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GRADIENT-TYPE METHODS FOR UNCONSTRAINED OPTIMIZATION

GUAN HUI SHAN

ABSTRACT

In this project, different gradient type methods which can be applied to
solve an unconstrained optimization problem have been investigated. This
project focuses on Barzilai and Borwein Gradient method, Monotone Gra-
dient method via weak secant equation and Monotone Gradient method via
Quasi-Cauchy Relation. Iterative scheme for each method was studied. To
apply each of these methods, the functions was assumed to be convex and
twice continuous differentiable. In yields of the application, a few stan-
dard unconstrained functions have been chosen for testing purposes. The
results obtained show the number of iterations used for getting an optimal
point. The result were used for analyzing the efficiency of the methods
studied. Two comparisons had been made in this project. First is the
Barzilai and Borwein Gradient method with Monotone Gradient method
via weak secant equation and the second is Barzilai and Borwein Gradi-
ent method with Monotone Gradient method via Quasi-Cauchy Relation.
These comparisons show that the Monotone Gradient type methods per-
form better as compared to the Barzilai and Borwein Gradient method.
The number of iterations clearly was not affected by the dimension. Fi-
nally, verification for the two proposed algorithms was done to show the
flow of the algorithms.
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CHAPTER 1: INTRODUCTION

Everyone is expected to ba an investor in the future and none of us will go for invest-

ment with no return or with high risk. Conversely, everyone is looking for low risk

investment and high return rate. If you are a manager of a company or a manufac-

turer of production sites, you will definitely aim for high profit and operate with the

highest efficiency. Besides, you will definitely designate your employees into various

departments and hope for the lowest overhead costs.

Under certain circumstances, one will need to make decisions. Goal(s) we wish

to achieve is maximize the benefit with minimum effort. How can these physical de-

cisions work towards a perfect outcome? Undoubtedly, this can be achieved via opti-

mization. Optimization is a process to obtain the best result under any circumstances

given. Through this process, we can find the condition that gives us the maximum or

minimum value depending on the situation. It is expressed with a function contain-

ing variables. It is important that we first identify the objective of any given problem,

which can be in terms of cost, time, profit or any quantity represented by a number.

The model must be classified before solving any optimization problem. A few exam-

ples are indicated. It can be categorized into continuous optimization versus discrete

optimization, constrained optimization versus unconstrained optimization, determinis-

tic optimization versus stochastic optimization and etc. This classification process is

important as the algorithms used for solving the problem are various according to its

type.

In this project, the focus is the unconstrained optimization. Investigation on meth-

ods of unconstrained optimization is important for many reasons. If the model de-

sign does not have any active constraint, then the problem will need to involve un-

constrained function minimization algorithm to determine the direction and distance

traveled. Besides, a constrained optimization problem can be transformed into un-

constrained optimization problems using multiplier methods and the penalty function.

Last but not least, unconstrained minimization technique is suitable because it is widely

used in linear and nonlinear problems.

1
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1-1 Objective

In this project, the main concern is to investigate a few gradient-type methods for

solving unconstrained optimization problem. There is believe to be significant im-

provement for each method. Secondly, iterative scheme of each method, which it is

the mathematical procedure to generate set of improving approximate solution was

studied. Lastly, MATLAB codes were run for the numerical results. By observing the

results, efficiency of each method based on the function used was compared.

1-2 Scope

The focus of this project is the unconstrained optimization problem. The main method

in this project is the Gradient method. A few Gradient methods, which are Barzilai

and Borwein Gradient method, Monotone Gradient method via weak secant equation

and Monotone Gradient method via Quasi-Cauchy Relation were investigated. The

functions considered are convex and twice continuous differentiable.

1-3 Problem Statement

The main task for solving an unconstrained optimization question is to minimize the

given objective function which relies upon real variables with no restriction on their

value.

Let w ∈ Rn be a real vector with n ≥ 1 component and function t : Rn → R,

such that t is continuous, convex and twice continuous differentiable function. Then,

the unconstrained optimization problem can be expressed as:

min t(w), w ∈ Rn (1.1)

1-4 Research Methodology

As stated in the objective section, one of the purposes for this project is to study gra-

dient methods used for solving unconstrained optimization problems. In Project 1, re-

search was done for optimization. Then, a study on some gradient type methods such
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as steepest descent method, Newton method, Barzilai and Borwein Gradient method

and Monotone Gradient methods via Weak Secant Relation was done.

For each of the methods, an iterative scheme was applied to find the solution. It is a

mathematical procedure to get a set of improving approximate solutions. The process

was repeated until a close gradient difference was obtained. This minimum point can

be calculated manually. However, the process was proved tedious. Hence, the value

was calculated with the help of MATLAB code. We had chosen MATLAB as it is

more user friendly and it can compute results faster than other traditional programming

languages like C or Java.

Since different kinds of gradient type methods are being investigated, the compar-

ison was being done using standard functions to test the efficiency of the methods.

From the results, we will conclude the most efficient method.

1-5 Methodology and Planning

In this project, the main concern is to investigate the gradient type methods used for

solving unconstrained optimization. Each of the method has an unique iterative scheme

where it is a process to generate the approximate solutions.

In chapter 2, basic definition and brief history of optimization was shown. A simple

step by step guideline for solving an optimization problem was also provided. It is then

further break down into few examples of optimization. Then, summary related to the

research topic was shown.

In chapter 3, terminologies and definitions used in this project was defined. Op-

timality condition for unconstrained optimization problems was stated. Next, before

going deep into each method, the general view of gradient type methods was shown. A

basic scheme was stated here to show general idea on how the gradient method works.

It is then followed by the gradient type methods studied in this project, namely Steepest

Descent method, Newton method, Quasi Newton method(general case), Barzilai and

Browein method, Monotone Gradient method via weak secant equation and Monotone

Gradient method via quasi-Cauchy relation.

In chapter 4, the numerical result of this project was shown. The results obtained

were based on the standard function as attached in Appendix. Two comparisons be-
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tween the studied methods, which are Barzilai and Browein method with Monotone

Gradient method via Weak Secant Equation and Barzilai and Browein method with

Monotone Gradient method via Quasi-Cauchy Relation was done. The result obtained

from the comparison was recorded. The recorded results were based on the number of

iterations until a close difference solution was obtained. A paragraph of discussion is

included to discuss the efficiency of a particular method.

In chapter 5, which is the last chapter of this project, a brief summary of the re-

search findings and discussion was shown. Finally, it was concluded that the project

objectives set were met.

This chapter was eneded with timeline of this project which can be seen through

two Gantt Chat. During the first week of project 1 semester, a suitable supervisor, Dr

Mahboubeh was found and the project title was set. Then, the study on gradient type

methods began and stretched till the end of project 2. The proposal was prepared in

early weeks of project 1 and was submitted on week 7. It was then followed-up by

changing the proposal into an interim report. Concurrently, the study on MATLAB

software and code was also being carried out. Finally, at the end of project 1, the

interim report was completed and submitted on week 12 and project 1 ended with oral

presentation on week 13. The milestone of project 1 was summarized in figure below:

Figure 1.1: Milestone for Project 1
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Figure 1.2: Task Description for Project 1

Modification of interim report to final report began from week 1. The final report

was type using LATEX. The general case of Quasi Newton method and Monotone Gra-

dient method via quasi-Cauchy relation was investigated in Project 2. Mid-semester

monitoring form was submitted on week 7. For the subsequent week, the report was

amended and finalized . Concurrently, similarity rate of the report was checked using

Turnitin. Draft of complete report was submitted to supervisor on week 10. Finally, the

finalized project report was submitted on week 12 and the project was ended by oral

presentation on week 13. The milestone of project 2 is summarized in figure below:

Figure 1.3: Milestone for Project 2

Figure 1.4: Task Description for Project 2



CHAPTER 2: LITERATURE REVIEW

The operations research optimization techniques started in England for investigating

the tactics and strategy concerning troop operations amid the World War II. Manage-

ment of England had fewer resources; hence they must use their resources in a more

efficient way. In addition, a group of scientists played the role as advisors for the

management and examined troops operation with a logical approach so that they could

succeed in the war without battling. The growing of operational research optimization

technique caused an industrial and economic boom. The management should think

of some strategy to reach their objective. (Agarwal (2015)) So, what is an operations

research optimization technique? Optimization may be characterized as investigation

of deciding on the best solution to a given problem. This problem is usually a physical

reality model. It includes the investigation of optimality criteria, determination of al-

gorithmic strategies and investigation of structure of every strategy. (Fletcher (1987))

There are a few steps that need to be followed in order to solve an optimization prob-

lem. The initial step in solving optimization problem would be to construct a model.

In this step, we will need to identify and express the objective of the problem as well

as the variables used and the constraints of problem. The following step will be to

determine the type of problem. There are many categories and hence it is important to

classify it. This is an important step as it might affect the algorithm used for solving

a problem. Lastly, we select suitable software to solve the problem. (Neos-guide.org

(2016))

One of the popular methods used to solve unconstrained optimization problems is

the steepest descent method. It is also referred to the gradient descent method and

was designed by Cauchy in 1847. He claimed that gradient can be used for solving

a non-linear equation problem. In addition, any function which is continuous should

be decreasing in the early stage if the steps are taken along the negative gradient as

the direction. He also specified that the computation for a convex quadratic function

is an absolutely easy task. Hence, this method plays a vital role in developing the

optimization theory. Lamentably, it performs slowly in real life problems and is also

executed badly especially in poorly scaled condition problems. A problem is described

6
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as poorly scaled if the function value produced is having a large difference when we

are changing the value of w in certain direction. For example, a function t(w) =

10000000w2
1 + w2

2. Clearly, this function is very sensitive towards w1 but not w2.

(Nocedal & Wright (1999)) This disadvantage stands stronger when Xu (2008) stated

that the process will be looping infinite times before we can find the minimum point

which cause the long delay in finding solution for real life problem. Despite this, the

method guarantees that the minimum solution will be found after looping many times

if the particular minimum solution exists.

Steepest descent method lacks second derivative information, causing inaccuracy.

Thus, a more effective method known as Newton method is proposed. Newton’s

work was done in year 1669 but it was published few years later. (Anstee (2006))

It uses second derivation, also known as the Hessian, bringing about better results.

However, it is not easy to calculate Hessian manually especially when differentiation

gets complicated. Even for some simpler differentiation, it may be time-consuming.

(Bartholomew-Biggs (2005)) In addition, large storage space is needed to store the

computed Hessian and thus it is computationally expensive. For example, if we have

an Hessian with n dimension, we will need to have O(n2) storage space to store the

Hessian. (Gibiansky (2014))

The famous method we used to solve an unconstrained problem is the Newton’s

method. However, for each iteration, we will need to compute the second derivation,

which is the Hessian of a given function. This will need a lot of computing effort and

in worst scenarios; the second derivation cannot be compute analytically. Therefore, in

later year, Quasi Newton method was introduced. Instead of computing the Hessian,

we use the approximation Hessian. There are a lot of updates can be used to calculate

the Hessian approximation. The four famous update method which is normally been

used are BFGS update, DFP update, PSB update and SR1 update. (Ding et al. (2010))

Later, the Barzilai and Borwein Gradient Method was proposed by Barzilai and

Borwein in 1988. This method is preferable as compared to steepest descent method in

terms of both computations and theories. This is because the steepest descent method

performs badly in ill conditions. However, such difficulties would not occur if we are

using the Barzilai and Borwein method. Additionally, it does not need to go through the

line search process and it only needs very little computation. The higher efficiency and
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simplicity renders this method high attention from the masses. (Sun & Yuan (2006))

Hassan et al. (2009) was inspired by the Barzilai and Browein method which is su-

perior to the steepest descent method. They endeavour to discover steplength formula

that approximate inverse of Hessian using Quasi Cauchy equation which retain mono-

tone property for every repetition. The method is known as the Monotone Gradient

method via Quasi-Cauchy Relation. The approximation of inverse of Hessian is being

stored in the diagonal matrix and hence it only required very little storage space, which

is O(n). The repetition is also lesser as compared to the Barzilai and Browein method

and it will converge to a desired point. Therefore, this method is a better choice for

solving any problem.

Most recently, Leong et al. (2010) suggested a fixed step gradient type method to

improve the Barzilai and Borwein method and it is known as the Monotone Gradient

Method via Weak Secant Equation. In this method, accuracy of approximation had im-

proved and information gathered in the previous iterations is used. The approximation

is stored using diagonal matrix depending on the modified weak secant equation. The

storage needed is also small for this method, which is just O(n). Therefore, it is clear

that this method is better than BB method as it is easier for computation, accurate and

does not require much storage.



CHAPTER 3: GRADIENT TYPE METHODS

Definitions of terminologies used in this project will be defined here. Then, optimality

conditions for unconstrained optimization problem are stated. General view of gra-

dient type methods will be shown for rough idea. Finally, the concerned Gradient

type methods will be explored. The definitions and terminologies were referred from

Fletcher (1987), Nocedal & Wright (1999), Sun & Yuan (2006)

3-1 Terminology and Definition

Definition 3.1. Comparing with the neighborhood N of point w∗, a point w∗ is known

as local minimizer if t(w∗) ≤ t(w) for all w ∈ N .

Definition 3.2. Comparing with all the w over Rn, a point w∗ is known as global

minimizer if t(w∗) ≤ t(w) for all w ∈ Rn.

Example 3.3. The figure below shows the local minimizer and global minimizer in a

given graph.

Figure 3.1: Local Minimizer and Global Minimizer

Definition 3.4. If a function t : Rn → R is continuous and ∂t(w)
∂wx

exist, x = 1, 2, 3, ..., n,

then the function t is continuously differentiable at all w ∈ Rn. It is the gradient of

function t at w and has notation

grad t = ∇t = [
∂t(w)

∂w1

, ...,
∂t(w)

∂wn
]T . (3.1)

9
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Definition 3.5. Suppose there is an open set K ⊂ Rn. Function t is said as continu-

ously differentiable on K if it can be differentiate successively at all point on K. This

function is expressed by t ∈ C1(K).

Definition 3.6. If a function t : Rn → R is continuous and ∂2t(w)
∂wg∂wh

exist, g =

1, 2, 3, ..., n, h = 1, 2, 3, ..., n, then the function t is twice continuous differentiable

at all w ∈ Rn. It is the Hessian of function t and has notation

Hessian t = ∇2t =
∂2t(w)

∂wg∂wh
, 1 ≤ g, h ≤ n (3.2)

Definition 3.7. Function t is said as twice continuously differentiable on K if it is able

to differentiate twice continuously at all point of open set K ⊂ Rn. This function is

expressed by t ∈ C2(K).

Definition 3.8. Assume that set K ⊂ Rn and w1, w2 ∈ K . If c1w1 +(1− c1)w2 ∈ K,

then K is a convex set.

Definition 3.9. Assume that set K ⊂ Rn is a convex set which is nonempty and

t : K ⊂ Rn → R, w1, w2 ∈ K and c1 ∈ (0, 1). If t(c1w1 + (1 − c1)w2) ≤

c1t(w1) + (1− c1)t(w2), then t is a convex function on K.

Definition 3.10. Fuction t is a concave function if −t is a convex function.

Example 3.11. The figure below shows the example of concave and convex function.

Figure 3.2: Concave Function and Convex Function
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Theorem 3.12. Below is some properties of a convex function:

1. Suppose there is a convex set K ⊂ Rn and a real number, γ ≥ 0. If t is a convex

function on K, then γt also a convex function on K.

2. Suppose there is a convex set K ⊂ Rn. If t1, t2 are the convex function on K,

then t1 + t2 is convex function on K.

3. Suppose there is a convex set K ⊂ Rn. If t1, t2, ..., tn are convex function on K

and real numbers, γ1, γ2, ..., γn ≥ 0, then
∑n

x=1 γxkx is a convex set on K.

Theorem 3.13. Suppose K ⊂ D is an open convex set and t : D ⊂ Rn → R is

convex, then t is continuous on K. This is known as the first order characteristic of a

given function.

Theorem 3.14. Suppose K ⊂ Rn is an open convex set which is nonempty and func-

tion t : K ⊂ Rn → R is differentiable. If t(m) ≥ t(w) + ∇t(w)T (m − w), then

function t is convex.

Example 3.15. The figure below shows the example of First Order Characteristic for

a convex function.

Figure 3.3: First Order Characteristic of Convex Function

Theorem 3.16. Suppose there is a open convex set K ⊂ Rn which is nonempty to-

gether with a continuous and twice differentiable function t : K ⊂ Rn → R. For

all points in K, if the second derivation is positive semidefinite, then the function t is

convex.

Theorem 3.17. Suppose there is an open setK, a convex subset P ⊂ K and a function

t : K ⊂ Rn → R. If the gradient of function t and ∇t is monotone, then t is convex

on K.
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Theorem 3.18. Suppose there is a nonempty open convex set K ⊂ Rn and a twice

continuous differentiable function t : K ⊂ Rn → R. If the second derivation of t,

∇2t(w) is positive semidefinite, then∇t is monotone on set K.

3-2 Optimality Condition for Unconstrained Optimiza-

tion

This project focuses on the unconstrained optimization problem with a continuous,

twice differentiable and convex function t. The problem can be expressed with the

equation below:

min t(w), w ∈ Rn (3.3)

Now, optimality conditions including first order condition and second order con-

dition are presented. The definition of local minimizer and global minimizer will be

defined again.

Definition 3.19. Comparing with the neighborhood N of point w∗, a point w∗ is known

as local minimizer if t(w∗) ≤ t(w) for all w ∈ N .

Definition 3.20. Comparing with all the w over Rn, a point w∗ is known as global

minimizer if t(w∗) ≤ t(w) for all w.

Theorem 3.21. Suppose thatK ⊂ Rn is a nonempty convex set and t : K ⊂ Rn → R.

If t is convex function, then a local minimizer point w∗ ∈ K will be also a global

minimizer.

In the following, the theorem of first order necessary condition (Theorem 3.22),

second order necessary condition (Theorem 3.23) and second order sufficient condi-

tion (Theorem 3.24) are presented to make the definition of local minimizer and global

minimizer clear.

Theorem 3.22. Suppose there is an open set K, t : K ⊂ Rn → R and the function t

is differentiable on K. If w∗ is local minimizer of (3.3), then∇t(w∗) = 0

Theorem 3.23. Suppose there is an open set K, t : K ⊂ Rn → R and the function

t is twice differentiable on K. If w∗ is local minimizer of (3.3), then ∇t(w∗) = 0 and

∇2t(w∗) is positive semidefinite.
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Theorem 3.24. Suppose there is an open set K, t : K ⊂ Rn → R and the function t

is twice differentiable on K. If ∇t(w∗) = 0 and ∇2t(w∗) is positive definite, then w∗

will be the local minimizer of function t.

Definition 3.25. Suppose there is a point w∗ ∈ Rn and a function t where t is dif-

ferentiable. If ∇t(w∗) = 0, then the point is known as a critical point or a stationary

point.

From the above definition and theorem, it is clear that if a point w∗ is local min-

imizer, then it is also a critical point. Yet, the converse might not be true. A critical

point w∗ can be either a local maximizer or local minimizer.

Assuming that the objective function declared is a convex function, then the fol-

lowing theorem will hold.

Theorem 3.26. Suppose t : Rn → R is a convex function and it is differentiable. If

∇t(w∗) = 0, then w∗ is a global minimizer.

The final definition in this section give an important concept. This definition is

regarding the descent direction.

Definition 3.27. Suppose a function t : Rn → R is differentiable at w ∈ Rn. If there

is a vector ϕ ∈ Rn and 〈∇t(w), ϕ〉 < 0, then ϕ is known as descent direction of t at w.

(For proving of the theorems, see (Sun & Yuan (2006)))

3-3 Overview of Gradient-type Methods

The optimization method is frequently begins with an initial guess. The method refines

repeatedly to approach to the optimal point. For every problem, we begin with an

starting point, w0 and an iterative sequence {wx} will be generated by means of some

iterative rule to obtain an optimal solution, w∗. This iteration will be stopped once it

satisfied the stopping criteria set earlier. Let α be a prescribed tolerance, which it is a

very small positive value, then our termination criteria can be represented by

‖∇t(wx)‖ ≤ α (3.4)

The gradient of the function t goes to zero when (3.4) is satisfied. The iterative se-

quence {wx} will converge to a desired point.
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Let wx be the value of w at x − th iteration, dx be the x − th direction, βx be the

x− th stepsize, then, the next w value can be calculated using

wx+1 = wx + βxdx (3.5)

Equation (3.5) shows that by employing different stepsize βx and different direction

dx, we will have different methods. If t(wx+1) < t(wx) at each iteration, it implies

that βxdx < 0. Then dx is a descent direction and this kind of optimization methods

are known as descent method. In the following, the general scheme of optimization

method is present.

Algorithm 3.1. (General scheme)

Step 1. Pick an initial point w0 ∈ Rn and set a stopping tolerance 0 < α < 1

Step 2. Check if ‖∇t(wx)‖ ≤ α. If yes, then stop.

Step 3. Based on the iterative scheme, compute the descent direction, dx

Step 4. Compute the stepsize, βx that make the function to be decreased, that is

t(wx + βxdx) ≤ t(wx).

Step 5. Compute the next point value using wx+1 = wx+ βxdx. Set x = x+1 and

go to step 2.

3-4 Steepest Descent Method

The steepest descent method is also known as the gradient descent method. It is the

fundamental and simplest method that used for solving optimization problem consist-

ing n variables. There are two important factors to be recognized before solving the

problem, which are the search direction and the steplength. The steplength enable us

to know how far we should move in the direction. A function t and an initial point, w0

was given. The goal to achieve is to look for a direction to cause a maximum decrease

for the function t. It is a direction of negative gradient vector at the current point.

Let the function t be a continuously differentiable function at point wx and the

gradient function∇t(wx) 6= 0. According to Taylor expansion,

t(w) = t(wx) + (w − wx)T∇t(wx) + o(‖w − wx‖) (3.6)
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Now, let w − wx = βdx. The direction dx is known as descent direction if it satisfy

dTx∇t(wx) ≤ 0. Fixing the stepsize β, we find that the function value decreases faster

if the value of dTx∇t(wx) is smaller.

Applying the Cauchy-Schwartz inequality, | dTx∇t(wx) | ≤ ‖dx‖‖∇t(wx)‖, dTx∇t(wx)

will have the smallest value if dx = −∇t(wx). It implies that the steepest descent di-

rection is−∇t(wx). Therefore, the steepest descent method have the following scheme

wx+1 = wx − βx∇t(wx) (3.7)

Now, the iterative scheme for the first proposed method: steepest descent method

is present:

Algorithm 3.2. (Steepest Descent method)

Step 1. Pick a starting point w0 ∈ Rn and set a stopping tolerance 0 < α < 1

Step 2. Check if ‖∇t(wx)‖ ≤ α. If yes, then stop. Else, we set dx = −∇t(wx)

Step 3. Compute the stepsize, βx such that t(wx + βxdx) = min t(wx + βxdx)

Step 4. Compute the next point value using wx+1 = wx+ βxdx. Set x = x+1 and

go to step 2.

3-4-1 Convergence of the Steepest Descent Method

In theory, the steepest descent method is significant method in optimization field and

its convergence theory is important. In the following, convergence theorem for steepest

descent method will be discussed.

Theorem 3.28. Let Q be a positive constant. Suppose there is a function t which is

twice differentiable continuously and ‖∇2t(wx)‖ ≤ Q. Considering an initial point,w0

, the sequence generated by steepest descent method will end after many iterations, or

limx→∞∇t(wx) = 0 or limx→∞ t(wx) = −∞

From this section, it is clear that solving a problem using steepest descent method

is very easy. However, the process for performing the steepest descent method is very

slow in many real world problem. In most cases, this method performance is fine in the

beginning stage. However, as it approaches the critical point, the process delayed with

a zigzagging phenomena. The phenomenon of zigzagging occur as both gradients are
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perpendicular on the continuous iteration. Thus, the direction will be perpendicular

too. The zigzagging phenomena is shown in figure below.

Figure 3.4: Zigzagging in Steepest Descend Method

(For proving of convergence of this method, see(Nocedal & Wright (1999)))

3-5 Newton Method

Suppose that t : Rn → R is continuous and twice differentiable function, there exist a

point wx ∈ Rn and the Hessian∇2t(wx) is a positive definite matrix. Let s = w−wx.

To develop the model, the function can be expanded by the Taylor series

t(wx + s) ≈ q(x)(s) = t(wx) +∇t(w)T s+
1

2
sT∇2t(wx)s (3.8)

By minimizing the quadratic approximation, qk,we will have the Newton formula:

wx+1 = wx − [∇2t(wx)]
−1∇t(wx) (3.9)

If we denote Gx = ∇2t(wx) and gx = ∇t(wx), then we can rewrite the Newton

formula as follows:

wx+1 = wx −G−1x gx (3.10)

The Newton method’s direction is sx = wx+1 − wx = −G−1x gx. It yields that the

direction will be a downhill direction as −gTxG−1x gx < 0 if Gx is a positive definite

matrix.

Now, we present the Newton method algorithm:

Algorithm 3.3. (Newton method)

Step 1. Pick an starting point w0 ∈ Rn and set a stopping tolerance 0 < α < 1
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Step 2. Check if ‖∇t(wx)‖ ≤ α. If yes, then stop. Else, we compute sx = −G−1x gx

Step 3. Compute the next point value using wx+1 = wx + sx. Set x = x + 1 and

go to step 2.

Newton’s method is promising as it applies the Hessian matrix which carries more

information about the curvature. Yet, the calculation of Hessian is very difficult in

many situations. It needs a lot of computational effort and requires O(n2). In addition,

the Hessian may not be available analytically.

3-5-1 Convergence of the Newton Method

Before showing the convergence theorem, we will first give the definition of Lipschitz

continuous function.

Definition 3.29. Let t : Rn → R be our function, K ⊂ D be our set and two points w0

and w1 is in K. If there exist a constant Z > 0 and ‖t(w1) − t(w0)‖ ≤ Z‖w1 − w0‖,

then the function t is Lipschitz continuous.

Now, we present the convergence theorem for Newton method. The function t we

are using is assumed to be twice differentiable and the second derivation, the Hessian of

our function is Lipschitz continuous satisfying sufficient condition, then the following

theorem will hold.

Theorem 3.30. If a function t can be differentiate twice and Hessian of the given

function is Lipschitz continuous around neighborhood of optimal point, w∗ satisfying

the sufficient condition. Then,

1. if the initial point w0 is near to the optimal point w∗, then the array of iteration

will be converging to the optimal point.

2. the convergence rate of the sequence {wx} is quadratic

3. the gradient norm sequence {‖∇tx‖} will be converging quadratically to 0.

(For proving of convergence and theorems for this method, see (Anstee (2006))

and (Nocedal & Wright (1999)))
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3-6 Quasi Newton Method

One of the popular technique to solve unconstrained problem is through Newton method

which we discussed in the section earlier. In Newton method, we need to compute the

second derivative of the function, which is also known as the Hessian. However, it

needs a lot of computational effort and it may be unavailable in some case. Hence,

rather than calculating the Hessian matrix, we might think of creating a Hessian ap-

proximation. For instance, Bx in Quasi Newton method. We expect the sequence

{Bx} has positive definiteness, the direction dx = −B−1x gx heading down and it acts

similar to Newton method. There are four well known updates used for updating the

Hessian approximation in Quasi Newton methods, which are BFGS updates which is

introduced by Broyden, Fletcher, Goldfarb and Shanno in 1970 (see Hussain & Suh-

hiem (2015), FinMath (2013)), DFP updates which developed by Davidon, Fletcher

and Powellsee (see Holmstr (1997)), PSB updates which is suggested by Powell and

SR1 updates (see Ding et al. (2010)).

We do not investigate deep into each updates, however, we will give the general

algorithm for Quasi Newton method here,

Algorithm 3.4. (Quasi Newton method)

Step 1. Pick an initial point w0 ∈ Rn, initial inverse Hessian approximation, B0

and set a stopping tolerance 0 < α < 1

Step 2. Check if ‖∇t(wx)‖ ≤ α. If yes, then stop. Else, we compute dx = −Bxgx

Step 3. Compute the steplength βx

Step 4. Compute the next inverse Hessian approximation using the formula of a

particular updates

Step 5. Compute the next point value using wx+1 = wx+ βxdx. Set x = x+1 and

go to step 2.

3-7 Barzilai and Borwein (BB) Gradient Method

As we discussed earlier, the weakness of steepest descent method is its poor perfor-

mance especially in ill condition problem. Hence, Barzilai and Borwein offered an-

other gradient method with modified steplength in 1988. The BB is in the frame of
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Newton method, but we do not need to compute the Hessian. In their approach, the

steplength is derived drom a two point approximation via secant equation. We can

express the iterative scheme for BB method as follow:

wx+1 = wx −D−1x gx (3.11)

where Dx = ( 1
θx
)I . Matrix Dx should satisfy in the secant equation, therefore we

compute θx as follows

min‖Dxsx−1 − yx−1‖2 (3.12)

Let us denote sx−1 = wx − wx−1, yx−1 = gx − gx−1. Then, we get the equation for

computing BB stepsize as follows:

θx =
sTx−1sx−1
sTx−1yx−1

(3.13)

Alternatively, by minimizingmin‖sx−1−D−1x yx−1‖2 with respect to θx, we can rewrite

formula for calculating α as

θx =
yTx−1sx−1
yTx−1yx−1

(3.14)

Now, we present the BB Method algorithm.

Algorithm 3.5. (BB method)

Step 1. Pick an initial point w0 ∈ Rn , an initial stepsize, θ0 and set a stopping

tolerance 0 < α < 1

Step 2. Check if ‖∇t(wx)‖ ≤ α. If yes, then stop. Else, we suppose that

sx = −θxgx.

Step 3. Compute the next point value using wx+1 = wx + sx

Step 4. Compute the value yx by yx = gx+1 − gx

Step 5. Compute the BB steplength using ( 3.13) or ( 3.14)

Step 6. Set x = x+ 1 and go to step 2.

3-7-1 Convergence of the Barzilai and Borwein (BB) Gradient Method

Now, we present the convergence theorem for Barzilai and Borwein method. The

function t we are using is assume to be a convex quadratic function. Then, a sequence

of {wx} which is yield using the algorithm will converge to a point, w∗. The rate of

convergence will be R-superlinear.

(For proving of convergence for this method, see (Barzilai & Borwein (1988)))
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3-8 Monotone Gradient Method via Weak Secant Equa-

tion

Assuming that we have a matrix Q which where it is positive definite and also sym-

metric. Consider the following convex quadratic function:

t(w) =
1

2
wTQw − bTw (3.15)

Now, suppose that we generated a sequence {wx} by steepest descent method with

initial point w0. As the gradient of function gx = ∇t(wx) = Qwx − b, we have

gx+1 = (I − θxQ)gx (3.16)

We suppose that matrix Q has different eigenvalues, 0 < η1 < η2 < ... < ηn, together

with g(p)1 6= 0 for all p = 1, 2, ..., n. We know that under orthogonal transformation, the

gradient method will be remain unchanged. Additionally, gradient components can be

merged if the gradient components are corresponding to the same eigenvalues. Hence,

We can suppose that matrix Q is

Q = diag(η1, η2, ..., ηn) (3.17)

Let gx = (g
(1)
x , g

(2)
x , ..., g

(n)
x )T and by (3.16) and (3.17), we will have

g
(p)
x+1 = (1− θxηp)g(p)x (3.18)

We may calculate the stepsize, θx using the following formula:

θx =
2

η1 + ηn
(3.19)

However, the value of η1 and ηn is normally an unknown value. So, the calculation

of stepsize by ( 3.19) is only good in theory. Hence, another good gradient method

named Monotone gradient method was introduced. Let wx = (w1
x, w

2
x, ..., w

n
x)
T and θx

as stepsize in negative gradient direction, then we have the following updating scheme

wx+1 = wx − θxgx (3.20)

The equation (3.20) can be also written as wx+1 = wx − L−1x gx, where Lx =

diag( 1

θ
(1)
x

, 1

θ
(2)
x

, ..., 1

θ
(n)
x

). Since the matrix Lx is a diagonal matrix, it only needs the stor-

age ofO(n). Let sx = wx+1−wx, yx = gx+1−gx andA = diag((s
(1)
x )2, (s

(2)
x )2, ..., (s

(n)
x )2).
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The value of θx+1, which is the diagonal element of matrix Lx+1 can be updated using

the formula as follow:

θx+1 = θx +
(sTx yx − sTxLxsx)(s

(p)
x )2

tr(A2)
, p = 1, 2, ..., n (3.21)

If the updated diagonal matrix does not preserve the positive definiteness property, then

it will be replaced by the previous diagonal updating matrix.

Now, we present the Monotone Gradient method algorithm via Weak Secant Equa-

tion.

Algorithm 3.6. (Monotone Gradient method via Weak Secant Equation)

Step 1. Pick an initial point w0 ∈ Rn , an initial positive definite diagonal matrix,

L0 = I and set a stopping tolerance 0 < α < 1

Step 2. Check if ‖∇t(wx)‖ ≤ α. If yes, then stop.

Step 3. Compute L−1x = diag( 1

θ
(1)
x

, 1

θ
(2)
x

, ..., 1

θ
(n)
x

),

where θ(p)x+1 = θ
(p)
x + (sTx yx−sTxLxsx)((s

(p)
x )2)

tr(A2)
, p = 1, 2, ..., n

Step 4. If Lx > 0 is violated, then we put L−1x = L−1x−1. Else, we keep the L−1x

which we computed in Step 3.

Step 5. Compute the value of next point using wx+1 = wx − L−1x gx.

Step 6. Set x = x+ 1 and go to step 2.

3-8-1 Convergence of the Monotone Gradient Method via Weak

Secant Equation

We will also illustrate the convergence theorem for Monotone Gradient method via

Weak Secant Equation. This convergence theorem is important whenever the method

is being applied. The function t we are using is assumed to be bounded below and

strictly convex.

Theorem 3.31. Suppose that the sequence {wx} is yield using the algorithm for Mono-

tone Gradient method via Weak Secant Equation and a pointw∗ is an unique minimizer

for function t, then gx = ∇t(wx) = 0 will be retained for x ≥ 1 or limx→∞ ‖gx‖ = 0

and the sequence {wx} will be converging R-linearly to a desired point w∗

(For proving of convergence for this method, see (Leong et al. (2010)))
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3-9 Monotone Gradient method via Quasi-Cauchy Re-

lation

Suppose that we have a matrix Q such that the matrix is positive definite and symmet-

ric. Think over the below convex quadratic function:

t(w) =
1

2
wTQw − bTw (3.22)

Now, we utilized an initial pointw0 for generating a sequence {wx} by steepest descent

method. Combining the iterative scheme of steepest descend method with the above

mentioned quadratic function, we will have

gx+1 = gx −Qθxgx (3.23)

Matrix Q will definitely has distinct eigenvalues, 0 < η1 < η2 < ... < ηn, together

with g(p)1 6= 0 for all p = 1, 2, ..., n. Under orthogonal transformation, the gradient

method will be remain unchanged. In addition, all the gradient components can be

merged if the gradient components are referring to the same eigenvalues. Therefore,

we can write matrix Q as

Q = diag(η1, η2, ..., ηn) (3.24)

Combining all the gx and we express it as (g(1)x , g
(2)
x , ..., g

(n)
x )T and by (3.23) and (3.24),

we will have

g
(p)
x+1 = (1− θxη(p))g(p)x (3.25)

From (3.25), we acquire some connection , where

|g(p)x+1| ≤ |1− θxη(p)||g(p)x | (3.26)

Hence, we may calculate the stepsize, θx using the following formula:

θ(p)x =
1

η(p)
, p = 1, 2, ..., n (3.27)

Using the value of stepsize, we can have our updating scheme as

w
(p)
x+1 = w(p)

x − θ(p)x g(p)x (3.28)

Let Lx be the diagonal matrix containing all the stepsizes, then we can rewrite (3.28)

as

wx+1 = wx − Lxgx (3.29)
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Yet, the value of η(p) is often an unknown value. Hence, we could not compute

the value using the formula and we can only say that the formula is good in theory.

Thus, usage of approximation of Q−1 would be a better choice. This approximation

should always fulfill the quasi-Newton equation requirement, at which Q−1yx = sx,

given the value of sx is sx = wx+1 − wx and the value of yx is yx = gx+1 − gx. For

us to approximate the value of Q−1 correctly by updating Lx+1, we must make sure

that Lx+1 fulfill quasi-Caichy equation. Since the matrix Lx is a diagonal matrix, it

only needs the storage of O(n). Let sx = wx+1 − wx, yx = gx+1 − gx and A =

diag((y
(1)
x )2, (y

(2)
x )2, ..., (y

(n)
x )2). The value of lx+1, which is the diagonal element of

matrix Lx+1 can be updated using the formula as follow:

lx+1 = lx +
(sTx yx − yTxLxyx)(yx)2

tr(A2)
, p = 1, 2, ..., n (3.30)

We can not assure that this method which utilizing (3.29) will be monotone forever.

Hence, it is vital for us to comprise monotone strategy into it. Suppose that lmx is

the smallest diagonal component in Lx, lMx is the largest diagonal component in Lx,

then we present the algorithm for Monotone gradient type method via Quasi-Cauchy

Relation as follow.

Algorithm 3.7. (Monotone Gradient method via Quasi-Cauchy Relation)

Step 1. Pick a starting point w0 ∈ Rn , a starting positive definite diagonal matrix,

L0 = I , initiating x = 0 and set a stopping tolerance 0 < α < 1

Step 2. Check if ‖∇t(wx)‖ ≤ α. If yes, then stop.

Step 3. When x = 0, calculate the value of w0− g0
‖g0‖ and set it as w1, then proceed

to step 5. For other x value, we let wx+1 = wx−Lxgx and update the value

of Lx+1 where Lx+1 = diag(l
(1)
x+1, l

(2)
x+1, ..., l

(n)
x+1). The value of l(p)x+1, p =

1, 2, ..., n can be calculated using (3.30).

Step 4. If Lx+1 > 0 or lmx −
(lmx+1)

−1(lMx )2

2
> 0 is violated, then we put Lx+1 = θxI ,

such that the value of θx is calculated by:

θ(x) =

( y
T
x sx
yTx yx

), if yTx sx
yTx yx

< 2(lmx )
3

2(lmx )
3, if yTx sx

yTx yx
≥ 2(lmx )

3

Else, we keep the Lx+1 which we computed in Step 3.

Step 5. Set x = x+ 1 and go to step 2.
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3-9-1 Convergence of the Monotone Gradient method via Quasi-

Cauchy Relation

Theorem 3.32. Assuming that there is a function t which is convex quadratic. Then, a

sequence of {wx} which is yield using the algorithm will converge to a point, w∗. The

rate of convergence will be R-linear.

(For proving of convergence for this method, see (Hassan et al. (2009)))



CHAPTER 4: RESULTS AND DISCUSSIONS

4-1 Comparison of Gradient Type Methods

Finally, comparison for efficiency of the proposed gradient type method was made.

The selected gradient methods were tested using the standard unconstrained optimiza-

tion function as attach in Appendix A-1. These standard unconstrained function are

chosen from Andrei (2008) and More et al. (1981). MATLAB code were run to get the

results. The original code was written by Farid,M. It was used in two of the papers,

(refer Leong et al. (2010) and Hassan et al. (2009)). For this project, the code was

developed. The stopping criteria was set as ‖ ∇t(wx) ‖≤ 10−4 for all functions. To

avoid the process iterate in finite number of times, execution limitations were set. The

program was only allowed to be executed within 1000 iterations. If it fails to show

result within the boundary limitation, we record it as ’-’. Else, the number of iteration

is recorded.

4-1-1 Barzilai and Borwein Gradient Method and Monotone Gra-

dient Method via Weak Secant Equation

First, we will compare the Barzilai and Borwein Gradient Method (BB Method) and

Monotone Gradient Method via Weak Secant Equation (MonoGrad Method). The data

obtained is shown from Table 4.1 to 4.3.

Table 4.1: Numerical result of BB Method and MonoGrad method
Test Function (dimension) Starting point, w0 BB Method MonoGrad Method

Diagonal_2 (10) (3
1
, 3
2
, ..., 3

10
) - 53

Diagonal_2 (40) (3
1
, 3
2
, ..., 3

40
) - 140

Diagonal_2 (50) (3
1
, 3
2
, ..., 3

50
) - 164

Diagonal_2 (80) (3
1
, 3
2
, ..., 3

80
) - 220

Diagonal_2 (102) (3
1
, 3
2
, ..., 3

100
) - 248

Diagonal_2 (5 ∗ 102) (3
1
, 3
2
, ..., 3

500
) - 579

Diagonal_5 (10) (2,2,...,2,2) - 19

25
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Table 4.2: Numerical result of BB Method and MonoGrad method (continue)

Test Function (dimension) Starting point, w0 BB Method MonoGrad Method

Diagonal_5 (50) (2,2,...,2,2) - 21

Diagonal_5 (102) (2,2,...,2,2) - 23

Diagonal_5 (5 ∗ 103) (2,2,...,2,2) - 27

Diagonal_5 (104) (2,2,...,2,2) - 28

Diagonal_5 (105) (2,2,...,2) - 30

EG2 (20) (1,1,...,1,1) 67 18

EG2 (50) (1,1,...,1,1) 209 23

EG2 (102) (1,1,...,1,1) 57 36

EG2 (5 ∗ 102) (1,1,...,1,1) 65 53

EG2 (103) (1,1,..,1,1) - 329

EG2 (5 ∗ 103) (1,1,...,1,1) 429 112

EG2 (104) (1,1,...,1,1) 470 59

Extended Tridiagonal2

(5 ∗ 102)

( 6
10
, 6
10
, ..., 6

10
) 11 14

Extended Tridiagonal2

(8 ∗ 102)

( 6
10
, 6
10
, ..., 6

10
) 11 11

Extended Tridiagonal2

(9 ∗ 102)

( 6
10
, 6
10
, ..., 6

10
) 11 11

Extended Tridiagonal2

(103)

( 6
10
, 6
10
, ..., 6

10
) 11 11

Extended Tridiagonal2

(104)

( 6
10
, 6
10
, ..., 6

10
) 11 11

Extended 3 Exponential

Terms (10)

(−1
10
, −1
10
, ..., −1

10
) 13 13

Extended 3 Exponential

Terms (30)

(−1
10
, −1
10
, ..., −1

10
) 13 13

Extended 3 Exponential

Terms (50)

(−1
10
, −1
10
, ..., −1

10
) 13 13

Extended 3 Exponential

Terms (102)

(−1
10
, −1
10
, ..., −1

10
) 13 13
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Table 4.3: Numerical result of BB Method and MonoGrad method (continue)

Test Function (dimension) Starting point, w0 BB Method MonoGrad Method

Extended 3 Exponential

Terms (5 ∗ 102)

(−1
10
, −1
10
, ..., −1

10
) 13 13

Extended 3 Exponential

Terms (103)

(−1
10
, −1
10
, ..., −1

10
) 13 13

Extended 3 Exponential

Terms (5 ∗ 103)

(−1
10
, −1
10
, ..., −1

10
) 13 13

Hager (10) (2,2,...,2) - 15

Hager (20) (2,2,...,2) 23 20

Hager (40) (2,2,...,2) 21 29

Hager (50) (2,2,...,2) 24 35

Perturbed Quadratic (10) (1
2
, 1
2
, ..., 1

2
) 27 9

Perturbed Quadratic (30) (1
2
, 1
2
, ..., 1

2
) 39 12

Perturbed Quadratic (50) (1
2
, 1
2
, ..., 1

2
) 59 14

Perturbed Quadratic (90) (1
2
, 1
2
, ..., 1

2
) 79 23

Perturbed Quadratic (102) (1
2
, 1
2
, ..., 1

2
) 90 27

Perturbed Quadratic (2 ∗

102)

(1
2
, 1
2
, ..., 1

2
) 98 32

Quadratic QF1 (10) (1,1,...,1) 20 10

Quadratic QF1 (50) (1,1,...,1) 39 15

Quadratic QF1 (102) (1,1,...,1) 59 14

Quadratic QF1 (5 ∗ 102) (1,1,...,1) 190 30

Quadratic QF1 (5 ∗ 103) (1,1,...,1) 518 61

Quadratic QF2 (10) (1,1,...,1) 6 6

Quadratic QF2 (50) (1,1,...,1) 4 4

Quadratic QF2 (102) (1,1,...,1) 4 4

Quadratic QF2 (5 ∗ 102) (1,1,...,1) 3 3

Quadratic QF2 (103) (1,1,...,1) 3 3

Raydan_2 (10) (1,1,...,1) 6 6

Raydan_2 (102) (1,1,...,1) 6 4

Raydan_2 (103) (1,1,...,1) 6 4

Raydan_2 (104) (1,1,...,1) 6 4
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Observing Table 4.1, Table 4.2 and Table 4.3, we find out that Monotone Gradient

Method via Weak Secant Equation has higher efficiency as compared to Barzilai and

Barzilai and Borwein Gradient Method. In few test function, Barzilai and Borwein

method fails to converge to a stationary point within 1000 iterations, for example the

Diagonal2 function and Diagonal5 function. Besides, from the result we obtain, we can

judge that the dimension of a given function might not affect the number of iteration

to be taken to reach a critical point. For example, in EG2 function, observing the

number of iteration taken using the Barzilai and Borwein method, for the dimension

= 20, which is quite small, it takes 67 iterations to reach a desired point. When the

dimension is increased to almost twice of the previous example, where the dimension

= 50, it takes more than 200 iteration to reach the optimum point. Observing the trend,

we will expect that the number of iteration will be increased if the dimension number

increased. However, this is not the case. When the dimension = 100, it only take 57

iterations to reach the critical point. Therefore, it is show that the number of iteration

does not necessary depends on the dimension.

4-1-2 Barzilai and Borwein Gradient Method and Monotone Gra-

dient method via Quasi-Cauchy Relation

Next, we compare the result between Barzilai and Browein Gradient method (BB

method) and Monotone Gradient method via Quasi-Cauchy Relation (MonoCauchy

method). The result is shown from Table 4.4 to 4.6.

Table 4.4: Numerical result of BB Method and MonoCauchy method

Test Function (dimension) Starting point, w0 BB Method MonoCauchy

Method

Broyden Tridiagonal(102) (-1,-1,...,-1,-1) 43 39

Broyden Tridiagonal(103) (-1,-1,...,-1,-1) 49 39

Broyden Tridiagonal(5 ∗

103)

(-1,-1,...,-1,-1) 56 41

Broyden Tridiagonal(104) (-1,-1,...,-1,-1) 58 42

Diagonal_2 (10) (3
1
, 3
2
, ..., 3

10
) 17 14

Diagonal_2 (70) (3
1
, 3
2
, ..., 3

70
) 50 44
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Table 4.5: Numerical result of BB Method and MonoCauchy method (continue)

Test Function (dimension) Starting point, w0 BB Method MonoCauchy

Method

Diagonal_2 (5 ∗ 102) (3
1
, 3
2
, ..., 3

500
) - 339

Diagonal_5 (10) (11
10
, 11
10
, ..., 11

10
) 4 4

Diagonal_5 (102) (11
10
, 11
10
, ..., 11

10
) 4 4

Diagonal_5 (103) (11
10
, 11
10
, ..., 11

10
) 4 4

Diagonal_5 (104) (11
10
, 11
10
, ..., 11

10
) 4 4

EG2(10) (1,1,...,1,1) 50 19

EG2(103) (1,1,...,1,1) - 630

Extended Block Diagonal

BD1(10)

( 1
10
, 1
10
, ..., 1

10
) 14 11

Extended Block Diagonal

BD1(102)

( 1
10
, 1
10
, ..., 1

10
) 14 12

Extended Block Diagonal

BD1(103)

( 1
10
, 1
10
, ..., 1

10
) 14 13

Extended Block Diagonal

BD1(104)

( 1
10
, 1
10
, ..., 1

10
) 16 13

Extended Himmel-

blau(10)

( 4
10
, 4
10
, ..., 4

10
) 24 15

Extended

Himmelblau(102)

( 4
10
, 4
10
, ..., 4

10
) 24 16

Extended

Himmelblau(103)

( 4
10
, 4
10
, ..., 4

10
) 24 16

Extended

Himmelblau(104)

( 4
10
, 4
10
, ..., 4

10
) 24 17

Extended Trigonomer-

tic(10)

(1
2
, 1
2
, ..., 1

2
) 7 7

Extended

Trigonomertic(102)

(1
2
, 1
2
, ..., 1

2
) 46 41

Extended

Trigonomertic(103)

(1
2
, 1
2
, ..., 1

2
) 59 41
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Table 4.6: Numerical result of BB Method and MonoCauchy method (continue)

Test Function (dimension) Starting point, w0 BB Method MonoCauchy

Method

Extended

Trigonomertic(5 ∗ 103)

(1
2
, 1
2
, ..., 1

2
) 62 49

Extended White &

Hoist(10)

(−12
10
, −12

10
, ..., −12

10
) - 150

Extended White &

Hoist(102)

(−12
10
, −12

10
, ..., −12

10
) - 169

Extended White &

Hoist(5 ∗ 102)

(−12
10
, −12

10
, ..., −12

10
) - 147

Extended PSC1(10) (3, 1
10
, ..., 3, 1

10
) 18 17

Extended PSC1(102) (3, 1
10
, ..., 3, 1

10
) 18 17

Extended PSC1(103) (3, 1
10
, ..., 3, 1

10
) 18 17

Extended PSC1(104) (3, 1
10
, ..., 3, 1

10
) 18 18

Raydan_1(30) (1,1,...,1,1) - 36

Raydan_1(102) (1,1,...,1,1) - 119

Raydan_1(5 ∗ 102) (1,1,...,1,1) - 630

Raydan_2(10) (1,1,...,1,1) 6 6

Raydan_2(102) (1,1,...,1,1) 6 6

Raydan_2(103) (1,1,...,1,1) 6 6

Raydan_2(104) (1,1,...,1,1) 6 6

Observing Table 4.4, Table 4.5 and Table 4.6, we find out that Monotone Gradient

method via Quasi-Cauchy Relation has higher efficiency as compared to Barzilai and

Barzilai and Borwein Gradient Method. In few test function, Barzilai and Borwein

method fails to converge to a stationary point within 1000 iterations, for example the

Generalized White and Holst function and Raydan1 function. Besides, from the re-

sult we obtain, we can judge that the dimension of a given function might not affect

the number of iteration to be taken to reach a critical point. For example, in Ex-

tended Block Diagonal BD1 function, observing the number of iteration taken using

the Barzilai and Borwein method, for the dimension = 10, which is quite small, it takes
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14 iterations to reach a desired point. When the dimension is increased to 1000, which

is very far larger than the previous dimension, it still able to converge to the optimum

point within 14 iteration. Observing the trend, we will expect that the number of itera-

tion will be increased if the dimension number increased. However, this is not the case.

Looking on the Extended Himmelblau function, if we are trying to look for the optimal

point using BB method, it takes the same number of steps to reach it. Therefore, it is

show that the number of iteration does not necessary depends on the dimension.

4-2 Verification of Algorithm

In this section, we will verify the proposed method algorithm. The function we had

chosen is the Raydan_2 function with dimension = 10 and the stopping criteria is set as

‖ ∇t(wx) ‖≤ 10−4. For each method, we give the algorithm again for references pur-

poses. We will begin the verification for Barzilai and Browein(BB) method followed

by the Monotone Gradient Method via Weak Secant Equation.

4-2-1 Barzilai and Browein method

First of all, we specify the algorithm for BB method.

Algorithm 4.1. (BB method)

Step 1. Pick an initial point w0 ∈ Rn , an initial stepsize, θ0 and set a stopping

tolerance 0 < α < 1

Step 2. Check if ‖∇t(wx)‖ ≤ α. If yes, then stop. Else, we suppose that

sx = θxgx.

Step 3. Compute the next point value using wx+1 = wx + sx

Step 4. Compute the value yx by yx = gx+1 − gx

Step 5. Compute the BB steplength using θx =
sTx−1sx−1

sTx−1yx−1
[refer ( 3.13)] or

θx =
yTx−1sx−1

yTx−1yx−1
[refer ( 3.14)]

Step 6. Set x = x+ 1 and go to step 2.

We will illustrate the iteration number, value of our test function and ‖∇t(wx)‖ in

Table 4.7.
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Table 4.7: Algorithm Verification for BB method

x value of test function ‖∇t(wx)‖

1 1.7183 ∗ 101 1.6204

2 1.0471 ∗ 101 8.7419 ∗ 10−1

3 1.0101 ∗ 101 4.7097 ∗ 10−1

4 1.0003 ∗ 101 7.2105 ∗ 10−2

5 1.0000 ∗ 101 4.9604 ∗ 10−3

6 1.0000 ∗ 101 5.7488 ∗ 10−5

In the first iteration, the value of ‖∇t(wx)‖ is 1.6204, which is clearly larger than

the value of stopping criteria we had set earlier. Hence, we recompute the stepsize

using the given formula and substitute into the updating formula as stated in step 3 in

the algorithm. Then we increase the iteration number and repeat the same process. The

value of ‖∇t(wx)‖ in step 2 is 8.7419 ∗ 10−1, which is still larger than the predefined

stopping criteria. Hence, the process in the algorithm is repeated again. Until the sixth

iteration, the value of ‖∇t(wx)‖ is 5.7488 ∗ 10−5, which is smaller than the value of

the stopping criteria. The process is terminated and the optimum point is found. The

value for the objective function we looking for is 1.0000 ∗ 101.

4-2-2 Monotone Gradient Method via Weak Secant Equation

Next, we give the verification for Monotone Gradient Method via Weak Secant Equa-

tion. We first specify the algorithm for the method.

Algorithm 4.2. (Monotone Gradient method via Weak Secant Equation)

Step 1. Pick an initial point w0 ∈ Rn , an initial positive definite diagonal matrix,

L0 = I and set a stopping tolerance 0 < α < 1

Step 2. Check if ‖∇t(wx)‖ ≤ α. If yes, then stop.

Step 3. Compute L−1x = diag( 1

θ
(1)
x

, 1

θ
(2)
x

, ..., 1

θ
(n)
x

),

where θ(p)x+1 = θ
(p)
x + (sTx yx−sTxLxsx)((s

(p)
x )2)

tr(A2)
, p = 1, 2, ..., n

Step 4. If Lx > 0 is violated, then we put L−1x = L−1x−1. Else, we keep the L−1x

which we computed in Step 3.
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Step 5. Compute the value of next point using wx+1 = wx − L−1x gx.

Step 6. Set x = x+ 1 and go to step 2.

We will illustrate the iteration number, value of our test function and ‖∇t(wx)‖ in

Table 4.8.

Table 4.8: Algorithm Verification for Monotone Gradient method via Weak Secant

Equation

x value of test function ‖∇t(wx)‖

1 1.7183 ∗ 101 3.1033

2 1.298 ∗ 101 8.1389 ∗ 10−1

3 1.040 ∗ 101 2.8275 ∗ 10−1

4 1.0004 ∗ 101 4.7399 ∗ 10−2

5 1.0000 ∗ 101 2.2312 ∗ 10−3

6 1.0000 ∗ 101 1.6564 ∗ 10−5

In the first iteration, the value of ‖∇t(wx)‖ is 3.1033, which is clearly larger than

the value of stopping criteria we had set earlier. Hence, we recompute the θ using the

formula in step 3 and substitute into the diagonal matrix. We need to check whether

the matrix is positive definite. If it is violated, we will take the matrix of the previous

step. Else, we will use the matrix we had calculated. After confirming, we calculate

the value of next point using formula stated in step 5. Then we increase the iteration

number and repeat the same process. The value of ‖∇t(wx)‖ in step 2 is 8.1389 ∗

10−1, which is still larger than the predefined stopping criteria. Hence, the process

in the algorithm is repeated again. Until the sixth iteration, the value of ‖∇t(wx)‖ is

1.6564 ∗ 10−5, which is smaller than the value of the stopping criteria. The process is

terminated and the optimum point is found. The value for the objective function we

looking for is 1.0000 ∗ 101.



CHAPTER 5: CONCLUSION

Optimization was used since the second world war for military problem. The usage

of optimization does not stop after the war but it continues to apply until now. In

this era, all of us are using optimization in our daily life so that we can maximize the

profit. There exist many ways for solving the optimization problem. In our project, we

investigated the gradient type methods. For each of these methods, we apply iterative

scheme for finding the optimal solution of a given problem. Besides, we also appreciate

the algorithms which been introduced earlier as it was used to solve a given problem.

We may not know when or how to start and end the iterative scheme if the algorithms

do not appear. In our project, we make a few assumptions to the problem, which are

our function is always convex and it can be differentiate twice successively.

We had run MATLAB code to check the number of iterations needed for the method

to converge to a desired point, which is our optimal point. From the results obtained,

we observed that the both monotone gradient type methods work better as compared

to the BB method. We had restrict our iteration number to 1000 as any iterations above

that are time consuming and were not efficient. From the result, we can conclude that

BB method may fail to converge to the optimal point. Besides, we also realized that

the iteration needed for converging to optimal point does not necessarily depends on

the dimension.
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APPENDIX A: TEST FUNCTION

Test function 1: Diagonal_2 Function

t(w) =
n∑
x=1

(exp(wx)−
wx
x
) (A.1)

Test function 2: Perturbed Quadratic Function

t(w) =
n∑
x=1

xw2
x +

1

100
(
n∑
x=1

wx)
2 (A.2)

Test function 3: EG2 Function

t(w) =
n−1∑
x=1

sin(w1 + w2
x − 1) +

1

2
sin(w2

x) (A.3)

Test function 4: Quadratic QF1 Function

t(w) =
1

2

n∑
x=1

xw2
x − wx (A.4)

Test function 5: Quadratic QF2 Function

t(w) =
1

2

1
2∑

x=1

x(w2
x − 1)2 − wx (A.5)

Test function 6: Diagonal_5 Function

t(w) =
n∑
x=1

log(exp(wx) + exp(−wx)) (A.6)

Test function 7: Extended Tridiagonal2 Function

t(w) =
n−1∑
x=1

(wxwx+1 − 1)2 + c(wx + 1)(wx+1 + 1) (A.7)

Test function 8: Hager Function

t(w) =
n∑
x=1

(exp(wx −
√
xwx) (A.8)

A-1



Appendix A. Test Function A-2

Test function 9: Extended 3 Exponential Terms Function

t(w) =

n
2∑

x=1

(exp(w2x−1+3w2x−0.1)+wx[(w2x−1−3w2x−0.1)+exp(−w2x−1−0.1)]

(A.9)

Test function 10: Broyden Tridiagonal Function

t(w) = (3w1−2w2
1)

2+
n−1∑
x=2

(3wx−2w2
x−wx−1−2wx−1+1)2+(3wn−2w2

n−wn−1+1)2

(A.10)

Test function 11: Extended Block Diagonal BD1 Function

t(w) =

n
2∑

x=1

(w2
2x−1 + w2x − 2)2 + (exp(w2x−1 − 1)− w2x)

2 (A.11)

Test function 12: Raydan_2 Function

t(w) =
n∑
x=1

(exp(wx)− wx) (A.12)

Test function 13: Raydan_1 Function

t(w) =
n∑
x=1

x

10
(exp(wx)− wx) (A.13)

Test function 14: Extended Himmelblau Function

t(w) =

n
2∑

x=1

1

2
(w2

2x−1 + w2x − 11)2 + (w2x−1 + w2
2x − 7)2 (A.14)

Test function 15: Extended White and Holst Function

t(w) =

n
2∑

x=1

(1.5−w2x−1(1−w2x))
2+(2.25−w2x−1(1−w2

2x))
2+(2.625−w2x−1(1−w3

2x))
2

(A.15)

Test function 16: Extended Trigonometric Function

t(w) =
n∑
x=1

((n−
n∑
y=1

cos(wy)) + x(1− cos wx)− sin wx)2 (A.16)



Appendix A. Test Function A-3

Test function 17: Extended PSC1 Function

t(w) =

n
2∑

x=1

100(w2
2x−1 + w2

2x + w2x−1w2x)
2 + sin2(w2x−1) + cos2(w2x) (A.17)


