

SMARTPHONE BASED AUGMENTED REALITY

KHOO JUN XIANG

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering

(Hons.) Mechatronics Engineering

Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

September 2015

i

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it

has not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature :

Name : Khoo Jun Xiang

ID No. : 1201306

Date : 7 / 9 / 2015

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “SMARTPHONE BASED AUGMENTED

REALITY” was prepared by KHOO JUN XIANG has met the required standard

for submission in partial fulfilment of the requirements for the award of Bachelor of

Engineering (Hons.) Mechatronics Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Dr. Chong Poh Kit

Date : 13/4/2015

Signature :

Co-

Supervisor

: Mr. Chuah Yea Dat

Date : 13/4/2015

iii

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2015, Khoo Jun Xiang. All right reserved.

iv

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion of

this project. I would like to express my gratitude to my research supervisor, Dr.

Chong Poh Kit for his invaluable advice, guidance and his enormous patience

throughout the development of the research. Besides, my co-supervisor, Mr. Chua

Yea Dat also enlightened me with his beneficial opinion and counselling and I would

like to convey my thankfulness to him.

In addition, I would also like to express my gratitude to my loving parent and

friends who had helped and given me encouragement in completion of this project

v

SMARTPHONE BASED AUGMENTED REALITY

ABSTRACT

Lots of studies on augmented reality had been carried out and prototypes were built

such as marker based augmented reality on mobile device, augmented reality touring

system, head mounted based augmented reality and so forth. With the advancement

of smartphone’s technologies nowadays, the augmented reality has been evolve from

a marker based augmented reality mobile device to non-marker based augmented

reality mobile device such as object tracking, face tracking, GPS and so forth.

Furthermore, most of the smartphones or tablets have built-in CPUs, GPU and

sensors which enable attractive and interactive augmented reality implementation. In

this project, implementation of a smartphone based augmented reality with its ability

to interact using Google Cardboard has been proposed. In addition, the proposed

tracking method uses ID-encoded marker as a marker of a dedicated smart device.

The Google Cardboard granted features to allow user to interact with the smart

device remotely. This project focused on the development of smartphone’s

augmented reality application with integration of control system. The elements

involved include applications development, communications and feature extraction.

Two different applications will be developed separately comprising two smartphones

where one built to perform a controller-like application and the other act as a passive

smart device which act upon the signal delivered by the controller. In the same token,

communication played an important role as transfer of signals between smart devices

is required. Lastly, feature extraction make use of the existing Metaio SDK and

Google Cardboard SDK to deliver applications with the desired features.

vi

TABLE OF CONTENTS

DECLARATION i

APPROVAL FOR SUBMISSION ii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS / ABBREVIATIONS xii

CHAPTER

1 INTRODUCTION 1

1.1 Background 1

1.2 Aims and Objectives 2

2 LITERATURE REVIEW 3

2.1 Introduction 3

2.2 Augmented Reality SDK 3

2.2.1 Vulforia SDK 3

2.2.2 Metaio SDK 5

2.2.3 D’Fusion 5

2.2.4 ARMedia 5

2.2.5 Wikitude 6

2.3 Comparison of the SDK 6

2.4 Tracking Module 8

vii

2.5 Google Cardboard 10

2.5.1 Google Cardboard Magnet switch 12

3 METHODOLOGY 16

3.1 Introduction 16

3.2 Project Methodology 16

3.3 System Description 17

3.4 System Overview 17

3.5 Project Management 19

3.5.1 Project Development Flow 20

3.5.2 Gantt Chart 21

4 PROJECT IMPLEMENTATION 22

4.1 Introduction 22

4.2 Development of “Controller” Application - Template 22

4.2.1 Metaio SDK Utilization 24

4.2.2 Google’s Cardboard SDK Utilization 25

4.2.3 Client-side Socket Programming 26

4.3 Development of Smart Device Application –

 Android Client 27

4.3.1 Server-side Socket Programming 28

4.3.2 Video Player Development and Input

 Signal Handling 29

4.3.3 Device Window and Layout Management 30

5 RESULTS AND DISCUSSION 31

5.1 Introduction to Chapter 5 31

5.2 Results Presentation 31

5.3 Application performance statistics 35

5.4 Significant Changes 37

5.5 Problems Encountered and Solutions 39

5.5.1 Utilizing the SDKs 39

5.5.2 Time Management 39

viii

5.5.3 Metaio SDK 39

5.5.4 Integrating Metaio SDK with Google

 Cardboard SDK 39

5.5.5 Useful Debugging Tools 40

6 CONCLUSION AND RECOMMENDATIONS 41

6.1 Conclusion 41

6.2 Unresolved Issue and Product Limitation 41

6.3 Recommendation and Future Improvement 42

REFERENCES 44

APPENDICES 48

ix

LIST OF TABLES

 TABLE TITLE PAGE

 2.1 License type 6

 2.2 Supported platform 7

 2.3 Overlaying capability 7

 2.4 Tracking method. 8

x

LIST OF FIGURES

 FIGURE TITLE PAGE

2.1 Overall AR Framework 4

2.2 IKEA augmented reality application. 9

2.3 Google Cardboard 11

2.4 Interaction method ratings 11

2.5 Neodymium magnet in place. 12

2.6 Neodymium magnet pulled down. 12

2.7 Measuring magnetic field strength with "Compass" 13

2.8 Phone by itself without Cardboard. 14

2.9 Smartphone inside Cardboard with magnet ring in

place 14

2.10 Smartphone inside Cardboard with magnet ring

pulled down. 15

3.1 Overall system development flow. 20

3.2 Project Gannt Chart. 21

4.1 Template application program flow 23

4.2 Track and load virtual object. 24

4.3 Obtain center coordinate of the screen. 25

4.4 Check if virtual object is touched. 25

4.5 MagnetSensor inheritance. 25

xi

4.6 MagnetSensor initialization. 25

4.7 onCardboardTrigger thread. 26

4.8 Communication thread. 27

4.9 Android-client application program flow 28

4.10 Server socket programming. 29

4.11 Switch utilization. 30

5.1 LG Nexus 4. 31

5.2 Samsung S3. 32

5.3 GUI of “Template” application. 33

5.4 IP address of Samsung S3. 34

5.5 Virtual object created. 34

5.6 Playing video on the smart device. 34

5.7 Memory usage over time. 35

5.8 CPU usage over time. 36

5.9 GPU usage over time. 36

xii

LIST OF SYMBOLS / ABBREVIATIONS

AR augmented reality

CPU central processing unit

GPU graphical processing unit

GPS global positioning system

GUI graphical user interface

HMD head mounted device

SDK software development kit

xiii

LIST OF APPENDICES

 APPENDIX TITLE PAGE

A Computer Programme Listing 48

CHAPTER 1

1 INTRODUCTION

1.1 Background

Augmented Reality (AR) has been an emerging technologies in these recent years.

AR defined as immersion of virtual environment to the real environment which it

enriches the vision, audition or even taste, touch and smell (Daponte, et al., 2014).

The significant timeline of AR technology begun from a cinematographer, Morton

Heiling which he thought cinema should enable interaction between a human and the

environment covering all the senses (Daponte, et al., 2014). The first AR Head

Mounted Display was developed by Sutherland (Sutherland, 1968) while the ability

to interact with virtual objects was first introduced by Myron Krueger (Golan, 2006).

In addition, the first mobile AR game namely ARQuake was developed by Bruce

Thomas and his team in year 2000 (Thomas, et al., 2000). Later then, many of the

AR applications have been created comprising Hand Mounted Device (HMD) based

application or handheld devices based application.

 Nowadays, smartphones have the core features to develop an AR applications

such as camera, touch screen, Inertia-Measurement Unit (IMU), internet access and

so forth (Daponte, et al., 2014). The advancement of smartphone technologies which

enable real-time image processing camera and powerful performance from built-in

Central Processing Unit (CPU) and Graphics Processing Unit (GPU) made basic AR

application development easier without external supporting device. Furthermore,

smartphone based AR application can be made interactive with user due to built-in

2

sensors such as accelerometer, gyroscope, compass (magnetometer) and Global

Positioning System GPS).

 Apparently, a study of potential smartphone based AR applications have been

carried out comprising the field of medical, education, tourism, marketing and so

forth (Adhani and Rambli, 2012). Besides, more and more smartphone based

application have been developed such as wikitude to explore the surroundings,

augmented to visualise 3D model is augmented reality, ARBasketball to play

basketball games and so forth. These show growing interest for AR technology and

application in the market.

 In this paper, the process to develop an interactive smartphone based AR

application will be proposed. The following chapters will be arranged as follows:

chapter 2 briefs the AR Software Development Kits available, tracking module

available, and some description on Google Cardboard. Next, chapter 3 explains the

project methodology in developing an interactive smartphone based AR application

with integrating control system. Then, followed by chapter 4 explaining ways to

implement the project programmatically. On the other hand, chapter 5 justify the

results of this project and discuss on issues related to the project. Last but not least,

chapter 6 summarise the whole project and recommend some possible improvement.

1.2 Aims and Objectives

This project aims to create a platform to build an application for Augmented Reality

Control System which will be explained in Chapter 3. The primary objectives of this

project is to create an augmented reality application which it is able to interact

between user and smart device. Other than that, the objective of this project also

target to implement new device control system other than control method that existed

in the market nowadays. Thirdly, this project also intent to make use of the AR

technology and available sources to create a low cost augmented reality head

mounted device.

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

This focus on literature study of related works from other researcher. This helped to

generate ideas on how to carry out this project with reference to researchers’ study.

This chapter will be comparing existing augmented reality SDK in the market,

analogy of tracking methods available and a research related to Google Cardboard.

2.2 Augmented Reality SDK

Customarily, developing an AR application for a beginner is very difficult because it

basically includes pattern recognition, image processing, object rendering, interaction

ability and so forth. All these processes have to be done altogether then only it is able

to display a virtual object on a real environment. Therefore, developing an AR

applications in a custom way can be time consuming and troublesome. However, few

AR companies such as Metaio, Vulforia – Qualcomm, Layar and many more have

developed AR Software Development Kit (SDK) which enable AR application to be

developed effectively and some SDKs do not actually need any programming skills.

Below are some of the AR SDKs for reference.

2.2.1 Vulforia SDK

Vulforia is an AR SDK owned by Qualcomm. The entire Vulforia AR framework

comprising of AR observer, AR application customizer and AR web server. The

4

Vulforia SDK’s framework overview can be understood in such a way that the

developer will use application customizer to develop their preference AR application

and upload to the AR web server. Next, the AR observer will download that

particular resources from the AR web server using HTTP and display the AR that the

developer predefined. The figure below shows the overall framework or the AR SDK.

Figure 2.1: Overall AR Framework

[source: An Implementation of Generic Augmented Reality in Mobile Devices

(Zhang, et al., 2014)]

 The advantage of using this SDK is that the recognition technique and image

tracking technology is done by the SDK, thus it made the developer is able to build a

basic AR application easier and faster. Besides, it also cover text, URL, video,

panorama other than 3D model. In addition, this framework is using client-server

architecture, therefore the AR observer which is an application running on a

smartphone able to perform different desired applications by downloading relative

data file from the server. Throughout this method, the users do not need to store

specific data in the smartphone and install different specific software when different

AR application is needed as mentioned by the author.

However, the drawback of this method is that internet connection is needed

whenever the users wanted to run the AR application. On top of that, variety of

applications that available is limited, if the developers wanted to develop desired

applications and it is not available in the SDK, they would still need to program the

applications, design and include relevant sources and so forth.

5

2.2.2 Metaio SDK

Metaio SDK is a framework consist variety of component such as tracking, capturing,

rendering and sensor interface. It is compatible to integrate with different platform

such as IOS, Android, Unity3D and Windows. In addition, its feature includes

marker or markerless tracking, face tracking, and so forth. It has some advantages

like powerful 3D rendering engine, Augmented Reality Experience Language

(AREL) that provide interactive AR experiences based on XML, HTML5 and

Javascript, advance tracking and so forth(Amin and Govilkar, 2015).

2.2.3 D’Fusion

D’Fusion consist different component to produce different feature. For example,

D’Fusion Exporter 3D is able to create 3D objects and export them and D’Fusion

studio is being used to design AR projects and exportation is available too. D’Fusion

SDK supported platforms consist of desktop, mobile and special Flash Plug-

in.tracking features that is supported includes hand gesture, marker, markerless, face

and many more (Amin and Govilkar, 2015). Besides it is also a cross-platform tools

to support iPhone, Android and Web based.

2.2.4 ARMedia

The ARmedia comprises of renderer for 3D object rendering, tracker for image or

markerless tracking, capture for frame capturing from the camera and interface to

native android and iOS. ARmedia media framework provide variety tracking method

such as natural feature trackers, gesture recognition, powerful 3D tracker and

OpenCV. Besides, ARmedia is capable to support compatible smart glass and

handheld devices such as android and iOS. Some features of ARmedia include

dynamic lighting condition 3D tracking, ability to integrate with other AR platform,

and so forth (Amin and Govilkar, 2015).

6

2.2.5 Wikitude

Wikitude consist of Wikitude studio which does not require programming and just

simply drag and drop object on the studio screen to develop AR application. Other

than Drag and Drop, it also provide HTML, Javascript and CSS for cross-platform

AR application development. Besides, its tracking module includes image and GPS

sensor. Wikitude also has the ability to provide hybrid tracking which it is able to

combine both geolocation and image recognition for better location tracking (Amin

and Govilkar, 2015). Currently, it is supporting android, iOS and Web based

technology.

2.3 Comparison of the SDK

In order to make clearer comparison all the features being compared will be put in

table form.

Table 2.1: License type

[source: Comparative Study of Augmented Reality SDK’s (Amin and Govilkar,

2015)]

7

Table 2.2: Supported platform

[source: Comparative Study of Augmented Reality SDK’s (Amin and Govilkar,

2015)]

Table 2.3: Overlaying capability

[source: Comparative Study of Augmented Reality SDK’s (Amin and Govilkar,

2015)]

8

Table 2.4: Tracking method.

[source: Comparative Study of Augmented Reality SDK’s (Amin and Govilkar,

2015)]

2.4 Tracking Module

Tracking module plays an important role in augmented reality. Basically it determine

the distinctive 3D image that is supposed to display. There are 3 types of tracking

options available consisting vision based, sensor based and hybrid tracking based

(Van Kravelen and Poelman, 2003). Firstly, vision based tracking module includes

marker based or marker-less tracking. Commonly, marker based tracking involve

picture, template marker or ID-encoded marker. On top of that, picture or template

marker process in such a way that AR system track and match the pattern of marker,

then it search for the corresponding virtual object and place it on the desired position.

For example, in year 2013 IKEA introduce an AR app which the users are able to

select and place the virtual furniture in an empty space as shown in Figure 2.2. The

9

users will select their desired furniture and then place printed IKEA catalogue in the

desired place to preview new furniture in their room before the users actually make a

purchase.

Figure 2.2: IKEA augmented reality application.

[source: IKEA to use Augmented Reality for Perfect Furniture Planning (Lee, 2013)]

In order to use the ID-encoded markers, the application require a unique decoding

algorithm to determine the virtual object carried by the informative ID-encoded

marker. The ID-encoded marker normally applied when a lot of markers to be

matched. It is because markers have variety of intrinsic pattern, thus each unique

pattern can store a unique code. However, it is difficult to apply for marker-less

tracking because it applies different technique.

 On the other hand, marker-less tracking module does not require any printed

material to display virtual object. Instead, marker-less tracking require capture of

reality objects or scenes and display subsequent virtual object when it match the

respective real objects or scenes. There are 4 key points for marker-less recognition.

For instance, they should be instantaneous recognition, minimum variation in

different lighting condition, robust for different viewing angle and lastly necessary

feature points must be provided by the object in certain range of distance between

user and itself (Daponte et.al, 2014).

10

 However, there are drawbacks for vision based tacking method. Beginning

from marker based tracking system, it usually requires positioning of the markers in

the real environment. Besides, the borders for some of the ID encoded markers such

as ARToolkit, are relatively important where by occluded or incomplete border will

disable the system from detecting the marker (Wang et al, 2010). Thirdly, the

intrinsic marker inside the marker carry information in which it requires more time

when there are more pattern to be matched (Wang et al, 2010).

 The next tracking method is sensor based such as ultrasonic, GPS, optical and

IMU (Roland et. Al, 2001). Many researches have been done on sensors based

tracking. In a research, IMU sensor are being used for indoor position and motion

tracking to provide navigation system (Hartmann and Trommer, 2010). Beside,

position estimation using GPS triangulation method also being explained (Daponte et.

Al, 2014). Moreover, separate use of sensor based or vision based tracking method

have their limitations such as accuracy. Therefore, a hybrid tracking module has been

proposed (Aron et. al, 2007). In this research, they proposed a method which use

IMU sensors to support vision based tracking system when inconsistent results are

obtained.

2.5 Google Cardboard

Google Cardboard (Figure 2.3) was introduced at the Google I/O 2014 conference. It

appeared simple to build by using materials that can be easily obtained such as

cardboard, magnet, 40-mm lenses, Velcro and rubber band. Design specification or

template can be obtain easily through https://www.google.com/get/cardboard/get-

cardboard. The Cardboard made of commonly available materials caused Cardboard

to be low cost virtual reality head mounted device (HMD) as compared to Oculus

Rift, Samsung’s Gear VR and many other HMDs (Yoo and Parker, 2015).

11

Figure 2.3: Google Cardboard

 According to Yoo and Parker, they categorized 5 Cardboard interaction

methods. These interaction consisting Magnetic switch, Instant Gaze, Dwelling Gaze,

Tilt and External Controller are listed based on 32 Cardboard applications they had

reviewed. Figure 2.4 below demonstrated the average ratings of the interaction

methods preferred by the users. As observed from the statistics, tilt is the most

preferable interaction method and external controller resulted in the least preferable

control method. Beside, Magnetic switch is the most interaction method used with

half of the apps in research utilized it. An overall rating given by the users has an

average of 3.95 over 5 which indicated cardboard apps developed are above

satisfaction. As a conclusion, Google Cardboard has a lot of advantage and potential

for development referring to users’ satisfaction feedback. Beside, its low cost nature

made it inexpensive to be owned and ideal for development in many industries such

as education, in a networked and collaborative environment (Yoo and Parker, 2015).

Figure 2.4: Interaction method ratings

[source: Controller-less Interaction Methods for Google Cardboard. (Yoo and Parker,

2015)]

Neodymium Magnet Ring

12

2.5.1 Google Cardboard Magnet switch

Google Cardboard contain two magnets: a weak ceramic magnet inside the

Cardboard and a neodymium ring magnet outside the Cardboard (Figure 2.3).

According to an experiment ((Kjmagnetics.com, 2015), the neodymium magnet is

able to demagnetize and change the magnetization of the corresponding ceramic

magnet. Figure below showed the Finite Element Analysis magnetic field strength

when the neodymium magnet is in place with ceramic magnet and the consequence

when the neodymium magnet is pulled.

Figure 2.5: Neodymium magnet in place.

[source: Google Cardboard (Kjmagnetics.com, 2015)]

Figure 2.6: Neodymium magnet pulled down.

 [source: Google Cardboard (Kjmagnetics.com, 2015)]

13

The simulation result showed that when the neodymium magnet is in place

with ceramic magnet, strong magnetic field strength has been produced. However,

when the neodymium magnet is being pulled down, visually lower magnetic field

strength has been produced.

 In the same token, another experiment was carried out to test on the magnetic

field strength of Google Cardboard (SMART, 2015). This experiment is slightly

different from the previous where this experiment run on the smartphone (new HTC

One M8) containing a magnetometer. An app called “Compass” is installed in the

smartphone where it able to measure magnetic field strength (unit = micro tesla, or

μT) instead of Earth’s magnetic field. Figure 2.7 showed the smartphone is put inside

the Google Cardboard as how it used to be with the “Compass” app running

concurrently.

Figure 2.7: Measuring magnetic field strength with "Compass"

[source: SMART, 2015]

Then, the author measured and recorded the magnetic field strength with two

scenarios. The first is the situation where neodymium is in place side by side to the

ceramic magnet while the second situation is the when the neodymium magnet is

pulled down and the magnetic field strength is measured. Figures below

demonstrated the result of this experiment. The environment magnetic field strength

is measured to be 54µT, the magnetic field strength is about 368µT when the

14

neodymium magnet is in place and lastly the measurement is 256µT when the

neodymium magnet is pulled down.

Figure 2.8: Phone by itself without Cardboard.

[source: SMART, 2015]

Figure 2.9: Smartphone inside Cardboard with magnet ring in place

[source: SMART, 2015]

15

Figure 2.10: Smartphone inside Cardboard with magnet ring pulled down.

[source: SMART, 2015]

 From both the experiments carried out, there are one consequence that is

commonly understood whereby the neodymium magnet and ceramic magnet produce

the highest magnetic field strength when they are side by side to each other. However,

the magnetic field strength dropped when the neodymium is pulled down.

Observation in the second experiment presented an approximate drop of 100µT in

the field when neodymium magnet is pulled down. Therefore, an assumption made

that the change in magnetic field strength had utilized by the app to detect the

“switch” being triggered (SMART, 2015).

CHAPTER 3

3 METHODOLOGY

3.1 Introduction

This chapter mainly explain about proposed project management, project execution

method and project chronology. Besides, brief overview will be given on system

application proposed too.

3.2 Project Methodology

In order to complete this project successfully, 4 stages have been implemented. The

first stages is the literature review. This is an important stage because it demonstrate

the current trend of the technologies in this field. Besides, it also helps to establish

projects frameworks and methodological focus.

 Next, the brainstorming is needed to generate ideas on how to develop the

desired system. Furthermore, this stage also identify the required software and

hardware to build the system. Therefore, comparison would have to be made in order

to choose the best tools needed.

 Thirdly, the system prototype will be developed using Software development

kit and some other programming software. At the end of this project smartphone will

be used to demonstrate the results of this project.

17

 Lastly, evaluation will be done to make sure the system is reliable and robust

and improvement will be carry out to optimise the system performance. Problems

and malfunction of the system should be minimised to ensure the quality of the

system.

3.3 System Description

There are two applications are about to be developed in this project and it likely to

mimic a situation whereby a user is using a controller to control a video player. The

first application developed focus on functions comprising AR feature and controller.

Meanwhile, the second application that will be developed serve as smart device to be

controlled which it should have functions such as a main activity that will be running

such as playing a video. In addition, this application should have simple decision

making ability where it should respond to different type of signals received. Thirdly,

there are three type of interactions involved. The first interaction involved user and

the controller or head mounted device while the second interaction involved the

controller and the smart device to be controlled. Both interaction method should be

handled differently. Lastly, interaction between user and virtual object is another

feature of this project. All these features and characteristics must be take into account

during project execution.

3.4 System Overview

It is important to briefly look into the overall perception of the system as whole. The

application flow begin with the controller functioned smartphone positioned inside

the Google Cardboard with the camera turn on. The user will have to observe

through the lens to the smartphone screen. When the smartphone detected an ID

marker of a specified smart device, it will display the virtual 3D object. Then the

virtual object is interactive whereby when the user “touch” the virtual object using

magnet trigger from the Google Cardboard, the smartphone will connect to the smart

18

device and subsequently control the smart device current activity. At the same time,

the smart device must able to differentiate the signal received and make

corresponding action.

The hardware that will be used in this project includes two android

smartphones and a laptop. The laptop will be used to develop the AR application and

modify the application code. Meanwhile, the software that needed in this project

consist of Metaio SDK, Google Cardboard SDK and Android studio. Metaio SDK is

needed to design the AR application, Google Cardboard is needed for magnet trigger

function and Android studio is required to develop all the application needed in this

project. Metaio SDK is chosen because it is free, it is easy to use for beginner in AR

technology, contain powerful 3D rendering engine and most importantly it has some

related source code for reference. In addition, Google Cardboard SDK is used

because it is the only open source that can integrate Google Cardboard features. On

the other hand, Android studio is chosen because it is free, it has a lot of open source

work related to AR and android smartphone is already acquired which indicate it is

cost saving too.

 Secondly, creating a basic AR application will be expected to be simple as

explained in the literature review. The tracking technique that will be used is ID-

encoded marker. In spite of the fact that it has some limitation such as incomplete

detection of marker will not produce virtual object, it is still simple to build and time

efficient. Therefore, one assumption made for this project is that the application is

tested out in an experimental condition whereby the ID-marker will not be block by

any other object. Moreover, ID-encoded marker is ready made by the SDK, marker

recognition and virtual object rendering are also done by the SDK which this would

save up some time.

Since AR application design, tracking technique and virtual object rendering

are early development process, thus more time will be allocated for integration of

different systems to achieve head mounted augmented reality with integrated control

system. However, modifying the AR application code would require some

programming skills in order to make the 3D virtual object interactive and perform

desired ability.

19

Since the fundamental application development require modification of SDKs

program codes. Thus it is expected more time will be invested into understanding the

program codes and modification. Besides, two applications will be constructed in this

project, thus time management is important to keep this project’s progress on track.

Lastly, more difficulties will be expected throughout the project development process

as java programming is the main programming language. Java programming and

mobile application development has never been a curriculum subject in Mechatronics

Engineering, thus, challenges existed that problem solving is an important skills to

overcome those challenges.

Last but not least, there some specification required in order to integrate

Metaio SDK into a smartphone for example, the smartphone must have a minimum

API of Android 2.3(Gingerbread), ARMv7 (Cortex) processor, OpenGLES 2.0

support, camera, GPS (Location), Accelerometer and Magnetic sensors for

GPS/Compass based tracking (Metaio, 2015)

3.5 Project Management

Project management plays an important role to monitor the process of project

throughout. It is needed to make sure the progress is working as what is planned

earlier. Besides, it also used to identify project milestones to be achieved along the

project development process.

20

3.5.1 Project Development Flow

Figure 3.1: Overall system development flow.

21

3.5.2 Gantt Chart

The Gantt Chart below shows the project time scheduled for the coming semester of

14 weeks.

Figure 3.2: Project Gannt Chart.

CHAPTER 4

4 PROJECT IMPLEMENTATION

4.1 Introduction

This chapter will be explaining the process of developing the applications and

algorithms used. Explanation will be divided into two sections, first section

demonstrate the development of “controller” application which involves utilization

of Metaio SDK, Google’s Cardboard SDK and client socket programming. On the

other hand, second section put across the development of smart phone into a video

player and server’s socket programming.

4.2 Development of “Controller” Application - Template

As mention above, this section unfold development of smartphone into a head

mounded applicable device. It involves integration of different SDKs and

communication, thus, each of the integration method will be further explained in

detail. Figure 4.0 below show the program flow of the application as a whole.

23

Figure 4.1: Template application program flow

24

4.2.1 Metaio SDK Utilization

Metaio SDK is a ready-made framework for augmented reality development with

resourceful tutorials and developers forum. Few features of the SDK have been

identified and modified to suit the development of this application.

Firstly, this SDK helps to determine tracking method used in this program and the

targeted ID marker is in XML file. Whenever the ID marker is captured by the

operating camera, it will send signal to the program to load the virtual object. These

algorithm has been shown in the program code below in Template.java.

Figure 4.2 : Track and load virtual object.

The virtual object file is restricted to few format types such as .obj, .fbx,

and .md2 (Metaio.com, 2015). The size and orientation of the virtual object can be

define manually by the programmer. Besides, the SDK also enable interaction

between user and virtual object. The SDK enable user to touch the virtual object and

corresponding action will be taken. In this application, touching the virtual object is

not possible as the smart phone is mounted inside Google’s Cardboard. Therefore, an

alternative method has been tried by setting the center point of the screen and

whenever the magnet is triggered, the coordinate of the virtual object is compared to

the screen’s center point. If the centered point lies on within the boundary of virtual

object, then the virtual object considered being touch as shown in figure below.

25

Figure 4.3: Obtain center coordinate of the screen.

Figure 4.4: Check if virtual object is touched.

4.2.2 Google’s Cardboard SDK Utilization

Google’s Cardboard was developed to support virtual reality development and

smartphone was used for virtual environment construction. However, only magnet

trigger function will be integrate to this application. In order to integrate magnet

trigger feature to the application, the main program must inherit the

MagnetSensor.OnCardboardTriggerListener class such as the figure below.

Figure 4.5: MagnetSensor inheritance.

With the inheritance of MagnetSensor.OnCardboardTriggerListener class, it

enable the main function to initiate magnet sensor listener to handle magnetic change

when occur. Besides, magnet sensor activity has to be started to operate

magnetometer embedded in the smartphone and subsequently detect magnetization

of cardboard’s magnet. Initialization of magnetic sensor has been shown in Figure

4.6.

Figure 4.6: MagnetSensor initialization.

26

 With all the function and listener initialised, feedback to the listener has been

made easier by calling onCardboardTrigger function. This function has to be an

override method to overrule the prior function declared in the super method because

the main function inherited MagnetSensor.OnCardboardTriggerListener class. Figure

4.2.6 demonstrated the usage of onCardboardTrigger function.

Figure 4.7: onCardboardTrigger thread.

4.2.3 Client-side Socket Programming

Communication between “Controller” and smart device is established using Wi-Fi or

TCP/IP protocol. Since TCP/IP protocol is being used, socket programming is

important to connect and communicate between two devices over the network. Due

to the reason that static IP address is being used in this application, then

communication thread will automatically connect to the dedicated smart devices after

magnet is being triggered. Numbers of triggers will be sent to the smart device as

illustrated in the figure below.

27

Figure 4.8: Communication thread.

4.3 Development of Smart Device Application – Android Client

This subchapter will be revealing development of video player in a smartphone.

Since this smart device also act as a server, socket programming on the server side

will be further explained. On top of that, signal handling of the smart device is

another essential section to be justified. Last but not least, device window and layout

management will be explained in detail at the end of this subchapter. The whole

program flow will be illustrated in the figure below.

28

Figure 4.9: Android-client application program flow

4.3.1 Server-side Socket Programming

As the smart device need to continuously pending connection request from the client,

thus, it is more likely to build the function in an thread that run endlessly in

background. Once the server receive connection request from the client, it will

approve the connectivity and begin communication. Then, the client’s signal will be

sent to the InputStreamReader and further stored in BufferedReader. As the signal

29

received is usually in string, thus conversion to integer is required to handle the data

easier. All these process are illustrated in detail in the figure below.

Figure 4.10: Server socket programming.

4.3.2 Video Player Development and Input Signal Handling

Since multiple signals will be sent the server, a thread consisting switch function is

used to handle each signal different. As observed from the program flow earlier, 4

types of signal will be handled by VideoActivity thread. It is self-explanatory from

the code on how each signal received correspond to specific video activity. Since this

application is used for demo purpose, a short clip will be embedded into this

application to ease the demonstration. VideoView is being used to reserve a space on

the screen to play the video and the setVideoURI determine the address of the video

to be played later. The video stream can be control by setting start(), pause() and

stopPlayback(). When the video is being paused, it is recommended to save the frame

that have been watch using getCurrentPosition() and make sure the video resume

from the exact frame using seekTo() function. Beside, a parameter, video_played is

being used to verify if the video has been played.

30

4.3.3 Device Window and Layout Management

The smartphone may either be in screen-on mode or sleep mode when server socket

is pending for request in background. Smartphone has no issue to play the video in

screen-on mode but sleep mode stated otherwise. Therefore, the following code

“getWindow().addFlags(WindowManager.LayoutParams.FLAG_DISMISS_KEYG

UARD | WindowManager.LayoutParams.FLAG_FULLSCREEN |

WindowManager.LayoutParams.FLAG_SHOW_WHEN_LOCKED |

WindowManager.LayoutParams.FLAG_TURN_SCREEN_ON);” is important for

the application to bypass the safety keyguard of the smartphone and able to turn on

the screen of the smartphone.

 Besides, there are two layout design in this application. Therefore, a swither

is used to swap the layout whenever needed. Appendix A show that two layout

designs have been developed in a single xml file. The reason of using two different

layout is to handle two different situation consisting one communication activity

pending for connection from the client and a video activity. The order of the layout is

important as it determine how the layout can be controlled. Figure below illustrate

how this function is being manipulated.

Figure 4.11: Switch utilization.

CHAPTER 5

5 RESULTS AND DISCUSSION

5.1 Introduction

In this chapter, the results and operations of the application will be demonstrated.

This chapter will also justify the results obtained, problems encountered along the

prototype development, discussion on the issues that has yet to be solved and

possible solutions can be made to the system.

5.2 Results Presentation

In this project, two smartphones have been used. The first smartphone is LG nexus 4

(Figure 5.1), while the second smarphone is Samsung S3 (Figure 5.2). Besides, a

google cardborad(Figure 5.3) is being used to integrate with smartphone to produce

head mounted device.

Figure 5.1: LG Nexus 4.

32

Figure 5.2: Samsung S3.

As discuss earlier, two applications have been developed in this project, the

first application known as “Template” will be installed in LG Nexus 4 and it will be

known as controller in this chapter. Subsequently, the application “android-client”

will be installed in Samsung S3, where it will be targeted smart device to be

controlled. In this case, Samsung S3 is used to mimic the function of a video player

playing video in a smart TV. Before running the applications, both of the

smartphones must be connected to the same network or wifi. Next, since the

“android-client” application served as a server pending for connection request, thus it

should be activated before hand so that the smart device will continuously waiting

for connections form the controller. The smart devices can be left in either screen-on

mode or sleep mode because the video will able to be played remotely regardless of

the mode it is positioned.

Next, the “Template”application in the Nexus 4 can be started subsequently

and it will establish a GUI as shown in Figure 5.4. The user does not required to

enter the server IP address manually because static IP address will be used in this

application. However, the user will only needed to enter the IP address manually if

the static IP assigned is failed to connect both devices. Thus, a dynamic IP of the

desired smart device is used as alternative, Figure 5.5 shows an example IP address

obtained from Samsung S3. At the same time, the red circles on the phone screen act

as a centered eye view of the user as shown in Figure 5.4. The centered eye view

help user to engage with the virtual object displayed on the screen. This feature helps

to improve input handling from the magnet triggers. As mention in the earlier chapter,

an ID marker is used for smart device recognition. When an ID marker is identified

by the application, a virtual object will appear on the screen, visually above the ID

marker as shown in Figure 5.5. Next, the user will able to pull down the magnet

trigger on the left of the cardboard to connect with the desired smart device.

However, there is a additional features to improve the input handling as mention

33

earlier. When the magnet trigger is being pulled and released, the application will

compare the centered eye view coordinate to the virtual object. If the centered eye

view coordinates match with the virtual object, the controller will be able to connect

with the smart device. On the other hand, if the user is not looking as the virtual

object, then triggering the magnet will not result in any difference to the application.

Once the magnetic object is being triggered with virtual object set in view,

connection from controller to the smart device will be established with signal sent to

the smart device. The smart device repoonse dependant on the signal it receives. The

number of magnet triggerd in a period of 2 seconds determine what the smart device

should do. A pull and release of the neodymium magnet ring is considered a trigger.

If the movie is not playing, and the user pulls the trigger once, it will play a short

video clip in the smart device and vice versa. Next, 2 triggers stop the video clip

immediately and step forward and step backward can be done by trigger the magnet

3 times and 4 times respectively. Figure 5.6 showed that a video is being played on

the smart device.

Figure 5.3: GUI of “Template” application.

` Enter IP address

here

Red circles

34

Figure 5.4: IP address of Samsung S3.

Figure 5.5: Virtual object created.

Figure 5.6: Playing video on the smart device.

Virtual object

35

5.3 Application performance statistics

It is important to know the performance of the application on memory usage, CPU

performance, and GPU performance is also being tested since virtual object creation

required graphical processing. However, this analysis focus on template application

only as this application is the main application to be focused in this project.

This application analysis begin with memory usage by the applications.

Memory monitoring is good in determining the allocated memory to the application,

available and used memory by the application and a quick test on determining the

app crash might be related to running out of memory. Figure 5.7 below showed the

memory monitor reports in a period of time.

Figure 5.7 : Memory usage over time.

As observed from the graph, the dark blue indicates the amount of memory

that the app is currently using, while the light blue indicate the available and

unallocated memory. The total allocated memory for application is about 18MB.

Whenever garbage collection occur, the memory usage dropped to 13MB resulting

roughly 5MB garbage memory collected. Depending on the available memory of the

smartphone, in the case of smartphone used in this project, nexus 4 has a total usable

memory of 1700MB. Thus, this 18MB is relatively small at about 1% of the total

memory. Thus, the application will not slow down the smartphone severely when the

application is in used.

Secondly, Figure 5.8 illustrate the CPU performance over time by the

application. The pink colour indicate the CPU used by the user which the red colour

36

represent the kernel’s CPU usage. The graph showed the highest user’s CPU usage is

at approximately 30% while the kernel used about 5-10%. The CPU usage

application is less than half as observed from the graph. This result indicate that the

application is not burdening the smartphone, to run in full speed.

Figure 5.8 : CPU usage over time.

 Thirdly, since virtual reality is being implemented in the smartphone and

openGLES 2.0 is being utilised. Therefore, GPU monitoring can be useful to inspect

the application performance. Figure 5.9 below illustrated the GPU performance over

a period of time.

Figure 5.9 : GPU usage over time.

The graph demonstrate the time per frame in millisecond against period of time.

According to the information(), the GPU monitoring gives graphical statistics on

how the application user interface window perform based on the 16ms per frame

target. On top of that, it also able to identify rendering pipeline stand out throughout

the processing time. Lastly, spikes in frame rendering can be easily determine too.

The graph can be divided into two parts, the first part indicate the application is in a

37

condition where ID-encoded marker is not detected, resulting no virtual object to be

created. Next, as the time passed through 3m10s, the application is in a situation

where the camera is observing the ID-encoded marker, and a virtual earth is being

displayed on the screen. The orange colour indicates the GPU is in execution process.

There is an important information in this graph whereby the frame rendering of a

user interface window should not be more than 16ms per frame benchmark. It the

application does, that animation of the application may be distorted. It is because

whenever a frame exceeded the benchmark, the application is missing a frame

resulting stuttering images. Although there are some spikes that is over the bench

mark, the animation result is still visually acceptable. However, this issue shall be

resolved to enhance user experience.

5.4 Significant Changes

Both the SDK are built to support different applications. Metaio SDK primarily

supports the augmented reality applications development while Google Cardboard

SDK support virtual reality development. Both of the SDK require OpenGLES 2.0

for the smart device to develop virtual environment or virtual object but the SDKs

are utilizing it differently. Consequently, GUI development resulted in a major issue

because the program clashes when both libraries were being integrated at the same

time. However, the program works fine when the SDK GUI develop separately.

Therefore, Metaio SDK was being used for GUI development solely while Google

Cardboard SDK was being used for its magnet trigger input handling.

Magnetic input handling was crucial in this project because it enabled

interaction between user and the smart device. The benefit of magnetic trigger is that

it has straight forward function and easy to handle by user with no additional

knowledge required. Due to the reason that magnetic input is monotonous, thus

combinations of magnet being pulled are developed and they are used by the

application to perform different tasks. Different numbers of pulls from the user

determine the task desired for the application, however, this may limit the number of

38

tasks that can be performed by the application because it is inconvenient to the user

when more pulls are required.

Centered view of the camera has also being utilized to improve the system.

The coordinate of centered camera view is being used to engage the virtual object

which is targeted by the user. If there are a few different virtual objects appear at the

same time, only the virtual object coordinates that are correspond to the centered eye

view will be interacted. This enables user to choose which device they wanted to

control. Besides, this may help to avoid confusion to the system too.

In addition, socket programming has been integrated into Metaio SDK. This

feature is very important to establish connections between the controller and the

smart device to be controlled. TCP/IP protocol is being used in this project. In the

same token, static IP is the primary address to be used in this application. This help

to reduce inconvenience to the user that user would not have to manually search for

the smart device’s IP address and input the respective IP address to the controller.

However, dynamic IP address also being used as an alternative in this application.

This help to act as a backup plan if the static IP address is not able to establish

connectivity between the smartphones. There are advantage using static IP address

since the server’s IP address must always be known and it is constant. Besides, it is

more reliable as compared to dynamic IP address. Commonly, static IP address result

is security risk as it is easier to track for data. On the other hand, dynamic IP assign

new IP address each time the user connect to network. Thus, frequent checking and

manual input is required for every time the user wanted to connect to the smart

device and it is rather redundant. In contrast, dynamic IP address results lesser

security risk. Moreover, dynamic IP addressing is more cost effective than static IP

as there is automatic network configuration and lesser human intervention.

39

5.5 Problems Encountered and Solutions

5.5.1 Utilizing the SDKs

Both the Metaio SDK and Google’s Cardboard SDK are well developed and tutorials

are given. However, it takes time to be familiar with the SDK and understand the

SDK so that changes can be made correctly and effectively. Trials and errors and

debugging tools are very useful to identify the working flow of the codes and

program. Besides, internet resources such as existing tutorials on the SDK’s website,

forums, and blogs were helpful in utilizing the

5.5.2 Time Management

Time given to complete this project was limited to 14 weeks. However, it is a

challenge because there are ongoing academic subjects need to be carried out

concurrently with this project. Therefore, multitasking is very important because this

project must be completed without affecting academic performance. In addition, time

management is also key factor to ensure this project hits the checkpoint throughout

the process and able to be completed on time.

5.5.3 Metaio SDK

Using the Metaio SDK requires more effort. The reasons is that tutorials on the

stereo rendering functions is not well explain, thus making use of the SDK is not

easy. Moreover, stereo GUI designing is a huge problem because no tutorials have

been given and to understand the functioning codes require more time and higher

level of expertise. However, the SDKs code can be tracked and identified to roughly

know how the program function and modify the program accordingly.

5.5.4 Integrating Metaio SDK with Google Cardboard SDK

Integrating both SDKs together to make an application is a difficult task. Metaio

SDK is mainly developed for augmented reality application while Google Cardboard

SDK often used for virtual reality application. However, integrating both SDK is

40

possible depending of the functions needed and both SDK should be integrated

carefully so that they does not crash the program. Due to the reason that both SDK

were built for different applications, thus, they have different designated functions

such as GUI development. Both the virtual reality design requires OpenGLES 2.0

from the device, however both SDK handles it differently. Thus, it is not possible to

unite both SDK to create one GUI. Thus, GUI development only can be done using

one of the SDK.

5.5.5 Useful Debugging Tools

Two useful debugging tools have been used in this project development. The first

debugging tools is breakpoint debugger. Setting breakpoint at certain programs or

functions helps to identify and understand the working flow of the code. Besides, it

also enable programmer to check on parameters and their values further help the

programmer to verify the modification made and values passing are correct. Since

this project is mainly modify and amend existing program code, breakpoint debugger

is helpful up to certain point.

 Next, the alternative debugging tools is logcat debugging. This is rather a

faster debugging method where by the programmer put logging ability in each of the

code function and subsequently allow the whole program to run freely. After that,

logging message of each function code will display in the logcat monitor and the

running code will be displayed sequentially. Whenever there is an error appeared, the

logcat monitor will subsequently display in the monitor and programmer will able to

identify which function went wrong and trace back the source of error. Using this

method, error identification is rather faster than breakpoint debugger. Then,

breakpoint debugger can be utilized in such a way to trace back the error source.

CHAPTER 6

6 CONCLUSION AND RECOMMENDATIONS

6.1 Conclusion

At the of this project development, an augmented reality head mounted display has

been created using Google Cardboard and Metaio SDK as the fundamental program.

Furthermore, two android applications consisting “Template” to perform the

augmented reality controller function and “Android-Client” as the application run by

the smart device being controlled have been developed and demonstrated in Chapter

4 and 5. In the same token, a simple control system has been implemented

successfully using the proposed method and the applications worked reasonably fine.

There are a lot of room of potentials for the applications to be further developed.

Since Google Cardboard is low cost by nature and smartphone is considered a

necessity to almost every household, this Google Cardboard based application has

actually resolved one of the entry barrier to reach out the consumers in the market.

Although this applications is still in developing process, it has its potential grow

bigger with more control ability features.

6.2 Unresolved Issue and Product Limitation

Although this application has been developed successfully, there are still some issues

that have yet to be solved. Besides, there are a lot of rooms for improvisation in this

system.

42

Firstly, an alternative recognition system shall be used instead of ID marker.

The reason is that, ID marker require clear view to the camera. If the camera cannot

detect the full pattern of the ID marker, or border of the marker is corrupted, the

virtual object will not able to be created on the screen. Furthermore, ID marker also

occupy some spaces which it may affect the aesthetic appealing of the environment.

Therefore, alternative recognition system such as marker-less tracking system,

inertial measurement units (IMU) sensors, and so forth can be implemented to

improve recognition system.

Next, GUI development to enrich user experiences has yet to be developed.

For example, the smartphone should able to notify the user how many counts the user

has triggered the magnet ring, so that the smartphone or controller able to send

accurate signal to smart device. However, there are some complexity in stereo GUI

development of Metaio SDK, this feature has yet to be developed.

Thirdly, the resolution of the smartphone screen is another issue to be

encountered. LG Nexus 4 being used in this project has a display resolution of 768 x

1280 pixels (approximately 318 ppi pixel density). Thus, when the user view through

the through Google Cardboard, the image perceived has slightly larger pixels

resulting the image to be slightly blurred. On top of that, this consequence lead to

uncomforted eye when the user use this application for a period of time.

6.3 Recommendation and Future Improvement

Firstly, this system also can be made to control more smart devices. For example,

it may be designed to serve as a smart home system in augmented reality

environment. As the augmented reality technology is growing, automated home

system control is another emerging technology, both of this idea can be merged to

produce a smart home and augmented reality control system.

Moreover, using wifi connectivity can be power consuming. Although wifi

coverage is the large up to couples of meters, its power consumption is relatively

43

high. Thus, smart devices that runs on battery may dries off easily. This is because

the application will have to keep the smart device running so that it able to accept

connections in background all the time even when it is in sleep mode. Thus in a long

run, lesser power consumption wireless technologies such as Bluetooth or ZigBee

will able to put smart device in a longer waiting period.

This application is still in developing stage, many of potential features can be

added into this application. As discuss earlier, it maybe develop as a smart home

augmented reality control system. Besides, it can be develop into a universal

controller whereby it can control all the smart devices that have been registered into

the system and perform actual control features. For instance, if it is going to control a

smart TV, it can be made to control the TV channels, volume, switch among TV’s

applications and many more.

The input handling from the user can be further improvised too. The magnetic

input from the cardboard magnet to the smartphone is inconsistent, making the input

system to be unstable. Therefore, a hand gesture input method can be integrated to

improve this system. A hand gesture input handling can be more interesting and user-

friendly as compared to magnetic input. One of the reason is that, the magnetic input

is monotonous and it requires complimentary support to perform diversify input

method. For example, numbers of magnetic triggered can be used to perform

different tasks. However, this can be solved using a hand gesture input system. An

additional 3D camera such as Microsoft’s Kinect and Intel Realsense can be

integrated into the controller to handle hand gesture recognition easily. Hand gesture

is more user friendly is such a way that tapping, waving and dedicated finger posture

enable user to interact with virtual object accurately and effectively as compared to

magnetic input.

 44

REFERENCES

Adhani, N.I., Rambli, D.R.A., 2012. A survey of mobile augmented reality

applications. 1st International Conference on Future Trends in Computing and

Communication Technologies [e-journal], Available at:

http://www.academia.edu/3061694/A_Survey_of_Mobile_Augmented_Reality_Appl

ications [15 February 2015].

Amin, D., Govilkar, D., 2015, COMPARATIVE STUDY OF AUGMENTED

REALITY

SDK’S. AIRCC [online], 5(1), pp. 11-25. Available at:

http://airccse.org/journal/ijcsa/papers/5115ijcsa02.pdf [10 April 2015]

Aron, M., Simon, G., Berger, M.O., 2007. Use of inertial sensors to support video

tracking. ACM [online], 18 (1), pp. 57– 68. Available at:

http://dl.acm.org/citation.cfm?id=1229034 [6 April 2015].

Asad, M., 2009. iPhone in iPhone Augmented Reality App [online]

Available at: http://www.redmondpie.com/iphone-in-iphone-augmented-reality-app-

9140263/ [Accessed 10 April 2013]

Daponte, P., De Vito, L., Picariello, L., Riccio, M., 2014. State of the art and future

developments of the Augmented Reality for measurement applications. Science

Direct [online], 57, pp. 53-70. Available at:

http://www.sciencedirect.com/science/article/pii/S0263224114003054 [27 March

2015]

http://www.academia.edu/3061694/A_Survey_of_Mobile_Augmented_Reality_Applications%20%5b15
http://www.academia.edu/3061694/A_Survey_of_Mobile_Augmented_Reality_Applications%20%5b15
http://airccse.org/journal/ijcsa/papers/5115ijcsa02.pdf%20%5b10
http://www.redmondpie.com/iphone-in-iphone-augmented-reality-app-9140263/
http://www.redmondpie.com/iphone-in-iphone-augmented-reality-app-9140263/
http://www.sciencedirect.com/science/article/pii/S0263224114003054%20%5b27

 45

Dev.metaio.com, 2015. Setting up the Development Environment | metaio Developer

Portal. [online] Available at: http://dev.metaio.com/sdk/getting-

started/android/setting-up-the-development-environment/index.html [Accessed 7 Sep.

2015].

Golan, L., 2006. Computer vision for artists and designers: pedagogic tools and

techniques for novice programmers. Springer [e-journal], pp. 462-482. Available at:

http://www.yorku.ca/caitlin/futurecinemas/resources/coursepack/readings/computerv

ision.pdf [2 march 2015].

Hartmann, B., Link, N., Trommer, G.F., 2010. Indoor 3D Position Estimation Using

Low-Cost Inertial Sensors and Marker-Based Video-Tracking. IEEE [online], pp.

319-326. Available at:

http://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&queryText=Indoor

+3D+Position+Estimation+Using+Low-Cost+Inertial+Sensors+and+Marker-

Based+Video-Tracking [3 April 2015].

Kjmagnetics.com, 2015. K&J Magnetics Blog. [online] Available at:

https://www.kjmagnetics.com/blog.asp?p=google-cardboard [Accessed 6 Sep. 2015].

Lang, P., Kusej, A., Pinz, A., Brasseur, G., 2002. Inertial tracking for mobile

augmented reality. IEEE [online], vol. 2, pp. 1583–1587. Available at:

http://ieeexplore.ieee.org.libezp.utar.edu.my/xpl/articleDetails.jsp?tp=&arnumber=10

07196&queryText%3D.+Inertial+tracking+for+mobile+augmented+reality [15

February 2015]

Lee, S., 2013. IKEA to use Augmented Reality for Perfect Furniture Planning [online]

Available at: http://news.filehippo.com/2013/08/ikea-to-use-ar-for-perfect-furniture-

planning/ [Accessed 10 April 2013]

Metaio.com, 2015. metaio | Product Support. [online] Available at:

https://www.metaio.com/product_support.html [Accessed 5 Sep. 2015].

http://www.yorku.ca/caitlin/futurecinemas/resources/coursepack/readings/computervision.pdf%20%5b2
http://www.yorku.ca/caitlin/futurecinemas/resources/coursepack/readings/computervision.pdf%20%5b2
http://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&queryText=Indoor+3D+Position+Estimation+Using+Low-Cost+Inertial+Sensors+and+Marker-Based+Video-Tracking
http://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&queryText=Indoor+3D+Position+Estimation+Using+Low-Cost+Inertial+Sensors+and+Marker-Based+Video-Tracking
http://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&queryText=Indoor+3D+Position+Estimation+Using+Low-Cost+Inertial+Sensors+and+Marker-Based+Video-Tracking
http://ieeexplore.ieee.org.libezp.utar.edu.my/xpl/articleDetails.jsp?tp=&arnumber=1007196&queryText%3D.+Inertial+tracking+for+mobile+augmented+reality
http://ieeexplore.ieee.org.libezp.utar.edu.my/xpl/articleDetails.jsp?tp=&arnumber=1007196&queryText%3D.+Inertial+tracking+for+mobile+augmented+reality
http://news.filehippo.com/2013/08/ikea-to-use-ar-for-perfect-furniture-planning/
http://news.filehippo.com/2013/08/ikea-to-use-ar-for-perfect-furniture-planning/

 46

Rolland, J.P., Davis, L., Baillot, Y., 2001. A survey of tracking technology for virtual

environments. [e-journal], pp. 67–112. Available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.8135&rep=rep1&type=

pdf [3 April 2015].

SMART, S. 2015. Dodocase VR Tutorial (Instructables Build Night). [online]

Instructables.com. Available at: http://www.instructables.com/id/Dodocase-VR-

Tutorial-Instructables-Build-Night/?ALLSTEPS [Accessed 6 Sep. 2015].

Stephan, G., Alexander, G., Lukas B., 2010. Server-side object recognition and

client-side object tracking for mobile augmented reality. IEEE [online], pp. 1-8.

Available at:

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5543248&queryText

%3DServer-side+object+recognition+and+client-

side+object+tracking+for+mobile+augmented+reality [6 April 2015]

Sutherland, I.E., 1968. A head mounted three dimensional display. American

Federation of Information Processing Societies (AFIPS) [online], pp. 757–764.

Available at: http://dl.acm.org/citation.cfm?id=1476686 [2 March 2015].

Thomas, B.H., Close, B., Donoghue, J., Squires, J., De Bondi, P., Morris, M.,

Piekarski, W., 2000. ARQuake: an outdoor/indoor augmented reality first person

application. IEEE [online], pp. 139-146. Available at:

http://ieeexplore.ieee.org.libezp.utar.edu.my/xpl/articleDetails.jsp?tp=&arnumber=88

8480&queryText%3DARQuake%3A+an+outdoor%2Findoor+augmented+reality+fir

st+person+application [2 March 2015].

Van Krevelen, D.W.F., Poelman, R., 2003. A survey of augmented reality

technologies, applications and limitations. Scopus [online], 9(2), pp. 1-20. Available

at: http://www.scopus.com/record/display.url?eid=2-s2.0-

80052120343&origin=inward&txGid=7B000A91971A042FCBDE658CBBA64F46.

kqQeWtawXauCyC8ghhRGJg%3a2 [9 February 2015]

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.8135&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.8135&rep=rep1&type=pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5543248&queryText%3DServer-side+object+recognition+and+client-side+object+tracking+for+mobile+augmented+reality
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5543248&queryText%3DServer-side+object+recognition+and+client-side+object+tracking+for+mobile+augmented+reality
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5543248&queryText%3DServer-side+object+recognition+and+client-side+object+tracking+for+mobile+augmented+reality
http://dl.acm.org/citation.cfm?id=1476686
http://ieeexplore.ieee.org.libezp.utar.edu.my/xpl/articleDetails.jsp?tp=&arnumber=888480&queryText%3DARQuake%3A+an+outdoor%2Findoor+augmented+reality+first+person+application
http://ieeexplore.ieee.org.libezp.utar.edu.my/xpl/articleDetails.jsp?tp=&arnumber=888480&queryText%3DARQuake%3A+an+outdoor%2Findoor+augmented+reality+first+person+application
http://ieeexplore.ieee.org.libezp.utar.edu.my/xpl/articleDetails.jsp?tp=&arnumber=888480&queryText%3DARQuake%3A+an+outdoor%2Findoor+augmented+reality+first+person+application
http://www.scopus.com/record/display.url?eid=2-s2.0-80052120343&origin=inward&txGid=7B000A91971A042FCBDE658CBBA64F46.kqQeWtawXauCyC8ghhRGJg%3a2
http://www.scopus.com/record/display.url?eid=2-s2.0-80052120343&origin=inward&txGid=7B000A91971A042FCBDE658CBBA64F46.kqQeWtawXauCyC8ghhRGJg%3a2
http://www.scopus.com/record/display.url?eid=2-s2.0-80052120343&origin=inward&txGid=7B000A91971A042FCBDE658CBBA64F46.kqQeWtawXauCyC8ghhRGJg%3a2

 47

Wang, J.-t, Shyi, C.-N., Hou, T.-W., Fong, C.P., 2010. Design and Implementation

of Augmented Reality System Collaborating with QR Code. IEEE [online], pp.414-

418. Available at:

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5685477&url=http%3A%2F

%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5685477 [3 April

2015]

Yoo, S., Parker, C., 2015. Controller-less Interaction Methods for Google Cardboard.

ACM [online], pp. 127 Available at:

http://delivery.acm.org.libezp.utar.edu.my/10.1145/2800000/2794359/p127-

yoo.pdf?ip=58.27.19.239&id=2794359&acc=OPEN&key=69AF3716A20387ED%2

ECB81A03442DECDAF%2E4D4702B0C3E38B35%2E6D218144511F3437&CFID

=543445029&CFTOKEN=62197189&__acm__=1441520837_2566d821fd35c241ff

d7d625db942034 [Accessed 6 Sep. 2015]

Zhang, Q., Chu, W., Ji, C., Ke, C., Li, Y., 2014. An Implementation of Generic

Augmented Reality in

Mobile Devices. IEEE [online], pp. 555-558. Available at:

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=7065112&queryText

%3DAn+Implementation+of+Generic+Augmented+Reality+in+Mobile+Devices [21

March 2015]

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5685477&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5685477
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5685477&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5685477
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=7065112&queryText%3DAn+Implementation+of+Generic+Augmented+Reality+in+Mobile+Devices
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=7065112&queryText%3DAn+Implementation+of+Generic+Augmented+Reality+in+Mobile+Devices

 48

APPENDICES

APPENDIX A: Computer Programme Listing

 49

Template.java

// Copyright 2007-2014 Metaio GmbH. All rights reserved.

package com.metaio.Template;

import java.io.File;

import java.io.IOException;

import java.io.InputStreamReader;

import java.io.PrintWriter;

import java.net.ServerSocket;

import java.net.Socket;

import java.io.BufferedReader;

import java.net.UnknownHostException;

import java.lang.String;

import android.content.Context;

import android.os.AsyncTask;

import android.os.Bundle;

import android.os.CountDownTimer;

import android.os.Vibrator;

import android.util.Log;

import android.view.View;

import android.widget.EditText;

import android.widget.TextView;

import android.os.Handler;

import android.os.Message;

import android.view.SurfaceHolder;

import android.view.SurfaceView;

import android.view.Display;

import android.graphics.Point;

import com.google.vrtoolkit.cardboard.sensors.MagnetSensor;

import com.metaio.sdk.ARViewActivity;

import com.metaio.sdk.CameraView;

import com.metaio.sdk.MetaioDebug;

import com.metaio.sdk.jni.EVISUAL_SEARCH_STATE;

import com.metaio.sdk.jni.IGeometry;

import com.metaio.sdk.jni.IGeometryVector;

import com.metaio.sdk.jni.IMetaioSDKCallback;

import com.metaio.sdk.jni.IVisualSearchCallback;

import com.metaio.sdk.jni.ImageStruct;

import com.metaio.sdk.jni.MetaioSDK;

import com.metaio.sdk.jni.Rotation;

import com.metaio.sdk.jni.TrackingValues;

import com.metaio.sdk.jni.TrackingValuesVector;

import com.metaio.sdk.jni.Vector3d;

import com.metaio.sdk.jni.VisualSearchResponseVector;

import com.metaio.tools.io.AssetsManager;

public class Template extends ARViewActivity implements

MagnetSensor.OnCardboardTriggerListener

{

 private IGeometry mEarth;

 private IGeometry mEarthOcclusion;

 private IGeometry mEarthIndicators;

 private boolean mEarthOpened;

 private MetaioSDKCallbackHandler mSDKCallback;

 private VisualSearchCallbackHandler mVisualSearchCallback;

 private static SurfaceView surfaceView;

 private TextView dsp_message;

 private String host_ip;

 private Socket client;

 private PrintWriter printWriter;

 private Vibrator vibrator;

 private MagnetSensor mMagnetSensor;

 50

Template.java

 private int screenCenterX;

 private int screenCenterY;

 private int i;

 private int j;

 private boolean times_up = true;

 private boolean video_played;

 Handler msg_handler = new Handler(){

 @Override

 public void handleMessage(Message msg) {

 dsp_message = (TextView)findViewById(R.id.dsp_msg1);

 //dsp_message.setText(msg);

 }

 };

 @Override

 public void onCreate(Bundle savedInstanceState)

 {

 super.onCreate(savedInstanceState);

 mEarthOpened = false;

 metaioSDK.setStereoRendering(true);

 mSDKCallback = new MetaioSDKCallbackHandler();

 mVisualSearchCallback = new VisualSearchCallbackHandler();

 surfaceView = (SurfaceView)findViewById(R.id.surfaceView);

 this.mMagnetSensor = new MagnetSensor(this); //implement magnet

sensor to this function

 this.mMagnetSensor.setOnCardboardTriggerListener(this); //establish

magnet trigger listener

 mMagnetSensor.start(); //start magnet sensing

activity

 //--------get Display size of smartphone to obtain center point of

screen---------------

 Display display = getWindowManager().getDefaultDisplay();

 Point size = new Point();

 display.getSize(size);

 screenCenterX = (size.x /2);

 screenCenterY = (size.y/2) ;

 i = 0;

 video_played=false;

 if (metaioSDK != null)

 {

 metaioSDK.registerVisualSearchCallback(mVisualSearchCallback);

 }

 }

//--------additional button for debugging purpose---------------------------

 public void start_pressed(View v)throws IOException{

 TextView InputView = (TextView)findViewById(R.id.input_view);

 InputView.setVisibility(View.VISIBLE);

 EditText Host_ip = (EditText) findViewById(R.id.input_ip);

 Host_ip.setVisibility(View.VISIBLE);

 vibrator = (Vibrator) this.getSystemService(Context.VIBRATOR_SERVICE);

 vibrator.vibrate(50);

 };

//-------Called when the Cardboard trigger is pulled.-----------------------

 @Override

 public void onCardboardTrigger(){

 i++;

 51

Template.java

 EditText Host_IP = (EditText) findViewById(R.id.input_ip);

 host_ip = Host_IP.getText().toString(); //obtain IP address

entered by the user

 switch (i) {

 case 1:{

 IGeometry geometry =

metaioSDK.getGeometryFromViewportCoordinates(screenCenterX, screenCenterY,

true);

 if (!video_played && times_up && (geometry != null)) {

 Count_time count_time = new Count_time();

 count_time.doInBackground(); // run timer to accumulate

triggers from user

 //determine if the virtual object is hit by the user------------

 //IGeometry geometry =

metaioSDK.getGeometryFromViewportCoordinates(screenCenterX, screenCenterY,

true);

 if (geometry != null) {

 onGeometryTouched(geometry); //geometry touched

 }

 }

 else if (video_played){

 if (times_up) {

 Count_time count_time = new Count_time();

 count_time.doInBackground(); // run timer to accumulate

triggers from user

 //determine if the virtual object is hit by the user---------

 //IGeometry geometry =

metaioSDK.getGeometryFromViewportCoordinates(screenCenterX, screenCenterY,

true);

 if (geometry != null) {

 onGeometryTouched(geometry); //geometry touched

 }

 }

 }

 else{

 i=0;

 }

 break;}

 default:{

 if (video_played){

 if (times_up) {

 Count_time count_time = new Count_time();

 count_time.doInBackground(); // run timer to accumulate

triggers from user

 //determine if the virtual object is hit by the user---------

 IGeometry geometry =

metaioSDK.getGeometryFromViewportCoordinates(screenCenterX, screenCenterY,

true);

 if (geometry != null) {

 onGeometryTouched(geometry); //geometry touched

 }

 }

 }

 else{

 i=0;

 52

Template.java

 }

 break;

 }

 }

 vibrator = (Vibrator) this.getSystemService(Context.VIBRATOR_SERVICE);

 vibrator.vibrate(50);

 }

//---------Start timer before send signal to outputstream-------------------

 private class Count_time extends AsyncTask<Void, Void, Void> {

 @Override

 protected Void doInBackground(Void... params) {

 try {

 times_up = false;

 final Handler handler = new Handler();

 handler.postDelayed(new Runnable() {

 @Override

 public void run() {

 j=i;

 i=0;

 SendMessage sendMessageTask = new SendMessage();

 sendMessageTask.execute(); //execute connection thread

 times_up = true;

 }

 },2000); //wait for two second before execute connection

thread

 } catch (Exception e) {

 e.printStackTrace();

 times_up = true; //two second has over write true to parameter

 } return null;

 }

 }

//----Establish Connection to smart device and send signal------------------

 private class SendMessage extends AsyncTask<Void, Void, Void> {

 @Override

 protected Void doInBackground(Void...params) {

 if (host_ip.isEmpty()) {

 host_ip = "172.28.44.3";

 }

 switch (j) {

 case 1: {

 video_played = true;

 break;

 }

 case 2: {

 video_played = false;

 break;

 }

 default: {

 break;

 }

 }

 try {

 client = new Socket(host_ip, 8888); //Connect to host with

port 8888

 printWriter = new PrintWriter(client.getOutputStream(), true);

//establish outputstream

 String out = String.valueOf(j); //get signal from the

 53

Template.java

user

 printWriter.write(out); //send signal to determine

should the smart device do

 printWriter.flush(); //empty printWriter

 printWriter.close(); //close printWriter

 client.close(); //close socket

 j = 0;

 } catch (UnknownHostException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }return null;

 }

 }

//------when application is closed--

 @Override

 protected void onDestroy()

 {

 super.onDestroy();

 mSDKCallback.delete();

 mSDKCallback = null;

 mVisualSearchCallback.delete();

 mVisualSearchCallback = null;

 mMagnetSensor.stop();

 }

//----- Attaching layout to the activity------------------------------------

 @Override

 protected int getGUILayout()

 {

 return R.layout.template;

 }

//------------------load virtual Object-------------------------------------

 @Override

 protected void loadContents()

 {

 try

 {

 // Getting a file path for tracking configuration XML file

 final File trackingConfigFile =

AssetsManager.getAssetPathAsFile(getApplicationContext(),

"TrackingData_Marker.xml");

 // Assigning tracking configuration

 boolean result =

metaioSDK.setTrackingConfiguration(trackingConfigFile);

 MetaioDebug.log("Tracking data loaded: " + result);

 final float scale = 3.f; //assign virtual object scale

 final Rotation rotation = new Rotation(new Vector3d(90.0f,

0.0f,0.0f)); //assign virtual object's orientation

//(float)Math.PI/2, 90.0f, 90.0f));

 // Getting a file path for a 3D geometry

 final File earthModel =

AssetsManager.getAssetPathAsFile(getApplicationContext(), "Earth.zip");

 if (earthModel != null)

 {

 // Loading 3D geometry

 54

Template.java

 mEarth = metaioSDK.createGeometry(earthModel);

 if (mEarth != null)

 {

 // Set geometry properties

 mEarth.setScale(scale);

 mEarth.setRotation(rotation);

 }

 else

 MetaioDebug.log(Log.ERROR, "Error loading earth geometry: " +

mEarth);

 }

 //------get 3D model from path---------

 final File earthOcclusionModel =

AssetsManager.getAssetPathAsFile(getApplicationContext(),

"Earth_Occlusion.zip");

 if (earthOcclusionModel != null)

 {

 mEarthOcclusion = metaioSDK.createGeometry(earthOcclusionModel);

//create virtual object

 if (mEarthOcclusion != null)

 {

 mEarthOcclusion.setScale(scale);

 mEarthOcclusion.setRotation(rotation);

 mEarthOcclusion.setOcclusionMode(true);

 }

 }

 else

 MetaioDebug.log(Log.ERROR, "Error loading earth occlusion

geometry: " + mEarthOcclusion);

 //---------get 3D model from path(needed when virtual object is

touched)----------------

 final File earthIndicatorsModel =

AssetsManager.getAssetPathAsFile(getApplicationContext(),

"EarthIndicators.zip");

 if (earthIndicatorsModel != null)

 {

 mEarthIndicators =

metaioSDK.createGeometry(earthIndicatorsModel);

 if (mEarthIndicators != null)

 {

 mEarthIndicators.setScale(scale);

 mEarthIndicators.setRotation(rotation);

 }

 else

 MetaioDebug.log(Log.ERROR, "Error loading earth indicator

geometry: " + mEarthIndicators);

 }

 }

 catch (Exception e)

 {

 MetaioDebug.log(Log.ERROR, "Failed to load content: " + e);

 }

 }

//-------------Animate Virtual object when it is being touch----------------

 @Override

 protected void onGeometryTouched(IGeometry geometry)

 {

 //hide IP address input of the GUI

 TextView InputView = (TextView)findViewById(R.id.input_view);

 InputView.setVisibility(View.INVISIBLE);

 EditText Host_ip = (EditText) findViewById(R.id.input_ip);

 Host_ip.setVisibility(View.INVISIBLE);

 55

Template.java

 MetaioDebug.log("Template.onGeometryTouched: " + geometry);

 if (geometry != mEarthOcclusion) //check if the virtual object touch

is the earth

 {

 if (!mEarthOpened) //open the virtual object if it is not open

 {

 mEarth.startAnimation("Open", false);

 mEarthIndicators.startAnimation("Grow", false);

 mEarthOpened = true;

 }

 else //close the virtual object

 {

 mEarth.startAnimation("Close", false);

 mEarthIndicators.startAnimation("Shrink", false);

 mEarthOpened = false;

 }

 }

 }

 @Override

 protected IMetaioSDKCallback getMetaioSDKCallbackHandler()

 {

 return mSDKCallback;

 }

 final class MetaioSDKCallbackHandler extends IMetaioSDKCallback

 {

 @Override

 public void onSDKReady()

 {

 MetaioDebug.log("The SDK is ready");

 }

 @Override

 public void onAnimationEnd(IGeometry geometry, String animationName)

 {

 MetaioDebug.log("animation ended" + animationName);

 }

 @Override

 public void onMovieEnd(IGeometry geometry, File filePath)

 {

 MetaioDebug.log("movie ended" + filePath.getPath());

 }

 @Override

 public void onNewCameraFrame(ImageStruct cameraFrame)

 {

 MetaioDebug.log("a new camera frame image is delivered" +

cameraFrame.getTimestamp());

 }

 @Override

 public void onCameraImageSaved(File filePath)

 {

 MetaioDebug.log("a new camera frame image is saved to" +

filePath.getPath());

 }

 @Override

 public void onScreenshotImage(ImageStruct image)

 {

 MetaioDebug.log("screenshot image is received" +

image.getTimestamp());

 56

Template.java

 }

 @Override

 public void onScreenshotSaved(File filePath)

 {

 MetaioDebug.log("screenshot image is saved to" +

filePath.getPath());

 }

 @Override

 public void onTrackingEvent(TrackingValuesVector trackingValues)

 {

 for (int i=0; i<trackingValues.size(); i++)

 {

 final TrackingValues v = trackingValues.get(i);

 MetaioDebug.log("Tracking state for COS " +

v.getCoordinateSystemID()+" is "+v.getState());

 }

 }

 @Override

 public void onInstantTrackingEvent(boolean success, File filePath)

 {

 if (success)

 {

 MetaioDebug.log("Instant 3D tracking is successful");

 }

 }

 }

 final class VisualSearchCallbackHandler extends IVisualSearchCallback

 {

 @Override

 public void onVisualSearchResult(VisualSearchResponseVector response,

int errorCode)

 {

 if (errorCode == 0)

 {

 MetaioDebug.log("Visual search is successful");

 }

 }

 @Override

 public void onVisualSearchStatusChanged(EVISUAL_SEARCH_STATE state)

 {

 MetaioDebug.log("The current visual search state is: " + state);

 }

 }

}

 57

MainActivity.java

package com.fyp_client.jxiang.android_client;

import android.app.ProgressDialog;

import android.net.Uri;

import android.os.Handler;

import android.os.Message;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.util.Log;

import android.view.Menu;

import android.view.MenuItem;

import android.os.PowerManager;

import java.io.BufferedReader;

import java.io.DataOutputStream;

import java.io.DataInputStream;

import java.io.IOException;

import java.io.InputStreamReader;

import java.net.ServerSocket;

import java.net.Socket;

import java.io.PrintWriter;

import java.lang.String;

import java.net.UnknownHostException;

import android.view.View;

import android.widget.Button;

import android.widget.EditText;

import android.widget.ImageView;

import android.widget.TextView;

import android.widget.VideoView;

import android.widget.ViewSwitcher;

import android.media.MediaPlayer;

import android.view.WindowManager;

import android.widget.MediaController;

public class MainActivity extends AppCompatActivity

{

 EditText textOut;

 private Integer input_message;

 private ImageView mImageView;

 private static ServerSocket serverSocket;

 private static Socket clientSocket;

 private static InputStreamReader inputStreamReader;

 private static BufferedReader bufferedReader;

 public VideoView myVideoView;

 private int position;

 private ProgressDialog progressDialog;

 private MediaController mediaController;

 public boolean video_played;

 private ViewSwitcher switcher;

 private static final int NEXT_SCREEN = 1;

 private static final int PREVIOUS_SCREEN = 2;

//----------------App status handler--------------------------------------

 Handler msg_handler = new Handler(){

 @Override

 public void handleMessage(Message msg) {

 TextView status_MSG = (TextView)findViewById(R.id.status_msg);

 status_MSG.setText("listening to client...");

 }

 };

 58

MainActivity.java

//------------Switch function of Layout Handler----------------------------

 Handler Refresh = new Handler(){

 public void handleMessage(Message msg) {

 switch(msg.what){

 case NEXT_SCREEN:

getWindow().addFlags(WindowManager.LayoutParams.FLAG_DISMISS_KEYGUARD |

WindowManager.LayoutParams.FLAG_FULLSCREEN |

WindowManager.LayoutParams.FLAG_SHOW_WHEN_LOCKED |

WindowManager.LayoutParams.FLAG_TURN_SCREEN_ON);

 switcher.showNext(); //go to the next layout

 break;

 case PREVIOUS_SCREEN:

 switcher.showPrevious(); //go back to the previous

layout

 break;

 default:

 break;

 }

 }

 };

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 video_played = false;

 textOut = (EditText)findViewById(R.id.textout);

 Button buttonSend = (Button)findViewById(R.id.send);

 buttonSend.setOnClickListener(buttonSendOnClickListener);

 switcher = (ViewSwitcher) findViewById(R.id.profileSwitcher);

 mediaController = new MediaController(this);

 }

 //-----------------Button Listener to start connection------------------

 Button.OnClickListener buttonSendOnClickListener = new

Button.OnClickListener() {

 public void onClick(View arg0) {

 Thread start_Server = new Thread(new Start_Server());

 start_Server.start();

 mImageView = (ImageView)findViewById(R.id.ID_image);

 mImageView.setImageResource(R.drawable.arcs_id_marker);

 }

 };

 //---------Establish socket and waiting for connection from controller--

 private class Start_Server extends Thread{

 public void run() {

 try {

 serverSocket = new ServerSocket(8888);

 } catch (IOException e) {

 e.printStackTrace();

 }

 msg_handler.sendEmptyMessage(0);

 while (true) { //endless loop to receive client connection

request continuously

 try {

 clientSocket = serverSocket.accept(); //accept

 59

MainActivity.java

 connection request from client

 inputStreamReader = new

InputStreamReader(clientSocket.getInputStream()); //obtain client's signal

 bufferedReader = new BufferedReader(inputStreamReader);

//store signal in BufferedReader

 String input_String = bufferedReader.readLine();

//assign parameter to the signal

 input_message = Integer.parseInt(input_String);

//convert string signal into integer

 VideoActivity videoActivity = new VideoActivity();

 videoActivity.run(); //run VideoActivity to

handle the signal

 inputStreamReader.close(); //close InputStreamReader

 clientSocket.close(); //close ServerScoket

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 }

 }

 //-------------Video activity thread---------------------------------

 private class VideoActivity implements Runnable{

 @Override

 public void run() {

 try{

 switch (input_message) {

 case 1:

 if (!video_played) {

 video_played = true;

 myVideoView = (VideoView)

findViewById(R.id.video_view);

 try {

 myVideoView.setMediaController(mediaController);

myVideoView.setVideoURI(Uri.parse("android.resource://" + getPackageName() +

"/" + R.raw.deadpool_trailer));

 } catch (Exception e) {

 Log.e("Error", e.getMessage());

 e.printStackTrace();

 }

 myVideoView.start(); // start video

 Refresh.sendEmptyMessage(NEXT_SCREEN); //send signal

to handler to change GUI

 break;

 } else {

 if (myVideoView.isPlaying()) { //check if the

video is currently playing

 position = myVideoView.getCurrentPosition();

//save current frame of video

 myVideoView.pause(); //pause video

 } else {

 myVideoView.seekTo(position); //go to the frame

saved when video is paused

 myVideoView.start(); //resume the video

 }

 break;

 }

 case 2:{

 if(video_played) {

 myVideoView.stopPlayback(); //stop the video

 video_played = false; //reset parameter

 Refresh.sendEmptyMessage(PREVIOUS_SCREEN);

 60

MainActivity.java

//send signal to handler to change GUI

 break;

 }

 else

 {break;}

 }

 case 3:{ //video step forward

 if(video_played) {

 position = myVideoView.getCurrentPosition();

//get currrent video frame

 myVideoView.seekTo(position + 8000); //step

forward the video by 8 seconds

 myVideoView.start();

 break;

 }

 else

 {break;}

 }

 case 4:{ //video step backward

 if (video_played) {

 position = myVideoView.getCurrentPosition();

//get currrent video frame

 myVideoView.seekTo(position - 8000); //step

backward the video by 8 seconds

 myVideoView.start();

 break;

 }

 else

 {break;}

 }

 default: //exit right away for undefined signals

received

 break;

 }

 }catch (Exception e){

 e.printStackTrace();

 }

 myVideoView.setOnCompletionListener(new

MediaPlayer.OnCompletionListener(){

 @Override

 public void onCompletion(MediaPlayer mediaPlayer){

 myVideoView.stopPlayback(); //stop the video

 video_played = false; //reset parameter

 Refresh.sendEmptyMessage(PREVIOUS_SCREEN);

 }

 });

 }

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar if it is

present.

 getMenuInflater().inflate(R.menu.menu_main, menu);

 return true;

 }

 @Override

 public boolean onOptionsItemSelected(MenuItem item) {

 // Handle action bar item clicks here. The action bar will

 // automatically handle clicks on the Home/Up button, so long

 // as you specify a parent activity in AndroidManifest.xml.

 61

MainActivity.java

 int id = item.getItemId();

 //noinspection SimplifiableIfStatement

 if (id == R.id.action_settings) {

 return true;

 }

 return super.onOptionsItemSelected(item);

 }

}

