MOLECULAR CLONING OF
NANOLUCIFERASE FOR
BIOLUMINESCENCE RESONANCE ENERGY
TRANSFER

KANG SIANG YU

BACHELOR OF SCIENCE (HONS)
BIOTECHNOLOGY

FACULTY OF SCIENCE
UNIVERSITI TUNKU ABDUL RAHMAN
APRIL 2016
MOLECULAR CLONING OF NANOLUCIFERASE FOR BIOLUMINESENCE RESONANCE ENERGY TRANSFER

By

KANG SIANG YU

A project report submitted to the Department of Biological Science Faculty of Science Universiti Tunku Abdul Rahman in partial fulfilment of the requirements for the degree of Bachelor of Science (Hons) Biotechnology

April 2016
ABSTRACT

MOLECULAR CLONING OF NANOLUCIFERASE FOR
BIOLUMINESCENCE RESONANCE ENERGY TRANSFER

KANG SIANG YU

Nanoluciferase (Nluc) is an enzyme that emits bioluminescence by catalyzing the oxidation of furimazine into furimamide without the use of ATP. It is small as it is only made up of 171 amino acids. It fuses with green fluorescent protein (GFP) to generate bioluminescence resonance energy transfer (BRET) construct to identify the interaction between proteins. Under the presence of furimazine, energy was transferred from Nluc to GFP causing it to emit fluorescence which is detected as BRET signal. This BRET is dependent on the distance and orientation of interaction between energy donor and acceptor, as well as, the overlapping of donor emission spectrum and acceptor excitation spectrum. The objectives of this project are to clone and express Nluc, as well as, generate BRET constructs by overlap extension PCR for fusing Nluc and GFP variants. The Nluc was amplified from extracted plasmid pNL1.1 by polymerase chain reaction (PCR) and was inserted into pBAD-TOPO® expression vector by TA cloning. After that, electroporation was carried out to transform electrocompetent Escherichia coli TOP10 with the pBAD-TOPO® vector. The colonies formed were subjected to colony PCR to screen for the success tansformants. Lastly, the expression of Nluc
was detected by addition of Nano-Glo® Luciferase Assay Substrate and the emitted luminescence was detected by ChemiDoc™ MP Imaging System. Apart from this, 6 different BRET constructs were generated by overlap extension PCR between Nluc and GFP variants. As the result, 6 out of 15 randomly picked colonies were successfully expressed and synthesized Nluc with high signal-to-noise ratio. The non-luminescent colonies either carried non-functional Nluc, where the Nluc may be inserted in opposite orientation or the Nluc insert was absent. On the other hand, BRET constructs with different GFP variants were generated. However, transformation of BRET constructs was not success due to arcing occurred while performing electroporation.
ACKNOWLEDGEMENT

First of all, I owe my utmost gratitude to my supervisor, Dr Wong Hann Ling for his knowledge, caring and enthusiasm in guiding me along my final year project and providing useful suggestions in solving problems faced in research and thesis writing. I am very grateful to have an excellent supervisor like Dr Wong. Besides, I would like to deeply thank postgraduate students Mr Toh Wai Keat and Mr Ng Wen Guang for providing the information and materials needed in FYP, as well as, lending hand whenever I faced problems in FYP and presentation. Furthermore, I would like to thank my labmates Ms Lim Min Zi, Ms Joanne Lam, Ms Ong Wei Chi, Ms Christina Chin and Mr Bryan Sonylah, as well as, my family and friends for providing me moral support.
DECLARATION

I hereby declare that the project report is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UTAR or other institutions.

KANG SIANG YU
This project report entitled "MOLECULAR CLONING OF NANOLUCIFERASE FOR BIOLUMINESCENCE RESONANCE ENERGY TRANSFER" was prepared by KANG SIANG YU and submitted as partial fulfilment of the requirements for the degree of Bachelor of Science (Hons) Biotechnology at Universiti Tunku Abdul Rahman.

Approved by:

(Assoc. Prof. Dr Wong Hann Ling) Date:......................

Supervisor

Department of Biological Science

Faculty of Science

Universiti Tunku Abdul Rahman
It is hereby certified that **KANG SIANG YU** (ID No: **12ADB04925**) has completed this final year project entitled “MOLECULAR CLONING OF NANOLUCIFERASE FOR BIOLUMINESCENCE RESONANCE ENERGY TRANSFER” under the supervision of Assoc. Prof. Dr Wong Hann Ling from the Department of Biological Science, Faculty of Science.

I hereby give permission to the University to upload the softcopy of my final year project in pdf format into the UTAR Institutional Repository, which may be made accessible to the UTAR community and public.

Yours truly,

(KANG SIANG YU)
TABLE OF CONTENTS

ABSTRACT ii
ACKNOWLEDGEMENTS iv
DECLARATION v
APPROVAL SHEET vi
PERMISSION SHEET vii
TABLE OF CONTENTS viii
LIST OF TABLES xi
LIST OF FIGURES xii
LIST OF ABBREVIATIONS xiii

CHAPTER

1 INTRODUCTION 1
1.1 Background Information 1
1.1.1 Nanoluciferase (Nluc) 1
1.1.2 Green Fluorescent Protein (GFP) 1
1.1.3 Yellow Fluorescent Protein (YFP) 2
1.1.4 Superfolder Fluorescent Protein 3
1.1.5 Bioluminescence Resonance Energy Transfer (BRET) 3
1.2 Objectives and Significance of Project 4

2 LITERATURE REVIEW 5
2.1 Bioluminescence Resonance Energy Transfer (BRET) 5
2.1.1 Principles of BRET 5
2.1.2 Advantages of Using BRET Assay 6
2.2 Applications of BRET 7
2.2.1 Protein-protein Interaction 7
2.2.2 Drug Discovery 8
2.2.3 Monitoring in Vivo Dynamic 9
2.3 Nanoluciferase (Nluc) 10
2.3.1 Advantages of Nluc 10
2.3.2 Applications of Nluc 10
2.4 Green Fluorescent Protein (GFP) 11

3 MATERIALS AND METHODS 13
3.1 Experimental Design for Molecular Cloning of Nluc 14
3.2 List of Materials and Equipments Used 14
3.3 Preparation of Medium and Buffer Solutions 14
3.3.1 Preparation of 2xYT Broth and Agar 14
3.3.2 Preparation of Arabinose and Antibiotics Stock Solutions 14
3.3.3 Preparation of 50x TAE Buffer Stock Solution and 1x TAE Buffer 15
3.4 Extraction of pNL1.1 using Thermo Scientific GeneJET Plasmid Miniprep Kit 15
3.5 Molecular Cloning of Nluc 16
 3.5.1 Amplification of Nluc and GFP Variants through PCR 16
 3.5.2 Agarose Gel Electrophoresis 18
 3.5.3 Purification and Quantification of PCR Products using Thermo Scientific DNA Fragments Extraction Kit 18
 3.5.4 TOPO® TA Cloning Reaction 19
 3.5.5 Preparation of Electrocompetent Cells 19
 3.5.6 Electroporation 20
 3.5.7 Screening for Success Recombinant through Colony PCR 21
 3.5.8 Expression of Nluc Using Nano-Glo® Luciferase Assay 22
3.6 Generation of BRET Construct 23
 3.6.1 Overlap Extension PCR between Nluc and GFP Variants 23
 3.6.2 Purification and Quantification of Overlap Extension PCR Products using Thermo Scientific Gel DNA Fragments Extraction Kit 24

4 RESULTS 26
 4.1 Extraction of pNL1.1 27
 4.2 Molecular Cloning of Nluc 28
 4.2.1 PCR amplification of Nluc and GFP variants 28
 4.2.2 TOPO® TA Cloning and Electroporation of Nluc 29
 4.2.3 Colony PCR screening of Nluc 30
 4.3 Expression of Nluc 31
 4.4 Overlap Extension PCR between Nluc with GFP Variants 32

5 DISCUSSION 34
 5.1 Extraction of pNL1.1 34
 5.2 PCR Amplification of Nluc and GFP Variants 34
 5.3 TOPO® TA Cloning 35
 5.4 Preparation of electrocompetent E. coli TOP10 36
 5.5 Electroporation of Nluc 36
 5.6 Confirmation of Insert by Colony PCR 37
 5.7 Expression of Nluc 40
 5.8 Overlap Extension PCR of Nluc and GFP variants 40
5.9 Molecular Cloning of BRET Constructs
5.10 Future Work

6 CONCLUSION

REFERENCES

APPENDICES
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Preparation of the arabinose stock solution</td>
</tr>
<tr>
<td>3.2</td>
<td>Preparation of antibiotic stock solutions</td>
</tr>
<tr>
<td>3.3</td>
<td>The primers sequences for amplification of Nluc and GFP variants</td>
</tr>
<tr>
<td>3.4</td>
<td>PCR mixture for Nluc and fluorescent protein</td>
</tr>
<tr>
<td>3.5</td>
<td>PCR Conditions for Nluc amplification</td>
</tr>
<tr>
<td>3.6</td>
<td>PCR Conditions for GFP variants amplification</td>
</tr>
<tr>
<td>3.7</td>
<td>The amount of solution needed for TOPO® TA Cloning</td>
</tr>
<tr>
<td>3.8</td>
<td>Different combinations of primers for colony PCR</td>
</tr>
<tr>
<td>3.9</td>
<td>The primers sequences of pBAD vector</td>
</tr>
<tr>
<td>3.10</td>
<td>Components needed in colony PCR.</td>
</tr>
<tr>
<td>3.11</td>
<td>Colony PCR Conditions</td>
</tr>
<tr>
<td>3.12</td>
<td>Overlap extension PCR mixture</td>
</tr>
<tr>
<td>3.13</td>
<td>Overlap Extension PCR Conditions</td>
</tr>
<tr>
<td>3.14</td>
<td>Preparation of DNA template for overlap extension PCR</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Spectra of luciferase and fluorescent protein for BRET signal to be detected correctly</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Schematic diagram of GFP structure</td>
<td>12</td>
</tr>
<tr>
<td>3.1</td>
<td>Workflow for molecular cloning of Nluc</td>
<td>13</td>
</tr>
<tr>
<td>4.1</td>
<td>Extraction of pNL1.1 carrying Nluc fragment</td>
<td>26</td>
</tr>
<tr>
<td>4.2</td>
<td>Amplification of Nluc fragment from pNL1.1 and GFP variants fragments from pGWB2</td>
<td>28</td>
</tr>
<tr>
<td>4.3</td>
<td>Transformation of E. coli TOP10 with pBAD-TOPO® vector carrying Nluc fragment through electroporation</td>
<td>29</td>
</tr>
<tr>
<td>4.4</td>
<td>Schematic diagram for the colony PCR amplified region and binding sites of different primers combinations</td>
<td>30</td>
</tr>
<tr>
<td>4.5</td>
<td>Confirmation of insert through colony PCR by using different combinations of primers</td>
<td>31</td>
</tr>
<tr>
<td>4.6</td>
<td>Luminescence emitted by Nluc recombinant colonies</td>
<td>32</td>
</tr>
<tr>
<td>4.7</td>
<td>Purified overlap extension PCR products for Nluc-GFP variant gene fusion constructs</td>
<td>33</td>
</tr>
<tr>
<td>5.1</td>
<td>Schematic diagram of pBAD-TOPO® expression vector carrying Nluc gene in correct orientation and annealing sites of primers</td>
<td>39</td>
</tr>
<tr>
<td>5.2</td>
<td>Schematic diagram of Nluc being inserted into pBAD-TOPO® vector in opposite direction and annealing sites of primers</td>
<td>39</td>
</tr>
</tbody>
</table>
REFERENCES

Appendix A

List of chemicals and materials used and their respective manufacturers.

<table>
<thead>
<tr>
<th>Chemicals/ Materials</th>
<th>Manufacturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>100bp DNA Ladder</td>
<td>Yeastern Biotech</td>
</tr>
<tr>
<td>1kb DNA Ladder</td>
<td>Thermo Scientific GeneRuler</td>
</tr>
<tr>
<td>6x DNA Loading dye</td>
<td>Yeastern Biotech</td>
</tr>
<tr>
<td>95% Ethanol</td>
<td>Copens Scientific (M) Sdn. Bhd</td>
</tr>
<tr>
<td>Agar-agar powder</td>
<td>Merck</td>
</tr>
<tr>
<td>Agarose powder</td>
<td>1st Base</td>
</tr>
<tr>
<td>Ampicillin sodium</td>
<td>Nacalai Tesque</td>
</tr>
<tr>
<td>dNTPs mixture</td>
<td>Takara</td>
</tr>
<tr>
<td>Escherichia coli Revive TOP10</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Ethidium bromide</td>
<td>Bio Basic Canada Inc.</td>
</tr>
<tr>
<td>Ethylenediaminetetraacetic acid (EDTA)</td>
<td>Systerm</td>
</tr>
<tr>
<td>Ex Taq DNA polymerase and buffer</td>
<td>Takara</td>
</tr>
<tr>
<td>Glycerol</td>
<td>Systerm</td>
</tr>
<tr>
<td>Homemade DNA polymerase and buffer</td>
<td>Cheah, 2012</td>
</tr>
<tr>
<td>Kanamycin sulphate</td>
<td>Bio Basic Canada Inc.</td>
</tr>
<tr>
<td>L(+)- Arabinose</td>
<td>Merck</td>
</tr>
<tr>
<td>Magnesium Chloride Hexahydrate</td>
<td>QRec</td>
</tr>
<tr>
<td>Magnesium sulphate</td>
<td>Systerm</td>
</tr>
<tr>
<td>pBAD-TOPO® TA Expression Kit</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Sodium Chloride</td>
<td>Gene Chemical</td>
</tr>
<tr>
<td>Sodium hydroxide</td>
<td>Gene Chemical</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>Bio Basic Canada Inc.</td>
</tr>
<tr>
<td>Tris</td>
<td>Bio Basic Canada Inc.</td>
</tr>
<tr>
<td>Tryptone</td>
<td>Conda</td>
</tr>
<tr>
<td>Yeast Extract</td>
<td>Conda</td>
</tr>
</tbody>
</table>