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ELECTRIC VEHICLE CONVERSION PROJECT – HARDWARE 

IMPLEMENTATION AND DATA ACQUISITION SYSTEM 

 

 

ABSTRACT 

 

 

The main goal of the project focuses on the building the hardware for Electrical 

Vehicle Intelligent Monitoring System (EVICS). Developments of this projects 

include the usage of sensors, actuators, microcontrollers, microcomputers and 

electronic modules to support the hardware and software for the monitoring system. 

Coming from a vehicle originally fitted with internal combustion engine, it is realized 

that there exist several missing parameters that should be monitored with the fitting of 

the new electric motor and its controller. Furthermore, with the fuel running from 

batteries, it is evident that a proper vehicular information system needs to be 

established in order to provide the driver with the critical driving information, 

combining both electrical and conventional parameters, as the existing conventional 

gauges would not be much useful. This information can also be combined with a user 

interaction system and entertainment system to provide practical vehicle controls setup. 

The main interfacing systems that are involved in this project is the Raspberry Pi and 

CANBUS network. The CANBUS network has data fed from the electric vehicle 

controller, which provides essential information regarding the electric vehicle controls. 

Raspberry Pi is then used to collect data from various sensors and driver’s feedback, 

including CANBUS data for further processing. The processed data is then output via 

a display to allow the driver to monitor their electric vehicle easily. Access to non-

displayed parameters can also be done for mechanics and advanced users, which may 

review critical vehicular information which is logged systematically across time 

domain. A secondary system is also made available for driver or passenger use for 

non-critical components such as navigation and entertainment systems. As such, a 

comprehensive electric vehicle control system can be realized. 
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CHAPTER 1 

 

 

 

1 INTRODUCTION 

 

 

 

1.1 Background 

 

With the increasing advancement of technology, the controls of a system become 

increasingly sophisticated, making the monitoring the system manually to be a rather 

meticulous process. It is, therefore, desirable to create an interface capable of 

overseeing and gaining control on the whole operation of the system, yet simplified 

enough where learning curve of system controls to be minimal for the average users. 

By using a user interface, the gaps between user operations and systems controls can 

be bridged, allowing users to empower the technology and the systems to unleash its 

full potential. 

 

The leading of graphical user interfaces in commercial and industry products 

has proven that the consumers and market are in favour of such interface over 

traditionally based interfaces such as text or command-based interfaces. Today, 

graphical user interface is present in many of everyday digital devices that require 

interactions, from household devices such as television to home automation systems, 

communication devices such as wireless radios to smartphones, also catching up close 

are automotive systems. The days where drivers are only fed with driving information 

through gauges and warning lights are now replaced with digital gauges and display 

panels. Further integration with in-car entertainment systems also applauds the 

consumers, where drivers and even passengers are now able to feed in information to 

the systems as well, easily and swiftly via the graphical user interface. Such concept 
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can be summarized as an infotainment system. Vehicle settings and controls not only 

can be viewed but also altered on the fly, via usage of touch sensitive displays with 

system’s haptic feedback as well. The same applies to the in-car entertainment systems 

where the roles of such system have increased to accommodate radio, optical players, 

GPS systems, video cameras, parking assistance and further integration to suit vehicle 

automated controls are even possible. 

 

 Besides viewing and controlling the vehicle’s parameters, the complex 

integration of computer systems and hardware sensors network present also allows 

advanced vehicular monitoring systems, which keeps the vehicle conditions in the 

soundest way possible at all times. Commonly integrated sensors include manifold 

absolute pressure sensors for engine load sensing, wheel speed sensors for anti-lock 

braking systems, throttle position sensor for throttle input and tire pressure sensor for 

tire pressure monitoring. Abnormalities, warning, and hazards which are detected by 

the sensors will alert user via the graphical user interface or provide mechanical 

feedback; whereas for major or fatal issues, driver will be prompted for immediate 

input, and in real emergencies, the vehicular system may respond and take control 

based on sensors parameters, and return controls once the perceived hazard is over. It 

is no doubt that monitoring systems take the lead to play an essential role in active 

vehicle safety. 

 

 This project primarily focuses on the implementation of monitoring and control 

systems concepts into the Electric Vehicle Intelligent Control System (EVICS), which 

is currently developed electric conversion car project under the research of UTAR 

Centre of Vehicular Technology. Initially a conventional internal combustion engine 

vehicle, the dashboard gauges are therefore dated and catered specifically for the use 

of internal combustion engine, rendering most of the gauges and warning lights unused 

such as mechanical RPM meter, water coolant temperature, fuel gauge and check 

engine lights unusable. The provided display gauges from the electric vehicle 

controller are yet limited to a separate mechanical display for battery pack voltage, 

battery pack current, LED bar display on remaining level of the battery pack and a 

single line multi parameters display with a toggle switch to toggle between parameters. 

Such setup provides information to the driver in a rather clunky manner, not 
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mentioning reading of the gauges is difficult and clumsy during driving, and a 

backlight is virtually non-existent for the gauges during night driving, making the 

driving experience not pleasurable. A proposal to improve such situation includes a 

complete makeover of the existing vehicular information system, user interaction 

system and also entertainment system. Such setup would not only provide the driver 

with the vehicle information on the fly, yet at the same time be entertained by the 

music while being guided to the destination safely via control and navigation system, 

which ultimately makes the driving a pleasurable experience. 

 

 The conceptualization of the new EVICS systems includes the collection of 

vehicle data from vehicle controller’s CANBUS system, which provides essential 

vehicle parameters, also utilizing the CANBUS system’s CANopen communication 

protocol to read the electric vehicle controller’s system parameters. The parameters, 

besides being viewed, are also being logged systematically, along with data from 

vehicular sensors network of the electric vehicle. Further controls of the vehicle are 

possible with the integration of actuators and sensors into the GUI, where GUI is not 

reserved only for the entertainment and navigation system, but also possible to allow 

simpler and autonomous operations of existing in-car systems. Safety measures of the 

electric vehicle systems are also integrated into the EVICS to ensure the driver is 

always notified for critical warnings for immediate corrective actions to be performed. 
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1.2 Aims and Objectives 

 

The several proposals to improve the current monitoring systems include: 

 To investigate vehicular parameters monitoring that is applicable to electric 

vehicle systems 

 To design, construct and build the interfacing modules and install all the 

required components for vehicle systems monitoring and controls 

 To analyse and improve existing electric vehicular system integration with 

external sensors network 

 To obtain the complete vehicular controller’s systems parameter via CANBUS 

 To display the parameters of the obtained information and processed output 

from the vehicular systems 



 

 

 

 

 

CHAPTER 2 

 

 

 

2 LITERATURE REVIEW 

 

 

 

2.1 Conceptualization of Electric Vehicle 

 

Conceptualization of electric vehicle has come a long way with varieties of form factor. 

Originally based on rail vehicles, the idea has evolved into the marketable consumer 

vehicle segment and have spread to general commercial usage due to its known 

reliability and performance. Generally, electric vehicle consists of several main 

components, including the electrical energy source, electrical motor, and auxiliary 

components. The components are then linked up into through different interfacing via 

mechanical and electrical means to allow the system to work out harmoniously as an 

electrical vehicle. 

 

Realizing the interfacing systems as the key role in linking up all the 

subsystems together, it is vital to ensure that each components parameters are able to 

be accessed, monitored and controlled individually to ensure the parameters are always 

in range of the optimal conditions. Furthermore, in this project which involves the 

conversion of internal combustion engine to a fully electric vehicle, the existing 

control systems present in the vehicle became cease in operation and incompatible 

with the new hardware setup. Therefore, a new EVICS system should be established 

to manage the communications of these systems and providing the user a proper 

interface for viewing and handling the vehicular systems parameters.  
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2.2 EVICS 

 

Serving more than just a simple platform to replace the existing internal combustion 

engine controller in the electric vehicle, the EVICS also functions in acquiring, oversee 

and control all the duties to ensure the electric vehicle systems are in its best state at 

all times. The EVICS are expected to monitor the electric vehicle systems information 

such as battery monitoring systems, including battery information on battery voltage 

and current, cells health and charged state. Electric motor controls are also to be 

considered, where motor rotational speed, motor temperature, and motor current 

should be able to be deduced. Not to be left out is the conventional driving parameters 

such as speedometer, trip gauges, mileage gauges and visual or feedback warning 

system. 

 

Similar concepts have been introduced in electric vehicle’s manufacturers, 

where every particular detail has been paid to match the eccentric electric vehicle. 

Taking BMW i8 as an example, powered by powerful NVIDIA visual computing 

module, provides drivers with all the information required right on their dash as in 

Figure 2.1. From digital gauges to the entertainment systems to car handling systems, 

it’s all in driver fingertips. The digital gauges constantly feeds drivers with the familiar 

information of the vehicle such as remaining travel range and next service 

appointments, while its entertainment system provides display with array of functions 

including an 8.8 inches touchscreen display, Bluetooth Audio Streaming and 

Handsfree Service, Smartphone Integration, navigation service, voice command 

option and real-time traffic information. BMW proprietary iDrive System also allows 

users to access vehicles computer to make changes directly to an on-board vehicular 

computer to suit their needs. Running on such platform requires massive computing 

power, which the NVIDIA module that provides stunning graphic and audio 

processing, capable of running a dual 4k display at once, at a much-reduced power 

consumption than a typical CPU. 
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Figure 2.1: BMW i8 dash display with virtual dials (Stevens, 2014) 

 

 

 

2.3 Vehicular Parameters Sensing 

 

2.3.1 Revolutions per Minute (RPM) 

 

A tachometer is a dial of revolutions per minute served to show the engine crank 

rotational speed. Such readings allow drivers to select throttle level and gear settings 

to suit the dynamic driving conditions. A typical RPM gauge displays a range of values 

with some portion of the values placed in a red zone, where values in the red zone 

exceed the recommended safety limits of the engine speed.  

 

Traditionally, the RPM is measured through a Hall Effect sensor placed near 

the engine coil leads from the low tension sides. Hall Effect is the measure of the 

generation of potential difference under a perpetually placed magnetic field 

perpendicularly across a conductor which carries electric current. The sensing 

component is usually placed near the high voltage ignition leads of the engine. By 

detecting the changes in deflection of electrons and magnetic flux intensity and further 

amplified with a processing circuitry, the RPM count can be calculated. This type of 

measurement provides an accurate, contactless yet relatively portable in size. Similar 

configurations can also be mounted on motor, gearbox, wheel or any rotating parts that 

are proportional to the motor speed, replacing the sensors with optoisolators instead 



8 

 

which uses light emission and photosensitive transducers, effectively eliminating 

sensing error from ferrous dust and are often reliable enough to include speed sensing 

as well.  

 

 Another approach in measuring the RPM of the engine is by determining the 

frequency on the alternator rotation. This alternator rotational output is also known as 

“AC Tap” tachometer output, which output is connected to the stator’s coil output 

before the rectifier. The signal output from this terminal as of Figure 2.2 consists of 

sine waves or sine waves with zero negative crossings are then processed as pulses. 

After dividing the pole of the alternator and evaluating the multiples of the frequency 

as compared to the alternator rotational frequency, the RPM reading can be obtained. 

However, the readings direct from the terminals can be quite filled with electrical 

surges and spikes, which may disrupt the reading values if not handled properly. Since 

the readings are based on alternator rotational input, it is important to ensure that the 

belts connecting the camshaft and the alternator always adhere to manufacturer's 

specification as any slippage or misalignment of belts may cause the alternator rotation 

speed to be affected, rendering the RPM readings to be flawed. 

 

 

Figure 2.2: Alternator with AC tap output as indicated by the sticker label 

(Prestolite, n.d) 
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2.3.2 Motor Temperature 

 

Motor temperature, one of the most vital parameters that keep the vehicle on the move, 

is rather sensitive to temperature rise. Standard terms used in the AC motor industry 

realized that the motor life span is halved for every 10°C rise of the motor’s rated 

temperature. Therefore, to ensure the reliability of the motor, such parameter should 

be monitored close enough to ensure the temperature of the motor is always within its 

ceiling temperature. 

 

However, it is also realized that measuring the temperature of the motor can 

also be difficult as its thermal distribution of the subsection of the motor depends on 

the motor’s geometry and construction. It is noted that generation of heat from bearing 

frictional loss and electromagnetic loss should be the major account of temperature 

rise. Research also has shown that the highest temperature of the motor occurs is due 

to the low thermal conductivity of air and winding insulations, resulting the end 

windings of the motor to be the hottest region, which is denoted in Figure 2.3. (Kuria 

and Hwang, 2012) Such issue is not desired as the failing of windings will cause a 

major failure, causing issues to the electric vehicle users. 

 

 

Figure 2.3: Contours of temperature of motor components (Kuria and Hwang, 

2012) 
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 An implementation of temperature sensors to the electric motor can be done to 

counter such issue. The temperature of the motor can be measured with thermocouples, 

thermistors and infrared measurement device, which offers either contact or non-

contact measurement options. However, due to the construction of the electric motor 

where actual motor’s temperature is determined by the hottest windings spot, checking 

the motor temperature via an external probe is rather inaccurate. Rather, the motor 

itself would provide a temperature sensor probes and its temperature signal will be sent 

for further processing. (Sarma and Nagaraju, 2012) 

 

 

 

2.3.3 Controller Temperature 

 

At the heart of the electric vehicle lies the motor controller which provides the main 

control systems on driving the electric vehicle, right from obtaining the power from 

the main battery pack, managing user controls, ramping up the voltage and current to 

drive the electric motor, not to mention also handling all the circuitry and settings that 

are involved within the electric vehicle systems. 

 

 Generally, a motor controller will be connected to a direct current (DC) battery 

source and a motor for drive systems. The motor controller will acquire power from 

the DC source and outputs a variable voltage or current supply needed by the electric 

motor to control the motor speed or torque. Such output also depends on a few 

parameters, including motor types, mapped motor response graph and user input. 

Modern electric vehicle controllers utilize advanced pulse width modulation 

techniques, making the electric drive system a high efficiency one as compared to older 

variable resistor arrangement. Also, can be expected from PWM drives include low 

motor harmonics and low torque ripple providing smooth speed control with 

minimized heating losses.  

 

 Such technology is realized by power transistor modules, allowing voltage and 

switching to be driven based on frequencies. However, one should realize that the high 

voltage or current transient, coupled with high motors inductance may cause quick and 

large heating effect on the power transistors, stressing the components. It is also 
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realized that once the controller temperature reaches a maximum tolerable value, the 

controller’s performance will be throttled. To counter such issue, much designing and 

care have been taken during the design stage of the controller, yet the controller’s heat 

issue is deemed unavoidable. Large heatsinks are usually installed in places with 

plenty of air cooling to ensure the performance of the motor is at its best. Further 

cooling can also be achieved by water cooling the motor with an external fan to draw 

the heat away from the motor at a certain temperature threshold. 

 

 Therefore, it is essential to ensure that the temperature of the motor controller 

is to be monitored closely. The mounting of such temperature sensors is critical to 

ensure the most accurate reading of the controller’s temperature is obtained. For air 

cooled solutions, sensors mounting on the heatsinks or surfaces of the controller is 

possible. Such mounting will allow the readings to be acquiring the temperature of the 

controller surfaces accurately, allowing the temperature measurement to be focused 

evenly, and not directly from heat generation sources. For the water cooling, heat is 

usually transferred via liquid form to a heat exchanger, which then dissipates the heat 

via a natural or forced flow of air, and recirculated back. With the heat to be mostly 

transferred via the liquid coolant which has high thermal capacity, the temperature of 

the coolant can be used to determine the accurate temperature of the system. A 

temperature probe can then be mounted on the places where the coolant flows, and 

provides a reading of the liquid coolant temperature, also indirectly implying the 

temperature of the heating medium. 

 

 Also, there exists another way of obtaining the controller temperature data, 

which is via a semiconductor module. The module usually consists in integrated circuit 

packaging, allows heat to be radiated over them and provides high precision results, 

yet leaving an only small footprint in spaces, which is favoured in electronic circuit 

designs. This allows sensors to be mounted throughout an area without occupying 

much space, and can be directly mounted on a critical heat generating circuit 

components directly, unlike traditional thermistor sensors which are bulkier. 
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2.3.4 Controller Fault Monitoring 

 

Vehicles on road today are mostly powered by vehicle computers, from engine 

controls, safety measurements to display instrumentations, the vehicle computer 

process and takes control of nearly every aspects of the vehicle. As such, the vehicle 

onboard computer can also potentially identify and deduce misleading data, which may 

allow further pinpoint to malfunction of elements or components of the vehicle. 

 

 During the appearance of a fault, the user display would normally provide an 

indicative light or warning to notify the driver that the vehicle has to be checked. Then, 

a diagnostic tool can be used to check the issue pertaining to the specific fault, which 

is normally indicated via codes, also known as fault codes. Then, the driver or 

mechanics can then take actions based on the fault codes provided, which normally 

indicates a specific form of malfunction or errors on specific devices or controls, 

minimizing the man-hours to troubleshoot and diagnose the vehicle systems. 

 

 Realizing the benefits, a fault monitoring system will be desired to allow 

instantaneous notification of fault and allow immediate diagnosis on the vehicle to be 

performed. The fault codes are usually generated by the vehicle’s computer. The same 

rule applies to the electric vehicle controller, where the fault codes can be generated 

from ranging from own parameters such as faulty controller’s sensors, overheating of 

the controller, to motor’s parameters and battery supply parameters as well. The fault 

codes can then be checked against the manufacturer’s list of fault codes to pinpoint the 

issues to be diagnosed. 

 

 

 

2.3.5 Motor Current 

 

Motor current are one of the key measurements in an electric vehicle as it relates the 

overall output and performance of the electric vehicle systems. To measure the current, 

several types of sensors can be deployed, which includes methods using a current-

sensing transformer, Hall Effect current sensor, and a shunt resistor. 
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 Current sensing transformer method utilizes a simple transformer which senses 

the measured current in the primary coil and energizes the secondary coil with a larger 

number of turn wounds. The number of turn ratios then determines the current output. 

The pros of such configuration are it can measure high current, yet at the same time 

providing galvanic insulation required. The disadvantage of this method is the 

transformer may saturate at high frequencies, limiting its used to only for low 

frequencies or constant frequencies applications. (Drafts, 2004) 

 

On the other hand, shunt resistors methods are known to provide low cost yet 

accurate measurement. By using the method of calculating the voltage drop across a 

resistor of low value, the current can be calculated. However, such measurement is 

subjected to power dissipation in the resistance, which makes the method to be rather 

impractical for current more than 20 amperes. 

 

 Incorporating Hall generators, Hall Effect current sensors are easily integrated 

into embedded application. These solid state sensors are available in the form of 

integrated circuit packaging as in Figure 2.4, decreasing the space requirements of the 

sensing circuit and allow easy measurements to be carried out, where the sensor can 

be placed directly over the current trace on a printed circuit board (PCB). It is to be 

noted that the sensors itself are sensitive to temperature which may cause their 

accuracy to vary, but can be solved via closed-loop implementation. The closed-loop 

implementation of such sensor not only keeps the temperature drift low but also boast 

to offer far more superior accuracy, linearity, and wider frequency range. As such, 

implementation of the close-loop system may sound reasonable, however, one should 

also consider the costing to allow measurements in very wide current range. This is 

due to the implementation of more complex circuitry may be required to accommodate 

such requirements. 
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Figure 2.4: A PCB hall effect current sensor (Lepkowski, n.d) 

 

 

 

2.3.6 Battery Voltage 

 

It cannot be further emphasized the importance of monitoring battery conditions on a 

fully electric drive vehicle. The battery systems can be represented as fuel in a 

conventional internal combustion engine vehicle, where drivers heavily rely on such 

piece of information to ensure the vehicle is ready to go. For the electric vehicle control 

systems, the controller will interpret such information to optimize the best performance 

and range for the vehicle. The servicing technicians will also benefit from having an 

overall idea on the status of the battery system, which eases the maintenance and 

servicing of the electric vehicle. 

 

 One way of obtaining the overall battery voltage is via a construction of a 

voltage divider circuit and switched inputs to an amplifier, maintaining the voltage 

isolation between both high and low voltage circuits. The drawback, however, is the 

measurement errors arising from variations of transfer gains and non-linearity, which 

may occur due to the service life of components. Another issue is that the passing of 

analogue signals across optocoupler, additional amplifier output and analog-to-digital 

converter, the readings will suffer from measurement accuracy. (Manciac et al., n.d.) 

 

 Therefore, an improved method is proposed to measure such high voltage. An 

isolation barrier between high and low battery side is still maintained. The proposed 
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method as in Figure 2.5 involves the injection of periodic PWM signals via wave 

generator circuit, then the periodical signal is measured via digitization circuit. This 

type of measurement allows robust measurement even with the presence of 

disturbances in the high voltage system. (Magana and Veraguas, 2008) An analogue 

measurement circuit is still required to be constructed, and the sensing circuit is 

connected to a comparator input. Another input of the comparator is then connected to 

the PWM wave generator circuitry. The whole measurement is done on the comparator 

where the signals are fed in and compared, then produces an output which is a digital 

periodic signal, indicating the voltage of high voltage battery system. Such process 

allows the comparator output values to be transformed into a digital signal before 

passing through a digital isolation optocoupler, eliminating non-linearity and transfer 

gains variations. The measurement systems indicate a rather effective way to obtain 

the voltage value, however, the shortcomings reveal that the choice of an analogue 

periodic signal may affect the comparator output, therefore deviating the readings. 

 

 

Figure 2.5: Measurement of battery voltage through PWM signal injection 

(Magana and Veraguas, 2008) 

 

 

 

2.3.7  Throttle Input Sensing 

 

Throttle input provides the variations of vehicle acceleration by the desire and control 

of the driver. Used to be a parameter based on mechanical linkages to link the throttle 

pedal and throttle valve, modern automotive vehicles now utilized throttle position 

sensors to ensure higher reliability and allowing more integrated functions for torque 
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management, such as stability control, traction control, cruise control and collision 

avoidance systems. 

 

 The construction of such input is based on inductive, Hall Effect sensors or 

magnetoresistive-based sensors. Such sensors can be mounted on the throttle pedal or 

at the throttle body. The sensor generally responds to the change of magnetic field by 

from throttle and the voltage generated from the sensing circuit, to be output and 

processed. Normally, a two pole rare earth magnet is used and considered to have a 

constant magnetic field that does not degrade from temperature and time.  

 

 Also present is the potentiometric type sensors. The principle of operation is 

similar to the use of a potentiometer, where a resistive strip is to be glided on by a 

metal brush as in Figure 2.6. The change in resistance will then be interpreted by the 

controller circuit and its output will be provided to the engine management system. It 

must be highlighted that safety concerns are still present as wear and tear and the 

presence of dirt may lead to inconsistent readings. Therefore, precautionary steps must 

be taken to ensure the safe operation of the vehicle in the event of failure of such 

sensors. 

 

 

Figure 2.6: Internal view of a throttle position sensor, revealing resistive strips 

(Adrian, 2009) 
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2.3.8 GPS Location 

 

GPS location can be determined by utilizing GPS modules that are readily available 

on the market. It is much favoured for its reliability and accuracy of determining 

location and time, not mentioning its free of charge. With standard communication via 

a serial protocol, the GPS modules will be able to suit different platforms provided as 

long as serial communication protocol is supported. 

 

 

 

2.4 Vehicle Anti-Theft System 

 

Posing as the basic theft-deterrent device, vehicle anti-theft systems today have 

evolved from the basic configuration with just emitting loud sound and strobing lights 

to having a starter kill switches, additional sensors trigger and even dual way paging 

controllers. Typical car alarm pinouts are indicated as in Figure 2.7. 

 

 

Figure 2.7: A typical car alarm pinouts (AlarmTek, 2012) 
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2.5 CANBUS 

 

2.5.1 Overview 

 

Controller area network, also known as CANBUS is a vehicle communication network 

standard that allows devices and microcontrollers to communicate with each other 

without having a central host computer. The bus works in a manner of broadcasting 

messages throughout the whole bus, and one can pick up the messages through any 

point of the system, also identified as a node of the system. Developed by Robert Bosch 

GmbH, the CANBUS protocol not only receives acknowledgements from Society of 

Automotive Engineers (SAE) but also quickly being adopted and finally becoming 

mandatory for all automotive vehicles in the United States and the European Union. 

The latter also receives improvements and restructuring by International Organization 

for Standardization (ISO) and further endorsed. 

 

 Specifically developed for automotive industry, the CANBUS systems bring 

all independent subsystems to communicate with each other through a channel, 

without truly having a component messages being more superior than other. In the 

communication bus, every component, or a node, get its turn to broadcast something 

into the channel, and all components are able to read all the data from the same channel 

as well, with the speed up to 1 Mbit/second. Figure 2.8 illustrates the arrangements. 

All the messages in the channel are also differentiated with priority bit. To differentiate 

one message from another, however, requires local filtering on CAN hardware on a 

specific node, allowing the component to analyse and may further react to the data. 

The system is also resilient when it comes to error handling, where error counters are 

available to all the nodes, which is all of the components in the system. Therefore, any 

problems discovered will raise the error flag by the node and the channel will react as 

accordingly to discard the error messages and attempt to send or retrieve the data again. 

An error counter is also available, allowing the sender and receiver to track the data 

error frequency. Once the data error frequency exceeds a predefined threshold, the 

transmitting node will become error passive and then goes fully off the channel to 

allow other bus traffic to flow uninterrupted. 
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Figure 2.8: CANBUS Interfacing and Its Components 

 

 

 

2.5.2 Higher Layer Protocols 

 

The CAN protocol standard has provided a guideline on the method to transfer data 

from a point to another using a shared communication medium. However, a high layer 

protocol is also desired to manage the intersystem communication, to name a few, flow 

control, transportation of data, the establishment of communication and node address 

specifications. Generally, the higher layer protocol defines the behaviour upon start-

up, message identifiers distribution on different nodes in the systems, data frames 

content translation and the status reporting within the system. The standards vary over 

the protocols and may be customized and extended by different manufacturers, ranging 

from automotive industry which includes CAN Kingdom, CANopen, GMLAN, SAE 

J1939 to marine and aviation CANaerospace, NMEA 2000 and even building 

automation VCSP. 

 

 

 

2.5.3 CANopen 

 

The CANopen protocol has provided a standardized communication between different 

nodes of devices on a network, even across different manufacturers. With the physical 
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hardware and data link protocol already established by the CAN standards, as shown 

in Figure 2.9, CANopen umbrella covers the networking, transportation of data, data 

sessions, data representation and finally allow application of the data.  

 

 

Figure 2.9: Representation on Coverage of Systems in CAN and CANopen 

 

 

 A CANopen compliant device should also conform to the standards of 

operation of its software. (NI, 2013) A communication unit is first required to allow 

interfacing of messages with various nodes in the network through the desired protocol. 

The minimum state machine is also required where all the initialization and resets of 

the device are well controlled and cycled through pre-defined configurations. Besides, 

the device should also hold an object dictionary which can utilize the data from the 

network or reflect its own data. The data consists of a 16-bit index of an array variable 

and expands to additional 8-bit sub-index for each variable. Finally, the device will 

reach application mode once the device is in an operational state, where object 

dictionary’s variable will be modified and further receiving and transmission of data 

along the network are performed. 

 

 For a device to communicate with the CANopen network, the device must first 

have the same baud rate with the network to allow successful communications. Its 
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node ID shall also be assigned for identification, which allows other devices to identify 

and communicate with the device, and also, allow differentiation of messages sent and 

received amongst other bus devices. The node ID also sets its priority in bus messages 

and bus arbitration and is part of a requirement by CAN Object Identifier (COD-ID). 

As in Figure 2.10, the standard message types in the COD-ID are defined to 4 upper 

bits out of 11 bits, making 16 types of messages possible. The bottom 7 bits are filled 

with Node ID of the devices. An example of a standard message type is also displayed 

in Table 2.1. 

 

11 10 9 8 7 6 5 4 3 2 1 0 

 

 

Figure 2.10: CANopen-Compliant COB-ID Message Organization 

 

 

Table 2.1: Standard Message Type for Curtis Controllers (Curtis, 2014) 

 

 

 

 To acquire messages from the CANopen, one can utilize the Service Data 

Object (SDO) protocol. Messages transmitted may include Network Management 

Transmission (NMT), which are of highest priority. This allows controls on the node’s 

device state, detect boot-up and detect error conditions within the network. The second 

Message Type Node ID 
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highest priority in the protocol of CANopen is the emergency messages. The messages 

content includes the hour meter, specific fault, error category and error register for 

diagnosis. Heartbeat messages are also sent periodically by each node on the bus to 

indicate the device status and are of lowest priority. Process Data Object (PDO) 

protocol are also listed as one of the message types. This messages have medium 

priority and can transfer 8 bytes in a packet of data into or out of the device. This 64-

bit data can carry messages of the various nodes such as output command bytes, status 

bytes, digital inputs and analogue inputs bytes in a single packet of data, which 

conserves bus bandwidth. Service Data Object (SDO) is another protocol defined by 

CANopen to view and alter the parameter data. They are usually of low priority and 

are infrequently used. This protocol is normally utilized only to retrieve rather 

infrequently used basic information such as manufacture dates and manufacturing 

system revisions. Fault log reviewing and key internal variables monitoring which are 

only catered exclusively for system debug purposes are also available in this protocol. 

In the Curtis electric vehicle controller, the service protocol for SDO can accommodate 

more than just reading data out of the protocol, it can also be utilized to set system 

parameters such as operation mode, current limiting, PWM limiting, gain factor and 

more. Table 2.2 explicitly lists some of the available parameters accessible. This 

allows the SDO to be used more than just diagnostic purposes, but also able to control 

some of the internal vehicle parameters. However, it is realized that retrieving data 

from SDO can be meticulous in terms of setting up for requesting data and deciphering 

received data, not mentioning writing the data into the protocol itself. 
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Table 2.2: Part of Standard Message Type for Curtis Controllers, Accessible via 

SDO (Curtis, 2014) 

 

 

 

 

2.6 Processing and Interfacing Unit 

 

A processing unit in an electric vehicle has to withstand an incredibly dynamic range 

of operation and runs even in the most rugged conditions. Interfacing the vehicular 



24 

 

sensors and processing data constantly for internal vehicular controls and external 

driver’s display, to passenger’s entertainment, the processing unit has to bear it all. 

With the electric vehicle integration, the unit has to interface with even more inputs 

and variables, such as handling conventional switches inputs on the dashboards to 

parsing and receiving the correct data for the electric vehicle controller. This turns 

looks to microcomputers which are a neat fit in terms of size, processing capabilities 

and interfacing capabilities.  

 

 Raspberry Pi, an established microcomputer in the market are one of the many 

low-cost computers which are open-sourced. Developed by Raspberry Pi Foundation 

to promote affordable teaching in schools, the base operating systems is Linux-based 

until recently, supports Windows 10 IoT Core. A few variants are also released, with 

some of them compared in Table 2.3. They become increasingly powerful and offers 

more interfacing options, not mentioning the increasing number of users and projects 

resources available on the internet. 

 

Table 2.3: Differences between the Various Raspberry Pi Models 

 Raspberry 

Pi 1 

Model A 

Raspberry 

Pi 1 

Model A+ 

Raspberry 

Pi 1 

Model B 

Raspberry 

Pi 1 

Model B+ 

Raspberry Pi 

2 

Model B 

CPU 700 MHz single-core 

900 MHz 

quad-core 

ARM Cortex-

A7 

Memory 256 MB 512 MB 1 GB 

USB ports 1 2 4 

Onboard 

network 
None 10/100 Mbit/s Ethernet 

Low-level 

peripherals 
8× GPIO 17× GPIO 8× GPIO 17 
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 Software wise, the official version of the operating system would be Raspbian. 

The software is great in working with sensors and devices, and libraries are readily 

available from the web communities for common devices. The programming of this 

microcomputer revolves primarily around general purpose programming languages 

such as Python, C, and C++. However, support for a higher programming language is 

also possible such as Perl, or even object-oriented programming such as Java and Ruby. 

 

 

Figure 2.11: A Successfully Booted Up Raspbian OS with Raspberry Logo 

 

 

 With the capability of audio and video outputs, it is viable to integrate displays 

and sounds feedback to be directly driven from the Raspberry Pi platform. A graphical 

user interface can be built on top of the Desktop as in Figure 2.11, and provides 

additional support for an in-car entertainment system and even navigational systems. 

Besides, touch screen support and integration of sensors and modules will allow real-

time vehicular information to be displayed and even configured on the fly. Data 

acquisition can also be done during the driving process, and further processed 

statistically to output either into the in-car display, or to be viewed on mobile or 

uploaded to the web. Such features allow the driver to have full access to the car 

information and controls and also be able to unleash the full potential of the vehicle. 



 

 

 

 

 

 

CHAPTER 3 

 

 

 

3 METHODOLOGY 

 

 

 

3.1 Concept of EVICS 

 

The EVICS revolves around the implementation of hardware and software on a scale 

from micro to macro components. For data acquisition, a combination of 

microcontrollers and Raspberry Pi is used. The channel of data source would include 

primarily from the electric vehicle’s controller CANBUS network, and also feature 

sensors such as battery and temperature sensor modules, battery pack current sensor, 

and GPS module to be implemented into the EVICS system. This covers the whole 

range of data acquisition from conventional vehicle sources and also the electric 

vehicle parameters, which the data are relatively new to this electric conversion vehicle 

and has yet to have a place to process the new data. 

 

 Furthermore, feedback and actuation systems are also desired to improve the 

driving experience. The data retrieved from the vehicle can be processed and relevant 

details will be feedback to the user, which includes driving parameters, warning lights 

and beeping sounds. Display screens can be implemented not only to reveal vehicle 

details, but also allowing the user to interface the vehicular parameters and possibly 

changing them on the fly. A warning through the display and haptic feedback can also 

be provided via alert beeps to alert drivers on issues and emergencies. Besides, 

secondary systems and displays may also be integrated for passenger’s ease of access 

on entertainment usage, or to accommodate driver’s navigational system as well. 
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3.2 Vehicular Parameters Sensing 

 

The different methods of obtaining the vehicular information are previously discussed 

in detail in Chapter 2. However, it is realized that existing sensors are already in place 

in the electric vehicle. The sensors include the individual battery pack voltage and 

temperature sensor and also a battery pack current sensor. In this case, the sensors will 

be utilized as well together with new sensing parameters to form an electric vehicular 

sensor network. This benefits as more parameters could be gathered from the electric 

vehicle itself, which allows much more comprehensive monitoring on the electric 

vehicle, however, the existing sensor compatibility will be an issue as the sensors were 

previously running via Mathworks MATLAB support package rather than the native 

Raspberry Pi operating system itself. 

 

 

 

3.2.1 Existing Sensors Network 

 

 For the existing individual battery voltage and temperature sensors, it is based 

on Dallas 1-Wire protocol. The sensor chip is DS2436 which monitors both battery 

voltage and temperature. Its pin includes taking in the voltage input of the individual 

battery pack, and the surface of the chip itself acts as a temperature sensor. Therefore, 

the sensors circuit are closely mounted onto the batteries. An auxiliary power source 

is also required from the accessory battery to provide power to the op-amps and 

optoisolator, besides providing a reference voltage to the voltage measurement 

circuitry. The array of 12 individual battery sensors as in Figure 3.1 is then connected 

to a 1-wire master which handles the communication between the sensors and also 

converts the 1-wire signals from the sensors into serial protocol for Raspberry Pi. A 

USB to serial converter is also used which converts the serial protocol to USB to 

conserve the GPIO pins on the Raspberry Pi. 
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Figure 3.1: The existing individual battery sensor boards installed in the UTAR 

electric vehicle 

 

 

 

Figure 3.2: The existing LEM current sensor installed in the UTAR electric 

vehicle 

 

 

 The battery pack current sensor present in place will be LEM Hall Effect 

Current Transducer as indicated in Figure 3.2. Capable of measuring current up to 600 
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A, the current sensor outputs in terms of analogous voltage. An ADC is then connected 

to the current sensor output before input into Raspberry Pi SPI pins. 

 

 

 

3.2.2 Location of Electric Vehicle 

 

GPS module is also installed into the sensors network to obtain the location of the 

vehicle. The GPS module has an antenna pin which allows the active external antenna 

to be connected to increase the gain up to 26dB. The external active antenna is 

connected and the antenna is rerouted in the vehicle cabin to place near the top of the 

windscreen to provide better reception of GPS signal. The attachment of the antenna 

block is as shown in Figure 3.3. The GPS module also utilizes serial communication. 

Therefore, a USB to serial converter is also used which converts the serial protocol to 

USB to conserve the GPIO pins on the Raspberry Pi.  

 

 

Figure 3.3: The external GPS antenna mounted on top centre of the windscreen 

 

External GPS 

active antenna 
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Figure 3.4: The block diagram showing the new setup of sensors network in the 

UTAR electric vehicle 

 

 

 

3.2.3 CANBUS Circuit Setup 

 

To acquire more comprehensive vehicular data in addition of external sensors in Figure 

3.4, CANBUS method is preferred as the sensors are built right into the controller. As 

such, the data are deemed to be accurate and accuracy should be within manufacturer’s 

tolerances as similar data is also used to manipulate the control systems of the vehicle. 

 

At first, the CAN high and CAN low communication wires are identified from 

the Curtis 1239 electric vehicle controller. Pin 23, the CAN high wire and Pin 35, the 

CAN low wires are then connected to the controller’s input and output connector, then 

running the wires through the vehicle firewall into vehicle cabin in a balanced, twisted 

pair configuration. The balanced line configuration is vital to ensure a stable 0V 

reference for all the receiving nodes in the line. This configuration works on the 

principle of current on the first signal line, is exactly opposite in current direction of 

the second signal line, effectively balances the line and avoiding crosstalk as well. This 

Serial to 
USB 

Converter
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Temperature 
and Voltage 
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Serial to 
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Converter
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reduces the interference susceptibility and radio frequency emission, which are critical 

to providing a stable 0V reference for data stability and increased bus communication 

speed. 

 

 With the wires ready, the next would be getting ready a CAN to USB interface. 

A circuit is then desired to convert the CAN signals into USB serial data for viewing 

and further computations. The device selection for such circuit will be Microchip’s 

range of products, including MCP2551, MCP2515, with further integration with 

PIC18F14K50. Details of each device and the flow of data from CAN to USB are 

illustrated in Figure 3.5. 

 

 

Figure 3.5: Basic overview of devices and flow of data communication between 

devices 

 

 

 The CAN messages will first travel into the MCP2551 CAN transceiver 

through the CAN high and CAN low ports of the device, as in Figure 3.6. The device 

is capable of transmitting and receiving CAN protocol controller and depending on 

vehicle controller’s configuration, can operate up to baud rate of 1Mb/s. Being a node 

in the CAN system, it would be able to retrieve the raw information from the CAN 

network and further process the data into suitable signals for transmission, through its 

transmitting and receiving ports. Typically, electromagnetic interference, electrostatic 

discharge, electrical transients and radio frequency interference are also present in the 

CAN network, which may indirectly affect the performance of the CAN devices. Also, 

present working with automobiles that are constantly put in stressed and adverse 

conditions, raising the susceptibility of faults such as battery short-circuit and 

excessive current loading. Protection of the device and its output and input ports to and 

MCP2551
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from other devices must be accounted. Thus, with the presence of this specialized CAN 

transceiver, various voltage spikes and issues related to interference can also be 

minimized or eliminated with the presence of this device as an isolation between the 

CAN network and the CAN controller. It is also noted that the choice of the 

temperature range for this chip is chosen at industrial grade, which ranges from -40°C 

to 85°C which is considerably sufficient for this project. 

 

 

Figure 3.6: Input and Output Ports of High-Speed CAN Transceiver MCP2551 

(Microchip, 2003) 

 

 

 From the connections of transmitting and receiving on the MCP2551, the CAN 

messages which are clean are then provided to transmit and receive ports of MCP 2515. 

This specialized CAN controller comes equipped with SPI interface to allow further 

interfacing with microcontrollers. The main blocks of the device are shown in Figure 

3.7, consisting CAN modules, SPI interface blocks, and controlling logic registers. 

Transmission and reception of all messages are handled by CAN module, then loaded 

into control registers, and further initiated by controls for SPI transmission of data. 

Control logic interfaces the other two blocks, to allow interrupts, status registers access 

and manually initiated transmission of data, all possibly accomplished and accessed 

via SPI interface. The SPI protocol block allows read-write operations into all registers 

via generic read-write commands and specialized SPI commands. This device also 

spots oscillator input and output which allow a single oscillator control for the circuit 

and its overall circuit controls, simplifying the bit timing issues across different 

devices, eliminating the needs of readjustment on baud rate pre-scaler on each 

individual devices. The choice of the temperature range for this chip is also chosen at 

industrial grade, similar to the temperature range chosen for MCP2515. 
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Figure 3.7: Device Overview of MCP2515 (Microchip, 2007) 

 

 

 The connections into the microcontroller from the CAN controller basically 

consists of SPI interfacing connections, interrupts and oscillator connections. Further 

connections introduced to the microcontroller includes USB interfacing, programming 

jumper, voltage smoothening circuit and a status indicator LED. Taking advantage of 

its embedded USB capability and its wide implementation on SPI and even UART, the 

device is chosen. It also runs off 5V which is the USB voltage, easily powering the 

device without the requirement of external power supply. This allows simple USB 

communication to be established and to be output into devices for data logging or 

further processing. The overall pinouts are shown in Figure 3.8. 
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Figure 3.8: Overview of Pinouts on PIC18F14K50 (Microchip, 2009) 

 

 

 The complete circuit connections for the CAN to USB interface is as indicated 

in Figure 3.9. Also in Figure 3.10, the constructed working circuit is as shown. The 

connections on the CAN transceiver MCP2551 and CAN controller MCP2515 are 

rather self-explanatory where minimum circuit connections are connected. For the 

microcontroller PIC18F14K50, output pins for PGC and PGD are connected to USB 

for programming and communication purposes. Also, a jumper pin of JP1 is used for 

setting the circuit into bootloader mode once sunk to the ground, allowing 

programming to be performed. Meanwhile, JP3 is reserved for CAN termination 

purposes, which is selectable for vehicles without termination for transmission over 

much longer bus wires at higher speed. JP4 would be connected directly to the CAN 

high and CAN low of the vehicle wires respectively. 
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Figure 3.9: Overall Circuit Configuration for CAN to USB Interface 

 

 

 

 

 

Figure 3.10: Fabricated Circuit Board for CAN to USB Interface 
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3.2.4 Data Acquisition and Processing 

 

It is noted that the CAN network messages are producing only raw data that is not 

ready for direct viewing and interpretation. Further data analysing is required in order 

to transform the data into meaningful information for the driver to read easily. 

 

 As in Figure 3.11, the table indicates the generic CAN messages that are 

directly obtainable from the Curtis electric vehicle controller. With the default 

addresses stated at 0x601h and 0x602h for parameters transmission, the messages can 

be obtained directly with the CAN to USB interface. The parameters obtainable are 

also as shown in the Figure 3.11. 

 

 Such promising data which are directly acquired from the controller would 

need to be further analysed and interpreted before it became a meaningful data to be 

observed by the driver. However, it is to note that some data are available but not 

retrieved due to unconnected inputs, which the input is optional to this electric vehicle 

conversion. 

 

 

Figure 3.11: Generic CAN Messages Acquirable Directly from the Controller 

(HPEVS, 2014) 
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3.2.4.1 Revolution per Minute (RPM) 

 

Obtainable under CAN address 0x601, the byte zero and byte one of the address 

represents the electric vehicle motor’s RPM. Also indicated is the value is in the scale 

of one. The calculation required to obtain the RPM would be as in formula (3.1), with 

reference to Table 3.1. 

 

𝑅𝑃𝑀 = (𝐻𝐻 × 163 + 𝐻𝐿 × 162 + 𝐿𝐻 × 161 + 𝐿𝐿 × 160)  (3.1) 

 

Where 

HH = 4 higher data bits of byte 0 of address 0x601h expressed in hexadecimal form 

HL = 4 lower data bits of byte 0 of address 0x601h expressed in hexadecimal form 

LH = 4 higher data bits of byte 1 of address 0x601h expressed in hexadecimal form 

LL = 4 lower data bits of byte 1 of address 0x601h expressed in hexadecimal form 

 

Table 3.1: Hexadecimal to Decimal Conversion Table 

Hex 

base 16 

Decimal 

base 10 

0 0 

1 1 

2 2 

3 3 

4 4 

5 5 

6 6 

7 7 

8 8 

9 9 

A 10 

B 11 

C 12 

D 13 

E 14 

F 15 
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3.2.4.2 Motor Temperature 

 

Obtainable under CAN address 0x601, the byte two of the address represents the 

electric motor’s temperature in degree Celsius. Also indicated is the value can range 

from -40 to 200. The calculation required to obtain the motor temperature would be as 

in formula (3.2), with reference to Table 3.1. 

 

𝑀𝑜𝑡𝑜𝑟 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (°𝐶) = (𝑀𝐻 × 161 + 𝑀𝐿 × 160)  (3.2) 

 

Where 

MH = 4 higher data bits of byte 2 of address 0x601h expressed in hexadecimal form 

ML = 4 lower data bits of byte 2 of address 0x601h expressed in hexadecimal form 

 

 

 

3.2.4.3 Controller Temperature 

 

Obtainable under CAN address 0x601, the byte three of the address represents the 

electric motor’s temperature in degree Celsius. Same as motor’s temperature, the 

values indicated will range from -40 to 200. The calculation required to obtain the 

motor temperature would be as in formula (3.3), with reference to Table 3.1. 

 

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (°𝐶) = (𝐶𝐻 × 161 + 𝐶𝐿 × 160)  (3.3) 

 

Where 

CH = 4 higher data bits of byte 3 of address 0x601h expressed in hexadecimal form 

CL = 4 lower data bits of byte 3 of address 0x601h expressed in hexadecimal form 
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3.2.4.4 Motor Current 

 

Obtainable under CAN address 0x601h, the byte four and byte five of the address 

represents the electric motor’s current in Amperage, on the scale of 0.1. Formula (3.4) 

reveals the calculation required to obtain the motor current, with reference to Table 

3.1. 

 

𝑀𝑜𝑡𝑜𝑟 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 (𝐴) = (𝐻𝐻 × 163 + 𝐻𝐿 × 162 + 𝐿𝐻 × 161 + 𝐿𝐿 × 160) × 0.1  (3.4) 

 

Where 

HH = 4 higher data bits of byte 4 of address 0x601h expressed in hexadecimal form 

HL = 4 lower data bits of byte 4 of address 0x601h expressed in hexadecimal form 

LH = 4 higher data bits of byte 5 of address 0x601h expressed in hexadecimal form 

LL = 4 lower data bits of byte 5 of address 0x601h expressed in hexadecimal form 

 

 

 

3.2.4.5 Battery Voltage 

 

Byte six and byte seven of the address 0x601h represents the battery pack voltage in 

Volts, on the scale of 0.1. Formula (3.5) reveals the calculation required to obtain the 

battery pack voltage, with reference to Table 3.1. 

 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 (𝑉) = (𝐻𝐻 × 163 + 𝐻𝐿 × 162 + 𝐿𝐻 × 161 + 𝐿𝐿 × 160) × 0.1    (3.5) 

 

Where 

HH = 4 higher data bits of byte 6 of address 0x601h expressed in hexadecimal form 

HL = 4 lower data bits of byte 6 of address 0x601h expressed in hexadecimal form 

LH = 4 higher data bits of byte 7 of address 0x601h expressed in hexadecimal form 

LL = 4 lower data bits of byte 7 of address 0x601h expressed in hexadecimal form 
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3.2.4.6 Controller’s Fault Monitoring 

 

Moving to address 0x602h, byte two and byte three represents the controller’s fault 

codes on each controller’s respectively. Byte two represents the primary controller 

fault value and byte 3 represents secondary controller fault code. Formula (3.6) reveals 

the calculation required to obtain the controller’s fault code for the primary controller, 

with reference to Table 3.1. The fault codes then can be compared against 

manufacturer’s fault codes to gain further insights on the problem arose. An example 

of the fault codes is shown in Table 3.2. The formula 3.6 is also applicable on the 

secondary controller with the byte changes to byte 3. 

 

𝐹𝑎𝑢𝑙𝑡 𝐶𝑜𝑑𝑒 = (𝐹𝐻 × 161 + 𝐹𝐿 × 160)   (3.6) 

 

Where 

FH = 4 higher data bits of byte 2 of address 0x602h expressed in hexadecimal form 

FL = 4 lower data bits of byte 2 of address 0x602h expressed in hexadecimal form 

 

Table 3.2: Part of the Fault Codes from Manufacturer’s Manual (HPEVS, n.d)  
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3.2.4.7 Throttle Input Sensing 

 

Throttle input sensing is represented by byte four of the address 0x602h, in terms of 

percentage. The calculation required to obtain the throttle input percentage would be 

as in formula (3.7), with reference to Table 3.1. 

 

𝑇ℎ𝑟𝑜𝑡𝑡𝑙𝑒 𝐼𝑛𝑝𝑢𝑡 (%) = (𝑇𝐻 × 161 + 𝑇𝐿 × 160)  (3.7) 

Where 

TH = 4 higher data bits of byte 4 of address 0x602h expressed in hexadecimal form 

TL = 4 lower data bits of byte 4 of address 0x602h expressed in hexadecimal form 

 

 

 

3.2.4.8 Systems Bits on State of Electric Vehicle 

 

Byte six of the address 0x602h represents the systems bits on the current state of the 

electric vehicle. The system bits that are applicable are revealed as in Table 3.3. 

 

Table 3.3: System Bits Output Configuration 

Bit Logic 

0 Economy bit 

1 Regenerative bit 

2 Reverse bit 

3 Brake Light bit 

 

 

 

3.2.5 Data Controls and Interfacing 

 

For drivers and users, the CAN to USB interface can be connected to Raspberry Pi to 

allow data transfer and processing to produce values for driving purposes. This 

involves setting up the microcomputer to install modules for the CAN transceiver and 

controller and initializing SPI drivers. With proper configuration, one would be able 
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to retrieve the raw data and processing it before outputting into the dash for drivers to 

monitor the driving parameters. The setup involves mainly only on reading of CAN 

network data. Logging of data is also performed with scripts using Python 

programming. 

 

 In this project, it is also noted that certain CANBUS parameters that are unable 

to be physically generated by the electric vehicle controller. This includes abstract 

cases such as fault code and system bit generation. However, such issue can be 

overcome by using CANBUS message simulator to send out the CANBUS messages. 

The USBTinViewer, running on Windows platform is used mainly to generate the 

CANBUS data bits onto a CANBUS board as mentioned in Section 3.2.3, and another 

separate CANBUS board is used as a receiver to receive messages to be processed by 

Raspberry Pi. The hardware setup is shown as in Figure 3.12. Software wise, the setup 

is indicated in Figure 3.13. 

 

 

Figure 3.12: CANBUS messages simulation using two CANBUS boards 
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Figure 3.13: USBTinViewer software generating CANBUS messages on the left 

window, while Terminal in Raspberry Pi receiving the messages on the right 

window  

 

 

 

3.3 Vehicular System Network integration with Electric Vehicle 

 

In this project, the sensors networks, modules, and data acquisition system is also a 

step further integrated into the electric vehicle. As opposed to the approaches done 

beforehand, where the user needs to manually start the system and makes configuration 

before obtaining the data, the system is now able to run independently without user 

intervention, yet will be up and ready before the user drives the car, and properly shut 

down itself when the car is off. The data logs can also be easily accessed through the 

plugged micro SD card. The information can then be accessed from a personal 

computer running Linux distribution for checking and analysis. 
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3.3.1 Changing Raspberry Pi and Sensors Network Power State using Switch 

 

To allow Raspberry Pi to auto start-up and shut down, a number of Raspberry Pi pins 

and GPIO would be required. The bootup pins are first identified on the Raspberry Pi 

used. Its location is the RUN pins of the Raspberry Pi board, as indicated in Figure 

3.14. Pin headers are then soldered to allow ease of connections to output. 

 

 During normal operation, the IC pinout of D15 is held high as the circuit is 

driven by pull-up resistor if R15 as shown in Figure 3.15. As long as the pinout of D15 

RUN is in high logic state, the Raspberry Pi operations are normal. However, once the 

pins of P6 is shorted, the RUN pin is pulled to ground, the state of RUN pin is cleared. 

Thus driving the operation of Raspberry Pi into a reset situation. If Raspberry Pi is 

powered on, the system will then soft reboot as the reset signal is triggered. In this case 

of usage where the state of Raspberry Pi is in off mode but power is applied, the system 

will then reset, leading to Raspberry Pi being turn on from its off state. Therefore, 

installing a switch that shorts between the pins of D6 will trigger the Raspberry Pi to 

on state. A Python script is also written and executed as root user to enable Python 

programs such as sensors network programs and soft shut down programs to autostart 

upon completion of booting of the Raspberry Pi system. 

 

 

Figure 3.14: The RUN pins soldered with pin headers 

RUN pins 
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 It is noted that if the power to the Raspberry Pi system is cut abruptly, it may 

lead to system corruption, data loss and subsequently, boot failure, Therefore, a soft 

shutdown is preferred. For the Raspberry Pi system, one of the ways utilized is by 

adding a switch to its GPIO, and providing a negative trigger to result in Raspberry Pi 

executing shut down the process. By using GPIO 23 or physical pin of pin 16 a switch 

can be connected to the GPIO 23 and ground. A Python script, which has been 

autostarted during boot as the root user, would then provide the command for the 

system to shut down once the pin sensed the falling edge of the negative trigger. As of 

Figure 3.16, the auto shut down Python script ran by the system would be based on 

interrupt and not polling basis. Thus, would not burden the system precious processing 

power during running operation of Raspberry Pi, where the system is expected to run 

scripts of various sensors network. 

 

 

Figure 3.15: Datasheet of Raspberry Pi Model B+ showing the schematic of 

RUN pins to the IC pinout  
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Figure 3.16: Testing of shutdown button using a switch with GPIO 23 or pin 16 

of Raspberry Pi. The Python program is indicated on the left. 

 

 

 

3.3.2 Raspberry Pi and Sensors Network Auto Power with Vehicle State 

 

With the successful circuit and programming configurations for shutdown and booting, 

the Raspberry Pi and sensors network are then configured to be auto powered on and 

off depending on vehicle state. The desired state of on would be prior to vehicle start 

up as the Raspberry Pi and sensors network require some time to boot up before they 

can be online and information will only be available to the driver after that. For off 

state, it would be best if it can be triggered off and shut down properly even after the 

key is taken off from the car for the driver’s convenience. Therefore, there arise a need 

of a soft shut down even after power from the key is removed. 

 

 To address such issue, an innovative solution is proposed by utilizing the 

connections in the existing alarm system of the electric vehicle. The modern alarm 

system supports sensors input, which provides power to the sensors once the car is 
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armed, and cuts off power when the car is unarmed. Thus, by utilizing the power leads 

of the sensor input as in Figure 3.17, a circuit can be built to trigger on the Raspberry 

Pi upon alarm unarming and trigger shutdown the Raspberry Pi upon arming. The 

circuit configuration is as shown in Figure 3.18. 

 

 

 

 

 

Figure 3.17: Alarm module overall pinouts, the alarm sensor input pins are used 

for auto powering the Raspberry Pi and its sensors network 

 

 

 

Figure 3.18: The circuit connections of between the alarm module and  

Raspberry Pi to provide auto-booting and shut down 

Status LED 

Output 

Alarm 

Peripheral 

Pinouts 

Alarm Reset 

Switch Input 

Alarm Sensor 

Input 
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 The circuit mainly consists of 2 relays with several pin headers serves as 

outputs and inputs between the Raspberry Pi and the alarm module. An extra pin 

header is also provided to allow alarm sensors to be connected. During arming of the 

alarm, the alarm module sensor input pin is high, thus, provide 12 V for the 12 V relay 

to latch. The latching of the relay closes the normally open connection of 5V ground 

and GPIO 23. Thus triggering shut down of the Raspberry Pi as the background auto 

shut down Python script is waiting for negative edge trigger to power off the system. 

 

 When the driver unarms the alarm, the alarm module ceases to provide 12 V 

output to the sensor input. This causes the 12 V relay to unlatch and the pole of the 

relay is thrown to normally closed pins. The connection of the 5 V ground causes the 

5 V relay on the right to be latched. Latching of the relay then shorts the RUN pins of 

the Raspberry Pi, thus triggering booting of the Raspberry Pi. 

 

It is noted that as the RUN pins are to be closed momentarily only to avoid 

power cycle of Raspberry Pi. Therefore, a simple circuit consisting of a capacitor and 

a resistor is constructed to convert the toggle to momentary latching of the relay to 

provide the appropriate triggering signal. The toggle to momentary circuit works with 

the principle of DC charging characteristics of a capacitor. As the capacitor receives 

DC power from the completion of the circuit, the capacitor charges. Thus allowing the 

charge current to flow through the relay windings, energizing the relay, and shorts the 

RUN pins of the Raspberry Pi. However, once the capacitor is fully charged, the 

charging current stops and de-energizes the relay. The RUN pins are then open-

circuited although the relay circuit still receives DC power from the 12 V relay. A 280 

Ω resistor is provided to discharge the capacitor quickly once the 12 V relay is de-

latched. 

 

 

 

3.3.3 Electric Vehicle System State Output 

 

Also installed is a simplified yet essential vehicle instrument cluster systems to provide 

physical output for the electric vehicular parameters. One of the outputs that are 
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available for an electric vehicle as oppose to the conventional vehicle will be the status 

LED for the system state of the electric vehicle. Since the electric vehicle is capable 

of running in normal mode, economy mode, and regenerative mode, it would be 

preferable if the driver can opt to know the current system state. The system state 

information would be obtained from CANBUS. An array of LEDs is installed by 

means of integration into existing dashboard to allow the driver to be conscious of the 

current vehicle system state. This includes an orange coloured LED for economical 

driving, a green coloured LED for regenerative braking state and a red coloured LED 

reserved for system fault. As during normal cruising, all the LEDs will remain off. 

 

 

Figure 3.19: The circuit connections of the electric vehicle system’s output state 

which provide driver’s convenience on checking the vehicle system state 

 

 

Figure 3.19 reveals the system state output circuit setup. From the program, 

GPIO 17 output is configured for fault status output, while GPIO 22, GPIO 23 and 

GPIO 24 are configured outputs for economy status, regenerative braking status, and 

system status respectively. Each of the GPIO outputs is respectively connected to a 

resistor and an LED for indication, and GPIO 24 connected to a buzzer. For the fault 

status GPIO, an extra relay is connected in parallel to the GPIO output. The relay is 

connected in the configuration with a relay driver using an NPN bipolar junction 

transistor to allow the relay to latch properly using Raspberry Pi GPIO limited 3.3 V 
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output. The circuit is connected in series with the inertia switch of the vehicle, on the 

5 V relay with a common pin and normally closed pin. Such connection in series with 

the inertia switch is the preferable point as the inertia switch also provides a similar 

cut-off function in the case of emergencies such as collision. This is indicated as of 

Figure 3.20. For the circuitry, upon triggering of fault, the 5 V relay would be latched 

to normally open pin, opening the circuit of the 12 V main contactor of the electric 

vehicle controller, which is will then cut off the contacting with 144 V battery pack 

source during emergencies. The buzzer would also sound as an indication of faults. 

 

The circuits in Section 3.3 are finally combined all together into the one-piece 

board as shown in Figure 3.21. 

 

 

 

Figure 3.20: The schematic showing the electric vehicle wiring diagram. The 

emergency cut-off circuit is placed in series with inertia switch as a safe cut-off 

point 

 

Emergency Cut-

Off Circuit 
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Figure 3.21: The circuits of Raspberry Pi auto powering and electric vehicle 

system state output 

 

 

 

3.4 Python Programming and Libraries 

 

In this project, Raspberry Pi loaded with Raspbian operating system is used. To allow 

interfacing with the sensors networks and data processing, Python programming 

language is used. The process of data acquisition from the sensors network is via 

logging of data obtained from the sensors network into a separate CSV file, written 

into the micro SD card plugged into the Raspberry Pi. 

 

For the individual battery pack voltage and temperature sensor, the PySerial 

module is used as the communication methods are of serial basis. Further 

communication with the sensors masters and slave are of meticulous polling of sensors 

ID and bits. The GPS module, however, requires both the Python modules of PySerial 

and GPSd as it also requires GPS drivers to run. Meanwhile, the current sensor utilizes 

Auto Booting 

and Shut Down 

Relays 

Raspberry Pi Emergency 

Buzzer 

Alarm Module 

Emergency 

Cut-off Relay 

Status LED 

Array 
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Spidev module for SPI access. For CANBUS data acquisition, the Python program 

runs native Linux bash script as a subprocess, since Python modules are not readily 

supported. Therefore, the Raspbian is custom installed with CANBUS networking and 

SPI kernels and drivers, which are recompiled in Linux Ubuntu on a personal computer. 

Then, CAN-utils of SocketCAN package is also compiled and installed to enable 

successful data acquisition of CANBUS. 
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CHAPTER 4 

 

 

 

4 RESULTS AND DISCUSSION 

 

 

 

4.1.1 CANBUS Messages 

 

With reference to the controller’s CANBUS data as in Figure 3.10, they are in the form 

of two addresses and of eight bytes. The messages within CANBUS address of 0x601h 

outputs the data in the hexadecimal form, with each corresponding bytes, carries its 

own value and requires calculation as described in formulas of Section 3. The sample 

CANBUS messages and final processed data of the address 0x601h and 0x602h are as 

laid in Table 4.1 and Table 4.2. 

 

Table 4.1: The raw CANBUS messages and final processed data of address 

0x601h 

Raw Message 08 F4 2B 34 06 F8 05 13 

Corresponding 

Parameters 

Motor 

RPM 

Motor 

Temperature 

(°𝐶) 

Controller 

Temperature 

(°𝐶) 

Motor 

Current 

(A) 

Battery 

Voltage 

(V) 

Processed 

Data 
2292 43 52 178.4 129.9 
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Table 4.2: The raw CANBUS messages and final processed data of address 

0x602h 

Raw Message 00 4D 00 00 17 DB 00 00 

Corresponding 

Parameters 

Stator 

Frequency 

(Hz) 

Prima

ry 

Contr

oller 

Fault 

Code 

Secon

dary 

Contr

oller 

Fault 

Code 

Throt

tle 

Input 

(%) 

Brake 

Input 

(%) 

Syste

m 

Bits 

Not 

Used 

Processed 

Data 
77 00 00 23 219 00 00 

 

 

 As of the processed data in CAN address 0x601h and 0x602h as in Table 4.1 

and also Table 4.2, the data can be utilized with direct accordance the information 

provided by the datasheet, and their respective values calculated directly from the 

formulas provided in Section 3.2.4.  
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4.1.2 CANBUS Data and Parameters 

 

 

Figure 4.1: Graph of motor current, battery voltage, and battery pack 

percentage against time, with shaded region indicating regenerative mode 

  

 

 As of Figure 4.1, the overall trend shows that an increase in throttle percentage 

is nearly linear with the increase in motor current. This is the result of the immediate 

power and torque response from the motor when the user applies throttle to the vehicle. 

The battery pack voltage also drops in a rational relation with the increase in motor 

current, which denotes the electrical characteristics of an electric motor when it is 

being loaded. The regenerative mode also appears during the situation of having the 

throttle released and with the substantial motor current difference. In such situation, 

the motor current also drops below its usual idling current of 40 A which denotes the 

current is being reversed from the motor to the controller. Aside from the data shown 

in the graph, the bytes in byte 2 and byte 3 of CAN address 0x601h also provides vital 

information such as motor temperature and controller temperature respectively. 
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 In the data obtained from CAN address 0x602h, diagnostic information such 

as stator frequency, a primary controller, and secondary controller fault codes can be 

obtained. However, it is noted that for certain parameters such as throttle input, brake 

input and system bits, the formula as proposed with accordance to the information 

from the datasheet is not applicable. 

 

 For throttle input, the CANBUS message bit idles at the hexadecimal value of 

2 and peaks at a value of 22 which translates to 2 % and 34 % respectively. For the 

maximum throttle input of 34 %, it is suspected that the throttle calibration is set at a 

maximum of 34 % as on default system calibration. As the throttle input is current-

sensing, a minimal amount of current is flowing even though the throttle is not 

depressed, which explains the minimum throttle value of 2 %. As part of throttle input 

fault protection, it is noted that the value of throttle input will not fall to zero. The 

throttle fault protection will kick in once the throttle input current falls below 0.65 mA, 

the fault will then be generated and any further throttle request will be zeroed for safety 

with adherence to EEC Regulation. Therefore, the effective throttle input for the 

electric vehicle configuration in this project can be recalculated as of formula 4.1. 

 

𝑇ℎ𝑟𝑜𝑡𝑡𝑙𝑒 𝐼𝑛𝑝𝑢𝑡 (%) =
((𝑇𝐻×161+𝑇𝐿×160)−2)

32
× 100  (4.1) 

 

Where 

TH = 4 higher data bits of byte 4 of address 0x602h expressed in hexadecimal form 

TL = 4 lower data bits of byte 4 of address 0x602h expressed in hexadecimal form 
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Figure 4.2: Graph of RPM against time, with shaded region indicating economy 

mode 

 

 

 

Figure 4.3: Graph of RPM against time, with shaded region indicating 

regenerative mode 
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 As for the system bits, it is found that during normal operation and normal 

cruise, the system bits results at zero. The system normally responds by first entering 

into economy mode, and only with sufficient torque, the regenerative mode will only 

be switched to. As in Figure 4.2, letting the vehicle cruise to stop will trigger an 

economy bit. In this case, the system bit changes to the hexadecimal value of 0A or 

decimal 10 as a representation of economy driving. Once the system detected itself is 

out of economy state, the system bits turns zero. Besides, the regenerative mode can 

also be expected with harder deceleration such as going downhill, where the system 

bit then reflects the hexadecimal value of 2A or 42, and will switch back to bit zero 

once itself is out of regenerative mode. This is reflected as in Figure 4.3 where most 

of the regenerative mode happens during the steeper drop in of RPM region. 

 

The data bits of byte 5 of address 0x602h which corresponds to the brake input, 

constantly outputs hexadecimal value of DB once the vehicle is started. The data 

corresponds to 219 %. It should be noted that such input should be ignored as the brake 

input is left disconnected during the conversion of the electric vehicle. 

 

 

Figure 4.4: Data output of address 0x601h in comma-separated values file 

generated by the CANBUS data acquisition 
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Figure 4.5: Data output of address 0x602h in comma-separated values file 

generated by the CANBUS data acquisition 

 

 

The electric vehicular parameters and its values obtained from CANBUS are 

considerably accurate as it's of direct output from the electric vehicle controller’s 

information network, which such information is also used by the controller itself for 

information processing and decision making. As of Figure 4.4 and Figure 4.5, the data 

output is rather comprehensive. It allows several parameters to be obtained at a point 

of time, which eliminates the need and the time difference of used in separate polling 

of data that may result in inaccuracy of data, not mentioning the speed of data outputs 

averages at 100 ms per address. Thus, this renders the information obtained as one of 

the most instantaneous, accurate, yet reliable sources of data. 

 

 

 

4.2 GPS Data 

 

GPS module is also installed into the system to provide geographical location data and 

ease of logging. The basic information that can be obtained includes the latitude and 

longitude. Upon the fix of 3D GPS mode, further improvised data can also be obtained, 

such as altitude, speed, climb and track information. As indicated in Figure 4.6, the 
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information updates in every second. The accuracy of the data is then further verified 

by using Google Maps. 

 

 

Figure 4.6: Data output GPS data in comma-separated values file 

 

 

Knowing the location of the vehicle, it will be convenient for the user to find out 

their location easily during cruising or for emergency purposes. The logging of data 

would also allow one to easily identify the time, vehicle location, terrain and GPS 

speed to be compared with other vehicle parameters such as CANBUS data to optimize 

the performance of the electric vehicle or for vehicle diagnostic purposes. 
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4.3 Individual Battery Pack Voltage and Temperature 

 

With the 12 batteries installed in the electric vehicle, each of their voltages and 

temperatures is obtained and logged using the DS2436 sensors network. With such 

data, the driver can easily monitor the batteries individually to track down battery 

performance during load and even during charging. The logging of data can also be 

used for diagnostic purposes to track down the behaviour of the battery under various 

driving conditions. The time used for reading the sensors parameters is approximate a 

minute to obtain all the 12 sensors temperature and voltage. The data is as in Figure 

4.7 and Figure 4.8. 

 

 

Figure 4.7: Data output individual battery temperature data in comma-

separated values file 

 

 

 

Figure 4.8: Data output individual battery voltage data in comma-separated 

values file 
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4.4 Battery Pack Current Data 

 

A battery pack current sensor consists of hall effect sensor is also proposed to be 

installed. With the availability of this sensor, the battery pack current can be obtained, 

which allows one to monitor the total loading on the battery pack during cruise, 

regenerative braking and even charging. However, due to the time constraint, the 

sensor is not installed onto the electric vehicle. A separate setup has been performed 

by using a potentiometer in place of the current sensor output to simulate the 

performance of the current sensor. The obtained results are deemed rational as in 

Figure 4.9. 

 

 

Figure 4.9: Comma-separated values file showing the data output from the hall-

effect sensor for the parameter of battery pack current 
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4.5.1 Hardware Implementation onto Electric Vehicle 

 

The battery temperature and voltage circuit, GPS module and CANBUS data 

acquisition board are implemented into the electric vehicle. The implementation of 

sensors networks is shown in Figure 4.10. 

 

 

Figure 4.10: The CANBUS data acquisition board, GPS module, Dallas One-

Wire bus master, power circuits and Raspberry Pi installed. 

 

 

 During the implementation into the electric vehicle, it is realized that the issue 

of battery drain is present from the individual battery sensor boards, where the circuit 

will drain the accessory battery continuously by the sensor circuit components such as 

the op-amps, optocoupler and DS 2436 voltage and temperature sensor. Besides 

powering the sensors, this connection also provides the reference voltage from the 

accessory battery to the battery sensor boards. Although the drain from the circuits is 

considered minute, such configuration is not recommended as this will negatively 

impact the lifespan of the accessory battery, not mentioning the possibility of draining 

down of accessory battery when vehicle is left parked without starting for weeks, 

which will finally result in the possibility of unable to start the electric vehicle. 

 

However, this issue can be mitigated by adding a relay between the accessory 

battery and the supply connections of the sensors boards. This configuration allows 
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the sensors to be fed power only when the vehicle is started, and disallow current flow 

to the sensors boards once the car is off. This also eliminates the unnecessary risk of 

shorting of wiring in the case of the sensor wiring with voltage drops off and shorts to 

the vehicle body. 

 

 

 

4.5.2 Electric Vehicular Systems Integration 

 

 In this project, the electric vehicular systems and sensors network now start up 

upon the driver unarm the car alarm, and properly shuts down when driver arms the 

alarm. This is achieved through the sensor output pin of the car alarm. Upon 

completion of start-up, a welcome chime will be sound to notify the driver the start-up 

is complete, and vice versa for shut down process. 

 

 The LED array outputs are also installed. As the name of the LED state implies, 

the corresponding LED will light up when the system state is reached. Orange LED 

will light up during economy driving and the CANBUS system bits output of 0A and 

vice versa for green LED with system bits of 2A during the regenerative mode. As 

during normal cruising, both LEDs will remain off. The setup is shown as in Figure 

4.11. 

 

 

Figure 4.11: The LED array mounted on the dashboard of the electric vehicle 

for driver’s easy viewing. 

Status LED 

Array 
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During the rise of fault associated with the electric vehicular system, the red 

LED will turn on and the buzzer would sound continuously as a response to alert user 

of faults present. The electric vehicle system, including the motor and the controller, 

will also be emergency shut down through cutting off the supply to the main contactor 

of the battery pack supply. This allows an immediate fault mitigation to prevent further 

delay and possibly reducing consequence system damage and personal injuries in the 

event of emergencies. As the fault mitigation steps accounts risks to users if executed 

incorrectly, yet will be dangerous if any response to fault is not performed, the fault 

detection system must of highly robust, reliable and quick. Therefore, the fault 

detection is determined through the use of CANBUS fault bits output from electric 

vehicle controller. Since the situation is arbitrary, the CANBUS messages simulator 

of USBTinViewer is used in conjunction with another CANBUS board to simulate 

such emergencies. 

 

 As for the log files of the sensors network, the files will be able to be accessed 

via any personal computer running Linux Distribution once the Raspberry Pi system 

is shut off. The Micro SD card can be retrieved and plugged into the computer. The 

CSV log files are all placed in a folder with self-explanatory file names on the logging 

of different sensors. For better control and simpler data analysis, the driver or 

technician can open the CSV log files using any spreadsheet applications such as 

LibreOffice Calc or Microsoft Excel to open and review the data logged. 

 

Table 4.3: CSV Log file’s name and its corresponding logged sensors 

Log File Name Logic 

dataTemp DS2436 sensors on individual battery pack 

dataVolt DS2436 sensors on individual battery pack 

dataGPS GPS module 

dataCurrent LEM Hall effect current sensor 

dataCAN1 CANBUS data acquisition board 

dataCAN2 CANBUS data acquisition board 

 

 

 



 

 

 

 

 

CHAPTER 5 

 

 

 

5 ACHIEVEMENT 

 

 

 

5.1 Competition Participation 

 

The author, working on hardware on the project of the electric vehicle monitoring 

system has collaborated with his close counterparts which are working on the graphical 

user interface, have participated in the inaugural Final Year Project Poster Competition 

2016. The poster is shortlisted as one of the finalists in the category participated is 

Category of Applied Sciences. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

CHAPTER 6 

 

 

 

6 CONCLUSION AND RECOMMENDATIONS 

 

 

 

6.1 Conclusion 

 

To summarize, the author had managed to integrate the existing electric vehicular 

sensors network and the new CANBUS data acquisition system into place. Individual 

battery pack temperature and voltage measurement is achieved by using the Dallas 

One-Wire Sensors and its bus master. Battery pack current is also able to be measured. 

Location of the vehicle is also able to be determined. CANBUS data acquisition also 

opens up whole lot more parameters of the electric vehicle to be monitored. These 

includes motor RPM, motor temperature, controller temperature, motor current, 

battery pack voltage, motor stator frequency, controller fault codes, throttle input and 

system state bits. With the aid of Python programming language, the raw information 

from the sensors are being processed before logged into different CSV files. Drivers 

and technicians will benefit from the log files as it meticulously reports the parameters 

of the electric vehicle. The obtained data can also be cross-checked with timestamps 

to analyse the electric vehicle performance or provide useful information during 

troubleshooting of the electric vehicle. 

 

Designed with driver experience upheld, the sensors network is now placed in 

close integration with the electric vehicle ignition system. The driver will now 

experience the ultimate convenience as the systems will be ready right before driving, 

providing alerts to drivers for any abnormalities and even auto shuts down properly 

during emergencies, all without driver’s intervention as of conventional car. Thus 
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allow the driver to stay focused on the road and enhancing the driving experience of 

the electric vehicle. 

 

Nevertheless, valuable knowledge and experience are obtained throughout the 

involvement in the project. These includes an in-depth understanding of vehicle wiring 

principles, electric vehicle hardware and systems, sensors interfacing, protocols used 

and the programming language to mention a few. 

 

 

 

6.2 Recommendations 

 

The project’s main interfacing systems are developed based on Raspberry Pi Model 

B+, which it is used as for sensor interfacing, data acquisition, data processing, and 

output processing. Thus, at times of interfacing and processing, the CPU load and 

RAM can be very high with the execution of several scripts and with interfacing 

protocol loaded up to max. Not to mention on top of that, a graphic user interface also 

needs to be loaded in actual practice. Therefore, a faster system would be preferred to 

allow quicker data acquisition, especially the ones that are dealing with manual bit by 

bit serial execution. 

 

 Hence, the author would recommend Raspberry Pi 3, which is just released 

months ago (Upton, 2016). The advantage of quad-core 64-bit CPU allows faster 

processing and multi-threaded operations, yet leaving an identical size and price 

footprint, forms a perfect upgrade solution for tackling the performance issues faced 

in his project. Also comes with built-in Wi-Fi and Bluetooth chipset, connections to 

the Raspberry Pi as a secondary system is also possible, which are able accommodate 

passenger’s entertainment and usage natively. 
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APPENDICES 

 

 

 

APPENDIX A: Circuit layout of CANBUS Data Acquisition Board 

 

 

 

 

 

 

APPENDIX B: Python Programming Code 

 

 

 

1. # Configuration file to check for communication with One-Wire 
Bus Master 

2. # Configuration.py   
3.  
4. import serial   
5. import time   
6.    
7. # Serial Connection Settings   
8. ser = serial.Serial(   
9. port='/dev/ttyUSB0',   
10. baudrate=9600,   
11. parity=serial.PARITY_NONE,   
12. stopbits=serial.STOPBITS_ONE,   
13. bytesize=serial.EIGHTBITS,   
14. timeout=0.01,   
15. )   
16.    



72 

 

 

17. ser.isOpen()   
18. print "Connecting through port %s" % ser.name         # Print 

which port is opened   
19.    
20. # DS2480B PRESENCE DETECTION SETTING   
21. # Setting based on page 5 of application note DS2480B   
22.    
23. ser.sendBreak(0.02)     # Delay 2ms   
24. ser.flushInput()       
25.    
26. ser.write('C1'.decode("hex"))     # Write timing byte C1   
27. ser.sendBreak(0.02)     # Delay 2ms   
28. ser.flushInput()     
29.    
30. ser.write('17'.decode("hex"))     # Set PDSRC 17, Receive 16   
31. r1=ser.read()   
32. #r1=r1.strip()   
33. #print r1.encode("hex")   
34.    
35. ser.write('45'.decode("hex"))     # Set WILD 45, Receive 44   
36. r2=ser.read()   
37. #r2=r2.strip()   
38. #print r2.encode("hex")   
39.    
40. ser.write('5B'.decode("hex"))     # Set DS0/W0RT 5B, Receive 5

A   
41. r3=ser.read()   
42. #r3=r3.strip()   
43. #print r3.encode("hex")   
44.    
45. ser.write('0F'.decode("hex"))     # Set RBR 0F, Receive 00   
46. r4=ser.read()   
47. #r4=r4.strip()   
48. #print r4.encode("hex")   
49.    
50. ser.write('91'.decode("hex"))     # Set OWBitResult 91, Receiv

e 93   
51. r5=ser.read()   
52. #r5=r5.strip()   
53. #print r5.encode("hex")   
54.    
55. OneWireBitResult='93'.decode("hex") # Check for DS2480B Correc

t Configuration   
56. r6=(r5==OneWireBitResult)   
57. if r6==True:   
58.     print "DS2480B is present!\n"   
59. else:   
60.     print "ERROR! DS2480B not detected!\n"   
61.    
62. #DS2480B Presence detection settings ended here   
63.    
64. ser.close()   
65. print "Port %s is now closed" % ser.name         # Print which

 port is closed   
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1. #Main coding to obtain battery temperature and voltage 
2. #LoopingForTesting.py 
3. import TotalTempInArray   
4. import TotalVoltInArray   
5. import time   
6.    
7. cycleValue = 1   
8. while cycleValue < 5800:   
9.     TotalTempInArray.TotalTempInArray()   
10.     TotalVoltInArray.TotalVoltInArray()   
11.     print "Cycle %s is done \n\n\n" %cycleValue   
12.     cycleValue = cycleValue + 1   
13.     #time.sleep(0.2)    

 

 
1. #Function TotalTempInArray.py   
2. import serial   
3. import time   
4. import temperatureValue   
5. import recordT   
6.    
7. RomID1=([0x1B,0x12,0x4B,0x42,0x00,0x00,0x00,0x06])   
8. RomID2=([0x1B,0x26,0x00,0x44,0x00,0x00,0x00,0xA7])   
9. RomID3=([0x1B,0xBF,0x66,0x10,0x00,0x00,0x00,0xDB])   
10. RomID4=([0x1B,0xA9,0x2C,0x41,0x00,0x00,0x00,0x31])   
11. RomID5=([0x1B,0x8C,0x26,0x4B,0x00,0x00,0x00,0xCA])   
12. RomID6=([0x1B,0xFF,0xB8,0x2B,0x00,0x00,0x00,0x8E])   
13. RomID7=([0x1B,0x50,0x81,0x26,0x00,0x00,0x00,0x1C])   
14. RomID8=([0x1B,0x07,0x84,0x13,0x00,0x00,0x00,0xAC])   
15. RomID9=([0x1B,0x2A,0x18,0x15,0x00,0x00,0x00,0xCF])   
16. RomID10=([0x1B,0xD0,0x94,0x2C,0x00,0x00,0x00,0x43])   
17. RomID11=([0x1B,0x0A,0x34,0x08,0x00,0x00,0x00,0x05])   
18. RomID12=([0x1B,0x3C,0x54,0x12,0x00,0x00,0x00,0x68])   
19.    
20. slavesNum = 1   
21.    
22. def TotalTempInArray():   
23.     global RomID1   #Initialize all available DS2436 Sensors a

nd its' addresses   
24.     global RomID2   
25.     global RomID3   
26.     global RomID4   
27.     global RomID5   
28.     global RomID6   
29.     global RomID7   
30.     global RomID8   
31.     global RomID9   
32.     global RomID10   
33.     global RomID11   
34.     global RomID12   
35.     global slavesNum   
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36.     global tempSlave1   
37.     global tempSlave2   
38.     global tempSlave3   
39.     global tempSlave4   
40.     global tempSlave5   
41.     global tempSlave6   
42.     global tempSlave4   
43.     global tempSlave5   
44.     global tempSlave6   
45.     global tempSlave7   
46.     global tempSlave8   
47.     global tempSlave9   
48.     global tempSlave10   
49.     global tempSlave11   
50.     global tempSlave12   
51.        
52.        
53.     while (slavesNum < 14):   
54.         if slavesNum == 1:   
55.             RomID=RomID1   
56.             break   
57.         elif slavesNum == 2:   
58.             RomID=RomID2   
59.             break   
60.         elif slavesNum == 3:   
61.             RomID=RomID3   
62.             break   
63.         elif slavesNum == 4:   
64.             RomID=RomID4   
65.             break   
66.         elif slavesNum == 5:   
67.             RomID=RomID5   
68.             break   
69.         elif slavesNum == 6:   
70.             RomID=RomID6   
71.             break   
72.         elif slavesNum == 7:   
73.             RomID=RomID7   
74.             break   
75.         elif slavesNum == 8:   
76.             RomID=RomID8   
77.             break   
78.         elif slavesNum == 9:   
79.             RomID=RomID9   
80.             break   
81.         elif slavesNum == 10:   
82.             RomID=RomID10   
83.             break   
84.         elif slavesNum == 11:   
85.             RomID=RomID11   
86.             break   
87.         elif slavesNum == 12:   
88.             RomID=RomID12   
89.             break   
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90.         elif slavesNum == 13:   
91.             recordT.recordT(tempSlave1, tempSlave2, tempSlave3

, tempSlave4, tempSlave5, tempSlave6, tempSlave7, tempSlave8, 
tempSlave9, tempSlave10, tempSlave11, tempSlave12)   

92.             print "RECORDED, RETURNING TO RESET SLAVESNUM"   
93.             slavesNum = 1   
94.             return   
95.             break   
96.    
97.     #print "The slave number is %d \n" % (slavesNum)   
98.     temperatureVal = temperatureValue.temperatureValue(RomID) 

  
99.         #i = 0   
100.         #while i < 5:   
101.         #    if (temperatureVal > 60 or temperatureVal <

 15):   
102.         #        temperatureVal   
103.         #        temperatureVal=temperatureValue(RomID) 

  
104.         #        time.sleep(0.01)   
105.         #    break   
106.         #    i = i + 1   
107.        
108.         #TempArray(1,SlavesNum) = temperatureVal   
109.     #print "The temperature of sensor %d is = %s  \n" % 

(slavesNum, temperatureVal)   
110.        
111.     while (slavesNum < 13):       
112.         if slavesNum == 1:   
113.             tempSlave1 = temperatureVal   
114.             #print "Saving as %s \n" % tempSlave1   
115.             break   
116.         elif slavesNum == 2:   
117.             tempSlave2 = temperatureVal   
118.             #print "Saving as %s \n" % tempSlave2   
119.             break   
120.         elif slavesNum == 3:   
121.             tempSlave3 = temperatureVal   
122.             #print "Saving as %s \n" % tempSlave3   
123.             break   
124.         elif slavesNum == 4:   
125.             tempSlave4 = temperatureVal   
126.             #print "Saving as %s \n" % tempSlave4   
127.             break   
128.         elif slavesNum == 5:   
129.             tempSlave5 = temperatureVal   
130.             #print "Saving as %s \n" % tempSlave5   
131.             break   
132.         elif slavesNum == 6:   
133.             tempSlave6 = temperatureVal   
134.             #print "Saving as %s \n" % tempSlave6   
135.             break   
136.         elif slavesNum == 7:   
137.             tempSlave7 = temperatureVal   
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138.             #print "Saving as %s \n" % tempSlave7   
139.             break   
140.         elif slavesNum == 8:   
141.             tempSlave8 = temperatureVal   
142.             #print "Saving as %s \n" % tempSlave8   
143.             break   
144.         elif slavesNum == 9:   
145.             tempSlave9 = temperatureVal   
146.             #print "Saving as %s \n" % tempSlave9   
147.             break   
148.         elif slavesNum == 10:   
149.             tempSlave10 = temperatureVal   
150.             #print "Saving as %s \n" % tempSlave10   
151.             break   
152.         elif slavesNum == 11:   
153.             tempSlave11 = temperatureVal   
154.             #print "Saving as %s \n" % tempSlave11   
155.             break   
156.         elif slavesNum == 12:   
157.             tempSlave12 = temperatureVal   
158.             #print "Saving as %s \n" % tempSlave12   
159.             break   
160.        
161.     slavesNum = slavesNum + 1   
162.        
163.        
164.    
165. #a=TempArray(1,1)   
166. #b=TempArray(1,2)   
167. #c=TempArray(1,3)   
168. #d=TempArray(1,4)   
169. #e=TempArray(1,5)   
170. #f=TempArray(1,6)   
171. #g=TempArray(1,7)   
172. #h=TempArray(1,8)   
173. #i=TempArray(1,9)   
174. #j=TempArray(1,10)   
175. #k=TempArray(1,11)   
176. #l=TempArray(1,12)   
177.    
178. #print a,b,c,d,e,f,g,h,i,j,k,l   
179.    
180. #return TempArray   

 

 

1. #temperatureValue.py 
2. import convertT   
3. import readT   
4. import calcTemp   
5.    
6. def temperatureValue(RomID):   
7.     convertT.convertT(RomID) #Request sensor to do temperature

 conversion   
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8.     [lsbTemp,msbTemp] = readT.readT(RomID)  #Read temperature 
from register   

9.     finalTemperature = calcTemp.calcTemp(lsbTemp,msbTemp)  #Co
nvert Temperature to a readable value (Check DS2436 datasheet 
page 11)   

10.     return finalTemperature   
 

 

1. # Function FlushInputBuffer.py 
2. def FlushInputBuffer():   
3.     import serial   
4.     import time   
5.        
6.     # Serial Connection Settings   
7.     ser = serial.Serial(   
8.     port='/dev/ttyAMA0',   
9.     baudrate=9600,   
10.     parity=serial.PARITY_NONE,   
11.     stopbits=serial.STOPBITS_ONE,   
12.     bytesize=serial.EIGHTBITS,   
13.     timeout=0.01,   
14.     )   
15.    
16.     ser.isOpen()   
17.        
18.     NumberOfFlush=0   
19.        
20.     if NumberOfFlush<3:   
21.         r1=ser.read()   
22.         r1=r1.strip()   
23.         print r1.encode("hex")   
24.         NumberOfFlush = NumberOfFlush + 1   

 
1. # Function ConvertT.py 
2. def convertT(RomID):   
3.     import FlushInputBuffer   
4.     import serial   
5.     import time   
6.        
7.     # Serial Connection Settings   
8.     ser = serial.Serial(   
9.     port='/dev/ttyUSB0',   
10.     baudrate=9600,   
11.     parity=serial.PARITY_NONE,   
12.     stopbits=serial.STOPBITS_ONE,   
13.     bytesize=serial.EIGHTBITS,   
14.     timeout=0.01,   
15.     )   
16.     #print "You are now in ConvertT"   
17.     ser.isOpen()   
18.        
19.     Result=ErrorChecking()   
20.        
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21.     ErrorCounter=0   
22.        
23.     if Result==0 and ErrorCounter<5:   
24.         ErrorChecking()   
25.         ErrorCounter=ErrorCounter+1   
26.            
27.         if ErrorCounter==4:   
28.             print "Error in communicating with slaves\n"   
29.    
30.     ser.write('C1'.decode("hex"))     # Set RESET C1, Receive 

CD   
31.     r1=ser.read()   
32.     r1=r1.strip()   
33.     #print r1.encode("hex")   
34.        
35.     ser.write('E1'.decode("hex"))     # Set DATA MODE, Receive

 NOTHING   
36.     r2=ser.read()   
37.     r2=r2.strip()   
38.     #print r2.encode("hex")   
39.        
40.     ser.write('55'.decode("hex"))     # Set SKIP ROM 55, Recei

ve 55   
41.     r3=ser.read()   
42.     r3=r3.strip()   
43.     #print r3.encode("hex")   
44.        
45.     ser.write((RomID))    # Write RomID, Receive RomID   
46.    
47.     i = 1   
48.     while i < 9:   
49.         r4=ser.read()   
50.         r4=r4.strip()   
51.         #print "The value i = %s, current r4 = %r  \n" % (i, r

4.encode("hex"))   
52.         i = i + 1   
53.        
54.     ser.write('E3'.decode("hex"))     # Set COMAND MODE E3, Re

ceive NOTHING   
55.     r5=ser.read()   
56.     r5=r5.strip()   
57.     #print "The commandmode E3, Receive Nothing %s:  \n" % r5.

encode("hex")   
58.        
59.     ser.write('EF'.decode("hex"))     # Set ARM STRONG PULLUP 

EF, Receive NOTHING   
60.     r6=ser.read()   
61.     r6=r6.strip()   
62.     #print "The ARMPULLUP EF, Receive Nothing %s:  \n" % r6.en

code("hex")   
63.        
64.     ser.write('F1'.decode("hex"))     # Set TERMINATE PULSE F1

, Receive EF   
65.     r7=ser.read()   
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66.     r7=r7.strip()   
67.     #print "The TerminatePulse F1, Receive EF %s:  \n" % r7.en

code("hex")   
68.        
69.     ser.write('E1'.decode("hex"))     # Set DATA MODE E1, Rece

ive NOTHING   
70.     r8=ser.read()   
71.     r8=r8.strip()   
72.     #print "The data mode E1, Receive Nothing %s:  \n" % r8.en

code("hex")   
73.        
74.     ser.write('D2'.decode("hex"))     # Set CONVERT TEMPERATUR

E, Receive D2   
75.     time.sleep(0.015)                 # Conversion require at 

least 10ms   
76.     r9=ser.read()   
77.     r9=r9.strip()   
78.     #print "The converttemperature D2, Receive D2 %s:  \n" % r

9.encode("hex")   
79.         
80.     r10=ser.read()                    # POLL FOR RESPONSE PULS

E, Receive F6   
81.     r10=r10.strip()   
82.     #print "Receive RESPONSEPULSE F6 %s:  \n" % r10.encode("he

x")   
83.        
84.     ser.write('E3'.decode("hex"))     # Set COMAND MODE E3, Re

ceive NOTHING   
85.     r11=ser.read()   
86.     r11=r11.strip()   
87.     #print "The command mode E3, Receive Nothing %s:  \n" % r1

1.encode("hex")   
88.        
89.     ser.write('ED'.decode("hex"))     # Set DISARM STRONG PULL

UP ED, Receive NOTHING   
90.     r12=ser.read()   
91.     r12=r6.strip()   
92.     #print "The command mode ED, Receive Nothing %s:  \n" % r1

2.encode("hex")   
93.        
94.     ser.write('F1'.decode("hex"))     # Set TERMINATE PULSE F1

, Receive EF   
95.     r13=ser.read()   
96.     r13=r13.strip()   
97.     #print "The terminatepulse F1, Receive EF %s:  \n" % r13.e

ncode("hex")   
98.        
99.     ser.write('C1'.decode("hex"))     # Set RESET C1, Receive 

CD   
100.     r14=ser.read()   
101.     r14=r14.strip()   
102.     #print "The C1, ReceiveCD %s:  \n" % r14.encode("hex

")   
103.        
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104.     r15=ser.read()   
105.     r15=r15.strip()   
106.     #print "Receive Nothing %s:  \n" % r15.encode("hex")

   
107.        
108.     #print "Done temperature conversion!\n"   
109.    
110.    
111. def ErrorChecking():   
112.     import serial   
113.     import FlushInputBuffer   
114.        
115.     # Serial Connection Settings   
116.     ser = serial.Serial(   
117.     port='/dev/ttyUSB0',   
118.     baudrate=9600,   
119.     parity=serial.PARITY_NONE,   
120.     stopbits=serial.STOPBITS_ONE,   
121.     bytesize=serial.EIGHTBITS,   
122.     timeout=0.01,   
123.     )   
124.    
125.     ser.isOpen()   
126.    
127.     FlushInputBuffer.FlushInputBuffer()   
128.        
129.     ser.write('E3'.decode("hex"))     # Set COMMAND MODE

 E3, before data interfacing as precaution   
130.     r16 = ser.read()   
131.     r16 = r16.strip()   
132.     #print r16.encode("hex")   
133.        
134.     ser.write('33'.decode("hex"))     # Set PULLUP DURAT

ION=524ms, Receive 32   
135.     r17 = ser.read()   
136.     r17 = r17.strip()   
137.     #print r17.encode("hex")   
138.        
139.     DataShouldBeReceived='32'.decode("hex") # Check for 

Correct Data Received, PULLUP DUR=65.6ms   
140.     r18 = (r17 == DataShouldBeReceived)   
141.     if r18 == True:   
142.         #print "Correct Data Received\n"   
143.         Result = 1   
144.     else:   
145.         print "ERROR! Resend Command Code\n"   
146.         Result = 0   

 

 

1. #function readT.py 
2. def readT(RomID):   
3.     import FlushInputBuffer   
4.     import serial   
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5.     import time   
6.        
7.     # Serial Connection Settings   
8.     ser = serial.Serial(   
9.     port='/dev/ttyUSB0',   
10.     baudrate=9600,   
11.     parity=serial.PARITY_NONE,   
12.     stopbits=serial.STOPBITS_ONE,   
13.     bytesize=serial.EIGHTBITS,   
14.     timeout=0.01,   
15.     )   
16.     #print "You are now in ReadT"   
17.     ser.isOpen()   
18.     r0=ser.read()   
19.     r0=r0.strip()   
20.     #print "The serial port reopen and reads %s:  \n" % r0.enc

ode("hex")   
21.        
22.     FlushInputBuffer.FlushInputBuffer()   
23.        
24.     ser.write('C1'.decode("hex"))     # Set RESET C1, Receive 

CD   
25.     r1=ser.read()   
26.     r1=r1.strip()   
27.     #print "The reset C1, Receive CD %s:  \n" % r1.encode("hex

")   
28.        
29.     ser.write('E1'.decode("hex"))     # Set DATA MODE, Receive

 NOTHING   
30.     r2=ser.read()   
31.     r2=r2.strip()   
32.     #print "The reset DATAMODE E1, Receive NOTHING %s:  \n" % 

r2.encode("hex")   
33.        
34.     ser.write('55'.decode("hex"))     # Set SKIP ROM 55, Recei

ve 55   
35.     r3=ser.read()   
36.     r3=r3.strip()   
37.     #print "Receive 55 %s:  \n" % r3.encode("hex")   
38.        
39.     #print "The current RomID at LoopingForTesting is = %s:  \

n" % RomID   
40.        
41.     ser.write((RomID))    # Write RomID, Receive RomID   
42.    
43.     i = 1   
44.     while i < 9:   
45.         r4=ser.read()   
46.         r4=r4.strip()   
47.         print "The value i = %s, current r4 = %r  \n" % (i, r4

.encode("hex"))   
48.         i = i + 1   
49.        
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50.     ser.write('B2'.decode("hex"))     # Set READ REGISTER B2, 
Receive B2   

51.     r5=ser.read()   
52.     r5=r5.strip()   
53.     #print "The read register B2, Receive B2 %s:  \n" % r5.enc

ode("hex")   
54.        
55.     ser.write('60'.decode("hex"))     # Set TEMPERATURE ADDRES

S 60, Receive 60   
56.     r6=ser.read()   
57.     r6=r6.strip()   
58.     #print "The TempAdddress 60, Receive 60 %s:  \n" % r6.enco

de("hex")   
59.        
60.     ser.write('FF'.decode("hex"))     # Obtain LSB TEMPERATURE

   
61.     r7=ser.read()   
62.     lsbTemp=r7.strip()   
63.     #print "The lsbTemp of battery value = %s:  \n" % lsbTemp.

encode("hex")   
64.     lsbTemp = bin(int(lsbTemp.encode("hex"),16))[2:]   
65.     #print lsbTemp   
66.        
67.     ser.write('FF'.decode("hex"))     # Obtain MSB TEMPERATURE

   
68.     r8=ser.read()   
69.     msbTemp=r8.strip()   
70.     #print "The msbTemp of battery value = %s:  \n" % msbTemp.

encode("hex")   
71.     msbTemp = int(msbTemp.encode("hex"),16)   
72.     #print msbTemp   
73.        
74.     ser.write('E3'.decode("hex"))     # Set COMAND MODE E3, Re

ceive NOTHING   
75.     r9=ser.read()   
76.     r9=r9.strip()   
77.     #print "The commandmode E3, Receive NOTHING %s:  \n" % r9.

encode("hex")   
78.        
79.     ser.write('C1'.decode("hex"))     # Set RESET PULSE C1, Re

ceive CD   
80.     r10=ser.read()   
81.     r10=r10.strip()   
82.     #print "The reset C1, Receive CD %s:  \n" % r10.encode("he

x")   
83.        
84.     return lsbTemp,msbTemp   
85.    
86.     #print "Done temperature conversion!\n"   

 

 

1. #Function calcTemp.py 
2. def calcTemp(lsbTemp,msbTemp):   
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3.        
4.     #print "You are now in calcTemp"   
5.        
6.     lsbTemp = bitConv(lsbTemp)   
7.        
8.     #print "The lsbTemp new value = %s:  \n" % lsbTemp   
9.    
10.     finalTemperature = float (msbTemp) + lsbTemp   
11.        
12.     #print "The finalTemp is = %s:  \n" % finalTemperature   
13.     #print "Done temperature calculation!\n"   
14.        
15.     return finalTemperature   
16.    
17. def bitConv(b):   
18.     #print "The bitConv2 initial lsbTemp value = %s:  \n" % b 

  
19.     return int(b, 2) / 2.**(len(b))   

 

 

1. #Function record.py 
2. def recordT(tempSlave1, tempSlave2, tempSlave3, tempSlave4, te

mpSlave5, tempSlave6, tempSlave7, tempSlave8, tempSlave9, temp
Slave10, tempSlave11, tempSlave12):   

3.    
4.     import os   
5.     import time   
6.     import datetime   
7.        
8.     #print "You are now in recordT"   
9.     file = open("/home/pi/Desktop/dataTemp.csv","a")   
10.     i = 0   
11.        
12.     if os.stat("/home/pi/Desktop/dataTemp.csv").st_size == 0: 

  
13.         file.write("Time,Sensor1,Sensor2,Sensor3,Sensor4,Senso

r5,Sensor6,Sensor7,Sensor8,Sensor9,Sensor10,Sensor11,Sensor12\
n")   

14.    
15.     while(i < 1):       
16.         timeRec = datetime.datetime.now().strftime("%Y-%m-%d_%

H:%M:%S")           
17.         file.write(str(timeRec)+","+str(tempSlave1)+","+str(te

mpSlave2)+","+str(tempSlave3)+","+str(tempSlave4)+","+str(temp
Slave5)+","+str(tempSlave6)+","+str(tempSlave7)+","+str(tempSl
ave8)+","+str(tempSlave9)+","+str(tempSlave10)+","+str(tempSla
ve11)+","+str(tempSlave12)+"\n")   

18.         i = i + 1   
19.         file.close   
20.     #print "Printing Done.\n"   
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1. #Function TotalVoltInArray.py 
2. import serial   
3. import time   
4. import voltageValue   
5. import recordV   
6.    
7. RomID1=([0x1B,0x12,0x4B,0x42,0x00,0x00,0x00,0x06])   
8. RomID2=([0x1B,0x26,0x00,0x44,0x00,0x00,0x00,0xA7])   
9. RomID3=([0x1B,0xBF,0x66,0x10,0x00,0x00,0x00,0xDB])   
10. RomID4=([0x1B,0xA9,0x2C,0x41,0x00,0x00,0x00,0x31])   
11. RomID5=([0x1B,0x8C,0x26,0x4B,0x00,0x00,0x00,0xCA])   
12. RomID6=([0x1B,0xFF,0xB8,0x2B,0x00,0x00,0x00,0x8E])   
13. RomID7=([0x1B,0x50,0x81,0x26,0x00,0x00,0x00,0x1C])   
14. RomID8=([0x1B,0x07,0x84,0x13,0x00,0x00,0x00,0xAC])   
15. RomID9=([0x1B,0x2A,0x18,0x15,0x00,0x00,0x00,0xCF])   
16. RomID10=([0x1B,0xD0,0x94,0x2C,0x00,0x00,0x00,0x43])   
17. RomID11=([0x1B,0x0A,0x34,0x08,0x00,0x00,0x00,0x05])   
18. RomID12=([0x1B,0x3C,0x54,0x12,0x00,0x00,0x00,0x68])   
19.    
20. slavesNum = 1   
21.    
22. def TotalVoltInArray():   
23.     global RomID1   #Initialize all available DS2436 Sensors a

nd its' addresses   
24.     global RomID2   
25.     global RomID3   
26.     global RomID4   
27.     global RomID5   
28.     global RomID6   
29.     global RomID7   
30.     global RomID8   
31.     global RomID9   
32.     global RomID10   
33.     global RomID11   
34.     global RomID12   
35.     global slavesNum   
36.     global voltSlave1   
37.     global voltSlave2   
38.     global voltSlave3   
39.     global voltSlave4   
40.     global voltSlave5   
41.     global voltSlave6   
42.     global voltSlave4   
43.     global voltSlave5   
44.     global voltSlave6   
45.     global voltSlave7   
46.     global voltSlave8   
47.     global voltSlave9   
48.     global voltSlave10   
49.     global voltSlave11   
50.     global voltSlave12   
51.        
52.        
53.     while (slavesNum < 14):   
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54.         if slavesNum == 1:   
55.             RomID=RomID1   
56.             Ratio=0.5198   
57.             break   
58.         elif slavesNum == 2:   
59.             RomID=RomID2   
60.             Ratio=0.5158   
61.             break   
62.         elif slavesNum == 3:   
63.             RomID=RomID3   
64.             Ratio=0.4838   
65.             break   
66.         elif slavesNum == 4:   
67.             RomID=RomID4   
68.             Ratio=0.4793   
69.             break   
70.         elif slavesNum == 5:   
71.             RomID=RomID5   
72.             Ratio=0.4735   
73.             break   
74.         elif slavesNum == 6:   
75.             RomID=RomID6   
76.             Ratio=0.5083   
77.             break   
78.         elif slavesNum == 7:   
79.             RomID=RomID7   
80.             Ratio=0.473   
81.             break   
82.         elif slavesNum == 8:   
83.             RomID=RomID8   
84.             Ratio=0.55   
85.             break   
86.         elif slavesNum == 9:   
87.             RomID=RomID9   
88.             Ratio=0.4894   
89.             break   
90.         elif slavesNum == 10:   
91.             RomID=RomID10   
92.             Ratio=0.5221   
93.             break   
94.         elif slavesNum == 11:   
95.             RomID=RomID11   
96.             Ratio=0.5289   
97.             break   
98.         elif slavesNum == 12:   
99.             RomID=RomID12   
100.             Ratio=0.4215   
101.             break   
102.         elif slavesNum == 13:   
103.             recordV.recordV(voltSlave1, voltSlave2, volt

Slave3, voltSlave4, voltSlave5, voltSlave6, voltSlave7, voltSl
ave8, voltSlave9, voltSlave10, voltSlave11, voltSlave12)   

104.             print "RECORDED, RETURNING TO RESET SLAVESNU
M"   
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105.             slavesNum = 1   
106.             return   
107.             break   
108.    
109.     #print "The slave number is %d \n" % (slavesNum)   
110.     voltageVal = voltageValue.voltageValue(RomID,Ratio) 

  
111.         #i = 0   
112.         #while i < 5:   
113.         #    if (temperatureVal > 60 or temperatureVal <

 15):   
114.         #        temperatureVal   
115.         #        temperatureVal=temperatureValue(RomID) 

  
116.         #        time.sleep(0.01)   
117.         #    break   
118.         #    i = i + 1   
119.        
120.         #TempArray(1,SlavesNum) = temperatureVal   
121.     #print "The voltage of sensor %d is = %s  \n" % (sla

vesNum, voltageVal)   
122.        
123.            
124.     while (slavesNum < 13):       
125.         if slavesNum == 1:   
126.             voltSlave1 = voltageVal   
127.             #print "Saving as %s \n" % voltSlave1   
128.             break   
129.         elif slavesNum == 2:   
130.             voltSlave2 = voltageVal   
131.             #print "Saving as %s \n" % voltSlave2   
132.             break   
133.         elif slavesNum == 3:   
134.             voltSlave3 = voltageVal   
135.             #print "Saving as %s \n" % voltSlave3   
136.             break   
137.         elif slavesNum == 4:   
138.             voltSlave4 = voltageVal   
139.             #print "Saving as %s \n" % voltSlave4   
140.             break   
141.         elif slavesNum == 5:   
142.             voltSlave5 = voltageVal   
143.             #print "Saving as %s \n" % voltSlave5   
144.             break   
145.         elif slavesNum == 6:   
146.             voltSlave6 = voltageVal   
147.             #print "Saving as %s \n" % voltSlave6   
148.             break   
149.         elif slavesNum == 7:   
150.             voltSlave7 = voltageVal   
151.             #print "Saving as %s \n" % voltSlave7   
152.             break   
153.         elif slavesNum == 8:   
154.             voltSlave8 = voltageVal   
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155.             #print "Saving as %s \n" % voltSlave8   
156.             break   
157.         elif slavesNum == 9:   
158.             voltSlave9 = voltageVal   
159.             #print "Saving as %s \n" % voltSlave9   
160.             break   
161.         elif slavesNum == 10:   
162.             voltSlave10 = voltageVal   
163.             #print "Saving as %s \n" % voltSlave10   
164.             break   
165.         elif slavesNum == 11:   
166.             voltSlave11 = voltageVal   
167.             #print "Saving as %s \n" % voltSlave11   
168.             break   
169.         elif slavesNum == 12:   
170.             voltSlave12 = voltageVal   
171.             #print "Saving as %s \n" % voltSlave12   
172.             break   
173.       
174.        
175.     slavesNum = slavesNum + 1   
176.    
177. #a=TempArray(1,1)   
178. #b=TempArray(1,2)   
179. #c=TempArray(1,3)   
180. #d=TempArray(1,4)   
181. #e=TempArray(1,5)   
182. #f=TempArray(1,6)   
183. #g=TempArray(1,7)   
184. #h=TempArray(1,8)   
185. #i=TempArray(1,9)   
186. #j=TempArray(1,10)   
187. #k=TempArray(1,11)   
188. #l=TempArray(1,12)   
189.    
190. #print a,b,c,d,e,f,g,h,i,j,k,l   
191.    
192. #return TempArray   

 

 

1. #Function voltageValue.py 
2. import convertV   
3. import readV   
4. import calcVolt   
5.    
6. def voltageValue(RomID,Ratio):   
7.     convertV.convertV(RomID) #Request sensor to do voltage con

version   
8.     [lsbVolt,msbVolt] = readV.readV(RomID)  #Read temperature 

from register   
9.     finalVolt = calcVolt.calcVolt(lsbVolt,msbVolt,Ratio)  #Con

vert Temperature to a readable value (Check DS2436 datasheet p
age 11)   
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10.     return finalVolt   
 

 

1. #Function convertV.py 
2. def convertV(RomID):   
3.     import FlushInputBuffer   
4.     import serial   
5.     import time   
6.        
7.     # Serial Connection Settings   
8.     ser = serial.Serial(   
9.     port='/dev/ttyUSB0',   
10.     baudrate=9600,   
11.     parity=serial.PARITY_NONE,   
12.     stopbits=serial.STOPBITS_ONE,   
13.     bytesize=serial.EIGHTBITS,   
14.     timeout=0.01,   
15.     )   
16.     #print "You are now in ConvertV"   
17.     ser.isOpen()   
18.        
19.     Result=ErrorChecking()   
20.        
21.     ErrorCounter=0   
22.        
23.     if Result==0 and ErrorCounter<5:   
24.         ErrorChecking()   
25.         ErrorCounter=ErrorCounter+1   
26.            
27.         if ErrorCounter==4:   
28.             print "Error in communicating with slaves\n"   
29.    
30.     ser.write('C1'.decode("hex"))     # Set RESET C1, Receive 

CD   
31.     r1=ser.read()   
32.     r1=r1.strip()   
33.     #print r1.encode("hex")   
34.        
35.     ser.write('E1'.decode("hex"))     # Set DATA MODE, Receive

 NOTHING   
36.     r2=ser.read()   
37.     r2=r2.strip()   
38.     #print r2.encode("hex")   
39.        
40.     ser.write('55'.decode("hex"))     # Set SKIP ROM 55, Recei

ve 55   
41.     r3=ser.read()   
42.     r3=r3.strip()   
43.     #print r3.encode("hex")   
44.        
45.     ser.write((RomID))    # Write RomID, Receive RomID   
46.    
47.     i = 1   
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48.     while i < 9:   
49.         r4=ser.read()   
50.         r4=r4.strip()   
51.         #print "The value i = %s, current r4 = %r  \n" % (i, r

4.encode("hex"))   
52.         i = i + 1   
53.        
54.     ser.write('E3'.decode("hex"))     # Set COMAND MODE E3, Re

ceive NOTHING   
55.     r5=ser.read()   
56.     r5=r5.strip()   
57.     #print "The commandmode E3, Receive Nothing %s:  \n" % r5.

encode("hex")   
58.        
59.     ser.write('EF'.decode("hex"))     # Set ARM STRONG PULLUP 

EF, Receive NOTHING   
60.     r6=ser.read()   
61.     r6=r6.strip()   
62.     #print "The ARMPULLUP EF, Receive Nothing %s:  \n" % r6.en

code("hex")   
63.        
64.     ser.write('F1'.decode("hex"))     # Set TERMINATE PULSE F1

, Receive EF   
65.     r7=ser.read()   
66.     r7=r7.strip()   
67.     #print "The TerminatePulse F1, Receive EF %s:  \n" % r7.en

code("hex")   
68.        
69.     ser.write('E1'.decode("hex"))     # Set DATA MODE E1, Rece

ive NOTHING   
70.     r8=ser.read()   
71.     r8=r8.strip()   
72.     #print "The data mode E1, Receive Nothing %s:  \n" % r8.en

code("hex")   
73.        
74.     ser.write('B4'.decode("hex"))     # Set CONVERT VOLTAGE, R

eceive B4   
75.     time.sleep(0.015)                 # Conversion require at 

least 10ms   
76.     r9=ser.read()   
77.     r9=r9.strip()   
78.     #print "The convert Voltage B4, Receive B4 %s:  \n" % r9.e

ncode("hex")   
79.         
80.     r10=ser.read()                    # POLL FOR RESPONSE PULS

E, Receive F6   
81.     r10=r10.strip()   
82.     #print "Receive RESPONSEPULSE F6 %s:  \n" % r10.encode("he

x")   
83.        
84.     ser.write('E3'.decode("hex"))     # Set COMAND MODE E3, Re

ceive NOTHING   
85.     r11=ser.read()   
86.     r11=r11.strip()   
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87.     #print "The command mode E3, Receive Nothing %s:  \n" % r1
1.encode("hex")   

88.        
89.     ser.write('ED'.decode("hex"))     # Set DISARM STRONG PULL

UP ED, Receive NOTHING   
90.     r12=ser.read()   
91.     r12=r6.strip()   
92.     #print "The command mode ED, Receive Nothing %s:  \n" % r1

2.encode("hex")   
93.        
94.     ser.write('F1'.decode("hex"))     # Set TERMINATE PULSE F1

, Receive EF   
95.     r13=ser.read()   
96.     r13=r13.strip()   
97.     #print "The terminatepulse F1, Receive EF %s:  \n" % r13.e

ncode("hex")   
98.        
99.     ser.write('C1'.decode("hex"))     # Set RESET C1, Receive 

CD   
100.     r14=ser.read()   
101.     r14=r14.strip()   
102.     #print "The C1, ReceiveCD %s:  \n" % r14.encode("hex

")   
103.        
104.     r15=ser.read()   
105.     r15=r15.strip()   
106.     #print "Receive Nothing %s:  \n" % r15.encode("hex")

   
107.        
108.     #print "Done voltage conversion!\n"   
109.    
110.    
111. def ErrorChecking():   
112.     import serial   
113.     import FlushInputBuffer   
114.        
115.     # Serial Connection Settings   
116.     ser = serial.Serial(   
117.     port='/dev/ttyUSB0',   
118.     baudrate=9600,   
119.     parity=serial.PARITY_NONE,   
120.     stopbits=serial.STOPBITS_ONE,   
121.     bytesize=serial.EIGHTBITS,   
122.     timeout=0.01,   
123.     )   
124.    
125.     ser.isOpen()   
126.    
127.     FlushInputBuffer.FlushInputBuffer()   
128.        
129.     ser.write('E3'.decode("hex"))     # Set COMMAND MODE

 E3, before data interfacing as precaution   
130.     r16 = ser.read()   
131.     r16 = r16.strip()   
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132.     #print r16.encode("hex")   
133.        
134.     ser.write('33'.decode("hex"))     # Set PULLUP DURAT

ION=524ms, Receive 32   
135.     r17 = ser.read()   
136.     r17 = r17.strip()   
137.     #print r17.encode("hex")   
138.        
139.     DataShouldBeReceived='32'.decode("hex") # Check for 

Correct Data Received, PULLUP DUR=65.6ms   
140.     r18 = (r17 == DataShouldBeReceived)   
141.     if r18 == True:   
142.         #print "Correct Data Received\n"   
143.         Result = 1   
144.     else:   
145.         print "ERROR! Resend Command Code\n"   
146.         Result = 0   

 

 

1. #Function readV.py 
2. def readV(RomID):   
3.     import FlushInputBuffer   
4.     import serial   
5.     import time   
6.        
7.     # Serial Connection Settings   
8.     ser = serial.Serial(   
9.     port='/dev/ttyUSB0',   
10.     baudrate=9600,   
11.     parity=serial.PARITY_NONE,   
12.     stopbits=serial.STOPBITS_ONE,   
13.     bytesize=serial.EIGHTBITS,   
14.     timeout=0.01,   
15.     )   
16.     #print "You are now in ReadV"   
17.     ser.isOpen()   
18.     r0=ser.read()   
19.     r0=r0.strip()   
20.     #print "The serial port reopen and reads %s:  \n" % r0.enc

ode("hex")   
21.        
22.     FlushInputBuffer.FlushInputBuffer()   
23.        
24.     ser.write('C1'.decode("hex"))     # Set RESET C1, Receive 

CD   
25.     r1=ser.read()   
26.     r1=r1.strip()   
27.     #print "The reset C1, Receive CD %s:  \n" % r1.encode("hex

")   
28.        
29.     ser.write('E1'.decode("hex"))     # Set DATA MODE, Receive

 NOTHING   
30.     r2=ser.read()   
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31.     r2=r2.strip()   
32.     #print "The reset DATAMODE E1, Receive NOTHING %s:  \n" % 

r2.encode("hex")   
33.        
34.     ser.write('55'.decode("hex"))     # Set SKIP ROM 55, Recei

ve 55   
35.     r3=ser.read()   
36.     r3=r3.strip()   
37.     #print "Receive 55 %s:  \n" % r3.encode("hex")   
38.        
39.     #print "The current RomID at LoopingForTesting is = %s:  \

n" % RomID   
40.        
41.     ser.write((RomID))    # Write RomID, Receive RomID   
42.    
43.     i = 1   
44.     while i < 9:   
45.         r4=ser.read()   
46.         r4=r4.strip()   
47.         print "The value i = %s, current r4 = %r  \n" % (i, r4

.encode("hex"))   
48.         i = i + 1   
49.        
50.     ser.write('B2'.decode("hex"))     # Set READ REGISTER B2, 

Receive B2   
51.     r5=ser.read()   
52.     r5=r5.strip()   
53.     #print "The read register B2, Receive B2 %s:  \n" % r5.enc

ode("hex")   
54.        
55.     ser.write('77'.decode("hex"))     # Set VOLTAGE ADDRESS 77

, Receive 77   
56.     r6=ser.read()   
57.     r6=r6.strip()   
58.     #print "The Voltage Address 77, Receive 77 %s:  \n" % r6.e

ncode("hex")   
59.        
60.     ser.write('FF'.decode("hex"))     # Obtain LSB VOLTAGE   
61.     r7=ser.read()   
62.     lsbVolt=r7.strip()   
63.     lsbVolt=lsbVolt.encode("hex")   
64.     #print "The lsbVolt of battery value = %s:  \n" % lsbVolt 

  
65.        
66.     ser.write('FF'.decode("hex"))     # Obtain MSB VOLTAGE   
67.     r8=ser.read()   
68.     msbVolt=r8.strip()   
69.     msbVolt=msbVolt.encode("hex")   
70.     #print "The msbVolt of battery value = %s:  \n" % msbVolt 

  
71.        
72.     ser.write('E3'.decode("hex"))     # Set COMAND MODE E3, Re

ceive NOTHING   
73.     r9=ser.read()   
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74.     r9=r9.strip()   
75.     #print "The commandmode E3, Receive NOTHING %s:  \n" % r9.

encode("hex")   
76.        
77.     ser.write('C1'.decode("hex"))     # Set RESET PULSE C1, Re

ceive CD   
78.     r10=ser.read()   
79.     r10=r10.strip()   
80.     #print "The reset C1, Receive CD %s:  \n" % r10.encode("he

x")   
81.        
82.     return lsbVolt,msbVolt   
83.    
84.     #print "Done voltage reading!\n"   

 

 

1. #Function calcVolt.py 
2. def calcVolt(lsbVolt,msbVolt,Ratio):   
3.        
4.     #print "You are now in calcVolt"   
5.        
6.     if len(lsbVolt) == 1:   
7.         lsbVolt = str(0) + lsbVolt   
8.        
9.     combinedVolt = msbVolt + lsbVolt   
10.     #print "The combinedVolt added together = %s:  \n" % combi

nedVolt   
11.    
12.     voltInDecimal = int(combinedVolt,16)   
13.     #print "The voltInDecimal = %s:  \n" % voltInDecimal   
14.        
15.     voltMeasured = float(voltInDecimal / 100)   
16.     finalVolt = (voltMeasured / Ratio)   
17.        
18.     #print "The finalVolt is = %s:  \n" % finalVolt   
19.     #print "Done temperature calculation!\n"   
20.        
21.     return finalVolt   

 

 

1. #Function record.py 
2. def recordV(voltSlave1, voltSlave2, voltSlave3, voltSlave4, vo

ltSlave5, voltSlave6, voltSlave7, voltSlave8, voltSlave9, volt
Slave10, voltSlave11, voltSlave12):   

3.    
4.     import os   
5.     import time   
6.     import datetime   
7.        
8.     #print "You are now in recordT"   
9.     file = open("/home/pi/Desktop/dataVolt.csv","a")   
10.     i = 0   
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11.        
12.     if os.stat("/home/pi/Desktop/dataVolt.csv").st_size == 0: 

  
13.         file.write("Time,Sensor1,Sensor2,Sensor3,Sensor4,Senso

r5,Sensor6,Sensor7,Sensor8,Sensor9,Sensor10,Sensor11,Sensor12\
n")   

14.    
15.     while(i < 1):       
16.         timeRec = datetime.datetime.now().strftime("%Y-%m-%d_%

H:%M:%S")           
17.         file.write(str(timeRec)+","+str(voltSlave1)+","+str(vo

ltSlave2)+","+str(voltSlave3)+","+str(voltSlave4)+","+str(volt
Slave5)+","+str(voltSlave6)+","+str(voltSlave7)+","+str(voltSl
ave8)+","+str(voltSlave9)+","+str(voltSlave10)+","+str(voltSla
ve11)+","+str(voltSlave12)+"\n")   

18.         i = i + 1   
19.         file.close   
20.     #print "Printing Done.\n"   

 

 

1. #GPSread.py 
2. #! /usr/bin/python   
3. # License: GPL 2.0   
4.     
5. import os   
6. from gps import *   
7. from time import *   
8. import time   
9. import threading   
10. import datetime   
11. import math   
12.     
13. gpsd = None #seting the global variable   
14. utcOld = 0   
15. Result = 0   
16. k = 0   
17.     
18. os.system('clear') #clear the terminal (optional)   
19.     
20. class GpsPoller(threading.Thread):   
21.   def __init__(self):   
22.     threading.Thread.__init__(self)   
23.     global gpsd #bring gpsd in scope   
24.     gpsd = gps(mode=WATCH_ENABLE) #starting the stream of info

   
25.     self.current_value = None   
26.     self.running = True #setting the thread running to true   
27.     
28.   def run(self):   
29.     global gpsd   
30.     while gpsp.running:   
31.       gpsd.next() #this will continue to loop and grab EACH se

t of gpsd info to clear the buffer   
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32.    
33. def isNum(num):   
34.     return num != num   
35.    
36. if __name__ == '__main__':   
37.   gpsp = GpsPoller() # create the thread   
38.   try:   
39.     gpsp.start() # start it up   
40.     while True:   
41.       #It may take a second or two to get good data   
42.       #print gpsd.fix.latitude,', ',gpsd.fix.longitude,'  Time

: ',gpsd.utc   
43.     
44.       os.system('clear')   
45.     
46.       print   
47.       print ' GPS reading'   
48.       print '----------------------------------------'   
49.       print 'latitude    ' , gpsd.fix.latitude   
50.       print 'longitude   ' , gpsd.fix.longitude   
51.       print 'time utc    ' , gpsd.utc,' + ', gpsd.fix.time   
52.       print 'altitude (m)' , gpsd.fix.altitude   
53.       print 'eps         ' , gpsd.fix.eps   
54.       print 'epx         ' , gpsd.fix.epx   
55.       print 'epv         ' , gpsd.fix.epv   
56.       print 'ept         ' , gpsd.fix.ept   
57.       print 'speed (m/s) ' , gpsd.fix.speed   
58.       print 'climb       ' , gpsd.fix.climb   
59.       print 'track       ' , gpsd.fix.track   
60.       print 'mode        ' , gpsd.fix.mode   
61.       print   
62.       print 'sats        ' , gpsd.satellites   
63.     
64.       time.sleep(0.5) #set to delay   
65.        
66.       file = open("/home/pi/Desktop/dataGPS.csv","a")   
67.       i = 0   
68.        
69.       if os.stat("/home/pi/Desktop/dataGPS.csv").st_size == 0:

   
70.         file.write("Time,Latitude,Longitude,Altitude(m),Speed(

kph),Climb(m/min),Track,GPS Mode,Satellites\n")   
71.    
72.       while(i < 1):       
73.         timeRec = datetime.datetime.now().strftime("%Y-%m-%d_%

H:%M:%S")           
74.         file.write(str(timeRec)+","+str(gpsd.fix.latitude)+","

+str(gpsd.fix.longitude)+","+str(gpsd.fix.altitude)+","+str(gp
sd.fix.speed)+","+str(gpsd.fix.climb)+","+str(gpsd.fix.track)+
","+str(gpsd.fix.mode)+"\n")   

75.         i = i + 1   
76.         file.close   
77.    
78.     
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79.   except (KeyboardInterrupt, SystemExit): #when ctrl+c is pres
sed   

80.     print "\nKilling Thread..."   
81.     gpsp.running = False   
82.     gpsp.join() # wait for the thread to finish what it's doin

g   
83.   print "Done.\nExiting."   

 

 

1. #Current Sensor Interfacing and Logging 
2. #LoopingForTesting.py 
3. import ADC   
4. import recordCurrent   
5. import time   
6.    
7. cycleValue = 1   
8. while cycleValue < 5800:   
9.     current = ADC.ADC()   
10.     recordCurrent.recordCurrent(current)   
11.     print "Cycle %s is done \n\n\n" %cycleValue   
12.     cycleValue = cycleValue + 1   
13.     #time.sleep(0.5)    

 

 

1. #Function ADC.py 
2. def ADC():   
3.        
4.     import spidev   
5.     import time   
6.     import os   
7.        
8.     print "You are now in ADC"   
9.     MaxSensorAmp = 600   
10.     LinearlityError = 1.5   
11.     Ipn = 400   
12.    
13.     # Initialize SPI bus   
14.     spi = spidev.SpiDev()   
15.     spi.open(0,0)   
16.    
17.     # Obtain reference voltage of sensor at 0A   
18.     channel = 1  # Channel 1 is the Reference Voltage   
19.     spidata = spi.xfer2([1, (2+channel) << 6, 0])   
20.     print("Raw ADC:      {}".format(spidata))   
21.     channeldataRef = ((spidata[1] & 31) << 6) + (spidata[2] >>

 2)   
22.     voltageRef = ((channeldataRef * 4.35) / 1024) # 4.35V supp

lied by RaspberryPi   
23.     print("Data ref C1(dec)    {}".format(channeldataRef))   
24.     print("Voltage ref(V): {}".format(voltageRef))   
25.        
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26.        
27.     # Obtain output voltage of sensor (without compensation)   
28.     channel = 0  # Channel 0 is the Measured Voltage   
29.     spidata = spi.xfer2([1, (2+channel) << 6, 0])   
30.     print("Raw ADC:      {}".format(spidata))   
31.     channeldata = ((spidata[1] & 31) << 6) + (spidata[2] >> 2)

   
32.     voltage = ((channeldata * 4.35) / 1024) # 4.35V supplied b

y RaspberryPi   
33.     print("Data C0 (dec)    {}".format(channeldata))   
34.     print("Voltage (V): {}".format(voltage))   
35.    
36.     current = (voltage - voltageRef) / 0.003333   
37.     print("Current (A): {}".format(current))   
38.        
39.     return current   

 

 

1. #Function recordCurrent.py 
2. def recordCurrent(current):   
3.    
4.     import os   
5.     import time   
6.     import datetime 
7.     from sympy import* 
8.    
9.     print "You are now in recordCurrent"   
10.     file = open("/home/pi/Desktop/dataCurrent.csv","a")   
11.     i = 0   
12.      
13.     t = Symbol('t')  
14.     start_time = time.time()    
15.     j = current   
16.     end_time = (time.time()- start_time) / 60 
17.     totalCharge = integrate(j, (t,0,end_time))  
18.   
19.     if os.stat("/home/pi/Desktop/dataTemp.csv").st_size == 0: 

  
20.         file.write("Time,Current,Total Charge")   
21.     while(i < 1):       
22.         timeRec = datetime.datetime.now().strftime("%Y-%m-%d_%

H:%M:%S")           
23.         file.write(str(timeRec)+","+str(current)+str(totalChar

ge)+"\n")   
24.         i = i + 1   
25.         file.close   
26.     print "Printing Done.\n"   

 

 

1. import time   
2. from sympy import*   
3. t = Symbol('t')   
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4. start_time = time.time()   
5. i = 20   # i = total current   
6. end_time = (time.time()- start_time)/60   
7. totalcharge = integrate(i, (t,0,end_time))   
8. print totalcharge   

 

 

1. #CANBUS interfacing and logging 
2. #Data_CAN.py 
3. #!/usr/bin/env python   
4. #!/bin/bash   
5.    
6. import subprocess   
7. import time   
8. import datetime   
9. import os   
10. import RPi.GPIO as GPIO   
11.    
12. GPIO.setmode(GPIO.BCM)   
13. GPIO.setwarnings(False)   
14. GPIO.cleanup()   
15. GPIO.setup(17,GPIO.OUT)   
16. GPIO.output(17,GPIO.LOW)   
17. GPIO.setup(27,GPIO.OUT)   
18. GPIO.output(27,GPIO.LOW)   
19. GPIO.setup(22,GPIO.OUT)   
20. GPIO.output(22,GPIO.LOW)   
21. GPIO.setup(24,GPIO.OUT)   
22. GPIO.output(24,GPIO.LOW)   
23.    
24. log="/home/pi/Desktop/dataCan.csv"   
25. bashCommand1= "sudo ./slcan_attach -f -s4 -o /dev/ttyACM0"   
26. bashCommand2="sudo ./slcand ttyACM0 slcan0"   
27. bashCommand3="sudo ifconfig slcan0 up"   
28. bashCommand4="sudo ./candump slcan0"   
29. cycle = 0   
30.    
31. def runBash(exe, count):   
32.     process = subprocess.Popen(exe.split(), cwd='/can-

utils', stdout=subprocess.PIPE, stderr=subprocess.STDOUT)   
33.     print "executing now"   
34.     while(True):   
35.         retcode = process.poll()  #returns None while subproce

ss is running   
36.         line = process.stdout.readline()   
37.         yield line   
38.         count = count + 1   
39.         print "%d \n" %count   
40.         if(retcode is not None):   
41.             break   
42.    
43. for line in runBash(bashCommand1, cycle):   
44.     print line   
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45. for line in runBash(bashCommand2, cycle):   
46.     print line   
47. for line in runBash(bashCommand3, cycle):   
48.     print line   
49. for line in runBash(bashCommand4, cycle):   
50.         print line   
51.         timeRec = datetime.datetime.now().strftime("%Y-%m-%d_%

H:%M:%S")   
52.         line = line.strip()   
53.         line = line.split()   
54.    
55.         i = 0   
56.         j = 0   
57.         m = 0   
58.         n = 0   
59.         address = int(line[1],10)   
60.         if address == 601:   
61.             print "Recording dataCAN1./n"   
62.             file = open("/home/pi/Desktop/dataCAN1.csv","a")   
63.        
64.             if os.stat("/home/pi/Desktop/dataCAN1.csv").st_siz

e == 0:   
65.                 file.write("Time, Interface, Address, Bits, Mo

tor RPM, Motor Temperature, Controller Temperature, RMS Curren
t, Battery Voltage\n")   

66.    
67.             while(i < 1):       
68.                 rpm = line[3] + line[4]   
69.                 rpm = int(rpm,16)   
70.                 motorTemp = int(line[5],16)   
71.                 conTemp = int(line[6],16)   
72.                 current = line[7] + line[8]   
73.                 current = (int(current,16))*0.1   
74.                 battVolt = line[9] + line[10]   
75.                 battVolt = (int(battVolt,16))*0.1   
76.                 file.write(str(timeRec)+","+str(line[0])+","+s

tr(line[1])+","+str(line[2])+","+str(rpm)+","+str(motorTemp)+"
,"+str(conTemp)+","+str(current)+","+str(battVolt)+"\n")   

77.                 file.close   
78.                 break   
79.    
80.         else:   
81.             print "Recording dataCAN2./n"   
82.             file = open("/home/pi/Desktop/dataCAN2.csv","a")   
83.        
84.             if os.stat("/home/pi/Desktop/dataCAN2.csv").st_siz

e == 0:   
85.                 file.write("Time, Interface, Address, Bits, St

ator Frequency, Primary Controller Fault, Secondary Controller
 Fault, Throttle Input Percentage, Brake Input Percentage, Sys
tem State\n")   

86.    
87.             while(i < 1):       
88.                 statorF = line[3] + line[4]   
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89.                 statorF = int(statorF,16)   
90.                 if statorF > 1:   
91.                     faultP = int(line [5],16)   
92.                     print faultP   
93.                     faultS = int((line [6]),16)   
94.                     print faultS   
95.                     throttle = int(line[7],16)   
96.                     brake = int(line[8],16)   
97.                     system = int(line[9],16)   
98.                     print system   
99.                     file.write(str(timeRec)+","+str(line[0])+"

,"+str(line[1])+","+str(line[2])+","+str(statorF)+","+str(faul
tP)+","+str(faultS)+","+str(throttle)+","+str(brake)+","+str(s
ystem)+"\n")   

100.                     file.close   
101.                     if faultP > 0:   
102.                         print "WARNING: CONTROLLER FAULT

 DETECTED!\n Initiating EMERGENCY STOP!"   
103.                         GPIO.output(17,GPIO.HIGH)   
104.                         time.sleep(0.1)   
105.                         GPIO.output(17,GPIO.LOW)   
106.                         if faultP < 10:   
107.                             while (j != faultP):   
108.                                 GPIO.output(24,GPIO.HIGH

)   
109.                                 time.sleep(0.5)   
110.                                 GPIO.output(24,GPIO.LOW)

   
111.                                 time.sleep(0.5)   
112.                                 j = j + 1   
113.                             if (j == faultP):   
114.                                 n = 0   
115.                                 time.sleep(3)   
116.                                 break   
117.                         else:       
118.                             faultP = str(faultP)   
119.                             faultS = str(faultS)   
120.                             faultP1 = faultP[0]   
121.                             faultP2 = faultP[1]   
122.                             while (m != faultP1):   
123.                                 GPIO.output(24,GPIO.HIGH

)   
124.                                 time.sleep(0.5)   
125.                                 GPIO.output(24,GPIO.LOW)

   
126.                                 m = m + 1   
127.                             if (m == faultP1):   
128.                                 m = 0   
129.                                 GPIO.output(24,GPIO.HIGH

)   
130.                                 time.sleep(1.5)   
131.                                 GPIO.output(24,GPIO.LOW)

   
132.                                 break   
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133.                             while (n != faultP2):   
134.                                 GPIO.output(24,GPIO.HIGH

)   
135.                                 time.sleep(0.5)   
136.                                 GPIO.output(24,GPIO.LOW)

   
137.                                 m = n + 1   
138.                             if (n == faultP2):   
139.                                 n = 0   
140.                                 time.sleep(3)   
141.                                 break   
142.                                
143.                     if system == 10 :   
144.                         print "ECO MODE"   
145.                         GPIO.output(27,GPIO.HIGH)   
146.                         time.sleep(0.5)   
147.                         GPIO.output(27,GPIO.LOW)   
148.    
149.                     if system == 42 :   
150.                         print "REGENERATIVE MODE"   
151.                         GPIO.output(22,GPIO.HIGH)   
152.                         time.sleep(0.5)   
153.                         GPIO.output(22,GPIO.LOW)   
154.                     break   

 

1. #Auto Run Script on Boot 
2. import time   
3. import threading   
4. import os   
5.    
6. def startprgm(i):   
7.     print "Running thread %d" % i   
8.     if (i == 0):   
9.     print('Running: Data_CANp.py')   
10.     os.system("sudo python /home/pi/Desktop/FINAL_CODES/CANBUS

/Data_CANp.py")   
11.     elif (i == 1):   
12.     print('Running: GPSread.py')   
13.     os.system("sudo python /home/pi/Desktop/FINAL_CODES/GPS/GP

Sread.py")   
14.     elif (i == 2):   
15.     print('Running: Current-LoopingForTesting.py')   
16.     os.system("sudo python /home/pi/Desktop/FINAL_CODES/Curren

t/LoopingForTesting.py")   
17.     elif (i == 3):   
18.     print('Running: TempVolt-LoopingForTesting.py')   
19.     os.system("sudo python /home/pi/Desktop/FINAL_CODES/Loopin

gForTesting.py")   
20.     elif (i == 4):   
21.         print('Running: shutdown.py')   
22.         os.system("sudo python /home/pi/Desktop/Scripts/shutdo

wn_pi.py")   
23.  
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24.       else:   
25.         pass   
26.    
27. for i in range(5):   
28.     t = threading.Thread(target=startprgm, args=(i,))   
29.     t.start()   

 

1. #Shut Down Script 
2. #shutdown_pi.py 
3. #!/bin/python     
4. # Simple script for shutting down the Raspberry Pi at the pres

s of a button.     
5.     
6. import RPi.GPIO as GPIO     
7. import time     
8. import os     
9.     
10. # Use the Broadcom SOC Pin numbers     
11. # Setup the Pin with Internal pullups enabled and PIN in readi

ng mode.     
12. GPIO.setmode(GPIO.BCM)   
13. GPIO.setwarnings(False)   
14. GPIO.setup(24,GPIO.OUT)     
15. GPIO.setup(23, GPIO.IN, pull_up_down = GPIO.PUD_UP)   
16.     
17. # Add function on what to do when the button is pressed     
18. def Shutdown(channel):     
19.     os.system("sudo shutdown -h now")     
20.     GPIO.output(24,GPIO.HIGH)   
21.     time.sleep(2)   
22.     GPIO.output(24,GPIO.LOW)   
23.     time.sleep(2)   
24.    
25. # Add function to execute when the button pressed event happen

s     
26. GPIO.output(24,GPIO.HIGH)   
27. time.sleep(0.1)   
28. GPIO.output(24,GPIO.LOW)   
29. time.sleep(0.1)   
30. GPIO.output(24,GPIO.HIGH)   
31. time.sleep(0.1)   
32. GPIO.output(24,GPIO.LOW)   
33. time.sleep(0.1)   
34. GPIO.output(24,GPIO.HIGH)   
35. time.sleep(0.1)   
36. GPIO.output(24,GPIO.LOW)   
37. GPIO.add_event_detect(23, GPIO.FALLING, callback = Shutdown, b

ouncetime = 2000)     
38.     
39. # Now wait!     
40. while 1:     
41.     time.sleep(1)   

 


