

ACCELERATING ERASURE CODE WITH

MULTI-PROCESSING

LOH HONG KHAI

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering

(Hons.) Electronic & Communications Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

May 2016

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it has

not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature :

Name :

ID No. :

Date :

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “ACCELERATING ERASURE CODE

WITH MULTI-PROCESSING” was prepared by LOH HONG KHAI has met the

required standard for submission in partial fulfilment of the requirements for the award

of Bachelor of Engineering (Hons.) Electronic & Communications Engineering at

Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor :

Date :

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2016, Loh Hong Khai. All right reserved.

v

Specially dedicated to

my beloved grandfather, grandmother, mother and father

vi

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion of

this project. I would like to express my gratitude to my research supervisor, Dr. Lai

An-Chow and co-supervisor Dr. Chong Zan-Kai for their invaluable advice, guidance

and their enormous patience throughout the development of the research.

Brainstorming sessions with Mr. Chong Sin Ran, the Master's research student also

proved to be great for coming up with ideas.

In addition, I would also like to express my gratitude to my loving parents and

friends who had helped and given me encouragement. Without them, this would be a

joyless project. My parents have been accommodating and helpful in making sure I

obtain all the resources that I need. Special thanks to my good friend Fredderich Yii

Ying Sen who has since the inception of this project been amazingly encouraging. He

was generous enough to allow me to code and run computations on his machine so that

measurements could be taken.

vii

ACCELERATING ERASURE CODE WITH

MULTI-PROCESSING

ABSTRACT

Erasure code has long been used for binary erasure channels, in which a message with

k original symbols is transformed into larger n encoded symbols where a subset of n

can be decoded to retrieve the original message. Fountain code is a rateless erasure

code in that n can be potentially infinite and the receiver can decode the message with

99.99% success probability given k’ symbols where k’ is only slightly larger than k.

Fountain codes such as LT code and Raptor code are very efficient for long messages

with linear time encoding and decoding through pre-coding and backward substitution

method, or simply by using Gaussian Elimination. However, network traffic is mostly

short messages, hence fountain codes like Stepping Random (SR) and systematic

Random (SYSR) codes are proposed at the expense of higher computational

complexity. The method of decoding involves Gaussian Elimination (GE) in Galois

field of 2 elements GF(2). For typical GE and its variations, the decoding complexity

is O(k3). Unique to GE of GF(2), the elimination method involves only component-

wise XOR operation. With this in mind, this report explores the use of multi-

processing to parallelize the elimination method and the pivot search. This includes

the comparison of GE in multi-core central processing units (CPU) and general

purpose graphic processing units (GPU). Ideally for multi-processors, the speed up can

be N times where N is the number of concurrent threads. This report proposes &

analyses the use of multi-core CPU and GPU, both available off-the-shelf, in

accelerating the GE of GF(2) for the decoding use of SYSR & SR codes. The result

shows that speedup on the GPU increases with the increase in the number of symbols

in the message. The speedup can even go up to more than 20 times using the range of

symbol length and number of symbols utilized in this project. The bottleneck of the

realistic implementation on GPU was found out to be memory access, which should

be targeted for future works.

viii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS vi

ABSTRACT vii

TABLE OF CONTENTS viii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF SYMBOLS / ABBREVIATIONS xii

LIST OF APPENDICES xiii

CHAPTER

1 INTRODUCTION 1

1.1 Erasure Codes & Fountain Codes 1

1.2 Gaussian Elimination in GF(2) 2

1.3 Parallelization 3

1.4 Aims and Objectives 4

2 LITERATURE REVIEW 6

2.1 Fountain Codes 6

2.2 Gaussian Elimination 10

2.2.1 Gaussian Elimination on GPU 10

2.2.2 Galois field in two elements 11

3 METHODOLOGY 14

ix

3.1 Profiling of Gaussian Elimination 14

3.1.1 Galois field in two elements 14

3.1.2 Amdahl's Law and Limitations 14

3.1.3 Implementation 16

3.2 System Specifications 17

3.3 GPU Architecture 18

3.3.1 NVIDIA CUDA Platform 19

4 RESULTS AND DISCUSSIONS 24

4.1 Profiling of Realistic Bottlenecks for Implementation on

GPU 24

4.1.1 Understanding Gaussian Elimination's steps 24

4.1.2 Proposed Algorithm 26

4.1.3 Elements of CUDA C Implementation 27

4.1.4 Filtering out the Bulk of Operation 28

4.2 Performance 34

4.2.1 Message Generation and Encoding 34

4.2.2 Decoding Performance 35

5 CONCLUSION AND RECOMMENDATIONS 39

5.1 Recommendations and Future Works 39

5.2 Conclusions 40

REFERENCES 41

APPENDICES 43

x

LIST OF TABLES

 TABLE TITLE PAGE

1.1 Flynn’s taxonomy 4

3.1 Addition and Multiplication of GF(2) 14

4.1 Breakdown of elements for 1 threads 30

4.2 Breakdown of elements for 256 threads 31

4.3 Time required for CPU 35

4.4 Time required for GPU 36

4.5 Speedup vs CPU 36

xi

LIST OF FIGURES

 FIGURE TITLE PAGE

2.1 Example decoding for a fountain code with K = 3 source 7

2.2 I/O Signal of basic matrix element (Bogdanov et al., 2006) 12

3.1 Floating-Point Operations per Second for the CPU and GPU

(NVIDIA Corporation, 2015) 18

3.2 The GPU Devotes More Transistors to Data Processing 19

3.3 Automatic Scalability (NVIDIA Corporation, 2015) 21

3.4 Hierarchy and division of process 22

4.1 Graphical Comparison of Serial & Parallel Implementation 25

4.2 Elements of a GPU Kernel 29

4.3 Bulk of Operation in GPU Implementation 33

4.4 Speedup vs 1 thread 33

4.5 Speedup vs 1 GPU for different symbol length and number

of symbols 37

xii

LIST OF SYMBOLS / ABBREVIATIONS

GE Gaussian Elimination

GF(2) Galois field of 2 elements

GF(256) Galois field of 256 elements

RSA Rivest-Shamir-Adleman cryptosystem

ALU Arithmetic Logical Unit

GFLOP Giga floating point operations

xiii

LIST OF APPENDICES

 APPENDIX TITLE PAGE

A Computer Programme Listing 43

CHAPTER 1

1 INTRODUCTION

1.1 Erasure Codes & Fountain Codes

The most common networking protocol, and the network communication of the

majority of internet, is the Transport Control Protocol (TCP). TCP treats data as

packets that are in sequence, using retransmission to guarantee the packets are received

in order from the receiver’s viewpoint (Mitzenmacher, 2004). However, the

acknowledgement and retransmission mechanism of TCP consumes substantial

bandwidth from the network and may not be suitable for some applications.

 To improve on the transmission efficiency, erasure code is introduced into TCP.

Erasure code is a forward error correction that is capable of recovering k data packets

from n data packets transmitted, where n is larger than k. We have:

 𝑛 = (1 + ℇ)𝑘 (1.1)

n = encoded message length

k = original message length

 = overhead/redundancy

k/n = code rate

 Given k linearly independent packets received, the receiver can then decode k

input packets, regardless of which packets received. To overcome the limitation of

finite coded symbols, an alternative paradigm known as digital fountain is introduced.

A digital fountain has properties similar to a fountain of water: when you fill your cup

2

from the fountain, you do not care what drops of water fall in, but only want that your

cup fills enough to quench your thirst (Mitzenmacher, 2004).

 Luby introduced the first fountain code that is practical known as Luby

Transform (LT) code and was afterwards improved by Shokrollahi as Raptor code.

Despite the breakthrough in LT code and Raptor code, they are only efficient for long-

length messages (Chong et al., 2013). Chong et al. proposed Stepping-Random (SR)

and systematic Random (SYSR) codes to accommodate smaller, shorter length packets

for the internet. This comes at a price of computation, where the decoding of such

codes is O(k3) using Gaussian Elimination. Since the implementation of the SR and

SYSR codes is in binary field, this report therefore examines the effect of using multi-

processing in accelerating the decoding process.

1.2 Gaussian Elimination in GF(2)

Named after Carl Friedrich Gauss, Gaussian elimination is the one of the most

common methods used to solve system of linear equations. It transforms a matrix into

a row (column) echelon form or into its reduced row (column) echelon form; in the

later case, the algorithm is known as Gauss-Jordan elimination (Morancho, 2015).

Linear equations appear in many cases of various research and application fields,

notably in cryptanalysis such as the RSA encryption schemes. Therefore, many

literatures have proposed solutions related to it. However, many of the proposed

algorithms involving GE based algorithms such as LU decomposition and Cholesky

decomposition target the generic, real number field. For SYSR and SR code where we

look for a targeted approach to solving GE in GF(2), to the best of my knowledge there

is no implementation of GE in GF(2) on off-the-shelf products such as CPU or GPGPU

(General Purpose GPU) in the literature. Hardware-specific solutions like the parallel

hardware architecture by Bogdanov et al. require higher human resource and financial

cost.

SR and SYSR codes are both rateless erasure code for the use of internet

networking. Hence, the flow of data comes from the internet, then to the processing

3

unit(s). The streaming nature of the data transfer is a characteristic that has to be taken

into account. Further work can be done through streaming the data into the CPU/GPU

at the background during the decoding process. This in essence hides the latency of

data transfer. The concept of data block transfer which coalesce the required data

together for higher transfer bandwidth is also considered to attain higher throughout in

general.

 The binary nature of the received data allows us to consider only the GE

acceleration in GF(2). Firstly, to accelerate the GE algorithm through multi-processing,

the algorithm has to be broken down to separate parts that are parallelizable and those

that are not. The portion that can be run simultaneously should then be distributed to

different processing units, either in a multi-core CPU or a GPU. In the case of GPU,

the data has to be copied from the main memory to the GPU’s memory before a kernel

can be initiated.

1.3 Parallelization

The approach that is looked into is one of parallel computing. Parallel computing arises

from the exponential growth of digital devices in this century. Without a doubt, the

explosion of the amount of digital data in current age has changed the demographics

of computer users. The limited frequency of scaling for single core is an obstacle. By

increasing core count, performance can be greatly improved.

 Traditionally, computing has been written for serial computation. This means

that a problem is broken into a sequence of discrete instruction, where each is executed

right after another. Only one instruction may be executed at any single time. In a simple

sense, parallel computing uses multiple compute resources to solve a problem which

can be broken into discrete parts. These parts are then solved concurrently, with the

result of needing an overall coordination mechanism. The growth of parallel

computing in current years is encouraging. An example of classification for parallel

computer is shown below:

4

SISD

Single Instruction stream

Single Data Stream

SIMD

Single Instruction stream

Multiple Data stream

MISD

Multiple Instruction stream

Single Data stream

MIMD

Multiple Instruction stream

Multiple Data stream

Table 1.1: Flynn’s taxonomy

 However, one challenge that has to be considered is Amdahl’s Law. Amdahl’s

Law states that the potential program speedup is limited by the fraction of code (P)

that can be parallelized:

 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
1

1−𝑃
 (1.2)

If none of the code can be parallelized, there will not be any speedup even with parallel

computing. If all the code is parallelized – an ideal case – then the speedup is infinite

in theory. The relationship can then be modelled as below when the number of

processing units (N) is added in:

 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
1

𝑃

𝑁
+𝑆

 (1.3)

S is the serial fraction and P is the parallel fraction. This sets a limit into the power of

parallelism, which we have to also take into consideration. One of the goals of this

project is to make sure the parallelizable part is maximized, with the serial overhead

kept to a minimum.

1.4 Aims and Objectives

The aim of this project is to come up with an accelerated method of solving system of

linear equations in the Galois field of 2 elements, through multi-processing units i.e.

5

GPU and multi-cores. Since GF(2) entails component-wise XOR, the algorithm has to

be customized for the use of SYSR code in internet networking context. In interest of

this objective, the tasks are set out as below:

 To analyse the overhead and the bottleneck of the implementation of GE in

GF(2)

 To propose a new algorithm suited for multi-processing

 To implement such algorithm in GPU using NVIDIA CUDA C

 To evaluate the performance of the proposed solution in different architectures

and compare it with traditional CPU implementation

6

CHAPTER 2

2 LITERATURE REVIEW

2.1 Fountain Codes

 Fountain codes are rateless in the sense that the number of encoded packets

that can be generated from the source message is potentially limitless; and the number

of encoded packets generated can be determined on the fly. Fountain codes are

universal because they are simultaneously near-optimal for every erasure channel.

Regardless of the statistics of the erasure events on the channel, we can send as many

encoded packets as are needed in order for the decoder to recover the source data. The

source data can be decoded from any set of K’ encoded packets, for K’ slightly larger

than K. Fountain codes can also have fantastically small encoding and decoding

complexities (MacKay, 2005). LT code, developed by Luby (2002) is the first practical

implementation and Raptor code by Shokrollahi (2006) is the improved version.

To facilitate understanding, the implementation of LT code is studied.

Encoding is straightforward and easy: the encoded packets are generated first by

choosing a random number of packets, and then adding them together with XOR

operation. The number of input packets used to encode depends on the degree

distribution like the Solitun distribution. This distribution is also at heart of the code

since it will determine whether decoding is successful or not.

Figure 2.1 illustrates the decoding process. The decoding process initiates with

all symbols being uncovered. Then, all degree one decoding symbols get released to

cover their unique neighbours. The set of covered message symbols that have not been

7

processed is known as the ripple. The process then randomly selects a set to process

and removes that encoding symbol as neighbours from all encoding symbols. Any

symbols with degree one are released and its neighbours covered. The process

continues until all packets are decoded (Luby, 2012). An improvement of the decoding

process is proposed by (Lu et al., 2009) called full rank decoding to prevent the LT

code from terminating early due to lack of symbols in the ripple.

Figure 2.1: Example decoding for a fountain code with K = 3 source

bits and N = 4 encoded bits (MacKay, 2005)

However, LT and Raptor codes require large input packet length to deliver

near-optimal transmission rate. For k > 100,000, Raptor code has a decoding

inefficiency of   0.03 (Chong et al., 2013). Hence, Chong et al. (2015) considers

shorter packet length in expense of higher computational complexity using Gaussian

Elimination in decoding in the proposal of SYSR code. Just like typical systematic

rateless erasure code, a message of k symbols will form part of the encoded symbols

(termed as Part I coded symbols) and the rest of coded symbols from k+1th onwards

(termed as Part II coded symbols) are generated by adding the k message symbols

randomly, i.e. multiplying the random matrix with the message (Chong et al., 2015).

8

The Part I of the SYSR code is just the original message. It can be denoted as

a matrix by having k symbols with l bits each, i.e. Mkl. The Part I generator matrix is

just an identity matrix. For Part II, each coded row matrix M1l is independently

generated by multiplying a random row matrix G1k with Mkl , i.e.:

X1l = G1k  Mkl =[𝑔0,0 ⋯ 𝑔0,𝑘−1] × [

𝑚0,0 ⋯ 𝑚0,𝑙−1

⋮ ⋱ ⋮
𝑚𝑘−1,0 ⋯ 𝑚𝑘−1,𝑙−1

] = [𝑔0,0 ⋯ 𝑔0,𝑘−1]

(2.1)

The receiver is assumed to receive both the coded symbol X1l and the

corresponding generator matrix G1k at the same time as they are embedded in the

same packet during the transmission. Subsequently, the receiver reconstructs the

original message with Gaussian elimination when it has full rank generator matrix

(Chong et al., 2015). To illustrate the decoding, the coded symbol matrices Xk+10l is

then augmented with the generator matrix G(k+10)l such as below:

[𝐺(𝑘+10)×𝑘|𝑋(𝑘+10)×𝑙] =

[

�̃�0,0 ⋯ �̃�0,𝑘−1

⋮ ⋱ ⋮
�̃�𝛼−1,0 ⋯ �̃�𝛼−1,𝑘−1

�̃�0,0 ⋯ �̃�0,𝑙−1

⋮ ⋱ ⋮
�̃�𝛼−1,0 ⋯ �̃�𝛼−1,𝑙−1

𝑔𝛼,0 ⋯ 𝑔𝛼,𝑘−1

⋮ ⋱ ⋮
𝑔𝑘−9,0 ⋯ 𝑔𝑘−1,𝑘−1

𝑥𝛼,0 ⋯ 𝑔𝛼,𝑙−1

⋮ ⋱ ⋮
𝑥𝑘−9,0 ⋯ 𝑔𝑘−1,𝑙−1]

 (2.2)

𝑔𝑖𝑗 denotes the ith row jth entry in the generator matrix, 𝑥𝑖𝑗 denotes the ith row jth

entry in the coded symbol matrix. The tilde denotes Part I row matrices. To reduce the

matrix down to an upper triangle matrix, The following steps are taken (Chong et al.,

2015) :

Step 1. Identify a Part I generator row matrix. Then, denote the position of the

selected Part I generator as row i and its non-zero entry at column j.

Step 2. Add (XOR) row i of both generator and coded symbols row matrices to

 those Part II row matrices, for which their j entries are non-zero.

Step 3. Remove row i and column j from the augmented matrix.

Step 4. Repeat from Step 1 until all the Part I row matrices are removed.

9

If Part I is received intact in whole, then no decoding is needed. However, it

has to wait for k + 10 Part II symbols to arrive in the incident that Part I is not received

fully intact. Since the decoding complexity using GE is O(k3) when Part I is not fully

received, an accelerated version of GE through multi-processing is desired so that the

decoding can be done quickly.

 The following example taken from (Chong et al., 2015) assumes a message of

k = 4 and a symbol size of l = 2. The receiver has 2 Part I coded symbols and 12 Part

II coded symbols. The augmented received matrix is then:

[𝐺14×3|𝑋14×2] =

[

1 0
0 1

0 0
0 0

�̃�0,0 �̃�0,1

�̃�1,0 �̃�1,1

1 0
⋮ ⋮
0 1

𝑔2,2 𝑔2,3

⋮ ⋮
𝑔13,2 𝑔13,3

𝑥2,0 𝑥2,1

⋮ ⋮
𝑥13,0 𝑥13,1]

 (2.3)

 In Step 1, the first row of Part I symbol is selected and then the first non-zero

entry is searched, i.e. i = 0 and j = 0. Then in Step 2, this row is added into the rows in

Part II where column j is also non-zero. Then, row i and column j are removed in Step

3, resulting to:

[𝐺13×3|𝑋13×2] =

[

1 0 0 �̃�1,0 �̃�1,1

0
⋮
1

𝑔2,2 𝑔2,3

⋮ ⋮
𝑔13,2 𝑔13,3

𝑥2,0⨁�̃�0,0 𝑥2,1⨁�̃�1,0

⋮ ⋮
𝑥13,0 𝑥13,1]

 (2.4)

 Notice that there is still one row left in Part I of the matrix. Step 1 and 2 are

repeated until no rows are left, giving us:

[𝐺12×2|𝑋12×2] =

[

𝑔2,2 𝑔2,3

⋮ ⋮
𝑔13,2 𝑔13,3

𝑥2,0⨁�̃�0,0 𝑥2,1⨁�̃�1,0

⋮ ⋮
𝑥13,0⨁�̃�1,0 𝑥13,1⨁�̃�1,1]

 (2.5)

When Part I is fully eliminated, Gaussian Elimination is used to continue with

the augmented matrix to decode it.

10

2.2 Gaussian Elimination

2.2.1 Gaussian Elimination on GPU

A general GE produces an upper triangle matrix, in which back-substitution is required

to solve for x. If Gaussian-Jordan elimination is done instead, the resulting solution is

trivial because the matrix A will be an identity matrix. Gaussian-Jordan Elimination

method, or just commonly referred as Gaussian Elimination, is very stable and widely

used. It involves pivoting and then reducing the matrix to row echelon form. This

comes at an expense of a cubic operation instead of a quadratic operation of back-

substitution. Given the widespread use of GE, the improvement of the algorithm and

the acceleration are desired.

An early paper by Saad in 1986 describes the minimum communication time

for GE on multiprocessor is O(N2), regardless of number of processors. It was tested

on ring and bus type architectures (Saad, 1986). However, no proper test results were

given since this was a theoretical paper that was not implemented on actual

multiprocessors available nowadays. The paper by Galoppo et al. in 2005 presented a

novel GPU-based algorithm for solving dense linear systems. The spatial coherence

between elementary row operations and fast parallel data transfer to move data on GPU

are exploited (Galoppo et al., 2005). This shows great potential for using GPU and any

other multi-processing units in implementing GE. Another paper by Buluc et al. also

provided proof that running 4 separate GE-based algorithms can be faster on GPU,

specifically in this case a NVIDIA 8800 GPU was compared to an Opteron. The

temporal locality was exploited instead in this approach. While the previous paper

avoided matrix multiplication, Buluc et al. managed to use alternate schedule of path

computations us to cast almost all operations into matrix-matrix multiplications on a

semiring. Since matrix-matrix multiplication is highly optimized and has a high ratio

of computation to communication, the implementation does not suffer from the

premature saturation of bandwidth resources as iterative algorithms do (Buluç et al.,

2008). Similar work for solving partial differential equations using Finite Element

11

Method was also done in (Leow et al., 2011) which showed that the performance to

execute forward elimination can be up to 185x faster when using GPU instead of a

quad-core i5 Intel CPU. On decoding of Raptor GF(2) and GF(256), the serial and

parallel implementation were explored for practical real-time requirement in

multimedia broadcast/multicast service (Linjia Hu, 2013). However, this is on Raptor

codes which have different matrix characteristics and sparsity.

The literature has given enough confidence that GPU can greatly enhance the

GE method. However, none of them addressed the unique GF(2) properties when using

GE on GF(2). An implementation of GE on GF(2) on GPU and similar multi-

processing architecture have not been compared and contrast. Since GF(2) is a limited

field and operations involve only XOR and AND operations, it is worthy to explore

the effectiveness and performance enhancement using GPU. A specific algorithm to

accelerate GE in GF(2) contributes to the decoding speed of aforementioned SYSR

and SR codes.

2.2.2 Galois field in two elements

GF(2) is the Galois field with two elements, the smallest finite field. The two elements

in it are called 0 and 1 as they are the additive and multiplicative identities respectively.

The field's addition operation corresponds to the logical XOR operation, while the

field's multiplication operation corresponds to the logical AND operation. Because of

the unique properties of GF(2), it is somewhat simpler yet important in the

implementation of modern computers with binary code as data representation.

Several literatures have involved dedicated hardware or customized, specific

hardware implementation for the improvement of GE over GF(2). A method has been

developed that needs no extra storage to store the history of the elimination with a

program to work with up to 40964096 matrices has been developed for the ICL-DAP

(Parkinson & Wunderlich, 1984). In 1991 by the work of of Koc and Arachchige, an

algorithm was proposed employing the binary search technique. The algorithm takes

2m2 + mlog2n -2m bit operation to triangularize an nm matrix on a bit array with n

12

processors and m+2+log2n bits of vertical memory per processor (Koç & Arachchige,

1991). The implementation however was on the Geometric Arithmetic Parallel

Processor (GAPP), a mesh-connected array of single-bit SIMD processing elements.

Both the parallel hardware in Parkinson & Wunderlich as well as the GAPP are not

commonly used nowadays, and they are dedicated hardware developed in the previous

decades for calculation, hence rendering them obsolete.

Bogdanov et al. presented a parallel hardware architecture for fast GE over

GF(2) using an FGPA implementation. A hardware-optimized algorithm for matrix-

by-matrix multiplication over GF(2) which runs in linear time and quadratic space was

proposed. The algorithm incorporates shifts to increase the speed of calculation. A

hardware implementation for LSEs up to a dimension of 50 × 50 has been realized

using VHDL. The design can be implemented for LSEs up to dimension of 1000 ×

1000 yielding conventional chip sizes , and larger matrix has to be broken down by

Strassen’s algorithms (Bogdanov et al., 2006). However, the use of FPGA and the

dimension limit of 1000 × 1000 makes it less attractive since it will be costlier and

restrictive. The FGPA nature also means that the algorithm cannot be easily updated

over-the-air, unlike software updates.

Figure 2.2: I/O Signal of basic matrix element (Bogdanov et al., 2006)

The most recent approach was the vector implementation of GE over GF(2) in

2015. By exploiting the vector implementation of modern processors. Performance

results show that the larger the vector length, the smaller the execution time. For the

13

same vector length, implementations specialized for this case study outperform generic

implementations by between 3.7X and 3.9X (Morancho, 2015). This approach does

not include the use of GPU to increase the acceleration, so there is still room for

improvement in accelerating GE over GF(2), in which will be discussed in this report.

As a summary, literature available shows that many attempts at solving systems

of linear equations are done with infinite field of real numbers, including those using

GPU. Literature also shows proposal of using dedicated hardware for the Gaussian

Elimination over GF(2). However to the best of my understanding, there is no

dedicated solution for parallelizing GE over GF(2) in the context of GPU and

comparing the performance with that of multi-cores. Such a solution will be useful in

accelerating the erasure codes i.e. SR and SYSR codes.

CHAPTER 3

3 METHODOLOGY

3.1 Profiling of Gaussian Elimination

3.1.1 Galois field in two elements

Galois field of two elements is the simplest finite field. In it, addition and

multiplication is defined to be:

0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 0

0 × 0 = 0 0 × 1 = 0 1 × 0 = 0 1 × 1 = 1

Table 3.1: Addition and Multiplication of GF(2)

With 0 and 1 viewed as bits, it is easy to see that the addition in GF(2) is

exclusive OR, and the multiplication is AND. Matrices formed by elements in GF(2)

are called binary matrices or bit matrices. The advantage of utilizing a finite field is

that there is no round off errors when using computers, like those of infinite fields.

3.1.2 Amdahl's Law and Limitations

As introduced before, Amdahl's Law plays a large role in determining the potential

speedup that is expected from a parallel implementation. The formula, for the sake of

discussion, is given again as:

 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
1

𝑃

𝑁
+𝑆

 (3.1)

 Speedup is tied to the size of the fraction by both the parallel (denoted as P)

and serial part (denoted as S) of a particular algorithm. Theoretically, the number of

parallel processing units (denoted as N) can tend towards infinity to better understand

the limitations of the algorithm given infinite resources. P and S are both less than 1

as they are a fraction of the code.

The denominator of the speedup equation has S plus P divided by N. S is a

summation of the strictly serial part of the algorithm, the synchronization cost required,

the switching involved and other overhead costs caused by a certain parallel

implementation. For this discussion, since the speedup of a theoretical unlimited

number of parallel processing unit is assumed, the overhead costs are all lumped

together in S for sake of simplicity. S by itself contains a fix amount of serial work that

is inherent in the algorithm. Addition to that, as N increases, there is a chance that the

synchronization and overhead communication costs will increase proportionally. This

is the first limit to the speedup.

Subsequently, the next term of the denominator, the P/N term is examined. To

have a small denominator so that a large speedup is obtained, the ideal case is to have

P to tend towards 1 and hence S will tend towards 0. However, in realistic cases, S is

substantial and P can only be minimized to a certain extend. It is also impossible that

unlimited processing power, the N term, can be obtained. It has a physical limit

depending on the machine or GPU that is used.

To better understand the fraction of P and S, a distillation of all the elements in

the algorithm can be done. The different elements in the parallel fraction and serial

fraction of the algorithm can reveal which part of it is the culprit for the slowdown. It

can be computation, memory access, synchronization or many other elements. This

way, the bottleneck can also be targeted for improvement.

3.1.3 Implementation

The transformations applied by both Gaussian and Gauss-Jordan eliminations

are three elementary row operations:

i) swapping rows

ii) multiplying all the row elements by a nonzero scalar and

iii) adding to a row the scalar multiple of another row

By understanding the steps of Gaussian Elimination, the algorithm can then be

applied to the specific GF(2). That way, the bottlenecks and dependencies can be found.

For Gaussian Elimination, the three elementary row operations are dependent

on each other. The second step has to wait for the completion of the first step and the

third step can only start when the second step is finished. Essentially, the pivot element

has to be found and swapped before forward elimination and backward substitution

can be done. Before moving to the next column, all the previous steps have to be

completed. Another inherent issue is that communication and syncing are required for

the algorithm to run in parallel. The pivot row has to be communicated so that all row

elimination (forward elimination and backward substitution) can be done in parallel.

The method of parallelizing the algorithm is proposed as follows:

i) The search for pivot can be done by splitting the matrix and dividing them to

different cores, or only done by 1 core if the matrix is dense enough

ii) The pivot row is distributed to all spawned parallel operations

iii) The matrix is divided and split to each operation so that row elimination can

be done concurrently

iv) All individual operations have to be sync and wait for the total completion

before moving on to the next column

Taking that into consideration, the parallel algorithm in CPU and GPU can be

implemented to compare their performance, with the system as given in Section 3.2.

Profiling of the algorithm will be done to check the complexity and time taken to

complete the whole GE. We proceed by:

1. Implementing GF(2)-specific GE in single-threaded environment using C, with

a size of under 32 × 32 bits

2. Improving the algorithm to fit the largest vector, which is unsigned long long.

3. For matrix larger than 64 × 64 bits, we need to split them up to multiple vector

containers.

4. For sizes that do not fit exactly the vector containers, we need to pad them up

with 0 or 1.

Once the algorithm works in a CPU environment, it is then ported to a GPU

environment. The code is run in GPU under CUDA first with a single thread, then

extended to multiple, concurrent threads. In a GPU, the following points have to be

considered:

1. The data is first copied from the CPU (host) to the GPU (device).

2. The CPU then initiates a kernel that runs multiple concurrencies. Each of them

work on a separate set of data.

3. Synchronization is needed in between the code. However, communication is

expensive and should be kept minimum.

4. When the process is done, the control is returned to the CPU.

3.2 System Specifications

The project is run on a system with the following specification:

CPU: Intel Core i5 4690 3.50GHz

GPU: NVIDIA GeForce GTX 960

Memory: 8GB 1600MHz DDR3

 Intel Core i5 is a quad-core CPU targeted for the consumers, mostly for the

gaming market and normal graphical usage. Implementation of GE over GF(2) on

multi-cores will be implemented on this same system. This is done using the C

language, one of the most popular programming language. For the GPU

implementation, CUDA platform is selected.

18

3.3 GPU Architecture

With the growth of computing and the use of better and higher definition graphics, the

market demand for better image processing has allowed the growth of Graphic

Processing Units (GPU). Coupled together by the increasing difficulty of extracting

instruction level parallelism (ILP) from instruction stream, the insatiable demand from

the market for real-time, 3D graphics has turned the GPU into a highly parallel,

multithreaded, multi-core processor with tremendous computational horsepower and

very high memory bandwidth suitable for high performance computing. Now GPGPU

(General Purpose GPU) serves as both a programmable graphics processor and a

scalable parallel computing platform. Most systems are heterogeneous, combining a

GPU with a CPU. Performance wise, the floating point operations per second by the

GPU greatly exceeds that of CPU, as illustrated in Figure 3.1.

Figure 3.1: Floating-Point Operations per Second for the CPU and GPU

(NVIDIA Corporation, 2015)

19

 The reason behind the disparity between the floating-point capability of GPU

and CPU is because GPU is designed for graphic rendering, a process that is highly

computing intensive and requires parallel computing. A lot more data is devoted to

data processing than flow control. The difference between the 2 structures is shown in

Figure 3.2.

Figure 3.2: The GPU Devotes More Transistors to Data Processing

 The GPU architecture consists of two main components: global memory and

streaming multiprocessors (SM). The global memory acts like a random access

memory (RAM) in a CPU server. This portion of the GPU is accessible by both the

GPU and CPU, so that data can be transferred between CPU and GPU. The SMs

perform the actual computation. Just like a small processor, an SM has its own control

units, registers, execution pipelines and caches.

 GPU is well-suited to tackle problems that involve data-parallel computations.

This means that a program that is executed on many data elements – often with high

arithmetic intensity – can utilize the ability of GPU. A program with high ratio of

computation over memory access means there is a lower requirement for flow control,

and hence memory latency can often be hidden behind with calculations.

3.3.1 NVIDIA CUDA Platform

In November 2006, NVIDIA introduced CUDA®, a general purpose parallel

computing platform and programming model that leverages the parallel compute

engine in NVIDIA GPUs to solve many complex computational problems in a more

efficient way than on a CPU (NVIDIA Corporation, 2015). CUDA comes in an

20

environment where programmers can code in one of the most common language, the

C language. It also allows multiple different higher level programming language and

interface like FORTRAN and Python.

 With the advent of multi-core CPUs and GPUs, it is obvious that our current

computing systems are mostly parallel systems. The challenge onwards lies in

developing application software and algorithms that are parallel in nature, meaning

that they can transparently scale their parallelism to leverage the increasing numbers

of processing cores. Using a familiar language like C, CUDA can attract more

programmers to tackle this problem and develop more application software that

exploits the GPU’s power.

 CUDA at its core are three key abstractions - a hierarchy of thread groups,

shared memories, and barrier synchronization - that are simply exposed to the

programmer as a minimal set of language extensions (NVIDIA Corporation, 2015).

These abstractions allow more fine-grained parallelism both in data and thread,

through the use of higher level, coarse-grained data and task parallelism. A

programmer is guided to divide the task into coarse sub-problems, which are then more

finely defined and divided. This kind of decomposition allows thread to work together,

meaning they can scale and work regardless of the number of memory partitions or

multiprocessors. CUDA will work for different GPUs having different capacity and

power.

21

Figure 3.3: Automatic Scalability (NVIDIA Corporation, 2015)

22

Figure 3.4: Hierarchy and division of process

 As shown in Figure 3.4, the hierarchy and division of process can be done to a

low-level. First, the host launches kernels that are run by a grid of blocks. These blocks

can have threads in them processing on the data. The difference between the blocks

and the threads is that parallel threads have mechanisms to communicate and

synchronize. It should be noted that the kernel launches by the host is just like the

normal program: it runs serially which then spurs the grids in GPU.

 What programmer expresses in CUDA are computation partitioning, data

partitioning, data management and orchestration, as well as concurrency management.

Computation partitioning deals with the problem of where does the computation occur.

Host

Kernel

1

Kernel

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(2, 0)

Block

(0, 1)

Block

(1, 1)

Block

(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

23

Declaration of functions using __host__ __global__ and __device__ clarifies the

computation location. Mapping of thread programs to device are done with <<gs,

bs>>(<args>) where gs is number of blocks started, bs is number of threads started and

<args> is the argument passed. Data portioning deals with the location of the data as

well as the scope and access method of the data. Declarations include __shared__ and

__constant__. Data management and orchestration is responsible of copying to and

from the host and device. This is done mostly through the cudaMemcpy() function.

Lastly, __syncthreads() is used for concurrency management, making sure that

concurrent processes are managed well and no race conditions take place. Equipped

with the understanding of GPU architecture and CUDA abstraction, programming can

be made better and the algorithm to run the parallel programming on GPU can be

optimized.

24

CHAPTER 4

4 RESULTS AND DISCUSSIONS

4.1 Profiling of Realistic Bottlenecks for Implementation on GPU

4.1.1 Understanding Gaussian Elimination's steps

According to (Linjia Hu, 2013), the most time consuming parts of the Gaussian

Elimination are the backward substitution and forward elimination steps. This is

especially evident given that the encoding method utilized in this project is a random

code encoding matrix with a density of 0.5. This effectively means that the other two

steps required to complete a cycle of Gaussian Elimination – pivot search and row

swapping – are generally done rather quickly since the pivot can be found quickly.

 Fortunately, both forward elimination and backward substitution are processes

that are amenable to parallel processing. There is potential for speedup in this

particular section given that once the pivot search is done and swapping completed,

every row of the matrix has to be checked and XOR-ed if the condition is met. Since

this process is independent for each row, there is big room for acceleration, and it is

then posited that the effect will be apparent when the size of the matrix is large. The

other reason is the availability of many vacant processing units or cores in the GPU.

Since the process is independent, the CUDA drivers are free to allocate the best

resources and optimize the queueing and data processing.

25

 Axis of time

Figure 4.1: Graphical Comparison of Serial & Parallel Implementation

Serial version 1 core only

Pivot Search+Swap

XOR (N-1 rows)

Pivot Search+Swap

XOR (N-1 rows)

⁞⁞

Pivot Search+Swap

XOR (N-1 rows)

Parallel version

each column is a core

Pivot Search+Swap+Sync

XOR XOR XOR ….. XOR XOR XOR

Pivot Search+Swap+Sync

XOR XOR XOR ….. XOR XOR XOR

⁞⁞

Pivot Search+Swap+Sync

XOR XOR XOR ….. XOR XOR XOR

26

 Gaussian Elimination partitions the workload to three distinct steps, mainly the

pivot search, swap and then XOR. The parallelizable part of the algorithm lies mainly

in the XOR operations.

 The workload can be shrunk when the XOR operations are done quickly and

in parallel by the parallel processing units, in this case the cores of the GPU. The serial

implementation has the XOR operation taking up a longer time, from Figure 4 it is

shown that the XOR operations in serial implementation is longer vertically taking

more time (not drawn to scale). When done in parallel, the XOR operations divides to

many cores that can run quickly and in shorter time frame. The aim is to have the XOR

operations reduced in time substantially. However, the parallel implementations

include a synchronization cost, which will be discussed later in the results to be

minimal, hence not affecting the performance too much.

4.1.2 Proposed Algorithm

The proposed algorithm is as given and implemented.

Require: Generator matrix G and encoded matrix X, augmented G|X. G & X each has

n+10 rows and m columns, so the augmented matrix has n+10 rows with 2m columns.

1: procedure GEonGPU(G|X)

2: (Host)Import matrix G|X from text file, parse into vectorised form of unsigned

3: long arrays;

4: (HostDevice)Copy the whole G|X matrix from host to device;

5: for i1, (n-1) do

6: (Kernel 1) ji;

7: Search for pivot row on the i-th column from row j to row (n+9).

8: Then, replace pivrow[] with the whole row of the pivot found.

9: Replace j-th row with i-th row;

10: (Kernel 2) for all rows except row i:

11: if i-th column is 1, then

12: XOR pivrow[] with that row;

27

13: end for

14: (Kernel 3) Replace i-th row with pivrow[];

15: end for

16: (DeviceHost) Copy the matrix X to host. Export to text file as hexadecimal

17: characters.

18: end procedure

During the XOR operation, each row of the matrix is handled by each single

thread. Each thread will traverse through the whole row to execute the XOR operation.

Therefore, when more than 1024 rows are in a matrix, there must be more than 1 block

that is initiated. This is because the limit of the number of threads that can be launched

per block is 1024 for NVIDIA CUDA C. However, if the row number is smaller than

1024 and can be processed by only 1 block, then the configuration of block and thread

counts can be more flexible.

4.1.3 Elements of CUDA C Implementation

Global memory coalescing is a method by NVIDIA CUDA C to allow better use of

the memory bandwidth. The device coalesces global memory loads and stores into as

little transactions as possible thereby minimizing the DRAM bandwidth. When a warp

of 32 threads access data that is within locality, the access is simply coalesced together

as 1 request. As the number of threads are increased and the data is arranged in a

fashion that is contiguous when accessed, we can compare and measure the effect of

global memory coalescing.

 Shared memory is confined to a single block, residing in a multiprocessor. The

limit of the shared memory is very small relative to the global memory, and depends

on the device's limit. Shared memory bank conflict arises when multiple addresses of

a memory request maps to a common memory bank. This will make the memory

request to the shared memory block to be serialized, decreasing the bandwidth to a

factor equal to the number of separate memory requests. However, since this algorithm

cannot utilize shared memory, this is not of concern.

28

 Synchronization includes block level synchronization using __syncthreads()

and also kernel launches since they are serialized in a stream. Sync in a block happens

when every warps and threads have to reach the __syncthread() function before the

whole code can proceed. This might delay what could have been an acceleration if

they are not dependent, however we have no way to make sure data independence.

Therefore, synchronization is inevitable. The kernel launch time and __syncthreads()

are the overheads that we can measure when the elements are distilled down.

 Branch divergence happens when treads inside a warp branches to different

execution paths. Depending on how many branches are created from the divergence of

a warp, the performance loss can be significant. One way to mitigate this is to have the

branches not do anything when they diverge. Indeed, as the CUDA C implementation

has divergence when some threads require XOR operation on its respective row, while

other threads do not. However when there is no XOR operation required, there is no

further operation down the line. This is a better solution to reduce performance loss.

4.1.4 Filtering out the Bulk of Operation

The understanding of Gaussian Elimination proves to be the first step into

implementing an effective algorithm onto the NVIDIA GPU for acceleration. Given

that the previous deductions are mostly theoretical and do not take into account the

realistic issues of global memory coalescing, shared memory bank conflicts, overhead

of synchronization, branch divergence and so on. To better drill down on the

substantial part that is affecting the performance of the decoding using GPU, the

implementation has to be timed and each component stripped out so that the elements

can be quantified.

 Any implementation of a parallel processing algorithm will consist of overhead

costs. Amdahl’s Law, as mentioned before, succinctly puts a formula that can be used

to investigate the cost and return of parallelization. Only when the return given by

utilizing many processes are greater than the overhead and synchronization, it is a

29

worthy venture. A general process is assumed when implementing the parallel data

processing in NVIDIA CUDA, and it is given as follows:

Kernel Launch

Block Switching

Thread
Switching

Synchronization

Memory
Accesses

Operations

Counters

Figure 4.2: Elements of a GPU Kernel

 When the whole process is broken down into elements, the algorithm can be

tweaked so as to boil down the cost of each element. The question now is, which

element takes more time and which part should we focus on improving? To be able to

filter out the block switching, thread switching and synchronization part out of the

calculation, 1 single thread from 1 single block is used to run the whole algorithm.

Essentially, there is no parallelization except that there are costs for kernel launches

since this is done in GPU. Running a single thread to process the whole matrix has

proven to be time-consuming. It took almost half an hour to completely decode the

original message, as shown in table below.

 To further boil down on the elements' time costs, the memory access element

is removed from the algorithm. This is done by doing the same amount of operations

but only using the registers which are very near to the processing ALU, which means

that the speed is very close to having to use no memory access at all in comparison.

Understandably, the result of decoding is not correct since the required data is in global

memory. However, this method is useful to remove memory access in the equation,

but keeping all the algorithms and operations still the same.

When 1 block and 1 thread is

launched, no block/thread

switching or synchronization is

needed.

30

 Furthermore, the use of counters to keep track of the algorithm is also omitted.

This way, the barebones are left and the time that is used to execute each element can

be clearly separated from each other.

To solve a GF(2) matrix with size of (N+10) × 2N , where N = 4096:

Elements Time taken (ms) Ratio

Kernel Launch + Memory Accesses + Operation+

Counters

1705214.0 100%

Kernel Launch + Operations + Counters 295240.0 17.31%

Kernel Launch + Operations 217626.0 12.76%

From above, we can calculate:

Memory accesses ~1409974.0 82.69%

Counters 4.51%

Table 4.1: Breakdown of elements for 1 threads

The table above shows that memory access takes up the bulk of the operation

time, using around 83% of the total time. A few reasons can be given for this time-

consuming memory access. Firstly, since there is only 1 thread executing it, only the

memory cache and registers for 1 core, at the maximum, can be utilized. The core has

a lot more capacity that is wasted, and could have contributed in reducing memory

access counts.

Secondly, and most crucial, is that the way the GPU is designed is not good for

only single thread execution. The architecture of GPU is such that it combines or

coalesce neighbouring data into one single memory access, reducing the total number

of memory access required if done individually. Global memory loads and stores are

usually done with warps. Warps in this case, are a bundle of 32 threads – though some

concern has to be taken since older GPUs has semi-warps of 16 threads. If these threads

are accessing adjacent data, the GPU can immediately coalesce 32 of them into just 1

single read or write. This can improve the utilization of the DRAM bandwidth. Instead

of doing that, by using 1 sole thread to run we are essentially throwing away the 31

other adjacent data points when we request for data, and then subsequently request

again. Only 4 bytes out of the 128 bytes are utilized.

31

In short, the total number of warp memory requests are the same as the total

number of XOR operations done if we are only utilizing 1 single thread. The aim now

is to reduce the number of warp memory requests so that it is very much smaller than

the total number of operations done. Bear in mind GPU has the advantage of many

ALUs that can operate on data concurrently, and that is the leverage beneficial to the

project.

 The next step forward is to increase the number of threads. This has two

obvious advantage:

1. The memory accesses of a warp can be fully utilized instead of being discarded

2. Memory that are contiguous are loaded and processed in parallel fashion

By increasing the thread counts, the synchronization and thread switching costs are

examined. Even though performance using 1 thread shows the result being memory

access as the major bottleneck, the thread count should be increased to see if this issue

is mitigated when more threads are initiated.

With the same data size, but launching with 256 threads:

Elements Time taken (ms) Ratio

Kernel Launch + Thread Switching + Synchronization

+ Memory Accesses + Operation + Counters

18602.7 100%

Kernel Launch + Thread Switching + Synchronization

+ Operation + Counters

2067.0 11.11%

Kernel Launch + Thread Switching + Operation +

Counters

2056.8 11.06%

From above, we can calculate:

Memory accesses ~16535.7 88.88%

Synchronization ~10.2 0.05%

Table 4.2: Breakdown of elements for 256 threads

 When more than 1 thread is used, a block level synchronization for all threads

in the same block is used. The nature of Gaussian Elimination requires that all

32

backward substitutions are done before the next pivot search can be started. Since only

a block level synchronization is done, we use the __syncthreads() function available

from the CUDA C library.

 The results from the 256 thread launch shows that the overall speed has

increased significantly. Where as 1 single thread needs nearly half an hour to decode,

256 threads take less than 20 seconds to decode the same size! That is a speedup of 91

times. Memory accesses took around 89% of the total processing time. This is an

increase from the 83% previously used by 1 thread.

 The reason why memory access has taken up more percentage when there is

more threads launched is because as the thread count increases, there is more capacity

per core to execute the XOR operation. The workload of XOR operation is then

distributed to many other processing units. This means that averagely, each processing

unit has a smaller amount of work to do. When the work load is significantly smaller,

the ratio of execution over the total execution time drops. Memory accesses on the

other hand, can only be coalesced to 32 threads in 1 warp, regardless of the distribution

of the workload as long as it is more than 32 threads launched.

 The next thing to notice is also the use of __syncthreads() for synchronization

purposes contributed only less than 0.1% of the total time. It is a very lightweight and

good synchronization function, although it can only be done in the block level, not in

the grid level in CUDA terms. Memory access pertains to be the bottleneck that is

hindering further performance enhancement.

33

Figure 4.3: Bulk of Operation in GPU Implementation

To see how the thread counts and block counts affect the speed of decoding,

various thread counts and block counts are tested to see which of them yields the best

performance.

 Figure 4.4: Speedup vs 1 thread

Block and thread number configuration are factors affecting the performance

of the decoding. To better understand how different configurations work, a comparison

is made for all the configurations. The speedup approaches plateau when it hits 256

89%

0%

11%

PERCENTAGE OF TIME USED

Memory Access Synchronization Others

0

100

200

300

400

500

600

700

800

900

1000

1, 1 1, 16 1, 32 1, 64 1, 128 CPU 1, 256 1, 512 1, 1024 4, 1024 8, 512 16, 256

Sp
ee

d
u

p

Block number, Thread number - Configuration of Kernel Launch

Speedup vs 1 thread

34

threads, and increases only nominally when the thread count is increased to 512 and

1024 threads. This is processed with 1 block – which basically is only 1 Streaming

Multiprocessor used out of the 8 available. When we increase the total thread count by

launching more blocks, the speedup goes through a significant growth as shown. This

tallies with our expectation since the operations are distributed out when more threads

in general are used, but is limited by the physical multiprocessor and core counts. It

should be noted that threads and blocks are simply abstract concept for the ease of

programming.

 With the observations, it seems that with 128 multiprocessors, they can handle

2 datasets before plateauing in performance, giving rise to 256 threads as a good

optimum count for thread counts. Threads are executed by cores in a multiprocessor.

Block counts on the other hand corresponds better to the number of streaming

multiprocessors. In simple terms, each block is mapped to a single multiprocessor.

Since we have 8 SMs in the GPU, and having 8 blocks launched is the optimum block

number for the results, increasing the block number per SM does not greatly affect the

results after that. This shows that a multiprocessor saturates when 256 threads are

executed and the extra ones are queued, while the total multiprocessor saturates at 8

blocks, as that is the total number of physical multiprocessor available in GTX 960.

 In conclusion, as the total number of threads increases, the speedup increases,

given that the block and thread count configuration is optimized and it is limited by

the physical count of multiprocessors and cores available to the GPU. Memory access

takes up the bulk of the processing time especially when the execution work load is

distributed to many ALUs.

4.2 Performance

4.2.1 Message Generation and Encoding

Since the message generation and encoding are not under the acceleration

scope of this project, they are done using MATLAB for ease of implementation and

assurance of correctness. MATLAB has the ability to generate Galois field of 2

35

elements and performs operations on them, so a simple code is written to generate a

random message of desired length with desired number of symbols, which are

subsequently encoded with a corresponding matrix of generated elements. It should be

noted also that the number of encoded symbols has 10 extra compared to the number

of symbols of the original message due to Kolchin's Theorem to make sure we have a

probability of complete decoding (PCD) of 99.999% (Chong et al., 2013). To export

out the message matrix, the encoded message matrix and also the generator matrix, the

binary matrix is converted into hexadecimal representation in text and exported as a

text file. The generator matrix is augmented with the encoded symbols matrix. Each

symbol takes up a whole row of characters, while the symbols are separated by a new

line.

The encoded data can have different combinations of symbol length and

number of symbols. The length of the symbols is varied from 1024 bits to 16384 bits.

The number of symbols tested is also varied from 32 to 16384 rows.

4.2.2 Decoding Performance

The total time required for the processing is given by the tables below.

Rows/Columns 1024 2048 4096 8192 16384

 Time required in ms (CPU)

32 0.05 0.15 0.25 0.34 0.94

64 0.2 0.43 0.72 1.44 3.18
128 0.84 1.53 3.89 5.63 13.66
256 3.74 6.13 11.35 31.52 88.57
512 16.67 27.07 73.97 157.12 323.37

1024 86.15 252.24 432.65 815.2 1796.5
2048 1056.8 1454.93 2492.24 4081.6 12464.5
4096 11304.2 14250.2 18709.67 36885.9 68325.7
8192 122325.2 132005.6 160336 222951.2 337316.2

16384 1125262 1168553 1337740

Table 4.3: Time required for CPU

36

Rows/Columns 1024 2048 4096 8192 16384

 Time required in ms (GPU)

32 2.49 3.96 7.12 13.5 25.87
64 4.79 8 14.17 26.49 51.34

128 9.91 16.08 28.49 53.22 100.15
256 21.27 33.52 58.32 99.98 184.15
512 48.9 73.7 110.33 198.06 455.75

1024 109.95 153.77 242.47 512.2 967
2048 310.28 430.75 716.04 1167.7 2066.3
4096 1277.4 1498.2 1968.11 2911.8 4792.3

8192 5258 5864.8 6942.8 9587.2 13843.6

16384 40380.5 42688.5 49149.5

Table 4.4: Time required for GPU

When both of them are compared for performance, we can obtain the speedup

as follows:

Speedup

Rows/Columns 1024 2048 4096 8192 16384

32 0.020 0.038 0.035 0.025 0.036

64 0.042 0.054 0.051 0.054 0.062
128 0.085 0.095 0.137 0.106 0.136
256 0.176 0.183 0.195 0.315 0.481
512 0.341 0.367 0.670 0.793 0.710

1024 0.784 1.640 1.784 1.592 1.858
2048 3.406 3.378 3.481 3.495 6.032
4096 8.849 9.512 9.506 12.668 14.257
8192 23.265 22.508 23.094 23.255 24.366

16384 27.866 27.374 27.218

Table 4.5: Speedup vs CPU

37

 Figure 4.5: Speedup vs 1 GPU for different symbol length and number of

symbols

The speedups highlighted in red in Table 4.5 are those where CPU performance

is better than GPU performance using the proposed algorithm. For number of symbols

512 or less, CPU performs better in all column size that we tested. For 1024 rows with

2048 columns and above size, we can see that GPU algorithm outperforms CPU. As

the size of encoded message gets bigger, the speedup of GPU is more significant. This

tallies with previous hypothesis which is GPU is suited for large dataset processing

that reduces the relative cost of overhead and synchronization by GPU kernel launches.

Another interesting observation is that as the size of the column gets bigger

when the number of row is kept constant, the increase is speedup is not as steep as

when the number of rows is increased. For example, when the number of rows is 4096,

the speedup when the column size is increased from 1024 to 16384 ranges from 8 to

14. However, when the number of rows is doubled to 8192, the speedup starts from 23

folds. To put it simply, a twice increase in size in column has around 7% increase in

speedup, but a twice increase in size in row has 162% increase in speedup. In

networking terms, the number of symbols instead of symbol length has a greater

impact on the speed of decoding.

0

5

10

15

20

25

30

32 64 128 256 512 1024 2048 4096 8192 16384 32768

Number of rows

CPU/GPU Time Speedup

1024

2048

4096

8192

16384

Symbol
length

38

This can be attributed to the fact that the matrix is already vectorised. Each

symbol is vectorised into type of unsigned long, so that memory access is fully utilized.

Every 32 bits of data – corresponding to 32 columns – will only add 1 extra vector of

unsigned long. Yet each row starts with a new vector array. Hence, it is logical that

adding extra symbols contributes to the longer processing time more significant than

adding symbol length to it.

39

CHAPTER 5

5 CONCLUSION AND RECOMMENDATIONS

5.1 Recommendations and Future Works

It should be noted that the matrix utilized in this project is moderately dense and

randomly generated. The performance is measured under this premise. Future work

can include testing the algorithm with very sparse matrix or very dense matrix. This

can yield different results because of the steps required to obtain a pivot, and the total

number of operations needed when different densities of matrix is used can be very

different.

 Another future work that can be done is utilizing the nature of interaction

between host and device to come up with an algorithm that allows the host and device

to both compute at the same time. Usually termed 'on-the-fly', this kind of algorithm

divides the workload to both CPU and GPU. One of such ideas is to utilize the CPU to

search for pivot since it is a serial operation, and then let the GPU handle the XOR

operation for massive parallel, independent operation.

 NVIDIA CUDA C has a lot to offer, and different approaches can result in

varying speedups. A new algorithm that allows each thread to access only a single

vector can also be promising, but the overhead and synchronization costs should also

be included. This is a direction worth exploring.

 Finally, by tackling the memory access problem, future work can better

improve memory performances and reduce the decoding time needed. This is a

40

substantial bottleneck that should be researched and solved to accelerate Gaussian

Elimination on GPU.

5.2 Conclusions

 The bottleneck of the algorithm is shown to be the memory access which takes

up the bulk of processing time. An algorithm suited for GPU implementation of

Gaussian Elimination for Galois field of 2 elements is proposed and implemented

using NVIDIA CUDA C. The performance has been shown to outperform normal CPU

implementation when the number of symbols is 1024 and above. When the size of

encoded message is bigger, the speedup gets bigger, more so when the number of

symbols is increased. The block and thread number configurations are also affecting

the performance and depends on the hardware for optimum acceleration.

41

REFERENCES

Mitzenmacher, M., 2004. Digital fountains: a survey and look forward. In

Information Theory Workshop. San Antonio, 2004. IEEE.

Chong, Z.-K. et al., 2013. Stepping-Random Code: A Rateless Erasure Code

for Short-Length Messages. IEICE Transactions on Communications, 96(7), pp.1764-

71.

Morancho, E., 2015. A Vector Implementation of Gaussian Elimination over

GF(2): Exploring the Design-Space of Strassen's Algorithm as a Case Study. In 2015

23rd Euromicro International Conference on Parallel, Distributed and Network-

Based Processing (PDP). Turku, 2015. IEEE.

MacKay, D.J.C., 2005. Fountain codes. IEE Proceedings-Communications,

152(6), pp.1062 - 1068.

Luby, M., 2012. LT Codes. In Proceedings of The 43rd Annual IEEE

Symposium on Foundations of Computer Science., 2012. IEEE.

Lu, F., Foh, C.H., Cai, J. & Chia, L.-T., 2009. LT codes decoding: Design

and analysis. In IEEE International Symposium on Information Theory ISIT 2009.

Seoul, 2009. IEEE.

Chong, Z.-K. et al., 2015. Systematic rateless erasure code for short messages

transmission. Computers & Electrical Engineering, 45, pp.55-67.

Saad, Y., 1986. Communication complexity of the Gaussian elimination

algorithm on multiprocessors. Linear Algebra and its Applications, 77, pp.315-40.

Galoppo, N., Govindaraju, N.K., Henson, M. & Manocha, D., 2005. LU-GPU:

Efficient Algorithms for Solving Dense Linear Systems on Graphics Hardware. In

Proceedings of the ACM/IEEE SC 2005 Conference., 2005. IEEE.

Buluç, A., Gilbert, J.R. & Budak, C., 2008. Gaussian Elimination Based

Algorithms on the GPU. Under review for the Special Issue of Parallel computing on

parallel matrix algorithms and applications.

42

Leow, Y.K., Akoglu, A., Guven, I. & Madenci, E., 2011. High Performance

Linear Equation Solver Using NVIDIA GPUs. In 2011 NASA/ESA Conference on

Adaptive Hardware and Systems (AHS). San Diego, 2011. IEEE.

Koç, Ç.K. & Arachchige, S.N., 1991. A fast algorithm for gaussian

elimination over GF(2) and its implementation on the GAPP. Journal of Parallel and

Distributed Computing, 13(1), pp.118-22.

Parkinson, D. & Wunderlich, M., 1984. A compact algorithm for Gaussian

elimination over GF(2) implemented on highly parallel computers. Parallel

Computing, I(1), pp.65-73.

Bogdanov, A. et al., 2006. A Parallel Hardware Architecture for fast Gaussian

Elimination over GF(2). In FCCM '06 Proceedings of the 14th Annual IEEE

Symposium on Field-Programmable Custom Computing Machines. Washington, DC,

2006. IEEE.

Morancho, E., 2015. A Vector Implementation of Gaussian Elimination over

GF(2): Exploring the Design-Space of Strassen’s Algorithm as a Case Study. In

￼2015 23rd Euromicro International Conference on Parallel, Distributed, and

Network-Based Processing. Turku, 2015. IEEE.

NVIDIA Corporation, 2015. CUDA C Programming Guide. [Online]

Available at: http://docs.nvidia.com/cuda/cuda-c-programming-guide [Accessed

August 2015].

Linjia Hu, S.N.T.M., 2013. Forward Error Correction with Raptor GF(2) and

GF(256) Codes on GPU. IEEE Transactions on Consumer Electronics, 59(1), pp.273-

80.

http://docs.nvidia.com/cuda/cuda-c-programming-guide

43

APPENDICES

APPENDIX A: Computer Programme Listing

MATLAB

row = 4096;
col = 4096;
m = 1;
extra_row = 10;

for fileid = 1:100
 mes_mat = randi((0:(2^m)-1), row ,col);
 gen_mat = randi((0:(2^m)-1), row+extra_row,row);
 mes_matgf2 = gf(mes_mat,m);
 gen_matgf2 = gf(gen_mat,m);
 encoded_matgf2 = gen_matgf2*mes_matgf2;
 encoded_matgf2_double = double(encoded_matgf2.x);
 gen_matgf2_double = double(gen_matgf2.x);
 mes_matgf2_double = double(mes_matgf2.x);

 file1name = sprintf('%d_%d_20.txt', row, fileid);
 fileID = fopen(file1name,'w');
 for a = 1:size(encoded_matgf2_double,1)
 enc_hex_str = binaryVectorToHex(encoded_matgf2_double(a,:));
 gen_hex_str = binaryVectorToHex(gen_matgf2_double(a,:));
 fprintf(fileID,gen_hex_str);
 fprintf(fileID,enc_hex_str);
 fprintf(fileID,'\n');
 end
 fclose(fileID);

 file2name = sprintf('%d_%dans_20.txt', row, fileid);
 fileID = fopen(file2name,'w');
 for a = 1:size(mes_matgf2_double,1)
 mes_hex_str = binaryVectorToHex(mes_matgf2_double(a,:));
 fprintf(fileID,mes_hex_str);
 fprintf(fileID,'\n');
 end
 fclose(fileID);
end

44

NVIDIA CUDA C – GPU

1. #include "cuda_runtime.h"

2. #include "device_launch_parameters.h"

3.

4. #include <stdio.h>

5. #include <string.h>

6. #include <stdlib.h>

7. #include <algorithm>

8.

9. // shared memory in GPU buffer

10. __device__ __constant__ int rownum_d;

11. __device__ __constant__ int arr_count_d;

12. __device__ __constant__ int num_bits_in_type_d;

13.

14. // GPU kernel declaration

15. __global__ void XORKernel(unsigned long *dev_arr,unsigned long *dev_pivrow,

16. const int curcol, const int curarr)

17. {

18. unsigned long checkbit = 1;

19. int i = blockDim.x*blockIdx.x + threadIdx.x;

20. if (i<rownum_d) {

21.

22. if (dev_arr[curarr*rownum_d+i] & (checkbit<<(curcol%num_bits_in_type_d))) {

23. for (int k = 0; k<arr_count_d; k++) {

24. dev_arr[k*rownum_d+i] = dev_arr[k*rownum_d+i]^dev_pivrow[k];

25. }

26. }

27. }

28. }

29.

30. __global__ void pivotSearchKernel(unsigned long *dev_arr, unsigned long *dev_pivrow,

31. const int curcol,const int curarr,const int currow)

32. {

33. if (0 == threadIdx.x) {

34. unsigned long checkbit = 1;

35. for (int i = currow; i < rownum_d; i++) {

36. if (dev_arr[curarr*rownum_d+i] & (checkbit<<(curcol%num_bits_in_type_d)))

{

45

37. for (int k = 0; k<arr_count_d; k++) {

38. dev_pivrow[k]= dev_arr[k*rownum_d+i];

39. dev_arr[k*rownum_d+i] = dev_arr[k*rownum_d+currow];

40. //dev_arr[k*rownum_d+currow] = dev_pivrow[k];

41. }

42. break;

43. }

44. }

45. }

46. }

47.

48. __global__ void pivotReplaceKernel(unsigned long *dev_arr, unsigned long *dev_pivrow,

49. const int currow)

50. {

51. if (0 == threadIdx.x) {

52. for (int k = 0; k<arr_count_d; k++) {

53. dev_arr[k*rownum_d+currow] = dev_pivrow[k];

54. }

55. }

56. }

57.

58. // CPU function declarations

59. char** importToStr(const char* filename, const int rownum, const int symbol_bitsize,

60. const int bits_per_char_rep, const int symbol_count)

61. {

62. /* IMPORT DATA */

63. char* line;

64. int tempsize = (symbol_bitsize*2/bits_per_char_rep)+2; // 2 extra bytes for \n\0

65. line = (char*)malloc(tempsize*sizeof(char)); //1024bytes maximum per line

imported from file

66. char **inputdata;

67. FILE* fr; // pointer to file

68.

69. // Memory allocation for importing data

70. // allocate for symbol_count+10=rownum.

71. // allocate symbol_count*(2)/(4 bits per character): assumes symbol length =<

bits/symbol.

72. // +1 extra for EOS character.

46

73. // --- *2 because random gen matrix concatenated with msg matrix

74. inputdata = (char**)malloc((rownum) * sizeof(char*));

75. for (int i = 0; i < (rownum); i++)

76. inputdata[i] = (char*)malloc(((symbol_bitsize*2/bits_per_char_rep)+1) * size

of(char));

77.

78. // Open file

79. fr = fopen (filename, "rt"); // open the file for reading

80. // "rt" means open the file for reading text

81. if (fr == NULL)

82. {

83. printf("Error opening file!\n");

84. exit(1);

85. }

86. else

87. printf("File %s opened!\n", filename);

88.

89. // Import each line into array of strings, inputdata

90. int import_row = 0;

91. while(fgets(line, tempsize, fr) != NULL) // max 1024 characters per line to be

read per fetch;

92. {

93. strncpy(inputdata[import_row], line, symbol_bitsize*2/bits_per_char_rep);

94. inputdata[import_row][symbol_bitsize*2/bits_per_char_rep] = '\0'; // last

character

95. import_row++;

96. }

97. fclose(fr); /* close the file prior to exiting the routine */

98.

99. return inputdata;

100. }

101.

102. unsigned long* parseToUL(char** inputdata, const int rownum, const int arr_

count, const int hexchar_required_in_type,

103. const int hexcharnum)

104. {

105. unsigned long* host_arr;

106. host_arr = new unsigned long [(rownum*arr_count)];

47

107.

108. //

109. /* Splitting parts of the strings into arrays of unsigned long */

110. //

111. char* tempstring;

112. tempstring = (char*) malloc((hexchar_required_in_type+1)*sizeof(char));

113. for (int i = 0, post = 0; i<arr_count; i++,

post = post+hexchar_required_in_type) {

114. for (int j = 0; j<rownum; j++) {

115. strncpy(tempstring, inputdata[j]+post,

hexchar_required_in_type);

116. tempstring[hexchar_required_in_type] = '\0';

117. host_arr[i*rownum+j] = strtoul(tempstring, NULL, 16);

118. if (i==arr_count-1) { // if last array,

left shift appropriately

119. host_arr[i*rownum+j]= host_arr[i*rownum+j]<<((hexchar_requi

red_in_type-(hexcharnum%hexchar_required_in_type))*4);

120. }

121. }

122. }

123. return host_arr;

124. }

125.

126. char** ULtoStr (const unsigned long* host_arr, const int rownum, const int

 arr_count,

127. const int hexcharnum, const int hexchar_required_in_type)

128. {

129. /* Convert back to hexa-represented strings */

130. char **outputdata;

131.

132. outputdata =(char**) malloc(rownum * sizeof(char*));

133. for (int i = 0; i < rownum; i++)

134. outputdata[i] =(char*) malloc((hexcharnum+1) * sizeof(char));

135. for (int i = 0; i < rownum; i++) {

136. for (int j = 0, pos = 0; j < arr_count; j++){

137. char* temp = (char*)malloc(hexchar_required_in_type+1);

138. char str[15], z = '0', p ='%';

139. sprintf(str, "%c%c%dlx\n",p, z, hexchar_required_in_type);

48

140. sprintf(temp, str, host_arr[j*rownum+i]);

141. strncpy(outputdata[i]+pos, temp,hexchar_required_in_type);

142. pos = pos+hexchar_required_in_type;

143. }

144. outputdata[i][hexcharnum] = '\0';

145. }

146.

147. return outputdata;

148. }

149.

150. void exportTxt (char* fileout, char** outputdata, const int symbol_count, c

onst int hexcharnum)

151. {

152. FILE* fr; // pointer to file

153. fr = fopen(fileout, "w");

154. if (fr == NULL)

155. {

156. printf("Error opening file!\n");

157. exit(1);

158. }

159. else

160. printf("File %s created!\n", fileout);

161.

162. for (int i = 0; i<symbol_count; i++) {

163. fprintf(fr, "%s\n", outputdata[i]+(hexcharnum/2));

164. }

165. fclose(fr);

166. }

167.

168. void freeAllmem(char** inputdata, char** outputdata, unsigned long* host_ar

r, const int rownum)

169. {

170. for (int i = 0; i < (rownum); i++){

171. free(inputdata[i]);

172. }

173. free(inputdata);

174.

175. for (int i = 0; i < rownum; i++){

49

176. free(outputdata[i]);

177. }

178. free(outputdata);

179.

180. delete [] host_arr;

181. }

182.

183. // main routine

184. int main()

185. {

186. // Device-side pointers

187. unsigned long *dev_arr;

188. unsigned long *dev_pivrow;

189.

190. /* Declaration of variables */

191. const int num_bits_in_type = (sizeof(unsigned long)*8);

192. const int symbol_count = 1024; // how many symbols in matrix

193. const int symbol_bitsize = symbol_count; // Assuming square msg matrix

194. const int bits_per_char_rep = 4; // // assumes GF2 matrix is

represented by hexa characters

195. const int hexchar_required_in_type = num_bits_in_type/4; // A hex-char

represents 4 bits

196. const int rownum = symbol_count+10; // 10 extra rows(symbols) needed

for 99.99% PCD.

197. cudaError_t cudaGEStatus;

198.

199.

200. /* ITERATE over all the files */

201. for (int iter = 1; iter < 100; iter++)

202. {

203. // Pass file name

204. char* filename = (char*)malloc(20*sizeof(char)); // 20 means

the filename can be at most 10 characters.

205. sprintf(filename, "%d_%d.txt", symbol_count,iter); // import

file name format

206. char **inputdata;

207. inputdata = importToStr(filename, rownum,symbol_bitsize,

bits_per_char_rep, symbol_count);

50

208.

209. int hexcharnum = 0; // Count the number of hex-characters in the

1st string, assuming each str same size

210. while (inputdata[0][hexcharnum]!='\0') {

211. hexcharnum++;

212. }

213. const int colnum = (hexcharnum)*bits_per_char_rep;

214. const int last_arr_hexchar = hexcharnum%hexchar_required_in_type;

215. const int arr_count = (hexcharnum/hexchar_required_in_type)+(last_a

rr_hexchar?1:0); // the number of arrays needed

216.

217. unsigned long* host_arr;

218. host_arr = parseToUL(inputdata, rownum, arr_count,

hexchar_required_in_type, hexcharnum);

219.

220. // Choose which GPU to run on, change this on a multi-GPU system.

221. cudaGEStatus = cudaSetDevice(0);

222. if (cudaGEStatus != cudaSuccess) {

223. fprintf(stderr, "cudaSetDevice failed! Do you have a CUDA-

capable GPU installed?");

224. goto Error;

225. }

226.

227. // Allocate GPU buffers.

228. cudaGEStatus = cudaMemcpyToSymbol(rownum_d,&rownum,sizeof(int));

229. if (cudaGEStatus != cudaSuccess) {

230. fprintf(stderr, "cudaMemcpyToSymbol failed!");

231. goto Error;

232. }

233.

234. cudaGEStatus = cudaMemcpyToSymbol(arr_count_d,&arr_count,sizeof(int

));

235. if (cudaGEStatus != cudaSuccess) {

236. fprintf(stderr, "cudaMemcpyToSymbol failed!");

237. goto Error;

238. }

239.

51

240. cudaGEStatus = cudaMemcpyToSymbol(num_bits_in_type_d,&num_bits_in_t

ype,sizeof(int));

241. if (cudaGEStatus != cudaSuccess) {

242. fprintf(stderr, "cudaMemcpyToSymbol failed!");

243. goto Error;

244. }

245.

246. cudaGEStatus = cudaMalloc((void**)&dev_arr,

arr_count* rownum * sizeof(unsigned long));

247. if (cudaGEStatus != cudaSuccess) {

248. fprintf(stderr, "cudaMalloc failed!");

249. goto Error;

250. }

251.

252. cudaGEStatus = cudaMalloc((void**)&dev_pivrow,

arr_count* sizeof(unsigned long));

253. if (cudaGEStatus != cudaSuccess) {

254. fprintf(stderr, "cudaMalloc failed!");

255. goto Error;

256. }

257.

258. cudaGEStatus = cudaMemcpy(dev_arr, host_arr,

rownum * arr_count * sizeof(unsigned long), cudaMemcpyHostToDevice);

259. if (cudaGEStatus != cudaSuccess) {

260. fprintf(stderr, "cudaMemcpy failed!");

261. goto Error;

262. }

263.

264. // Loop through the data, launching XOR kernels for every row.

265. int num_of_block= 1, num_of_threads = std::min(1024,rownum);

266. if (rownum>num_of_threads)

267. {

268. num_of_block += (rownum/num_of_threads);

269. }

270. for (int currow = 0, curarr = 0,

curcol = (arr_count*num_bits_in_type)-1; currow < symbol_count; currow++, curcol--) {

271. pivotSearchKernel<<<1, 1>>>(dev_arr, dev_pivrow, curcol,

curarr, currow);

52

272. //cudaGEStatus = cudaDeviceSynchronize();

273. XORKernel<<< num_of_block , num_of_threads >>>(dev_arr,

dev_pivrow, curcol, curarr);

274. //cudaGEStatus = cudaDeviceSynchronize();

275. if (!(curcol%num_bits_in_type)){

276. curarr++;

277. }

278. pivotReplaceKernel<<<1,1>>>(dev_arr, dev_pivrow, currow);

279. //cudaGEStatus = cudaDeviceSynchronize();

280. }

281.

282.

283. // Check for any errors launching the kernels

284. cudaGEStatus = cudaGetLastError();

285. if (cudaGEStatus != cudaSuccess) {

286. fprintf(stderr, "addKernel launch failed: %s\n",

cudaGetErrorString(cudaGEStatus));

287. goto Error;

288. }

289.

290. // cudaDeviceSynchronize waits for the kernel to finish, and

returns

291. // any errors encountered during the launch.

292. cudaGEStatus = cudaDeviceSynchronize();

293. if (cudaGEStatus != cudaSuccess) {

294. fprintf(stderr, "cudaDeviceSynchronize returned error code %d

after launching addKernel!\n", cudaGEStatus);

295. goto Error;

296. }

297.

298. // Copy output vector from GPU buffer to host memory.

299. cudaGEStatus = cudaMemcpy(host_arr, dev_arr,

rownum * arr_count* sizeof(unsigned long), cudaMemcpyDeviceToHost);

300. if (cudaGEStatus != cudaSuccess) {

301. fprintf(stderr, "cudaMemcpy2 failed!");

302. goto Error;

303. }

304.

53

305. /* Convert back to hexa-represented strings */

306. char **outputdata;

307. outputdata = ULtoStr(host_arr, rownum, arr_count, hexcharnum,

hexchar_required_in_type);

308.

309. /* EXPORT to file */

310. char* fileout= (char*) malloc(20*sizeof(char));

311. sprintf(fileout, "%d_%dout.txt", symbol_count,iter);

312. exportTxt (fileout,outputdata, symbol_count, hexcharnum);

313. Error:

314. cudaFree(dev_arr);

315. cudaFree(dev_pivrow);

316. freeAllmem(inputdata, outputdata, host_arr, rownum);

317. }

318. return 0;

319. }

