

PEDESTRIAN DETECTION AND TRACKING IN

SURVEILLANCE VIDEO

By

PENNY CHONG

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Science (Hons.)

 Applied Mathematics with Computing

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

April 2016

ii

DECLARATION OF ORIGINALITY

I hereby declare that this project report entitled “PEDESTRIAN DETECTION AND

TRACKING IN SURVEILLANCE VIDEO” is my own work except for citations and

quotations which have been duly acknowledged. I also declare that it has not been

previously and concurrently submitted for any other degree or award at UTAR or other

institutions.

Signature :

Name :

ID No. :

Date :

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “PEDESTRIAN DETECTION AND

TRACKING IN SURVEILLANCE VIDEO” was prepared by PENNY CHONG has met

the required standard for submission in partial fulfilment of the requirements for the award

of Bachelor of Science (Hons.) Applied Mathematics with Computing at Universiti Tunku

Abdul Rahman.

Approved by,

Signature :

Supervisor :

Date :

iv

The copyright of this report belongs to the author under the terms of the copyright

Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku Abdul Rahman.

Due acknowledgement shall always be made of the use of any material contained in, or

derived from, this report.

© 2016, PENNY CHONG. All right reserved.

v

ACKNOWLEDGEMENTS

I would like to express my utmost gratitude to Universiti Tunku Abdul Rahman for

providing an opportunity for me to conduct this research as a partial fulfilment of the

requirement for the degree in Bachelor of Science (Hons) Applied Mathematics with

Computing.

Throughout the development of this research, I am very fortunate to be blessed with

advice and guidance from my supervisor, Dr. Tay Yong Haur. Without his help, I would not

be able to complete this research project.

In addition, I would also like to thank my loving parents and friends who had

motivated and encouraged me for this one year.

PENNY CHONG

vi

PEDESTRIAN DETECTION AND TRACKING IN SURVEILLANCE VIDEO

PENNY CHONG

ABSTRACT

Pedestrian detection and tracking has many important applications in the security industry,

pedestrian demographic analysis, and intelligent transportation system (ITS). In this project,

we will develop a stable pedestrian detection and tracking algorithm. The Town Centre

video frames and the hand annotated ground truth published by the University of Oxford are

used as a benchmark. In experiment 1, we used Dalal and Triggs (2005) Support Vector

Machines (SVM) classifier to detect pedestrians. In experiment 2, we trained our own

cascade of boosted classifiers with Histogram of Oriented Gradients (HOG) feature for

detection. Using Daimler training samples and INRIA training samples, we have trained

two different detectors to perform pedestrian detection. The detector trained with Daimler

training samples has outperformed the detector trained with INRIA training samples. For

both experiments, the raw detection results are passed to the tracker. Our tracker uses

Kalman filter to estimate the location of the pedestrians based on their track history. For

data association, we employed the Hungarian algorithm. Overall, experiment 2 shows a

more promising result as compared to experiment 1. Using raw detections from Daimler

detector, our multiple object tracking accuracy (MOTA) value in experiment 2 had

surpassed Benfold and Reid (2011) MOTA value by approximately 1%. However, it was

observed that our algorithm suffers from a high number of misses due to occlusion. This is

a common problem especially in crowded or semi-crowded environment. Thus to improve

the detection or tracking results, one can opt to use a part-based detector instead of a full

body detector to estimate the location of the pedestrians.

vii

TABLE OF CONTENTS

TITLE i

DECLARATION OF ORIGINALITY ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF FIGURES ix

LIST OF TABLES x

LIST OF APPENDICES xi

CHAPTER 1 Introduction 1

1-1 Background…………………………………………………..1

1-2 Aims and Objectives…………………………………………2

1-3 Problem Statement…………………………………………...2

1-4 Project Scope………………………………………………...3

CHAPTER 2 Literature Review 4

2-1 Classification of Object Detection Methods………………....4

2-1-1 Feature-based Approach……………………………5

2-1-2 Motion-based Approach……………………………5

2-1-3 Classifier-based Approach…………………………5

2-2 Classifications of Object Tracking Methods………………...6

2-2-1 Point Tracking Approach…………………………..7

2-2-2 Kernel-based Tracking Approach………………….7

2-2-3 Silhouette-based Tracking Approach………………8

CHAPTER 3 Research Methodology 9

3-1 System Overview…………………………………………….9

Table of Contents viii

3-2 Detection Phase…………………………………………….10

3-3 Tracking Phase……………………………………………..10

3-4 Evaluation Method…………………………………………10

3-4-1 Evaluation for Detection………………………….11

3-4-2 Evaluation for Tracking…………………………..11

CHAPTER 4 Detection Algorithm 13

4-1 Histogram of Oriented Gradients (HOG)…………………..13

4-2 Support Vector Machine (SVM) Classifier………………...14

4-3 Cascade of Boosted Classifiers…………………………….15

CHAPTER 5 Tracking Algorithm 16

5-1 Kalman Filter Model……………………………………….16

5-2 Data Association using Hungarian Algorithm……………..19

CHAPTER 6 Experimental Setup 21

6-1 Experiment 1 Setup………………………………………...21

6-2 Experiment 2 Setup………………………………………...21

CHAPTER 7 Results and Findings 23

7-1 Detection Results…………………………………………...23

7-2 Tracking Results……………………………………………25

7-3 Error Analysis………………………………………………29

CHAPTER 8 Conclusion and Future Work 30

8-1 Conclusion………………………………………………….30

8-2 Future Work………………………………………………...31

REFERENCES 32

APPENDICES A-1

ix

LIST OF FIGURES

2.1 Classification of detection methods…………………………………..4

2.2 Classification of tracking methods…………………………………...6

3.1 System overview of detection and tracking process………………….9

3.2 Comparison of ROC curves…………………………………………11

3.3 Tracking evaluation – CLEAR MOT metrics………………………12

4.1 SVM classifier………………………………………………………14

4.2 Cascade of boosted classifiers………………………………………15

5.1 A complete picture of the Kalman filter operation………………….17

5.2 Hungarian algorithm………………………………………………...20

6.1 Text file format for list of positive samples…………………………21

7.1 ROC curve for Daimler detector and INRIA detector………………23

7.2 Raw detections………………………………………………………24

7.3 Tracking……………………………………………………………..25

7.4 Stable tracking in a semi-crowded environment……………………27

7.5 Error analysis on the factors affecting the number of misses……….29

x

LIST OF TABLES

 7.1 Comparison of the tracking results using Town Centre data set…….26

 7.2 Comparison of measures used in tracking evaluation……………….28

xi

LIST OF APPENDICES

 A Training Parameters………………………………………………..A-1

 B Source Code………………………………………………………..B-1

1

CHAPTER 1: INTRODUCTION

1-1 Background

Computer or machine vision is a field in artificial intelligence that has become a great area

of research due to its wide range of applications. From automated navigation of vehicles to

medical imaging, all these applications require the computer to process, understand and

analyse a scenario in order to make intelligent decisions. Putting it in layman terms,

computer vision simply means teaching the computer to mimic the human eyes and brain.

With the power of computers today and the current breakthrough in technologies,

there are now various methods/algorithms that were developed to enable a

computer/machine to perform tasks such as object detection, object tracking and pattern

recognition. In this study, the focus will be on object detection and tracking with pedestrian

as our object of interest.

Pedestrian detection and tracking, have important roles in the security industry,

pedestrian demographic analysis, and intelligent transportation system (ITS). In the security

industry, an automated human detection and tracking system is necessary as an increasing

number of surveillance cameras /CCTVs are installed each day. This intelligent surveillance

system facilitates the analysis of video footages. Therefore, it has now become impractical

for human operators to monitor the massive video footages like before.

Besides the security industry, pedestrian detection and tracking also play a major

role in pedestrian demographic systems especially in analyzing the demographic distribution

of a crowd. Moreover in an overcrowding situation, it serves as a counting system.

Likewise, pedestrian detection and tracking can also be implemented in the braking

system of cars as a safety feature. In the event where the driver is about to hit a pedestrian,

the car will automatically brake on its own. With this implementation, the chances of a car

hitting a pedestrian is reduced.

Chapter 1. Introduction 2

1-2 Aims and Objectives

A study is done on how pedestrian detection and tracking can be applied and used in real-

word applications. For pedestrian detection, we will use Histogram of Oriented Gradients

(HOG) feature descriptors as a feature representation of the human shape. For tracking, we

will use Kalman filter and the detection results to predict the path of the pedestrian. At the

end of this project, we will deliver a stable pedestrian detection and tracking algorithm.

1-3 Problem Statement

The development of a reliable algorithm to perform pedestrian detection and tracking is still

a challenge today. Many had underestimated the complexity of this problem as detection

and tracking is a process that can be easily done by the human eyes. However for a computer

to model and imitate the human eyes, there are many challenges involved. One of the

challenges faced in pedestrian detection and tracking is the variation of heights and body

shapes of pedestrians.

Like any other fixed objects, pedestrians may come in different/same heights and

body shapes. These features may or may not be helpful in the tracking process. In an extreme

case where two pedestrians have the same height, body shape and are wearing similar outfits,

it may be quite difficult for a computer/machine to differentiate and distinguish their paths.

Therefore having the same height and body shape is not helpful in this case.

Another challenge faced in the detection and tracking process is occlusion. There

are many types of occlusion that can occur in a real-time scenario. Occlusion between

pedestrians, occlusion between pedestrians and buildings, occlusion between pedestrians

and vehicles are the common types of occlusions faced in a real-time scenario. In an

overcrowded situation, all these occlusions may affect the accuracy of the algorithm.

In addition, the problem becomes more complex due to illumination changes in the

scene. Different lighting conditions may affect the visibility of an object and even alter the

appearance of the object. Hence the way lights are placed in a scene, may cause an object

to look different. In our case, pedestrians may look different due to the lighting conditions

in the scene.

Chapter 1. Introduction 3

Therefore it is not easy for one to develop a reliable real-time pedestrian detection

and tracking algorithm that is able to address all these issues. Although many other

researchers have employed different approaches to address this particular problem, there is

still no promising algorithm in terms of accuracy and speed. Hence, a study is carried out to

understand and address these issues.

1-4 Project Scope

In this project, our attention will be on developing an algorithm to detect and track multiple

pedestrians in surveillance videos. This project is only limited to semi-crowded environment

in a stationary single camera view.

For a fair comparison, the standard Town Centre video and the hand annotated

ground truth data provided by the University of Oxford were used. To compare our results

with other researchers, we benchmark our final results against theirs using the same

evaluation algorithm.

4

CHAPTER 2: LITERATURE REVIEW

2-1 Classification of Object Detection Methods

Generally there are three different types of approach used in object detection. They are the

feature-based approach, motion-based approach and classifier-based approach (Shantaiya,

 Verma and Mehta, 2013). In feature-based approach, the features in the image are extracted

as a representation of the image. Detection using colors and shapes are examples of a

feature-based detection. In motion-based approach, the objects are detected based on

movements. Hence, only moving objects can be detected while stationary objects cannot be

detected. Detection using background subtraction is an example of a motion-based approach.

In a classifier-based approach, the classifier is trained to recognize or detect objects by

feeding in positive and negative training samples. Examples of classifier-based approach

are Support Vector Machine (SVM) classifier and cascade of boosted classifiers.

Figure 2.1: Classification of detection methods

Detection Methods

Feature-based Approach

Motion-based Approach

Classifier-based
Approach

Chapter 2. Literature Review 5

2-1-1 Feature-based Approach

Tian and his team of researchers had employed a Histogram of Oriented Gradients (HOG)

feature descriptor and a color feature in pedestrian detection (Tian, et al., 2013). HOG with

Local Color Self Similarity Feature (LCSSF) instead of Color Self Similarity (CSS) had

speed up detection time and performance. From this feature extraction process, one can

obtain useful information on the contours and the distribution of colors.

2-1-2 Motion-based Approach

Rakibe and Patil (2013) had employed background subtraction to detect humans in video

frames. The moving humans were detected by finding the difference between the current

frame and the background. Thus the background needs to be updated from time to time so

that the algorithm is more robust to illumination changes in the scene. However, this

approach will detect all moving objects including the objects that are not of our interest.

2-1-3 Classifier-based Approach

Dalal and Triggs (2005) had used a support vector machine (SVM) binary classifier with

HOG features to detect humans. Support vector machine will find an optimal hyperplane

that splits the training samples into groups. With the optimal hyperplane, the SVM classifier

can group the objects according to their class.

On the other hand, Viola and Jones (2001) had proposed to use a cascade of boosted

classifiers for face detection. The cascade was designed in such a way that it speeds up the

detection process. With several layers in the cascade, a large number of negative sub-

windows can be eliminated quickly which speeds up the face detection process.

Chapter 2. Literature Review 6

2-2 Classifications of Object Tracking Methods

Generally there are three different types of approach used in object tracking. Point tracking

approach, kernel-based tracking approach and silhouette-based tracking approach

(Athanesious and Suresh, 2012). In point tracking approach, we represent the detected

objects as points across frames. This approach is capable of tracking very small objects. The

examples of a point tracking approach are Kalman filter, particle filter and Multiple

Hypothesis Tracking (MHT). In kernel tracking, a moving object is computed and

represented by an embryonic object region from frame-to-frame. The motion will be

represented in the form of a parametric function such as conformal, translation and affine

(Yilmaz, et al., 2006). The examples of a kernel tracking are Simple Template Matching,

Kanade-Lucas-Tomasi (KLT) and Mean Shift Method. For a silhouette-based tracking, we

use colour histogram, contour or edges to model the objects. The examples of silhouette

tracking are contour tracking and shape matching. Despite the three different approaches

that can be used in object tracking, many researchers have employed a point tracking

approach in pedestrian tracking.

Figure 2.2: Classification of tracking methods

Tracking Methods

Point Tracking Approach

Kernel-based Tracking
Approach

Silhouette-based Tracking
Approach

Chapter 2. Literature Review 7

2-2-1 Point Tracking Approach

Jiang and his team of researchers had used a point tracking approach. They had employed a

colour model together with a Kalman filter motion model in the tracking of pedestrian (Jiang,

et al., 2010). Initially, a Histogram of Oriented Gradient (HOG) and a classification with a

linear Support Vector Machine (SVM) as proposed by Dalal and Triggs (2005) were used

to detect the pedestrians. After the detection phase, a 4-dimensional colour histogram for

each detected pedestrian window were extracted out and compared using the Bhattacharyya

coefficient. In addition to the 4-D color histogram, a prediction motion model called the

Kalman filter was also used to predict the path/trajectory of each pedestrian. The tracking

results obtained using a colour model and motion model had outperformed the results

obtained using a colour model only.

Similarly, a point tracking approach using an infrared sensor supplied with

information from the road network was employed in the tracking of pedestrian (Skoglar, et

al., 2012). Road network information was send to a multiple model particle filter to enhance

tracking performance. This multiple model consists of an on-road (road-constrained) model

and an off-road (road-unconstrained) model that is used to track targets in environments

similar to parks.

Likewise an approach involving sparse infrastructure support with particle filter was

employed by Jin, Soh, Motani and Wong (2013) to solve indoor pedestrian tracking. They

had considered a Dead Reckoning (DR) and a ranging sub-system with a sparse

infrastructure to be used. To bound the error in tracking, a particle filter is applied by fusing

DR with sparse range measurements.

2-2-2 Kernel-based Tracking Approach

Benfold and Reid (2011) had employed a kernel approach in tackling the tracking problem.

They had proposed a stable multi-target tracking algorithm using Kanade-Lucas-Tomasi

(KLT) to track pedestrians in a real-time surveillance video. In order to achieve a time-

efficient algorithm, they had employed a multi-threaded approach where one thread is

responsible for an asynchronous Histogram of Oriented Gradient (HOG) detection, a second

thread will perform a KLT feature point tracking task, a third thread will carry out the data

association task using Markov-Chain Monte-Carlo Data Association (MCMCDA)

Chapter 2. Literature Review 8

technique and finally a fourth thread will generate and optimise the output. The system was

evaluated using the standard CLEAR MOT evaluation criteria and was found to be capable

of giving a precise estimate on the location of pedestrians in a large crowd.

2-2-3 Silhouette-based Tracking Approach

For objects with complex shapes and cannot be represented by a set of points, silhouette

based tracking approach is more appropriate. These complex objects are represented by a

silhouette for a better shape description. For instance, Sato and Aggarwal had employed a

silhouette matching technique using a Hough transform to calculate the trajectory of the

moving object (Sato and Aggarwal 2004, cited in Han, et al., 2009).

9

CHAPTER 3: RESEARCH METHODOLOGY

3-1 System Overview

Figure 3.1: System overview of detection and tracking process

Input video frames

Measurement
Update

(Correction Stage)

Time Update
(Prediction Stage)

Output video frames

HOG feature

extraction

Raw Detections

Pedestrian Tracks

Hungarian

Algorithm

Kalman Filter

Cycle

Data

Association

Detection

Phase

Tracking

 Phase

Classifier

Chapter 3. Research Methodology 10

Generally, the algorithm is divided into two phases. The first phase is the detection phase.

After the detection phase, is the tracking phase. The Town Centre data set (video) provided

by the University of Oxford is used to test the performance of our algorithm. It is a 3 minutes

full HD video with 25 frames per second and a resolution of 1920 x 1080. The video has an

average of 16 pedestrians per frame. The algorithm is implemented using Open Source

Computer Vision (OpenCV) 2.4.9 and C++ language.

3-2 Detection Phase

In the beginning, the Town Centre video is feed into the system on a frame-by-frame basis.

In the feature extraction process, we compute the Histogram of Oriented Gradient feature

descriptor for every image. Then the feature vectors are feed into a binary classifier, either

a SVM classifier or a cascade of boosted classifiers. Then the raw detection results from the

classifier are used in the tracking phase.

3-3 Tracking Phase

Each detected pedestrian is assigned a unique identity. We employ the Hungarian algorithm

on the raw detection results to find correspondences between the detections and existing

tracks. Then, we use Kalman filter to estimate the current location of each pedestrian based

on his/her previous track history. Next in the measurement update stage of the Kalman filter

cycle, the filter uses information from the raw detections, to correct and refine its prediction.

Again, we employ the Hungarian algorithm to find correspondences between the predictions

and the tracks. Upon finding those correspondences, the filter continue to predict the

location of the pedestrian using the track history and raw detection results. The tracking

results are stored in json format and will be used to evaluate the tracking performance.

3-4 Evaluation Method

Two different type of performance measures are used. For detection, we use a receiver

operating characteristic (ROC) curve to study the trade-off between hit rate and false

positive rate during detection. On the other hand, we will use the CLEAR MOT Metrics to

measure our tracking results based on Multiple Object Tracking Precision (MOTP) and

Multiple Object Tracking Accuracy (MOTA) values. For both methods, we will use the

ground truth data provided by the University of Oxford and compare them against our results.

Chapter 3. Research Methodology 11

3-4-1 Evaluation for Detection

The ROC curve is a plot that enables us to study the trade-off between the true positive rate

(hit rate) and the false positive rate. The ROC plot is also known as a plot of sensitivity

against 1-specificity. A good classifier will have a high hit rate with a low false positive rate.

Hence the classifier whose curve is the closest to the top left corner will have the best

discriminative ability or in other words, a better detection performance. However if a

classifier’s curve drops below the reference line (y=x) as indicated in the figure below, then

the classifier is said to perform far worse than a random classifier (Choi, n.d.).

Figure 3.2: Comparison of ROC curves

3-4-2 Evaluation for Tracking

To evaluate our tracking performance, we calculate the MOTP and MOTA values. For

MOTP, the errors representing the differences in the object’s true and estimated positions

are computed by comparing each correspondence found. On the other hand, configuration

errors such as misses (the number of objects in ground truth that are not in the results), false

positives (tracker results for which no ground truth exists) and mismatches (event where the

tracker results changed as compared to past frames such as the swap in identities) are

accounted for in the calculation of MOTA (Bernadin and Stiefelhagen, 2008). Higher values

for MOTP and MOTA indicate better tracking performance.

Chapter 3. Research Methodology 12

Figure 3.3: Tracking evaluation – CLEAR MOT metrics

CLEAR MOT Metrics

Multiple Object Tracking Precision
(MOTP)

- a measure to estimate an object’s
precise location

Multiple Object Tracking Accuracy
(MOTA)

-a measure that accounts for
configuration errors such as false

positives, misses, mismatches

13

CHAPTER 4: DETECTION ALGORITHM

4-1 Histogram of Oriented Gradients (HOG)

Human detection in a crowded environment is a challenging task as human comes in various

shapes and heights. Human can also take various forms and postures. Hence for a computer

to distinguish humans from the background and other objects, we need a robust feature to

represent the human shape.

 In this study, we have employed the Histogram of Oriented Gradients (HOG) feature

descriptor as a feature representation for the human shape. Since human can take various

form of appearances, we use intensity gradients or edge directions to represent the human

shape. This method is invariant to photometric and geometric transformation (Dalal and

Triggs, 2005). In other words, this feature has a certain degree of robustness towards rotation,

translation and illumination changes in the environment.

 Initially, ensure that the gamma values and color are normalized. Next, compute the

gradient values vertically and horizontally using the one-dimensional centered, point

discrete derivative mask. Based on the gradient values, the pixels cast weighted votes into

orientation cells. Finally, the gradient strengths are contrast-normalized by grouping cells

into large spatial connected blocks to adapt better to illumination changes.

 Upon computing the HOG feature vectors, we feed them into a binary classifier. The

classifier can be a support vector machine (SVM) classifier or a cascade of boosted

classifiers where each layer is trained to recognize the feature vectors using the Adaptive

Boosting (AdaBoost) method.

Chapter 4. Detection Algorithm 14

4-2 Support Vector Machine (SVM) Classifier

SVM algorithm finds an optimal hyperplane that maximizes the separation between the

hyperplane and the points in space. In a binary linear problem, the SVM algorithm groups

the training samples into two different categories through supervised learning. There will

be many hyperplanes that can split the training samples into two distinct categories.

However, only the hyperplane that maximizes the distance between the two categories is the

optimal hyperplane (Osuna, Freund and Girosi, 1997). With the optimal hyperplane, the

SVM classifier can classify new unseen examples into one of the category.

Figure 4.1: SVM classifier

 In the first experiment, we will use the SVM with HOG feature pedestrian detector

by Dalal and Triggs (2005) to compare against our trained cascade of boosted classifiers in

our second experiment.

maximum distance

optimal hyperplane

Y

X

Chapter 4. Detection Algorithm 15

4-3 Cascade of Boosted Classifiers

Cascade of boosted classifiers was proposed by Viola and Jones (2001) for face detection.

The cascade consists of many layers where each layer is a binary classifier trained with

AdaBoost, a machine learning algorithm to classify images according to certain features. At

any layer where a sub-window is rejected, there will be no further processing on that sub-

window. Therefore with several layers, the computational time used to match the features is

reduced. This speeds up the detection process since most of the sub-windows in a single

image are negative sub-windows and can be eliminated quickly in the first few layers of the

cascade. For sub-windows that are not rejected, there are passed on to the next layer where

each layer is more complex than the last. Only those sub-windows that pass through all the

layers are detected.

Figure 4.2: Cascade of boosted classifiers

With promising results from face detection, we follow this approach for pedestrian

detection in our second experiment. However in our case, we employ HOG feature

descriptor instead of Haar-like features in the feature extraction process. We have trained

two different detectors using Daimler training samples and INRIA training samples. The

detection results for these two detectors will be discussed in the discussion section.

Layer 2

Layer 3

Layer 4

Layer 1

Rejected

Rejected

Rejected

Detected sub-windows

16

CHAPTER 5: TRACKING ALGORITHM

5-1 Kalman Filter Model

The Kalman filter model is a linear quadratic estimation (LQE) model that is used to

estimate the state of an object in an on-going process. The Kalman filter model is able to

give an estimation of the previous, current and also the future states through recursive

computations that minimizes the mean square error. These recursive computations will go

through two main stages repeatedly. The two stages are the time update stage and the

measurement update stage. The time update stage is also known as the prediction stage as

this is a stage where the filter will predict the current state using observations from the

previous state. On the other hand, the measurement update stage is also commonly known

as the correction stage as this is a stage where the filter will refine its prediction and correct

its estimation by taking into account the actual measurement.

In this study, a standard Kalman filter model is used to determine each pedestrian’s

trajectory. In using this standard Kalman filter model, the system needs to be a linear system

where the state variables are normally distributed. In the case where the system is non-linear,

one should use an extended Kalman filter. On the other hand, if the state variables are not

normally distributed, one should use a particle filter instead of a Kalman filter.

Assuming we have a linear system where the state variables are normally distributed

and a constant velocity system, the discrete Kalman filter prediction equations will have the

form

x̂k
−

 = Ax̂k−1 + Buk−1

Pk
− = APk−1AT + Q (5.1)

and the correction equations will have the form

Kk = Pk
− HT (H Pk

− HT + R)−1

x̂k = x̂k
− + Kk(zk − Hx̂k

−)

Pk = (I − KkH)Pk
− (5.2)

where x ∈ Rn , z ∈ Rm, u ∈ Rl

Chapter 5. Tracking Algorithm 17

 x̂k
−

 - prediction at time k, given observations up to time k-1

 (priori estimate)

 x̂k - prediction at time k, given observations up to time k (posteriori

estimate)

 Pk
− - error covariance at time k, given observations up to time k-1

 Kk - n x m Kalman gain matrix at time k

 uk−1 - optional control input at time k-1

 zk - actual measurement/location

 A - n x n matrix that relates the prediction at time k-1 to the prediction at

time k

 B - n x l matrix that relates the optional control input, u to the prediction x

 Q - process of noise covariance

 H - m x n measurement matrix

 R - measurements of noise covariance

Figure 5.1: A complete picture of the Kalman filter operation (Welch and Bishop, 2006.

p. 6)

Chapter 5. Tracking Algorithm 18

In our algorithm, the Kalman filter will give an estimation of the current state

(estimated centroid of the pedestrian) by revolving around two main stages, the time update

stage and the measurement update stage. In the time update stage, the filter estimates the

current location of the pedestrian based on his/her previous location. The output from the

time update stage will be used as an input for the measurement update stage. If the

pedestrian’s actual location is detected and the centroid computed, the filter would use the

actual location to correct its prediction in the measurement update stage. Hence this is called

a filtered location/estimate.

 In the case where the pedestrian’s location is not detected in a particular frame, the

filter will solely depend on the previous observation to predict the current location of the

pedestrian. Hence the output from the measurement update stage is now used to predict the

pedestrian’s next location in the time update stage. In the event where the pedestrian’s

location is not detected for a period of time (in our case, about 10 or 15 consecutive frames),

the pedestrian is assumed to have left the scene.

Continuing in this manner, the Kalman filter model works recursively to predict the

current state based on the information provided by the previous state. Thus this filter is able

to predict previous, current and also the future states. This self-correcting mechanism makes

Kalman filter particularly useful in smoothing out noisy input and refining the pedestrian’s

trajectory even when there is occlusion or when the detection fails.

Chapter 5. Tracking Algorithm 19

5-2 Data Association using Hungarian Algorithm

Multiple pedestrian tracking or more generally multiple object tracking faces more

challenges as compared to a single object tracking. In multiple object tracking, the right

tracks needs to be assigned to the right objects. One also needs to consider new objects

entering into the scene. However the most difficult/challenging part in multiple object

tracking is to maintain each object’s identity and track while they merge into a single

detection. Hence the problem of determining which observation is useful to a particular

object of interest is known as data association.

Through data association, one can eliminate non-informative observations and

associate only relevant observations to the right object. Hence, we adopted the Hungarian

Algorithm to solve the data association problem in this study.

Hungarian algorithm or also known as Munkres algorithm is commonly used to

solve assignments in linear programming problems. This algorithm will assign n objects to

m tasks in such a way that it minimizes the cost incurred.

In this study, n x m cost matrix that represents the Euclidean distance between each

detected centroid point and each pedestrian’s track was constructed. The following steps

were then applied to solve the data association problem (Munkres, 1957).

Step 0: The matrix is rotated in such a way that the number of columns ≥ number of

rows. Then, we let k equals to the minimum of m and n.

Step 1: For each row, subtract the minimum entry of that row from each entry in that

row. Move on to Step 2.

Step 2: Look for a zero, Z in the new matrix. Only star Z, when we cannot find a starred

zero in the same column or row. Repeat for all zero elements. Move on to Step

3.

Step 3: Cover those columns with starred zeros. If there are k number of columns

covered, then we have a whole set of unique assignments. If so, go to DONE,

else move on to Step 4.

Chapter 5. Tracking Algorithm 20

Step 4: Prime an uncovered zero. Move on to Step 5 in the absence of a starred zero

and a primed zero in the same row. Else, cover the row and uncover the column

with starred zero. Repeat this so that all the zeros are covered. Among the

uncovered elements, note down the smallest element and move on to Step 6.

Step 5: Form a series of primed and starred zeros in alternating order. Let Z0 be an

uncovered primed zero obtained from Step 4. If a starred zero is present in the

column of Z0, let it be Z1. Let Z2 be the primed zero found in the Z1 row. Repeat

and only stops at a primed zero where the column does not have a starred zero.

Unstar all the starred zeros in the series. Next, star all the primed zeros in the

series. Then, uncover the lines and erase all primes. Go back to Step 3.

Step 6: For each value obtained in Step 4, add to each entry in the covered rows and

subtract from each entry in the uncovered columns. Go back to Step 4.

DONE: The location of the starred zeros in the matrix is the assignment pair. In other

words if a starred zero is found in row p and column q of the cost matrix, then

there is an association between the entry in row p and column q.

By applying the steps above, we are able to assign the correct track to each pedestrian.

Figure 5.2: Hungarian algorithm

21

CHAPTER 6: EXPERIMENTAL SETUP

6-1 Experiment 1 Setup

In the first experiment, we input the Town Centre video frames into our system and select

appropriate detection and tracking parameters. We used the OpenCV default people detector

to perform pedestrian detection. This default people detector is an implementation of the

Dalal and Triggs (2005) human detector. We do not train our own SVM classifier to perform

pedestrian detection in this experiment.

 The raw detections obtained from the default detector in OpenCV library are passed

on to our tracker. Our tracker predicts the paths of the pedestrian with Kalman filter based

on the raw detections. At the end of the 3 minutes video, the tracking ouput which contains

information on the location of the pedestrians will be stored in a json format. This json file

together with the ground truth will be used to evaluate our tracking performance.

6-2 Experiment 2 Setup

In the second experiment, we trained our own cascade of boosted classifiers instead of using

the default people detector in OpenCV library to perform pedestrian detection. We trained

two different HOG detectors using Daimler training samples and INRIA training samples.

The steps to train a cascade of classifiers are as follow.

 First, we need to create a vector file that consists of all positive training samples. For

that, we need a text file containing information on the positive training samples. The text

file will take the following form.

Figure 6.1: Text file format for list of positive samples

Chapter 6. Experimental Setup 22

With the text file, use opencv_createsamples.exe to create a vector file containing

the positive samples. Next, create another text file listing only the names of the negative

samples. With the vector file and negative text file, use opencv_traincascade.exe to train a

cascade classifier. When using opencv_traincascade.exe, specify the appropriate training

parameters such as number of stages, feature type, number of positive samples, number of

negative samples, etc.

Following the above steps, we trained two different HOG feature detectors using

Daimler training samples and INRIA training samples. Daimler training samples consist of

15,660 positive samples and 6,744 negative samples. On the other hand, INRIA training

samples consist of 2,416 positive samples and 1,218 negative samples. Both training

samples cover pedestrians from all angles.

In the same manner, send the raw detections to the tracker. The tracker predicts the

location of the pedestrians using Kalman filter and stores the output in a json format.

23

CHAPTER 7: RESULTS AND FINDINGS

7-1 Detection Results

Since we trained two different pedestrian detectors in the second experiment, we need to

determine which detector has a better detection performance. Each detector is a cascade of

classifiers trained to recognize the HOG features of a human shape. By testing the two

detectors on the Town Centre video frames, we have the following ROC plot.

Figure 7.1: ROC curve for Daimler detector and INRIA detector

From Figure 7.1, both curves show an increase in the false positive rate when the hit

rate increases. At a specific hit rate, the detector fed with Daimler training samples shows a

lower false positive rate as compared to the detector fed with INRIA training samples. The

Daimler detector reaches a hit rate of 90% much earlier and at a lower false positive rate as

compared to the INRIA detector. As mentioned in the earlier section, the curve that is closer

to the top left corner has a better discriminative ability. It means that, the detector trained

with Daimler samples outperforms the detector trained with INRIA samples. Considering

Chapter 7. Results and Findings 24

that the Daimler detector was trained with more positive and negative images as compared

to INRIA detector, we expect the Daimler detector to have a better detection performance.

Only with large training samples, we can cover a variety of angles and possibilities, resulting

in a more robust detector. Thus in the second experiment, we will use the raw detections

from Daimler detector as an input to Kalman filter since it has a better performance as

compared to the INRIA detector.

Figure 7.2: Raw detections

Chapter 7. Results and Findings 25

7-2 Tracking Results

For every raw detection, the centroid is computed and send to Kalman filter with the height

and width. Using the information provided by the detector, Kalman filter estimates the

location of the pedestrians (blue bounding box) as shown in Figure 7.3.

Figure 7.3: Tracking

Each pedestrian is assigned a unique identity for tracking purposes. Continuing in

this manner, Kalman filter will continue to predict the location of the pedestrians in

consecutive frames. For cases where the detector fails to provide information on the current

location of the pedestrian, the filter will estimate the location of the pedestrian based on

his/her previous location.

On the other hand if the detector is able to provide information on the location of the

pedestrian, the filter will use this information to correct and refine its prediction. However

this self-correcting mechanism has its limitation.

Since the filter has a degree of dependence on the information provided by the

detector, it is important to ensure that the detector gives reliable detection results especially

in the early stages of a Kalman cycle. Otherwise, the filter tracks the wrong object and this

affects the overall tracking performance. Therefore, our algorithm only starts tracking if the

detector is able to consistently detect the pedestrian for a few times in the early stage.

Chapter 7. Results and Findings 26

With this approach, our false positive rate is reduced by a significant amount as

compared to our early results. In addition, it is assumed that false positives always appear

at the same location throughout the video. The following is a comparison of our result with

others using the CLEAR MOT metrics.

Table 7.1: Comparison of the tracking results using Town Centre data set

From Table 7.1, the algorithm proposed by Benfold and Reid (2011) achieved the

highest MOTP between the four algorithms. With a Kanade-Lucas-Tomasi (KLT) approach

and a Markov- Chain Monte-Carlo Data Association (MCMCDA) technique, they obtained

a MOTP of 77.08%. On the contrary, Izadinia and his team achieved the highest MOTA

which is 75.70% by constraining pedestrian tracking by parts tracking. Dehghan and his

team (2014) obtained similar results to Izadinia’s team (2012) by using a part-based human

detector and a data association method called the Generalized Minimum Clique Graphs.

However the MOTP and MOTA values as reported in Deghan’s paper and Izadinia’s

paper, are estimates only as we could not obtain their tracking output to run it on our

evaluation algorithm. On the other hand, we can obtain the tracking output for Benfold and

Reid’s algorithm. Hence their MOTP and MOTA values in Table 7.1 are reported based on

our evaluation algorithm. For a fair comparison, we will only compare our experiments with

Benfold and Reid’s results.

Comparing experiment 1 and 2, experiment 2 shows more promising results. By

using a cascade of boosted classifiers for detection in experiment 2, our detection time was

Algorithm MOTP MOTA Detection

(sec/frame)

Benfold & Reid 77.08 % 66.31 % 1.2

Dehghan, et al. 71.93 % (est.) 75.59 % (est.) -

Izadinia, et al. 71.60 % (est.) 75.70 % (est.) -

Dalal & Triggs SVM detector

+ proposed tracking algorithm

(Experiment 1)

67.26 % 50.61% 4.5

Our trained boosted detector

+ proposed tracking algorithm

(Experiment 2)

69.38 %

67.07 %

0.76

Chapter 7. Results and Findings 27

shortened from approximately 4.5 to 0.76 seconds/frame as compared to using the SVM

detector by Dalal and Triggs (2005) in experiment 1. The MOTP and MOTA values reported

for experiment 2 are also better than experiment 1. Thus, we will only compare our

experiment 2 results with Benfold and Reid’s results.

In experiment 2, our algorithm had achieved a MOTA of 67.07% which is about 1%

higher with better detection time as compared to Benfold and Reid. Our algorithm can also

track pedestrians moving towards various directions in a semi-crowded environment as

shown in the following figure.

Figure 7.4: Stable tracking in a semi-crowded environment

Chapter 7. Results and Findings 28

The measures used in our tracking evaluation are listed in the following table.

Table 7.2: Comparison of measures used in tracking evaluation

From Table 7.2, our algorithm shows a lower number of false positives as compared

to Benfold and Reid’s algorithm. Our proposed algorithm has reduced the number of false

positives by half. In conjunction, our algorithm also has a lower number of mismatches. Out

of the 71,460 ground truths, our algorithm found only 53,545 correspondences between

hypotheses and ground truths while Benfold and Reid’s algorithm found a total of 58,272

correspondences.

In other words, our algorithm suffers from 25% misses while the researchers’

algorithm only suffers from 18% misses which is the downside of our algorithm. The high

number of misses affects our MOTP value, which is a measure of the precise location of the

pedestrian. To achieve a significant improvement in our tracking results, we need to reduce

the number of misses while keeping the number of false positives and mismatches constant.

The following is an error analysis on the factors affecting the number of misses.

Measures Benfold & Reid Proposed Algorithm

(Experiment 2)

Ground truths 71,460 71,460

False positives 10,515 5,273

Misses 13,188 17,915

Mismatches 370 346

Recoverable mismatches 331 316

Non-recoverable mismatches 157 111

Correspondences 58,272 53,545

Chapter 7. Results and Findings 29

7-3 Error Analysis

Figure 7.5: Error analysis on the factors affecting the number of misses

Figure 7.5 tells us that occlusion is one of the factors that affects the number of misses in

our algorithm. It is because there is always a high degree of occlusion between pedestrians

in a semi-crowded environment. Additionally the location of the pedestrian at the edges of

the frame, either too near or too far away from the camera also affects the number of misses.

Apart from these two factors, there are also other factors such as our validation check for

false positives which also has an impact on the number of misses. Comparing all these

factors, we observe that occlusion is the main factor that affects our tracking results. Thus

to improve our results, our algorithm must be able to handle occlusion. This will be

discussed further in the following section.

0

100

200

300

400

500

600

700

800

Validation of false
positives

Occlusion Pedestrian at the
edges

Others

N
u

m
b

er
 o

f
M

is
se

s

Factors

Factors Affecting the Number of Misses

30

CHAPTER 8: CONCLUSION AND FUTURE WORK

8-1 Conclusion

At the end of this project, we have developed a pedestrian detection and tracking algorithm.

We have shown that a cascade of boosted classifiers outperforms a SVM classifier. In terms

of speed, the cascade has a shorter detection time per frame as compared to the SVM

classifier in the OpenCV library. It is because the architecture of the cascade enables the

negative sub-windows to be eliminated quickly for a fast detection. In addition, the tracking

results using our trained cascade are better as compared to using the SVM pedestrian

classifier in OpenCV library.

 We have also learned that supplying more positive and negative training samples, we

can have a detector with better detection performance. It is because a large number of

training samples can account for more variation in the shapes and postures of the human

body. Without doubt, a detector trained with more training samples will outperform a

detector trained with less training samples. In our case, the Daimler detector with more

training samples outperforms the INRIA detector.

Although our algorithm in experiment 2 has outperformed Benfold and Reid’s algorithm

in terms of speed and MOTA value, our MOTP value still falls behind by 7.7%. Our

algorithm shows a better MOTA value because of the less number of false positives and

mismatches as compared to the researchers’. However, it can be improved if we are able to

reduce the number of misses. The large number of misses has affected our MOTP and

MOTA values to some extent.

Chapter 8. Conclusion and Future Work 31

8-2 Future Work

As mentioned earlier, the high number of misses as reported in Table 7.2, is due to occlusion.

Therefore to improve our results, one should try part-based detection to reduce the effect of

occlusion on our tracking results. It is because when a part of the body is occluded, a part-

based detector can still detect the partially occluded body but a full body detector will fail.

For instance Deghan, Idrees, Zamir and Shah (2014) had used a part-based detector

that can handle occlusion in a crowded environment. Besides that, Benfold and Reid (2011)

also used a head detector to estimate the full body region.

Hence, one should try to use a part-based detector instead of a full body detector for

pedestrian detection and tracking especially in crowded environments.

32

REFERENCES

Athanesious, J. J. and Suresh, P., 2012. Systematic Survey on Object Tracking Methods in

Video. International Journal of Advanced Research in Computer Engineering &

Technology (IJARCET). [online] Available at: <http://ijarcet.org/wp-

content/uploads/IJARCET-VOL-1-ISSUE-8-242-247.pdf> [Accessed 1 August 2015].

Benfold, B. and Reid, I., 2011. Stable Multi-Target Tracking in Real-Time Surveillance

Video. Computer Vision and Pattern Recognition (CVPR) 2011 IEEE Conference.

Providence, RI, 20-25 June, 2011. Colorado Springs: IEEE. Available at:

<http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5995667&url=http%3A%2F%2F

ieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5995667> [Accessed 12

July 2015].

Bernardin, K. and Stiefelhagen, R., 2008. Evaluating Multiple Object Tracking Performance:

The CLEAR MOT Metrics. EURASIP Journal on Image and Video Processing. [online]

Available at: <http://jivp.eurasipjournals.com/content/pdf/1687-5281-2008-246309.pdf>

[Accessed 10 July 2015].

Choi, B., n.d. Survival Manual for Statistical Analysis. [online]. Available at:

<http://wwww.cbgstat.com/v2/method_ROC_curve_MedCalc/ROC_curve_MedCalc.php>

[Accessed 23 October 2015].

Dalal, N. and Triggs, B., 2005, June. Histograms of oriented gradients for human detection.

In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society

Conference on (Vol. 1, pp. 886-893). IEEE. Available at:

<http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1467360&url=http%3A%2F%2F

ieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1467360> [Accessed 10

August 2015].

Dehghan, A., Idrees, H., Zamir, A. R. and Shah, M., 2014. Automatic Detection and

Tracking of Pedestrians in Videos with Various Crowd Densities. [online] Available at:

<http://www.springer.com/cda/content/document/cda_downloaddocument/978331902446

2-c1.pdf?SGWID=0-0-45-1445427-p175479038> [Accessed 12 July 2015].

References 33

Han, B. et al., 2009. Tracking of Multiple Objects under Partial Occlusion. SPIE Defense,

Security, and Sensing. Baltimore, MD, United States, 23-27 April, 2012. Baltimore: SPIE.

Available at: <http://www.wu.ece.ufl.edu/mypapers/trackingSPIE09.pdf > [Accessed 16

August 2015].

Izadinia, H., Saleemi, I., Li, W. and Shah, M., 2012. Multiple People Multiple Parts Tracker.

European Conference on Computer Vision 2012. Florence, Italy, 7-13 October, 2012.

Orlando, Florida: University of Central Florida. Available at:

< http://homes.cs.washington.edu/~izadinia/files/MPMPT-ECCV12.pdf> [Accessed 3

August 2015].

Jiang, Z. et al., 2010. Multiple Pedestrian Tracking using Colour and Motion Models.

[online] Available at: <http://www.csse.uwa.edu.au/~du/ps/Jiang-et-al-DICTA10.pdf>

[Accessed 12 July 2015].

Jin, Y., Soh, W.S., Motani, M. and Wong, W.C., 2013. A robust indoor pedestrian tracking

system with sparse infrastructure support. Mobile Computing, IEEE Transactions on, 12(7),

pp.1392-1403. Available at:

<https://www.ece.nus.edu.sg/stfpage/elesohws/TMC_SparseTrack.pdf> [Accessed 6 July

2015].

Munkres, J., 1957. Algorithms for the Assignment and Transportation Problems. Journal of

the Society for Industrial and Applied Mathematics, [online] 5(1), pp. 32-38. Available

through: UC Davis Mathematics website <

https://www.math.ucdavis.edu/~saito/data/emd/munkres.pdf> [Accessed 5 July 2015].

Nagendran, A., Dheivasenathipathy, N., Nair, R. V. and Sharma, V., 2014. Recognition and

Tracking Moving Objects Using Moving Camera in Complex Scenes. International Journal

of Computer Science, Engineering and Applications (IJCSEA). [online] Available at:

<http://airccse.org/journal/ijcsea/papers/4214ijcsea03.pdf> [Accessed 8 July 2015].

Osuna, E., Freund, R. and Girosi, F., 1997, June. Training support vector machines: an

application to face detection. In Computer vision and pattern recognition, 1997.

Proceedings., 1997 IEEE computer society conference on(pp. 130-136). IEEE. Available at:

<http://web.mit.edu/rfreund/www/10.1.1.9.6021.pdf> [Accessed 12 March 2016].

References 34

Rakibe, R.S. and Patil, B.D., 2013. Background subtraction algorithm based human motion

detection. International Journal of scientific and research publications, [online] 3(5).

Available at:

<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.414.5782&rep=rep1&type=pd

f> [Accessed 16 February 2016].

Shantaiya, S., Verma, K. and Mehta, K., 2013. A Survey on Approaches of Object

Detection. International Journal of Computer Applications, [online] 65(18). Available at:

<http://search.proquest.com/openview/afaa3ddb217f4e5e343a55837681c062/1?pq-

origsite=gscholar> [Accessed 10 January 2016].

Skoglar, P., Orguner, U., Törnqvist, D. and Gustafsson, F., 2012. Pedestrian tracking with

an infrared sensor using road network information. Journal on Advances in Signal

Processing 2012. [online] Available at:

<http://asp.eurasipjournals.com/content/2012/1/26#refs> [Accessed 14 July 2015].

Tian, X., Bao, H., Xu, C. and Wang, B., 2013. Pedestrian Detection Algorithm based on

Local Color Parallel Similarity Features. International Journal on Smart Sensing and

Intelligent Systems, [online] 6(5), pp.1869-1890. Available at:

<http://s2is.org/Issues/v6/n5/papers/paper3.pdf> [Accessed 8 January 2016].

Vijayakumar, M., 2014. Real time robust human detection and tracking. [pdf] Chennai:

Madras Institute of Technology, Anna University. Available at:

<https://www.academia.edu/10084929/Real_Time_Human_Detection_And_Tracking_Sys

tem> [Accessed 28 July 2015].

Viola, P. and Jones, M., 2001. Rapid object detection using a boosted cascade of simple

features. In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of

the 2001 IEEE Computer Society Conference on (Vol. 1, pp. I-511). IEEE. Available at:

<http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=990517&url=http%3A%2F%2Fie

eexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D990517> [Accessed 25

November 2015].

Welch, G. and Bishop, G., 2006. An Introduction to the Kalman Filter. [online] Available

at: < https://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf> [Accessed 10 July

2015].

References 35

Yilmaz, A., Javed, O. and Shah, M., 2006. Object Tracking: A Survey. Journal ACM

Computing Surveys, [e-journal] 38(4). Available through: ACM Digital Library website

< http://dl.acm.org/citation.cfm?id=1177355> [Accessed 8 August 2015].

A-1

APPENDICES

Appendix A: Training Parameters

Table A: Training parameters in experiment 2

Parameters Daimler Training Samples INRIA Training Samples

Number of Positive 14,000 2,170

Number of Negative 14,300 2,210

Number of Stages 17 20

Feature Type HOG HOG

Width 48 64

Height 96 128

Appendix B. Source Code B-1

Appendix B: Source Code

//in main.cpp

#include "stdafx.h"
#include <stdlib.h>
#include "opencv2/opencv.hpp"
#include "opencv/cv.h"
#include <opencv2/highgui/highgui.hpp>
#include "Ctracker.h"
#include <iostream>
#include <vector>
#include "json.h"
#include "json.cpp"
#include <fstream>
#include <direct.h>
using std::string;
using std::cout;
using std::cerr;
using std::endl;

using namespace cv;
using namespace std;

int main(int ac, char** av)
{
 const float eachframeTime = 0.04f; // the town centre video has 25 frames per
second, 1/25=0.04s (time interval between each frame)

 vector<Rect> centers1;

 Mat img, frame;
 FILE* f = 0;
 double topLeft, bottomRight;
 char _filename[1024];
 char directory[128];
 long frame_count = 0;
 char directoryNew[128];
 char trackId[128];
 bool should_stop = false;

 string videoName = "TownCentreXVID.avi";
 string cascadeName = "cascade_14000_16.xml";
 CascadeClassifier hog_cascade;
 VideoCapture cap(videoName);

 if (!cap.isOpened())
 {
 std::cerr << "ERROR: Could not open video " << videoName << std::endl;
 return 1;
 }

 CTracker tracker1(0.2, 0.5, 70.0, 15, 20);

 json::Array arr;
 json::Object obj;
 json::Array subframe_arr;

 _mkdir("processed"); //store the output frames in this folder

 while (!should_stop) // start retrieving video
 {

Appendix B. Source Code B-2

 cap >> frame; //get a new frame from the video
 centers1.clear();

 if (frame.empty() || (frame_count == 4501)) //arrived to the end of a
short video or to the end of a 3minute video
 {
 should_stop = true;
 break;
 }

 sprintf_s(directory, "frame_%06ld.jpg", frame_count);
 strcpy_s(_filename, directory);
 img = frame;

 if (!hog_cascade.load(cascadeName)) //load cascade
 {
 printf("--(!)Error loading\n"); return -1;
 }

 //HOGDescriptor hog;
 //hog.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector());

 double t;
 for (;;)
 {
 char* filename = _filename;
 if (f)
 {
 if (!fgets(filename, (int)sizeof(_filename) - 2, f))
 break;

 if (filename[0] == '#')
 continue;
 int l = (int)strlen(filename);
 while (l > 0 && isspace(filename[l - 1]))
 --l;
 filename[l] = '\0';
 img = imread(filename);
 }

 if (!img.data)
 continue;

 fflush(stdout);
 vector<Rect> found, found_filtered;

 t = (double)getTickCount();

 //hog.detectMultiScale(img, found, 0.15, Size(8, 8), Size(32, 32),
1.05, 2);

 hog_cascade.detectMultiScale(img, found, 1.1,3, 0, Size(50, 120),
Size(170, 350));

 t = (double)getTickCount() - t;
 printf("detection time = %gms\n", t*1000. /
cv::getTickFrequency());
 size_t i, j;

 for (i = 0; i < found.size(); i++)
 {
 Rect r = found[i];
 for (j = 0; j < found.size(); j++)
 if (j != i && (r & found[j]) == r)
 break;

Appendix B. Source Code B-3

 if (j == found.size())
 found_filtered.push_back(r);
 }

 for (i = 0; i < found_filtered.size(); i++)
 {
 Rect r = found_filtered[i];
 r.x += cvRound(r.width*0.15);
 r.width = cvRound(r.width*0.68);
 r.y += cvRound(r.height*0.07);
 r.height = cvRound(r.height*0.85);
 //rectangle(img, r.tl(), r.br(), cv::Scalar(0, 0, 255), 3);
//show detection
 Point center;
 Rect rtemp;
 rtemp.x = r.x;
 rtemp.y = r.y;
 rtemp.width = r.width;
 rtemp.height = r.height;
 center = Point(r.x + (r.width / 2), r.y + (r.height / 2));
 //circle(img, center, 8, Scalar(0, 0, 255), -1, 1, 0);
//show detection
 centers1.push_back(rtemp);

 }

 int c = waitKey(0) & 255;
 if (c == 'q' || c == 'Q' || !f)
 break;
 }

 json::Array hypotheses_arr;
 tracker1.Update(centers1);
 if (centers1.size()>0)
 for (int i = 0; i<tracker1.tracks.size(); i++)
 {
 if (tracker1.tracks[i]->trace.size()>3 &&
(!tracker1.tracks[i]->false_pos)) // false positive check
 {
 for (int j = 0; j<tracker1.tracks[i]->trace.size()
- 1; j++)
 {
 line(img, tracker1.tracks[i]->trace[j],
tracker1.tracks[i]->trace[j + 1], Scalar(255, 0, 0), 2, CV_AA);
 }
 sprintf_s(trackId, "id = %d",
(int)tracker1.tracks[i]->track_id);
 // bounding rec for tracking

 Rect trackRec;
 trackRec.x = tracker1.tracks[i]-
>trace[tracker1.tracks[i]->trace.size() - 1].x - (tracker1.tracks[i]->rec.width / 2.0);
//topLeft point
 trackRec.y = tracker1.tracks[i]-
>trace[tracker1.tracks[i]->trace.size() - 1].y - (tracker1.tracks[i]->rec.height / 2.0);
 trackRec.width = tracker1.tracks[i]->rec.width;
 trackRec.height = tracker1.tracks[i]->rec.height;
 printf("Centroid (%f, %f)",
(float)tracker1.tracks[i]->trace[tracker1.tracks[i]->trace.size() - 1].x,
(float)tracker1.tracks[i]->trace[tracker1.tracks[i]->trace.size() - 1].y);
 printf(" \nWidth: %d Height: %d upLeft:
(%d,%d)\n\n", trackRec.width, trackRec.height, trackRec.x, trackRec.y);
 rectangle(img, trackRec.tl(), trackRec.br(),
cv::Scalar(255, 0, 0), 3);

Appendix B. Source Code B-4

 putText(img, trackId, tracker1.tracks[i]-
>trace[tracker1.tracks[i]->trace.size() - 1], FONT_HERSHEY_SIMPLEX, 0.6, cv::Scalar(255,
255, 0), 2);

 json::Object hypotheses_obj;

 hypotheses_obj["height"] = trackRec.height;
 hypotheses_obj["width"] = trackRec.width;

 sprintf_s(trackId, "%d", (int)tracker1.tracks[i]-
>track_id);

 hypotheses_obj["id"] = trackId;
 hypotheses_obj["y"] = trackRec.y;
 hypotheses_obj["x"] = trackRec.x;

 hypotheses_arr.push_back(hypotheses_obj);
 }
 }

 json::Object frame_object;
 frame_object["timestamp"] = ((float)frame_count)*eachframeTime;
 frame_object["num"] = (int)frame_count;
 frame_object["class"] = "frame";
 frame_object["hypotheses"] = hypotheses_arr;
 subframe_arr.push_back(frame_object);
 sprintf_s(directoryNew, "processed/frame_%06ld.jpg", frame_count);
 imwrite(directoryNew, img);
 printf("\nProcessed frame_%06ld.jpg\n", frame_count);
 frame_count++;
 }

 obj["frames"] = subframe_arr;
 obj["class"] = "video";
 obj["filename"] = "D:/TownCentreXVID.avi";

 arr.push_back(obj);
 std::string serialized_string = json::Serialize(arr);
 cout << serialized_string << endl;

 fstream file;
 file.open("hypotheses.json", ios::out);
 file << serialized_string;
 file.close();
 waitKey(30);
 return 0;

}

