

IMPROVING THE NETWORK THROUGHPUT WITH CODING THEORY

KHOO ZONG CHEN

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering

(Hons.) Electrical and Electronic Engineering

Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

April 2016

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it

has not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature :

Name :

ID No. :

Date :

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “IMPROVING THE NETWORK

THROUGHPUT WITH CODING THEORY” prepared by KHOO ZONG

CHEN has met the required standard for submission in partial fulfilment of the

requirements for the award of Bachelor of Engineering (Hons.) Electrical and

Electronic Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor :

Date :

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2016, Khoo Zong Chen. All right reserved.

v

IMPROVING THE NETWORK THROUGHPUT WITH CODING THEORY

ABSTRACT

In the transmission model, the message symbols may be erased or interfered during

the transmission that will eventually cause the receiver fails to receive the original

message symbols. The receiver will, by anyhow, ask for the retransmission of the

message symbols until that the complete message symbols are received, but this will

results in decreased network throughout. In this report, only erasure channel will be

considered so that the erasure correcting code can be applied to improve the network

throughput. Reed-Solomon codes, which are a fixed-rate erasure codes, can always

decode successfully whenever the number of encoded symbols received is k, out of n

total encoded symbols, where k is the number of original message symbols. But it is

constraint to that the code rate (nk /) has to be predetermined and the erasure

probability has to be pre-estimated. Later on, rateless erasure codes such as Luby

Transform (LT) codes and Raptor codes are introduced to get rid of the said

constrains. The encoder will repeatedly encode and send message packets until the

decoder successfully retrieve the original message symbols, and then only the

decoder will signal the encoder to stop sending to end the transmission. These codes,

however, are advantageous only for long messages. Hence, Random codes are

introduced to compromise for the short messages. With 10k encoded symbols,

they are able to achieve 99.9% of complete decoding. However, it is still considered

inefficient because, for example, for a short message of 10k , now it requires a

total number of 20 encoded symbols to achieve high probability of complete

decoding, which is double the size of the original message symbols. So, the finite

field in the Random codes is expanded to a higher order for the improvement i.e.

minimum usage of overhead symbols in Random codes while attaining high

probability of complete decoding. Finally, the systematic Random codes are also

proposed in the report to boost their usefulness.

vi

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF SYMBOLS / ABBREVIATIONS xi

CHAPTER

1 INTRODUCTION 1

1.1 Erasure Channel 1

1.1.1 Binary Erasure Channel 1

1.2 Erasure Codes 3

1.3 Fixed-rate Erasure Codes 4

1.3.1 Reed-Solomon Codes 4

1.4 Rateless Erasure Codes 5

1.4.1 Random Codes 6

1.4.2 Systematic Random Codes 6

1.5 Objectives 7

1.6 Contribution 7

1.7 Outline 8

2 LITERATURE REVIEW 10

2.1 Review on Erasure Codes 10

vii

3 METHODOLOGY 13

3.1 Galois Field 13

3.1.1 GF(2) 13

3.1.2 GF(4), GF(8), …, GF(256) 14

3.1.3 Addition in GF(256) 17

3.1.4 Multiplication in GF(256) 17

3.2 Transmission Model 18

3.3 Usage of Random Code in Transmission Model 19

3.3.1 Implementation of Random Code in GF(2) 19

3.4 Improvement for Random codes 20

3.4.1 The Increment of Redundancies 21

3.4.2 The Expansion of the Finite Field 22

3.5 Systematic Random Code in Transmission Model 24

4 NUMERICAL RESULTS 25

4.1 Effects of Overhead Symbols Increment to Complete

Decoding Probability 25

4.2 Effects of Finite Field Expansion to Complete Decoding

Probability 26

4.3 Effects from the Combination of Overhead Symbols

Increment and Finite Field Expansion 27

4.4 Effects of Finite Field Expansion to the Extra Encoded

Needed for Complete Decoding 28

4.4.1 Further Proof for 1.6 Extra Encoded Symbols 30

4.5 Test for Data Length in GF(2) and GF(256) 31

4.6 Comparison between Systematic Random Code and

Random Code 32

5 CONCLUSION 34

5.1 Summary 34

5.2 Recommendations 34

REFERENCES 36

viii

LIST OF TABLES

 TABLE TITLE PAGE

3.1 Addition and Multiplication in GF(2) 14

3.2 Addition and Multiplication in GF(4) 14

3.3 Addition in GF(8) 15

3.4 Multiplication in GF(8) 15

3.5 The Extended ASCII Codes 16

ix

LIST OF FIGURES

 FIGURE TITLE PAGE

1.1 Binary Erasure Channel Model 1

1.2 The 8-ary Erasure Channel Represented in Binary
Form 2

1.3 General Vandermonde Matrix 4

1.4 The Vandermonde Matrix in GF(23) 5

3.1 The Transmission Model 18

3.2 Message Symbols to be Represented by GF(2) and
GF(4) Symbols 22

4.1 Probability of Complete Decoding against Number
of Overhead Symbols for GF(2) 26

4.2 Probability of Complete Decoding against Order of
Finite Field 27

4.3 Probability of Complete Decoding against Number
of Overhead Symbols for 4 Different Finite Fields 28

4.4 Extra Encoded Symbols Needed against Order of
Finite Field 29

4.5 Frequency against Number of Overhead Symbols
in GF(2) 30

4.6 Extra Encoded Symbols Needed When Packet
Loss Probability Increases for Different Data
Length in GF(2) 31

4.7 Extra Encoded Symbols Needed to Achieve Full
Rank Matrix in Systematic Random Code against
Packet Lost Probability 32

x

4.8 Extra Encoded Symbols Needed to Achieve Full
Rank Matrix in Random Code against Packet Lost
Probability 33

xi

LIST OF SYMBOLS / ABBREVIATIONS

k message symbols

n total encoded symbols

e error

i received bits

j transmitted bits

q order or element

C channel capacity

G random generator symbol matrix

M message symbol matrix

X encoded symbol matrix

I identity matrix

 erasure probability

LT Luby Transform

BEC binary erasure channel

GF Galois field

ASCII American Standard Code for Information Interchange

CHAPTER 1

1 INTRODUCTION

1.1 Erasure Channel

In coding theory, erasure channel is a communication channel model, where the

encoded data packets sent by the transmitter in most of the cases will get erased

partially during transmission, and the decoder at the receiver side will not receive

enough encoded packets to recover the original data.

1.1.1 Binary Erasure Channel

A binary erasure channel (BEC) as shown in Figure 1.1, is the common

communication channel where losses of data occur in the channel, and it is one of the

simplest noisy channels.

Figure 1.1: Binary Erasure Channel Model

2

This kind of channel has a binary input, i.e. 0 or 1 and a ternary output, i.e. 0,

1 and error (e). The sender sends a bit, either 0 or 1, and the receiver will either

receive that particular bit or error due to the bit being erased during transmission.

The chance of the bit being erased in the noisy channel is determined by the erasure

probability,  . On the other hand, the probability of the receiver to receive the bit

without error is 1 , which is also known as capacity of that particular channel.

Since the channel is memoryless and the receiver will either receive the

correct bit or error for each transmission, each time a bit transmitted is equivalent to

conducting an independent Bernoulli trial. The desired probability is the same as the

probability of i successes out of j trials, where j is the transmitted bits and i is the

received bits. Hence, it has a binomial distribution:

 �(�) = ��
�
�(1 �)��(���) (1.1)

For most of the cases, the sender has more than two inputs. Figure 1.2 shows

the 8-ary erasure channel model.

Figure 1.2: The 8-ary Erasure Channel Represented in Binary Form

In this erasure channel, say if the message symbols are chopped into 8

encoded symbols, the binary digits are used to represent these encoded symbols,

starting from 000, 001, … to 111 accordingly. During transmission, if the noise

occurs in the channel with erasure probability  , the receiver will fail to receive

3

some of the bits due to the bits being erased. Hence the original message symbols

cannot be recovered. An erasure code is indeed necessary to bring back the missing

bits.

1.2 Erasure Codes

Communication over the erasure channel normally requires a feedback channel to

link between the sender and receiver so that the feedback channel can indicate for the

retransmission due to erased packets detected at the receiver side. The retransmission

will stop when all the packets have been received correctly.

 This kind of feedback has the advantage that they will always succeed when

all the retransmissions end, regardless of the erasure probability δ. But with reference

to Shannon theory, this method is wasteful in terms of memory because when the

probability δ is large, the number of feedback messages will be large too. It will end

up receiving multiple redundant copies of some packets. According to Shannon, with

appropriate erasure code applied in the noisy channel, the feedback from the receiver

can be potentially minimised.

Since there exists an erasure probability  that the receiver will fail to

receive the message symbols, the erasure code will be used as a technique to control

these failures during transmission over the unreliable channel. The central idea is that

the sender will encode the message symbols with redundancy in such a way that

when the receiver wants to retrieve the original message, it can be recovered from a

subset of the total encoded symbols. The redundancy, which is also known as

overhead symbol, minimises the number of errors during transmission and increases

the decoding probability.

 Generally, there are two types of erasure codes. In the following subsections,

fixed-rate erasure codes and rateless erasure codes will be discussed accordingly.

4

1.3 Fixed-rate Erasure Codes

In the fixed-rate erasure codes, the code rate (nk /), which is the proportion of

number of message symbols (k) to the total number of encoded symbols (n), has to

be pre-determined before any transmission. One of the examples of fixed-rate erasure

codes is Reed-Solomon code.

1.3.1 Reed-Solomon Codes

Reed-Solomon codes are fixed-rate erasure codes. The encoding and decoding

processes are done in domain GF(2m), where GF is the Galois Field (finite field) and

m is the positive integer that constraint to 8m , and the overall presentation

indicates its total elements in that finite field. A (n, k) Reed-Solomon code is further

constraint to n ≤ 2m, where n - k is the number of redundancies.

 The algorithm for these codes requires a Vandermonde matrix of n rows and

k columns having a property that every row is linearly independent so that any

combination of exactly k rows of matrix can be inverted, and then to recover the

original data symbols. The general Vandermonde Matrix is shown in Figure 1.3.

Figure 1.3: General Vandermonde Matrix

5

For instance, the Vandermonde matrix in GF(23) with dimension 8×3 has the

following form, shown in Figure 1.4.

Figure 1.4: The Vandermonde Matrix in GF(23)

 A (n, k) Reed-Solomon code over a size of 2m ensures that if any k of the n

transmitted encoded symbols is received by the receiver via a noisy channel, the

original message symbols can be retrieved, but it is only practical for small k, n and

m due to encoding and decoding implementations in Reed-Solomon code have a cost

of order k (n - k) log2 n packet operations. Erasure probability  and code rate also

need to be pre-determined before transmission. If  becomes larger than the pre-

determined one, the encoded symbols received by the receiver will be less than k,

causing the decoder to fail instantly as extra encoded symbols cannot be generated on

the fly.

 There is a better way to overcome this situation, which is by using the rateless

erasure code.

1.4 Rateless Erasure Codes

Rateless erasure code, which is also known as fountain code, is a coding method that

limitless encoded symbols can be generated from the message symbols such that the

6

message can be recovered from any subset of the encoded symbols at the receiver

side, provided that the size of the subset is slightly larger than the message size k.

From its name, the encoder of the fountain code can be metaphorically said as

a fountain that sprays the water continuously and if the number of water droplets

collected from this fountain is slightly larger than k, the message can be recovered. It

is so-called rateless due to the fact that it does not have a fixed code rate. Examples

of rateless erasure code are Luby Transform (LT) code and Raptor code. The Raptor

code, which is the extended version of LT code, shows high performance with

minimal overhead symbols, supports long and short messages and can be generated

on the fly. These high performance characteristics are very essential for rateless

erasure codes, and the Random codes have the potential to achieve them.

1.4.1 Random Codes

Random code is a rateless erasure code that uses a random generator to create a

matrix with distributed binary values. It is the same as any other rateless erasure code

that given the message symbols sized k, it is then encoded into potentially limitless of

encoded symbols. Any extra encoded symbols requested by the decoder can also be

generated on the fly. Whenever 10k encoded symbols are received, high

probability of complete decoding i.e. 99.9% can be achieved, which means that the

encoded symbols can be successfully decoded into original message symbols with

high chance.

1.4.2 Systematic Random Codes

Systematic Random codes are modified version of Random codes, where k message

symbols are embedded as part of the encoded symbols. The receiver will first receive

the message symbols sized k as the first part of the encoded symbols, and (1k)th

onwards later. If the receiver receives the first part of the encoded symbols without

7

loss, then the original message can be reconstructed instantly. Otherwise, any

encoded symbol from (1k)th onwards, which is generated from the random

generator, will be sent to the receiver one by one to complete the decoding process of

the message.

1.5 Objectives

In this project, the objectives as follows will be carried out.

- To study the finite field for a better understanding in the arithmetic operations

- To increase the order of the finite field so as to reduce the overhead symbols

- To rearrange the Random code into systematic Random code and contrast

with the Random code

- To make comparison between Random code, systematic Random code and

Reed-Solomon code

1.6 Contribution

The Random code is implemented in GF(2). It is able to produce a high probability

of complete decoding when a total number of encoded symbols equals to k+10 is

received by the decoder. No matter short or long messages, as long as 10 overhead

symbols are added to the message symbols, the original message symbols can be

recovered with high probability. But for a short message symbols of length 10k ,

the receiver has to get 20 encoded symbols which is the double the size of the

original message symbols in order to recover the message with high probability. It is

considered as inefficient for the receiver as its memory capacity has to be double

sized up.

 So, in order to minimise the overhead symbols while maintaining a high

probability of complete decoding, the order of the finite field can be increased. This

8

is because the decoding process of the Random code requires the encoded symbols to

be independent among themselves. When the field is expanded, the chance of

independency increases as every element in every row of the generator matrix is

generated from a wider range of elements in the expanded field.

 If the expanded finite field used in Random code can improve the decoding

probability, then is there any method that can produce a decoding probability of

100% when no loss occurs? Yes, the Random code can be modified in such a way

that the first part of the random generator matrix is an identity matrix (size depending

on the message size), and the second part of the matrix is its ordinary random matrix.

Hence the first part of the encoded symbols will be exactly the same as the message

symbols and if no loss occurs, these message symbols can be recovered intact and

instantly.

1.7 Outline

In Chapter 2, literature review will be discussed. The evolution of the erasure codes

from Reed-Solomon codes to RaptorQ codes and Random codes will be reviewed.

 In Chapter 3, introduction to Galois field and the arithmetic operations within

the field are explained. General idea of the transmission model is also carried out and

followed by the usage of Random codes in transmission model. Improvement to the

binary Random codes is also made which is illustrated in matrix operations.

 Then, numerical results in graph forms are shown in Chapter 4. Effects of

increment of overhead symbols and expansion of finite field to the probability of

complete decoding are simulated. The length of the message symbols is also tested in

GF(2) and GF(256). Extra encoded symbols needed to complete the decoding

process are also found out for different finite fields. Properties of systematic Random

codes are observed from the simulation results and comparisons to ordinary Random

codes are made.

9

 Finally, conclusion is made with recommendations in Chapter 5, followed by

references.

CHAPTER 2

2 LITERATURE REVIEW

2.1 Review on Erasure Codes

In the transmission of data over the networks, particularly through the Internet which

is one of the common erasure channel nowadays, losses of data packets will

everlastingly occur. A standard solution is to request for the retransmission of data

which is not received, while retaining those which have successfully received. If data

is lost again during these retransmissions, another request is made, and so on. Luby,

Mitzenmacher, Shokrollahi, Spielman and Stemann (1998) stated that this solution

produces unacceptable delays resulted from recurring communication between

sender and receiver in real-time transmission.

Thus, erasure codes are indeed necessary to dismiss the retransmissions of

lost data. The encoded symbols (n) are generated from the data symbols (k) so that

subsets of encoded symbols can successfully recover the data symbols, where kn  .

The very well-known Reed-Solomon code which was invented by Reed and

Solomon (1960), showed that it is able to recover the data symbols as long as the

number of encoded symbols received is k out of n encoded symbols. The work is

further agreed by Sklar (2002), MacKay (2005) and Chong (2015). It is capable of

correcting kn  erasures within the block, and can be designed to have any

redundancy. But according to Luby (2002) and MacKay (2005), Reed-Solomon code

is only efficient for relative small settings of k and n, which are constrained to

2550  nk and the code rate (nk /) must be fixed before transmission. MacKay

(2005) further mentioned that the erasure probability  must also be pre-estimated.

11

If  is happened to be larger than estimated, the receiver will receive lesser than k

symbols and consequentially result in instant decoder failure as Reed-Solomon code

cannot be extended on the fly due to fixed code rate. Although it does not require any

overhead symbol to recover the data symbols, it does not support data length that is

longer than 256.

In terms of efficiency of encoding and decoding operations, Byers, Luby,

Mitzenmacher and Rege (1998) stated that Tornado code is much faster to generate

and fix erasures in shorter time compared to Reed-Solomon code. However, it

requires slightly more than k encoded symbols in order to reconstruct the data

symbols. Luby (2002) further emphasised that Tornado codes analysis requires a

technique that will lead to a reception overhead symbol which is inherently at least a

constant fraction of the message length. Furthermore, Tornado code is also one of the

fixed-rate erasure codes. Extra encoded symbols are prohibited from generating on

the fly when the decoder demands.

Luby Transform (LT) codes which are the first realisation of rateless erasure

codes, were introduced by Michael Luby. According to him, they are very efficient

when the number of data symbols becomes larger as the reception overhead symbols

are an asymptotically vanishing fraction of the data length, but at a cost of slightly

higher asymptotic encoding and decoding times. The memory of the LT codes

encoder and decoder is proportional to the data length and the decoding time only

depends on the data length, irrespective of how many encoded symbols are received.

Khisti (2003) had agreed to this and further concluded that it has a higher complexity

than Tornado codes.

In contrast, Shokrollahi (2006) introduced Raptor codes which are an

extended version of LT codes, that claimed to be with linear time encoding and

decoding. Both GF(2) and GF(256) are used in the codes in such a way that the vast

majority of symbol operations are over GF(2), and only a small part of the operations

are in GF(256) as computation in GF(256) is much more expensive than GF(2) that

uses simple XOR operations. They have also shown excellent recovery properties for

all range of data symbols lengths. With latest generation of Raptor codes, the

RaptorQ codes, according to the technical review of Qualcomm, they are able to

12

produce 99% of success decoding probability from k reception of encoded symbols,

99.99% with 1 overhead symbols and 99.9999% with only 2 overhead symbols.

 While for Random codes, according to Chong (2015), it is able to achieve

high probability of complete decoding i.e. 99.9% with 10k encoded symbols. This

is the case for Random code in GF(2). With further works and researches, Random

codes have the capability to achieve the performance results similar to RaptorQ

codes.

CHAPTER 3

3 METHODOLOGY

3.1 Galois Field

Galois field or a finite field is a field with a finite number of elements in it. Any

operation such as addition, subtraction, multiplication, or division which is defined

and done within the Galois field is satisfied to certain basic rules, which is totally

different from the standard arithmetic operations. There will be limited number of

elements in the field, so any operation performed in the finite field will result in an

element within that field also. If a Galois field has q elements, it is denoted as GF(q),

in which it is called order q. The field exists if and only if the order q is a prime

power.

3.1.1 GF(2)

The smallest useful finite field is GF(2), which consists of two elements and it is

usually 0 and 1. The arithmetic operations in GF(2) have some unique properties:

- Addition operation satisfies logical XOR operation

- Multiplication operation satisfies logical AND operation

- Subtraction operation: Since every element x in GF(2) satisfies 0 xx ,

therefore xx 

14

- Division operation satisfies identity function due to the only invertible

element in GF(2) is 1

In Table 3.1, the addition and multiplication in GF(2) are shown, which are the

simplest operations among the finite fields.

Table 3.1: Addition and Multiplication in GF(2)

+ 0 1 x 0 1

0 0 1 0 0 0

1 1 0 1 0 1

GF(2) is convenient to represent data in modern computers because they are

using binary digits in their very basic language. That is why GF(3), GF(5) and so on

are not recommended here. Furthermore, GF(2) can be expanded to arbitrarily large

fields by increasing the power of the order 2. Particularly, the benefit is shown in

GF(256) as 8 bits can be represented in 1 byte now.

3.1.2 GF(4), GF(8), …, GF(256)

In GF(4), which consists of four elements, has the tables of addition and

multiplication as in Table 3.2.

Table 3.2: Addition and Multiplication in GF(4)

+ 0 1 x x+1 x 0 1 x x+1

0 0 1 x x+1

0 0 0 0 0

1 1 0 x+1 x

1 0 1 x x+1

x x x+1 0 1

x 0 x x+1 1

x+1 x+1 x 1 0

x+1 0 x+1 1 x

Addition in GF(4) still follows the rules of XOR logical operation but the

multiplication is a bit different now as it requires an irreducible polynomial in the

steps.

15

Addition and multiplication tables of GF(8) are shown in Table 3.3 and Table

3.4 respectively.

Table 3.3: Addition in GF(8)

+ 0 1 x x+1 x2 x2+1 x2+x x2+x+1

0 0 1 x x+1 x2 x2+1 x2+x x2+x+1

1 1 0 x+1 x x2+1 x2 x2+x+1 x2+x

x x x+1 0 1 x2+x x2+x+1 x2 x2+1

x+1 x+1 x 1 0 x2+x+1 x2+x x2+1 x2

x2 x2 x2+1 x2+x x2+x+1 0 1 x x+1

x2+1 x2+1 x2 x2+x+1 x2+x 1 0 x+1 x

x2+x x2+x x2+x+1 x2 x2+1 x x+1 0 1

x2+x+1 x2+x+1 x2+x x2+1 x2 x+1 x 1 0

Table 3.4: Multiplication in GF(8)

x 0 1 x x+1 x2 x2+1 x2+x x2+x+1

0 0 0 0 0 0 0 0 0

1 0 1 x x+1 x2 x2+1 x2+x x2+x+1

x 0 x x2 x2+x x+1 1 x2+x+1 x2+1

x+1 0 x+1 x2+x x2+1 x2+x+1 x2 1 x

x2 0 x2 x+1 x2+x+1 x2+x x x2+1 1

x2+1 0 x2+1 1 x2 x x2+x+1 x+1 x2+x

x2+x 0 x2+x x2+x+1 1 x2+1 x+1 x x2

x2+x+1 0 x2+x+1 x2+1 x 1 x2+x x2 x+1

 From the advancement of GF(2) to GF(8), the tables are expanding. So when

it advances to GF(256), the tables will be large that contain 256 elements. Although

the addition is a fast operation that using only XOR to operate, the multiplication will

be getting more tedious.

 Since ASCII is the most commonly used format for text files in computer and

on the Internet, GF(256) is the most suitable finite field to represent these ASCII

codes. The codes are shown in Table 3.5.

16

Table 3.5: The Extended ASCII Codes

Dec Char Dec Char Dec Char Dec Char Dec Char Dec Char Dec Char

0 Null 37 % 74 J 111 o 148 ö 185 ╣ 222

1 SOH 38 & 75 K 112 p 149 ò 186 ║ 223

2 STX 39 ‘ 76 L 113 q 150 û 187 ╗ 224 α

3 ETX 40 (77 M 114 r 151 ù 188 ╝ 225 ß

4 EOT 41) 78 N 115 s 152 ÿ 189 ╜ 226 Γ

5 ENQ 42 * 79 O 116 t 153 Ö 190 ╛ 227 π

6 ACK 43 + 80 P 117 u 154 Ü 191 ┐ 228 Σ

7 BEL 44 , 81 Q 118 v 155 ¢ 192 └ 229 σ

8 BS 45 - 82 R 119 w 156 £ 193 ┴ 230 µ

9 TAB 46 . 83 S 120 x 157 ¥ 194 ┬ 231 τ

10 LF 47 / 84 T 121 y 158 195 ├ 232 Φ

11 VT 48 0 85 U 122 z 159 ƒ 196 ─ 233 Θ

12 FF 49 1 86 V 123 { 160 á 197 ┼ 234 Ω

13 CR 50 2 87 W 124 | 161 í 198 ╞ 235 δ

14 SO 51 3 88 X 125 } 162 ó 199 ╟ 236 ∞

15 SI 52 4 89 Y 126 ~ 163 ú 200 ╚ 237 φ

16 DLE 53 5 90 Z 127 DEL 164 ñ 201 ╔ 238 ε

17 DC1 54 6 91 [128 Ç 165 Ñ 202 ╩ 239 ∩

18 DC2 55 7 92 \ 129 ü 166 ª 203 ╦ 240 ≡

19 DC3 56 8 93] 130 é 167 º 204 ╠ 241 ±

20 DC4 57 9 94 ^ 131 â 168 ¿ 205 ═ 242 ≥

21 NAK 58 : 95 _ 132 ä 169 206 ╬ 243 ≤

22 SYN 59 ; 96 ` 133 à 170 ¬ 207 ╧ 244

23 ETB 60 < 97 a 134 å 171 ½ 208 ╨ 245

24 CAN 61 = 98 b 135 ç 172 ¼ 209 ╤ 246 ÷

25 EM 62 > 99 C 136 ê 173 ¡ 210 ╥ 247 ≈

26 SUB 63 ? 100 d 137 ë 174 « 211 ╙ 248 °

27 ESC 64 @ 101 e 138 è 175 » 212 ╘ 249

28 FS 65 A 102 f 139 ï 176 213 ╒ 250 ·

29 GS 66 B 103 g 140 î 177 ▒ 214 ╓ 251 √

30 RS 67 C 104 h 141 ì 178 ▓ 215 ╫ 252 ⁿ

31 US 68 D 105 i 142 Ä 179 │ 216 ╪ 253 ²

32 Space 69 E 106 j 143 Å 180 ┤ 217 ┘ 254 ■

33 ! 70 F 107 k 144 É 181 ╡ 218 ┌ 255

34 “ 71 G 108 l 145 æ 182 ╢ 219 █

35 # 72 H 109 m 146 Æ 183 ╖ 220 ▄

36 $ 73 I 110 n 147 ô 184 ╕ 221 ▌

17

3.1.3 Addition in GF(256)

GF(256) follows the rules of XOR in addition operation. For example, the addition

between x6+x4+x+1 and x7+x6+x3+x are shown below:

1 0 1 0 0 1 1 (x6+x4+x+1)
+ 1 1 0 0 1 0 1 0 (x7+x6+x3+x)

 1 0 0 1 1 0 0 1 (x7+x4+x3+1)

3.1.4 Multiplication in GF(256)

Multiplication in GF(256) is to be done in three steps which are shown in the

algorithm below:

Step 1: Multiplication follows by XOR operation

(x7 + x5 + x3 + x)(x5 + x4 + x3 + x2 + 1)

= (x12 + x11 + x10 + x9 + x7) + (x10 + x9 + x8 + x7 + x5) + (x8 + x7 + x6 + x5 + x3) + (x6

+ x5 + x4 + x3 + x)

= x12 + x11 + x7 + x5 + x4 + x

= 11000101100102

Step 2: Find the suitable irreducible polynomial for that particular field (polynomial

that cannot be further factored out)

Irreducible polynomial in GF(256) = x8 + x4 + x3 + x + 1= 1000110112

18

Step 3: Answer in Step 1 modulo irreducible polynomial

1 1 0 0 0 1 0 1 1 0 0 1 0 mod 1 0 0 0 1 1 0 1 1

1 0 0 0 1 1 0 1 1

1 0 0 1 0 0 0 0 0 0 1 0
1 0 0 0 1 1 0 1 1

1 1 1 0 1 1 0 1 0
1 0 0 0 1 1 0 1 1

1 1 0 0 0 0 0 1

The remainder = x7 + x6 + 1 is the final answer for the multiplication between

(x7 + x5 + x3 + x) and (x5 + x4 + x3 + x2 + 1) in GF(256). Since it involves three steps

in multiplication that intensify the decoding complexity, a lookup table is suggested

for the Random code whenever GF(256) is used.

3.2 Transmission Model

Figure 3.1: The Transmission Model

Figure 3.1 shows the transmission model. In a network, when data is being sent down

to the receiver via a transmission channel, more or less it is interfered by the noise.

When the noise exists in the transmission channel, it causes error to the data symbols

or any of the data symbols is dropped eventually the receiver will not receive a

complete original data. According to Shannon theorem which states that every

19

channel has a channel capacity of C, and if the transmission rate is less than C, there

are some codes which are able to achieve arbitrarily low probability of decoded error.

Assuming C is always larger than the transmission rate, the Random code is applied

in this transmission channel.

3.3 Usage of Random Code in Transmission Model

Before the message is sent to the receiver via a transmission channel, a random

generator is utilised to generate encoded symbols from the message symbols. All the

calculation steps will be expressed in the matrix forms.

3.3.1 Implementation of Random Code in GF(2)

An example is given in the following to ease the explanation of the steps.

XMG 



Step (1): Multiplication



















































0

0

1

1

0

1

101

010

100



 XG 



Step (2): Augmentation

















0101

0010

1100





20

Step (3): Gaussian Elimination

















1100

0010

1001





 MI 

where,

G = Random generator symbol matrix

M = Message symbol matrix

X = Encoded symbol matrix

I = Identity matrix

This illustration is computed in GF(2). In Step (1), a random generator matrix

is multiplied with the message matrix to create the encoded symbols matrix. Then,

the random generator matrix is augmented with the encoded symbols matrix in Step

(2). Finally, this augmented matrix will be sent through the transmission channel to

the receiver to be decoded where Gaussian elimination will be done there as in Step

(3). The final matrix will be in row-echelon form, where an identity matrix is

augmented with the original message matrix, but there are cases where identity

matrix cannot be formed which lead to decoding failure.

Although sometimes the message symbols are formed as the output after the

Gaussian elimination, it is considered as decoder failure as the decoder could not get

the confirmation whether the message is correct or wrong. The confirmation can be

done through the existance of the identity matrix.

3.4 Improvement for Random codes

When the decoder fails, the message cannot be recovered. So there must be some

ways to assist this Random code so that it is able to achieve high probability of

success decoding.

21

3.4.1 The Increment of Redundancies

Redundancies or overhead symbols are added to the code to improve the probability

of complete decoding. Let the dimension of the random generator matrix be kn  and

that of the message matrix be lk  , provided that kn  . Let 7n , 3k , and 1l .

Now, n is 4 more than k , and the number of overhead symbols will be 4. The

example is shown in the following.

XMG 



Step (1): Multiplication













































































0

0

0

1

1

0

1

1

0

1

000

101

000

100

001

111

100



 XG 



Step (2): Augmentation





























0000

0101

0000

1100

1001

0111

1100





22

Step (3): Gaussian Elimination





























0000

0000

0000

0000

1100

0010

1001



The probability of complete decoding is higher than the previous example

which using the random generator with dimension of kk  , as shown in the

simulation results in the next chapter. This is because the number of encoded

symbols as in Step (2) is 4 more than the message symbols (3k), so the decoder

now has 4 more choices to choose for the decoding. Thus, probability increases.

3.4.2 The Expansion of the Finite Field

Another method used to improve the Random code is to expand the finite field. Once

the number of elements in the finite field is increased, more bits or more information

can be represented in a single symbol. As shown in Figure 3.2, given a lengthy

message in binary form, each bit of the message has to be represented by 1 GF(2)

symbol because the highest value that can be represented by the element in GF(2) is

1. When the field is increased to GF(4) as shown in Figure 3.2, 2 bits from the

message can be represented by 1 GF(4) symbol, thus reducing the total number of

symbols needed to represent the whole message.

Figure 3.2: Message Symbols to be Represented by GF(2) and GF(4) Symbols

23

Other than that, there is another significant improvement when higher finite

field is used in the Random code. Since the decoding part of the Random code is

done by Gaussian elimination, and reducing to the row echelon form, it is crucial to

make the row i.e. symbol to be linear independent to others. When the number of

elements is increased, the random generator will have wider range of elements to

generate from. Thus the row of symbols after the augmentation will be more

different from the other rows in terms of probability, resulting it to have higher

chance to be one of the independent rows. Put it in other words, the symbols in the

row of matrix after the augmentation will hardly be the same as in another row with

the same column when the number of elements increases.

XMG 



Step (1): Multiplication

























































0

0

1

0

1

11

10

1

x

xxx

xx

xxx



 XG 



Step (2): Augmentation























011

10

01

xxx

xxx

xxx





Step (3): Gaussian Elimination

















1100

0010

1001



 The example shown above uses GF(4) random generator. The rows of the

random matrix are now having higher chance to be independent among themselves

due to dispersion of the elements in GF(4) as compared to the one that uses GF(2).

24

3.5 Systematic Random Code in Transmission Model

The systematic Random code is also one of the rateless erasure code based on

Random code. The random generator matrix is transformed into identity matrix so

that it is able to produce the original message symbols as the encoded symbols.

XMG 



Step (1): Multiplication



















































1

0

1

1

0

1

100

010

001



 XG 



Step (2): Augmentation

















1100

0010

1001



 When the random matrix, which is now an identity matrix, is multiplied with

the message matrix, the encoded symbols matrix will be the same as the message

matrix. So after the augmentation and being sent to the decoder, the matrix is already

in row echelon form and does not need to undergo Gaussian elimination. One step is

waived and the original message symbols can be recovered intact.

 What if there exists noises in the transmission channel and causes

interference to the encoded symbols? In systematic Random code, the random

generator matrix can be extended in such a way that the random matrix is stacked

below the identity matrix so that extra encoded symbols can be generated from this

random matrix.

CHAPTER 4

4 NUMERICAL RESULTS

4.1 Effects of Overhead Symbols Increment to Complete Decoding

Probability

In the simulation, the message symbols matrix with dimension of lk  is set to 110 

so that it contains 10 symbols with size 1 bit. A random generator matrix is created

with dimension kk  i.e. 1010  . The random generator matrix is multiplied with

the message symbols matrix to produce an encoded symbols matrix. The random

generator matrix is then augmented with the encoded symbols matrix, and their rank

is found. If the rank equals to the message length i.e. 10, then the counter will be

incremented by 1 (initial = 0), and that means the message can be recovered. The

steps are repeating for 10000 times so that the average probability of complete

decoding can be obtained.

 Then, extra 1 row (overhead symbol) is attached to the random generator

matrix so that the dimension becomes 1011 , and the remaining steps are the same

as above. The extra row is increased 1 by 1 until 10, and the result is plotted in

Figure 4.1.

26

Figure 4.1: Probability of Complete Decoding against Number of Overhead

Symbols for GF(2)

From Figure 4.1, when no overhead symbol is applied to the encoder, the

probability of complete decoding is approximately 0.3 only. When the number of

overhead symbol increases, the probability of complete decoding also increases.

When the overhead symbols equals to 10, the probability is already very close to 1 i.e.

0.999. From this point, it can be concluded that Random code in GF(2) is able to

achieve high probability of complete decoding with 10k encoded symbols.

4.2 Effects of Finite Field Expansion to Complete Decoding Probability

For this simulation, no overhead symbol will be used. The dimensions of the

message symbols matrix and the random generator matrix are fixed to 110  and

1010  respectively. The order of the finite field is increased with powers of 2,

starting from GF(2) until GF(256). Each order is repeated for 10000 times so that the

average probability of complete decoding can be obtained. The result is shown in

Figure 4.2.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 1 2 3 4 5 6 7 8 9 10

P
ro

b
a

b
il

it
y

 o
f

co
m

p
le

te
 d

ec
o

d
in

g

Number of overhead symbols

27

Figure 4.2: Probability of Complete Decoding against Order of Finite Field

From Figure 4.2, when the order of Galois field is increased from 2 to 256,

the probability of complete decoding increases gradually. Random code is able to

achieve the probability of 0.9965 in GF(256), without any overhead symbols.

4.3 Effects from the Combination of Overhead Symbols Increment and

Finite Field Expansion

Continue from previous simulation, each order of the finite field is run with

increasing overhead symbols from 0 to 10. As in Figure 4.3, only 4 finite fields are

particularly chosen to show the distinction between them.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

GF(2) GF(4) GF(8) GF(16) GF(32) GF(64) GF(128) GF(256)

P
ro

b
a

b
il

it
y

 o
f

co
m

p
le

te
 d

ec
o

d
in

g

Order of finite field

28

Figure 4.3: Probability of Complete Decoding against Number of Overhead

Symbols for 4 Different Finite Fields

In Figure 4.3, it shows the probability of complete decoding against the

number of overhead symbols for 4 different Galois fields, namely GF(2), GF(4),

GF(8) and GF(256). It has been tested for 100000 times that Random code in GF(256)

with 10 overhead symbols is able to decode successfully for 100%. But this is not

really necessary as with 1k encoded symbols it is already able to decode with

0.99997 probability.

4.4 Effects of Finite Field Expansion to the Extra Encoded Needed for

Complete Decoding

First, kk  matrix in GF(2) is created and packet loss in proportion to k is introduced

to the matrix. If the rank of the matrix is less than k (message fails to be decoded),

extra row of random encoded symbols is added to the matrix and the rank is found

again and so on until rank equals to k is achieved. Note that the extra encoded

symbols (rows) are counted after the number of rows is more than k. For instance, if

50k and packet loss probability is 0.3, that means 15 rows will be lost in the

transmission, receives only 35 rows. Now the encoder will be sending extra symbols

to the decoder so that rank of 50 can be achieved to indicate the complete decoding.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 1 2 3 4 5 6 7 8 9 10

P
ro

b
a

b
il

it
y

 o
f

co
m

p
le

te
 d

ec
o

d
in

g

Number of overhead symbols

GF(2)

GF(4)

GF(8)

GF(256)

29

If, in average, extra encoded symbols sent are 16.6, adding back the attained 35

symbols just now, it will become 51.6. Hence, it requires 6.1k encoded symbols.

This 1.6 is the extra encoded symbols that will be recorded. The finite field is then

expanded to GF(4), GF(8), …, and GF(256) Random codes and the results are shown

in Figure 4.4.

Figure 4.4: Extra Encoded Symbols Needed against Order of Finite Field

If the finite field is expanded from GF(2) to GF(256), the number of extra

encoded symbols needed to achieve rank k become smaller. If GF(2) is used in

Random code, it needs 1.6 extra encoded symbols in average to complete the

decoding, whilst if GF(256) is used, it rarely needs any extra encoded symbols due to

the fact that it has high independency results from the dispersion of elements that

occurs randomly in the symbols.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

GF(2) GF(4) GF(8) GF(16) GF(32) GF(64) GF(128) GF(256)

E
xt

ra
 e

n
co

d
ed

 s
y

m
b

o
ls

Order of finite field

30

4.4.1 Further Proof for 1.6 Extra Encoded Symbols

To prove for average 1.6 extra encoded symbols from Figure 4.4, frequency of the

overhead symbols to achieve complete decoding is recorded. The simulation is run

for 100000 times and the results are shown in Figure 4.5.

Figure 4.5: Frequency against Number of Overhead Symbols in GF(2)

 From Figure 4.5, the numbers of overhead symbols of 0 and 1 are of high

frequencies and then the frequency of number of overhead symbols decreases

exponentially. So when average number of overhead symbols is counted, it is found

to be 1.6 approximately.

0

5000

10000

15000

20000

25000

30000

35000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

F
re

q
u

en
cy

Number of overhead symbols

31

4.5 Test for Data Length in GF(2) and GF(256)

The simulation steps from Section 4.4 are continued to test for message lengths of k

= 10, 50, 100, 200 and 500 in GF(2) Random codes, with packet loss probability 0 to

0.9, increment by 0.1. These steps are applied to simulations in GF(256) Random

codes also. Results are shown in Figure 4.6.

Figure 4.6: Extra Encoded Symbols Needed When Packet Loss Probability

Increases for Different Data Length in GF(2)

 From Figure 4.6, for GF(2) Random codes, no matter what the packet loss

probability is, the decoder will always need extra encoded symbols of about 1.6

irrespective of message lengths. While the simulation steps are done for GF(256)

Random codes, every data length shows the same results. For 100000 trials, GF(256)

Random codes with any data length very rarely need any extra encoded symbols to

decode completely.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
xt

ra
 e

n
co

d
ed

 s
y

m
b

o
ls

Packet loss probability

k=10

k=50

k=100

k=200

k=500

32

4.6 Comparison between Systematic Random Code and Random Code

A systematic Random code is created to compare with the ordinary Random code.

An identity matrix is generated and multiplied with the message matrix to produce

the encoded matrix, and its rank is found and compared with k. If they are the same,

no extra encoded symbol is needed. If they are not, encoded symbol will be added

and the rank is found again until it is the same with k. It is simulated in GF(2),

GF(4), … and GF(256) for increasing packet loss probability from 0 to 0.9.

Figure 4.7: Extra Encoded Symbols Needed to Achieve Full Rank Matrix in

Systematic Random Code against Packet Lost Probability

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
xt

ra
 e

n
co

d
ed

 s
ym

b
ol

s

Packet lost probability

Systematic Random Code

GF(2)

GF(4)

GF(8)

GF(16)

GF(32)

GF(64)

GF(128)

GF(256)

33

Figure 4.8: Extra Encoded Symbols Needed to Achieve Full Rank Matrix in

Random Code against Packet Lost Probability

From Figure 4.7, it is common to all finite fields that systematic Random

codes will be able to decode without any extra encoded symbols when totally no

packet loss occurs. Comparing between Figure 4.7 and Figure 4.8, it is more

advantageous to use GF(2), GF(4) and GF(8) in systematic Random code than

normal Random code because lesser extra encoded symbols are needed when packet

lost probability is low. When the packet lost probability further increases, it tends to

require the same amount of encoded symbols as the Random code. If the finite field

is expanded to 256 elements, both codes show similar results, which very minimal

extra encoded symbols are needed throughout the packet lost probability.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
xt

ra
 e

n
co

d
ed

 s
y

m
b

o
ls

Packet lost probability

Random Code

GF(2)

GF(4)

GF(8)

GF(16)

GF(32)

GF(64)

GF(128)

GF(256)

CHAPTER 5

5 CONCLUSION

5.1 Summary

Random codes which are implemented in GF(2) are able to achieve high probability

i.e. 99.9% of complete decoding with 10k encoded symbols. If the encoded

symbols have to be minimised, the order of the finite field can be increased,

particularly to GF(256) as it is able to produce 99.65% probability of complete

decoding without any overhead symbol. With 1k encoded symbols received, it

decodes with 99.997% success probability. In average, 1.6 extra encoded symbols

are needed for GF(2) Random codes. But if the field of Random codes is expanded to

GF(256), the GF(256) Random codes rarely need any overhead symbols for

decoding. Either for short or long messages, the Random codes are able to maintain

similar results of high decoding probability. To improve the code, they are modified

into systematic Random codes. Without loss introduced to the transmission channel,

it will decode with 100% probability.

5.2 Recommendations

To further improve the probability of complete decoding for GF(256) Random codes,

micro symbols can be introduced into the codes, albeit this will intensify the

computational complexity as a trade-off. Each message symbols is decomposed into

smaller symbols of equal size and these micro symbols will be fed into encoder to

35

generate infinite encoded micro symbols. Then the encoded micro symbols are

regrouped before sending to the receiver.

 Computation in GF(256) takes relative long time mainly due to the

multiplication operations that take several steps before answer. The lookup table of

GF(256) is suggested to be built into the encoder and decoder so that it will only take

1 step to look for the answer of the multiplication between 2 elements in the finite

field.

36

REFERENCES

Chong, Z., Goi, B., Ng, B., Ohsaki, H. and Ewe, H. (2015). Probability of complete
decoding of random codes for short messages. Electronics Letters, 51(3), pp.251-
253.

Chong, Z., Bryan Ng, C., Goi, B., Ewe, H. and Ohsaki, H. (2015). Improving the
probability of complete decoding of random code by trading-off computational
complexity. IET Communications, 9(18), pp.2281-2286.

Chong, Z., Goi, B., Ohsaki, H., Ng, B. and Ewe, H. (2015). Systematic rateless
erasure code for short messages transmission. Computers & Electrical
Engineering, 45, pp.55-67.

Khisti, A. (2003). Tornado codes and Luby Transform codes. [online] Available at:
http://web.mit.edu/6.454/www/www_fall_2003/khisti/tor_summary.pdf
[Accessed 7 Feb. 2016].

Luby, M. (2002). LT codes. The 43rd Annual IEEE Symposium on Foundations of
Computer Science, pp.271 - 280.

MacKay, D. (2005). Fountain codes. IEE Proceedings - Communications, 152(6),
pp.1062-1068.

Shokrollahi, A. (2006). Raptor codes. IEEE Transactions on Information Theory,
52(6), pp.2551-2567.

Sklar, B. (2001). Reed-Solomon codes. Digital Communications: Fundamentals and
Applications, Second Edition.

Westall, J. and Martin, J. (2010). An introduction to Galois fields and Reed-Solomon
coding. [online] Available at: https://people.cs.clemson.edu/~westall/851/rs-
code.pdf [Accessed 14 Jan. 2016].

