern of the RAM usage is almost similar to that of SQL Server 2008. When an

insert loader is being used, the RAM usage is higher compared to sequential insertion

methods. The usage average out to be almost the same for singe, 2, 4 and 8 threads.

This show that multi-threading does not really take effect on the database engine. For

sequential insertion, an almost similar scenario as of SQL Server 2008 applies here.

From the analysis above, we could see the relationship between hard disk I/O, RAM

and CPU towards the performance of bulk insertion. When the CPU is busy, it greatly

affects the performance of bulk insertion. There has to be sufficient RAM for the

whole process, this is because such task require huge amount of RAM. HDD

performance clearly plays a significant role and is the core to bottleneck and it‟s

closely related to the bulk insertion performance. For more details, section 4.3 would

show a simulated effect when the CPU is being loaded.

4.3 Affects on Performance

This experiment was done but the result was too difficult to analyze and another

approach was taken to gather some more accurate results which is being presented in

chapter 4.2.

Figure 4-12: Affect on performance at different CPU usage for SQL Server 2008

0

5,000

10,000

15,000

20,000

El
ap

se
d

 T
im

e
 (

m
ill

is
e

co
n

d
s)

Insertion Method

Insertion of 50,000 Rows (SQL Server 2008)

0% CPU
Utilization

25% CPU
Utilization

50% CPU
Utilization

75% CPU
Utilizaton

CHAPTER 5 CONCLUSION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 81

Figure 4-12 shows that when the CPU is at load of 75% utilization, the insertion

performance suffers. This proves that multi-threading is at work and SQL Server does

require a significant amount of CPU power to execute the task efficiently. The pattern

of the graph is very difficult to analyze because the processor shift its jobs from one

thread to another to distribute the loads. Where else when it‟s on single thread, only

one core of the processor is working. When multi-threading is applied, we can see that

there is a reduction in time and the CPU does load balancing. Referring to single

thread with transaction and comparing it with the other sequential insertion which is

being threaded, we can see the improvement in performance multi-threading gives.

From Figure 4-12 it is known that bulk copy requires more processing power. With

the increase in CPU usage, there is an effect on the performance. SQL Server 2008

insertion performance is related to the CPU performance. When CPU is busy, it will

affect the bulk insertion performance.

Figure 4-13: Affect on performance at different CPU usage for MySQL

From Figure 4-13 it shows similar effect as with SQL Server 2008 here on MySQL.

MySQL uses lesser processing power and we could see the effect on the performance

0

2,000

4,000

6,000

8,000

10,000

12,000

Ti
m

e
 (

M
ill

is
e

co
n

d
s)

Insertion of 50,000 Rows (MySQL 5.1)

0% CPU
Utilization

25% CPU
Utilization

50% CPU
Utilization

75% CPU
Utilization

CHAPTER 5 CONCLUSION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 82

is not as significant as in SQL Server 2008. Even on MySQL which does not really

support multi-threading, even when it‟s being threaded and CPU load increase it has a

significant effect on the bulk insertion performance. There is a relationship between

the CPU performances towards Insertion performance.

From the results gathered from the two experiments above is too difficult to draw a

conclusion. These are caused by many factors that create lots of anomalies in the

result. It could be cause by the OS scheduling, background processes and many

others. Due to the lack of fact and proving on why such events are happening,

therefore there is no conclusion for this experiment and it has been aborted. To

replace this experiment, Section 4.2 is being done to conduct the test on performance

relationship and its effect on the bulk insertion performance.

CHAPTER 5 CONCLUSION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 83

CHAPTER 5 CONCLUSION

Although, the advancement of multicore processors is encouraging multithreaded

application to be developed, we found that the performance of the insertion function

of a database does not necessary improve proportionately with the number of threads

used. Multithreading did improve the performance of both of the databases‟ insertion

function but the speed up is very dependent on the underlying architecture of the

database system. Therefore, this work suggests that software developers should

investigate the performance of multithreaded operations on databases before

designing any system.

Design of a multi-threaded database bulk insertion solution should depend on the

database engine as well as the machine it is being implemented on. Database

architecture, RAM, CPU, and type of HDD do have an effect on each other. Different

database engine react differently toward different approach into doing bulk insertion.

From all the test results, it is shown that if it is not being threaded in an efficient

manner, it will cause a major drop in performance.

The DAL is being developed with a couple of limitation, reasons for this limitation

not being solves is due to time constrain, resource and also beyond the scope of the

project. Following are the limitation:

 Limit data size to 1.2 GB, out of memory error will occur if file size is larger

than the limit.

 Threading method and solutions are being based on Intel Core 2 Quad

machine.

 Supports only 2 database machine.

 DAL only accepts array or text file as input data.

We hope that this research finding has contributed to the database developers and also

system developers into ways of improving database bulk insertion.

5.1 Future Works

There is much work to be done with much more questions to be answered. Following

are the future works to be done:

 Test model on different CPU platform.

CHAPTER 5 CONCLUSION

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 84

 Test model on different type of HDD, flash drive or solid state HDD.

 Test model on different database engines.

 Test on different threading methods.

 Does virtual machine has an impact on database bulk insertion? This question

is being directed to those environments where virtual machine is being used to

utilize server capabilities.

 What effect does it has when RAM is being loaded or HDD is being kept busy

while bulk insertion process is running.

REFERENCES

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 85

REFERENCES

Broberg, M. (2000). Performance Tuning of Multithreaded Applications.

Bulk Copy Operations in SQL Server (ADO.NET). (2011). Retrieved January 5, 2011, from

Microsoft MSDN: http://msdn.microsoft.com/en-us/library/7ek5da1a.aspx

Bunn, J. J. (2000). Object Database Scalability for Scientific Workloads. In J. J. Bunn, Object

Database Scalability for Scientific Workloads. Geneva.

Donald, R. (2010). Rad Software . Retrieved August 1, 2010, from Data Access Layer Design:

http://www.radsoftware.com.au/articles/dataaccesslayerdesign1.aspx

Etheredge, J. (2010, January 27). CodeThinked. Retrieved August 11, 2010, from .NET 4.0 and

System.Collections.Concurrent.ConcurrentBag:

http://www.codethinked.com/post/2010/01/27/NET-40-and-

System_Collections_Concurrent_ConcurrentBag.aspx

Granatir, O. (2009). OMG, Multi-Threading is Easier Than Networking. Intel Corp.

Gray, D. J. (1992). Parallel Database Systems: The Future of High Performance Database

Processing.

Harinath, M. M. (2006, February 07). Developer Fusion. Retrieved August 6, 2010, from Bulk

Insert from Flat File Using Transact SQL: http://www.developerfusion.com/code/5357/bulk-

insert-from-flat-file-using-transactsql/

Harper, M. (2002, Jun 12). Developers Articles. Retrieved August 6, 2010, from Sql Server

Bulk Copy: http://www.devarticles.com/c/a/SQL-Server/An-Introduction-To-The-Bulk-Copy-

Utility/1/

Intel Processor Roadmap. (2010). Retrieved August 9, 2010, from Processors Platform

Roadmap: http://edc.intel.com/Platforms/Roadmap/

J.D. Meier, A. H. (2009, jan). Chapter 12: Data Access Layer Guidelines. Retrieved July 16,

2010, from Microsoft Pattern & Practice:

http://apparchguide.codeplex.com/wikipage?title=Chapter%2012%20-

%20Data%20Access%20Layer%20Guidelines&referringTitle=Home%20Page%203

J.D. Meier, A. H. (2009). MSDN Library (DAL). Retrieved from Chapter 12 Data Access Layer

Practice: http://apparchguide.codeplex.com/wikipage?title=Chapter%2012%20-

%20Data%20Access%20Layer%20Guidelines&referringTitle=Home%20Page%203

Java on Solaris 7 Developer’s Guide. (1998). Califonia: Sun Microsystem, Inc.

Jingren Zhou, e. a. (2005). Improving Database Performance on Simultaneous Multithreading

Processors.

Julian J. Bunn, K. H. (2007). Object Database Scalability for Scientific Workloads. Geneva.

REFERENCES

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 86

Kanjilal, J. (2007, October 27). DonNetJohn. Retrieved August 1, 2010, from Implemting a

Data Access Layer in C#: http://www.dotnetjohn.com/articles.aspx?articleid=244

Ltubia. (2008, November 20). CodePlex. Retrieved August 6, 2010, from Multithreaded Bulk

Copy: http://mbulkcopy.codeplex.com/

Lundberg, D. H. (1999). Multiprocessor Performance Evaluation of a Telecommunication

Fraud Detection Application.

Lundberg, D. H. (1999). Multiprocessor Performance Evaluation of a Telecommunication

Fraud Detection Application.

Marchand, B. (2008, January). Multi-Core Processing Advancements via Optimized System

Resource Allocation and Capacity Management. p. 2.

Maximum Capacity Specifications for SQL Server. (2010). Retrieved July 2010, 10, from

MSDN Microsoft Inc.: Maximum Capacity Specifications for SQL Server

Moore, B. (2008). What Does It Mean to be I/O. Intel Corporation.

MSDN Library (Bulk Insert). (2010). Retrieved 2010, from Bulk Insert Task:

http://msdn.microsoft.com/en-us/library/ms141239.aspx

MSDN Library (Threading). (2010). Retrieved August 6, 2010, from Managed Threading Best

Practices: http://msdn.microsoft.com/en-us/library/1c9txz50.aspx

MSND Library (Bulk Insert). (2010). Retrieved from Bulk Insert (Transact-SQL):

http://msdn.microsoft.com/en-us/library/ms188365.aspx

MySQL Connection Pooling. (2010). Retrieved July 6, 2010, from Using Connector/J with J2EE

and Other Java Frameworks: http://dev.mysql.com/doc/refman/5.1/en/connector-j-

usagenotes-j2ee.html#connector-j-usagenotes-j2ee-concepts-connection-pooling

MySQL Overview. (n.d.). Retrieved July 1, 2010, from Oracle:

http://www.sun.com/software/products/mysql/

MySql Speed of INSERT Statement. (2003, May). Retrieved August 1, 2010, from Speed of

INSERT Statement: http://dev.mysql.com/doc/refman/5.0/en/insert-speed.html

Performance Counter Constructor. (2010). Retrieved January 10, 2010, from MSDN Library:

http://msdn.microsoft.com/en-us/library /xx7e9t8e.aspx

PowerEdge R905. (2010). Retrieved November 10, 2010, from Dell:

http://configure.us.dell.com/dellstore/config.aspx?oc=becw7vs&c=us&l=en&s=bsd&cs=04&

model_id=poweredge-r905

Rubbelke, L. (2008). SQL Server 2008 white paper. Califonia: Microsoft Corp.

Ryan Johnson, I. P. (2001). Shore-MT: A Scalable Storage Manager for the Multicore Era. 24-

36.

REFERENCES

BIS (Hons) Business Information System

Faculty of Information and Communication Technology (Perak Campus), UTAR 87

Ryan Johnson, I. P. (2009). Shore-MT: A Scalable Storage Manager for the Multicore Era. 24-

35.

Scott R. Taylor‚, D. J. (2008). A Comparison of Multithreading Implementations. 1-8.

Seagate Barracude 7200.10 SATA 3.0Gb/s 320-GB Hard Drive. (2010). Retrieved November

18, 2010, from Seagate:

http://www.seagate.com/ww/v/index.jsp?vgnextoid=2d1099f4fa74c010VgnVCM100000dd0

4090aRCRD

Speed of INSERT Statement. (2010). Retrieved August 30, 2010, from MySQL:

http://dev.mysql.com/doc/refman/5.0/en/insert-speed.html

SQL Server 2008 Product Information. (n.d.). Retrieved Jun 1, 2010, from Microsoft:

http://www.microsoft.com/sqlserver/2008/en/us/benchmarks.aspx

Thread Class. (n.d.). Retrieved December 22, 2010, from MSDN Library:

http://msdn.microsoft.com/en-us/library/system.threading.thread.aspx

TransactionScope Class. (n.d.). Retrieved December 20, 2010, from MSDN Library:

http://msdn.microsoft.com/en-us/ library/system.transactions. transactionscope.aspx

Using the Bulk Loader. (2010). Retrieved January 2, 2010, from MySQL:

http://dev.mysql.com/doc/refman/5.1/en/connector-net-programming-bulk-loader.html

Vadaparty, K. (2008). Multithreaded Parallelism in Windows Workflow Foundation. .NET

Development (Windows Workflow) Technical Articles , 1-28.

Valduriez, 1. M. (1991). Distributed and Parallel Database System.

Valduriez, P. (1993). "Parallel Database Systems: Open Problems and New Issues".

Distributed and Parallel Databases , 137-165.

Verenkar, A. (2010, April 9). Using .Net4 Parallel Programming Model to Achieve Data

Parallelism in Multi-tier Application. MSIT, Microsoft Corporation , pp. 1-13.

Zukowski, M. (2005). Hardware-Conscious DBMS Architecture for Data-Intensive Application.

55-59.

A
P

P
E

N
D

IX

B
IS

 (H
o

n
s) B

u
sin

ess In
fo

rm
atio

n
 S

y
stem

F
acu

lty
 o

f In
fo

rm
atio

n
 an

d
 C

o
m

m
u

n
icatio

n
 T

ech
n

o
lo

g
y

 (P
erak

 C
am

p
u

s), U
T

A
R

 A
-1

APPENDIX

Figure 0-1: Transaction vs. without Transaction chart

1

10

100

1,000

10,000

100,000

1 2 5 10 15 30 50 100 500 1,000 5,000 10,000 50,000

Bulk Insertion Sql Server
without transaction vs. with transaction

single thread

2 thread

4 thread

8 thread

single thread
(transaction)

2 thread
(transaction)

4 thread
(transaction)

8 thread
(transaction)

A
P

P
E

N
D

IX

B
IS

 (H
o

n
s) B

u
sin

ess In
fo

rm
atio

n
 S

y
stem

F
acu

lty
 o

f In
fo

rm
atio

n
 an

d
 C

o
m

m
u

n
icatio

n
 T

ech
n

o
lo

g
y

 (P
erak

 C
am

p
u

s), U
T

A
R

 A
-2

Figure 0-2: Transaction vs. BulkCopy chart

1

10

100

1,000

10,000

1 2 5 10 15 30 50 100 500 1,000 5,000 10,000 50,000

El
ap

se
d

 T
Im

e
 (

Lo
ga

ri
m

ic
 s

ca
le

)

Number of Rows

Bulk Insertion Sql Server 2008
(transaction vs. bulk copy)

single thread
(transaction)

2 thread
(transaction)

4 thread
(transaction)

8 thread
(transaction)

single thread
bulk copy

two thread bulk
copy

four thread bulk
copy

eight thread
bulk copy

A
P

P
E

N
D

IX

B
IS

 (H
o

n
s) B

u
sin

ess In
fo

rm
atio

n
 S

y
stem

F
acu

lty
 o

f In
fo

rm
atio

n
 an

d
 C

o
m

m
u

n
icatio

n
 T

ech
n

o
lo

g
y

 (P
erak

 C
am

p
u

s), U
T

A
R

 A
-3

Figure 0-3: transaction vs. bulk copy for 1,000 to 80,000 rows

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

1,000 5,000 10,000 50,000 60,000 70,000 80,000

Bulk Insertion Sql Server 2008
(transaction vs. bulk copy)

(1000 to 80000 rows)

single thread
(transaction)

2 thread
(transaction)

4 thread
(transaction)

8 thread
(transaction)

single thread
bulk copy

two thread
bulk copy

four thread
bulk copy

eight thread
bulk copy

A
P

P
E

N
D

IX

B
IS

 (H
o

n
s) B

u
sin

ess In
fo

rm
atio

n
 S

y
stem

F
acu

lty
 o

f In
fo

rm
atio

n
 an

d
 C

o
m

m
u

n
icatio

n
 T

ech
n

o
lo

g
y

 (P
erak

 C
am

p
u

s), U
T

A
R

 A
-4

Figure 0-4: comparison between with and without transaction codes

10

100

1,000

10,000

100,000

1,000,000

10,000,000

1 2 5 10 15 30 50 100 500 1,000 5,000 10,000 50,000

El
ap

e
se

d
 T

Im
e

 (
Lo

ga
ri

m
ic

 S
ca

le
)

Number of Rows

Bulk Insertion MySQL
without transaction vs. transaction

one thread
(transaction)
two thread
(transaction)
four thread
(transaction)
eight thread
(transaction)
one thread

two thread

four thread

A
P

P
E

N
D

IX

B
IS

 (H
o

n
s) B

u
sin

e
ss In

fo
rm

atio
n
 S

y
stem

F
acu

lty
 o

f In
fo

rm
atio

n
 a

n
d
 C

o
m

m
u
n
icatio

n
 T

ech
n

o
lo

g
y
 (P

erak
 C

am
p
u

s), U
T

A
R

 A
-5

Figure 0-5: Comparison between transaction and insert loader

10

100

1,000

10,000

100,000

1 2 5 10 15 30 50 100 500 1,000 5,000 10,000 50,000

El
ap

se
d

 T
Im

e
 (

Lo
ga

ri
m

ic
 S

ca
le

)

Number of Rows

Bulk Insertion MySQL
(transaction vs. insert loader)

one thread
(transaction)

two thread
(transaction)

four thread
(transaction)

eight thread
(transaction)

one thread
insert loader

two thread
insert loader

four thread
insert loader

eight thread
insert loader

A
P

P
E

N
D

IX

B
IS

 (H
o

n
s) B

u
sin

ess In
fo

rm
atio

n
 S

y
stem

F
acu

lty
 o

f In
fo

rm
atio

n
 an

d
 C

o
m

m
u

n
icatio

n
 T

ech
n

o
lo

g
y

 (P
erak

 C
am

p
u

s), U
T

A
R

 A
-6

Figure 0-6: Insert Loader vs. Transaction at 1,000 to 80,000 rows

0

5,000

10,000

15,000

20,000

25,000

1,000 5,000 10,000 50,000 60,000 70,000 80,000

El
ap

se
d

 T
im

e
 (

M
ill

is
e

co
n

d
s)

Number of Rows

Bulk Insertion MySQL
(transaction vs. insert loader)

one thread
(transaction)

two thread
(transaction)]

four thread
(transaction)

eight thread
(transaction)

one thread
insert loader

two thread
insert loader

four thread
insert loader

eight thread
insert loader

