

ELECTRIC VEHICLE CONVERSION PROJECT –

HARDWARE IMPLEMENTATION AND DATA

ACQUISITION SYSTEM

TEOH JIA XIAN

UNIVERSITI TUNKU ABDUL RAHMAN

ELECTRIC VEHICLE CONVERSION PROJECT – HARDWARE

IMPLEMENTATION AND DATA ACQUISITION SYSTEM

TEOH JIA XIAN

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering

(Hons.) Electrical and Electronic Engineering

Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

May 2016

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it has

not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature :

Name : TEOH JIA XIAN

ID No. : 12 UEB 02412

Date : 12 MAY 2016

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “ELECTRIC VEHICLE CONVERSION

PROJECT – HARDWARE IMPLEMENTATION AND DATA ACQUISITION

SYSTEM” was prepared by TEOH JIA XIAN has met the required standard for

submission in partial fulfilment of the requirements for the award of Bachelor of

Engineering (Hons.) Electrical and Electronic at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : DR. CHEW KUEW WAI

Date : 12 MAY 2016

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2016, Teoh Jia Xian. All right reserved.

v

ELECTRIC VEHICLE CONVERSION PROJECT – HARDWARE

IMPLEMENTATION AND DATA ACQUISITION SYSTEM

ABSTRACT

The main goal of the project focuses on the building the hardware for Electrical

Vehicle Intelligent Monitoring System (EVICS). Developments of this projects

include the usage of sensors, actuators, microcontrollers, microcomputers and

electronic modules to support the hardware and software for the monitoring system.

Coming from a vehicle originally fitted with internal combustion engine, it is realized

that there exist several missing parameters that should be monitored with the fitting of

the new electric motor and its controller. Furthermore, with the fuel running from

batteries, it is evident that a proper vehicular information system needs to be

established in order to provide the driver with the critical driving information,

combining both electrical and conventional parameters, as the existing conventional

gauges would not be much useful. This information can also be combined with a user

interaction system and entertainment system to provide practical vehicle controls setup.

The main interfacing systems that are involved in this project is the Raspberry Pi and

CANBUS network. The CANBUS network has data fed from the electric vehicle

controller, which provides essential information regarding the electric vehicle controls.

Raspberry Pi is then used to collect data from various sensors and driver’s feedback,

including CANBUS data for further processing. The processed data is then output via

a display to allow the driver to monitor their electric vehicle easily. Access to non-

displayed parameters can also be done for mechanics and advanced users, which may

review critical vehicular information which is logged systematically across time

domain. A secondary system is also made available for driver or passenger use for

non-critical components such as navigation and entertainment systems. As such, a

comprehensive electric vehicle control system can be realized.

vi

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS / ABBREVIATIONS xiv

LIST OF APPENDICES xv

CHAPTER

1 INTRODUCTION 1

1.1 Background 1

1.2 Aims and Objectives 4

2 LITERATURE REVIEW 5

2.1 Conceptualization of Electric Vehicle 5

2.2 EVICS 6

2.3 Vehicular Parameters Sensing 7

2.3.1 Revolutions per Minute (RPM) 7

2.3.2 Motor Temperature 9

2.3.3 Controller Temperature 10

2.3.4 Controller Fault Monitoring 12

2.3.5 Motor Current 12

2.3.6 Battery Voltage 14

vii

2.3.7 Throttle Input Sensing 15

2.3.8 GPS Location 17

2.4 Vehicle Anti-Theft System 17

2.5 CANBUS 18

2.5.1 Overview 18

2.5.2 Higher Layer Protocols 19

2.5.3 CANopen 19

2.6 Processing and Interfacing Unit 23

3 METHODOLOGY 26

3.1 Concept of EVICS 26

3.2 Vehicular Parameters Sensing 27

3.2.1 Existing Sensors Network 27

3.2.2 Location of Electric Vehicle 29

3.2.3 CANBUS Circuit Setup 30

3.2.4 Data Acquisition and Processing 36

3.2.5 Data Controls and Interfacing 41

3.3 Vehicular System Network integration with Electric Vehicle 43

3.3.1 Changing Raspberry Pi and Sensors Network Power

State using Switch 44

3.3.2 Raspberry Pi and Sensors Network Auto Power with

Vehicle State 46

3.3.3 Electric Vehicle System State Output 48

3.4 Python Programming and Libraries 51

4 RESULTS AND DISCUSSION 53

4.1.1 CANBUS Messages 53

4.1.2 CANBUS Data and Parameters 55

4.2 GPS Data 59

4.3 Individual Battery Pack Voltage and Temperature 61

4.4 Battery Pack Current Data 62

4.5.1 Hardware Implementation onto Electric Vehicle 63

4.5.2 Electric Vehicular Systems Integration 64

viii

5 ACHIEVEMENT 66

5.1 Competition Participation 66

6 CONCLUSION AND RECOMMENDATIONS 67

6.1 Conclusion 67

6.2 Recommendations 68

REFERENCES 69

APPENDICES 71

ix

LIST OF TABLES

 TABLE TITLE PAGE

2.1 Standard Message Type for Curtis Controllers

(Curtis, 2014) 21

2.2 Part of Standard Message Type for Curtis

Controllers, Accessible via SDO (Curtis, 2014) 23

2.3 Differences between the Various Raspberry Pi

Models 24

3.1 Hexadecimal to Decimal Conversion Table 37

3.2 Part of the Fault Codes from Manufacturer’s

Manual (HPEVS, n.d) 40

3.3 System Bits Output Configuration 41

4.1 The raw CANBUS messages and final processed

data of address 0x601h 53

4.2 The raw CANBUS messages and final processed

data of address 0x602h 54

4.3 CSV Log file’s name and its corresponding

logged sensors 65

x

LIST OF FIGURES

 FIGURE TITLE PAGE

2.1 BMW i8 dash display with virtual dials (Stevens,

2014) 7

2.2 Alternator with AC tap output as indicated by

the sticker label (Prestolite, n.d) 8

2.3 Contours of temperature of motor components

(Kuria and Hwang, 2012) 9

2.4 A PCB hall effect current sensor (Lepkowski, n.d)

 14

2.5 Measurement of battery voltage through PWM

signal injection (Magana and Veraguas, 2008) 15

2.6 Internal view of a throttle position sensor,

revealing resistive strips (Adrian, 2009) 16

2.7 A typical car alarm pinouts (AlarmTek, 2012) 17

2.8 CANBUS Interfacing and Its Components 19

2.9 Representation on Coverage of Systems in CAN

and CANopen 20

2.10 CANopen-Compliant COB-ID Message

Organization 21

2.11 A Successfully Booted Up Raspbian OS with

Raspberry Logo 25

3.1 The existing individual battery sensor boards

installed in the UTAR electric vehicle 28

3.2 The existing LEM current sensor installed in the

UTAR electric vehicle 28

xi

3.3 The external GPS antenna mounted on top

centre of the windscreen 29

3.4 The block diagram showing the new setup of

sensors network in the UTAR electric vehicle 30

3.5 Basic overview of devices and flow of data

communication between devices 31

3.6 Input and Output Ports of High-Speed CAN

Transceiver MCP2551 (Microchip, 2003) 32

3.7 Device Overview of MCP2515 (Microchip, 2007)

 33

3.8 Overview of Pinouts on PIC18F14K50

(Microchip, 2009) 34

3.9 Overall Circuit Configuration for CAN to USB

Interface 35

3.10 Fabricated Circuit Board for CAN to USB

Interface 35

3.11 Generic CAN Messages Acquirable Directly

from the Controller (HPEVS, 2014) 36

3.12 CANBUS messages simulation using two

CANBUS boards 42

3.13 USBTinViewer software generating CANBUS

messages on the left window, while Terminal in

Raspberry Pi receiving the messages on the right

window 43

3.14 The RUN pins soldered with pin headers 44

3.15 Datasheet of Raspberry Pi Model B+ showing

the schematic of RUN pins to the IC pinout 45

3.16 Testing of shutdown button using a switch with

GPIO 23 or pin 16 of Raspberry Pi. The Python

program is indicated on the left. 46

3.17 Alarm module overall pinouts, the alarm sensor

input pins are used for auto powering the

Raspberry Pi and its sensors network 47

xii

3.18 The circuit connections of between the alarm

module and Raspberry Pi to provide auto-

booting and shut down 47

3.19 The circuit connections of the electric vehicle

system’s output state which provide driver’s

convenience on checking the vehicle system state

 49

3.20 The schematic showing the electric vehicle

wiring diagram. The emergency cut-off circuit is

placed in series with inertia switch as a safe cut-

off point 50

3.21 The circuits of Raspberry Pi auto powering and

electric vehicle system state output 51

4.1 Graph of motor current, battery voltage, and

battery pack percentage against time, with

shaded region indicating regenerative mode 55

4.2 Graph of RPM against time, with shaded region

indicating economy mode 57

4.3 Graph of RPM against time, with shaded region

indicating regenerative mode 57

4.4 Data output of address 0x601h in comma-

separated values file generated by the CANBUS

data acquisition 58

4.5 Data output of address 0x602h in comma-

separated values file generated by the CANBUS

data acquisition 59

4.6 Data output GPS data in comma-separated

values file 60

4.7 Data output individual battery temperature data

in comma-separated values file 61

4.8 Data output individual battery voltage data in

comma-separated values file 61

4.9 Comma-separated values file showing the data

output from the hall-effect sensor for the

parameter of battery pack current 62

xiii

4.10 The CANBUS data acquisition board, GPS

module, Dallas One-Wire bus master, power

circuits and Raspberry Pi installed. 63

4.11 The LED array mounted on the dashboard of the

electric vehicle for driver’s easy viewing. 64

xiv

LIST OF SYMBOLS / ABBREVIATIONS

A ampere

AC alternating current

ADC analogue-to-digital converter

CAN controller area network

CSV comma-separated values

COB-ID communication object identification

COD-ID CAN object identifier

DC direct current

EEC European Union Regulation

EVICS electric vehicle intelligent control system

GPS global positioning system

GUI graphical user interface

IoT Internet of Things

ISO International Organization for Standardization

LED light-emitting diode

MCU microcontrollers

NMT network management transmission

PCB printed circuit board

PDO process data object

PWM pulse width modulation

RPM revolution per minute

SAE Society of Automotive Engineers

SDO service data object

SPI serial peripheral interface

USB universal serial bus

V voltage

xv

LIST OF APPENDICES

 APPENDIX TITLE PAGE

A Circuit layout of CANBUS Data Acquisition Board

 71

B Python Programming Code 71

1

CHAPTER 1

1 INTRODUCTION

1.1 Background

With the increasing advancement of technology, the controls of a system become

increasingly sophisticated, making the monitoring the system manually to be a rather

meticulous process. It is, therefore, desirable to create an interface capable of

overseeing and gaining control on the whole operation of the system, yet simplified

enough where learning curve of system controls to be minimal for the average users.

By using a user interface, the gaps between user operations and systems controls can

be bridged, allowing users to empower the technology and the systems to unleash its

full potential.

The leading of graphical user interfaces in commercial and industry products

has proven that the consumers and market are in favour of such interface over

traditionally based interfaces such as text or command-based interfaces. Today,

graphical user interface is present in many of everyday digital devices that require

interactions, from household devices such as television to home automation systems,

communication devices such as wireless radios to smartphones, also catching up close

are automotive systems. The days where drivers are only fed with driving information

through gauges and warning lights are now replaced with digital gauges and display

panels. Further integration with in-car entertainment systems also applauds the

consumers, where drivers and even passengers are now able to feed in information to

the systems as well, easily and swiftly via the graphical user interface. Such concept

2

can be summarized as an infotainment system. Vehicle settings and controls not only

can be viewed but also altered on the fly, via usage of touch sensitive displays with

system’s haptic feedback as well. The same applies to the in-car entertainment systems

where the roles of such system have increased to accommodate radio, optical players,

GPS systems, video cameras, parking assistance and further integration to suit vehicle

automated controls are even possible.

 Besides viewing and controlling the vehicle’s parameters, the complex

integration of computer systems and hardware sensors network present also allows

advanced vehicular monitoring systems, which keeps the vehicle conditions in the

soundest way possible at all times. Commonly integrated sensors include manifold

absolute pressure sensors for engine load sensing, wheel speed sensors for anti-lock

braking systems, throttle position sensor for throttle input and tire pressure sensor for

tire pressure monitoring. Abnormalities, warning, and hazards which are detected by

the sensors will alert user via the graphical user interface or provide mechanical

feedback; whereas for major or fatal issues, driver will be prompted for immediate

input, and in real emergencies, the vehicular system may respond and take control

based on sensors parameters, and return controls once the perceived hazard is over. It

is no doubt that monitoring systems take the lead to play an essential role in active

vehicle safety.

 This project primarily focuses on the implementation of monitoring and control

systems concepts into the Electric Vehicle Intelligent Control System (EVICS), which

is currently developed electric conversion car project under the research of UTAR

Centre of Vehicular Technology. Initially a conventional internal combustion engine

vehicle, the dashboard gauges are therefore dated and catered specifically for the use

of internal combustion engine, rendering most of the gauges and warning lights unused

such as mechanical RPM meter, water coolant temperature, fuel gauge and check

engine lights unusable. The provided display gauges from the electric vehicle

controller are yet limited to a separate mechanical display for battery pack voltage,

battery pack current, LED bar display on remaining level of the battery pack and a

single line multi parameters display with a toggle switch to toggle between parameters.

Such setup provides information to the driver in a rather clunky manner, not

3

mentioning reading of the gauges is difficult and clumsy during driving, and a

backlight is virtually non-existent for the gauges during night driving, making the

driving experience not pleasurable. A proposal to improve such situation includes a

complete makeover of the existing vehicular information system, user interaction

system and also entertainment system. Such setup would not only provide the driver

with the vehicle information on the fly, yet at the same time be entertained by the

music while being guided to the destination safely via control and navigation system,

which ultimately makes the driving a pleasurable experience.

 The conceptualization of the new EVICS systems includes the collection of

vehicle data from vehicle controller’s CANBUS system, which provides essential

vehicle parameters, also utilizing the CANBUS system’s CANopen communication

protocol to read the electric vehicle controller’s system parameters. The parameters,

besides being viewed, are also being logged systematically, along with data from

vehicular sensors network of the electric vehicle. Further controls of the vehicle are

possible with the integration of actuators and sensors into the GUI, where GUI is not

reserved only for the entertainment and navigation system, but also possible to allow

simpler and autonomous operations of existing in-car systems. Safety measures of the

electric vehicle systems are also integrated into the EVICS to ensure the driver is

always notified for critical warnings for immediate corrective actions to be performed.

4

1.2 Aims and Objectives

The several proposals to improve the current monitoring systems include:

 To investigate vehicular parameters monitoring that is applicable to electric

vehicle systems

 To design, construct and build the interfacing modules and install all the

required components for vehicle systems monitoring and controls

 To analyse and improve existing electric vehicular system integration with

external sensors network

 To obtain the complete vehicular controller’s systems parameter via CANBUS

 To display the parameters of the obtained information and processed output

from the vehicular systems

CHAPTER 2

2 LITERATURE REVIEW

2.1 Conceptualization of Electric Vehicle

Conceptualization of electric vehicle has come a long way with varieties of form factor.

Originally based on rail vehicles, the idea has evolved into the marketable consumer

vehicle segment and have spread to general commercial usage due to its known

reliability and performance. Generally, electric vehicle consists of several main

components, including the electrical energy source, electrical motor, and auxiliary

components. The components are then linked up into through different interfacing via

mechanical and electrical means to allow the system to work out harmoniously as an

electrical vehicle.

Realizing the interfacing systems as the key role in linking up all the

subsystems together, it is vital to ensure that each components parameters are able to

be accessed, monitored and controlled individually to ensure the parameters are always

in range of the optimal conditions. Furthermore, in this project which involves the

conversion of internal combustion engine to a fully electric vehicle, the existing

control systems present in the vehicle became cease in operation and incompatible

with the new hardware setup. Therefore, a new EVICS system should be established

to manage the communications of these systems and providing the user a proper

interface for viewing and handling the vehicular systems parameters.

6

2.2 EVICS

Serving more than just a simple platform to replace the existing internal combustion

engine controller in the electric vehicle, the EVICS also functions in acquiring, oversee

and control all the duties to ensure the electric vehicle systems are in its best state at

all times. The EVICS are expected to monitor the electric vehicle systems information

such as battery monitoring systems, including battery information on battery voltage

and current, cells health and charged state. Electric motor controls are also to be

considered, where motor rotational speed, motor temperature, and motor current

should be able to be deduced. Not to be left out is the conventional driving parameters

such as speedometer, trip gauges, mileage gauges and visual or feedback warning

system.

Similar concepts have been introduced in electric vehicle’s manufacturers,

where every particular detail has been paid to match the eccentric electric vehicle.

Taking BMW i8 as an example, powered by powerful NVIDIA visual computing

module, provides drivers with all the information required right on their dash as in

Figure 2.1. From digital gauges to the entertainment systems to car handling systems,

it’s all in driver fingertips. The digital gauges constantly feeds drivers with the familiar

information of the vehicle such as remaining travel range and next service

appointments, while its entertainment system provides display with array of functions

including an 8.8 inches touchscreen display, Bluetooth Audio Streaming and

Handsfree Service, Smartphone Integration, navigation service, voice command

option and real-time traffic information. BMW proprietary iDrive System also allows

users to access vehicles computer to make changes directly to an on-board vehicular

computer to suit their needs. Running on such platform requires massive computing

power, which the NVIDIA module that provides stunning graphic and audio

processing, capable of running a dual 4k display at once, at a much-reduced power

consumption than a typical CPU.

7

Figure 2.1: BMW i8 dash display with virtual dials (Stevens, 2014)

2.3 Vehicular Parameters Sensing

2.3.1 Revolutions per Minute (RPM)

A tachometer is a dial of revolutions per minute served to show the engine crank

rotational speed. Such readings allow drivers to select throttle level and gear settings

to suit the dynamic driving conditions. A typical RPM gauge displays a range of values

with some portion of the values placed in a red zone, where values in the red zone

exceed the recommended safety limits of the engine speed.

Traditionally, the RPM is measured through a Hall Effect sensor placed near

the engine coil leads from the low tension sides. Hall Effect is the measure of the

generation of potential difference under a perpetually placed magnetic field

perpendicularly across a conductor which carries electric current. The sensing

component is usually placed near the high voltage ignition leads of the engine. By

detecting the changes in deflection of electrons and magnetic flux intensity and further

amplified with a processing circuitry, the RPM count can be calculated. This type of

measurement provides an accurate, contactless yet relatively portable in size. Similar

configurations can also be mounted on motor, gearbox, wheel or any rotating parts that

are proportional to the motor speed, replacing the sensors with optoisolators instead

8

which uses light emission and photosensitive transducers, effectively eliminating

sensing error from ferrous dust and are often reliable enough to include speed sensing

as well.

 Another approach in measuring the RPM of the engine is by determining the

frequency on the alternator rotation. This alternator rotational output is also known as

“AC Tap” tachometer output, which output is connected to the stator’s coil output

before the rectifier. The signal output from this terminal as of Figure 2.2 consists of

sine waves or sine waves with zero negative crossings are then processed as pulses.

After dividing the pole of the alternator and evaluating the multiples of the frequency

as compared to the alternator rotational frequency, the RPM reading can be obtained.

However, the readings direct from the terminals can be quite filled with electrical

surges and spikes, which may disrupt the reading values if not handled properly. Since

the readings are based on alternator rotational input, it is important to ensure that the

belts connecting the camshaft and the alternator always adhere to manufacturer's

specification as any slippage or misalignment of belts may cause the alternator rotation

speed to be affected, rendering the RPM readings to be flawed.

Figure 2.2: Alternator with AC tap output as indicated by the sticker label

(Prestolite, n.d)

9

2.3.2 Motor Temperature

Motor temperature, one of the most vital parameters that keep the vehicle on the move,

is rather sensitive to temperature rise. Standard terms used in the AC motor industry

realized that the motor life span is halved for every 10°C rise of the motor’s rated

temperature. Therefore, to ensure the reliability of the motor, such parameter should

be monitored close enough to ensure the temperature of the motor is always within its

ceiling temperature.

However, it is also realized that measuring the temperature of the motor can

also be difficult as its thermal distribution of the subsection of the motor depends on

the motor’s geometry and construction. It is noted that generation of heat from bearing

frictional loss and electromagnetic loss should be the major account of temperature

rise. Research also has shown that the highest temperature of the motor occurs is due

to the low thermal conductivity of air and winding insulations, resulting the end

windings of the motor to be the hottest region, which is denoted in Figure 2.3. (Kuria

and Hwang, 2012) Such issue is not desired as the failing of windings will cause a

major failure, causing issues to the electric vehicle users.

Figure 2.3: Contours of temperature of motor components (Kuria and Hwang,

2012)

10

 An implementation of temperature sensors to the electric motor can be done to

counter such issue. The temperature of the motor can be measured with thermocouples,

thermistors and infrared measurement device, which offers either contact or non-

contact measurement options. However, due to the construction of the electric motor

where actual motor’s temperature is determined by the hottest windings spot, checking

the motor temperature via an external probe is rather inaccurate. Rather, the motor

itself would provide a temperature sensor probes and its temperature signal will be sent

for further processing. (Sarma and Nagaraju, 2012)

2.3.3 Controller Temperature

At the heart of the electric vehicle lies the motor controller which provides the main

control systems on driving the electric vehicle, right from obtaining the power from

the main battery pack, managing user controls, ramping up the voltage and current to

drive the electric motor, not to mention also handling all the circuitry and settings that

are involved within the electric vehicle systems.

 Generally, a motor controller will be connected to a direct current (DC) battery

source and a motor for drive systems. The motor controller will acquire power from

the DC source and outputs a variable voltage or current supply needed by the electric

motor to control the motor speed or torque. Such output also depends on a few

parameters, including motor types, mapped motor response graph and user input.

Modern electric vehicle controllers utilize advanced pulse width modulation

techniques, making the electric drive system a high efficiency one as compared to older

variable resistor arrangement. Also, can be expected from PWM drives include low

motor harmonics and low torque ripple providing smooth speed control with

minimized heating losses.

 Such technology is realized by power transistor modules, allowing voltage and

switching to be driven based on frequencies. However, one should realize that the high

voltage or current transient, coupled with high motors inductance may cause quick and

large heating effect on the power transistors, stressing the components. It is also

11

realized that once the controller temperature reaches a maximum tolerable value, the

controller’s performance will be throttled. To counter such issue, much designing and

care have been taken during the design stage of the controller, yet the controller’s heat

issue is deemed unavoidable. Large heatsinks are usually installed in places with

plenty of air cooling to ensure the performance of the motor is at its best. Further

cooling can also be achieved by water cooling the motor with an external fan to draw

the heat away from the motor at a certain temperature threshold.

 Therefore, it is essential to ensure that the temperature of the motor controller

is to be monitored closely. The mounting of such temperature sensors is critical to

ensure the most accurate reading of the controller’s temperature is obtained. For air

cooled solutions, sensors mounting on the heatsinks or surfaces of the controller is

possible. Such mounting will allow the readings to be acquiring the temperature of the

controller surfaces accurately, allowing the temperature measurement to be focused

evenly, and not directly from heat generation sources. For the water cooling, heat is

usually transferred via liquid form to a heat exchanger, which then dissipates the heat

via a natural or forced flow of air, and recirculated back. With the heat to be mostly

transferred via the liquid coolant which has high thermal capacity, the temperature of

the coolant can be used to determine the accurate temperature of the system. A

temperature probe can then be mounted on the places where the coolant flows, and

provides a reading of the liquid coolant temperature, also indirectly implying the

temperature of the heating medium.

 Also, there exists another way of obtaining the controller temperature data,

which is via a semiconductor module. The module usually consists in integrated circuit

packaging, allows heat to be radiated over them and provides high precision results,

yet leaving an only small footprint in spaces, which is favoured in electronic circuit

designs. This allows sensors to be mounted throughout an area without occupying

much space, and can be directly mounted on a critical heat generating circuit

components directly, unlike traditional thermistor sensors which are bulkier.

12

2.3.4 Controller Fault Monitoring

Vehicles on road today are mostly powered by vehicle computers, from engine

controls, safety measurements to display instrumentations, the vehicle computer

process and takes control of nearly every aspects of the vehicle. As such, the vehicle

onboard computer can also potentially identify and deduce misleading data, which may

allow further pinpoint to malfunction of elements or components of the vehicle.

 During the appearance of a fault, the user display would normally provide an

indicative light or warning to notify the driver that the vehicle has to be checked. Then,

a diagnostic tool can be used to check the issue pertaining to the specific fault, which

is normally indicated via codes, also known as fault codes. Then, the driver or

mechanics can then take actions based on the fault codes provided, which normally

indicates a specific form of malfunction or errors on specific devices or controls,

minimizing the man-hours to troubleshoot and diagnose the vehicle systems.

 Realizing the benefits, a fault monitoring system will be desired to allow

instantaneous notification of fault and allow immediate diagnosis on the vehicle to be

performed. The fault codes are usually generated by the vehicle’s computer. The same

rule applies to the electric vehicle controller, where the fault codes can be generated

from ranging from own parameters such as faulty controller’s sensors, overheating of

the controller, to motor’s parameters and battery supply parameters as well. The fault

codes can then be checked against the manufacturer’s list of fault codes to pinpoint the

issues to be diagnosed.

2.3.5 Motor Current

Motor current are one of the key measurements in an electric vehicle as it relates the

overall output and performance of the electric vehicle systems. To measure the current,

several types of sensors can be deployed, which includes methods using a current-

sensing transformer, Hall Effect current sensor, and a shunt resistor.

13

 Current sensing transformer method utilizes a simple transformer which senses

the measured current in the primary coil and energizes the secondary coil with a larger

number of turn wounds. The number of turn ratios then determines the current output.

The pros of such configuration are it can measure high current, yet at the same time

providing galvanic insulation required. The disadvantage of this method is the

transformer may saturate at high frequencies, limiting its used to only for low

frequencies or constant frequencies applications. (Drafts, 2004)

On the other hand, shunt resistors methods are known to provide low cost yet

accurate measurement. By using the method of calculating the voltage drop across a

resistor of low value, the current can be calculated. However, such measurement is

subjected to power dissipation in the resistance, which makes the method to be rather

impractical for current more than 20 amperes.

 Incorporating Hall generators, Hall Effect current sensors are easily integrated

into embedded application. These solid state sensors are available in the form of

integrated circuit packaging as in Figure 2.4, decreasing the space requirements of the

sensing circuit and allow easy measurements to be carried out, where the sensor can

be placed directly over the current trace on a printed circuit board (PCB). It is to be

noted that the sensors itself are sensitive to temperature which may cause their

accuracy to vary, but can be solved via closed-loop implementation. The closed-loop

implementation of such sensor not only keeps the temperature drift low but also boast

to offer far more superior accuracy, linearity, and wider frequency range. As such,

implementation of the close-loop system may sound reasonable, however, one should

also consider the costing to allow measurements in very wide current range. This is

due to the implementation of more complex circuitry may be required to accommodate

such requirements.

14

Figure 2.4: A PCB hall effect current sensor (Lepkowski, n.d)

2.3.6 Battery Voltage

It cannot be further emphasized the importance of monitoring battery conditions on a

fully electric drive vehicle. The battery systems can be represented as fuel in a

conventional internal combustion engine vehicle, where drivers heavily rely on such

piece of information to ensure the vehicle is ready to go. For the electric vehicle control

systems, the controller will interpret such information to optimize the best performance

and range for the vehicle. The servicing technicians will also benefit from having an

overall idea on the status of the battery system, which eases the maintenance and

servicing of the electric vehicle.

 One way of obtaining the overall battery voltage is via a construction of a

voltage divider circuit and switched inputs to an amplifier, maintaining the voltage

isolation between both high and low voltage circuits. The drawback, however, is the

measurement errors arising from variations of transfer gains and non-linearity, which

may occur due to the service life of components. Another issue is that the passing of

analogue signals across optocoupler, additional amplifier output and analog-to-digital

converter, the readings will suffer from measurement accuracy. (Manciac et al., n.d.)

 Therefore, an improved method is proposed to measure such high voltage. An

isolation barrier between high and low battery side is still maintained. The proposed

15

method as in Figure 2.5 involves the injection of periodic PWM signals via wave

generator circuit, then the periodical signal is measured via digitization circuit. This

type of measurement allows robust measurement even with the presence of

disturbances in the high voltage system. (Magana and Veraguas, 2008) An analogue

measurement circuit is still required to be constructed, and the sensing circuit is

connected to a comparator input. Another input of the comparator is then connected to

the PWM wave generator circuitry. The whole measurement is done on the comparator

where the signals are fed in and compared, then produces an output which is a digital

periodic signal, indicating the voltage of high voltage battery system. Such process

allows the comparator output values to be transformed into a digital signal before

passing through a digital isolation optocoupler, eliminating non-linearity and transfer

gains variations. The measurement systems indicate a rather effective way to obtain

the voltage value, however, the shortcomings reveal that the choice of an analogue

periodic signal may affect the comparator output, therefore deviating the readings.

Figure 2.5: Measurement of battery voltage through PWM signal injection

(Magana and Veraguas, 2008)

2.3.7 Throttle Input Sensing

Throttle input provides the variations of vehicle acceleration by the desire and control

of the driver. Used to be a parameter based on mechanical linkages to link the throttle

pedal and throttle valve, modern automotive vehicles now utilized throttle position

sensors to ensure higher reliability and allowing more integrated functions for torque

16

management, such as stability control, traction control, cruise control and collision

avoidance systems.

 The construction of such input is based on inductive, Hall Effect sensors or

magnetoresistive-based sensors. Such sensors can be mounted on the throttle pedal or

at the throttle body. The sensor generally responds to the change of magnetic field by

from throttle and the voltage generated from the sensing circuit, to be output and

processed. Normally, a two pole rare earth magnet is used and considered to have a

constant magnetic field that does not degrade from temperature and time.

 Also present is the potentiometric type sensors. The principle of operation is

similar to the use of a potentiometer, where a resistive strip is to be glided on by a

metal brush as in Figure 2.6. The change in resistance will then be interpreted by the

controller circuit and its output will be provided to the engine management system. It

must be highlighted that safety concerns are still present as wear and tear and the

presence of dirt may lead to inconsistent readings. Therefore, precautionary steps must

be taken to ensure the safe operation of the vehicle in the event of failure of such

sensors.

Figure 2.6: Internal view of a throttle position sensor, revealing resistive strips

(Adrian, 2009)

17

2.3.8 GPS Location

GPS location can be determined by utilizing GPS modules that are readily available

on the market. It is much favoured for its reliability and accuracy of determining

location and time, not mentioning its free of charge. With standard communication via

a serial protocol, the GPS modules will be able to suit different platforms provided as

long as serial communication protocol is supported.

2.4 Vehicle Anti-Theft System

Posing as the basic theft-deterrent device, vehicle anti-theft systems today have

evolved from the basic configuration with just emitting loud sound and strobing lights

to having a starter kill switches, additional sensors trigger and even dual way paging

controllers. Typical car alarm pinouts are indicated as in Figure 2.7.

Figure 2.7: A typical car alarm pinouts (AlarmTek, 2012)

18

2.5 CANBUS

2.5.1 Overview

Controller area network, also known as CANBUS is a vehicle communication network

standard that allows devices and microcontrollers to communicate with each other

without having a central host computer. The bus works in a manner of broadcasting

messages throughout the whole bus, and one can pick up the messages through any

point of the system, also identified as a node of the system. Developed by Robert Bosch

GmbH, the CANBUS protocol not only receives acknowledgements from Society of

Automotive Engineers (SAE) but also quickly being adopted and finally becoming

mandatory for all automotive vehicles in the United States and the European Union.

The latter also receives improvements and restructuring by International Organization

for Standardization (ISO) and further endorsed.

 Specifically developed for automotive industry, the CANBUS systems bring

all independent subsystems to communicate with each other through a channel,

without truly having a component messages being more superior than other. In the

communication bus, every component, or a node, get its turn to broadcast something

into the channel, and all components are able to read all the data from the same channel

as well, with the speed up to 1 Mbit/second. Figure 2.8 illustrates the arrangements.

All the messages in the channel are also differentiated with priority bit. To differentiate

one message from another, however, requires local filtering on CAN hardware on a

specific node, allowing the component to analyse and may further react to the data.

The system is also resilient when it comes to error handling, where error counters are

available to all the nodes, which is all of the components in the system. Therefore, any

problems discovered will raise the error flag by the node and the channel will react as

accordingly to discard the error messages and attempt to send or retrieve the data again.

An error counter is also available, allowing the sender and receiver to track the data

error frequency. Once the data error frequency exceeds a predefined threshold, the

transmitting node will become error passive and then goes fully off the channel to

allow other bus traffic to flow uninterrupted.

19

Figure 2.8: CANBUS Interfacing and Its Components

2.5.2 Higher Layer Protocols

The CAN protocol standard has provided a guideline on the method to transfer data

from a point to another using a shared communication medium. However, a high layer

protocol is also desired to manage the intersystem communication, to name a few, flow

control, transportation of data, the establishment of communication and node address

specifications. Generally, the higher layer protocol defines the behaviour upon start-

up, message identifiers distribution on different nodes in the systems, data frames

content translation and the status reporting within the system. The standards vary over

the protocols and may be customized and extended by different manufacturers, ranging

from automotive industry which includes CAN Kingdom, CANopen, GMLAN, SAE

J1939 to marine and aviation CANaerospace, NMEA 2000 and even building

automation VCSP.

2.5.3 CANopen

The CANopen protocol has provided a standardized communication between different

nodes of devices on a network, even across different manufacturers. With the physical

Bus

Termination

Bus

Termination

CAN

Node

CAN

Node

CAN

Node

CAN

Node

CAN

Node

CANBUS

20

hardware and data link protocol already established by the CAN standards, as shown

in Figure 2.9, CANopen umbrella covers the networking, transportation of data, data

sessions, data representation and finally allow application of the data.

Figure 2.9: Representation on Coverage of Systems in CAN and CANopen

 A CANopen compliant device should also conform to the standards of

operation of its software. (NI, 2013) A communication unit is first required to allow

interfacing of messages with various nodes in the network through the desired protocol.

The minimum state machine is also required where all the initialization and resets of

the device are well controlled and cycled through pre-defined configurations. Besides,

the device should also hold an object dictionary which can utilize the data from the

network or reflect its own data. The data consists of a 16-bit index of an array variable

and expands to additional 8-bit sub-index for each variable. Finally, the device will

reach application mode once the device is in an operational state, where object

dictionary’s variable will be modified and further receiving and transmission of data

along the network are performed.

 For a device to communicate with the CANopen network, the device must first

have the same baud rate with the network to allow successful communications. Its

21

node ID shall also be assigned for identification, which allows other devices to identify

and communicate with the device, and also, allow differentiation of messages sent and

received amongst other bus devices. The node ID also sets its priority in bus messages

and bus arbitration and is part of a requirement by CAN Object Identifier (COD-ID).

As in Figure 2.10, the standard message types in the COD-ID are defined to 4 upper

bits out of 11 bits, making 16 types of messages possible. The bottom 7 bits are filled

with Node ID of the devices. An example of a standard message type is also displayed

in Table 2.1.

11 10 9 8 7 6 5 4 3 2 1 0

Figure 2.10: CANopen-Compliant COB-ID Message Organization

Table 2.1: Standard Message Type for Curtis Controllers (Curtis, 2014)

 To acquire messages from the CANopen, one can utilize the Service Data

Object (SDO) protocol. Messages transmitted may include Network Management

Transmission (NMT), which are of highest priority. This allows controls on the node’s

device state, detect boot-up and detect error conditions within the network. The second

Message Type Node ID

22

highest priority in the protocol of CANopen is the emergency messages. The messages

content includes the hour meter, specific fault, error category and error register for

diagnosis. Heartbeat messages are also sent periodically by each node on the bus to

indicate the device status and are of lowest priority. Process Data Object (PDO)

protocol are also listed as one of the message types. This messages have medium

priority and can transfer 8 bytes in a packet of data into or out of the device. This 64-

bit data can carry messages of the various nodes such as output command bytes, status

bytes, digital inputs and analogue inputs bytes in a single packet of data, which

conserves bus bandwidth. Service Data Object (SDO) is another protocol defined by

CANopen to view and alter the parameter data. They are usually of low priority and

are infrequently used. This protocol is normally utilized only to retrieve rather

infrequently used basic information such as manufacture dates and manufacturing

system revisions. Fault log reviewing and key internal variables monitoring which are

only catered exclusively for system debug purposes are also available in this protocol.

In the Curtis electric vehicle controller, the service protocol for SDO can accommodate

more than just reading data out of the protocol, it can also be utilized to set system

parameters such as operation mode, current limiting, PWM limiting, gain factor and

more. Table 2.2 explicitly lists some of the available parameters accessible. This

allows the SDO to be used more than just diagnostic purposes, but also able to control

some of the internal vehicle parameters. However, it is realized that retrieving data

from SDO can be meticulous in terms of setting up for requesting data and deciphering

received data, not mentioning writing the data into the protocol itself.

23

Table 2.2: Part of Standard Message Type for Curtis Controllers, Accessible via

SDO (Curtis, 2014)

2.6 Processing and Interfacing Unit

A processing unit in an electric vehicle has to withstand an incredibly dynamic range

of operation and runs even in the most rugged conditions. Interfacing the vehicular

24

sensors and processing data constantly for internal vehicular controls and external

driver’s display, to passenger’s entertainment, the processing unit has to bear it all.

With the electric vehicle integration, the unit has to interface with even more inputs

and variables, such as handling conventional switches inputs on the dashboards to

parsing and receiving the correct data for the electric vehicle controller. This turns

looks to microcomputers which are a neat fit in terms of size, processing capabilities

and interfacing capabilities.

 Raspberry Pi, an established microcomputer in the market are one of the many

low-cost computers which are open-sourced. Developed by Raspberry Pi Foundation

to promote affordable teaching in schools, the base operating systems is Linux-based

until recently, supports Windows 10 IoT Core. A few variants are also released, with

some of them compared in Table 2.3. They become increasingly powerful and offers

more interfacing options, not mentioning the increasing number of users and projects

resources available on the internet.

Table 2.3: Differences between the Various Raspberry Pi Models

 Raspberry

Pi 1

Model A

Raspberry

Pi 1

Model A+

Raspberry

Pi 1

Model B

Raspberry

Pi 1

Model B+

Raspberry Pi

2

Model B

CPU 700 MHz single-core

900 MHz

quad-core

ARM Cortex-

A7

Memory 256 MB 512 MB 1 GB

USB ports 1 2 4

Onboard

network
None 10/100 Mbit/s Ethernet

Low-level

peripherals
8× GPIO 17× GPIO 8× GPIO 17

25

 Software wise, the official version of the operating system would be Raspbian.

The software is great in working with sensors and devices, and libraries are readily

available from the web communities for common devices. The programming of this

microcomputer revolves primarily around general purpose programming languages

such as Python, C, and C++. However, support for a higher programming language is

also possible such as Perl, or even object-oriented programming such as Java and Ruby.

Figure 2.11: A Successfully Booted Up Raspbian OS with Raspberry Logo

 With the capability of audio and video outputs, it is viable to integrate displays

and sounds feedback to be directly driven from the Raspberry Pi platform. A graphical

user interface can be built on top of the Desktop as in Figure 2.11, and provides

additional support for an in-car entertainment system and even navigational systems.

Besides, touch screen support and integration of sensors and modules will allow real-

time vehicular information to be displayed and even configured on the fly. Data

acquisition can also be done during the driving process, and further processed

statistically to output either into the in-car display, or to be viewed on mobile or

uploaded to the web. Such features allow the driver to have full access to the car

information and controls and also be able to unleash the full potential of the vehicle.

CHAPTER 3

3 METHODOLOGY

3.1 Concept of EVICS

The EVICS revolves around the implementation of hardware and software on a scale

from micro to macro components. For data acquisition, a combination of

microcontrollers and Raspberry Pi is used. The channel of data source would include

primarily from the electric vehicle’s controller CANBUS network, and also feature

sensors such as battery and temperature sensor modules, battery pack current sensor,

and GPS module to be implemented into the EVICS system. This covers the whole

range of data acquisition from conventional vehicle sources and also the electric

vehicle parameters, which the data are relatively new to this electric conversion vehicle

and has yet to have a place to process the new data.

 Furthermore, feedback and actuation systems are also desired to improve the

driving experience. The data retrieved from the vehicle can be processed and relevant

details will be feedback to the user, which includes driving parameters, warning lights

and beeping sounds. Display screens can be implemented not only to reveal vehicle

details, but also allowing the user to interface the vehicular parameters and possibly

changing them on the fly. A warning through the display and haptic feedback can also

be provided via alert beeps to alert drivers on issues and emergencies. Besides,

secondary systems and displays may also be integrated for passenger’s ease of access

on entertainment usage, or to accommodate driver’s navigational system as well.

27

3.2 Vehicular Parameters Sensing

The different methods of obtaining the vehicular information are previously discussed

in detail in Chapter 2. However, it is realized that existing sensors are already in place

in the electric vehicle. The sensors include the individual battery pack voltage and

temperature sensor and also a battery pack current sensor. In this case, the sensors will

be utilized as well together with new sensing parameters to form an electric vehicular

sensor network. This benefits as more parameters could be gathered from the electric

vehicle itself, which allows much more comprehensive monitoring on the electric

vehicle, however, the existing sensor compatibility will be an issue as the sensors were

previously running via Mathworks MATLAB support package rather than the native

Raspberry Pi operating system itself.

3.2.1 Existing Sensors Network

 For the existing individual battery voltage and temperature sensors, it is based

on Dallas 1-Wire protocol. The sensor chip is DS2436 which monitors both battery

voltage and temperature. Its pin includes taking in the voltage input of the individual

battery pack, and the surface of the chip itself acts as a temperature sensor. Therefore,

the sensors circuit are closely mounted onto the batteries. An auxiliary power source

is also required from the accessory battery to provide power to the op-amps and

optoisolator, besides providing a reference voltage to the voltage measurement

circuitry. The array of 12 individual battery sensors as in Figure 3.1 is then connected

to a 1-wire master which handles the communication between the sensors and also

converts the 1-wire signals from the sensors into serial protocol for Raspberry Pi. A

USB to serial converter is also used which converts the serial protocol to USB to

conserve the GPIO pins on the Raspberry Pi.

28

Figure 3.1: The existing individual battery sensor boards installed in the UTAR

electric vehicle

Figure 3.2: The existing LEM current sensor installed in the UTAR electric

vehicle

 The battery pack current sensor present in place will be LEM Hall Effect

Current Transducer as indicated in Figure 3.2. Capable of measuring current up to 600

29

A, the current sensor outputs in terms of analogous voltage. An ADC is then connected

to the current sensor output before input into Raspberry Pi SPI pins.

3.2.2 Location of Electric Vehicle

GPS module is also installed into the sensors network to obtain the location of the

vehicle. The GPS module has an antenna pin which allows the active external antenna

to be connected to increase the gain up to 26dB. The external active antenna is

connected and the antenna is rerouted in the vehicle cabin to place near the top of the

windscreen to provide better reception of GPS signal. The attachment of the antenna

block is as shown in Figure 3.3. The GPS module also utilizes serial communication.

Therefore, a USB to serial converter is also used which converts the serial protocol to

USB to conserve the GPIO pins on the Raspberry Pi.

Figure 3.3: The external GPS antenna mounted on top centre of the windscreen

External GPS

active antenna

30

Figure 3.4: The block diagram showing the new setup of sensors network in the

UTAR electric vehicle

3.2.3 CANBUS Circuit Setup

To acquire more comprehensive vehicular data in addition of external sensors in Figure

3.4, CANBUS method is preferred as the sensors are built right into the controller. As

such, the data are deemed to be accurate and accuracy should be within manufacturer’s

tolerances as similar data is also used to manipulate the control systems of the vehicle.

At first, the CAN high and CAN low communication wires are identified from

the Curtis 1239 electric vehicle controller. Pin 23, the CAN high wire and Pin 35, the

CAN low wires are then connected to the controller’s input and output connector, then

running the wires through the vehicle firewall into vehicle cabin in a balanced, twisted

pair configuration. The balanced line configuration is vital to ensure a stable 0V

reference for all the receiving nodes in the line. This configuration works on the

principle of current on the first signal line, is exactly opposite in current direction of

the second signal line, effectively balances the line and avoiding crosstalk as well. This

Serial to
USB

Converter

•Dallas One-Wire
Temperature
and Voltage
Sensor

Serial to
USB

Converter
•GPS Module

SPI
•LEM Hall Effect

Current Sensor

Raspberry Pi

Model B+

31

reduces the interference susceptibility and radio frequency emission, which are critical

to providing a stable 0V reference for data stability and increased bus communication

speed.

 With the wires ready, the next would be getting ready a CAN to USB interface.

A circuit is then desired to convert the CAN signals into USB serial data for viewing

and further computations. The device selection for such circuit will be Microchip’s

range of products, including MCP2551, MCP2515, with further integration with

PIC18F14K50. Details of each device and the flow of data from CAN to USB are

illustrated in Figure 3.5.

Figure 3.5: Basic overview of devices and flow of data communication between

devices

 The CAN messages will first travel into the MCP2551 CAN transceiver

through the CAN high and CAN low ports of the device, as in Figure 3.6. The device

is capable of transmitting and receiving CAN protocol controller and depending on

vehicle controller’s configuration, can operate up to baud rate of 1Mb/s. Being a node

in the CAN system, it would be able to retrieve the raw information from the CAN

network and further process the data into suitable signals for transmission, through its

transmitting and receiving ports. Typically, electromagnetic interference, electrostatic

discharge, electrical transients and radio frequency interference are also present in the

CAN network, which may indirectly affect the performance of the CAN devices. Also,

present working with automobiles that are constantly put in stressed and adverse

conditions, raising the susceptibility of faults such as battery short-circuit and

excessive current loading. Protection of the device and its output and input ports to and

MCP2551

•High-speed CAN
transceiver

•Interfaces CAN
protocol
controller and
physical bus

MCP2515

•Standalone CAN
controller

•SPI Interfacing
with MCU
Controller

PIC18F14K50

•20pin USB flash
microcontrollers

•Interfaces
controllers to add
on USB
communication

32

from other devices must be accounted. Thus, with the presence of this specialized CAN

transceiver, various voltage spikes and issues related to interference can also be

minimized or eliminated with the presence of this device as an isolation between the

CAN network and the CAN controller. It is also noted that the choice of the

temperature range for this chip is chosen at industrial grade, which ranges from -40°C

to 85°C which is considerably sufficient for this project.

Figure 3.6: Input and Output Ports of High-Speed CAN Transceiver MCP2551

(Microchip, 2003)

 From the connections of transmitting and receiving on the MCP2551, the CAN

messages which are clean are then provided to transmit and receive ports of MCP 2515.

This specialized CAN controller comes equipped with SPI interface to allow further

interfacing with microcontrollers. The main blocks of the device are shown in Figure

3.7, consisting CAN modules, SPI interface blocks, and controlling logic registers.

Transmission and reception of all messages are handled by CAN module, then loaded

into control registers, and further initiated by controls for SPI transmission of data.

Control logic interfaces the other two blocks, to allow interrupts, status registers access

and manually initiated transmission of data, all possibly accomplished and accessed

via SPI interface. The SPI protocol block allows read-write operations into all registers

via generic read-write commands and specialized SPI commands. This device also

spots oscillator input and output which allow a single oscillator control for the circuit

and its overall circuit controls, simplifying the bit timing issues across different

devices, eliminating the needs of readjustment on baud rate pre-scaler on each

individual devices. The choice of the temperature range for this chip is also chosen at

industrial grade, similar to the temperature range chosen for MCP2515.

33

Figure 3.7: Device Overview of MCP2515 (Microchip, 2007)

 The connections into the microcontroller from the CAN controller basically

consists of SPI interfacing connections, interrupts and oscillator connections. Further

connections introduced to the microcontroller includes USB interfacing, programming

jumper, voltage smoothening circuit and a status indicator LED. Taking advantage of

its embedded USB capability and its wide implementation on SPI and even UART, the

device is chosen. It also runs off 5V which is the USB voltage, easily powering the

device without the requirement of external power supply. This allows simple USB

communication to be established and to be output into devices for data logging or

further processing. The overall pinouts are shown in Figure 3.8.

34

Figure 3.8: Overview of Pinouts on PIC18F14K50 (Microchip, 2009)

 The complete circuit connections for the CAN to USB interface is as indicated

in Figure 3.9. Also in Figure 3.10, the constructed working circuit is as shown. The

connections on the CAN transceiver MCP2551 and CAN controller MCP2515 are

rather self-explanatory where minimum circuit connections are connected. For the

microcontroller PIC18F14K50, output pins for PGC and PGD are connected to USB

for programming and communication purposes. Also, a jumper pin of JP1 is used for

setting the circuit into bootloader mode once sunk to the ground, allowing

programming to be performed. Meanwhile, JP3 is reserved for CAN termination

purposes, which is selectable for vehicles without termination for transmission over

much longer bus wires at higher speed. JP4 would be connected directly to the CAN

high and CAN low of the vehicle wires respectively.

35

Figure 3.9: Overall Circuit Configuration for CAN to USB Interface

Figure 3.10: Fabricated Circuit Board for CAN to USB Interface

Microcontroller

PIC18F14K50

CAN controller

MCP 2515

USB Interface CAN Transceiver

MCP2551

CAN Interface

36

3.2.4 Data Acquisition and Processing

It is noted that the CAN network messages are producing only raw data that is not

ready for direct viewing and interpretation. Further data analysing is required in order

to transform the data into meaningful information for the driver to read easily.

 As in Figure 3.11, the table indicates the generic CAN messages that are

directly obtainable from the Curtis electric vehicle controller. With the default

addresses stated at 0x601h and 0x602h for parameters transmission, the messages can

be obtained directly with the CAN to USB interface. The parameters obtainable are

also as shown in the Figure 3.11.

 Such promising data which are directly acquired from the controller would

need to be further analysed and interpreted before it became a meaningful data to be

observed by the driver. However, it is to note that some data are available but not

retrieved due to unconnected inputs, which the input is optional to this electric vehicle

conversion.

Figure 3.11: Generic CAN Messages Acquirable Directly from the Controller

(HPEVS, 2014)

37

3.2.4.1 Revolution per Minute (RPM)

Obtainable under CAN address 0x601, the byte zero and byte one of the address

represents the electric vehicle motor’s RPM. Also indicated is the value is in the scale

of one. The calculation required to obtain the RPM would be as in formula (3.1), with

reference to Table 3.1.

𝑅𝑃𝑀 = (𝐻𝐻 × 163 + 𝐻𝐿 × 162 + 𝐿𝐻 × 161 + 𝐿𝐿 × 160) (3.1)

Where

HH = 4 higher data bits of byte 0 of address 0x601h expressed in hexadecimal form

HL = 4 lower data bits of byte 0 of address 0x601h expressed in hexadecimal form

LH = 4 higher data bits of byte 1 of address 0x601h expressed in hexadecimal form

LL = 4 lower data bits of byte 1 of address 0x601h expressed in hexadecimal form

Table 3.1: Hexadecimal to Decimal Conversion Table

Hex

base 16

Decimal

base 10

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

A 10

B 11

C 12

D 13

E 14

F 15

38

3.2.4.2 Motor Temperature

Obtainable under CAN address 0x601, the byte two of the address represents the

electric motor’s temperature in degree Celsius. Also indicated is the value can range

from -40 to 200. The calculation required to obtain the motor temperature would be as

in formula (3.2), with reference to Table 3.1.

𝑀𝑜𝑡𝑜𝑟 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (°𝐶) = (𝑀𝐻 × 161 + 𝑀𝐿 × 160) (3.2)

Where

MH = 4 higher data bits of byte 2 of address 0x601h expressed in hexadecimal form

ML = 4 lower data bits of byte 2 of address 0x601h expressed in hexadecimal form

3.2.4.3 Controller Temperature

Obtainable under CAN address 0x601, the byte three of the address represents the

electric motor’s temperature in degree Celsius. Same as motor’s temperature, the

values indicated will range from -40 to 200. The calculation required to obtain the

motor temperature would be as in formula (3.3), with reference to Table 3.1.

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (°𝐶) = (𝐶𝐻 × 161 + 𝐶𝐿 × 160) (3.3)

Where

CH = 4 higher data bits of byte 3 of address 0x601h expressed in hexadecimal form

CL = 4 lower data bits of byte 3 of address 0x601h expressed in hexadecimal form

39

3.2.4.4 Motor Current

Obtainable under CAN address 0x601h, the byte four and byte five of the address

represents the electric motor’s current in Amperage, on the scale of 0.1. Formula (3.4)

reveals the calculation required to obtain the motor current, with reference to Table

3.1.

𝑀𝑜𝑡𝑜𝑟 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 (𝐴) = (𝐻𝐻 × 163 + 𝐻𝐿 × 162 + 𝐿𝐻 × 161 + 𝐿𝐿 × 160) × 0.1 (3.4)

Where

HH = 4 higher data bits of byte 4 of address 0x601h expressed in hexadecimal form

HL = 4 lower data bits of byte 4 of address 0x601h expressed in hexadecimal form

LH = 4 higher data bits of byte 5 of address 0x601h expressed in hexadecimal form

LL = 4 lower data bits of byte 5 of address 0x601h expressed in hexadecimal form

3.2.4.5 Battery Voltage

Byte six and byte seven of the address 0x601h represents the battery pack voltage in

Volts, on the scale of 0.1. Formula (3.5) reveals the calculation required to obtain the

battery pack voltage, with reference to Table 3.1.

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 (𝑉) = (𝐻𝐻 × 163 + 𝐻𝐿 × 162 + 𝐿𝐻 × 161 + 𝐿𝐿 × 160) × 0.1 (3.5)

Where

HH = 4 higher data bits of byte 6 of address 0x601h expressed in hexadecimal form

HL = 4 lower data bits of byte 6 of address 0x601h expressed in hexadecimal form

LH = 4 higher data bits of byte 7 of address 0x601h expressed in hexadecimal form

LL = 4 lower data bits of byte 7 of address 0x601h expressed in hexadecimal form

40

3.2.4.6 Controller’s Fault Monitoring

Moving to address 0x602h, byte two and byte three represents the controller’s fault

codes on each controller’s respectively. Byte two represents the primary controller

fault value and byte 3 represents secondary controller fault code. Formula (3.6) reveals

the calculation required to obtain the controller’s fault code for the primary controller,

with reference to Table 3.1. The fault codes then can be compared against

manufacturer’s fault codes to gain further insights on the problem arose. An example

of the fault codes is shown in Table 3.2. The formula 3.6 is also applicable on the

secondary controller with the byte changes to byte 3.

𝐹𝑎𝑢𝑙𝑡 𝐶𝑜𝑑𝑒 = (𝐹𝐻 × 161 + 𝐹𝐿 × 160) (3.6)

Where

FH = 4 higher data bits of byte 2 of address 0x602h expressed in hexadecimal form

FL = 4 lower data bits of byte 2 of address 0x602h expressed in hexadecimal form

Table 3.2: Part of the Fault Codes from Manufacturer’s Manual (HPEVS, n.d)

41

3.2.4.7 Throttle Input Sensing

Throttle input sensing is represented by byte four of the address 0x602h, in terms of

percentage. The calculation required to obtain the throttle input percentage would be

as in formula (3.7), with reference to Table 3.1.

𝑇ℎ𝑟𝑜𝑡𝑡𝑙𝑒 𝐼𝑛𝑝𝑢𝑡 (%) = (𝑇𝐻 × 161 + 𝑇𝐿 × 160) (3.7)

Where

TH = 4 higher data bits of byte 4 of address 0x602h expressed in hexadecimal form

TL = 4 lower data bits of byte 4 of address 0x602h expressed in hexadecimal form

3.2.4.8 Systems Bits on State of Electric Vehicle

Byte six of the address 0x602h represents the systems bits on the current state of the

electric vehicle. The system bits that are applicable are revealed as in Table 3.3.

Table 3.3: System Bits Output Configuration

Bit Logic

0 Economy bit

1 Regenerative bit

2 Reverse bit

3 Brake Light bit

3.2.5 Data Controls and Interfacing

For drivers and users, the CAN to USB interface can be connected to Raspberry Pi to

allow data transfer and processing to produce values for driving purposes. This

involves setting up the microcomputer to install modules for the CAN transceiver and

controller and initializing SPI drivers. With proper configuration, one would be able

42

to retrieve the raw data and processing it before outputting into the dash for drivers to

monitor the driving parameters. The setup involves mainly only on reading of CAN

network data. Logging of data is also performed with scripts using Python

programming.

 In this project, it is also noted that certain CANBUS parameters that are unable

to be physically generated by the electric vehicle controller. This includes abstract

cases such as fault code and system bit generation. However, such issue can be

overcome by using CANBUS message simulator to send out the CANBUS messages.

The USBTinViewer, running on Windows platform is used mainly to generate the

CANBUS data bits onto a CANBUS board as mentioned in Section 3.2.3, and another

separate CANBUS board is used as a receiver to receive messages to be processed by

Raspberry Pi. The hardware setup is shown as in Figure 3.12. Software wise, the setup

is indicated in Figure 3.13.

Figure 3.12: CANBUS messages simulation using two CANBUS boards

43

Figure 3.13: USBTinViewer software generating CANBUS messages on the left

window, while Terminal in Raspberry Pi receiving the messages on the right

window

3.3 Vehicular System Network integration with Electric Vehicle

In this project, the sensors networks, modules, and data acquisition system is also a

step further integrated into the electric vehicle. As opposed to the approaches done

beforehand, where the user needs to manually start the system and makes configuration

before obtaining the data, the system is now able to run independently without user

intervention, yet will be up and ready before the user drives the car, and properly shut

down itself when the car is off. The data logs can also be easily accessed through the

plugged micro SD card. The information can then be accessed from a personal

computer running Linux distribution for checking and analysis.

44

3.3.1 Changing Raspberry Pi and Sensors Network Power State using Switch

To allow Raspberry Pi to auto start-up and shut down, a number of Raspberry Pi pins

and GPIO would be required. The bootup pins are first identified on the Raspberry Pi

used. Its location is the RUN pins of the Raspberry Pi board, as indicated in Figure

3.14. Pin headers are then soldered to allow ease of connections to output.

 During normal operation, the IC pinout of D15 is held high as the circuit is

driven by pull-up resistor if R15 as shown in Figure 3.15. As long as the pinout of D15

RUN is in high logic state, the Raspberry Pi operations are normal. However, once the

pins of P6 is shorted, the RUN pin is pulled to ground, the state of RUN pin is cleared.

Thus driving the operation of Raspberry Pi into a reset situation. If Raspberry Pi is

powered on, the system will then soft reboot as the reset signal is triggered. In this case

of usage where the state of Raspberry Pi is in off mode but power is applied, the system

will then reset, leading to Raspberry Pi being turn on from its off state. Therefore,

installing a switch that shorts between the pins of D6 will trigger the Raspberry Pi to

on state. A Python script is also written and executed as root user to enable Python

programs such as sensors network programs and soft shut down programs to autostart

upon completion of booting of the Raspberry Pi system.

Figure 3.14: The RUN pins soldered with pin headers

RUN pins

45

 It is noted that if the power to the Raspberry Pi system is cut abruptly, it may

lead to system corruption, data loss and subsequently, boot failure, Therefore, a soft

shutdown is preferred. For the Raspberry Pi system, one of the ways utilized is by

adding a switch to its GPIO, and providing a negative trigger to result in Raspberry Pi

executing shut down the process. By using GPIO 23 or physical pin of pin 16 a switch

can be connected to the GPIO 23 and ground. A Python script, which has been

autostarted during boot as the root user, would then provide the command for the

system to shut down once the pin sensed the falling edge of the negative trigger. As of

Figure 3.16, the auto shut down Python script ran by the system would be based on

interrupt and not polling basis. Thus, would not burden the system precious processing

power during running operation of Raspberry Pi, where the system is expected to run

scripts of various sensors network.

Figure 3.15: Datasheet of Raspberry Pi Model B+ showing the schematic of

RUN pins to the IC pinout

46

Figure 3.16: Testing of shutdown button using a switch with GPIO 23 or pin 16

of Raspberry Pi. The Python program is indicated on the left.

3.3.2 Raspberry Pi and Sensors Network Auto Power with Vehicle State

With the successful circuit and programming configurations for shutdown and booting,

the Raspberry Pi and sensors network are then configured to be auto powered on and

off depending on vehicle state. The desired state of on would be prior to vehicle start

up as the Raspberry Pi and sensors network require some time to boot up before they

can be online and information will only be available to the driver after that. For off

state, it would be best if it can be triggered off and shut down properly even after the

key is taken off from the car for the driver’s convenience. Therefore, there arise a need

of a soft shut down even after power from the key is removed.

 To address such issue, an innovative solution is proposed by utilizing the

connections in the existing alarm system of the electric vehicle. The modern alarm

system supports sensors input, which provides power to the sensors once the car is

47

armed, and cuts off power when the car is unarmed. Thus, by utilizing the power leads

of the sensor input as in Figure 3.17, a circuit can be built to trigger on the Raspberry

Pi upon alarm unarming and trigger shutdown the Raspberry Pi upon arming. The

circuit configuration is as shown in Figure 3.18.

Figure 3.17: Alarm module overall pinouts, the alarm sensor input pins are used

for auto powering the Raspberry Pi and its sensors network

Figure 3.18: The circuit connections of between the alarm module and

Raspberry Pi to provide auto-booting and shut down

Status LED

Output

Alarm

Peripheral

Pinouts

Alarm Reset

Switch Input

Alarm Sensor

Input

48

 The circuit mainly consists of 2 relays with several pin headers serves as

outputs and inputs between the Raspberry Pi and the alarm module. An extra pin

header is also provided to allow alarm sensors to be connected. During arming of the

alarm, the alarm module sensor input pin is high, thus, provide 12 V for the 12 V relay

to latch. The latching of the relay closes the normally open connection of 5V ground

and GPIO 23. Thus triggering shut down of the Raspberry Pi as the background auto

shut down Python script is waiting for negative edge trigger to power off the system.

 When the driver unarms the alarm, the alarm module ceases to provide 12 V

output to the sensor input. This causes the 12 V relay to unlatch and the pole of the

relay is thrown to normally closed pins. The connection of the 5 V ground causes the

5 V relay on the right to be latched. Latching of the relay then shorts the RUN pins of

the Raspberry Pi, thus triggering booting of the Raspberry Pi.

It is noted that as the RUN pins are to be closed momentarily only to avoid

power cycle of Raspberry Pi. Therefore, a simple circuit consisting of a capacitor and

a resistor is constructed to convert the toggle to momentary latching of the relay to

provide the appropriate triggering signal. The toggle to momentary circuit works with

the principle of DC charging characteristics of a capacitor. As the capacitor receives

DC power from the completion of the circuit, the capacitor charges. Thus allowing the

charge current to flow through the relay windings, energizing the relay, and shorts the

RUN pins of the Raspberry Pi. However, once the capacitor is fully charged, the

charging current stops and de-energizes the relay. The RUN pins are then open-

circuited although the relay circuit still receives DC power from the 12 V relay. A 280

Ω resistor is provided to discharge the capacitor quickly once the 12 V relay is de-

latched.

3.3.3 Electric Vehicle System State Output

Also installed is a simplified yet essential vehicle instrument cluster systems to provide

physical output for the electric vehicular parameters. One of the outputs that are

49

available for an electric vehicle as oppose to the conventional vehicle will be the status

LED for the system state of the electric vehicle. Since the electric vehicle is capable

of running in normal mode, economy mode, and regenerative mode, it would be

preferable if the driver can opt to know the current system state. The system state

information would be obtained from CANBUS. An array of LEDs is installed by

means of integration into existing dashboard to allow the driver to be conscious of the

current vehicle system state. This includes an orange coloured LED for economical

driving, a green coloured LED for regenerative braking state and a red coloured LED

reserved for system fault. As during normal cruising, all the LEDs will remain off.

Figure 3.19: The circuit connections of the electric vehicle system’s output state

which provide driver’s convenience on checking the vehicle system state

Figure 3.19 reveals the system state output circuit setup. From the program,

GPIO 17 output is configured for fault status output, while GPIO 22, GPIO 23 and

GPIO 24 are configured outputs for economy status, regenerative braking status, and

system status respectively. Each of the GPIO outputs is respectively connected to a

resistor and an LED for indication, and GPIO 24 connected to a buzzer. For the fault

status GPIO, an extra relay is connected in parallel to the GPIO output. The relay is

connected in the configuration with a relay driver using an NPN bipolar junction

transistor to allow the relay to latch properly using Raspberry Pi GPIO limited 3.3 V

50

output. The circuit is connected in series with the inertia switch of the vehicle, on the

5 V relay with a common pin and normally closed pin. Such connection in series with

the inertia switch is the preferable point as the inertia switch also provides a similar

cut-off function in the case of emergencies such as collision. This is indicated as of

Figure 3.20. For the circuitry, upon triggering of fault, the 5 V relay would be latched

to normally open pin, opening the circuit of the 12 V main contactor of the electric

vehicle controller, which is will then cut off the contacting with 144 V battery pack

source during emergencies. The buzzer would also sound as an indication of faults.

The circuits in Section 3.3 are finally combined all together into the one-piece

board as shown in Figure 3.21.

Figure 3.20: The schematic showing the electric vehicle wiring diagram. The

emergency cut-off circuit is placed in series with inertia switch as a safe cut-off

point

Emergency Cut-

Off Circuit

51

Figure 3.21: The circuits of Raspberry Pi auto powering and electric vehicle

system state output

3.4 Python Programming and Libraries

In this project, Raspberry Pi loaded with Raspbian operating system is used. To allow

interfacing with the sensors networks and data processing, Python programming

language is used. The process of data acquisition from the sensors network is via

logging of data obtained from the sensors network into a separate CSV file, written

into the micro SD card plugged into the Raspberry Pi.

For the individual battery pack voltage and temperature sensor, the PySerial

module is used as the communication methods are of serial basis. Further

communication with the sensors masters and slave are of meticulous polling of sensors

ID and bits. The GPS module, however, requires both the Python modules of PySerial

and GPSd as it also requires GPS drivers to run. Meanwhile, the current sensor utilizes

Auto Booting

and Shut Down

Relays

Raspberry Pi Emergency

Buzzer

Alarm Module

Emergency

Cut-off Relay

Status LED

Array

52

Spidev module for SPI access. For CANBUS data acquisition, the Python program

runs native Linux bash script as a subprocess, since Python modules are not readily

supported. Therefore, the Raspbian is custom installed with CANBUS networking and

SPI kernels and drivers, which are recompiled in Linux Ubuntu on a personal computer.

Then, CAN-utils of SocketCAN package is also compiled and installed to enable

successful data acquisition of CANBUS.

53

CHAPTER 4

4 RESULTS AND DISCUSSION

4.1.1 CANBUS Messages

With reference to the controller’s CANBUS data as in Figure 3.10, they are in the form

of two addresses and of eight bytes. The messages within CANBUS address of 0x601h

outputs the data in the hexadecimal form, with each corresponding bytes, carries its

own value and requires calculation as described in formulas of Section 3. The sample

CANBUS messages and final processed data of the address 0x601h and 0x602h are as

laid in Table 4.1 and Table 4.2.

Table 4.1: The raw CANBUS messages and final processed data of address

0x601h

Raw Message 08 F4 2B 34 06 F8 05 13

Corresponding

Parameters

Motor

RPM

Motor

Temperature

(°𝐶)

Controller

Temperature

(°𝐶)

Motor

Current

(A)

Battery

Voltage

(V)

Processed

Data
2292 43 52 178.4 129.9

54

Table 4.2: The raw CANBUS messages and final processed data of address

0x602h

Raw Message 00 4D 00 00 17 DB 00 00

Corresponding

Parameters

Stator

Frequency

(Hz)

Prima

ry

Contr

oller

Fault

Code

Secon

dary

Contr

oller

Fault

Code

Throt

tle

Input

(%)

Brake

Input

(%)

Syste

m

Bits

Not

Used

Processed

Data
77 00 00 23 219 00 00

 As of the processed data in CAN address 0x601h and 0x602h as in Table 4.1

and also Table 4.2, the data can be utilized with direct accordance the information

provided by the datasheet, and their respective values calculated directly from the

formulas provided in Section 3.2.4.

55

4.1.2 CANBUS Data and Parameters

Figure 4.1: Graph of motor current, battery voltage, and battery pack

percentage against time, with shaded region indicating regenerative mode

 As of Figure 4.1, the overall trend shows that an increase in throttle percentage

is nearly linear with the increase in motor current. This is the result of the immediate

power and torque response from the motor when the user applies throttle to the vehicle.

The battery pack voltage also drops in a rational relation with the increase in motor

current, which denotes the electrical characteristics of an electric motor when it is

being loaded. The regenerative mode also appears during the situation of having the

throttle released and with the substantial motor current difference. In such situation,

the motor current also drops below its usual idling current of 40 A which denotes the

current is being reversed from the motor to the controller. Aside from the data shown

in the graph, the bytes in byte 2 and byte 3 of CAN address 0x601h also provides vital

information such as motor temperature and controller temperature respectively.

0

50

100

150

200

250

300

350

400

1

1
6

2

3
2

3

4
8

4

6
4

5

8
0

6

9
6

7

1
1

2
8

1
2

8
9

1
4

5
0

1
6

1
1

1
7

7
2

1
9

3
3

2
0

9
4

2
2

5
5

2
4

1
6

2
5

7
7

2
7

3
8

2
8

9
9

3
0

6
0

3
2

2
1

3
3

8
2

3
5

4
3

3
7

0
4

3
8

6
5

4
0

2
6

4
1

8
7

4
3

4
8

4
5

0
9

4
6

7
0

4
8

3
1

4
9

9
2

5
1

5
3

Graph of Motor Current (A), Battery Pack Voltage (V) and
Throttle Percentage against Time (s), with Shaded

Region Indicating Regenerative Mode

Regenerative Region Motor Current Battery Voltage Throttle Percentage

56

 In the data obtained from CAN address 0x602h, diagnostic information such

as stator frequency, a primary controller, and secondary controller fault codes can be

obtained. However, it is noted that for certain parameters such as throttle input, brake

input and system bits, the formula as proposed with accordance to the information

from the datasheet is not applicable.

 For throttle input, the CANBUS message bit idles at the hexadecimal value of

2 and peaks at a value of 22 which translates to 2 % and 34 % respectively. For the

maximum throttle input of 34 %, it is suspected that the throttle calibration is set at a

maximum of 34 % as on default system calibration. As the throttle input is current-

sensing, a minimal amount of current is flowing even though the throttle is not

depressed, which explains the minimum throttle value of 2 %. As part of throttle input

fault protection, it is noted that the value of throttle input will not fall to zero. The

throttle fault protection will kick in once the throttle input current falls below 0.65 mA,

the fault will then be generated and any further throttle request will be zeroed for safety

with adherence to EEC Regulation. Therefore, the effective throttle input for the

electric vehicle configuration in this project can be recalculated as of formula 4.1.

𝑇ℎ𝑟𝑜𝑡𝑡𝑙𝑒 𝐼𝑛𝑝𝑢𝑡 (%) =
((𝑇𝐻×161+𝑇𝐿×160)−2)

32
× 100 (4.1)

Where

TH = 4 higher data bits of byte 4 of address 0x602h expressed in hexadecimal form

TL = 4 lower data bits of byte 4 of address 0x602h expressed in hexadecimal form

57

Figure 4.2: Graph of RPM against time, with shaded region indicating economy

mode

Figure 4.3: Graph of RPM against time, with shaded region indicating

regenerative mode

0

1000

2000

3000

4000

5000

6000

0
1

7
.0

5
1

3
4

.1
3

1
5

1
.5

0
9

6
9

.1
1

8
6

.3
5

1
0

3
.5

8
1

1
2

1
.0

8
1

1
3

8
.4

7
2

1
5

5
.8

7
5

1
7

3
.7

1
6

1
9

1
.3

6
7

2
0

8
.3

1
7

2
2

5
.2

4
8

2
4

2
.3

2
8

2
6

0
.2

8
9

2
7

7
.9

8
2

9
5

.6
4

3
1

3
.2

2
1

3
3

1
.1

2
1

3
4

8
.6

1
2

3
6

6
.3

5
3

3
8

3
.8

6
3

4
0

1
.7

6
4

4
1

9
.5

2
5

4
3

7
.2

4
5

4
5

4
.9

1
6

4
7

2
.7

1
6

4
9

0
.6

5
2

5
0

8
.0

4
3

5
2

5
.6

7
3

5
4

3
.4

4
4

5
6

0
.7

3
5

Graph of RPM against Time (s), with Shaded Region
indicating Economy Mode

Economy Region RPM

0

1000

2000

3000

4000

5000

6000

0
1

7
.0

5
1

3
4

.1
3

1
5

1
.5

0
9

6
9

.1
1

8
6

.3
5

1
0

3
.5

8
1

1
2

1
.0

8
1

1
3

8
.4

7
2

1
5

5
.8

7
5

1
7

3
.7

1
6

1
9

1
.3

6
7

2
0

8
.3

1
7

2
2

5
.2

4
8

2
4

2
.3

2
8

2
6

0
.2

8
9

2
7

7
.9

8
2

9
5

.6
4

3
1

3
.2

2
1

3
3

1
.1

2
1

3
4

8
.6

1
2

3
6

6
.3

5
3

3
8

3
.8

6
3

4
0

1
.7

6
4

4
1

9
.5

2
5

4
3

7
.2

4
5

4
5

4
.9

1
6

4
7

2
.7

1
6

4
9

0
.6

5
2

5
0

8
.0

4
3

5
2

5
.6

7
3

5
4

3
.4

4
4

5
6

0
.7

3
5

Graph of RPM against Time (s), with Shaded Region
indicating Regenerative Mode

Economy Region RPM

58

 As for the system bits, it is found that during normal operation and normal

cruise, the system bits results at zero. The system normally responds by first entering

into economy mode, and only with sufficient torque, the regenerative mode will only

be switched to. As in Figure 4.2, letting the vehicle cruise to stop will trigger an

economy bit. In this case, the system bit changes to the hexadecimal value of 0A or

decimal 10 as a representation of economy driving. Once the system detected itself is

out of economy state, the system bits turns zero. Besides, the regenerative mode can

also be expected with harder deceleration such as going downhill, where the system

bit then reflects the hexadecimal value of 2A or 42, and will switch back to bit zero

once itself is out of regenerative mode. This is reflected as in Figure 4.3 where most

of the regenerative mode happens during the steeper drop in of RPM region.

The data bits of byte 5 of address 0x602h which corresponds to the brake input,

constantly outputs hexadecimal value of DB once the vehicle is started. The data

corresponds to 219 %. It should be noted that such input should be ignored as the brake

input is left disconnected during the conversion of the electric vehicle.

Figure 4.4: Data output of address 0x601h in comma-separated values file

generated by the CANBUS data acquisition

59

Figure 4.5: Data output of address 0x602h in comma-separated values file

generated by the CANBUS data acquisition

The electric vehicular parameters and its values obtained from CANBUS are

considerably accurate as it's of direct output from the electric vehicle controller’s

information network, which such information is also used by the controller itself for

information processing and decision making. As of Figure 4.4 and Figure 4.5, the data

output is rather comprehensive. It allows several parameters to be obtained at a point

of time, which eliminates the need and the time difference of used in separate polling

of data that may result in inaccuracy of data, not mentioning the speed of data outputs

averages at 100 ms per address. Thus, this renders the information obtained as one of

the most instantaneous, accurate, yet reliable sources of data.

4.2 GPS Data

GPS module is also installed into the system to provide geographical location data and

ease of logging. The basic information that can be obtained includes the latitude and

longitude. Upon the fix of 3D GPS mode, further improvised data can also be obtained,

such as altitude, speed, climb and track information. As indicated in Figure 4.6, the

60

information updates in every second. The accuracy of the data is then further verified

by using Google Maps.

Figure 4.6: Data output GPS data in comma-separated values file

Knowing the location of the vehicle, it will be convenient for the user to find out

their location easily during cruising or for emergency purposes. The logging of data

would also allow one to easily identify the time, vehicle location, terrain and GPS

speed to be compared with other vehicle parameters such as CANBUS data to optimize

the performance of the electric vehicle or for vehicle diagnostic purposes.

61

4.3 Individual Battery Pack Voltage and Temperature

With the 12 batteries installed in the electric vehicle, each of their voltages and

temperatures is obtained and logged using the DS2436 sensors network. With such

data, the driver can easily monitor the batteries individually to track down battery

performance during load and even during charging. The logging of data can also be

used for diagnostic purposes to track down the behaviour of the battery under various

driving conditions. The time used for reading the sensors parameters is approximate a

minute to obtain all the 12 sensors temperature and voltage. The data is as in Figure

4.7 and Figure 4.8.

Figure 4.7: Data output individual battery temperature data in comma-

separated values file

Figure 4.8: Data output individual battery voltage data in comma-separated

values file

62

4.4 Battery Pack Current Data

A battery pack current sensor consists of hall effect sensor is also proposed to be

installed. With the availability of this sensor, the battery pack current can be obtained,

which allows one to monitor the total loading on the battery pack during cruise,

regenerative braking and even charging. However, due to the time constraint, the

sensor is not installed onto the electric vehicle. A separate setup has been performed

by using a potentiometer in place of the current sensor output to simulate the

performance of the current sensor. The obtained results are deemed rational as in

Figure 4.9.

Figure 4.9: Comma-separated values file showing the data output from the hall-

effect sensor for the parameter of battery pack current

63

4.5.1 Hardware Implementation onto Electric Vehicle

The battery temperature and voltage circuit, GPS module and CANBUS data

acquisition board are implemented into the electric vehicle. The implementation of

sensors networks is shown in Figure 4.10.

Figure 4.10: The CANBUS data acquisition board, GPS module, Dallas One-

Wire bus master, power circuits and Raspberry Pi installed.

 During the implementation into the electric vehicle, it is realized that the issue

of battery drain is present from the individual battery sensor boards, where the circuit

will drain the accessory battery continuously by the sensor circuit components such as

the op-amps, optocoupler and DS 2436 voltage and temperature sensor. Besides

powering the sensors, this connection also provides the reference voltage from the

accessory battery to the battery sensor boards. Although the drain from the circuits is

considered minute, such configuration is not recommended as this will negatively

impact the lifespan of the accessory battery, not mentioning the possibility of draining

down of accessory battery when vehicle is left parked without starting for weeks,

which will finally result in the possibility of unable to start the electric vehicle.

However, this issue can be mitigated by adding a relay between the accessory

battery and the supply connections of the sensors boards. This configuration allows

64

the sensors to be fed power only when the vehicle is started, and disallow current flow

to the sensors boards once the car is off. This also eliminates the unnecessary risk of

shorting of wiring in the case of the sensor wiring with voltage drops off and shorts to

the vehicle body.

4.5.2 Electric Vehicular Systems Integration

 In this project, the electric vehicular systems and sensors network now start up

upon the driver unarm the car alarm, and properly shuts down when driver arms the

alarm. This is achieved through the sensor output pin of the car alarm. Upon

completion of start-up, a welcome chime will be sound to notify the driver the start-up

is complete, and vice versa for shut down process.

 The LED array outputs are also installed. As the name of the LED state implies,

the corresponding LED will light up when the system state is reached. Orange LED

will light up during economy driving and the CANBUS system bits output of 0A and

vice versa for green LED with system bits of 2A during the regenerative mode. As

during normal cruising, both LEDs will remain off. The setup is shown as in Figure

4.11.

Figure 4.11: The LED array mounted on the dashboard of the electric vehicle

for driver’s easy viewing.

Status LED

Array

65

During the rise of fault associated with the electric vehicular system, the red

LED will turn on and the buzzer would sound continuously as a response to alert user

of faults present. The electric vehicle system, including the motor and the controller,

will also be emergency shut down through cutting off the supply to the main contactor

of the battery pack supply. This allows an immediate fault mitigation to prevent further

delay and possibly reducing consequence system damage and personal injuries in the

event of emergencies. As the fault mitigation steps accounts risks to users if executed

incorrectly, yet will be dangerous if any response to fault is not performed, the fault

detection system must of highly robust, reliable and quick. Therefore, the fault

detection is determined through the use of CANBUS fault bits output from electric

vehicle controller. Since the situation is arbitrary, the CANBUS messages simulator

of USBTinViewer is used in conjunction with another CANBUS board to simulate

such emergencies.

 As for the log files of the sensors network, the files will be able to be accessed

via any personal computer running Linux Distribution once the Raspberry Pi system

is shut off. The Micro SD card can be retrieved and plugged into the computer. The

CSV log files are all placed in a folder with self-explanatory file names on the logging

of different sensors. For better control and simpler data analysis, the driver or

technician can open the CSV log files using any spreadsheet applications such as

LibreOffice Calc or Microsoft Excel to open and review the data logged.

Table 4.3: CSV Log file’s name and its corresponding logged sensors

Log File Name Logic

dataTemp DS2436 sensors on individual battery pack

dataVolt DS2436 sensors on individual battery pack

dataGPS GPS module

dataCurrent LEM Hall effect current sensor

dataCAN1 CANBUS data acquisition board

dataCAN2 CANBUS data acquisition board

CHAPTER 5

5 ACHIEVEMENT

5.1 Competition Participation

The author, working on hardware on the project of the electric vehicle monitoring

system has collaborated with his close counterparts which are working on the graphical

user interface, have participated in the inaugural Final Year Project Poster Competition

2016. The poster is shortlisted as one of the finalists in the category participated is

Category of Applied Sciences.

CHAPTER 6

6 CONCLUSION AND RECOMMENDATIONS

6.1 Conclusion

To summarize, the author had managed to integrate the existing electric vehicular

sensors network and the new CANBUS data acquisition system into place. Individual

battery pack temperature and voltage measurement is achieved by using the Dallas

One-Wire Sensors and its bus master. Battery pack current is also able to be measured.

Location of the vehicle is also able to be determined. CANBUS data acquisition also

opens up whole lot more parameters of the electric vehicle to be monitored. These

includes motor RPM, motor temperature, controller temperature, motor current,

battery pack voltage, motor stator frequency, controller fault codes, throttle input and

system state bits. With the aid of Python programming language, the raw information

from the sensors are being processed before logged into different CSV files. Drivers

and technicians will benefit from the log files as it meticulously reports the parameters

of the electric vehicle. The obtained data can also be cross-checked with timestamps

to analyse the electric vehicle performance or provide useful information during

troubleshooting of the electric vehicle.

Designed with driver experience upheld, the sensors network is now placed in

close integration with the electric vehicle ignition system. The driver will now

experience the ultimate convenience as the systems will be ready right before driving,

providing alerts to drivers for any abnormalities and even auto shuts down properly

during emergencies, all without driver’s intervention as of conventional car. Thus

68

allow the driver to stay focused on the road and enhancing the driving experience of

the electric vehicle.

Nevertheless, valuable knowledge and experience are obtained throughout the

involvement in the project. These includes an in-depth understanding of vehicle wiring

principles, electric vehicle hardware and systems, sensors interfacing, protocols used

and the programming language to mention a few.

6.2 Recommendations

The project’s main interfacing systems are developed based on Raspberry Pi Model

B+, which it is used as for sensor interfacing, data acquisition, data processing, and

output processing. Thus, at times of interfacing and processing, the CPU load and

RAM can be very high with the execution of several scripts and with interfacing

protocol loaded up to max. Not to mention on top of that, a graphic user interface also

needs to be loaded in actual practice. Therefore, a faster system would be preferred to

allow quicker data acquisition, especially the ones that are dealing with manual bit by

bit serial execution.

 Hence, the author would recommend Raspberry Pi 3, which is just released

months ago (Upton, 2016). The advantage of quad-core 64-bit CPU allows faster

processing and multi-threaded operations, yet leaving an identical size and price

footprint, forms a perfect upgrade solution for tackling the performance issues faced

in his project. Also comes with built-in Wi-Fi and Bluetooth chipset, connections to

the Raspberry Pi as a secondary system is also possible, which are able accommodate

passenger’s entertainment and usage natively.

69

REFERENCES

Adrian, M. (2009). Technical: Looking inside the 1.4 12v Throttle Potentiometer /

Position Sensor - The FIAT Forum. [online] FIAT Forum. Available at:

http://www.fiatforum.com/bravo-brava/204546-looking-inside-1-4-12v-throttle-

potentiometer-position-sensor.html [Accessed 12 Aug. 2015].

AlarmTek, J. (2012). Car Alarms: prime security wiring diagram, shock sensor, pin

switch. En.allexperts.com. [online]. Available at: http://en.allexperts.com/q/Car-

Alarms-1513/2012/1/prime-security-wiring-diagram.htm [Accessed 4 Mar.

2016].

Curtis, (2014). Model 1353 CANopen Expansion Module. 2nd ed. [ebook] New

York, pp.16 - 40. Available at:

http://curtisinstruments.com/Uploads/DataSheets/1353%20%2814C%291.pdf

[Accessed 6 Aug. 2015]. Bakshi, A., Patnaik, P.R. and Gupta, J.K., 1992a.

Pullulanase and -amylase production by a Bacillus cereus isolate. Letters in

Applied Microbiology, 14, pp. 210 – 213.

Curtis, (2015). Standard Operating Procedures. 1st ed. [ebook] Ontario, pp.20-65.

Available at:

http://evwest.com/support/Program%20Instructions%20REV%20A%20VER%2

05.14%20and%20up%203-27-14%20.pdf [Accessed 13 Aug. 2015].

Drafts, B. (2004). Methods of Current Measurement. 1st ed. Milwaukie, pp.1 - 2.

HPEVS, (2014). CURTIS Instruments Troubleshooting Codes. 1st ed. [ebook]

Ontario, pp.3 - 12. Available at:

http://www.hpevs.com/Site/images/pdf/troubleshooting/troubleshooting.pdf

[Accessed 3 Sep. 2015].

Kuria, J. and Hwang, P. (2011). Investigation of Thermal Performance of Electric

Vehicle BLDC Motor. International Journal of Mechanical Engineering, 1(1),

p.14.

Lepkowski, J. (2003). Motor Control Sensor Feedback Circuits. 1st ed. [ebook]

U.S.A., pp.1 - 9. Available at:

http://ww1.microchip.com/downloads/en/AppNotes/00894a.pdf [Accessed 10

Aug. 2015].

70

Magana, A. and Veraguas, P. (2015). Voltage Measurement of High Voltage

Batteries for Hybrid and Electric Vehicles. US 7982427 B2.

Manciac, A., Oprean, I., Croitorescu, G. and Fratila, G. (n.d.). Influence of Battery

Voltage on Hybrid Vehicles Performances. 9(104), pp.521 - 527.

Microchip, (2003). High-Speed CAN Transceiver. 1st ed. [ebook] U.S.A., pp.1 - 12.

Available at: http://users.ece.utexas.edu/~valvano/Datasheets/MCP2551.pdf

[Accessed 6 Aug. 2015].

Microchip, (2007). Stand-Alone CAN Controller With SPI Interface. 1st ed. [ebook]

U.S.A., pp.1-12. Available at:

http://ww1.microchip.com/downloads/en/DeviceDoc/21801e.pdf [Accessed 1

Aug. 2015].

Microchip, (2015). PIC18F13K50/14K50 Data Sheet. 1st ed. [ebook] U.S.A., pp.1 -

31. Available at: http://ww1.microchip.com/downloads/en/devicedoc/41350c.pdf

[Accessed 5 Aug. 2015].

NI, (2013). The Basics of CANopen - National Instruments. [online] Available at:

http://www.ni.com/white-paper/14162/en/ [Accessed 19 Aug. 2015].

Prestolite, (n.d.). Prestolite - Leece Neville. [online] Prestolite.com. Available at:

http://www.prestolite.com/pgs_products/specs.php?item_detail_id=879&item=8

ar2200l&product=ALTERNATOR [Accessed 6 Aug. 2015].

SARMA, G. and NAGARAJU, C. (2012). Automotive Engine Temperature Control

Employing Apt Temperature Measurement And Control Measures. International

Journal of Engineering Research, 2(4), pp.1425-1429.

Trio Auto Accessories Sdn. Bhd.,. (2011). Retrieved from

http://www.trioauto.com.my/webshaper/pcm/pictures/PowerGuard/1wayHC_1.j

pg

Stevens, T. (2014). The 2015 BMW i8 looks like an automotive artifact from the

future (pictures) - Page 28 - CNET. [online] CNET. Available at:

http://www.cnet.com/pictures/the-2015-bmw-i8-looks-like-an-artifact-from-the-

future-pictures/28/ [Accessed 6 Aug. 2015].

Upton, E. (2016, February 29). Raspberry Pi 3 on sale now at $35 - Raspberry Pi.

[online]. Available at https://www.raspberrypi.org/blog/raspberry-pi-3-on-sale/

[Accessed 20 Mar. 2016].

71

APPENDICES

APPENDIX A: Circuit layout of CANBUS Data Acquisition Board

APPENDIX B: Python Programming Code

1. # Configuration file to check for communication with One-Wire
Bus Master

2. # Configuration.py
3.
4. import serial
5. import time
6.
7. # Serial Connection Settings
8. ser = serial.Serial(
9. port='/dev/ttyUSB0',
10. baudrate=9600,
11. parity=serial.PARITY_NONE,
12. stopbits=serial.STOPBITS_ONE,
13. bytesize=serial.EIGHTBITS,
14. timeout=0.01,
15.)
16.

72

17. ser.isOpen()
18. print "Connecting through port %s" % ser.name # Print

which port is opened
19.
20. # DS2480B PRESENCE DETECTION SETTING
21. # Setting based on page 5 of application note DS2480B
22.
23. ser.sendBreak(0.02) # Delay 2ms
24. ser.flushInput()
25.
26. ser.write('C1'.decode("hex")) # Write timing byte C1
27. ser.sendBreak(0.02) # Delay 2ms
28. ser.flushInput()
29.
30. ser.write('17'.decode("hex")) # Set PDSRC 17, Receive 16
31. r1=ser.read()
32. #r1=r1.strip()
33. #print r1.encode("hex")
34.
35. ser.write('45'.decode("hex")) # Set WILD 45, Receive 44
36. r2=ser.read()
37. #r2=r2.strip()
38. #print r2.encode("hex")
39.
40. ser.write('5B'.decode("hex")) # Set DS0/W0RT 5B, Receive 5

A
41. r3=ser.read()
42. #r3=r3.strip()
43. #print r3.encode("hex")
44.
45. ser.write('0F'.decode("hex")) # Set RBR 0F, Receive 00
46. r4=ser.read()
47. #r4=r4.strip()
48. #print r4.encode("hex")
49.
50. ser.write('91'.decode("hex")) # Set OWBitResult 91, Receiv

e 93
51. r5=ser.read()
52. #r5=r5.strip()
53. #print r5.encode("hex")
54.
55. OneWireBitResult='93'.decode("hex") # Check for DS2480B Correc

t Configuration
56. r6=(r5==OneWireBitResult)
57. if r6==True:
58. print "DS2480B is present!\n"
59. else:
60. print "ERROR! DS2480B not detected!\n"
61.
62. #DS2480B Presence detection settings ended here
63.
64. ser.close()
65. print "Port %s is now closed" % ser.name # Print which

 port is closed

73

1. #Main coding to obtain battery temperature and voltage
2. #LoopingForTesting.py
3. import TotalTempInArray
4. import TotalVoltInArray
5. import time
6.
7. cycleValue = 1
8. while cycleValue < 5800:
9. TotalTempInArray.TotalTempInArray()
10. TotalVoltInArray.TotalVoltInArray()
11. print "Cycle %s is done \n\n\n" %cycleValue
12. cycleValue = cycleValue + 1
13. #time.sleep(0.2)

1. #Function TotalTempInArray.py
2. import serial
3. import time
4. import temperatureValue
5. import recordT
6.
7. RomID1=([0x1B,0x12,0x4B,0x42,0x00,0x00,0x00,0x06])
8. RomID2=([0x1B,0x26,0x00,0x44,0x00,0x00,0x00,0xA7])
9. RomID3=([0x1B,0xBF,0x66,0x10,0x00,0x00,0x00,0xDB])
10. RomID4=([0x1B,0xA9,0x2C,0x41,0x00,0x00,0x00,0x31])
11. RomID5=([0x1B,0x8C,0x26,0x4B,0x00,0x00,0x00,0xCA])
12. RomID6=([0x1B,0xFF,0xB8,0x2B,0x00,0x00,0x00,0x8E])
13. RomID7=([0x1B,0x50,0x81,0x26,0x00,0x00,0x00,0x1C])
14. RomID8=([0x1B,0x07,0x84,0x13,0x00,0x00,0x00,0xAC])
15. RomID9=([0x1B,0x2A,0x18,0x15,0x00,0x00,0x00,0xCF])
16. RomID10=([0x1B,0xD0,0x94,0x2C,0x00,0x00,0x00,0x43])
17. RomID11=([0x1B,0x0A,0x34,0x08,0x00,0x00,0x00,0x05])
18. RomID12=([0x1B,0x3C,0x54,0x12,0x00,0x00,0x00,0x68])
19.
20. slavesNum = 1
21.
22. def TotalTempInArray():
23. global RomID1 #Initialize all available DS2436 Sensors a

nd its' addresses
24. global RomID2
25. global RomID3
26. global RomID4
27. global RomID5
28. global RomID6
29. global RomID7
30. global RomID8
31. global RomID9
32. global RomID10
33. global RomID11
34. global RomID12
35. global slavesNum

74

36. global tempSlave1
37. global tempSlave2
38. global tempSlave3
39. global tempSlave4
40. global tempSlave5
41. global tempSlave6
42. global tempSlave4
43. global tempSlave5
44. global tempSlave6
45. global tempSlave7
46. global tempSlave8
47. global tempSlave9
48. global tempSlave10
49. global tempSlave11
50. global tempSlave12
51.
52.
53. while (slavesNum < 14):
54. if slavesNum == 1:
55. RomID=RomID1
56. break
57. elif slavesNum == 2:
58. RomID=RomID2
59. break
60. elif slavesNum == 3:
61. RomID=RomID3
62. break
63. elif slavesNum == 4:
64. RomID=RomID4
65. break
66. elif slavesNum == 5:
67. RomID=RomID5
68. break
69. elif slavesNum == 6:
70. RomID=RomID6
71. break
72. elif slavesNum == 7:
73. RomID=RomID7
74. break
75. elif slavesNum == 8:
76. RomID=RomID8
77. break
78. elif slavesNum == 9:
79. RomID=RomID9
80. break
81. elif slavesNum == 10:
82. RomID=RomID10
83. break
84. elif slavesNum == 11:
85. RomID=RomID11
86. break
87. elif slavesNum == 12:
88. RomID=RomID12
89. break

75

90. elif slavesNum == 13:
91. recordT.recordT(tempSlave1, tempSlave2, tempSlave3

, tempSlave4, tempSlave5, tempSlave6, tempSlave7, tempSlave8,
tempSlave9, tempSlave10, tempSlave11, tempSlave12)

92. print "RECORDED, RETURNING TO RESET SLAVESNUM"
93. slavesNum = 1
94. return
95. break
96.
97. #print "The slave number is %d \n" % (slavesNum)
98. temperatureVal = temperatureValue.temperatureValue(RomID)

99. #i = 0
100. #while i < 5:
101. # if (temperatureVal > 60 or temperatureVal <

 15):
102. # temperatureVal
103. # temperatureVal=temperatureValue(RomID)

104. # time.sleep(0.01)
105. # break
106. # i = i + 1
107.
108. #TempArray(1,SlavesNum) = temperatureVal
109. #print "The temperature of sensor %d is = %s \n" %

(slavesNum, temperatureVal)
110.
111. while (slavesNum < 13):
112. if slavesNum == 1:
113. tempSlave1 = temperatureVal
114. #print "Saving as %s \n" % tempSlave1
115. break
116. elif slavesNum == 2:
117. tempSlave2 = temperatureVal
118. #print "Saving as %s \n" % tempSlave2
119. break
120. elif slavesNum == 3:
121. tempSlave3 = temperatureVal
122. #print "Saving as %s \n" % tempSlave3
123. break
124. elif slavesNum == 4:
125. tempSlave4 = temperatureVal
126. #print "Saving as %s \n" % tempSlave4
127. break
128. elif slavesNum == 5:
129. tempSlave5 = temperatureVal
130. #print "Saving as %s \n" % tempSlave5
131. break
132. elif slavesNum == 6:
133. tempSlave6 = temperatureVal
134. #print "Saving as %s \n" % tempSlave6
135. break
136. elif slavesNum == 7:
137. tempSlave7 = temperatureVal

76

138. #print "Saving as %s \n" % tempSlave7
139. break
140. elif slavesNum == 8:
141. tempSlave8 = temperatureVal
142. #print "Saving as %s \n" % tempSlave8
143. break
144. elif slavesNum == 9:
145. tempSlave9 = temperatureVal
146. #print "Saving as %s \n" % tempSlave9
147. break
148. elif slavesNum == 10:
149. tempSlave10 = temperatureVal
150. #print "Saving as %s \n" % tempSlave10
151. break
152. elif slavesNum == 11:
153. tempSlave11 = temperatureVal
154. #print "Saving as %s \n" % tempSlave11
155. break
156. elif slavesNum == 12:
157. tempSlave12 = temperatureVal
158. #print "Saving as %s \n" % tempSlave12
159. break
160.
161. slavesNum = slavesNum + 1
162.
163.
164.
165. #a=TempArray(1,1)
166. #b=TempArray(1,2)
167. #c=TempArray(1,3)
168. #d=TempArray(1,4)
169. #e=TempArray(1,5)
170. #f=TempArray(1,6)
171. #g=TempArray(1,7)
172. #h=TempArray(1,8)
173. #i=TempArray(1,9)
174. #j=TempArray(1,10)
175. #k=TempArray(1,11)
176. #l=TempArray(1,12)
177.
178. #print a,b,c,d,e,f,g,h,i,j,k,l
179.
180. #return TempArray

1. #temperatureValue.py
2. import convertT
3. import readT
4. import calcTemp
5.
6. def temperatureValue(RomID):
7. convertT.convertT(RomID) #Request sensor to do temperature

 conversion

77

8. [lsbTemp,msbTemp] = readT.readT(RomID) #Read temperature
from register

9. finalTemperature = calcTemp.calcTemp(lsbTemp,msbTemp) #Co
nvert Temperature to a readable value (Check DS2436 datasheet
page 11)

10. return finalTemperature

1. # Function FlushInputBuffer.py
2. def FlushInputBuffer():
3. import serial
4. import time
5.
6. # Serial Connection Settings
7. ser = serial.Serial(
8. port='/dev/ttyAMA0',
9. baudrate=9600,
10. parity=serial.PARITY_NONE,
11. stopbits=serial.STOPBITS_ONE,
12. bytesize=serial.EIGHTBITS,
13. timeout=0.01,
14.)
15.
16. ser.isOpen()
17.
18. NumberOfFlush=0
19.
20. if NumberOfFlush<3:
21. r1=ser.read()
22. r1=r1.strip()
23. print r1.encode("hex")
24. NumberOfFlush = NumberOfFlush + 1

1. # Function ConvertT.py
2. def convertT(RomID):
3. import FlushInputBuffer
4. import serial
5. import time
6.
7. # Serial Connection Settings
8. ser = serial.Serial(
9. port='/dev/ttyUSB0',
10. baudrate=9600,
11. parity=serial.PARITY_NONE,
12. stopbits=serial.STOPBITS_ONE,
13. bytesize=serial.EIGHTBITS,
14. timeout=0.01,
15.)
16. #print "You are now in ConvertT"
17. ser.isOpen()
18.
19. Result=ErrorChecking()
20.

78

21. ErrorCounter=0
22.
23. if Result==0 and ErrorCounter<5:
24. ErrorChecking()
25. ErrorCounter=ErrorCounter+1
26.
27. if ErrorCounter==4:
28. print "Error in communicating with slaves\n"
29.
30. ser.write('C1'.decode("hex")) # Set RESET C1, Receive

CD
31. r1=ser.read()
32. r1=r1.strip()
33. #print r1.encode("hex")
34.
35. ser.write('E1'.decode("hex")) # Set DATA MODE, Receive

 NOTHING
36. r2=ser.read()
37. r2=r2.strip()
38. #print r2.encode("hex")
39.
40. ser.write('55'.decode("hex")) # Set SKIP ROM 55, Recei

ve 55
41. r3=ser.read()
42. r3=r3.strip()
43. #print r3.encode("hex")
44.
45. ser.write((RomID)) # Write RomID, Receive RomID
46.
47. i = 1
48. while i < 9:
49. r4=ser.read()
50. r4=r4.strip()
51. #print "The value i = %s, current r4 = %r \n" % (i, r

4.encode("hex"))
52. i = i + 1
53.
54. ser.write('E3'.decode("hex")) # Set COMAND MODE E3, Re

ceive NOTHING
55. r5=ser.read()
56. r5=r5.strip()
57. #print "The commandmode E3, Receive Nothing %s: \n" % r5.

encode("hex")
58.
59. ser.write('EF'.decode("hex")) # Set ARM STRONG PULLUP

EF, Receive NOTHING
60. r6=ser.read()
61. r6=r6.strip()
62. #print "The ARMPULLUP EF, Receive Nothing %s: \n" % r6.en

code("hex")
63.
64. ser.write('F1'.decode("hex")) # Set TERMINATE PULSE F1

, Receive EF
65. r7=ser.read()

79

66. r7=r7.strip()
67. #print "The TerminatePulse F1, Receive EF %s: \n" % r7.en

code("hex")
68.
69. ser.write('E1'.decode("hex")) # Set DATA MODE E1, Rece

ive NOTHING
70. r8=ser.read()
71. r8=r8.strip()
72. #print "The data mode E1, Receive Nothing %s: \n" % r8.en

code("hex")
73.
74. ser.write('D2'.decode("hex")) # Set CONVERT TEMPERATUR

E, Receive D2
75. time.sleep(0.015) # Conversion require at

least 10ms
76. r9=ser.read()
77. r9=r9.strip()
78. #print "The converttemperature D2, Receive D2 %s: \n" % r

9.encode("hex")
79.
80. r10=ser.read() # POLL FOR RESPONSE PULS

E, Receive F6
81. r10=r10.strip()
82. #print "Receive RESPONSEPULSE F6 %s: \n" % r10.encode("he

x")
83.
84. ser.write('E3'.decode("hex")) # Set COMAND MODE E3, Re

ceive NOTHING
85. r11=ser.read()
86. r11=r11.strip()
87. #print "The command mode E3, Receive Nothing %s: \n" % r1

1.encode("hex")
88.
89. ser.write('ED'.decode("hex")) # Set DISARM STRONG PULL

UP ED, Receive NOTHING
90. r12=ser.read()
91. r12=r6.strip()
92. #print "The command mode ED, Receive Nothing %s: \n" % r1

2.encode("hex")
93.
94. ser.write('F1'.decode("hex")) # Set TERMINATE PULSE F1

, Receive EF
95. r13=ser.read()
96. r13=r13.strip()
97. #print "The terminatepulse F1, Receive EF %s: \n" % r13.e

ncode("hex")
98.
99. ser.write('C1'.decode("hex")) # Set RESET C1, Receive

CD
100. r14=ser.read()
101. r14=r14.strip()
102. #print "The C1, ReceiveCD %s: \n" % r14.encode("hex

")
103.

80

104. r15=ser.read()
105. r15=r15.strip()
106. #print "Receive Nothing %s: \n" % r15.encode("hex")

107.
108. #print "Done temperature conversion!\n"
109.
110.
111. def ErrorChecking():
112. import serial
113. import FlushInputBuffer
114.
115. # Serial Connection Settings
116. ser = serial.Serial(
117. port='/dev/ttyUSB0',
118. baudrate=9600,
119. parity=serial.PARITY_NONE,
120. stopbits=serial.STOPBITS_ONE,
121. bytesize=serial.EIGHTBITS,
122. timeout=0.01,
123.)
124.
125. ser.isOpen()
126.
127. FlushInputBuffer.FlushInputBuffer()
128.
129. ser.write('E3'.decode("hex")) # Set COMMAND MODE

 E3, before data interfacing as precaution
130. r16 = ser.read()
131. r16 = r16.strip()
132. #print r16.encode("hex")
133.
134. ser.write('33'.decode("hex")) # Set PULLUP DURAT

ION=524ms, Receive 32
135. r17 = ser.read()
136. r17 = r17.strip()
137. #print r17.encode("hex")
138.
139. DataShouldBeReceived='32'.decode("hex") # Check for

Correct Data Received, PULLUP DUR=65.6ms
140. r18 = (r17 == DataShouldBeReceived)
141. if r18 == True:
142. #print "Correct Data Received\n"
143. Result = 1
144. else:
145. print "ERROR! Resend Command Code\n"
146. Result = 0

1. #function readT.py
2. def readT(RomID):
3. import FlushInputBuffer
4. import serial

81

5. import time
6.
7. # Serial Connection Settings
8. ser = serial.Serial(
9. port='/dev/ttyUSB0',
10. baudrate=9600,
11. parity=serial.PARITY_NONE,
12. stopbits=serial.STOPBITS_ONE,
13. bytesize=serial.EIGHTBITS,
14. timeout=0.01,
15.)
16. #print "You are now in ReadT"
17. ser.isOpen()
18. r0=ser.read()
19. r0=r0.strip()
20. #print "The serial port reopen and reads %s: \n" % r0.enc

ode("hex")
21.
22. FlushInputBuffer.FlushInputBuffer()
23.
24. ser.write('C1'.decode("hex")) # Set RESET C1, Receive

CD
25. r1=ser.read()
26. r1=r1.strip()
27. #print "The reset C1, Receive CD %s: \n" % r1.encode("hex

")
28.
29. ser.write('E1'.decode("hex")) # Set DATA MODE, Receive

 NOTHING
30. r2=ser.read()
31. r2=r2.strip()
32. #print "The reset DATAMODE E1, Receive NOTHING %s: \n" %

r2.encode("hex")
33.
34. ser.write('55'.decode("hex")) # Set SKIP ROM 55, Recei

ve 55
35. r3=ser.read()
36. r3=r3.strip()
37. #print "Receive 55 %s: \n" % r3.encode("hex")
38.
39. #print "The current RomID at LoopingForTesting is = %s: \

n" % RomID
40.
41. ser.write((RomID)) # Write RomID, Receive RomID
42.
43. i = 1
44. while i < 9:
45. r4=ser.read()
46. r4=r4.strip()
47. print "The value i = %s, current r4 = %r \n" % (i, r4

.encode("hex"))
48. i = i + 1
49.

82

50. ser.write('B2'.decode("hex")) # Set READ REGISTER B2,
Receive B2

51. r5=ser.read()
52. r5=r5.strip()
53. #print "The read register B2, Receive B2 %s: \n" % r5.enc

ode("hex")
54.
55. ser.write('60'.decode("hex")) # Set TEMPERATURE ADDRES

S 60, Receive 60
56. r6=ser.read()
57. r6=r6.strip()
58. #print "The TempAdddress 60, Receive 60 %s: \n" % r6.enco

de("hex")
59.
60. ser.write('FF'.decode("hex")) # Obtain LSB TEMPERATURE

61. r7=ser.read()
62. lsbTemp=r7.strip()
63. #print "The lsbTemp of battery value = %s: \n" % lsbTemp.

encode("hex")
64. lsbTemp = bin(int(lsbTemp.encode("hex"),16))[2:]
65. #print lsbTemp
66.
67. ser.write('FF'.decode("hex")) # Obtain MSB TEMPERATURE

68. r8=ser.read()
69. msbTemp=r8.strip()
70. #print "The msbTemp of battery value = %s: \n" % msbTemp.

encode("hex")
71. msbTemp = int(msbTemp.encode("hex"),16)
72. #print msbTemp
73.
74. ser.write('E3'.decode("hex")) # Set COMAND MODE E3, Re

ceive NOTHING
75. r9=ser.read()
76. r9=r9.strip()
77. #print "The commandmode E3, Receive NOTHING %s: \n" % r9.

encode("hex")
78.
79. ser.write('C1'.decode("hex")) # Set RESET PULSE C1, Re

ceive CD
80. r10=ser.read()
81. r10=r10.strip()
82. #print "The reset C1, Receive CD %s: \n" % r10.encode("he

x")
83.
84. return lsbTemp,msbTemp
85.
86. #print "Done temperature conversion!\n"

1. #Function calcTemp.py
2. def calcTemp(lsbTemp,msbTemp):

83

3.
4. #print "You are now in calcTemp"
5.
6. lsbTemp = bitConv(lsbTemp)
7.
8. #print "The lsbTemp new value = %s: \n" % lsbTemp
9.
10. finalTemperature = float (msbTemp) + lsbTemp
11.
12. #print "The finalTemp is = %s: \n" % finalTemperature
13. #print "Done temperature calculation!\n"
14.
15. return finalTemperature
16.
17. def bitConv(b):
18. #print "The bitConv2 initial lsbTemp value = %s: \n" % b

19. return int(b, 2) / 2.**(len(b))

1. #Function record.py
2. def recordT(tempSlave1, tempSlave2, tempSlave3, tempSlave4, te

mpSlave5, tempSlave6, tempSlave7, tempSlave8, tempSlave9, temp
Slave10, tempSlave11, tempSlave12):

3.
4. import os
5. import time
6. import datetime
7.
8. #print "You are now in recordT"
9. file = open("/home/pi/Desktop/dataTemp.csv","a")
10. i = 0
11.
12. if os.stat("/home/pi/Desktop/dataTemp.csv").st_size == 0:

13. file.write("Time,Sensor1,Sensor2,Sensor3,Sensor4,Senso

r5,Sensor6,Sensor7,Sensor8,Sensor9,Sensor10,Sensor11,Sensor12\
n")

14.
15. while(i < 1):
16. timeRec = datetime.datetime.now().strftime("%Y-%m-%d_%

H:%M:%S")
17. file.write(str(timeRec)+","+str(tempSlave1)+","+str(te

mpSlave2)+","+str(tempSlave3)+","+str(tempSlave4)+","+str(temp
Slave5)+","+str(tempSlave6)+","+str(tempSlave7)+","+str(tempSl
ave8)+","+str(tempSlave9)+","+str(tempSlave10)+","+str(tempSla
ve11)+","+str(tempSlave12)+"\n")

18. i = i + 1
19. file.close
20. #print "Printing Done.\n"

84

1. #Function TotalVoltInArray.py
2. import serial
3. import time
4. import voltageValue
5. import recordV
6.
7. RomID1=([0x1B,0x12,0x4B,0x42,0x00,0x00,0x00,0x06])
8. RomID2=([0x1B,0x26,0x00,0x44,0x00,0x00,0x00,0xA7])
9. RomID3=([0x1B,0xBF,0x66,0x10,0x00,0x00,0x00,0xDB])
10. RomID4=([0x1B,0xA9,0x2C,0x41,0x00,0x00,0x00,0x31])
11. RomID5=([0x1B,0x8C,0x26,0x4B,0x00,0x00,0x00,0xCA])
12. RomID6=([0x1B,0xFF,0xB8,0x2B,0x00,0x00,0x00,0x8E])
13. RomID7=([0x1B,0x50,0x81,0x26,0x00,0x00,0x00,0x1C])
14. RomID8=([0x1B,0x07,0x84,0x13,0x00,0x00,0x00,0xAC])
15. RomID9=([0x1B,0x2A,0x18,0x15,0x00,0x00,0x00,0xCF])
16. RomID10=([0x1B,0xD0,0x94,0x2C,0x00,0x00,0x00,0x43])
17. RomID11=([0x1B,0x0A,0x34,0x08,0x00,0x00,0x00,0x05])
18. RomID12=([0x1B,0x3C,0x54,0x12,0x00,0x00,0x00,0x68])
19.
20. slavesNum = 1
21.
22. def TotalVoltInArray():
23. global RomID1 #Initialize all available DS2436 Sensors a

nd its' addresses
24. global RomID2
25. global RomID3
26. global RomID4
27. global RomID5
28. global RomID6
29. global RomID7
30. global RomID8
31. global RomID9
32. global RomID10
33. global RomID11
34. global RomID12
35. global slavesNum
36. global voltSlave1
37. global voltSlave2
38. global voltSlave3
39. global voltSlave4
40. global voltSlave5
41. global voltSlave6
42. global voltSlave4
43. global voltSlave5
44. global voltSlave6
45. global voltSlave7
46. global voltSlave8
47. global voltSlave9
48. global voltSlave10
49. global voltSlave11
50. global voltSlave12
51.
52.
53. while (slavesNum < 14):

85

54. if slavesNum == 1:
55. RomID=RomID1
56. Ratio=0.5198
57. break
58. elif slavesNum == 2:
59. RomID=RomID2
60. Ratio=0.5158
61. break
62. elif slavesNum == 3:
63. RomID=RomID3
64. Ratio=0.4838
65. break
66. elif slavesNum == 4:
67. RomID=RomID4
68. Ratio=0.4793
69. break
70. elif slavesNum == 5:
71. RomID=RomID5
72. Ratio=0.4735
73. break
74. elif slavesNum == 6:
75. RomID=RomID6
76. Ratio=0.5083
77. break
78. elif slavesNum == 7:
79. RomID=RomID7
80. Ratio=0.473
81. break
82. elif slavesNum == 8:
83. RomID=RomID8
84. Ratio=0.55
85. break
86. elif slavesNum == 9:
87. RomID=RomID9
88. Ratio=0.4894
89. break
90. elif slavesNum == 10:
91. RomID=RomID10
92. Ratio=0.5221
93. break
94. elif slavesNum == 11:
95. RomID=RomID11
96. Ratio=0.5289
97. break
98. elif slavesNum == 12:
99. RomID=RomID12
100. Ratio=0.4215
101. break
102. elif slavesNum == 13:
103. recordV.recordV(voltSlave1, voltSlave2, volt

Slave3, voltSlave4, voltSlave5, voltSlave6, voltSlave7, voltSl
ave8, voltSlave9, voltSlave10, voltSlave11, voltSlave12)

104. print "RECORDED, RETURNING TO RESET SLAVESNU
M"

86

105. slavesNum = 1
106. return
107. break
108.
109. #print "The slave number is %d \n" % (slavesNum)
110. voltageVal = voltageValue.voltageValue(RomID,Ratio)

111. #i = 0
112. #while i < 5:
113. # if (temperatureVal > 60 or temperatureVal <

 15):
114. # temperatureVal
115. # temperatureVal=temperatureValue(RomID)

116. # time.sleep(0.01)
117. # break
118. # i = i + 1
119.
120. #TempArray(1,SlavesNum) = temperatureVal
121. #print "The voltage of sensor %d is = %s \n" % (sla

vesNum, voltageVal)
122.
123.
124. while (slavesNum < 13):
125. if slavesNum == 1:
126. voltSlave1 = voltageVal
127. #print "Saving as %s \n" % voltSlave1
128. break
129. elif slavesNum == 2:
130. voltSlave2 = voltageVal
131. #print "Saving as %s \n" % voltSlave2
132. break
133. elif slavesNum == 3:
134. voltSlave3 = voltageVal
135. #print "Saving as %s \n" % voltSlave3
136. break
137. elif slavesNum == 4:
138. voltSlave4 = voltageVal
139. #print "Saving as %s \n" % voltSlave4
140. break
141. elif slavesNum == 5:
142. voltSlave5 = voltageVal
143. #print "Saving as %s \n" % voltSlave5
144. break
145. elif slavesNum == 6:
146. voltSlave6 = voltageVal
147. #print "Saving as %s \n" % voltSlave6
148. break
149. elif slavesNum == 7:
150. voltSlave7 = voltageVal
151. #print "Saving as %s \n" % voltSlave7
152. break
153. elif slavesNum == 8:
154. voltSlave8 = voltageVal

87

155. #print "Saving as %s \n" % voltSlave8
156. break
157. elif slavesNum == 9:
158. voltSlave9 = voltageVal
159. #print "Saving as %s \n" % voltSlave9
160. break
161. elif slavesNum == 10:
162. voltSlave10 = voltageVal
163. #print "Saving as %s \n" % voltSlave10
164. break
165. elif slavesNum == 11:
166. voltSlave11 = voltageVal
167. #print "Saving as %s \n" % voltSlave11
168. break
169. elif slavesNum == 12:
170. voltSlave12 = voltageVal
171. #print "Saving as %s \n" % voltSlave12
172. break
173.
174.
175. slavesNum = slavesNum + 1
176.
177. #a=TempArray(1,1)
178. #b=TempArray(1,2)
179. #c=TempArray(1,3)
180. #d=TempArray(1,4)
181. #e=TempArray(1,5)
182. #f=TempArray(1,6)
183. #g=TempArray(1,7)
184. #h=TempArray(1,8)
185. #i=TempArray(1,9)
186. #j=TempArray(1,10)
187. #k=TempArray(1,11)
188. #l=TempArray(1,12)
189.
190. #print a,b,c,d,e,f,g,h,i,j,k,l
191.
192. #return TempArray

1. #Function voltageValue.py
2. import convertV
3. import readV
4. import calcVolt
5.
6. def voltageValue(RomID,Ratio):
7. convertV.convertV(RomID) #Request sensor to do voltage con

version
8. [lsbVolt,msbVolt] = readV.readV(RomID) #Read temperature

from register
9. finalVolt = calcVolt.calcVolt(lsbVolt,msbVolt,Ratio) #Con

vert Temperature to a readable value (Check DS2436 datasheet p
age 11)

88

10. return finalVolt

1. #Function convertV.py
2. def convertV(RomID):
3. import FlushInputBuffer
4. import serial
5. import time
6.
7. # Serial Connection Settings
8. ser = serial.Serial(
9. port='/dev/ttyUSB0',
10. baudrate=9600,
11. parity=serial.PARITY_NONE,
12. stopbits=serial.STOPBITS_ONE,
13. bytesize=serial.EIGHTBITS,
14. timeout=0.01,
15.)
16. #print "You are now in ConvertV"
17. ser.isOpen()
18.
19. Result=ErrorChecking()
20.
21. ErrorCounter=0
22.
23. if Result==0 and ErrorCounter<5:
24. ErrorChecking()
25. ErrorCounter=ErrorCounter+1
26.
27. if ErrorCounter==4:
28. print "Error in communicating with slaves\n"
29.
30. ser.write('C1'.decode("hex")) # Set RESET C1, Receive

CD
31. r1=ser.read()
32. r1=r1.strip()
33. #print r1.encode("hex")
34.
35. ser.write('E1'.decode("hex")) # Set DATA MODE, Receive

 NOTHING
36. r2=ser.read()
37. r2=r2.strip()
38. #print r2.encode("hex")
39.
40. ser.write('55'.decode("hex")) # Set SKIP ROM 55, Recei

ve 55
41. r3=ser.read()
42. r3=r3.strip()
43. #print r3.encode("hex")
44.
45. ser.write((RomID)) # Write RomID, Receive RomID
46.
47. i = 1

89

48. while i < 9:
49. r4=ser.read()
50. r4=r4.strip()
51. #print "The value i = %s, current r4 = %r \n" % (i, r

4.encode("hex"))
52. i = i + 1
53.
54. ser.write('E3'.decode("hex")) # Set COMAND MODE E3, Re

ceive NOTHING
55. r5=ser.read()
56. r5=r5.strip()
57. #print "The commandmode E3, Receive Nothing %s: \n" % r5.

encode("hex")
58.
59. ser.write('EF'.decode("hex")) # Set ARM STRONG PULLUP

EF, Receive NOTHING
60. r6=ser.read()
61. r6=r6.strip()
62. #print "The ARMPULLUP EF, Receive Nothing %s: \n" % r6.en

code("hex")
63.
64. ser.write('F1'.decode("hex")) # Set TERMINATE PULSE F1

, Receive EF
65. r7=ser.read()
66. r7=r7.strip()
67. #print "The TerminatePulse F1, Receive EF %s: \n" % r7.en

code("hex")
68.
69. ser.write('E1'.decode("hex")) # Set DATA MODE E1, Rece

ive NOTHING
70. r8=ser.read()
71. r8=r8.strip()
72. #print "The data mode E1, Receive Nothing %s: \n" % r8.en

code("hex")
73.
74. ser.write('B4'.decode("hex")) # Set CONVERT VOLTAGE, R

eceive B4
75. time.sleep(0.015) # Conversion require at

least 10ms
76. r9=ser.read()
77. r9=r9.strip()
78. #print "The convert Voltage B4, Receive B4 %s: \n" % r9.e

ncode("hex")
79.
80. r10=ser.read() # POLL FOR RESPONSE PULS

E, Receive F6
81. r10=r10.strip()
82. #print "Receive RESPONSEPULSE F6 %s: \n" % r10.encode("he

x")
83.
84. ser.write('E3'.decode("hex")) # Set COMAND MODE E3, Re

ceive NOTHING
85. r11=ser.read()
86. r11=r11.strip()

90

87. #print "The command mode E3, Receive Nothing %s: \n" % r1
1.encode("hex")

88.
89. ser.write('ED'.decode("hex")) # Set DISARM STRONG PULL

UP ED, Receive NOTHING
90. r12=ser.read()
91. r12=r6.strip()
92. #print "The command mode ED, Receive Nothing %s: \n" % r1

2.encode("hex")
93.
94. ser.write('F1'.decode("hex")) # Set TERMINATE PULSE F1

, Receive EF
95. r13=ser.read()
96. r13=r13.strip()
97. #print "The terminatepulse F1, Receive EF %s: \n" % r13.e

ncode("hex")
98.
99. ser.write('C1'.decode("hex")) # Set RESET C1, Receive

CD
100. r14=ser.read()
101. r14=r14.strip()
102. #print "The C1, ReceiveCD %s: \n" % r14.encode("hex

")
103.
104. r15=ser.read()
105. r15=r15.strip()
106. #print "Receive Nothing %s: \n" % r15.encode("hex")

107.
108. #print "Done voltage conversion!\n"
109.
110.
111. def ErrorChecking():
112. import serial
113. import FlushInputBuffer
114.
115. # Serial Connection Settings
116. ser = serial.Serial(
117. port='/dev/ttyUSB0',
118. baudrate=9600,
119. parity=serial.PARITY_NONE,
120. stopbits=serial.STOPBITS_ONE,
121. bytesize=serial.EIGHTBITS,
122. timeout=0.01,
123.)
124.
125. ser.isOpen()
126.
127. FlushInputBuffer.FlushInputBuffer()
128.
129. ser.write('E3'.decode("hex")) # Set COMMAND MODE

 E3, before data interfacing as precaution
130. r16 = ser.read()
131. r16 = r16.strip()

91

132. #print r16.encode("hex")
133.
134. ser.write('33'.decode("hex")) # Set PULLUP DURAT

ION=524ms, Receive 32
135. r17 = ser.read()
136. r17 = r17.strip()
137. #print r17.encode("hex")
138.
139. DataShouldBeReceived='32'.decode("hex") # Check for

Correct Data Received, PULLUP DUR=65.6ms
140. r18 = (r17 == DataShouldBeReceived)
141. if r18 == True:
142. #print "Correct Data Received\n"
143. Result = 1
144. else:
145. print "ERROR! Resend Command Code\n"
146. Result = 0

1. #Function readV.py
2. def readV(RomID):
3. import FlushInputBuffer
4. import serial
5. import time
6.
7. # Serial Connection Settings
8. ser = serial.Serial(
9. port='/dev/ttyUSB0',
10. baudrate=9600,
11. parity=serial.PARITY_NONE,
12. stopbits=serial.STOPBITS_ONE,
13. bytesize=serial.EIGHTBITS,
14. timeout=0.01,
15.)
16. #print "You are now in ReadV"
17. ser.isOpen()
18. r0=ser.read()
19. r0=r0.strip()
20. #print "The serial port reopen and reads %s: \n" % r0.enc

ode("hex")
21.
22. FlushInputBuffer.FlushInputBuffer()
23.
24. ser.write('C1'.decode("hex")) # Set RESET C1, Receive

CD
25. r1=ser.read()
26. r1=r1.strip()
27. #print "The reset C1, Receive CD %s: \n" % r1.encode("hex

")
28.
29. ser.write('E1'.decode("hex")) # Set DATA MODE, Receive

 NOTHING
30. r2=ser.read()

92

31. r2=r2.strip()
32. #print "The reset DATAMODE E1, Receive NOTHING %s: \n" %

r2.encode("hex")
33.
34. ser.write('55'.decode("hex")) # Set SKIP ROM 55, Recei

ve 55
35. r3=ser.read()
36. r3=r3.strip()
37. #print "Receive 55 %s: \n" % r3.encode("hex")
38.
39. #print "The current RomID at LoopingForTesting is = %s: \

n" % RomID
40.
41. ser.write((RomID)) # Write RomID, Receive RomID
42.
43. i = 1
44. while i < 9:
45. r4=ser.read()
46. r4=r4.strip()
47. print "The value i = %s, current r4 = %r \n" % (i, r4

.encode("hex"))
48. i = i + 1
49.
50. ser.write('B2'.decode("hex")) # Set READ REGISTER B2,

Receive B2
51. r5=ser.read()
52. r5=r5.strip()
53. #print "The read register B2, Receive B2 %s: \n" % r5.enc

ode("hex")
54.
55. ser.write('77'.decode("hex")) # Set VOLTAGE ADDRESS 77

, Receive 77
56. r6=ser.read()
57. r6=r6.strip()
58. #print "The Voltage Address 77, Receive 77 %s: \n" % r6.e

ncode("hex")
59.
60. ser.write('FF'.decode("hex")) # Obtain LSB VOLTAGE
61. r7=ser.read()
62. lsbVolt=r7.strip()
63. lsbVolt=lsbVolt.encode("hex")
64. #print "The lsbVolt of battery value = %s: \n" % lsbVolt

65.
66. ser.write('FF'.decode("hex")) # Obtain MSB VOLTAGE
67. r8=ser.read()
68. msbVolt=r8.strip()
69. msbVolt=msbVolt.encode("hex")
70. #print "The msbVolt of battery value = %s: \n" % msbVolt

71.
72. ser.write('E3'.decode("hex")) # Set COMAND MODE E3, Re

ceive NOTHING
73. r9=ser.read()

93

74. r9=r9.strip()
75. #print "The commandmode E3, Receive NOTHING %s: \n" % r9.

encode("hex")
76.
77. ser.write('C1'.decode("hex")) # Set RESET PULSE C1, Re

ceive CD
78. r10=ser.read()
79. r10=r10.strip()
80. #print "The reset C1, Receive CD %s: \n" % r10.encode("he

x")
81.
82. return lsbVolt,msbVolt
83.
84. #print "Done voltage reading!\n"

1. #Function calcVolt.py
2. def calcVolt(lsbVolt,msbVolt,Ratio):
3.
4. #print "You are now in calcVolt"
5.
6. if len(lsbVolt) == 1:
7. lsbVolt = str(0) + lsbVolt
8.
9. combinedVolt = msbVolt + lsbVolt
10. #print "The combinedVolt added together = %s: \n" % combi

nedVolt
11.
12. voltInDecimal = int(combinedVolt,16)
13. #print "The voltInDecimal = %s: \n" % voltInDecimal
14.
15. voltMeasured = float(voltInDecimal / 100)
16. finalVolt = (voltMeasured / Ratio)
17.
18. #print "The finalVolt is = %s: \n" % finalVolt
19. #print "Done temperature calculation!\n"
20.
21. return finalVolt

1. #Function record.py
2. def recordV(voltSlave1, voltSlave2, voltSlave3, voltSlave4, vo

ltSlave5, voltSlave6, voltSlave7, voltSlave8, voltSlave9, volt
Slave10, voltSlave11, voltSlave12):

3.
4. import os
5. import time
6. import datetime
7.
8. #print "You are now in recordT"
9. file = open("/home/pi/Desktop/dataVolt.csv","a")
10. i = 0

94

11.
12. if os.stat("/home/pi/Desktop/dataVolt.csv").st_size == 0:

13. file.write("Time,Sensor1,Sensor2,Sensor3,Sensor4,Senso

r5,Sensor6,Sensor7,Sensor8,Sensor9,Sensor10,Sensor11,Sensor12\
n")

14.
15. while(i < 1):
16. timeRec = datetime.datetime.now().strftime("%Y-%m-%d_%

H:%M:%S")
17. file.write(str(timeRec)+","+str(voltSlave1)+","+str(vo

ltSlave2)+","+str(voltSlave3)+","+str(voltSlave4)+","+str(volt
Slave5)+","+str(voltSlave6)+","+str(voltSlave7)+","+str(voltSl
ave8)+","+str(voltSlave9)+","+str(voltSlave10)+","+str(voltSla
ve11)+","+str(voltSlave12)+"\n")

18. i = i + 1
19. file.close
20. #print "Printing Done.\n"

1. #GPSread.py
2. #! /usr/bin/python
3. # License: GPL 2.0
4.
5. import os
6. from gps import *
7. from time import *
8. import time
9. import threading
10. import datetime
11. import math
12.
13. gpsd = None #seting the global variable
14. utcOld = 0
15. Result = 0
16. k = 0
17.
18. os.system('clear') #clear the terminal (optional)
19.
20. class GpsPoller(threading.Thread):
21. def __init__(self):
22. threading.Thread.__init__(self)
23. global gpsd #bring gpsd in scope
24. gpsd = gps(mode=WATCH_ENABLE) #starting the stream of info

25. self.current_value = None
26. self.running = True #setting the thread running to true
27.
28. def run(self):
29. global gpsd
30. while gpsp.running:
31. gpsd.next() #this will continue to loop and grab EACH se

t of gpsd info to clear the buffer

95

32.
33. def isNum(num):
34. return num != num
35.
36. if __name__ == '__main__':
37. gpsp = GpsPoller() # create the thread
38. try:
39. gpsp.start() # start it up
40. while True:
41. #It may take a second or two to get good data
42. #print gpsd.fix.latitude,', ',gpsd.fix.longitude,' Time

: ',gpsd.utc
43.
44. os.system('clear')
45.
46. print
47. print ' GPS reading'
48. print '--'
49. print 'latitude ' , gpsd.fix.latitude
50. print 'longitude ' , gpsd.fix.longitude
51. print 'time utc ' , gpsd.utc,' + ', gpsd.fix.time
52. print 'altitude (m)' , gpsd.fix.altitude
53. print 'eps ' , gpsd.fix.eps
54. print 'epx ' , gpsd.fix.epx
55. print 'epv ' , gpsd.fix.epv
56. print 'ept ' , gpsd.fix.ept
57. print 'speed (m/s) ' , gpsd.fix.speed
58. print 'climb ' , gpsd.fix.climb
59. print 'track ' , gpsd.fix.track
60. print 'mode ' , gpsd.fix.mode
61. print
62. print 'sats ' , gpsd.satellites
63.
64. time.sleep(0.5) #set to delay
65.
66. file = open("/home/pi/Desktop/dataGPS.csv","a")
67. i = 0
68.
69. if os.stat("/home/pi/Desktop/dataGPS.csv").st_size == 0:

70. file.write("Time,Latitude,Longitude,Altitude(m),Speed(

kph),Climb(m/min),Track,GPS Mode,Satellites\n")
71.
72. while(i < 1):
73. timeRec = datetime.datetime.now().strftime("%Y-%m-%d_%

H:%M:%S")
74. file.write(str(timeRec)+","+str(gpsd.fix.latitude)+","

+str(gpsd.fix.longitude)+","+str(gpsd.fix.altitude)+","+str(gp
sd.fix.speed)+","+str(gpsd.fix.climb)+","+str(gpsd.fix.track)+
","+str(gpsd.fix.mode)+"\n")

75. i = i + 1
76. file.close
77.
78.

96

79. except (KeyboardInterrupt, SystemExit): #when ctrl+c is pres
sed

80. print "\nKilling Thread..."
81. gpsp.running = False
82. gpsp.join() # wait for the thread to finish what it's doin

g
83. print "Done.\nExiting."

1. #Current Sensor Interfacing and Logging
2. #LoopingForTesting.py
3. import ADC
4. import recordCurrent
5. import time
6.
7. cycleValue = 1
8. while cycleValue < 5800:
9. current = ADC.ADC()
10. recordCurrent.recordCurrent(current)
11. print "Cycle %s is done \n\n\n" %cycleValue
12. cycleValue = cycleValue + 1
13. #time.sleep(0.5)

1. #Function ADC.py
2. def ADC():
3.
4. import spidev
5. import time
6. import os
7.
8. print "You are now in ADC"
9. MaxSensorAmp = 600
10. LinearlityError = 1.5
11. Ipn = 400
12.
13. # Initialize SPI bus
14. spi = spidev.SpiDev()
15. spi.open(0,0)
16.
17. # Obtain reference voltage of sensor at 0A
18. channel = 1 # Channel 1 is the Reference Voltage
19. spidata = spi.xfer2([1, (2+channel) << 6, 0])
20. print("Raw ADC: {}".format(spidata))
21. channeldataRef = ((spidata[1] & 31) << 6) + (spidata[2] >>

 2)
22. voltageRef = ((channeldataRef * 4.35) / 1024) # 4.35V supp

lied by RaspberryPi
23. print("Data ref C1(dec) {}".format(channeldataRef))
24. print("Voltage ref(V): {}".format(voltageRef))
25.

97

26.
27. # Obtain output voltage of sensor (without compensation)
28. channel = 0 # Channel 0 is the Measured Voltage
29. spidata = spi.xfer2([1, (2+channel) << 6, 0])
30. print("Raw ADC: {}".format(spidata))
31. channeldata = ((spidata[1] & 31) << 6) + (spidata[2] >> 2)

32. voltage = ((channeldata * 4.35) / 1024) # 4.35V supplied b

y RaspberryPi
33. print("Data C0 (dec) {}".format(channeldata))
34. print("Voltage (V): {}".format(voltage))
35.
36. current = (voltage - voltageRef) / 0.003333
37. print("Current (A): {}".format(current))
38.
39. return current

1. #Function recordCurrent.py
2. def recordCurrent(current):
3.
4. import os
5. import time
6. import datetime
7. from sympy import*
8.
9. print "You are now in recordCurrent"
10. file = open("/home/pi/Desktop/dataCurrent.csv","a")
11. i = 0
12.
13. t = Symbol('t')
14. start_time = time.time()
15. j = current
16. end_time = (time.time()- start_time) / 60
17. totalCharge = integrate(j, (t,0,end_time))
18.
19. if os.stat("/home/pi/Desktop/dataTemp.csv").st_size == 0:

20. file.write("Time,Current,Total Charge")
21. while(i < 1):
22. timeRec = datetime.datetime.now().strftime("%Y-%m-%d_%

H:%M:%S")
23. file.write(str(timeRec)+","+str(current)+str(totalChar

ge)+"\n")
24. i = i + 1
25. file.close
26. print "Printing Done.\n"

1. import time
2. from sympy import*
3. t = Symbol('t')

98

4. start_time = time.time()
5. i = 20 # i = total current
6. end_time = (time.time()- start_time)/60
7. totalcharge = integrate(i, (t,0,end_time))
8. print totalcharge

1. #CANBUS interfacing and logging
2. #Data_CAN.py
3. #!/usr/bin/env python
4. #!/bin/bash
5.
6. import subprocess
7. import time
8. import datetime
9. import os
10. import RPi.GPIO as GPIO
11.
12. GPIO.setmode(GPIO.BCM)
13. GPIO.setwarnings(False)
14. GPIO.cleanup()
15. GPIO.setup(17,GPIO.OUT)
16. GPIO.output(17,GPIO.LOW)
17. GPIO.setup(27,GPIO.OUT)
18. GPIO.output(27,GPIO.LOW)
19. GPIO.setup(22,GPIO.OUT)
20. GPIO.output(22,GPIO.LOW)
21. GPIO.setup(24,GPIO.OUT)
22. GPIO.output(24,GPIO.LOW)
23.
24. log="/home/pi/Desktop/dataCan.csv"
25. bashCommand1= "sudo ./slcan_attach -f -s4 -o /dev/ttyACM0"
26. bashCommand2="sudo ./slcand ttyACM0 slcan0"
27. bashCommand3="sudo ifconfig slcan0 up"
28. bashCommand4="sudo ./candump slcan0"
29. cycle = 0
30.
31. def runBash(exe, count):
32. process = subprocess.Popen(exe.split(), cwd='/can-

utils', stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
33. print "executing now"
34. while(True):
35. retcode = process.poll() #returns None while subproce

ss is running
36. line = process.stdout.readline()
37. yield line
38. count = count + 1
39. print "%d \n" %count
40. if(retcode is not None):
41. break
42.
43. for line in runBash(bashCommand1, cycle):
44. print line

99

45. for line in runBash(bashCommand2, cycle):
46. print line
47. for line in runBash(bashCommand3, cycle):
48. print line
49. for line in runBash(bashCommand4, cycle):
50. print line
51. timeRec = datetime.datetime.now().strftime("%Y-%m-%d_%

H:%M:%S")
52. line = line.strip()
53. line = line.split()
54.
55. i = 0
56. j = 0
57. m = 0
58. n = 0
59. address = int(line[1],10)
60. if address == 601:
61. print "Recording dataCAN1./n"
62. file = open("/home/pi/Desktop/dataCAN1.csv","a")
63.
64. if os.stat("/home/pi/Desktop/dataCAN1.csv").st_siz

e == 0:
65. file.write("Time, Interface, Address, Bits, Mo

tor RPM, Motor Temperature, Controller Temperature, RMS Curren
t, Battery Voltage\n")

66.
67. while(i < 1):
68. rpm = line[3] + line[4]
69. rpm = int(rpm,16)
70. motorTemp = int(line[5],16)
71. conTemp = int(line[6],16)
72. current = line[7] + line[8]
73. current = (int(current,16))*0.1
74. battVolt = line[9] + line[10]
75. battVolt = (int(battVolt,16))*0.1
76. file.write(str(timeRec)+","+str(line[0])+","+s

tr(line[1])+","+str(line[2])+","+str(rpm)+","+str(motorTemp)+"
,"+str(conTemp)+","+str(current)+","+str(battVolt)+"\n")

77. file.close
78. break
79.
80. else:
81. print "Recording dataCAN2./n"
82. file = open("/home/pi/Desktop/dataCAN2.csv","a")
83.
84. if os.stat("/home/pi/Desktop/dataCAN2.csv").st_siz

e == 0:
85. file.write("Time, Interface, Address, Bits, St

ator Frequency, Primary Controller Fault, Secondary Controller
 Fault, Throttle Input Percentage, Brake Input Percentage, Sys
tem State\n")

86.
87. while(i < 1):
88. statorF = line[3] + line[4]

100

89. statorF = int(statorF,16)
90. if statorF > 1:
91. faultP = int(line [5],16)
92. print faultP
93. faultS = int((line [6]),16)
94. print faultS
95. throttle = int(line[7],16)
96. brake = int(line[8],16)
97. system = int(line[9],16)
98. print system
99. file.write(str(timeRec)+","+str(line[0])+"

,"+str(line[1])+","+str(line[2])+","+str(statorF)+","+str(faul
tP)+","+str(faultS)+","+str(throttle)+","+str(brake)+","+str(s
ystem)+"\n")

100. file.close
101. if faultP > 0:
102. print "WARNING: CONTROLLER FAULT

 DETECTED!\n Initiating EMERGENCY STOP!"
103. GPIO.output(17,GPIO.HIGH)
104. time.sleep(0.1)
105. GPIO.output(17,GPIO.LOW)
106. if faultP < 10:
107. while (j != faultP):
108. GPIO.output(24,GPIO.HIGH

)
109. time.sleep(0.5)
110. GPIO.output(24,GPIO.LOW)

111. time.sleep(0.5)
112. j = j + 1
113. if (j == faultP):
114. n = 0
115. time.sleep(3)
116. break
117. else:
118. faultP = str(faultP)
119. faultS = str(faultS)
120. faultP1 = faultP[0]
121. faultP2 = faultP[1]
122. while (m != faultP1):
123. GPIO.output(24,GPIO.HIGH

)
124. time.sleep(0.5)
125. GPIO.output(24,GPIO.LOW)

126. m = m + 1
127. if (m == faultP1):
128. m = 0
129. GPIO.output(24,GPIO.HIGH

)
130. time.sleep(1.5)
131. GPIO.output(24,GPIO.LOW)

132. break

101

133. while (n != faultP2):
134. GPIO.output(24,GPIO.HIGH

)
135. time.sleep(0.5)
136. GPIO.output(24,GPIO.LOW)

137. m = n + 1
138. if (n == faultP2):
139. n = 0
140. time.sleep(3)
141. break
142.
143. if system == 10 :
144. print "ECO MODE"
145. GPIO.output(27,GPIO.HIGH)
146. time.sleep(0.5)
147. GPIO.output(27,GPIO.LOW)
148.
149. if system == 42 :
150. print "REGENERATIVE MODE"
151. GPIO.output(22,GPIO.HIGH)
152. time.sleep(0.5)
153. GPIO.output(22,GPIO.LOW)
154. break

1. #Auto Run Script on Boot
2. import time
3. import threading
4. import os
5.
6. def startprgm(i):
7. print "Running thread %d" % i
8. if (i == 0):
9. print('Running: Data_CANp.py')
10. os.system("sudo python /home/pi/Desktop/FINAL_CODES/CANBUS

/Data_CANp.py")
11. elif (i == 1):
12. print('Running: GPSread.py')
13. os.system("sudo python /home/pi/Desktop/FINAL_CODES/GPS/GP

Sread.py")
14. elif (i == 2):
15. print('Running: Current-LoopingForTesting.py')
16. os.system("sudo python /home/pi/Desktop/FINAL_CODES/Curren

t/LoopingForTesting.py")
17. elif (i == 3):
18. print('Running: TempVolt-LoopingForTesting.py')
19. os.system("sudo python /home/pi/Desktop/FINAL_CODES/Loopin

gForTesting.py")
20. elif (i == 4):
21. print('Running: shutdown.py')
22. os.system("sudo python /home/pi/Desktop/Scripts/shutdo

wn_pi.py")
23.

102

24. else:
25. pass
26.
27. for i in range(5):
28. t = threading.Thread(target=startprgm, args=(i,))
29. t.start()

1. #Shut Down Script
2. #shutdown_pi.py
3. #!/bin/python
4. # Simple script for shutting down the Raspberry Pi at the pres

s of a button.
5.
6. import RPi.GPIO as GPIO
7. import time
8. import os
9.
10. # Use the Broadcom SOC Pin numbers
11. # Setup the Pin with Internal pullups enabled and PIN in readi

ng mode.
12. GPIO.setmode(GPIO.BCM)
13. GPIO.setwarnings(False)
14. GPIO.setup(24,GPIO.OUT)
15. GPIO.setup(23, GPIO.IN, pull_up_down = GPIO.PUD_UP)
16.
17. # Add function on what to do when the button is pressed
18. def Shutdown(channel):
19. os.system("sudo shutdown -h now")
20. GPIO.output(24,GPIO.HIGH)
21. time.sleep(2)
22. GPIO.output(24,GPIO.LOW)
23. time.sleep(2)
24.
25. # Add function to execute when the button pressed event happen

s
26. GPIO.output(24,GPIO.HIGH)
27. time.sleep(0.1)
28. GPIO.output(24,GPIO.LOW)
29. time.sleep(0.1)
30. GPIO.output(24,GPIO.HIGH)
31. time.sleep(0.1)
32. GPIO.output(24,GPIO.LOW)
33. time.sleep(0.1)
34. GPIO.output(24,GPIO.HIGH)
35. time.sleep(0.1)
36. GPIO.output(24,GPIO.LOW)
37. GPIO.add_event_detect(23, GPIO.FALLING, callback = Shutdown, b

ouncetime = 2000)
38.
39. # Now wait!
40. while 1:
41. time.sleep(1)

