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ANALYSIS OF RECTANGULAR AND CIRCULAR WAVEGUIDE 

 

 

ABSTRACT 

 

 

Waveguides are generally used to channel the weak cosmic wave to the receiver in a 

radio telescope. The most commonly used waveguide is the rectangular and circular 

waveguides. Cosmic waves from distant sources are extremely weak. Hence it is 

important to minimize the loss in the waveguide. To allow the engineers and scientists 

to efficiently design a waveguide, it is important to develop a formulation which is 

able to compute the attenuation in a waveguide accurately. 

 

The transcendental equations developed by Stratton and Yeap to compute 

losses in waveguides are derived from the first principle. Hence, the equations are able 

to predict losses with higher accuracy. However, these equations are difficult to solve 

analytically. Solution to the transcendental equation can only be obtained using a root 

finding algorithm. Depending on the compiler and the algorithm used, solution may 

converge or diverge. Besides, it may require long computation time to solve. 

 

On the other hand, closed form solutions are simpler and give more intuitive 

insights. The resulting equation takes much less time to solve compared to the 

transcendental equation. Closed form solutions often use assumptions to simplify the 

equations. Equations such as the power loss method assumes the wall to be perfectly 

conducting. Such assumption is able to approximate the solution provided the metal is 

of sufficiently high conductivity. However, the assumption of perfect wall result in an 

infinite attenuation at cut-off frequency. An infinite conductivity metal prevents wave 

to propagate when the frequency is below the cut-off frequency. Such case is of course 

not accurate. Based on the experimental result, the attenuation of the wave increases 

as the frequency is reduced from the cut-off frequency. However, the attenuation 

constant is finite. 
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This thesis primarily focuses on the formulation of a closed form equation that 

is able to describe wave beyond as well as below the cut-off frequency with reasonable 

accuracy. The new method developed is based on modification from Yeap’s 

transcendental equation. Unlike Stratton’s transcendental equation, which is only 

restricted to the case of a circular waveguide. Yeap’s method is able to be used for 

circular as well as rectangular waveguide. Hence, the new method proposed here has 

also the advantage of being applied in waveguides with circular or rectangular 

geometry. Finite Difference Method is used to approximate the transcendental 

equation to transform it into a closed form solution. The resulting equation is simpler 

and gives more intuitive insights than Yeap’s transcendental equation. It also requires 

less computation time. 

 

The results show that the loss computed based on the new method agrees with 

the experimental result as well as existing theories. 
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1 INTRODUCTION 

 

 

 

1.1 Problem Statements 

 

This thesis focuses on the theoretical study of waveguide which is important in the 

design of radio telescopes. Radio telescopes allow scientists to observe the interstellar 

medium in which visible light fails to do so. In a typical radio telescope, the radiation 

signal received at the feed horn is usually transmitted to the detector via a circular 

waveguide and a rectangular waveguide (Yeap, 2011). Due to the low power of 

electromagnetic wave from distant sources, the design of the waveguide which is 

capable of minimising signal attenuation is of utmost importance.  

 

Hence a formulation which is able to compute accurately the attenuation in the 

waveguide below as well as beyond the cutoff frequency is important. Yeap (2011) 

has developed a set of transcendental equations to solve for the propagation constant 

of both circular and rectangular waveguides. Since the transcendental equations 

account for the mode coupling effect, the results have been found to agree closely with 

the measurements. To solve for the roots of the equations, however, an efficient root-

searching algorithm is to be applied on the equations. Moreover, appropriate initial 

guesses which allow convergence to the correct roots are necessary as well. Because 

of this reason, applying Yeap’s transcendental equation to compute the loss in a 

waveguide is found to be laborious and time-consuming. The solution in a closed-form 

equation, on the other hand, can easily be found without the need of a numerical 

algorithm and appropriate initial guesses. Hence, it may be simpler and more straight-
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forward if a closed-form equation which provides solution comparable to Yeap’s 

equation can be applied to compute the loss. 

 

This thesis therefore has its primary objective of formulating an equation which 

is able to describe the characteristics of wave attenuation above and below the cutoff 

frequency with reasonably accurate result. The closed form equations illustrated in this 

thesis would have the simplicity of being applied directly, without the need of an 

effective root-searching algorithm. They would also give reasonably good prediction 

of loss in both circular and rectangular waveguides 

 

 

 

1.2 Aims and Objectives 

 

In general, this thesis has the objective to 

i) Develop a reasonably accurate equation to describe the propagation of 

electromagnetic wave in a circular and rectangular waveguide 

ii) Simulate and calculate the attenuation of the electromagnetic wave in 

circular and rectangular waveguides 

iii) Compare and analyze different equations with the experimental result. 

 

 

 

1.3 Overview of Thesis 

 

The thesis is organized as below 

 

Chapter 2 shows the fundamental of radio astronomy. The importance of radio 

astronomy as well as the difficulty is briefly described. Later, each section of a radio 

telescope such as the antenna and mixer were briefly described. 

 

Chapter 3 describes different types of wave guiding structures. The difference 

between transmission lines and waveguides were discussed. 
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Chapter 4 describes the circular waveguide. This chapter starts with a review of work 

found in the literature. The derivations of Stratton’s method, Yeap’s method and power 

loss perturbation method are illustrated in this chapter. The general review on the 

comparison between different method describing the advantages as well as 

disadvantages for each method is well described in this chapter. Later, step by step 

derivation of a new perturbation method based on Yeap’s method were introduced. 

The chapter ends with the result comparing the new method with the existing method. 

 

Chapter 5 describes the rectangular waveguide. Like the case of the circular 

waveguide in chapter 4, this chapter starts with a review of existing methods, i.e. the 

power loss method, Papadopoulos’ method, and Yeap’s method. The new method 

modified from Yeap’s method is then introduced. The new method is derived using a 

similar approach like the circular waveguide. 

 

Chapter 6 summarizes all the work done in chapter 4 and chapter 5. Future works 

with the possibilities of improving the work done in this thesis are briefly explained 

 

 



 

 

 

 

 

 

 

2 RADIO ASTRONOMY 

 

 

 

2.1 Introduction 

 

The first ever telescope was invented by Galileo Galilei. It has opened a whole new 

world to human. Telescope has enabled a better understanding of the world, the earth. 

It was Galileo, through his invention of telescope, discovers that the earth rotates 

around the Sun and not vice versa. Through the telescope, Galileo found out that there 

are other planets exist out there, and our earth is not the sole planet in the galaxy. 

 

 The telescope invented by Galileo was made of different optical lenses. 

Through the combination of the lenses arrangement, it enables distance objects to be 

viewed clearly. Over the years, the technology and science continue to refine the 

design of optical telescope, enabling us to have a clearer view of the galaxy. However, 

one significant drawback of the optical telescope is that it only allows us to “see” 

within visible spectrum. In reality, an abundance of information is hidden in the other 

part of the frequency spectrum, such as in the terahertz region. A radio telescope is 

used instead to observe at the terahertz region and the other longer wavelength radio 

frequency. Instead of focusing distance light, the radio telescopes are designed 

specifically to collect electromagnetic radiation at the terahertz and radio frequency 

regions. Figure 1 shows some space photos that were obtained using the optical 

telescope and radio telescope. From the picture it can be seen that the radio telescope 

is able to show more information about the distance galaxy. 
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(a) (b) 

Figure 1 Difference between (a) Optical Telescope and (b) Radio Telescope 

 

Another reason to observe using radio waves is due to the atmospheric opacity. 

Our Earth is surrounded by a layer of ozone. This ozone protects us from high energy 

radiation, such as gamma and x-rays. When the electromagnetic radiation from outer 

space reaches the Earth, some of the radiation is absorbed. The absorption rate of 

radiation varies with frequency. Figure 2 shows the atmospheric opacity of the Earth. 

From the figure it can be seen that there are two windows for which the atmospheric 

condition of the earth allows the signal to pass through. The first window is the narrow 

visible light spectrum. The other window is the large radio wave window. The large 

radio wave window has long been studied due to the low atmospheric opacity that 
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makes it easy to be detected using ground based radio telescopes. In between the 

visible spectrum and the microwave region, it can be seen numerous narrow window. 

This is the terahertz region. This region remains largely unexplored due to 

technological difficulty. 

 

The terahertz region lies in between the optical region and the easily detectable 

radio waves region. Hence, most of the terahertz region telescopes borrow technology 

from both the optical and radio region. The radioscope receiver employs a heterodyne 

design. A heterodyne receiver at such high frequency is difficult to construct. Besides, 

the atmospheric opacity of the earth adds in another layer of difficulty to the 

construction of ground based radioscope operating in this region. At the terahertz 

region, water vapour will absorb incoming radiation. At low elevation, an abundance 

of water vapour is present in the atmosphere, making detection of terahertz radiation 

difficult. Hence, most of these detectors are constructed at high altitudes with dry 

atmosphere to reduce the effect of absorption. 

 

 
Figure 2 Atmospheric Opacity (Terahertz region highlighted by red box) 
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2.2 Antenna 

 

The antenna consists of a large parabolic dish. It is used to collect the RF signals. It 

can be constructed as a single antenna, or used as an antenna array, such as those used 

as a radio interferometer. An interferometer uses an array of telescope to achieve 

higher resolution through interferometry. An example of such interferometer is the 

Submillimeter Array (SMA), located in Hawaii. The radio telescope antenna is usually 

located far away from the population to reduce electromagnetic interference (EMI) 

from other wireless sources, such as television and radio. Figure 3 shows the SMA 

antenna and its optical configuration (Paine, 1994). 

 

Figure 4 shows the antenna optics layout. The primary reflector with a 6 meter 

diameter focuses distance RF signal from outer space to the secondary reflector which 

directs the signals to the beam waveguide. 

 

Figure 5 shows the beam waveguide mirror system. The beam waveguide 

directs the RF signals from the antenna vertically downward to the receiver optics 

assembly. 

 

 
Figure 3 SMA Radio Telescope Antenna 
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Figure 4 SMA antenna optics layout 

 

 

 
Figure 5 Beam waveguide mirrors 

 

 

From Figure 6, it can be seen that the beam from the beam waveguide enters 

the receiver and is splitted into two orthogonally polarized beams by a diplexer. The 

two orthogonally polarized beams are then directed to a pair of receiver oriented 90° 

apart. 
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Figure 6 Receiver optics layout 

 

2.3 Heterodyne Receiver 

 

A heterodyne receiver superimposes the weak RF signal from outer space to a strong 

monochromatic local oscillator in the mixer. Due to the non-linearity of the mixer, a 

combination of frequency will be generated in the mixer. 

 

Consider that the mixer has an I-V curve according to square law, 2I aV=  . 

Let the signal of interest be ( )sin 2s s sV V tFπ=  and the local oscillator signal be 

( )sin 2LO LO LOV V tFπ=  . When the two signals are applied to the mixer, the output 

current generated will be   
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  (2.1) 
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From (2.1), it can be seen that the mixer produce signals at frequency 

, , 2 , 2 , ,  and s LO s LO s LO s LOF F F F F F F F+ − . In most cases, only the signal with 

frequency s LOF F−  will be chosen. The rest of the output frequency are filtered out. If 

LOF  is relatively high, then the mixer will convert the high frequency RF signal ( sF  ) 

to a much lower Intermediate Frequency (IF). A lower IF signal is easier to be 

manipulated and cheaper to amplify than the high frequency signal ( sF  ). 

 

 Figure 7 shows the block diagram of heterodyne receiver. The signal from the 

antenna is fed to the mixer through a hollow waveguide. The mixer will then combine 

the signal of interest with the local oscillator signal to produce IF signal. The IF signal 

then passes through a Low Noise Amplifier (LNA) to amplify the incoming signal. 

After going through multiple stages of amplification, the IF signal is then fed into the 

data analysis system such as the spectrometer. The spectrometer will generate the 

spectral information of the input signal. 

 

 
Figure 7 Block Diagram of Heterodyne Receiver 
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2.4 Waveguide Coupling 

 

There are usually two methods to channel the RF signal from the aperture of a horn 

down to the SIS mixer, i.e. by quasi-optical coupling or by means of waveguide. This 

section describes the method of waveguide coupling. It is accomplished by receiving 

the RF signal from the antenna via a horn and passing it via a waveguide to the 

waveguide probe where the mixer is located. 

 

The SIS Mixer of ALMA band 7 (Vassilev, et al., 2004) designed by Onsala 

Space Observatory is used as an example to show the application of waveguide 

coupling to the receiver system. Figure 8 shows the layout of SIS receiver. The RF 

signal from the antenna is channelled down to the receiver via waveguide. A 

corrugated circular horn is used to reduce the sideband signal. After that, the RF signal 

passes through a circular to rectangular transition waveguide to a rectangular 

waveguide, before being coupled to the probe. The reason to use a rectangular 

waveguide to couple to the probe is because of the ease of excitation. 

 

 
Figure 8 Layout of SIS Receiver for ALMA Band 7 Cartridge 
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Figure 9 shows the RF signal from the rectangular waveguide coupled to the 

microstrip probe in the mixer. On the other hand, the LO signal is fed to the mixer via 

the waveguide branch line coupler. The coupler splits the LO signal into two LO 

signals with 90° phase difference. The LO signal is then carried to the mixer via the 

rectangular waveguide and fed to the mixer at both ends. 

 

Figure 10 shows the SIS mixer. The RF and LO signals are fed to the mixer 

junctions tuning circuitry. At the SIS mixer, both the RF and LO signals are then mixed 

and down converted to a lower IF signal. 

 

 
Figure 9 Mixer Substrate Coupled to Waveguide in ALMA Band 7 Receiver 

 

 
Figure 10 Layout of Quartz Substrate with SIS Mixer Built onto it 

 

 



 

 

 

 

 

 

 

3 WAVEGUIDING STRUCTURES 

 

 

 

3.1 Introduction 

 

The nature of electromagnetic wave allows it to propagate in all direction in the form 

of spherical wave from the source when it is unbounded. Such propagation mode 

allows the electromagnetic wave to reach all possible destination around the source. 

This is the principle of transmission antenna such as cell phone tower to maximize the 

coverage area of receiver. However, waves propagating in such mode has its power 

reduced according to the inverse square law as the electromagnetic waves expand into 

the three dimensional space. This is an inefficient method to transmit signals especially 

for weak signals, where the signal would be attenuated beyond which the recovery of 

signal would be too difficult and too costly. To efficiently transmit an electromagnetic 

wave signal with minimum loss, a guiding structure is preferred to confine the wave 

to travel in one direction. Such guiding structures are widely employed in the receiver 

system. For such system, the receiver antenna intercepts the weak electromagnetic 

waves, which is then amplified for signal recovery. This low power electromagnetic 

wave need to travel from the receiver antenna to the amplifier with minimum 

attenuation. A guiding structure would therefore be employed to guide the weak wave 

to the amplifier for further post processing. There are two types of wave guiding 

structure, waveguides and transmission lines.  
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3.2 Transmission Lines 

 

Transmission lines are used to convey the signal from the source to the destination. 

Electromagnetic wave from the source induce current in the conductor of the 

transmission lines. The signal then travels through the conductor in the form of electric 

current. Transmission lines can support TEM and quasi-TEM mode. A transmission 

lines can support direct current (DC) up to high frequency, however, at high frequency, 

the conductor loss will be too high for the transmission lines to be efficient. There exist 

different types of transmission lines. Below, some of the more common type of 

transmission lines are discussed. 

 

3.2.1 Coaxial Cable 

 

Coaxial cable is usually used to transmit signals at the lower radio frequency range. 

The electromagnetic wave induce alternating current (AC) in the conducting core and 

it propagates in the form of alternating current in the transmission line. Transmission 

line differs from an ordinary copper cable in such that transmission line is a specialized 

structure that is designed to carry AC in the radio frequency range. The impedance of 

transmission line are matched to the source and destination impedance to maximize 

power transfer from source to destination. In ordinary copper cable, the discontinuities 

at the cable end increases standing wave in the cable, therefore reducing its efficiency. 

A typical coaxial cable is shown in Figure 11. 

 

 

 
Figure 11 Coaxial Cable Cutaway (Tkgd2007, 2008) 
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From the cross sectional view of the coaxial cable it can be seen that copper 

meshes are surrounding the copper conductor. These copper meshes shield the copper 

conductor, preventing electromagnetic interference (EMI) from the surrounding from 

affecting the signal of the coaxial cable. It also prevents the signal from the coaxial 

cable to interfere with other sources. The conductor core is surrounded by a flexible 

insulating outer shield, protecting the copper core and making the coaxial cable 

flexible. Hence, coaxial cables are suitable to carry high speed signal, connecting two 

different devices, externally. 

 

 The copper meshes are usually grounded, and the signal voltage is applied to 

the copper core. The electric field travels from the copper core to the outer copper 

mesh, through the dielectric, while the magnetic field forms a closed loop around the 

copper core. Therefore, most of the EM field are confined within the dielectric. The 

field pattern of the coaxial cable is shown in Figure 12. The fundamental mode of 

coaxial cable is TEM mode. 

 

In the microwave region, coaxial cable becomes too lossy due to the skin effect 

of the conductor. Skin effect refers to the imbalance distribution of current density at 

the outer and inner region of the conductor. High frequency causes current to 

concentrate near the surface, resulting in lower effective area for the current to pass 

through, which increases the effective resistance of the coaxial cable, reducing its 

efficiency.  

 

 
Figure 12 Coaxial Cable Field Pattern 
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3.2.2 Microstrip 

Microstrip is also a type of transmission line. However, microstrip are fabricated for 

Printed Circuit Board (PCB) and Integrated Circuit (IC). It is used to transmit high 

frequency signal inside an IC and PCB within the device internally. The structure of a 

microstrip is shown in Figure 13. 

 

Unlike the coaxial cable, the fields of a microstrip are not confined within the 

dielectric. Instead, part of the electromagnetic field propagate outside through the air. 

Hence, extra caution must be taken to protect the circuit from EMI and also to prevent 

the circuit disturbing other devices. Hence, microstrip would not be suitable for 

connecting devices externally. It can only be used within a device.  

 

Since the top part of the field travels through air, and the bottom part travels 

through the substrate, the substrate material constitutive parameters alone are not 

enough to characterize the microstrip. A combination effect of air and substrate are 

required to describe the field. The field pattern of a microstrip is shown in Figure 14 . 

 

 
Figure 13 Microstrip  

 

 
Figure 14 Microstrip Field Pattern (Al-Raie, 2007) 
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As mentioned previously, the top field of a microstrip propagates through air, 

while bottom field propagates through the substrate, since both mediums have different 

permittivity, they would propagate at different speed, and therefore there is a slight 

phase difference between the two fields. Therefore, a microstrip could not support pure 

TEM field because of the different mediums. It can only support quasi-TEM mode.  

 

Besides microstrip, there are other different type of waveguide that supports 

quasi-TEM mode as shown below in Figure 15, all which can be used for PCB or IC. 

 

 

 

3.3 Waveguide 

 

Waveguide is preferred for transmission of electromagnetic wave in the microwave 

region. A waveguide carries signals in the form of wave, while, a transmission line 

carries signals in the form of current. Unlike transmission lines, a waveguide has a 

minimum operating frequency, known as the cut-off frequency, fc. Therefore, 

waveguide only allows signal with frequency above the cutoff frequency to propagate. 

Although transmission line can carry signal in the microwave region, however the 

attenuation is much higher than waveguide. 

 

 

 

 

   
Microstrip Slotline Coplanar Waveguide 

(CPW) 

Figure 15 Various Types of Transmission Lines 
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3.3.1 Metal Waveguide 

 

A metal waveguide consists of a hollow metal layer surrounding the dielectric medium, 

which is typically air. Electromagnetic wave propagates through the dielectric medium 

confined by the conductor. Due to the high conductivity of the metal, the penetration 

of the field into the conductor is negligible. The field is said to be confined within the 

conductor. A metal waveguide can vary in different shapes and sizes. The most 

common waveguide used is the circular and rectangular waveguide due to its 

simplicity to manufacture. A typical rectangular waveguide is shown in Figure 16  

 

The surface impedance of the metal waveguide is given in (3.1) below. 

 ( )1s
fZ j π µ
σ

+=   (3.1) 

 

The equation shows that at high frequency, the metal impedance increases, resulting 

in higher loss for wave propagation. Hence, a metal waveguide would not be suitable 

at extremely high frequency signal. 

 

3.3.2 Dielectric Waveguide 

 

An optical waveguide consists of a dielectric material surrounding a lower refractive 

index dielectric medium. Since there is no metal involved, conductor loss due to skin 

effect is not applicable to dielectric waveguide. Hence at higher frequency, typically 

above the optical range, a dielectric waveguide is preferred. Optical fibres used in 

communication are dielectric waveguides. The photonic signals propagate through the 

optical fibre. The propagation of light inside an optical fibre is shown in Figure 17. 

 

 
Figure 16 Rectangular Waveguide (Zykure, 2009) 
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Figure 17 Optical Fiber (Gringer, 2008) 



 

 

 

 

 

 

 

4 CIRCULAR WAVEGUIDE 

 

 

 

4.1 Introduction 

 

The propagation of electromagnetic wave in lossy waveguides has long been studied. 

The conventional method can be generally divided into two classes, i.e. a rigorous 

method such as those suggested by Stratton (Stratton, 2007) which can only be solved 

numerically and the perturbation method which results in a simpler closed form 

equation. Stratton’s rigorous method models the wave penetrating into the wall of the 

waveguide. This method uses two separate wave functions to model waves in the core 

of the waveguide as well as in the conductor wall. As waves inside the conductor wall 

are evanescent and exponentially decaying, Hankel function is used to model this 

decaying wave inside the conductor. By matching the fields at the boundary of the wall, 

a set of transcendental equations which can only be solved numerically is derived. The 

equation is able to include the formulation of the hybrid EH mode and HE mode of the 

electromagnetic field inside the waveguide. Waves in a lossy waveguide have their 

magnetic and electric waves closely coupled due to the finite conductivity of the 

conductor wall. This results in EH mode or HE mode depending either electric field or 

magnetic field dominates. In contrast, a wave in a perfectly lossless waveguide can be 

described in TE or TM field where either the longitudinal electric field or magnetic 

field is zero due to the perfectly conducting wall. Stratton’s equation is able to describe 

these waves in a lossy waveguide, i.e. EH or HE mode, as well as the degenerate modes, 

making it highly accurate. Stratton’s method is by far the most accurate formulation in 

calculating the attenuation in a circular waveguide. However it possesses a few 

disadvantages. The solution of Stratton’s equation results in a set of transcendental 
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equation, making it impossible to be solved analytically unless a few approximations 

are made (Yamaguchi, 1980). The transcendental equation needs to be solved 

numerically by using some root finding numerical methods. Depending on the 

numerical method used, some of them may result in divergence in the solution. The 

numerical method of solving the solution may also take considerable amount of 

computational time before the solution converges.  

 

Yeap (2011) has developed an alternative approach to compute losses in a 

waveguide. Instead of matching the propagating waves with the evanescent wave at 

the boundary, Yeap matches the waves inside the waveguide with the wall impedance. 

Similarly, this approach results in a set of transcendental equation which can only be 

solved numerically. Yeap’s approach can also be used to calculate the degenerate 

modes in the waveguide. However, unlike Stratton’s approach which can only be 

applied to circular waveguide, Yeap’s approach can be used in both circular and 

rectangular waveguides. Hence, Yeap’s approach is more appropriate to be used in 

situation where there is transition in waveguides with different geometries and sizes. 

 

Another method to formulate equation describing the attenuation of the wave 

propagating inside the waveguide is the perturbation method. The most commonly 

used equation is the power loss method (Balanis, 2012). This method assumes that 

waves propagating inside the waveguide are identical to those in a lossless waveguide. 

Hence, the power loss method assumes that waves do not penetrate into the wall. To 

compute loss, surface resistance is introduced into the equation. The main advantage 

of the power loss method over Stratton’s method is the simplicity of the equation. It is 

also able to describe the propagation of the wave inside the waveguide with reasonably 

good accuracy provided that the frequency of the wave is beyond the cutoff frequency. 

However, singularity exists in the power loss equation at the cutoff frequency resulting 

in infinite attenuation at the cutoff frequency. From Stratton’s equation it is known 

that when frequency of the wave is below the cut off frequency, the attenuation is high 

but not infinite. The power loss method therefore does not describe the behaviour of 

the wave propagation when the frequency is below the cutoff frequency as well as 

when the frequency is near the cutoff frequency. Another disadvantage of the power 

loss method is that the equation can only describe TM mode or TE modes separately. 

Figure 18 from Chapter 4.3 shows that the cutoff frequencies for some TE and TM 
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modes are the same. These modes are known as degenerate modes. Degenerate modes 

have their electric field and magnetic field closely coupled together. Imbriale (1998) 

has shown that when frequency of the electromagnetic wave is equal to such frequency 

that allows degenerate mode to propagate, the attenuation constant is not simply the 

addition of TE and TM mode, rather there will be coupling effect between the modes 

that causes the attenuation constant to be higher. The result of Imbriale’s derivation is 

shown below. As the power loss equation only calculates either TM mode, (where Ez 

= 0), or TE mode (where Hz = 0), it fails to take into account the mode coupling effect. 
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  (Eq. 4.1) 

 

A new method which is able to compute the attenuation in a circular waveguide 

is presented in this chapter. The new method is a closed form solution which is able to 

compute the attenuation of wave propagating inside a circular waveguide with 

reasonably high accuracy. The new method is modified from Yeap’s method. Yeap’s 

method results in a set of transcendental equation which can only be solved using a 

root finding algorithm. Here, modifications are made in order to modify Yeap’s 

equations into closed-form. 
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4.2 Fields in Circular Cylindrical Waveguides 

 

From APPENDIX A: Helmholtz Equation, (A.5), E


 is the electric field vector, which 

contains three components to describe the behaviour of the electromagnetic wave in 

three dimensions. In cylindrical coordinate, the field can be decomposed into 

  

z zE EE a a aEρρ φ φ= + +


. The same is true for the H


 in (A.7).The Laplacian of a 

vector can be found using the identity as shown below. 

 ( )2 AA A= ⋅ − × ×       (4.2) 

 

Using the Laplacian identity (4.2) above, the Laplacian of electric field can be found 

as below 
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Substituting the result of (4.3) and (4.4) into the Laplacian identity in (4.2) the 

Laplacian of the electric field is obtained as shown in (4.5) 
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Using the result of the Laplacian of the electric field (4.5), the Helmholtz vector 

equation from (A.5) can be decomposed to three separate scalar wave equations as 

shown below 

 2 2
2 2

12 dE
E E E

d
φ

ρ ρ ργ
ρ φ ρ

=−−   (4.6) 

 2 2
2 2

12 dE
E E E

d
ρ

φ φ φγ
ρ φ ρ

=−+   (4.7) 

 2 2
z zEE γ=   (4.8) 

 

(4.6) and (4.7) are coupled where each contains more than one electric component 

which are difficult to solve. Therefore, (4.8) are used for the field derivation. From 

(4.8), assuming lossless where jγ β=  , and given 2β ω µ=    

, the wave equation becomes  
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The solution to the partial differential equation (4.9) above can be solved analytically 

using the separation of variables method. Let ) ( ( )( )z GE zF Hρ φ=  , the equation 

above becomes 
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(4.10) can be expressed as 

 ( )2
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25 

where ρβ  is the wave vector in ρ  direction and 2 2 2
zρβ β β= − . Equation (4.13) is the  

Bessel’s Differential Equation and the solution to the differential equation can either 

be 

 ( ) ( )(( ) )z m m m mE A J B YF ρ ρρ ρ β ρ β ρ= = +   (4.14) 

or 

 ( ) ( )(1) (2)) )( (z m m m mF HE C HDρ ρρ ρ β ρ β ρ= = +   (4.15) 

where, mA , mB , mC  and mD  are constants.  

 

( )mJ ρβ ρ  is the Bessel’s function of the 1st kind. The Bessel’s function of 1st 

kind can be approximated as  
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 ( )mY ρβ ρ  is the Bessel’s function of the 2nd kind. It can be approximated as 

 ( ) 2 sin when  1
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 ( )(1)
mH ρβ ρ  is the Hankel function of the 1st kind and is defined as 

( ) ( )(1) )(m m mJ jYH ρ ρ ρβ ρ β ρ β ρ= + . It can be approximated as  
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 (2) ( )mH ρβ ρ  is Hankel’s function of the 2nd kind and is defined as  

( ) ( )(2) )(m m mJ jYH ρ ρ ρβ ρ β ρ β ρ= − . It can be approximated as  
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From equation(4.11), solution to ( )H z  is 

 ( ) ( ) e ez zj z j z
zz E z AH Bβ β−+= =   (4.20) 

or 

 ( ) ( )c( ) ( ) so is nzH z E z C m D mφ φ= = +   (4.21) 

where A , B  ,C  and D  are constants 

 

From equation(4.12), solution to )(G φ  is 

 ( ) ( ) jm jm
zE EG Fee φ φφ φ −= = +   (4.22) 

or 

 ( ) ( )c( ) ( ) so is nzG E G m H mφ φ φ φ= = +   (4.23) 

where E , F  ,G  and H  are constants 

 

The results above show that there are 2 solutions for each partial differential 

equation in (4.11), (4.12) and (4.13). The solution are chosen to ease the calculation. 

For standing wave, boundary conditions are needed to be imposed onto the field. 

Hence, cosine and sine functions are chosen to represent standing waves as it is easier 

to impose boundary condition. Exponential solutions are chosen to represent travelling 

waves. Bessel function from the approximation in (4.16) and (4.17), which contains 

sine and cosine function is used to represent standing waves. Similarly, Hankel 

function from the approximation in (4.18) and (4.19), which contains exponential 

function, is used to represent travelling wave. Bessel function of the 2nd kind possess 

singularity at 0ρ =  therefore mB  needs to be set to zero as the field inside the 

waveguide must be finite. By assuming wave traveling in the z+  direction, the 

solution for the wave reduces to 

 ( ) ( )cos e zj z
z m m mE A J β

ρβ ρ φ −=   (4.24) 

or 

 ( ) ( )(2) cos e zj z
z m mE A H m β

ρβ ρ φ −=   (4.25) 

 

Equation (4.24) is used to represent waves travelling within a perfect conductor 

where the wave does not penetrate into the conductor wall and equation (4.25) is used 

to model wave in a lossy conductor where waves penetrate into the conductor. The 
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same solution from equation (4.24) and (4.25) can also be used to represent the z  

direction magnetic field, zH  inside the waveguide. 

 

Transverse Electromagnetic Field 

The solution in (4.24) and (4.25) is used to obtain field in the z direction. The 

transverse field in the ρ  andφ  direction are obtained from equation (4.26) below. The 

equation below shows that all the transverse field are obtained by taking the derivative 

of the axial field, zE  and zH  . The equation shows that either zE  and zH  can be zero, 

i.e. as in transverse electric (TE) or transverse magnetic (TM), but not both together, 

i.e. transverse electromagnetic (TEM) field. Therefore a waveguide could not support 

TEM field as in coaxial cable. 
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Transverse Electric Field 

For transverse electric (TE) field where 0zE = , the corresponding field would be 
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where, mA′  is the constant for TE field. )' (mJ ρβ ρ  is the first order derivative of Bessel’s 

function. The electric field tangential to the conductor is zero. Therefore, the boundary 

condition for TE field would be 0
a

Eφ ρ=
=  Implying that the derivative of the Bessel 

function is zero, ( ) 0'mJ aρβ =  , 'mnaρβ χ=  .Where 'mnχ  is the nth root of the first 

order Bessel’s function derivative. 

 

Transverse Magnetic Field 

For transverse magnetic (TM) field where Hz = 0, the corresponding field would be 
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  (4.28) 

 

where, mA  is the constant for TM field. )' (mJ ρβ ρ  is the first order derivative of 

Bessel’s function. Similarly, the electric field tangential to the conductor is zero. 

Therefore, ( ) 0mJ aρβ =  , mnaρβ χ=  ,where mnχ  is the nth root of the Bessel’s 

function. 

 

 

 

4.3 Cutoff Frequency for Circular Waveguide 

 

As mentioned previously, waveguide acts like a high pass filter where only 

electromagnetic wave with frequency exceeds the cutoff frequency, cf   are allowed to 

propagate inside the waveguide. The condition which allows wave to propagate inside 

waveguide is ρβ β>  , where 2 cfβ π µ=    



29 

The cutoff frequency can be obtained as follow 

 
2cf

ρβ
π µ

=


  (Eq. 4.29) 

 

For TE field where, 'mn

aρ
χβ = , The cutoff frequency is  

 '
2

mn
cf a

χ
π µ
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

  (Eq. 4.30) 

 

whereas for TM field, mn

aρ
χβ = , the corresponding cutoff frequency is 

 
2

mn
cf a

χ
π µ

=


  (Eq. 4.31) 

 

The result above shows that the cutoff frequency varies with the diameter of 

the waveguide, a as well as the propagation mode of the field, m and n. Figure 18 

below shows the cutoff frequency for different mode in a circular waveguide. From 

the figure it can be seen that some modes have the same cutoff frequency such as TM11 

and TE01. These modes are known as the degenerate mode. Degenerate modes have 

their field closely coupled together where the Hz field from TE and Ez field from TM 

are coupled together. The mathematical formulation that shows the coupling effect of 

TE and TM degenerate modes is studied extensively (W. A. Imbriale, 1998) 

 

 
Figure 18 Normalized Cutoff Frequency for Different Field in a Circular Waveguide 

(C.S. Lee, 1985) 



30 

4.4 A Review of Some Conventional Methods 

 

This chapter presents the analysis and comparison among the power loss method, 

Stratton’s method and Yeap’s method. Derivations of these methods are presented in 

a comprehensive and orderly manner. 

 

4.4.1 A Review of the Power Loss Method 

 

The power loss method assumes that most of the losses are due to conduction loss. As 

current is induced on the conductor wall, the power of the input electromagnetic wave 

is lost due to the law of conservation of energy. The input to output power of a 

waveguide can be described from the equation below (4.32) 

 2e c
z

z
oP P α−=   (4.32) 

 

where, zP  is the average power flowing through the cross section of the conductor wall 

for a given length   and 0P  is the input average power. The average power dissipated 

per unit length   is obtained by taking the negative derivative of equation (4.32) 

 z
c

d
z

P P
d

= −   (4.33) 

 

From (4.33), the attenuation due to the conductor, cα  is 

 
2c

z

cP
P

α =   (4.34) 

 

The average power flowing through the cross section of the conductor wall, zP  can be 

obtained by taking the integral of 

ave za⋅ ,  

 

2

0 0z ave

a

za d dP
π

ρ ρ φ⋅= ∫ ∫    (4.35) 
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where ave  is the average power of the electromagnetic wave, and it is given by 

 

{ }
  ( )

 ( )

*

* * * *

* *

1
2
1
2
1
2

ave

z z

ave z

E H E

E H

H a E a

HE Ha E

H E Hφ ρ ρ φ ρ φ φ ρ

ρ φ φ ρ

×

 = ⋅ + ⋅ + 

⋅ −

=

− −

=

 





  (4.36) 

 

The average power loss at the conductor wall, cP  can be obtained from  

 L
c

PP =


  (4.37) 

 

where LP is the total power loss and it is obtained by taking the integral of the current 

density at the wall surface as shown in (4.38) 

 *

2
s

L s sa A

R JP dAJ
ρ=

= ∫∫
 

  (4.38) 

 

where the surface current, sJ is calculated from the magnetic field as shown 

 ˆs surfacen HJ ≈ ×   (4.39) 

 

The calculation using the power loss method is shown below. A separate set of 

equation for TM and TE are obtained. 

 

Transverse Magnetic Field 

 

The first step is to obtain zP . Using (4.35) and (4.36) on the TM field equations from 

(4.28), zP  is obtained as shown 

 ( ) ( ) ( ) ( )
2

2 2 2 2

2

0

2

0

2 ' sicos ' n
2z m m m

a

mA m JP J m d d

π

ρ ρ
ρ ρ

ω β β ρ φ β ρ φ ρ ρ φ
β ρβ

  
 + ⋅    

=


⌠ ⌠
 


⌡⌡

  (4.40) 
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Applying trigonometric identities on (4.40) and taking the integral with respect to φ  , 

(4.40) becomes 

 ( ) ( )
2

2 2 2

0

2 '
2

a

z m m mP J dA Jm
ρ ρ

ρ ρ

ω βπ β ρ β ρ ρ ρ
β ρβ

 
+ ⋅  

 
 =
   

⌠


⌡

   (4.41) 

 

To simplify (4.41), Bessel’s recurrence relations are applied. The two Bessel’s 

recurrence relations applied here are 

 1 1

1 1

2( ) ( )

(

( )

) ( ) 2 ( )

v v v

v v v

vJ z z J z
z

J z J z

J

J z

− +

− +

=

′

+

− =
  (4.42) 

 

Applying Bessel’s recurrence relation from (4.42) to (4.41), the equation becomes 

( ) ( ) ( ) ( ){ }

( ) ( )

2 22
2

1 1 1 112

2 2 2

0

2 0 1 1

1 1
2 2 2 2

4
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A J J d
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ρ ρ ρ ρ

ρ ρ

ρ ρ
ρ

β ρω βπ β ρ β ρ β ρ β ρ ρ ρ
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ω βπ β ρ β ρ ρ ρ
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− +

 
− + +

     =   ⋅  


    

 = + ⋅

   



⌠


⌡

∫





 (4.43) 

 

The Bessel’s Integral Identity in (4.44) is substituted in (4.43) to obtain (4.45) 

 ( ) [ ]
2

2
1 1( ) ( ) ( )

2

b
b

m m m ma
a

xcx J cx J cxxJ d J cx x− += −∫   (4.44) 

 

( ) ( ) ( ) ( ) ( ) ( )
2

2 2 2
1 2 1 224 2z m m m m m m m

aAP J a J a J a J a J a J aρ ρ ρ ρ ρ ρ
ρ

ω βπ β β β β β β
β + + − −

 − += − 
   (4.45) 

 

Applying the boundary condition for TM mode, i.e. ( ) 0mJ aρβ =  and the Bessel’s 

recurrence relation in (4.42), zP  becomes 

 ( )
2

2 2
124z m mP Ja aA ρ

ρ

ω βπ β
β +=
   (4.46) 

 

The next step is to find LP .Substituting the field equation (4.28) into (4.39) and using 

(4.38) and (4.37), the average power loss at the conductor, cP  is obtained as shown in 

(4.47) 
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 ( )
2

2
's

c m m
a J aRP A ρ

ρ

π ω β
β
 
 


=
 

   (4.47) 

 

Finally substituting the result from (4.46) and (4.47) into (4.34), the attenuation 

constant becomes 

 
( )
( )

2

2
1

's m
c

m

J

a

R a

J a
ρ

ρ

ω β
α

β β+

=


  (4.48) 

 

Bessel’s recurrence relation: 

 1( )' ( () )n n n
nx J x J xJ
x

α α α
α++ =   (4.49) 

 

Substitute ( )21 cf fβ ω µ= − and apply Bessel’s recurrence relation (4.49) into 

(4.48), the equation becomes (4.50) 

 

 
( )21

s
c

ca

R

f f
α

η −
=   (4.50) 

where, µη =


  

 

Transverse Electric Field 

 

Similarly for TE mode, apply the field equation in (4.27) into (4.35), and apply the 

Bessel’s recurrence relation, the equation for zP  becomes 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2

2 2
2 2 1 12 4 ' 2

4 2z m m m m m m m mP J J J J J JaA J a a a a a a aρ ρ ρ ρ ρ ρ ρ
ρ

ωµβπ β β β β β β β
β + − − +

 = − − + 
  (4.51) 

 

Applying the boundary condition for TE mode, i.e. substituting ( )' 0mJ aρβ =  into 

(4.51), the equation simplifies to 

 ( )
2

2
2 2

2 12
4 2z m m

maP A J aρ
ρ ρ

ωµβπ β
β β ρ

     = −         
  (4.52) 
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To obtain the power loss due to conduction, applying the TE field equation into (4.37) 

and the result is 

 ( )
2

2
1

2
s

c m m
R ma A JP

aρ
ρ

π ββ ρ
β

     +       
=

 
  (4.53) 

 

Substituting the result from (4.52) and (4.53) into (4.34), with some simplification, the 

attenuation constant for TE mode is obtained as shown below 

 
2

2 2 22

2 1

1

s c
c

c

R f m
a f a mf

f
ρ

α
η β

 
⋅ ⋅ + 

−   
−


=

 


  (4.54) 

 

4.4.2 A Review of Stratton’s Method 

 

This method uses two sets of equation. One sets describing the wave inside the 

waveguide, i.e. aρ <  . Another sets of equation describe the wave in the conductor, 

i.e. aρ >  as shown in Figure 19. 

 

Wave propagates inside the conducting metal surrounding the waveguide and 

decays exponentially at the conducting metal layer. To simplify the calculation, the 

outer layer is approximated as having infinitely large radius as shown Figure 20. 

 

 
Figure 19 Circular Waveguide (Jin, 2010) 
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The field equation can therefore be separated into inner layer and outer layer. 

The inner layer consists of Bessel’s function while the outer layer can be described 

using Modified Bessel’s function to describe the exponentially decaying wave. The 

field equations are obtained from (4.24) and (4.25) 

 

Field equation 
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1 1 1
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) e
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where 

 1
2 2

1 zρβ ω µ γ−=    (4.57) 

 2
2 2

2 zρβ ω µ γ−=    (4.58) 

 

 

 
Figure 20 Simplified Waveguide Model (Jin, 2010) 
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Inside the conducting metal, the wave decays exponentially which implies that 
2 2

2zk ω µ>   . Therefore, 2 2jρ ρβ β= −  and (4.58) can be rewritten as 

 2
2

2
2 zρβ γ ω µ= −    (4.59) 

 

The Hankel function of imaginary number can also be represented by modified 

Bessel’s function 

 ( ) ( )(2) 1
2 2

2 m
m mjH j Kρ ρβ ρ β ρ

π
+− =   (4.60) 

 

Where ( )2mK ρα ρ  is the modified Bessel’s function. Figure 21 below shows modified 

Bessel’s function plotted against x  which indicate an exponentially decaying function 

as x  increases. 

 

Therefore, the equation for the outer layer can then be written as 
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Figure 21 Modified Bessel's Function of Second Kind 
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The transverse field equation inside the waveguide as well as inside the conducting 

metal is shown below in (4.61) and (4.62) respectively expressed in matrix form. The 

field equation for the transverse field are obtained from (4.26). 
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 (4.62) 

 

The boundary condition is shown below, where the tangential field inside the 

conductor and outside the conductor must be same, i.e. 1 2T TE E=  and 1 2T TH H=  at 

the boundary. 
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  (4.63) 

 

Equating the z field result in the equation below 
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By matching the boundary condition for φ  direction, the field equation at the boundary 

becomes 
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Using the result from (4.64) to eliminate 2A  and 2B  , the equation (4.65) and (4.66) 

reduces to (4.67) and (4.68) respectively as shown below. 

 

 
( )
( )

( )
( )

1 2
1 12 2

1 2 1 21 2

'
01 1 m mz

m m

J amA
K

J
B

Ka a
ρ ρ

ρ ρ ρ ρρ ρ

β β ργ µ µ
ω β β β ββ β ρ

  
− =  

′

     
+ +   (4.67) 
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Sorting the equation in (4.67) and (4.68) to a single matrix form. 
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To have a non-trivial solution for 1A  and 1B  , the determinant of the coefficient matrix 

in (4.69) must vanish. Taking the determinant of (4.69) and equating it to zero as 

shown in (4.70). 
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(4.70) gives a set of transcendental equation shown in (4.71) 
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let 
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where 0 0 0k ω µ=    

 

The equation in (4.71) simplifies to  
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Expanding the equation in (4.73) 

( )
( )

( )
( )

( )
( )

( )
( ) ( ) ( )

2 2 2
21 2

1 22 2 2 2

1 1 1m m m mr r
r r

m m m m

J K J K
m

u J v K uv J K u
u v u

v
v

u v u v
δ  + +

   ′ ′ ′ ′
= +      


+  

   
 

    (4.74) 
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In the case where perfect conductor with infinite conductivity field is assumed, TE and 

TM mode can propagate, however for a lossy conductor with finite conductivity, such 

field should not exist, only EH or HE mode exist in lossy waveguide. For 

simplification, assume a perfect conductor, the field vanishes inside the conductor, 

where 2 0E φ =  From (4.65), let 2 0E φ = , the equation now becomes, 

 ( ) ( )1 1 1 1 12
1

1 0'z
m m

mA J
a

B J aaρ ρ ρ
ρ

γ β ωµβ β
β

  =  
−   (4.75) 

 

From (4.55), 1A  represents the electric field while 1B  represents the magnetic field. In 

the case of TE mode, where 1 0A =  , (4.75) indicates that TE mode can be found by 

finding the root of  

 
( )
( )

1

1

'
0m

m

J a

J a
ρ

ρ

β

β
=   (4.76) 

 

On the other hand, for TM mode, 1 0B =  , the TM mode can be found by finding the 

root of  

 
( )
( )

1

1

0
'
m

m

J a

J a
ρ

ρ

β

β
=   (4.77) 

 

A close inspection of (4.73) shows that the equation can only be used to find TE mode 

as it contains 
( )
( )

1

1

'm

m

J a

J a
ρ

ρ

β

β
 . The equation needed to be modified for TM mode (G. 

Yassin, 2003). By multiplying the equation (4.73) with ( )
( )

2

'
m

m

J u
J u

 
  
 

, the modified 

equation to calculate TM mode is 
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( )

( )
( )

( )
( )

( )
( ) ( ) ( ) ( )

( )

2 2 22
21 2

1 22 2 2 2

1 1 1
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v u u v u
v u u v

K J J K J
m

u v K J uv J uK u v J
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     ′ ′
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 + +        


+ 
   


  

 
    (4.78) 
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Case m=0 

When m=0, where the field isTE0n TM0n, the field is said to be axis symmetric. The 

equation can be further simplified to 

 ( )
( )

( )
( )

( )
( )

( )
( )

1 21 1 0m m m mr r

m m m m

J K J K
u J v K u J v

u v u v
Ku v u v

′ ′ ′ ′  
=    

  
+ +

    (4.79) 

 

which yields 

 ( )
( )

( )
( )

1 1 0m m

m m

J u K v
u J u v K v

′ ′
+ =   (4.80) 

or 

 
( )
( )

( )
( )

1 21 2

1 2

0m mr r

m m

J a K
u vJ a aK

aρ ρ

ρ ρ

β α

β α

′ ′
+ =

    (4.81) 

 

(4.80) indicates that 1 0A =  ; 1 0B ≠  , which shows that 0zE ≠ ; 0zH = , indicating the 

field is TM0n. Solving the equation in (4.80) together with the relation from (4.72), the 

propagation constant, zγ  can be obtained. Similarly, (4.81) indicates that 1 0A ≠ ;

1 0B =  indicating it is a TE0n field. 

 

Case m ≠ 0 

In the case where m ≠ 0, it shows that Ez and Hz fields are coupled, and neither of them 

can be equal to zero, indicating that neither pure transverse electric (TE) or pure 

transverse magnetic (TM) can exist inside the waveguide. The field exist in the 

waveguide are hybrid EHmn or HEmn depending either electric field dominates or 

otherwise. The propagation constant needed to be solve numerically by finding the 

root of equation (4.73) for HEmn or equation (4.78) for EHmn mode. 

 

4.4.3 A Review of Yeap’s Method 

Yeap’s method matches the field inside the waveguide to the wall impedance of the 

waveguide. The surface impedance of the metal wall are given by (Cheng, 1991) 

 t c

cn t

E
a H

µ
=

×



 


  (4.82) 
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Where cµ  and c  is the permeability and permittivity of the conductor wall. The 

permittivity of conductor is a function of frequency and its given by. 

 0
c

c jσ
ω

= −    (4.83) 

 

The axial field in a circular waveguide is given by 

 ( )cos j
m

t z
z mE mA J e ω γφ −=   (4.84) 

 ( )' sinm
j t z

z mH mA J e ω γφ −=   (4.85) 

 

To the tangential field inside the waveguide, substitute the axial field in (4.84) into 

(4.26), following equations which describes the tangential field are obtained. 

 ( ) ( ) ( ) ( )02 sin ' ' n1 siz
m m m mE Jn A m j C J mφ ρ ρ ρ

ρ

γ β ρ φ ωµ β β ρ φ
β ρ

= +
 
 
 

  (4.86) 

 ( ) ( ) ( ) ( )02 ' cos ' cos1 z
m m m mH J j AA mn m Jφ ρ ρ ρ

ρ

γ β ρ φ ω β β ρ φ
β ρ

= − +
 
 
 

   (4.87) 

 

Simplifying the surface impedance equation in (4.82), two set of equations are 

obtained as follow 

 c

z c

E
H

φ µ
=


  (4.88) 

 cz

c

E
Hφ

µ
− =


  (4.89) 

 

Substituting the field equation (4.84), (4.85), (4.86) and (4.87) into (4.88) and (4.89), 

the following equations are obtained. 

 ( )
( )

0
2

'
' 0m cz

m m
m c

u
A

j Jm
a J

A
uρ ρ

ωµ µγ
β β
   

+ =   
    

−
  

  (4.90) 

 ( )
( )

0
2

'
' 0m c z

m m
m c

u
A A

u
j J m

J aρ ρ

ω γ
β µ β

   
+ =   

      
−

    (4.91) 

 

where  

 ( )2 2 2 2
0zu k aγ= +   (4.92) 
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To have a non-trivial solution, the determinant of the equation above must vanish. 

Solving the determinant of the above equation and equate it to zero, it will result in the 

following transcendental equation. 

 ( )
( )

( )
( )

2
2 2

0 0

' 'm mc c z

m c m c

J Ju u
u u

mj j
J J aρ ρ ρ ρ

µ γωµ β β ω β β
µ

     =        
−


−





  (4.93) 

 

Similar to Stratton’s approach, the equation are only applicable to TE modes as TM 

mode will result in singularity in the ratio ( )
( )
'm

m

J u
J u

. Hence, the equation is multiplied 

with ( )
( )'

m

m

J u
J u

, to remove the singularity. Hence the equation in (4.93) become as 

follow 

( )
( )

( )
( )

( )
( )

2

2 2
0 0' ' '

m m mc c z

c m c m m

u u uJ J Jmj j
J J au uJuρ ρ ρ ρ

µ γωµ β β ω β β
µ

− −
     

=     
    





  (4.94) 

 

 

 

4.5 The New Method 

 

The new method proposed here is a modification from Yeap’s method, changing it 

from its transcendental form into closed form. Yamaguchi (1980) has first developed 

the closed form equation based on the Stratton’s equation. Yamaguchi performed 

approximation to Stratton’s equation using the Finite Difference Method. In this new 

method, his idea was adopted and modified to be used on Yeap’s transcendental 

equation. 

 

To convert the transcendental equation into closed form, several assumptions 

are imposed to the equation. The first assumption is that the frequency of the signal 

must be relatively close to the cutoff frequency. Hence, the variable of the Bessel 

function will be close to the root. The second assumption is that the conductor wall is 

assumed to be made of a very good conductor with high but finite conductivity. Unlike 

the power loss method, which results in infinite attenuation at cutoff frequency due to 
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the perfect conductor assumption, these assumptions result in a finite attenuation at the 

cutoff frequency, 

 

4.5.1 Transverse Electric Mode 

The transcendental equation in (4.93) is first developed, which will result in the 

following equation. 

 ( )
( )

( )
( )

2 2
4 3 2 2

0 0 0 0

' 'm mc c z

c c m m

J J m
J

u
u uJ a

u
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− =   
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 
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 (4.95) 

 

To simplify the above equation, ignore the ( )
( )

2
'm

m

u
J u
J 

 
 

term, as the value will be small 

for a good conductor. Using the equation (4.92), the simplified equation is shown as 

follow 
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


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  (4.96) 

 

The first derivative of the Bessel function of a circular waveguide with perfect 

conductor will have roots at nmu  and it’s given by 

 ( )' 0m nmJ u =   (4.97) 

 

However, if the conductor has high but finite conductivity, the Bessel function variable 

will be close to the root, hence the Bessel function variable can be approximated as 

follow 

 nmu uu= + ∆   (4.98) 

where u∆  is the perturbation term 

 

The Bessel function then becomes as follow 

 ( ) ( )' 'm m nmu J uJ u= + ∆   (4.99) 
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Using the Finite Difference Method (FDM), the second derivative of the Bessel 

function can be approximated as follow 

 ( ) ( ) ( )' '
'' m nm m nm

m nm

J uu J u
J

u
u

+ ∆ −
=

∆
  (4.100) 

 

However, ( )' 0nmJ u =  for TE mode, hence the equation reduced to 

 ( ) ( )' ''m nm m nmuJ J uu u+ =∆ ∆   (4.101) 

 

Using the Bessel recursion as follow, the FDM equation can be rewritten by 

substituting (4.102) into (4.100) and obtained the equation (4.103) 

 ( ) ( )
2

'' 1m mJ x J xm
x

   = −  
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  (4.102) 
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J u
u

u

∆ ∆

 
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  (4.103) 

 

The Bessel function can be approximated as those with perfect conductor, hence the 

following can be obtained 

 ( ) ( )m m nmJJ u u≈   (4.104) 

 

The ratio ( )
( )
'm

m

J u
J u

 can be simplified to as follow 

 ( )
( )

2

2

'
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m nm

u
u

uu
J
J

m 
≈ − ∆ 
 

  (4.105) 

 

Substituting (4.105) into (4.96), (4.106) can be obtained to calculate u∆   
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  (4.106) 
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From (4.92), the following relation is obtained. 

 

2
2

02

2 2
2

02

2

z

nm nm

k

u u k

u
a

u u
a

γ =

+ ∆ + ∆
−=

−
  (4.107) 

 

The propagation constant can then be obtained by substituting (4.106) into (4.107) 

 

4.5.2 Transverse Magnetic Mode 

 A similar approach is used to calculate the equation for the TM mode. First equation 

(4.94) is expanded as shown below 
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Ignoring the square term and with some simplification (4.109) can be obtained 
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  (4.109) 

 

For TM mode with perfect conductor, the Bessel function with root nmu  is given by 

 ( ) 0m nmJ u =   (4.110) 

 

The Bessel function with finite conductivity wall can be approximated as follows 

 ( ) ( )m m nmJ u J u u= + ∆   (4.111) 

 

The FDM equation of the first derivative of Bessel function is as follows 

 ( ) ( ) ( )' m nm m nm
m nm

u J u
J

u
u

J
u

∆+ −
∆

=   (4.112) 

 

The FDM equation can be simplified to follows using (4.110) 

 ( ) ( )'m nm m nmuJ J uu u+ =∆ ∆   (4.113) 
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The first derivative of the Bessel function can be approximated as those of perfect 

conductor as follows 

 ( ) ( )' 'm m nmJJ u u≈   (4.114) 

 

The ratio ( )
( )'

m

m

J u
J u

 can then be simplified as follows 

 ( )
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m
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J
J

u
u

u≈ ∆   (4.115) 

 

Substituting (4.115) back to (4.109), it results in equation (4.116)  
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The propagation constant for TM mode can be obtained by substituting (4.116) into 

(4.107) 

 

 

 

4.6 Results and Discussion 

 

Figure 22 shows the comparison of attenuation of TE11 mode before cutoff computed 

from Stratton’s method, Yeap’s method, power loss method, the new method and the 

experimental result. From the result it can be seen that the power loss fails to describe 

the attenuation below cutoff as the attenuation diverges to infinity. All the other 

methods, including the experimental result agrees that the attenuation below cutoff 

increases sharply, but the values are finite. The solution from the new method is very 

close to Yeap’s transcendental solution, in fact it is indistinguishable from the plot. 
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Figure 22 Attenuation of TE11 mode in a hollow circular waveguide with radius a = 

5.8533 mm 

 

 

Figure 23 and Figure 24 shows the attenuation of TE11 and TM11 mode 

computed from the Stratton’s method, Yeap’s method, power loss method and the new 

method. From the result it can be seen that the new method is very close to Yeap’s 

method when the frequency of interest is around the cutoff frequency. The power loss 

method on the other hand diverges in infinity at the cutoff frequency. This solution 

would deem as invalid. Wave can still propagate even below the cutoff frequency as 

shown in Figure 22. This implies that the attenuation cannot be infinite.  
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Figure 23 Attenuation of TE11 in a circular waveguide with radius a = 5.8533 mm 

 

 
Figure 24 Attenuation of TM11 in a circular waveguide with radius a = 8.1mm 

 

Based on the wave-particle duality, electromagnetic waves can be described as 

particle. According the quantum mechanics, particle can tunnel through a barrier 

through quantum tunnelling effect. The electromagnetic wave can then be seen as a 

particle tunnelling through a barrier as it passes through the waveguide with higher 

cutoff frequency than the wave. As it tunnels through the waveguide, the wave 

amplitude decreases exponentially. As long as the wave amplitude does not decreas to 

zero, the wave will propagate. To prevent the wave to travel through the barrier, the 
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barrier would need to have an infinite potential energy. To create this infinite potential 

energy, it would requires a perfect conductor, such as those assumption made in the 

power loss method. Hence it can be seen that the power loss method results in an 

infinite attenuation at cutoff frequency, which prevents wave to propagate below the 

cutoff frequency. 

 

Figure 25 and Figure 26 shows the comparison of various result when applied 

to higher frequency. From the result it can be seen that as the frequency increases well 

beyond the cutoff frequency, the result of the new method starts to diverge from Yeap’s 

method. At lower frequency, both the new method and the Yeap’s method are 

indistinguishable. However, when the frequency increases, the solution of the new 

method starts to diverge from Yeap’s solution. This is due to the assumption made. 

The new method assumes that the wave attenuation is the result of small perturbation 

term added to the perfect TE or TM mode. However, as the frequency increases, 

perfect TE and TM mode are no longer a valid assumption. At high frequency, the 

mode becomes a hybrid EH or HE mode, i.e. 0, 0z zE H≠ ≠  . Hence, the exact 

solution is no longer a small perturbation added to a perfect TE or TM mode. This 

causes the solution to the new method deviate from the exact solution of Yeap’s 

method. 

 

 
Figure 25 Attenuation of TE11 in circular waveguide from 0 GHz to 1000 GHz 
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Figure 26 Attenuation of TM11 in circular waveguide from 0 GHz to 800 GHz 

 

Figure 27 below shows the attenuation of TE11, TE01, TE02, TM11 and TM01 

mode calculated using the new method. From the result, it can be seen that for a 

circularly symmetric mode, TE0n will have its attenuation decreases monotonically 

with frequency. TE0n is known as circularly symmetric mode. In such mode, the 

electric field lines are circular, while the only magnetic field lines are zH  . However, 

for a fixed input power, zH  decreases as frequency increases. Simultaneously, the 

current density and the conductor losses of the waveguide wall decreases. Hence, the 

attenuation of TE0n decreases as frequency increases. 
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Figure 27 Comparison of Attenuation of TE11, TE01, TE02, TM11 and TM01 mode 

 

Figure 28 shows the attenuation computed using the new method. The figure 

shows the effect on the attenuation as the conductivity of the wall is varied. From the 

result it can be seen that lower conductivity results in lower attenuation when the 

frequency is above the cutoff frequency. Below the cutoff frequency, however, it can 

be seen that the attenuation is actually lower as conductivity reduces.  

 

 
Figure 28 Comparison of different wall conductivity in hollow metal waveguide with 

radius a = 5.8533 mm for TE11 mode 
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This is because, as the conductivity increases, the metal wall approaches to 

those of perfect conductor. For a perfect conductor, the attenuation approach infinity 

at cut-off frequency as shown from the power loss method. Therefore, the attenuation 

is higher when the frequency is below cut-off for higher conductivity. On the other 

hand, the attenuation is lower for higher conductivity when frequency is beyond the 

cut-off frequency. This is because higher conductivity result in lower conductor loss, 

which decreases the attenuation.  

 

When the conductivity is closer to zero, the attenuation curve approaches a 

more linear curve. When the wall’s conductivity drops, the wave will penetrate more 

to the wall, i.e. the skin depth will increase. This is similar to those of dielectric 

waveguide, where the wave penetrate into the wall. This causes attenuation curve more 

linear. Hence, from the figure it can be seen that at high conductivity, the attenuation 

curve has a sharp turning point between the evanescent region and propagating region. 

On the hand, as the conductivity decreases, the evanescent and propagating region 

become more linear at the cut-off point.  

 

The dielectric used in the waveguide is air which has near zero conductivity. 

When the conductivity of the wall approaches zero, the boundary between the air and 

the wall becomes fuzzy. When the conductivity of the wall is same as the air, the wall 

can no longer confine the wave and act as waveguide. Therefore, there will be no 

evanescent and propagating region as seen in the figure when conductivity approach 

zero. 

 

Figure 29 below shows the difference of the new approximate’s solution and 

Yeap’s method. From the result it can be seen that as the conductivity decreases, the 

result from the approximate’s solution starts to diverges from Yeap’s solution. At 

lower conductivity, the assumption of perfect TE and TM mode no longer valid. The 

wave will propagate with a hybrid mode. Similar to the argument made in the high 

frequency figure, i.e. Figure 25 and Figure 26, based on the assumption made earlier, 

that the attenuation is equal to those of a small perturbation term added to those of 

perfect TE and TM is no longer valid. Therefore, as the conductivity decreases, the 

solution from the new method start to diverge. 
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Figure 29 Difference of Yeap's Solution and the new method at low conductivity. Red 

solid line is the result from Yeap’s method, black dotted line is the result from the new 

method. 

 

 

 

4.7 Summary 

 

A new method that is modified from Yeap’s transcendental equation has been 

formulated. The new method transforms the transcendental equation into closed form. 

This is based on the assumption that wave propagation in a practical conductor can be 

approximated as in a perfect conductor with an inclusion of a small perturbation term. 

The new method has the advantage of being simpler and give more intuitive insights 

than the transcendental equation. A transcendental equation requires a root finding 

algorithm to solve for the root. Appropriate initial guesses are required in order to 

allow the solution to converge. A closed form equation has none of these problems and 

the computation time required to solve the closed form is shorter than the 

transcendental equation. This allows the closed form equation to be used in real time 

application. 

 

Based on the result obtained, the loss predicted by the new method is in close 

agreement with the experimental measurement and those found in Yeap’s and 

σ = 101 

σ = 102 

 

σ = 103 
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Stratton’s methods. The new method is able to give a reasonably accurate solution to 

compute attenuation in a waveguide. 



 

 

 

 

 

 

 

5 RECTANGULAR WAVEGUIDE 

 

 

 

5.1 Introduction 

 

An equation to calculate the loss in a rectangular waveguide is difficult to formulate 

rigorously due to the difficulty in boundary matching. Stratton’s equation is therefore 

not available for rectangular waveguide for this reason. 

 

The power loss method for rectangular waveguide is similar to that mentioned 

in the circular waveguide. Hence it would not be able to compute the attenuation when 

the signal frequency is below the cutoff frequency of the waveguide due to the 

assumption of perfect conductor. It is also unable to take into consideration of the 

presence of cross coupling effect in degenerate modes. 

 

Papadopoulos (1953) has developed a method which accounts for the mode 

coupling effect. It is a perturbation method where it assumes that the fields in a lossy 

waveguide can be expressed as a linear combination of fields in a lossless waveguide. 

It is to be noted, however, that the loss for TM11 mode computed using Papadopoulos’ 

method is found to be lower than that using the power loss method. The result 

contradicts what has been expected theoretically, i.e. the loss should be higher due to 

mode coupling effect 

 

The formulation developed by Yeap (2011) does not assume a perfect 

conductor. Hence, it is able to obtain a more realistic result, compared to the power 

loss method. Yeap’s method is able to take into consideration of the mode coupling 
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effect in degenerate modes. This makes Yeap’s method more accurate than the 

perturbation method. However, similarly Yeap’s method result in a transcendental 

equation which can only be solved with a root finding algorithm. 

 

A new method will be presented in this chapter. The new method is able to 

calculate attenuation in the wave propagating inside a rectangular waveguide. Similar 

to the circular waveguide, the new method is based on Yeap’s method. It converts the 

transcendental equation of Yeap’s method to a closed form solution. The new method 

is able to give a reasonable accuracy to compute attenuation. 

 

5.2 Fields in Rectangular Waveguides 

To obtain the longitudinal field equation, first expand the Helmholtz Equation from 

(A.5) in the Cartesian coordinates to obtain the following equation: 

 
2 2 2

2
2 2 2 0z z

z
zE E

y
EE

x z
γ∂ ∂ ∂

+ + +
∂ ∂

=
∂

  (5.1) 

 

The partial differential equation above can be solved using the method of separation 

of variables. The variable zE  can be separated into the x  , y  and z  variables as 

shown below. 

 ( ) ( ) ( )zE X x Y y Z z=   (5.2) 

 

Substituting (5.2) into (5.1) and rearranging the equation, the following equation is 

obtained 

 2" " "X Y Z
X Y Z

γ+ + = −   (5.3) 

 

Since the x  , y  and z  variables are independent of each other, (5.3) can be separated 

into (5.4), (5.5) and (5.6) 

 2" 0xX k X+ =   (5.4) 

 2" 0yY k Y+ =   (5.5) 

 2" 0Z Zγ− =   (5.6) 
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where, 2
xk  , 2

yk  and 2γ  are the separation constant and their relation with one with 

another is shown in (5.7) below. 

 2 2 2 2
x yk k kγ− − + = −   (5.7) 

 

The solution to the differential equation in (5.4),(5.5) and (5.6) are  in (5.8),(5.9) and 

(5.10).  

 ( ) ( )1 2( ) cos sinx xX x c k x c k x= +   (5.8) 

 ( ) ( )3 4( ) cos siny yY y c k y c yk= +   (5.9) 

 5 6( ) z zZ z c e c eγ γ−= +   (5.10) 

 

Substituting all the solution into (5.2) the solution of the longitudinal electric field, zE  

is found to be as follow 

 ( ) ( )( ) ( ) ( )( )( )3 5 641 2cos sin cos sin z z
z x x yyE c k x c k yx c k y c k c e c eγ γ−= + + +  (5.11) 

 

Assuming that the field travels in the forward direction only, the 5
zc eγ  term can be 

ignored, the field equation can then be reduced to as follow 

 ( ) ( )( ) ( ) ( )( )1 3 42cos sin cos sin z
z x x y yE A k x A k x A k y A k y e γ−= + +   (5.12) 

 

Similarly, the magnetic field can be shown as follows 

 ( ) ( )( ) ( ) ( )( )1 3 42cos sin cos sin z
z x x y yH B k x B k x B k y B k y e γ−= + +   (5.13) 

 

 

 

 

 

 

 

 

 

 



59 

Transverse Field 

The transverse field in the x  and y  direction can be obtained using the following 

equations 

 2 2
z z

x
E Hj

h x h
E

y
γ ωµ∂ ∂

∂
= − −

∂
  (5.14) 

 2 2
z z

y
E Hj

h y h
E

x
γ ωµ∂ ∂

∂
= − +

∂
  (5.15) 

 2 2
z z

x
E Hj

h y h
H

x
ω γ∂ ∂

−
∂

=
∂


  (5.16) 

 2 2
z

y
Ej Hz

h x h
H

y
ω γ

=
∂ ∂

−
∂

−
∂


  (5.17) 

where; 

 2 2 2 2 2
x yh k k kγ= + = +   (5.18) 

 

Transverse Magnetic (TM) Mode 

 

The TM mode will have the following boundary conditions. The longitudinal electric 

field must vanish at the boundary of the waveguide. 

 

Boundary condition: 

 

0 at   0
0 at   
0 at   0
0 at   

z

z

z

z

E y
E y b
E x
E x a

= =
= =
= =
= =

  (5.19) 

 

This requires that the cosine term to be zero, hence 1A  and 3A  must vanish, resulting 

in the following equation 

 ( ) ( )0 sin sin z
z x yE E k x k y e γ−=   (5.20) 
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The boundary equation also requires the field to vanish at the end of the x  and y  , 

hence this implies that 

 1, , 2,3,...xk a m mπ= =   (5.21) 

 1, , 2,3,...yk b n nπ= =   (5.22) 

 

which can be rearrange to the following 

 xk m
a
π

=   (5.23) 

 y
nk
b
π

=   (5.24) 

 

Substituting the equation above (5.23) and (5.24) into (5.20) will result in the 

following equation 

 0 sin sin z
zE E m x n y

a b
e γπ π −   =    

   
  (5.25) 

 

To obtain the transverse field, substitute the longitudinal field (5.25) into (5.14), (5.15), 

(5.16) and (5.17) and noting that the longitudinal magnetic field, zH  is zero for TM 

mode. The following equation summarize the field equation for TM mode in a 

rectangular waveguide. 

 

 0 sin sin z
zE E m x n y

a b
e γπ π −   =    

   
  (5.26) 

 0zH =   (5.27) 

 02 cos sin z
x

m m x n yE
h a a

E
b

e γγ π π π −   = −    
  




 


 
  (5.28) 

 02 sin cos z
y

n m x n yE
h a

E e
b b

γγ π π π −   = −    
  




 

 

  (5.29) 

 02 sin cos z
x

n m x n yE
h a
j

b
H e

b
γω π π π −   = −    

 


  






  (5.30) 

 02 cos sin z
y

m m x n yE
h a a
jH e

b
γω π π π −   = −    

 


  






  (5.31) 
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Transverse Electric (TE) Mode 

 

TE mode has the following boundary conditions 

Boundary Conditions: 

 

0 at   0
0 at   
0 at   0

0 at   

x

x

y

y

E y
E y b
E x
E x a

= =
= =
= =

= =

  (5.32) 

 

0 at   0

0 at   

0 at   0

0 at   

z

z

z

z

y

y b

H
y

H
y

x
x

x

H

H
x

a

∂
∂
∂
∂
∂
∂

= =

= =

∂

= =

= =
∂

  (5.33) 

 

Imposing the boundary condition to the longitudinal magnetic field, (5.34) can be 

obtained 

 0 cos cos z
zH H m x n y

a b
e γπ π −   =    

   
  (5.34) 

 

The following equation show the summary of the field equation for TE mode 

 0 cos cos z
zH H m x n y

a b
e γπ π −   =    

   
  (5.35) 

 0zE =   (5.36) 

 02 cos sin z
x

n m xjE n yH
h a b

e
b

γωµ π π π −   =    
   

 
 
 

  (5.37) 

 02 sin cos z
y

m m x n yH
h a

e
a

E
b

j γωµ π π π −   = −    
   

 
 


  (5.38) 

 02 sin cos z
x

m m x n yH
h a a

H
b

e γγ π π π −     =    
   

 
 

  (5.39) 

 02 cos sin z
y

n m x n yH
h a

H e
b b

γγ π π π −   =    
   

 
 
 

  (5.40)
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5.3 Cutoff Frequency for Rectangular Waveguide 

The cutoff frequency can be obtained from the dispersion relation equation. 

Rearranging the dispersion relation in (5.18), the following equation is obtained. 

 
2 2

2m n
a b

kπ πγ    + −      
=   (5.41) 

 

At the cutoff frequency, the propagation constant is zero, which implies that 

 
2 2

2 2m nk
a b
π π ω µ + =  

 =   
   (5.42) 

 

Rearranging the equation the following equation to compute the cutoff frequency of a 

rectangular waveguide is obtained. 

 
2 21

2c
m n
a b

f π π
π µ

   = +      
  (5.43) 

 

The following diagram shows the cutoff frequency of different modes for a 

rectangular waveguide. From the diagram it can be seen that TE10 is the fundamental 

mode for rectangular waveguide. From the diagram below it can be seen that TEmn and 

TMmn have the same cut-off frequency. These modes are said to be the degenerate 

mode. Degeneracy results in higher attenuation as mentioned in previous chapter. The 

total attenuation is not simply the addition of the attenuation of two modes. There are 

coupling effect between the TE and TM mode which results in higher attenuation. 
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Figure 30 Normalized Cutoff Frequency for Different Field in a Rectangular 

Waveguide (C.S. Lee, 1985) 

 

 
Figure 31 Normalized Cutoff Frequency for Different Field in a Square Waveguide 

(C.S. Lee, 1985) 
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5.4 Review of Some Conventional Method 

 

This chapter presents the analysis and comparison among the power loss method, 

Papadopoulos’ method (PPM) and Yeap’s method. Derivations of the mentioned 

methods are presented in a comprehensive and orderly manner. 

 

5.4.1 A Review of Papadopoulos’ Method 

Papadopoulos’ method expresses field in lossy waveguide as a linear combination of 

field in lossless waveguide. The field in the waveguide is first separated into transverse 

and axial part 

 e ez z
ZT

z z
zE EE aγ γ− −= +




  (5.44) 

 e ez zz z
T Z zH H aHγ γ− −= +




  (5.45) 

 

Where TE


 and TH


 both represents the transverse field and zE  and zH  represent the 

axial field. Using the above field equation, the Maxwell’s equation is separated into 

transverse and axial equation. Substituting (5.44) into (A.1), and splitting the gradient, 



T za
z

+
∂

=
∂

   , the result is shown below in (5.46) 

 
 ( ) 0z zz z

T z T Z z

T T z Z

a E e E e a
z

E E

γ γ

γ

− −∂  ⋅ + = ∂ 

⋅ =

+







  (5.46) 

 

Equation below (5.47) is obtained by substituting (5.44) into (A.3) 

 
 ( ) ( )
  ( )

z z z z

z z z z z

z z z z
T z T Z z T Z z

z z z z z
T T T z Z z z T T Z z

a E e E e a j H e H e a
z

E e a E e a E e j H e H e a

γ γ γ γ

γ γ γ γ γ

ωµ

γ ωµ

− − − −

− − − − −

∂ + × + = − + ∂ 

× × ×+ − = − +

 

  



 
  (5.47) 

 

The above equation(5.47) can be separated into transverse and axial field as shown 

below. 

Transverse field 

  

z T Z z z T Ta E a E j Hγ ωµ× ⋅ + × =
 

   (5.48) 
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Axial field 

 

T T Z zE j H aωµ× = −


   (5.49) 

 

Similarly for magnetic field, substitute (5.45) into (A.2) and (A.4) results in the 

equation shown below  

 T T z zH Hγ⋅ =


   (5.50) 

  ( )ee e ee z z z z zz z z z z
T T T z z z z T T z zH H a a H j E E aγ γ γ γ γγ ω− − − − −× =× − ×+ +
  

     (5.51) 

 

Equation (5.51) can be divided into axial and transverse field 

Transverse field 

  

z T z z z T Ta H a H j Eγ ω×+ −× ⋅ =
 

    (5.52) 

Axial field 

 

T T z zH j E aω× =


    (5.53) 

 

The Helmholtz equation can also be separated into transverse and axial field. 

Substituting (5.44) into (A.5), the equation becomes 

 ( ) ( )
2

2 2
2 e ee e 0z z z zz z z z

T z T z z T z za aE EE a E
z

γ γ γ γβ− − − − 
+ + + + = 

 ∂ 

∂  

   (5.54) 

 

Expand (5.54) and separates the equation into transverse part and axial part, the 

equation becomes (5.55) and (5.56) 

 

Transverse Helmholtz equation 

 ( )2 2 2 0T T z TE Eβ γ++ =
 

   (5.55) 

Axial Helmholtz equation 

 ( )2 2 2 0T z z zE Eβ γ+ + =   (5.56) 

 

Since the Papadopoulos’ method includes both wave in lossy waveguide as well as 

lossless waveguide, a separate set of wave equation from (5.55) is required. One for a 

lossless waveguide, another for lossy waveguide. The lossless wave equation dot with 
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lossy field, and vice versa, resulting two sets of equation shown below. TE


 represents 

the electric field in lossy waveguide while TnE


 represents the field in lossless 

waveguide. 

Lossy wave equation dot with lossless field 

 
( )

( )

2 2 2

2 2 2

0

0

T T z T

Tn T T z T Tn

E E

E E E E

β γ

β γ

+ =

⋅

+

+ ⋅+ =

 

   




  (5.57) 

 

Lossless wave equation dot with lossy field 

 
( )

( )

2 2 2

2 2 2

0

0

T Tn zn Tn

T T Tn zn Tn T

E E

E E E E

β

β

+ Γ =

⋅ + =

+

Γ ⋅+

 

   




  (5.58) 

 

Where zΓ  is the propagation constant of the field in lossless waveguide. Take the 

difference between the two equations(5.57) and (5.58) 

 ( )2 2 2 2
z z T Tn T T Tn Tn T TE E E E E Eγ Γ ⋅ = ⋅ −− ⋅

     

    (5.59) 

 

Take the integral of (5.59) over the conductor cross sectional area, the equation 

becomes 

( ) ( )2 2 2 2
z z T Tn T T Tn Tn TA T

A

dAE E E E E E dAγ Γ ⋅ = ⋅− − ⋅∫∫∫∫
     

    (5.60) 

 

The magnitude of the field is normalized using the orthogonal property of the field 

shown below 

 
,

,

Where 
when 
when 

1
0

tn tm m nA

m n

e e da

m n
m n

δ

δ

⋅ ⋅ =

=
≠


= 


∫ ∫
  (5.61) 

 

The equation becomes 

 ( ) ( )2 2 2 2
z z n T T Tn Tn T T

A

E E E E dAaγ −Γ = ⋅ − ⋅∫∫
   

    (5.62) 
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Apply Green’s function(5.63) onto (5.62) 

( ) ( ) ( ) ( ) ( )  

2 2

A C
B A A B n A B n A BA B dA n dn B A⋅ − ⋅ × ⋅ × + × × ⋅ + ⋅ ⋅ − ⋅   =   ⋅ 

⌠
⌡∫∫ 



        (5.63) 

 

The equation becomes 

( ) ( ) ( ) ( )  

2 2
z z n Tn T T T Tn T Tn T T n

C
T T Ta n nE E E E E E En dEnγ Γ = × ⋅ × + × × ⋅ + ⋅ ⋅ − ⋅ ⋅ −  

⌠
⌡

       





      (5.64) 

 

Where, n̂  is the radially inward pointing unit vector and the integral is taken around the 

conductor wall perimeter. 

 

Boundary condition for lossy waveguide 

The section below shows the steps to obtain the boundary condition for a lossy 

waveguide based on the current density equation 

 e z z
tan mE Z J γ−=   (5.65) 

 

where mZ  is the surface impedance. J  is the current density flowing in the metal 

conductor wall. tanE  is the tangential electric field with respect to the conductor wall 

and it can be separated into the aφ  direction and za  direction. Therefore (5.65) can be 

decomposed into these two direction as shown below. 

For aφ  direction: 

 
 

T m

m z

a E Z a J
Z H

φ φ φ⋅ =

=

⋅


  (5.66) 

 

Substitute (5.49) into (5.66), the equation becomes 

  
m

T z T T
Za E a E
jφ ωµ

⋅ = − ⋅ ×
 

   (5.67) 
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For za  direction: 

 

z m z zZ JE a⋅=   (5.68) 

 

Substitute (5.46) into (5.68) 

 
T

T m z z
E Z aJ
γ

⋅ = ⋅


   (5.69) 

 

Substitute (5.48) into the above equation, the equation now becomes 

  ( )2m
T T T T T T

ZE n E n E
j

β
ωµ

⋅ = ⋅ × × − ⋅
  

     (5.70) 

 

Applying boundary condition for lossy and lossless field onto (5.64), the lossy 

waveguide boundary condition are obtained from (5.67) and  (5.69) 



 lossless waveguide boundary con

0

0

0

dition
Tn

Tn zn

T Tn

a E

E E

E

n
φ




⋅ =

⋅ = = 




× =








  

 

 

2

boundary condition for lossy waveguide

m
T z T T

m
T T T T T T

Za E a

n

E
j

ZE E E
j

n

φ ωµ

β
ωµ

⋅ = − ⋅ × 

⋅ = ⋅ × × − ⋅


 

  



  
  

 

The field equation becomes 

 ( ) ( ) ( )   ( )2 2 2m
z z n T Tn T T Tn T T T T

C

Z E E E n E n Ea n
j

dγ β
ωµ

Γ = − × ⋅ × − ⋅ ⋅ × × − ⋅ −  
⌠
⌡

    





     

 (5.71) 

 

Papadopoulos’ method postulates that a field in a lossy waveguide can be expressed 

as a linear combination of field in a lossless waveguide, where 

 
,TE TM

T k Tk
k

E a E= ∑
 

  (5.72) 
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Express the lossy field, TE


 as a linear combination of lossless field by substituting 

(5.72) into (5.71) and the equation becomes 

( ) ( ) ( )
  ( )

2 2

2

C
m

z z n k T Tn T Tk
k

Tn T T Tk Tk

Z E E
j

E n E n E

a a

n d

γ
ωµ

β

Γ = − × ⋅ ×

− ⋅ ⋅ × × − ⋅






− ∫∑
 

  





 

 
  (5.73) 

 

This essentially becomes an eigenvalue problem where  

( )
 

( ) ( )   ( )2 2 2m
z z n k T Tn T Tk Tn T T Tk Tk

E

C

E A
k

a a dZ E E n E n E n E

E AE

j
λ

γ
µ

λ

β
ω

 −  Γ = − × ⋅ × −

=

⋅ ⋅ × × − ⋅⌠
⌡∑

    















   

  (5.74) 

 

For an eigenvalue problem 

 ( ) 0I A Eλ − =   (5.75) 

 

The determinant of the matrix in (5.75) must vanish in order to have a trivial solution. 

By equating the determinant to zero, the equation becomes the characteristic 

polynomial of the matrix 

 0 ( )nI A Pλ λ− = =   (5.76) 

 

Solving the characteristics polynomial gives n   number of eigenvalue, indicating that 

n   number of modes exist in the waveguide. 

The equation (5.73) shows that there are an infinite number linear equation for the 

unknown coefficient  na  , leading to an infinite number of mode propagate in the 

waveguide. Calculation of such infinite linear equation would be impossible. 

Therefore a perturbation is made on the equation to ease the calculation. The 

perturbation made is shown below. 

 

For  z zγ ≠ Γ  , na  is small since mZ  is small for a good conductor, therefore it can be 

ignored 

For  z zγ = Γ  , na  is not small and it cannot be ignored 
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When z zγ = Γ , it implies that all the field has the same propagation constant. 

 

For the case when all the field has the same propagation constant, if Tk TnE E=
 

 

the solution is trivial. Therefore, the electric field must be different, such that 

Tk TnE E≠
 

  which only occurs for the degenerate mode where for a given cutoff 

frequency, both the TE and TM field has the same propagation constant. Since there 

are only two mode for a degenerate mode, i.e. TE and TM, the summation now only 

has two components. The summation can be expanded as shown below. The equation 

(5.73) is divided into 2 sets of equation 

( ) ( ) ( )   ( )

( ) ( )   ( )
1Due 

1

2

2 2 2
1 1 1 1 1 1

2
1 2 1 2

to

2

T

m
z z T T T T T T T T T

m
T T T T T T T T T

C

E

Z E E E E E
j

Z E E n E n E E
j

a a n n n d

a n

γ β
ωµ

β
ωµ

Γ = − × ⋅ × − ⋅ ⋅ × × − −  ⋅

− × ⋅ × − ⋅= − ⋅
 ⋅ × ×

⌠
⌡



    





    



   

   

1 2Coupling of  and T TE E

C
d

⌠
⌡

 







  (5.77) 

and 

( ) ( ) ( )   ( )

( ) ( )  

2 1Coupli

2 2 2

ng of  and

1 2 1 2 1 12

 

2

 

2 22

T T

m
z z T T T T T T T T T

m
T T T T

C

T T

E

T

E

Z E E n E n E n E
j

Z E E n Ea
j

a

n

a

E

dγ β
ωµ

ωµ

Γ = − × ⋅ × − ⋅ ⋅ × × − ⋅

− ×

 − 

⋅ × −



⋅ ⋅ × ×=

⌠
⌡

 







   



 







   

    ( )
2Due t

2

o

2

 

2

T

T

E

T
C

dn Eβ− ⋅ 
 

⌠
⌡





 





  (5.78) 

To obtain an equation describing the propagation constant for rectangular waveguide, 

let 1 TE fieldTE =   and 2 TM fieldTE = , the transverse equation becomes 

  

1 2 cos sin sin cosT x y
j n m x n y m m x n ya a

b a
E

b a a bρ

ωµ π π π π π π
β

            −                        
=  (5.79) 

and 

  

2 2 cos sin sin cosz
T x y

m m x n y n m x n ya a
a a b

E
b a bρ

γ π π π π π π
β

            +                    
=

 

−
 

 (5.80) 

 

 

 

 



71 

Substitute the field equation (5.79) and (5.80) into equation (5.77) and (5.78). Take the 

integral around the waveguide in x and y direction. The result would produce 2 sets of 

equation as shown below. 

 

( ) ( )

( )

2 22 2 2 2
2 2

1

2 2

2 4 0

z zmn zmn

m

zmn

j n m
Z b

m

a a b b a
a

a
ab

b an

ρ ρ

ρ

γ β ωµ βωµ π πω µ
β β

ωµβ β π
β

+    +    
   

      + + +                  
    + − =        
−

 (5.81) 

and 

 

( )

( )

2
2

1

22 2 2 2

2 2 0

zmn zmn

z zmn zmn

m

ma bn
ab

j m n
Z

a

a b
b

a
a

ρ ρ

ρ

ωµβ β π
β β

γ β ωµ ββ π π
β

−

+    − 

     −   

  

     
    + + =              

  (5.82) 

 

where zγ  is the propagation constant, zmnβ  is the phase constant and it is equal to  

1 ,c
zmn

f
f

β β β ω µ= − =   , m  and n   is the propagating mode, and a  , b  is the 

length of the rectangular waveguide in x and y direction. Solving the above two linear 

equation (5.81) and (5.82) to obtain zγ  would produce the result shown in Figure 32 

below 

 
Figure 32 PPM and Power Loss Method Attenuation (Collin, 1960) 
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Solid line is the result for PPM and broken like is from the power loss Method. The 

above comparison shows that the there are differences between the PPM and power 

loss method. This is due to PPM taking consideration of the coupling effect of TE and 

TM mode in the calculation. 

 

5.4.2 A Review of the Power Loss Method 

 

The concept of power loss method for rectangular waveguide is the same as that for 

circular waveguide in section 4.4.1. To develop the formulation for the propagation 

constant of a rectangular waveguide, the fields in the waveguide is substituted into 

(4.34)  

 

Transverse Magnetic (TM) Mode 

 

The first step is to obtain ave . It can be obtained by substituting the TM field equation 

from (5.26) to (5.31) into (4.36) which will result in the following 

 



2 2
2 2 2 2 2

04 cos sin sin c s
2

oave z
m m x n y n m x n ya E

h a a b b a b
ω β π π π π π π          +          

          

 ⋅ =  
  


   (5.83) 

 

Next, zP  can be found by substituting (5.83) into (4.35) which gives the following 

 
2

0
2 2

8
z

E ab
m n
a

P

b

ω β

π π    +         

=
   (5.84) 

 

The current density can be found as follow 

 





( 0) ( ) 02

( 0) ( ) 02

sin

sin

s x s x a z

s y s y b z

J J

J

j m n ya E
h a b

j n m xa EJ
b ah

ω π π

ω π π

= =

= =

 
⋅    = =    

   

 

−

 = =    


 
 

  
 
⋅ − 
 




  (5.85) 

 

Substituting the current density equation into (4.38) to obtain the power loss for each 

wall in the x  and y  direction as follow 
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2 2

2
( 0) 02

1
2 2c x sR

h
P Em b

a
ω π

=
     
     


=
    
   (5.86) 

 
2 2

2
( 0) 02

1
2 2c y sR

h
P En a

b
ω π

=
     
     


=
    
   (5.87) 

 

The total power loss can be obtained by adding the power loss in all the wall as shown 

below 

 
( 0) ( 0)

2 2 2 2
2

02 2 22

2 2L L yc x

s
m b n

P P P

R a
h a b

Eω π

= =

     + 

   = +   

     
=

 

   (5.88) 

 

The attenuation can be obtained by substituting (5.88) and (5.84) into (4.34) and with 

some simplification, it will result in the following equation 

 
( )

( )

2 3 2 3

2
2 222

2

1

s
c

c

R m b n a

fab m b n a
f

α

η

+

 
− + 
 

=   (5.89) 

where, 

 
µη =


  (5.90) 

 

Transverse Electric (TE) Mode 

 

A similar approach is used to find the attenuation constant for TE mode. The average 

power can be found as follow 



2 2
2 2 2 2 2

04 cos sin sin cos
2ave z

n m x n y m m x n ya H
h b a b a a b

ωµβ π π π π π π        +   
   ⋅ =       

       
 

    
  (5.91) 

 

The total power can be then be obtained as follow 

 2
028z H

h
P abωµβ
=   (5.92) 
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The total power loss is as shown below 

 ( ) ( )2 22
2

0 42 2 2c s

m naP R H b
h ba

π πβ   + + +
 
 =
    

    (5.93) 

 

The attenuation constant for TE mode can be showed as follow 

 
( )

( ) ( )

2 2 22

2 22

2 1 1

1

s c c
c

c

m ab naR f fb b
a f a f mb naf

f

α

βη

    +     ⋅ + − ⋅        
  +            −  

 

= +   (5.94) 

 

5.4.3 A Review of Yeap’s Method 

 

The longitudinal field is first obtained. However, the field equations derived in Section 

5.2 were assumed to be those in a lossless waveguide. To impose the criterion of good 

conductor wall with high but finite conductivity, a correction factor, φ  is introduced 

into the longitudinal field equation as shown below. Due to the non-perfect conductor 

condition, neither zE  nor zH  is zero. 

 ( ) ( )0 sin sinz x x y yE E k x k yφ φ= + +   (5.95) 

 ( ) ( )0 cos cosz x x y yH H k x k yφ φ= + +   (5.96) 

 

The tangential field has to be maximum at half the length of x  and y  wall. 

 sin sin 1 0or
2 2

yx
x y

k bk a φ φ
   = = ±  

   
+ +   (5.97) 

 

Imposing the condition above, the correction fact can be obtained as follow 

 
2

x
x

m k aπφ −
=   (5.98) 

 
2

y
y

n k bπ
φ

−
=   (5.99) 
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Substituting the longitudinal field equation into (5.95) and (5.96) into (5.14) to (5.17), 

the following tangential field equations are obtained. 

 ( ) ( ) ( )0 0 02 sin cosx x y x x y yH j H Ek yj k kxk
h

γ ω φ φ= − − + +   (5.100) 

 ( ) ( )0 0 02 cos siny y x x x y yH H kj j k k k
h

E x yγ ω φ φ=  − + + +   (5.101) 

 ( ) ( )0 0 02 cos sinx x y x x y yE E k Hj j k k x yk
h

γ ωµ φ φ  += + +   (5.102) 

 ( ) ( )0 0 02 sin cosy y x x x y yE E k Hj j k k x yk
h

γ ωµ φ φ  += − +   (5.103) 

 

Using the relation of (4.82), the following relation in the Cartesian coordinates is 

obtained. 

 x cz

x z c

EE
H H

µ
= − =


  (5.104) 

 

Substituting the field equation into (5.104), the following equations are obtained 

 ( )0
02

0

tanx c
x y y y

z c

kE Ej j bk k
H h H

µγ ωµ φ− +
 

= +− = 
  

  (5.105) 

 ( )0
02

0

cotx c
x y y y

z c

H H kj j k k
h

b
E E

γ ω φ
µ

 
= − = 


− +




   (5.106) 

 ( )0
02

0

tany
xy

z
x

c
x

c

k
E Ej j k k
H h H

a µγ ωµ φ
 

= =


+


−


  (5.107) 

 ( )0
02

0

coty
xy

c
x x

c

z

H H k a
E E

j j k k
h

γ ω φ
µ

+
 

− = = 


+



   (5.108) 

 

Rearranging the equation (5.105) and (5.106), the following equations are obtained 

 
( ) ( )0

0 02 2

tan tan
0x y y y y y c

c

b kk k j k
E H

h h
bγ φ ωµ φ µ + +

 


 
 + − − =
 
 


  

  (5.109) 

 
( ) ( )0

0 02 2

cot cot
0x y y y y y c

c

b kk k j k
h h

b
H E

γ φ ω φ

µ

   + +
   
   
   

+ − =
    (5.110) 
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Rearranging the equation above into matrix form, (5.111) is obtained 

 

( ) ( )

( ) ( )

0
2 2

0

00
2 2

tan tan

cot co
0

t

x y y y y y c

c

y y y x y yc

c

k k j kb k b

E
Hk b b

h h

j k k k
h h

γ φ ωµ φ µ

ω φ γ φ

µ

  + +
  

       = 
      + +
  

 


 
    

− −


  








−



 

  (5.111) 

 

Similarly, rearranging the equation (5.107) and(5.108), the following equations are 

obtained 

 
( ) ( )0

0 02 2

tan tan
0y cx x x

c

x xa kk k j k
E H

h h
aγ φ ωµ φ µ +  +

+ −       
− − =


  (5.112) 

 
( ) ( )0

0 02 2

cot cot
0x x x xy

c

x ca k ak k j k
h h

H E
γ φ ω φ

µ
+  + 

− + −  


=


 
 

 
  (5.113) 

 

Rearranging the above equation into matrix form, (5.114) is obtained 

 

( ) ( )

( ) ( )

0
2 2

0

00
2 2

tan tan

cotco
0

t

x x x x x

x x

y c

c

ycx x x

c

k k j k
h h

k kj k
h h

a k a

E
Hak a

γ φ ωµ φ µ

γ φω φ
µ

  +  +
−            =  

+ +   

− −

 
− −     


 



 
 

 (5.114) 

 

To obtain a non-trivial solution, the determinant of the matrix must vanish. Hence the 

following equations are obtained from (5.111) and (5.114) which is the transcendental 

equation in the y  and x  direction respectively 

 
( ) ( ) 2

0 0
2 2 2

tan coty y y y y yc c x

c c

j k j k k
h h h

k b k bωµ φ ω φµ γ
µ

   + +  =+ −   
   

   




 (5.115) 

 
( ) ( ) 2

0 0
2 2 2

tan cotx x x x x x yc c

c c

k a k a kj k j k
h h h

γωµ φ ω φµ
µ

     
+ − =     

    

+ +

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TE10 

For TE10 mode, the equations can be simplified by substituting, m=1. n=1 into the 

penetration factor. The following expression is obtained for TE10 
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TE11 and TM11 Mode 

For TE11 and TM11 mode, by substituting m=1 n=1 into the penetration factor the 

following equations are obtained. In such case, both the mode result in a pair of 

identical equation. Hence, such equation has the ability to include the effect of 

degenerate mode into the calculation of the attenuation constant. To compute the value 

for each mode, the initial guesses for the root searching algorithm has to be varied 

slightly so that the algorithm can converge into two different root, which gives the TE 

and TM mode. 
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5.5 The New Method 

 

The new method derivations is similar to those presented in the circular waveguide. It 

uses the FDM to approximate a function, hence to simplify the transcendental equation 

into closed form solution. 
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5.5.1 TE11 Mode 

To obtain the closed form solution, first expand (5.119), which gives the following 

equation 
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With some simplification and make use of the dispersion relation (5.7), (5.122) can be 

obtained. 
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  (5.122) 

 

A perfect conductor will have 
2 2y
bk π
=  . This gives an infinity to the tangent function. 

To remove the singularity, substitution for the tangent function is required. Hence, the 

following assumption is made 

 

For TE mode, 0 0E =  , hence from (5.109), it can be simplified as below. 
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Since, 0 0H ≠  , this implies that the term inside the 0H  have to be zero 
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Rearranging the equation in (5.124), the following is obtained 
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Substituting (5.125) into (5.122) and rearranging the equation, (5.126) can be obtained 
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With the assumption that for a good conductor with finite conductivity, it can be 

assumed that the wave number is very close to those of perfect conductor with infinite 

conductivity. Hence, the wave number can be assumed as a small perturbation term 

added to the wave number of perfect conductor as shown below, where y pk −  is the 

wave number of perfect conductor in the y  direction. 

 wherey y p y y pk k n
b
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Substituting (5.127) into the cotangent function, (5.128) can be obtained 
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Using the FDM, the following relation in (5.129) can be obtained. 
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Noting that cot
2
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 , it can be further simplified results in (5.130). 
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Substituting the equation (5.130) back to (5.126) and rearranging the equation, the 

following can be obtained. Note that 
2y
by δ∆ =  from (5.128) 
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yδ  is the small perturbation term. To obtain the wave number, the perturbation term is 

added to the wave number of perfect conductor as shown in (5.127). Similar steps can 

be used to obtain the wavenumber for x  direction. The perturbation term for x  

direction is shown below 
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To obtain the propagation constant, substitute the wavenumber in x  and y  direction 

into the dispersion relation in (5.7) 

 

5.5.2 TM11 Mode 

For TM mode, 0zH =  , hence the equation (5.113) can be reduced to the following 
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Since 0 0E ≠  , the term inside 0E  have to be zero which give the following equation 

after some simplification 
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Substituting (5.134) into (5.122) the following equation is obtained 
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Using the FDM from (5.130), (5.136) is obtained 
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Hence the perturbation term for TM11 mode is shown below 
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5.5.3 TE10 Mode 

Due to the singularity exist in (5.122) when 0y pk − =  , an alternate steps is required to 

remove the singularity. To derive TE10 mode, expand (5.117) will give the following 
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Take the inverse of the equation (5.139) to remove the singularity gives the following. 
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Multiply the equation with the conjugate and with some simplification, the equation 

then becomes as follow 
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From (5.124) the following is obtained 
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Substitute (5.142) into (5.141), (5.143) is obtained 
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Substituting 0y pk − =  into (5.143), the following result is obtained for the 

wavenumber in y direction 

 0yδ =   (5.144) 

 

For the x  direction, the perturbation term is shown below 
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5.6 Results and Discussion 

 

Figure 33 shows the comparison among the experimental result, the power loss method, 

PPM, Yeap’s method and the new method. From the result it can be seen that except 

the power loss method, all the other method agrees with the experimental result. The 

attenuation increases exponentially as the frequency decreases from the cutoff 

frequency. The power loss method on the other hand has its attenuation diverges to 

infinity at the cutoff frequency. All the other methods have very close result, in fact it 

is indistinguishable from the graph. There are slight differences between the 

experimental result and the theoretical value. These small discrepancies might be due 

error from the standing wave. In deriving the theoretical equation, a waveguide with 

infinite length is assumed. However this cannot be done in the experiment. A finite 

length waveguide will result in standing wave, which will cause an inaccurate 

measurement. 
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Figure 33 Attenuation of TE10 Mode in a Hollow Rectangular Waveguide with Width 

a = 1.30 cm, Height, b = 0.64 cm 

 

Figure 34 shows the attenuation of both TE11 and TM11. Both these modes have the 

same cutoff frequency. TE11 attenuation is slightly larger than the TM11 mode which 

can be seen from the Yeap’s method. The new method agrees with the result 

 

 
Figure 34 Attenuation of TE11 and TM11 in a Hollow Rectangular Waveguide with 

Width a = 2.29 cm , Height, b = 1.02 cm 
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Figure 35 and Figure 36 shows the comparison of power loss method, PPM, Yeap’s 

method and the new method, focusing on the propagating region. From the result it 

can be seen that, all the method are very close to each other. This shows that the new 

method agrees with the existing theory. 

 

 
Figure 35 Attenuation of TE11 after cutoff in a Hollow Rectangular Waveguide with 

Width a = 2.29 cm, Height, b = 1.02 cm 
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Figure 36 Attenuation of TM11 after cutoff in a Hollow Rectangular Waveguide with 

Width a = 2.29 cm, Height, b = 1.02 cm 

 

Figure 37 shows the result from power loss method, Yeap’s method and the new 

method. From the result, it can be seen that the new method gave a lower attenuation 

compared to the power loss and the Yeap’s method for TE10 mode. 

 

 
Figure 37 Attenuation of TE10 in a Hollow Rectangular Waveguide with Width a = 

2.29 cm , Height, b = 1.02 cm 
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From the derivation of the new method for TE10 mode, the wave number for the y  

direction is zero. The reason that it gave a zero value is from the fundamental idea in 

deriving the new method. The tangential field equation is given by 

 sin sinm x n y
a b
π π   

   
   

  (5.146) 

or 

 cos cosm x n y
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  (5.147) 

 

The equation shows that the tangential field is a sinusoidal wave. From the diagram 

below, it can be seen that due to the finite conductivity of the metal, there are phase 

difference between the transverse wave due to the lossy conductor and the perfect 

conductor. The idea behind the new method is that the wavenumber is the summation 

of a perfect conductor and phase difference. 

 

 

 

 

 

 
Figure 38 Tangential Field in a Waveguide 
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However, for TE10 mode, the wavenumber for the perfect conductor in the y  direction 

is zero. Hence, there are no sine wave in the y  direction of the waveguide. As there 

are no sine wave, there are no phase difference in the y  direction between the wave 

due to the lossy conductor and those of perfect conductor. Hence yk  is zero. However, 

this is not true. There are still losses contributed by yk . This causes the inaccuracy 

from the new method  

 

Figure 39, Figure 40 and Figure 41 shows the attenuation of TE11, TM11 and TE10 

mode around the cutoff frequency. From the result it can be seen that the new method 

is in close agreement with the  Yeap’s method and PPM. The power loss method on 

the other hand diverge to infinity at the cutoff frequency. 

 

 
Figure 39 Attenuation of TE11 around the cutoff frequency in a Hollow Rectangular 

Waveguide with Width a = 2.29 cm, Height, b = 1.02 cm 
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Figure 40 Attenuation of TM11 around the cutoff frequency in a Hollow Rectangular 

Waveguide with Width a = 2.29 cm, Height, b = 1.02 cm 

 

 
Figure 41 Attenuation of TE10 around the cutoff frequency in a Hollow Rectangular 

Waveguide with Width a = 2.29 cm , Height, b = 1.02 cm 
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5.7 Summary 

 

The result of the new method shown are in close agreement with the previous theory. 

The attenuation when the signal is below the cutoff frequency also tally with the 

experimental result. The new theory transform the transcendental equation of Yeap’s 

method to a closed form solution. The resulting closed form solution does not need a 

root searching algorithm to solve, which reduces the computation time dramatically. 

Besides, it also doesn’t have the problem of diverging due to the root searching 

algorithm. However, for TE10 mode the attenuation computed using the new method 

are lower than Yeap’s method and power loss method. The inability to include the 

perturbation term into TE10 in yk  made it to be inaccurate. The resulting attenuation 

therefore is lower.



 

 

 

 

 

 

 

6 CONCLUSION AND RECOMMENDATIONS 

 

 

 

6.1 Summary 

 

The invention of the radio telescope has given the privilege to mankind to study the 

largely unexplored galaxy. Radio telescope is used to collect these cosmic radio 

frequency wave. However, the magnitude of these cosmic radio frequency is very 

much lower than the radio frequency in our surrounding. This makes detection and 

analysis of these waves laborious. A waveguide is used to channel these waves from 

the antenna to the detector circuit. In order to reduce the loss and to increase the 

efficiency in this process, it is of utmost importance to minimize the loss in the 

waveguide. Therefore, in order to aid engineers and scientist to design an efficient 

waveguide, an accurate formulation which able to compute attenuation in a waveguide 

is important. 

 

 Existing formulations can be generally divided into two classes, a more 

accurate transcendental equation and a simpler closed form equation. Transcendental 

equation provides a more accurate description of the wave inside a waveguide. 

However, solving the transcendental equation is laborious. A root finding algorithm is 

required to solve the equation. An initial guess is therefore required to initiate the 

algorithm. Besides, depending on the algorithm and the compiler used, the solution 

may diverge. The computation time required to solve the transcendental equation is 

also very much longer. 
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 A closed form solution on the other hand is simpler and gives more intuitive 

insights. A closed form solution usually employs some sort of perturbation to simplify 

the equation. It usually assumes a perfect waveguide as in the power loss method. The 

conventional power loss method equation is simple and easy to solve. It does not 

require the root finding algorithm to solve, hence resulting in a much lower 

computation time. The power loss method gives a reasonable accuracy provided that 

the frequency of the signal is higher than the cutoff frequency. However, the equation 

possesses a flaw. It contains singularity at the cutoff frequency, which results in an 

infinite attenuation when the frequency of the signal approach the cutoff frequency of 

the waveguide. This makes the equation fails to describe the propagation of wave when 

the frequency is below the cutoff frequency. 

 

 This thesis provides an alternative to compute the attenuation in the waveguide. 

It is derived from Yeap’s method. Yeap’s method results in a set of transcendental 

equation which requires the use of root finding algorithm to solve. In this new method, 

the transcendental equation is converted into closed form based on the perturbation 

theory. The Finite Difference Method is used to approximate a function, which is used 

to convert the transcendental equation into close form. The resulting close form 

equation is simpler. It able to factor in the lossy properties of metal. This prevents 

singularity in the equation such as those in the power loss method. The new method 

hence able to compute the attenuation when the frequency is below the cutoff. 

 

 Based on the result, the new method agrees with the experimental result. The 

experimental result shows that the attenuation increases dramatically as the frequency 

decreases from the cutoff frequency. The new method able to show this accurately, 

together with the existing method except the power loss method. The power loss 

method diverge to infinity at the cutoff frequency. 

 

 The new method however is unable to describe the attenuation of the 

fundamental mode of rectangular waveguide, TE10 mode accurately. The result shows 

that the attenuation computed from the new method is lower than Yeap’s method and 

the power loss method when the frequency is beyond the cutoff frequency. This is 

because the wavenumber in the y  direction is found out to be zero using the new 
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method. This is of course not true in the case of lossy metal. Hence, this cause the 

computed attenuation to be lower than Yeap’s method and the power loss method. 

 

6.2 Future Work 

 

Inaccuracy of TE10 Mode 

The new method presented in this thesis able to calculate the attenuation of the circular 

waveguide accurately. For rectangular waveguide on the other hand, it able to calculate 

the TE11 and TM11 mode accurately but not the fundamental mode, TE10. A refinement 

of the equation is needed to include the computation of wavenumber in the y  direction. 

The inclusion of a non-zero wavenumber in the y  direction is believe will increase 

the attenuation, allowing it describe the TE10 mode much more accurate. 

 

Dielectric Waveguide 

The transcendental equation developed by Stratton and Yeap can be used to solve both 

metal and dielectric waveguide. The new method proposed assumes that the 

waveguide wall is made of good conductor to simplify the equation. This restricts the 

new method to be used only for metal waveguide. The new method can be extended 

so it can be apply to dielectric waveguide. 

 

Bending Loss 

The new method assumes that the metal waveguide is a uniformly straight waveguide. 

Studies have shown that a bend waveguide will result in higher loss (Miyagi, et al., 

1984). The new method can be extended by including the bending loss into the 

equation. 
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APPENDICES 

 

 

 

APPENDIX A: Helmholtz Equation 

 

Axial Field 

A correct formulation of wave equation inside a circular waveguide is the first step to 

describe the characteristic of circular waveguide. The derivation of all electromagnetic 

wave start from the four fundamental Maxwell equation as shown below. 

   vE ρ
⋅ =



    (A.1) 

 0B⋅ =


   (A.2) 

 
HE
t

µ ∂
× = −

∂





   (A.3) 

 
EH J
t

∂
× = +

∂



 

   (A.4) 

 

The derivation of equation that describes the propagation of electromagnetic wave can 

be done be taking the curl of (A.3) and the result is shown below which is the classical 

Helmholtz equation to describe the field changes with time and space 

 2 2E Eγ=
 

   (A.5) 

 

Where γ  is the propagation constant of the electromagnetic wave. 

 
1
2

1

c

j

j

j
j

γ α β

ω µ

σω µ
ω

= +

=

 
= + 

 






  (A.6) 
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c  is the complex permittivity of the medium and can be described as 1c j
σ
ω

+=


  

The same can be done by taking the curl of (A.4) which will lead to the equation as 

shown below 

 2 2H Hγ=
 

   (A.7) 

 

 

 

APPENDIX B: Conductor Surface Impedance 

 

The metal conductor surrounding the waveguide plays an important role in the 

formulation of the waveguide efficiency. Most of the power loss in the waveguide are 

due to the characteristic of the conductor. As most metal conductor has very high 

conductivity, based on this assumption, some approximations can be made to simplify 

the calculation (Cheng, 1991), Referring to (A.6), for a good conductor 1
j
σ
ω

>>


. 

The propagation constant, γ   can then be approximated as 

 jγ ωµσ≈   (B.8) 

 

From the Euler’s identity, 

 
( )

1
2

2

2
1

e
j

j

j

π 



=



+

=
   (B.9) 

 

Substitute the result of the Euler’s identity (B.9) into (B.8),  can be represented as 

   (B.10) 

 

Since γ  can be expressed as jγ α β= +  , from (B.10) fα β π µσ= =  ,indicates 

that for a good conductor, α  and β  are approximately equal. 

 

γ

( )1 j fγ π µσ≈ +
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The surface impedance, mZ  of the conductor is given as 

 m
c

Z µ
=


  (B.11) 

 

From (B.11), using the approximation of c j
σ
ω

≈


for a good conductor, the equation 

can be approximated as 

 ( )1m
fZ j π µ
σ

≈ +   (B.12) 

 

The equation for (B.12) is only valid for conductor where it gives a reasonable 

accuracy to calculate the surface impedance for good conductor, and should not be 

used for dielectric as such approximation fails to provide an accurate representation of 

the medium. 

 

 

 

 


