

FACE RECOGNITION SYSTEM USING COMPLETE GABOR FILTER

WITH RANDOM FOREST

LOW JENG LAM

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Bachelor (Hons.) of Mechatronics Engineering

Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

April 2013

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it

has not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature : _________________________

Name : _________________________

ID No. : _________________________

Date : _________________________

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “FACE RECOGNITION SYSTEM

USING COMPLETE GABOR FILTER WITH RANDOM FOREST” was

prepared by LOW JENG LAM has met the required standard for submission in

partial fulfilment of the requirements for the award of Bachelor of Engineering

(Hons.) Mechatronics Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature : _________________________

Supervisor : Mr. See Yuen Chark

Date : _________________________

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of University Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2013, Low Jeng Lam. All right reserved.

v

Specially dedicated to

my beloved mother and father

vi

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion of

this project. I would like to express my gratitude to my research supervisor, Mr, See

Yuen Chark for his invaluable advice, guidance and his enormous patience

throughout the development of the research.

In addition, I would also like to express my gratitude to my loving parent who

had given me encouragement throughout the project. Last but not least, I would like

to thank all my friends who had given me guidance, support and knowledge in

succeeding this project.

vii

FACE RECOGNITION SYSTEM USING COMPLETE GABOR FILTER

WITH RANDOM FOREST

ABSTRACT

This project attempts to resolve challenges like illumination changes, occlusions, and

head orientation pose in face recognition by developing a technique called Complete

Gabor Classifier with Random Forest. Complete Gabor Classifier is the hybrid

method of Gabor Filter and oriented Gabor phase congruency image (OGPCI) to

form a robust face recognition system. Gabor filter provides the magnitude

information of Gabor responses, where OGPCI contains phase information of Gabor

response. Random Forest is used as the learning framework to classify the images

based on features extracted from Gabor Filter and OGPCI. This study uses three face

databases, Faces96, Faces94 from University of Essex to evaluate the performance of

algorithm and the Georgia Tech Face Database from Centre for Signal and Image

Processing at Georgia Institute of Technology. All these databases vary according to

different head scales, different head positions, different head orientations and

different lighting illumination. The database Faces94 is modified to have occluded

images to test the efficiency of the proposed hybrid algorithm. The proposed method

achieved 100.00% recognition rate for the images with different head scales and

different head positions in Faces96 database; 89.60% recognition rate for the images

with different head orientations in Georgia Tech Face Database and 98.50%

recognition rate for the partially occluded face images in Faces94 database.

viii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS vi

ABSTRACT vii

TABLE OF CONTENTS viii

LIST OF TABLES x

LIST OF FIGURES xii

LIST OF SYMBOLS / ABBREVIATIONS xv

LIST OF APPENDICES xvi

CHAPTER

1 INTRODUCTION 1

1.1 Background 1

1.2 Problem Statement and Motivation 2

1.3 Aims and Objectives 3

1.4 Project Scope 4

1.5 Report Outline 4

2 LITERATURE REVIEW 6

2.1 Face Recognition System 6

2.2 Feature Extraction 7

2.2.1 Feature Extraction Method 8

2.2.2 Feature Selection Method 11

2.3 Face Recognition 11

2.3.1 Appearance-based Approach 12

ix

2.3.2 Feature-based Approach 13

2.3.3 Learning-based Approaches 14

3 METHODOLOGY 16

3.1 Overall Framework 16

3.2 Database 18

3.3 Face Image Processing 19

3.3.1 Pre-processing 19

3.4 Feature Extraction 21

3.4.1 Gabor Filter 21

3.4.2 Oriented Gabor Phase Congruency Image 24

3.5 Learning Framework 25

3.5.1 Random Forest 26

3.5.2 Feature Importance Selection 29

3.6 Complete Gabor Classifier 31

3.7 Software Architecture 33

4 RESULTS AND DISCUSSIONS 34

4.1 Recognition Rate 34

4.2 Results 34

4.3 Faces96 Database 39

4.4 Georgia Tech Face Database 44

4.5 Faces94 Database (Occluded) 52

4.6 Comparisons with State-of-the-art Algorithms 57

5 CONCLUSION AND RECOMMENDATIONS 59

5.1 Conclusions 59

5.2 Recommendations 59

REFERENCES 61

APPENDICES 64

x

LIST OF TABLES

 TABLE TITLE PAGE

4.1 Faces96 Database Information 40

4.2 Gabor (1000 Features) and OGPCI (200 Features)

on Faces96 Database 41

4.3 Recognition Rate (%) for Gabor Features on

Faces96 Database 42

4.4 Recognition Rate (%) for OGPCI Features on

Faces96 Database 42

4.5 Complete Gabor Classifier on Faces96 Database 43

4.6 Georgia Tech Face Database Information 45

4.7 Gabor (1000 Features) and OGPCI (200 Features)

on Georgia Tech Face Database 46

4.8 Recognition Rate (%) for Gabor Features on

Georgia Tech Face Database 47

4.9 Recognition Rate (%) for OGPCI Features on

Georgia Tech Face Database 47

4.10 Complete Gabor Classifier on Georgia Tech Face

Database 48

4.11 Faces94 Database Information 52

4.12 Details of Occlusion Boxes on Faces94 Database 52

4.13 Gabor (1000 Features) and OGPCI (200 Features)

on Faces94 Database 54

4.14 Recognition Rate for Gabor Features on Faces94

Database 55

xi

4.15 Recognition Rate for OGPCI Features on Faces94

Database 55

4.16 Complete Gabor Classifier on Faces94 Database 56

4.17 Comparison of Recognition Rate for Different

Algorithm on Different Database 58

xii

LIST OF FIGURES

 FIGURE TITLE PAGE

1.1 Facebook Statistics Data (PetaPixel, 2012) 2

2.1 The Three Stage of a Face Recognition System 6

2.2 Feature Extraction Process 8

2.3 Example of Rectangle Features in a Detection Sub-

window 9

2.4 Gabor Representation of Face of 8 × 5 10

2.5 Example of OGPCIs images 11

2.6 Different Linear Projection (from top): LDA,

PCA+LDA and PCA 13

2.7 Geometric Features-based Approach in Face

Recognition 14

2.8 Left – Gabor Image, Right – Feature Points

Extracted from the Peak of Gabor Image 14

3.1 Proposed Algorithm Flowchart 16

3.2 Overall Program Framework 17

3.3 Flow Chart of Face Image Processing 19

3.4 Flow Chart of Pre-processing Stage 20

3.5 RGB to Grayscale Conversion 20

3.6 The Real Parts of Gabor Filter Bank Constructed

in 8 Orientations and 5 Scales 22

3.7 Downsampling Process (From Left to Right): (a)

Magnitude Response of an Image, (b) Magnitude

xiii

Response Image with Rectangular Sampling Grid,

(c) Image After Downsampled. 23

3.8 Example of all OGPCIs generated for

from original images 25

3.9 Random Forest 26

3.10 Example of a Decision Tree Grown 28

3.11 Flow Chart of Computing Feature Importance 30

3.12 Variables Importance for 30 Features 31

3.13 Block Diagram of the Complete Gabor Classifier 32

4.1 (a) Original Test Image. (b) Image After Grayscale

Conversion (c) Image Resized to 64 × 64 Pixels. 35

4.2 Gabor Magnitude Face Representation of Test

Image 35

4.3 Gabor Magnitude Face Representation of

Downsampled Test Image 36

4.4 OGPCI Face Representation of Test Image 36

4.5 OGPCI Face Representation of Downsampled Test

Image 37

4.6 The Matching Score for Gabor Filter with Random

Forest 37

4.7 The Matching Score for OGPCI with Random

Forest 38

4.8 The Final Matching Score for CGC with Random

Forest 38

4.9 Matched Image for Class 11, “s11” 39

4.10 Sample Faces96 Database Image 40

4.11 Faces96 Facial Image Testing Result 44

4.12 Sample of Georgia Tech Face Database Images 45

4.13 The Classification Result from Gabor, OGPCI and

CGC on Georgia Tech Face Database (Gabor

Misclassify) 49

xiv

4.14 The Classification Result from Gabor, OGPCI and

CGC on Georgia Tech Face Database (OGPCI

Misclassify) 50

4.15 Complete Gabor Classifier on Georgia Tech Face

Database (Correct Classification) 51

4.16 Sample Training Set for Faces94 Database Image 53

4.17 Sample Testing Set for Faces94 Database Image

(Occluded) 53

4.18 Complete Gabor Classifier on Faces94 Database

(Correct Classification) 57

xv

LIST OF SYMBOLS / ABBREVIATIONS

CGC Complete Gabor Classifier

GFC Gabor Filter Classifier

LDA Linear Discriminant Analysis

OGPCI Oriented Gabor Phase Congruency Image

OOB Out-of-bag

PBGFC Phase Based Gabor-Fisher Classifier

PCA Principle Component Analysis

RGB Red Green Blue

RF Random Forest

SFS Sequential Forward Selection

xvi

LIST OF APPENDICES

 APPENDIX TITLE PAGE

A Matlab Coding 64

 CHAPTER 1

1 INTRODUCTION

1.1 Background

Humans are very good at recognizing faces and complex patterns. Study shows that

human starts to recognize faces as early as three-month-old (Barrera and Maurer,

1981). Even a passage of time doesn’t affect this capability. It would be useful if

computers can perform face recognition as robust as human. However, it’s a true

challenge to build an automated system which models human ability to recognize

faces.

Therefore, face recognition had becomes one of the most desirable

applications of image processing and analysis for the past few decades. The first

automated face recognition can trace back to the 1960’s, where Woodrow W.

Bledshoe worked on using computers to perform faces recognition (Bledsoe, 1966).

Since then, the technologies using face recognition techniques have been evolving

throughout the years. Nowadays, there are many different areas applying face

recognition technique, such as information security, access management, biometrics,

law enforcements, personal security and entertainment.

Even though there are many journals and research paper on different face

recognition approaches have been published throughout the years, most of the

methods focus only on detecting frontal images with proper illumination. These

methods can’t achieve high recognition rate when the image used has flaws like

occlusion, insufficient lighting condition and slight orientation. These are the major

2

challenges in face recognition which need to be considered. Thus, face recognition

has incorporates artificial intelligence elements like neural network to make

recognition more robust.

1.2 Problem Statement and Motivation

According to (PetaPixel, 2012) Figure 1.1, the most popular online social network,

Facebook with over 845 million active users has 250 million photos uploaded per

day. It also claimed that Facebook have store more than 100 petabytes of photo and

videos (PopPhoto, 2012). Most of the photos uploaded contain people with different

faces, so Facebook has implemented auto-tagging feature which applies face

recognition technology to differentiate unique human images (TheFacebookBlog,

2011). This highlights the importance of face recognition in image-sharing

community.

Figure 1.1: Facebook Statistics Data (PetaPixel, 2012)

 Furthermore, face recognition helps to improve biometric security features by

encoding the human facial appearance as a password of unlocking personal property

like credit card, door access, mobile phone and laptop. By using this technology, it is

virtually impossible for the hackers to steal one’s “password”.

3

 Face recognition can be applied in indexing or retrieving video data based on

the appearances of particular persons, which will be useful for reporters, moviegoers

and forensic scientist. It will speed up the process of locating the particular persons

in a video, instead of going through the video manually which are lengthy and tiring

job.

All the area of fields stated has shown the importance of face recognition in

different area of fields. However, the real-life challenges in face recognition are yet

to be solved. For example, the problem of detecting faces wearing glasses faced by

(Han et al., 2000) and limitation of lighting condition (under-exposed or over-

exposed faces) faced by (Kong and Zhu, 2007). Apart for that, the challenges like

face orientation variation, occlusion and extra face features like glasses and cap also

affects the recognition rate.

 All the applications and problem stated have become a motivation to study

and evaluate the face recognition techniques. Besides, it also encourages the search

and implementation of suitable face recognition method to overcome the limitations

of problems discussed above.

1.3 Aims and Objectives

The aim of this project is to propose a face recognition technique, Complete Gabor

Classifier with Random Forest. The proposed method is capable to recognize facial

images with different head scales and different head positions, different lighting

illumination, different head orientations and partially occluded images. The

performance of the proposed method is measured in term of recognition rate on

Faces96, Georgia Tech Face Database and Faces94 database. The performance of the

proposed method is compared with the existing state-of-the-art algorithms such as

PCA, LDA and Gabor-PCA.

4

1.4 Project Scope

This project will be focusing on developing a method in recognizing faces of

different identities from databases. The databases are downloaded from internet for

standard benchmarking. The databases contain frontal facial images with different

head scales and different head positions, different head orientations, different

illumination and partially occluded image.

The performance of proposed algorithm is measured in term of recognition

rate. The project is focus on comparing the recognition rate of the proposed method

with the available state-of-art algorithms. The speed of recognition is not discussed

in this project.

MATLAB R2012b is used as development tool for this project, where it

provides necessary toolbox, libraries and functions for image processing module and

learning framework.

1.5 Report Outline

Chapter 1 highlighted the background of the topic, the problem statement and

motivation behind the project, the aims and objectives, project scope and report

outline of each chapter.

 Chapter 2 presents the literature review of the fields related to the project.

The topics include overview of face recognition system, feature extraction, feature

selection and face recognition approaches.

 Chapter 3 covers the methodology of proposed face recognition algorithm.

The theory of the proposed algorithm is explained at this chapter.

 Chapter 4 summarizes the results obtained from this project. The results

obtained from different facial images database are shown and discussed here.

5

Besides, the comparisons of proposed algorithm with state-of-the-art algorithms are

shown.

 Chapter 5 concludes the entire project and recommendations for future

improvement are stated.

 CHAPTER 2

2 LITERATURE REVIEW

2.1 Face Recognition System

In a complete face processing system, the acquired image will undergo several stages

as shown in Figure 2.1. Face detection is the first stage of a face recognition system.

In the face detection stage, the video captured in frame or still images is taken as an

input. The input images need to be pre-processed to reduce computational effort. For

example, the colour image (3-dimensional data) is converted to grayscale format (2-

dimensional data) or resize the high resolution picture to low resolution. This will

improve the speed of processing and reduce the memory space.

Figure 2.1: The Three Stage of a Face Recognition System

 In the face detection stage, the image is scanned to extract the face region

from the background. By doing so, unnecessary information is removed and only the

important data are retained for further processing. Removing the unnecessary

information helps to lower the dimension of image and thus reduces computation

times. Unnecessary regions such as car, tree and building will be removed. The

7

retained data known as the region-of-interest should cover most of the important

features of the face like eyes, nose and mouth. These features are essential for later

recognition process.

 The extracted face region is then feed into the feature extraction stage to

select the face characteristics that resemble as a face. At this stage, original face

image which is high-dimensional is reduced into a set of data known as feature to

examine the traits of the data. After the features are generated, the best subset of

these features is selected and passes to face recognition stage. The chosen features

are used to train the classifier in recognizing faces.

 In face recognition stage, the extracted face regions are classified according

to the classes assigned. The distinctive features selected from previous stage are used

to differentiate the characteristics of each class members. The system is trained using

learning method to classify the face regions correctly. At the end of the stage, the

face region is assigned to a label based on the training result. The rate of recognition

is evaluated to measure the performance of face classification algorithm.

2.2 Feature Extraction

Human has no difficulty in recognizing faces, which seems to be an automated

process in brains. For example, humans are able to recognize people they know even

with glasses or caps. Human find no problem in recognizing people when they have

added facial feature like moustache, beard, make up and expressions. These

processes seem trivial to human, but they present a challenge for the computer to

mimic this ability. The main problem of face recognition is to extract information

from picture. The process of extracting face information is known as feature

extraction.

By referring to Figure 2.1, after the face detection stage is the feature

extraction stage. The goal of feature extraction is to reduce the training facial image

data which are high-dimensional to a set of valuable information known as features

8

for investigation. The extracted features are normally represented in subspace after

transformation from the original image. After that, the distinctive features are

selected to match with the input feature set. Redundant or non-relevant features are

rejected during the process. Figure 2.2 illustrates the block diagram of feature

extraction process (Belle, 2008).

Figure 2.2: Feature Extraction Process

 From the Figure 2.2, the feature extraction process involves dimensionality

reduction, feature extraction and feature selection. Dimensionality reduction is the

process of reducing the high dimensional training data (original image) to a set of

low dimensional data known as features.

 In the feature extraction stage, a filter is applied on the original image, the

output of the filter is known as feature. The best subset from these created features is

selected in the feature selection stage. In this stage, the important features are kept

while the redundant features are discarded.

2.2.1 Feature Extraction Method

Viola and Jones (2001) used Haar basic functions as face feature extraction.

Haar wavelet representation was first adopted in object detection by Papageorgiou et

al. (1998). Basically, Haar filter calculates feature regions by adding up all the pixel

value defined by the rectangular region. Viola and Jones used three kinds of

rectangle features as shown in Figure 2.3 (Viola and Jones, 2004).

9

Figure 2.3: Example of Rectangle Features in a Detection Sub-window

 In Figure 2.3, the value of two-rectangle features (A) and (B) is the difference

between sum of pixel of grey and white rectangle. For three-rectangle features (C), it

computes the difference between sum of pixels of two white rectangles and grey

rectangle. Four-rectangle feature (D) computes difference between diagonal pairs of

white and grey rectangles. The feature sets computed are large, consisting 160000

features for 24 × 24 pixels. The formulas of computing Haar filter output for

different rectangles feature are as follow:

 (2.1)

 (2.2)

 (2.3)

Where is the sum of pixels within white region is box and is the sum

of pixels within black region box. is the number of white/black region box within

the rectangles feature.

 Gabor filter is another feature extraction method. Gabor feature

representation consists of wavelet coefficients for different scales and orientations,

making these features robust to rotation, translation, distortion and scaling. It was

first used by Lades et al. (1993) for face recognition based on Dynamic Link

Architecture which exploit high grey-level information and shape information.

Vitomir and Nikola (2010) applies Gabor filter to represent facial image into 5

10

different scales and 8 different orientations which gives 40 different output images as

shown in Figure 2.4.

Figure 2.4: Gabor Representation of Face of 8 × 5

 Existing face recognition technique used only Gabor magnitude information

(Liu, 2004). The phase information of the Gabor filter is ignored due to its difficulty

in extracting stable and discriminative features from the phase responses (Zhang et

al., 2007). To overcome this instability, Baochang et al. (2008) formed the histogram

of Gabor phase patterns using local binary method. This histogram is used as face

descriptors and the results proven that Gabor phase responses do exhibit some face

information. Baochang et al. method does not represent the face directly as it only

represents the phase information in histogram and select the best face descriptors.

Struc et al. (2008) implemented Oriented Gabor Phase Congruency Image (OGPCI)

to extract stable phase information features. In Struc et al. paper, the face is

represented with phase based Gabor-Fisher classifier (PBGFC), the results shows

that PBGFC has lesser computational burden (lesser features) when compared to

Gabor filter. Vitomir and Nikola (2010) combined both Gabor magnitude and phase

information with LDA as the feature selection method to form a complete Gabor-

Fisher classifier. The result shows that it outperformed several face recognition

techniques like PCA and LDA. Figure 2.5 shows the facial images represented in

OGPCI form of different scales.

11

Figure 2.5 : Example of OGPCIs images

2.2.2 Feature Selection Method

After the features are computed, it is necessary to select the best subset of features

that gives smallest classification error. The method of classification will determines

the classification error. Smaller classification error will yields better classification

result. The direct method of feature selection is by examining every features subset

and chooses the one that fulfils the defined criteria. However, this method is

computational ineffective when there are huge number of subsets present. Recent

paper has highlighted a list of effective method in feature selection (Marqués, 2010).

The list includes exhaustive search, Sequential Forward Selection (SFS). Apart from

that, Genetic algorithm can be applied in feature selection (Yang and Honavar, 1998).

 Feature selection can be embedded in learning algorithm of face recognition.

For example, Viola and Jones (2004) used Adaboost to select best features among

160000 Haar extracted features and forms a strong classifier for face detection.

2.3 Face Recognition

Face recognition stage is closely related to face classification. It is a process to

classify the face region into correct class label. Since face recognition has more than

2 classes, it is name as multi-class problem. Normally, it will be mentioned as P class

problem if there are P numbers of subjects. Face recognition is a challenging task as

images of same person can be in different illuminations and pose. In addition, added

12

structures like cap, beard and moustache will complicate the recognition rate. Several

approaches have been implemented to tackle such challenges. These approaches can

be classified into three categories: appearance-based, feature-based and learning-

based approaches.

2.3.1 Appearance-based Approach

Appearance-based approaches use statistical methods to derive image (high-

dimensional) into a feature space (low-dimensional). Linear appearance approaches

is commonly used, it performs linear dimension reduction to project the image into

face vectors. The feature of the face can be represented using the projection weights.

Examples of these methods are principal component analysis (PCA) and linear

discriminant analysis (LDA)

 PCA is one of the earlier approaches in facial recognition by using eigenfaces.

Turk and Pentland (1991) applied Euclidean distance to measure and classify the

input face images. First, the input image is projected into eigenspace and represented

in a feature vector. Then, the input feature vector (weight vector) is compared with

the training image feature vector to find the difference between them. The distance of

these two vectors are calculated using Euclidean distance measure. The distance

measures the similarity of input image to the training images. The lower the distance

measure, the higher the matching score between the input image and the training

image. Principle component analysis performs well in frontal images, but gives bad

results when the images used have pose and illumination variation.

 To alleviate these issues, Belhumeur et al. (1997) apply linear discriminant

analysis (LDA) in face recognition. Unlike PCA, LDA models the complete set of

face training in scatter matrix. The scatter matrix includes the difference between-

class (interpersonal) and within-class (intrapersonal). The same classes are group

tightly together, while different classes are scatter as far away as possible from each

other, maximizing the ratio of between-class to within class scatter. Similar to PCA

similarity measurement, once the eigenvectors are obtained, any distance

13

measurement methods like Euclidean distance can be applied. However, LDA

requires a large training sample for good classification which is not suitable for face

recognition. A combination of PCA and LDA is adopted because its ability to reduce

the training size (Zhao et al., 1998). In this method, PCA is applied first to reduce

feature dimension before LDA projection. Figure 2.6 shows different face

projections of LDA, PCA+LDA and PCA (Zhao et al., 2003).

Figure 2.6: Different Linear Projection (from top): LDA, PCA+LDA and PCA

2.3.2 Feature-based Approach

Feature-based approaches extract local facial features like eyes, nose and mouth, then

obtain their location and statistical information such as geometrical shape, intensity

values, distance and angle between each features points. These face feature values

(width, length, shape and position) are then feed into structural classifier for

identification. Figure 2.7 illustrates how the face features are measured. The chin

shape measurement is based on mouth and chin edge location (Brunelli and Poggio,

1993). Feature-based approaches allow flexible deformation at the feature points,

which is good for face image with pose variation.

14

Figure 2.7: Geometric Features-based Approach in Face Recognition

 Sharif et al. (2011) applied Gabor wavelet to locate the features of face.

Gabor filter was described as feature extraction method at Chapter 2.2.1. In Sharif et

al method, Gabor filter is applied on face image and the peak intensity point of the

filtered image is obtained. The extracted features points are then used to compare

with the database. The database contains feature points information of the training

images. The distance of feature points between the input image and training image

are computed to measure the similarity. Figure 2.8 shows the results of the feature

points are extracted from Gabor image.

Figure 2.8: Left – Gabor Image, Right – Feature Points Extracted from the

Peak of Gabor Image

2.3.3 Learning-based Approaches

Learning-based approach face recognition applies machine learning algorithms in

classifying faces. Artificial neural network is one of the popular learning algorithms

used in face recognition. Neural network was first demonstrated by Kohonen (1988)

15

to recognize aligned and normalized faces. Since then, many methods based on

neural network have been proposed, like combining Gabor filter with neural network

(Bhuiyan and Liu, 2007).

 Besides neural network method, ensemble learning recently emerged as a

prominent candidate in classification technique by combining all the classifiers to

give a final output (Bauer and Kohavi, 1999). Random forest is one of the ensemble

learning methods developed by Breiman (2001). Breiman used bagging method to

reduce variance and avoid overfitting (Breiman, 1996). Ho (1998) combined

Breiman’s bagging idea and random feature selection to construct a set of decisions

trees to take advantages of overfitting solution. Random forest is a forest built from

many classifications trees. Each tree output a class and the forest will select the class

that have a maximum output votes. The term “random” means each node of trained

tree is split using random selection input feature set.

Random forest has been used in many image classifications. For example,

Kouzani et al. use random forest to classify image by using image pixel value

(Kouzani et al., 2007). However, Kouzani et al. method is sensitive to variations in

lighting and expressions. Gabor filter was implement by Ghosal et al. (2009) as it

was robust to illumination and expression. By combining Gabor filter and random

forest, it formed a robust face classification (Ghosal et al., 2009).

 Breiman (2001) has highlighted several advantages of using random forest as

classification tool. Random forest does not need any template or model as reference,

thus making the learning method straightforward. In addition, this method analyses

the image region without extracting geometric property like edges. Random forest

also allows classification with occlusion as the region is not sampled in an orderly

manner but randomly. Through voting, it eliminates few falsely classified regions.

Since random forest consists of many independent trees, parallel processing can be

implemented to grow each tree separately.

 CHAPTER 3

3 METHODOLOGY

3.1 Overall Framework

Figure 3.1 illustrates the flowchart of proposed algorithm, Complete Gabor Classifier.

Figure 3.1: Proposed Algorithm Flowchart

17

 In Figure 3.1, the facial image is pre-processed (Section 3.3.1) before

extracting the features. There are two methods of extracting features which are Gabor

Filter (Section 3.4.1) and Oriented Gabor Phase Congruency Image (Section 3.4.2).

The extracted features from each method are used to obtain the final output class

through random forest (Section 3.5). The matching score of each class for Gabor and

OGPCI are combined with a fusion parameter to form the final matching score for

Complete Gabor Classifier (Section 3.6). The class that has the highest matching

score is selected as the final class output. The overall program flow for this project is

shown in Figure 3.2.

Figure 3.2: Overall Program Framework

18

 The flowchart is divided into two stages, which are training and testing stage.

The training stage is a process of training the framework to classify the face sample

based on the training data. The testing stage is used to classify the test sample by

applying the trained framework.

In the training stage, the important features are extracted from the training

sample images (face region). The extracted features are used to grow a random forest.

At the end of training stage, the forest is built and the performance of the trained

forest is evaluated.

In the testing stage, the test sample (face region) is read by using the same

feature extraction method as the trained forest. The extracted features are used to

obtain the final output class through the trained random forest. The class of the test

image is the maximum class output vote of the random forest.

3.2 Database

In this project, the performance of the algorithms is tested on different set of database.

Different database are used to test the recognition performance of feature extraction

algorithm and trained random forest. There are three sets of database used which are

Faces94, Georgia Tech Face Database and Faces96. Faces94 contains facial images

with different head scales and different head positions (Spacek, 2008). Georgia Tech

Face Database contains frontal and tilted face images with different expression,

orientation and features like wearing glasses (Nefian, 1999). Faces96 contains still

frontal images which are used as the training set (Spacek, 2008). Some of the facial

images of Faces96 are modified by adding black rectangular box as occlusion. These

occluded images are used as the testing set. The details of each database are

discussed at Section 4.3, 4.4 and 4.5.

19

3.3 Face Image Processing

The face image in the database is processed before proceeding to the training process.

Figure 3.3 shows the flowchart on how the face image is processed.

Figure 3.3: Flow Chart of Face Image Processing

 The face image is through the pre-processing where RGB colour image is

converted to grayscale image. In the training stage, extracted features will be used to

train the framework by growing the random forest. The details of each stage will be

discussed in the following section.

3.3.1 Pre-processing

Pre-processing stage is a process of optimizing the image quality. Filter operations

applied to the image to reduce image details for faster computational speed. Figure

3.4 shows the flowchart of the pre-processing stage.

20

Figure 3.4: Flow Chart of Pre-processing Stage

 In the pre-processing stage, RGB colour image is converted to grayscale

image. An RGB image has three channels which are red, green and blue, where each

channel has 8 bits, making a total of 24 bits; whereas a grayscale image contains only

1 channel, which displays the intensity level in 8-bits. Grayscale conversion helps to

reduce the dimensional size of image for faster computation. Figure 3.5 shows a

RGB color image converts to a grayscale image.

Figure 3.5: RGB to Grayscale Conversion

 After the conversion process, the original dimension of the image, 180 × 200

is resized to 64 × 64 pixels. This will reduce the computational speed

21

3.4 Feature Extraction

In this project, the feature extraction methods used are Gabor filter and oriented

Gabor phase congruency image (OGPCI).

3.4.1 Gabor Filter

As discussed in Chapter 2.2.1, Gabor face representation is robust against

illumination and facial expression. A Gabor wavelet, is defined as (Vitomir and

Nikola, 2010):

 (3.1)

Where,

 ,

 .

 In this framework, the parameters √ and These are

suggested by Struc et al. (2008). To extract facial features, a filter bank is

constructed featuring five scales and eight orientations, where and

 . The filter bank contains real and imaginary part of the Gabor filter. The real

part of the filter bank is needed as it is commonly used for facial feature extraction.

Figure 3.6 shows the real parts of Gabor filters (40 filters).

22

Figure 3.6: The Real Parts of Gabor Filter Bank Constructed in 8 Orientations

and 5 Scales

 To extract the features from an image, let as a grayscale face

image with the size of pixels. Let as a Gabor filter at the center

frequency and orientation . The filtering operation is defined as the convolution

of image with Gabor filter :

 (3.2)

 is a complex filtering output that decomposed into real

and imaginary parts :

 [] (3.3)

 [] (3.4)

 From here, the magnitude information of filtering output is computed:

 √

 (3.5)

 The image of applying 40 different Gabor magnitude filters are shown at

Figure 2.4.

23

 The image features generated is huge in number, as 40 Gabor filters are

applied on single image, resulting increase of dimension size by 40 times. After the

process of filter, an image of 64 × 64 pixels will becomes 163840 (64 × 64 × 40)

diemensional size, which is too computational expensive. To resolve this problem,

downsampling using rectangular grid method is implemented as shown in Figure 3.7

(Vitomir and Nikola, 2010). In this method, only the pixels within the rectangular

grid are retained, while the remaining pixels are discared, similar with resizing

concept. For this project, downsampling factor is set to 128. The following

calculation shows the steps of reducing 163840 features to 1000 features:

 √ √

Figure 3.7: Downsampling Process (From Left to Right): (a) Magnitude

Response of an Image, (b) Magnitude Response Image with Rectangular

Sampling Grid, (c) Image After Downsampled.

24

3.4.2 Oriented Gabor Phase Congruency Image

The face can be represented in Gabor phase information as discussed in Section 2.2.1.

In this project, the features of the image are extracted using oriented Gabor phase

congruency image (OGPCI). It is defined as follow (Struc et al., 2008):

∑

∑

 (3.6)

 Where is the magnitude response of Gabor filter from Equation

3.5. is set to 0.0001 as a small constant that prevents divisions with zero.

 denotes as a phase deviation measure defined as:

 (̅)

 | (̅)| (3.7)

Where ̅ denotes the mean phase angle at -th orientation and

 represents the phase angle of Gabor filter can be calculated using the value

of real part and imaginary part of Gabor filter (from Equation 3.3 and 3.4):

 (

) (3.8)

 OGPCI computes the phase congruency by summing of p filter scale for each

orientation, v. Thus, the feature generated is smaller compared to Gabor magnitude

response. For example, taking an input image size of 64 × 64 pixels, using filter bank

of 8 orientations × 5 scales, the total features generated are 32768 (64 × 64 × 8)

dimensional size. The filter scales, p are added together for each orientation, v, the

dimensional size for OGPCI is 5 times lesser than Gabor magnitude information. The

number of features generated is still too large for computational, so a downsampling

is required to reduce the dimensional size. For Gabor magnitude filter, a

downsampled image with factor of 128 can generates 1000 features. OGPCI

information is 5 times lesser than Gabor magnitude information. Therefore, the

25

features size generated for OGPCI is 200. The steps of computing OGPCI are as

follow (Vitomir and Nikola, 2010):

1. The OGPCI are computed for orientations of a facial image (Example of

OGPCI images generated for are present in Figure 3.8).

2. The computed OGPCIs are downsampled by factor of and normalized

3. The downsampled and normalized OGPCIs are concatenated to form

augmented Gabor phase congruency feature vector.

Figure 3.8: Example of all OGPCIs generated for from original images

3.5 Learning Framework

There will be a number of redundant features among the extracted features, thus it is

necessary to choose the important features. Random forest is used to evaluate the

features importance and select the top important features for face recognition.

26

3.5.1 Random Forest

Random forest is chosen as it offers many advantages as highlighted at Chapter 2.3.3.

Unlike standard decision trees, each node in random forest is split using randomly

selected features instead of best features. The selection of a random subset of

features has solved the data overfitting problem as proposed by Tim Ho (Ho, 1998).

Figure 3.9 shows the example of a random forest.

Figure 3.9: Random Forest

Random forest is constructed by T classification trees, where T is the total

number of tree. In order to classify a test sample, the input vectors of test image are

evaluated on each tree in the forest. Each tree gives a classification result which

represent as a “vote”. The forest chooses the class having the most votes as the final

classification output.

27

In this project, each tree is grown as follows:

1. Let the number of training sample be N, and the number of features be

M.

2. Choose times with replacement from N training cases (two-third),

in-bag sample. The remaining (one-third), out-of-bag sample to

estimate the error of tree.

3. At each tree decision node, a number m of features is chosen

randomly from M and calculate the best split decision among the m

variables. The number of m should be lesser than M.

4. Each tree is grown without pruning, to largest size possible.

 The tree is grown using two-third of training sample (), while the remaining

one-third is left out. This remaining sample are known as OOB (out-of-bag)

samples are to obtain the value of m. Breiman (2001) stated that the forest error rate

depends on two things:

1. The correlation between any two trees in the forest. Increasing the

correlation will increases the forest error rate

2. The strength of each tree. Increasing the strength will decrease the

forest error rate.

Increasing the value of potential predictors (m) increases the correlation and

strength, vice versa. Hence, it is important to find the optimum value of m to balance

these opposing effects. To do this, OOB error rate is used to tune m to achieve

optimum value. The OOB sample is run through the finished tree to get the

classification output. The OOB error is calculated by using the number of

misclassified samples, averaged over all cases. The value of m can be adjusted

(increasing or decreasing) to minimize the OOB error. It is suggested to begin the m

value with square root of the total numbers of predictors (√), and search for

optimal value with respect to OOB error (Breiman, 2001). Figure 3.10 shows an

example of decision tree grown.

28

Figure 3.10: Example of a Decision Tree Grown

In Figure 3.10, the random decision tree is used to classify the data into 5

classes: “1”, “2”, “3”, “4” and “5”. In this example, there are 160 possible features

to select in the pool. At each decision node, random selection of 13 features (√

) is selected from the pool, and chooses the best split decision. The decision tree

starts with a topmost node called root node with variable name “x14”, the best

variable selected among the 13 features. The root node is split into left and right node

by comparing the input feature value with a threshold value, 0.0687048. The

threshold value for each split node is obtained using Gini’s diversity index. If it is

smaller than the threshold value, it will proceed to left node; else it will proceed to

right node. Note that at the left node, it stops further splitting as this node only

contains 1 class (class “4”). The stop growing node is called leaf node. On the other

side, the right node is containing more than 1 class (“1”, “2”, “3” and “5”). Thus,

further splitting is required until it reaches leaf node, the node that contains 1 class

output. This decision trees contains four levels of node depth, the first node (x14) has

successfully classify class “4”, the second level node (x147) classify class “2”, then

third level node (x116) classify class “5” and finally the fourth level node classify

class “1” and class “3”. This is an example of a simple random decision tree used to

29

classify 5 classes. A collection of this random decision tree will form a forest which

called random forest.

The tree is grown in maximum size (no pruning) to keep the bias low and

prevent overfitting. As the number of trees increases, the generalization error

converges to a limit (Breiman, 2001). Breiman stated that growing up to 500 trees

has presented a promising result.

3.5.2 Feature Importance Selection

After the trees in the forest are grown, the most discriminant features subset is to

remove the redundant features. The selected features are used to regrow the trees.

Figure 3.11 shows how the variable importance of each feature is computed.

30

Figure 3.11: Flow Chart of Computing Feature Importance

To estimate the importance of m-th features (Liaw and Wiener, 2002):

1. For each grown tree, take the OOB cases and go through the tree.

Count the number of votes for correct class.

2. Randomly permutes the values of m-th features in OOB cases.

3. Apply the tree again to the OOB cases with the permuted values and

count the number of correct class.

4. Subtract the number of correct class votes for permuted OOB cases

from the correctly classified class of unaltered OOB cases.

31

The feature importance is defined as the average of this subtracted value over

all the trees in the forest. Figure 3.12 illustrates a bar chart showing the feature

importance value for 30 features. The higher the feature importance value, the higher

the discriminant scores of the feature.

Figure 3.12: Variables Importance for 30 Features

 The features are sorted in descending order, from most importance to least

importance. Then, regrow the random forest using the best features and compare

with the random forest built using the full features.

3.6 Complete Gabor Classifier

Gabor filter computes magnitude and phase information. Most of the existing

techniques of face recognition are using Gabor magnitude information. The phase-

based Gabor filter can be used in extracting face features (Struc et al., 2008).

Combining between magnitude and phase information of Gabor filter have proved to

create a robust face classification as discussed by Vitomir and Nikola (2010). The

authors use linear discriminant analysis (LDA) as feature selection technique to form

32

Gabor-Fisher and Phase Based Gabor-Fisher classifier. The fusion of both classifier

shows a promising result.

 In this project, the feature selection is computed using random forest. After

the forest of Gabor magnitude and phase information are grown, the matching score

for both techniques are obtained. By combining matching score of Gabor filter

classier, and Oriented Gabor Phase Congruency Image, , a final matching

score, complete Gabor Classifier is computed as follow:

 (3.9)

Where γ , denotes the fusion parameter that control the relative

importance of the two matching score. When , the CGC technique turns into

GFC technique; When , CGC turns into OGPCI method. Note that value

should be optimized to achieve the best recognition performance. To select the best

performance, the value tested in the range of 0 to 1, and increases with the step size

of 0.1 and selects the value that gives the best matching score. The overall block

diagram for Gabor Complete Classifier is illustrated in Figure 3.13.

Figure 3.13: Block Diagram of the Complete Gabor Classifier

33

3.7 Software Architecture

The entire code is written in MATLAB, running using MATLAB R2012b. Matlab is

chosen as it provides wide range of engineering tools like Image Processing Toolbox

and Statistics Toolbox which are useful in this project. A well-developed library

enables fast algorithm prototyping and reduces the time for debugging.

For Gabor and phase feature extraction, external library developed by

Vitomir Struc is used (Vitomir, 2012). The library named PhD Tool contains most of

the image processing algorithms like PCA, LDA and Gabor. This library is used as

the feature extraction of this project is related to Vitomir’s Method.

For random forest, Matlab has provided a random forest library named

TreeBagger, under Statistics Toolbox. TreeBagger is a function to construct random

forest and the information is stored in TreeBagger class. Inside TreeBagger class,

there are many independent decision trees constructed. The information of each trees

is stored as classregtree class.

 CHAPTER 4

4 RESULTS AND DISCUSSIONS

4.1 Recognition Rate

The recognition performance is evaluated in term of recognition rate. Recognition

rate is the percentage of the number of correct label over the total number of testing

image. It is known as rank-1 recognition. The formula of recognition rate is as follow:

 (4.1)

4.2 Results

This section covers the result of each process for the proposed method, Complete

Gabor Classifier with Random Forest. The process starts from the pre-processing

stage.

In the pre-processing stage, the test image undergoes grayscale conversion

and resizing as shown in Figure 4.1. For example, the test image with true class label

of 11 is converted from RGB colour format to grayscale format as shown in Figure

4.1(b). Then, the test image is resized from 226 × 146 pixels to 64 × 64 pixels as

shown in Figure 4.1(c) before proceeding to the feature extraction stage.

35

Figure 4.1: (a) Original Test Image. (b) Image After Grayscale Conversion (c)

Image Resized to 64 × 64 Pixels.

 In the feature extraction stage, Gabor and oriented Gabor phase congruency

image filters (OGPCI) are applied on the 64 × 64 pixels grayscale test image. For

Gabor Filter, there are total of 40 filtered images output (8 orientations × 5 scales) as

shown in Figure 4.2.

Figure 4.2: Gabor Magnitude Face Representation of Test Image

36

 The features extracted from 40 Gabor magnitudes is huge, a total of 163840

features for 64 × 64 pixels image. Downsampling factor of 128 is used to reduce the

filtered images from 64 × 64 pixels to 5 × 5 pixels, with a total of 1000 features. The

downsampled Gabor magnitude output images are shown in Figure 4.3

Figure 4.3 Gabor Magnitude Face Representation of Downsampled Test Image

 For OGPCI, there are 8 orientations of filtered images. These 8 filtered

images generate 32768 features for 64 × 64 pixels image. The 8 OGPCI filtered

output images are shown in Figure 4.4.

Figure 4.4: OGPCI Face Representation of Test Image

37

 The 8 OGPCI filtered images are downsampled with factor of 128, reducing

the number of features from 32768 to 200. The downsampled OGPCI filtered images

are shown in Figure 4.5.

Figure 4.5: OGPCI Face Representation of Downsampled Test Image

 The extracted features from Gabor filter and OGPCI are used as the input

feature set of trained random forest. The random forest will predict the class of test

image based on the input features set. The matching score of each class for Gabor

Filter with Random Forest and OGPCI with Random Forest are shown in Figure 4.6

and Figure 4.7.

Figure 4.6: The Matching Score for Gabor Filter with Random Forest

38

Figure 4.7: The Matching Score for OGPCI with Random Forest

Both Gabor and OGPCI have the highest matching score for class 11 (out of

50 classes), which give correct prediction for the test image. The final matching

score of Complete Gabor Classifer (CGC) is obtained by combining both matching

score from Gabor and OGPCI with a fusion parameter, γ = 0.3. The final matching

score of CGC is obtained as shown in Figure 4.8.

Figure 4.8: The Final Matching Score for CGC with Random Forest

39

 The test image is classified as class 11 because the class 11 has the highest

matching score for CGC as shown in the Figure 4.8. The matched image for class 11

named “s11” is displayed as shown in Figure 4.9.

Figure 4.9: Matched Image for Class 11, “s11”

4.3 Faces96 Database

Faces96 database was created by Dr Libor Spacek from University of Essex (Spacek,

2008). Table 4.1 shows the information of Faces96 database.

40

Table 4.1: Faces96 Database Information

Characteristics Faces96

Number of Individuals 152

Image per Individual 20

Resolution (pixels) 180 × 200

Background Complex (Glossy Poster)

Head Scale Large Variation

Head Turn, Tilt and Slant Minor Variation

Position of Face Some Translation

Image Lighting Variation Significant Changes

Expression Variation Some

Format 24-bit colour JPEG

In this database, 40 individuals are selected randomly to train random forest.

There are 20 images for each individual, 15 images are chosen as training set and the

remaining 5 images are used as test set. Figure 4.10 shows the samples of Faces96

database images which containing subjects with different head scales, different face

positions and head tilting orientations.

In this project, Faces96 is used to evaluate the performance of the Gabor

Filter, oriented Gabor phase congruency image (OGPCI) and Complete Gabor

Classifier on face image with different head scales and different head positions.

Figure 4.10: Sample Faces96 Database Image

41

 A 64 × 64 pixels image with downsampling factor of 128 will generate 1000

features by using Gabor Filter as discussed in Section 3.4.1. On the other hand, 200

features are generated through oriented Gabor phase congruency image (OGPCI)

method as discussed in Section 3.4.2. These features are used to grow trees for

random forest in the range of 10 - 50 trees with the interval of 10. Table 4.2 shows

the recognition rate for 10 - 50 trees using Gabor and OGPCI features on Faces96

database.

Table 4.2: Gabor (1000 Features) and OGPCI (200 Features) on Faces96

Database

Number of Trees
Recognition Rate (%)

Gabor OGPCI

10 97.50 94.00

20 99.50 99.00

30 99.50 98.50

40 100.00 98.50

50 100.00 97.50

100 100.00 98.50

200 100.00 98.50

 The result shows that both Gabor and OGPCI feature extraction methods

achieve above 95% recognition rate with less than 50 trees. Both of the Gabor and

OGPCI feature extraction methods can recognize faces with different head scales and

different head positions. OGPCI has lower recognition rate compared to Gabor

because the features computed for OGPCI (200 features) is lower than Gabor (1000

features). For OGPCI, the recognition rate is fluctuating when the forest is grown

using small number of trees (10-50 trees). The recognition rate reached a stable level

of 98.50% when more trees are used (100-200 trees). The result is unstable if the

number of trees used in random forest is less. Increasing the number of trees will

give stable result as more trees give more classification vote.

 Using the top 50 to 250 features of Gabor Filter with increment of 50 and the

top 10 to 50 features of OGPCI with increment of 10, new forests are built using the

only these top features. The results of the new classification performance are shown

in Table 4.3 for Gabor Filter features and shown in Table 4.4 for OGPCI features.

42

Table 4.3: Recognition Rate (%) for Gabor Features on Faces96 Database

Number of Trees
Number of Features

50 100 150 200 250

10 97.50 97.50 98.50 98.50 97.00

20 98.00 99.50 99.50 99.00 99.50

30 98.50 99.00 99.00 99.50 99.00

40 98.50 99.50 99.00 99.50 98.50

50 99.00 99.00 99.00 100.00 99.50

Table 4.4: Recognition Rate (%) for OGPCI Features on Faces96 Database

Number of Trees
Number of Features

10 20 30 40 50

10 88.50 93.50 94.00 94.50 93.50

20 91.50 94.50 97.50 96.50 96.00

30 90.00 96.00 96.00 96.50 97.00

40 90.50 96.50 97.50 98.00 97.00

50 91.00 95.50 97.50 98.00 97.50

 The results show that the random forest computed using the best feature has

almost the same performance as using all the features generated. For Gabor filter, the

best classification result of 100.00% is obtained using 50 trees with 200 features. For

OGPCI, the best recognition rate is 98% with 40 trees and 40 features. The

recognition rate shows improvement when the number of trees and features increases.

 Using the best recognition rate of random forest for both full features (Gabor

with 50 trees and OGPCI with 20 trees) and top features (Gabor with 50 trees and

200 features and OGPCI with 40 trees and 40 features), Complete Gabor Classifier is

formed by combining the matching score of these two methods with a fusion

parameter, γ. The fusion parameter increases with step size of 0.1 from 0.0 to 1.0.

The recognition rate for each fusion parameter is tabulate in Table 4.5

43

Table 4.5: Complete Gabor Classifier on Faces96 Database

Fusion Parameter, γ
Recognition Rate (%)

Using Best Features Using Full Features

0.0 100.00 100.00

0.1 100.00 100.00

0.2 100.00 100.00

0.3 100.00 100.00

0.4 100.00 100.00

0.5 100.00 100.00

0.6 100.00 100.00

0.7 100.00 100.00

0.8 99.00 100.00

0.9 98.50 99.50

1.0 98.00 99.00

 The best result of using Complete Gabor Classifier is 100.00% for both

random forest, same as Gabor Filter (γ = 0.0). In Table 4.5, random forest using the

best features maintain 100.00% recognition rate for γ = 0.0 to 0.7, while for full

features, 100.00% recognition rate is achieved for γ = 0.0 to 0.8. The result shows

that the random forest built using the top features has the same performance as using

the full features. In Faces96 database, Gabor Filter is sufficient to achieve 100.00%

recognition rate for all the test images. Figure 4.11 shows the output recognition

results of applying Complete Gabor Classifier on Faces96 test sets.

44

Figure 4.11: Faces96 Facial Image Testing Result

Complete Gabor Classifier can recognize image with different head scales

and different head positions as shown in Figure 4.11. Taking the second column of

Figure 4.11 (from the left), CGC classifies the testing image correctly even when the

image has larger head scales and is positioning toward right. Therefore, Complete

Gabor Classifier performs well for the facial image with different head scales and

different head positions.

4.4 Georgia Tech Face Database

Georgia Tech Face Database contains frontal face image taken in between

06/01/1999 to 11/15/1999 at Centre for Signal and Image Processing at Georgia

Institute of Technology (Nefian, 1999). The information of Georgia Tech Face

Database is shown in Table 4.6.

45

Table 4.6: Georgia Tech Face Database Information

Characteristics Faces96

Number of Individuals 50

Image per Individual 15

Resolution (pixels) 150 × 150

Head Turn, Tilt and Slant Major Variation

Image Lighting Variation Significant Changes

Expression Variation Some

Format 24-bit colour JPEG

In this experiment, all the individual (50 subjects) are chosen to train the

random forest. Each individual contains 15 images, 10 of them are chosen as the

training set, while the remaining 5 are selected as the testing set. Figure 4.12 shows

the samples of Georgia Tech face database. This database contains frontal and tilted

faces with different face expressions, different lighting conditions and different face

features. This experiment is to evaluate the performance of the Gabor Filter, oriented

Gabor phase congruency image (OGPCI) and Complete Gabor Classifier on different

orientation, expression and lighting illumination of frontal face.

Figure 4.12: Sample of Georgia Tech Face Database Images

46

 Random forest is grown from 100 to 500 trees with increment of 100. The

recognition rate of using Gabor filter and OGPCI as feature extraction methods on

Georgia Tech face database is shown in Table 4.7.

Table 4.7: Gabor (1000 Features) and OGPCI (200 Features) on Georgia Tech

Face Database

Number of Trees
Recognition Rate (%)

Gabor OGPCI

100 80.80 63.60

200 86.80 67.20

300 84.80 70.40

400 86.40 70.40

500 86.80 71.60

1000 87.20 72.00

 In Table 4.7, the difference between the recognition rate for the chosen trees

of 500 and the chosen trees of 1000 is 0.40%. Comparatively, the difference between

the chosen trees of 400 and the chosen trees of 500 is 0.40%. Therefore, in order to

reduce the consumption of the memory and to have an efficient recognition rate,

trees of 500 are chosen.

The result shows that Gabor feature extraction method has better recognition

rate than OGPCI because Gabor contains more features than OGPCI. For Georgia

Tech face database, it requires more trees (around 500 trees) to achieve good

recognition rate (> 80%) compared to Faces96 database. The reason is that the

Georgia Tech face database has less samples (10 samples) compared to Faces96 (15

samples). Thus, there are not enough training samples to form train the random forest.

Besides, the number of features used to train the random forest is small, 1000

features for Gabor filter and 200 features for OGPCI. Increasing the facial image

resolution or reducing downsampling factor will increases the number of extracted

features used in training .

47

The forest is regrow using the top 50 to 250 features for Gabor filter and top

10 to 50 features for OGPCI. The classification results are shown in Table 4.8 and

Table 4.9.

Table 4.8: Recognition Rate (%) for Gabor Features on Georgia Tech Face

Database

Number of Trees
Number of Features

50 100 150 200 250

100 75.60 76.40 80.00 81.60 84.00

200 77.60 79.20 82.40 82.40 84.80

300 78.80 82.00 82.80 84.40 85.20

400 79.20 83.60 83.60 84.40 84.80

500 78.40 83.20 84.40 84.00 86.40

Table 4.9: Recognition Rate (%) for OGPCI Features on Georgia Tech Face

Database

Number of Trees
Number of Features

10 20 30 40 50

100 59.60 56.40 61.60 61.20 61.20

200 65.60 63.60 68.40 66.40 66.00

300 64.80 66.00 70.00 67.20 68.40

400 66.80 68.40 68.00 68.40 70.00

500 66.80 68.40 67.60 69.60 70.40

The results show that the random forest computed using the best feature has

slightly lower performance than using all the features on Georgia Tech Face

Database. For Gabor filter, the best classification result is 86.40% is obtained using

500 trees with 250 features compared to 86.80% (Table 4.7) when all the features are

used. For OGPCI, the best recognition rate is 70.40% when computed using 500

trees with 50 features, slightly lower than 71.60% which used all OGPCI features as

in Table 4.7. This concludes that the random forest built using top features has

almost the same performance as using full features with only 0.40% lesser in

recognition rate. The features used are reduced to 25% of full features but can

produces almost similar performance using full features.

48

The best matching score from both random forest computed using best

features, Gabor Filter (500 trees with 250 features) and OGPCI (500 trees with 50

features) are combined with fusion parameter, γ to form Complete Gabor Classifier

(CGC). For random forest grown using full features, the best recognition rate of

Gabor Filter (500 trees) and OGPCI (500 trees) are combined to form CGC. The rate

of recognition of CGC for each fusion parameter, γ is shown in Table 4.10.

Table 4.10: Complete Gabor Classifier on Georgia Tech Face Database

Fusion Parameter, γ
Recognition Rate (%)

Using Best Features Using Full Features

0.0 86.40 86.80

0.1 86.80 87.60

0.2 88.40 88.00

0.3 89.20 89.60

0.4 88.40 89.20

0.5 88.40 86.40

0.6 86.80 84.80

0.7 84.00 83.60

0.8 82.40 81.20

0.9 76.00 75.20

1.0 70.40 71.60

As shown in Table 4.10, the best recognition rate of using Complete Gabor

Classifier is when γ = 0.3. The recognition rate for best features is 89.20% and the

recognition rate for full features is 89.60%. CGC exploits the information of Gabor

magnitude and phase information by combining the Gabor filter and OGPCI

matching score, so the rate of recognition is increased. This concludes that the hybrid

of Gabor and OGPCI has better performance than using single method. Figure 4.13

shows the classification result of using Gabor, OGPCI and Complete Gabor

Classifier on Georgia Tech Face Database.

49

Figure 4.13: The Classification Result from Gabor, OGPCI and CGC on

Georgia Tech Face Database (Gabor Misclassify)

 Gabor Filter failed to classify the result correctly in the Figure 4.13, but

OGPCI gives correct class output. Complete Gabor Classifier (CGC) classifies the

test image correctly because CGC is the hybrid of Gabor and OGPCI. CGC exploits

OGPCI phase information to give correct classification results. Thus, combining both

Gabor and OGPCI improves the face recognition rate. Similarly, CGC also exploits

Gabor magnitude to correct OGPCI misclassification. The result is shown at Figure

4.14.

50

Figure 4.14: The Classification Result from Gabor, OGPCI and CGC on

Georgia Tech Face Database (OGPCI Misclassify)

 Gabor Filter classifies the test image correctly, whereas OGPCI classify the

image wrongly. By combining both Gabor and OGPCI, CGC identifies the test

image correctly by exploiting the information of Gabor magnitude to improve the

performance. Figure 4.15 shows some of the correct classification results using

Complete Gabor Classifier with Random Forest.

51

Figure 4.15: Complete Gabor Classifier on Georgia Tech Face Database

(Correct Classification)

Complete Gabor Classifier recognizes facial image with different

illumination lighting and facial orientation as shown in the first column from the left

in Figure 4.15. Besides, CGC performs correctly for the test subjects with extra

features like wearing caps and glasses in the second column and fourth column from

the left in Figure 4.15. Furthermore, CGC recognizes facial image with different

expressions as shown in the third and fourth column.

Therefore, Complete Gabor Classifier with Random Forest can performs well

for facial images with different head orientation, different facial expression, different

lighting illumination and addition features like glasses. CGC had achieved 89.60%

recognition rate when using 500 trees with 1000 Gabor Filter features and 200

OGPCI features. The result can be further improved by the addition of the number of

features used in growing random forest.

52

4.5 Faces94 Database (Occluded)

Faces94 was created by Dr Libor Spacek (2008) from University of Essex, similar

with Faces96 database. Table 4.11 shows the information of Faces94 database.

Table 4.11: Faces94 Database Information

Characteristics Faces94

Number of Individuals 153

Image per Individual 20

Resolution (pixels) 180 × 200

Background Plain Green

Head Scale None

Head Turn, Tilt and Slant Very Minor Variation

Position of Face Minor Translation

Image Lighting Variation None

Expression Variation Minor changes

Format 24-bit colour JPEG

For Faces94 database, 40 subjects are chosen randomly for growing random

forest. Fifteen out of twenty images per individual are chosen as the training set,

while the remaining 5 images as the testing set. For testing set, the images are

modified by adding different size of black box as occlusion. The details of each

occlusion box used on Faces94 are shown in Table 4.12.

Table 4.12: Details of Occlusion Boxes on Faces94 Database

Properties
Occluded Box No.

1 2 3 4 5

Size (w × h), pixels 100 × 30 100 × 50 100 × 30 100 × 70 40 × 100

Occlusion

Percentage (%)
8.33 13.89 8.33 19.44 11.11

Occluded Region Eyes
Nose +

Mouth
Mouth Forehead Half face

Faces94 is used for the occlusion test because this database do not have much

variation, such as complex background, various light illumination, head tilting which

will affects the recognition rate. This experiment is to test the effectiveness of face

53

recognition algorithm on occluded images. Figure 4.16 shows the example of the

training set of Faces94 database and Figure 4.17 shows the samples of the occluded

testing image set.

Figure 4.16: Sample Training Set for Faces94 Database Image

Figure 4.17: Sample Testing Set for Faces94 Database Image (Occluded)

54

 Random forest is grown using Gabor filter and oriented Gabor phase

congruency image (OGPCI) feature extraction methods on the training set of Faces94

database. The number of trees to grow is set in the range of 60 to 100 with increment

of 10. After the random forest is grown, the testing set (occluded image) is evaluated

using the random forest built to obtain the classification performance. The result is

shown in Table 4.13.

Table 4.13: Gabor (1000 Features) and OGPCI (200 Features) on Faces94

Database

Number of Trees
Recognition Rate (%)

Gabor OGPCI

60 96.50 84.00

70 96.00 86.50

80 96.50 88.50

90 96.50 87.50

100 95.00 87.50

500 97.00 89.00

As shown in the Table 4.13, when the trees are grown using 500 trees, the

recognition rate does not improves significantly, with 0.50% improvement from the

best results obtained from 60 - 100 trees.

Even with occlusion, the best recognition rate of 96.50% is achieved by

growing 80 trees for Gabor Filter. On the other hand, OGPCI achieve 88.50%

recognition rate with 80 trees. The extracted features for OGPCI is lesser than Gabor

filter, thus it has lower recognition rate. The random forest is rebuilt again using the

top features to test whether the newly built forest can replicate the performance of

random forest using all features. The results are tabulated in Table 4.14 for Gabor

Filter and Table 4.15 for OGPCI.

55

Table 4.14: Recognition Rate for Gabor Features on Faces94 Database

Number of Trees
Number of Features

50 100 150 200 250

60 78.50 82.50 87.00 91.00 93.50

70 77.50 83.00 88.00 91.00 93.00

80 79.50 83.00 89.00 90.50 92.50

90 79.50 83.00 89.00 91.50 93.00

100 80.50 84.00 88.50 91.00 93.50

Table 4.15: Recognition Rate for OGPCI Features on Faces94 Database

Number of Trees
Number of Features

10 20 30 40 50

60 56.00 67.00 65.50 66.00 72.50

70 56.00 68.00 67.00 66.00 74.00

80 56.50 67.50 67.50 67.00 74.00

90 56.50 67.50 69.00 68.50 74.00

100 55.00 66.50 68.00 69.00 75.50

 The result shows that when the random forest is regrow using the top features.

The recognition rate is much lower than using all features. The best performance for

Gabor filter is 93.50% using 100 trees with 250 features, while 75.50% for OGPCI

using 100 trees with 50 features. This is due to the features like eyes, nose or mouth

region are occluded, which cause the feature information degraded. Hence, features

which are lower importance are needed to classify the facial image correctly. These

less important features are not chosen for the newly built forest, so random forest

built using best features will has lower recognition rate when compared to random

forest built using all features.

The best matching score from both random forest are computed using the top

features, Gabor Filter (100 trees with 250 features) and OGPCI (100 trees with 50

features). These combined with fusion parameter, γ to form Complete Gabor

Classifier (CGC). For random forest using the full features, Gabor filter with 80 trees

and OGPCI with 80 trees are combined to form CGC. The rate of recognition is

shown in Table 4.16 for each fusion parameter, γ.

56

Table 4.16: Complete Gabor Classifier on Faces94 Database

Fusion Parameter, γ
Recognition Rate (%)

Using Best Features Using Full Features

0.0 93.50 96.50

0.1 94.00 96.50

0.2 94.50 97.00

0.3 94.50 98.50

0.4 94.00 98.50

0.5 92.50 97.50

0.6 88.50 97.50

0.7 86.50 95.50

0.8 81.00 93.00

0.9 78.00 90.50

1.0 75.50 88.50

In the Table 4.16, the best recognition rate of using Complete Gabor

Classifier is 94.50% with fusion parameter, γ = 0.3. Complete Gabor Filter used the

information of the two matching score which is Gabor filter and oriented Gabor

phase congruency image (OGPCI) to form an improved face recognition system. By

choosing optimum fusion parameter (γ = 0.3), the face recognition rate is improved.

Figure 4.18 shows the matching results of applying CGC on Faces94 database.

57

Figure 4.18: Complete Gabor Classifier on Faces94 Database (Correct

Classification)

In Figure 4.18, Complete Gabor Classifier successfully recognize facial

image which is partially occluded. Even though the important features like eyes,

mouth and nose are occluded, the proposed technique still able to classify the

occluded test subject correctly.

4.6 Comparisons with State-of-the-art Algorithms

The proposed method, Complete Gabor Classifier with Random Forest (CGC-RF) is

compared with the existing state-of-the-art algorithm like Principle Component

Analysis (PCA), Linear Discriminant Analysis (LDA) and Gabor-PCA. Table 4.17

presents the recognition rate for each algorithm on different database.

58

Table 4.17: Comparison of Recognition Rate for Different Algorithm on

Different Database

Method Faces96
Georgia Tech

Face Database
Faces94

CGC-RF (all)* 100.00 89.60 98.50

CGC-RF (best)** 100.00 89.20 94.50

PCA 90.50 50.40 81.50

LDA 100.00 65.60 95.00

Gabor-PCA 89.00 55.60 100.00

* CGC-RF (all) is Completer Gabor Classifier with Random Forest using all the extracted features

** CGC-RF (best) is Completer Gabor Classifier with Random Forest using the top extracted features

 Table 4.17 includes the comparisons of random forest computed using all

features and best features for Gabor, oriented Gabor phase congruency image

(OGPCI) and Complete Gabor Classifier (CGC). CGC-RF for all and best features

had achieved 100.0% of recognition rates on Faces96, outperforming PCA and

Gabor-PCA. For Georgia Tech Face Database, CGC-RF for full features has

recognition rates of 89.60%, outperforming PCA, LDA and Gabor-PCA. CGC-RF

for full features results in competitive recognition rates of 98.50% on Faces94

database, higher than PCA and LDA methods, but lower than Gabor-PCA. Gabor-

PCA achieved 100.0% recognition rates for Faces94, performing well for occluded

faces. CGC-RF has lower performance than Gabor-PCA because the number of tree

used for CGC-RF grown is less (60 – 100 trees). To have competitive performance,

Breiman (2001) suggested to grow the forest using 500 trees. By growing more trees,

CGC-RF (the proposed algorithm) will match with the performance of Gabor-PCA.

In summary, CGC-RF performs well on all databases which contain images with

different head scales, different head positions, different illumination changes and

occlusion, making it a robust face recognition system.

 CHAPTER 5

5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusions

In conclusion, this project proposed a face recognition algorithm called Complete

Gabor Classifier with Random Forest. Complete Gabor Classifier exploits the

features from magnitude and phase response of Gabor Filter. Random forest is used

as the learning framework of proposed method. The performance of the proposed

technique is evaluated on three available face databases, namely Faces94, Faces96

and Georgia Tech Face Database. At the end of the results, the proposed techniques

shown promising performance on all the dataset and outperform several available

face recognition method like PCA, LDA and Gabor-PCA. This concludes that the

proposed face recognition techniques has shown robust performance on facial images

with different head scales, different head positions, different lighting illumination,

facial expression and partially occluded area.

5.2 Recommendations

Training the random forest takes substantial amount of time. The training time

increases when the number of features used and tree grow increases. Thus the

random forest is grown using only 1000 features for Gabor filter and 200 features for

OGPCI. To have better performance result, the number of input features should

increases to around 80000 features as suggested by Ghosal et al. (2009).

60

 The proposed algorithm is tested on facial image with different head scales,

different head positions, illumination variation and occlusion image. The

performance of the Complete Gabor Classifier can be further evaluated by testing on

lower resolution images.

 Face recognition approaches can be further studies by finding approaches on

classifying gender based on facial images, estimating the age of subject, or even

categorizing the race of person.

61

REFERENCES

BAOCHANG, Z., ZONGLI, W. & BINENG, Z. 2008. Kernel learning of histogram

of local Gabor phase patterns for face recognition. EURASIP Journal on

Advances in Signal Processing, 2008.

BARRERA, M. E. & MAURER, D. 1981. Recognition of mother's photographed

face by the three-month-old infant. Child Development, 714-716.

BAUER, E. & KOHAVI, R. 1999. An empirical comparison of voting classification

algorithms: Bagging, boosting, and variants. Machine learning, 36, 105-139.

BELHUMEUR, P. N., HESPANHA, J. P. & KRIEGMAN, D. J. 1997. Eigenfaces vs.

fisherfaces: Recognition using class specific linear projection. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 19, 711-720.

BELLE, V. 2008. Detection and Recognition of Human Faces using Random Forests

for a Mobile Robot. Online.

BHUIYAN, A. A. & LIU, C. H. On face recognition using gabor filters. Proceedings

of world academy of science, engineering and technology, 2007. 51-56.

BLEDSOE, W. W. 1966. The model method in facial recognition. Panoramic

Research Inc., Palo Alto, CA, Rep. PR1, 15.

BREIMAN, L. 1996. Bagging predictors. Machine learning, 24, 123-140.

BREIMAN, L. 2001. Random forests. Machine learning, 45, 5-32.

BRUNELLI, R. & POGGIO, T. 1993. Face recognition: Features versus templates.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 15, 1042-

1052.

GHOSAL, V., TIKMANI, P. & GUPTA, P. Face classification using gabor wavelets

and random forest. Computer and Robot Vision, 2009. CRV'09. Canadian

Conference on, 2009. IEEE, 68-73.

HAN, C. C., MARK LIAO, H. Y., YU, G. J. & CHEN, L. H. 2000. Fast face

detection via morphology-based pre-processing. Pattern Recognition, 33,

1701-1712.

HO, T. K. 1998. The random subspace method for constructing decision forests.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 20, 832-

844.

62

KOHONEN, T. 1988. Self-organization and associative memory. Self-Organization

and Associative Memory, 100 figs. XV, 312 pages.. Springer-Verlag Berlin

Heidelberg New York. Also Springer Series in Information Sciences, volume

8, 1.

KONG, W. & ZHU, S. 2007. Multi-face detection based on downsampling and

modified subtractive clustering for color images. Journal of Zhejiang

University-Science A, 8, 72-78.

KOUZANI, A., NAHAVANDI, S. & KHOSHMANESH, K. Face classification by a

random forest. TENCON 2007-2007 IEEE Region 10 Conference, 2007.

IEEE, 1-4.

LADES, M., VORBRUGGEN, J. C., BUHMANN, J., LANGE, J., VON DER

MALSBURG, C., WURTZ, R. P. & KONEN, W. 1993. Distortion invariant

object recognition in the dynamic link architecture. Computers, IEEE

Transactions on, 42, 300-311.

LIAW, A. & WIENER, M. 2002. Classification and Regression by randomForest. R

news, 2, 18-22.

LIU, C. 2004. Gabor-based kernel PCA with fractional power polynomial models for

face recognition. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 26, 572-581.

MARQUÉS, I. 2010. Face recognition Algorithms. Universidad Euskal Herriko.

NEFIAN, A. V. 1999. Georgia Tech Face Database [Online]. Available:

http://www.anefian.com/research/face_reco.htm [Accessed 1 April 2013].

PAPAGEORGIOU, C. P., OREN, M. & POGGIO, T. A general framework for

object detection. Computer Vision, 1998. Sixth International Conference on,

1998. IEEE, 555-562.

PETAPIXEL. 2012. 3000 Photos Are Uploaded Every Second to Facebook [Online].

Available: http://www.petapixel.com/2012/02/01/3000-photos-are-uploaded-

every-second-to-facebook/ [Accessed 22 Nov 2012].

POPPHOTO. 2012. People Upload an Average of 250 Million Photos Per Day to

Facebook [Online]. Available:

http://www.popphoto.com/news/2012/02/people-upload-average-250-

million-photos-day-to-facebook [Accessed 22 Nov 2012].

SHARIF, M., KHALID, A., MUDASSAR, R. & MOHSIN, S. 2011. Face

Recognition using Gabor Filters. Journal of Applied Computer Science, 5.

SPACEK, L. 2008. Computer Vision Science Research Projects [Online]. Available:

http://cswww.essex.ac.uk/mv/allfaces/index.html [Accessed 21 Jan 2013].

http://www.anefian.com/research/face_reco.htm
http://www.petapixel.com/2012/02/01/3000-photos-are-uploaded-every-second-to-facebook/
http://www.petapixel.com/2012/02/01/3000-photos-are-uploaded-every-second-to-facebook/
http://www.popphoto.com/news/2012/02/people-upload-average-250-million-photos-day-to-facebook
http://www.popphoto.com/news/2012/02/people-upload-average-250-million-photos-day-to-facebook
http://cswww.essex.ac.uk/mv/allfaces/index.html

63

STRUC, V., VESNICER, B. & PAVESIC, N. The phase-based gabor fisher

classifier and its application to face recognition under varying illumination

conditions. Signal Processing and Communication Systems, 2008. ICSPCS

2008. 2nd International Conference on, 2008. IEEE, 1-6.

THEFACEBOOKBLOG. 2011. Making Photo Tagging Easier [Online]. Available:

http://www.facebook.com/blog/blog.php?post=467145887130 [Accessed 22

Nov 2012].

TURK, M. & PENTLAND, A. 1991. Eigenfaces for recognition. Journal of

cognitive neuroscience, 3, 71-86.

VIOLA, P. & JONES, M. Rapid object detection using a boosted cascade of simple

features. Computer Vision and Pattern Recognition, 2001. CVPR 2001.

Proceedings of the 2001 IEEE Computer Society Conference on, 2001. IEEE,

I-511-I-518 vol. 1.

VIOLA, P. & JONES, M. J. 2004. Robust real-time face detection. International

journal of computer vision, 57, 137-154.

VITOMIR, Š. 2012. The PhD Toolbox [Online]. Available: http://luks.fe.uni-

lj.si/sl/osebje/vitomir/face_tools/PhDface/index.html [Accessed 29 Jan 2013].

VITOMIR, Š. & NIKOLA, P. 2010. The complete gabor-fisher classifier for robust

face recognition. EURASIP Journal on Advances in Signal Processing, 2010.

YANG, J. & HONAVAR, V. 1998. Feature subset selection using a genetic

algorithm. Intelligent Systems and Their Applications, IEEE, 13, 44-49.

ZHANG, B., SHAN, S., CHEN, X. & GAO, W. 2007. Histogram of Gabor phase

patterns (HGPP): a novel object representation approach for face recognition.

Image Processing, IEEE Transactions on, 16, 57-68.

ZHAO, W., CHELLAPPA, R. & KRISHNASWAMY, A. Discriminant analysis of

principal components for face recognition. Automatic Face and Gesture

Recognition, 1998. Proceedings. Third IEEE International Conference on,

1998. IEEE, 336-341.

ZHAO, W., CHELLAPPA, R., PHILLIPS, P. J. & ROSENFELD, A. 2003. Face

recognition: A literature survey. Acm Computing Surveys (CSUR), 35, 399-

458.

http://www.facebook.com/blog/blog.php?post=467145887130
http://luks.fe.uni-lj.si/sl/osebje/vitomir/face_tools/PhDface/index.html
http://luks.fe.uni-lj.si/sl/osebje/vitomir/face_tools/PhDface/index.html

64

APPENDICES

APPENDIX A: Matlab Coding

main.m

close all;
% clear all; % comment it if need debug, clear all will clear

breakpoint

%% Mode Setting

% TRAIN, TRAINBEST, LOAD
mode = 'LOAD';

% Load Mode Setting
% EVAL, TEST
loadmode = 'TEST';

% 1 - Manual pick photo
% 2 - Test all test sample
% 3 - Face Detect
testmode = 1;

%% Main Body

% Feature to-be-added : Feature, Trained Time
disp('========================');
switch mode
 case 'TRAIN'
 disp('Training Mode (Full)');

 methodname = 'GABOR'; % GABOR, PHASE
 psize = [64 64];
 databasename = 'faces96'; % faces94, faces96
 selecttype = 'all';

 enablesave = 1;
 showplot = 1;

 opt.method = struct('name',methodname,'psize', psize);
 opt.param.gabor = struct('Downsampling', 128);
 opt.RF =

struct('NTrees',500,'parallel',1,'RandStream',0,'SelectBest',0);

65

 opt.database = struct('name',

databasename,'fileselect',selecttype);

 opt.database = InitDatabase(opt.database);
 rf = TrainRF(opt);

 case 'TRAINBEST'
 disp('Training Mode (Best)');

 rf = loadRF('ggg_500');
 enablesave = 1;
 showplot = 1;

 opt.best = struct('NFeatures', 10);
 rf.RF.NTrees = 60;

 rf = TrainBestRF(rf,opt);

 case 'LOAD'
 disp('Loading Mode');
 loadfile1 = 'ggg_500'; %Gabor
 loadfile2 = 'pgg_500'; %Phase

 rf = loadRF(loadfile1);

 complete = 1;
 if(complete)
 rfg = rf;
 rf = loadRF(loadfile2);
 rfp = rf;
 end

 switch loadmode
 case 'EVAL'
 disp('Evaluation Load Mode');
 showplot = 1;
 case 'TEST'
 disp('Testing Mode');

 showplot = 0;
 if (complete)
 result = testRF(rfg,rfp,testmode);
 else
 result = testRF(rf,testmode);
 end
 otherwise
 end

 otherwise
end

%% Plot Information

if(showplot)
 display.show =

struct('ooberror',0,'featureimp',1,'fracinbag',0,...

'coordinate',0,'outlier',0,'erroreachtree',0,'eigen',0,'classmargin'

,0,'recognitionrate',0);

66

 display.param = struct('OutlierThreshold', 10);

 DisplayRF(rf,display);
end

%% Save Option

if(strcmp('TRAIN',mode) || strcmp('TRAINBEST',mode))
 if(enablesave)
 saveRF;
 end
end

%% END

disp('DONE');
disp('========================');

InitDatabase.m
function [database] = InitDatabase(database)
%INITDATABASE Summary of this function goes here
% Detailed explanation goes here

traindir = strcat('database\train\',database.name);

switch database.fileselect
 case 'all'
 temp = dir(traindir);
 NSample = length(temp);
 NSample = NSample-2;

 SampleInfo = zeros(NSample,2);
 SampleList = cell(NSample,1);

 for i=1:NSample
 SampleInfo(i,1) = i;
 SampleName = temp(i+2).name;
 SampleList{i} = SampleName;
 TrainFiles = dir([traindir,'\',SampleName,'*.jpg']);
 SampleInfo(i,2) =

length(TrainFiles(not([TrainFiles.isdir])));
 end

 otherwise
end

database.dir = traindir;
database.NSample = NSample;
database.SampleInfo = SampleInfo;
database.SampleList = SampleList;

end

67

loadRF.m

function [rfData] = loadRF(RFname)

if nargin == 0
 mode = 'UI';
else
 mode = 'DEFINED';
end

switch mode

 case 'UI'
 loadfile = uigetfile('*.mat', 'Select load file');

 case 'DEFINED'
 loadfile = RFname;
end

loadcommand = ['load ' loadfile];
eval(loadcommand);

fprintf('Load %s file completed \n',loadfile);
rfData = rf;
end

TrainRF.m

function [rf] = TrainRF(opt)
%INIT Summary of this function goes here
% Detailed explanation goes here

%% Initialization of rf

rf.method = opt.method;
rf.param = opt.param;
rf.database = opt.database;
rf.RF = opt.RF;

%% Parallel Processing Initialization

EnableParallel = opt.RF.parallel;

if(EnableParallel)
 Options = statset('UseParallel','always',

'UseSubstreams','always');
 if(~(matlabpool('size') > 0)) % Check if matlabpool is

running
 matlabpool local 2; % Run matlabpool if it is not

started
 end
else
 Options = statset('UseParallel','never',

'UseSubstreams','always');
 if(matlabpool('size') > 0) % Check if matlabpool is running

68

 matlabpool close;
 end
end

%% RandStream Initialization

s = RandStream('mlfg6331_64' ,'Seed',0);
RandStream.setGlobalStream(s);
stream = RandStream.getGlobalStream;
reset(stream);

rf.RF.paralleloption = Options;

%% Feature Extraction Method

Method = rf.method.name;
psize = rf.method.psize;

if (strcmp(Method,'LBP'))
 mapping=getmapping(8,'u2');
 rf.method.mapping = mapping;
end

switch Method
 case 'LBP'
 disp('LBP');
 case 'GABOR'
 filter_bank = construct_Gabor_filters_PhD(8, 5, psize);
 rf.method.filter_bank = filter_bank;
 disp('GABOR');
 case 'PHASE'
 filter_bank = construct_Gabor_filters_PhD(8, 5, psize);
 rf.method.filter_bank = filter_bank;
 disp('PHASE');
 otherwise
end

%% Load Database & Feature Extraction

fprintf('Train Database : %s \n',opt.database.name);

NSample = opt.database.NSample;
traindir = opt.database.dir;
SampleList = opt.database.SampleList;

data_matrix = [];
ids = [];
totalsample = 0;

for i=1:NSample
 NSampleEach = opt.database.SampleInfo(i,2);
 TrainFiles = dir([traindir,'\',SampleList{i},'*.jpg']);
 for j=1:NSampleEach
 str =

strcat(traindir,'\',SampleList{i},'\',TrainFiles(j).name);

69

 X = imread(str);
 if (length(size(X)) == 3)
 X = rgb2gray(X);
 end

 feature_vector = FeatureExtract(Method,X,rf);

 data_matrix = [data_matrix,feature_vector];
 ids = [ids;i];
 totalsample = totalsample+1;
 end
end

data_matrix = double(data_matrix');

rf.database.data_matrix = data_matrix;
rf.database.ids = ids;
rf.database.totalsample = totalsample;

disp('Finished Database Loading');

%% Random Forest Training

disp('Training Random Forest');

NTrees = opt.RF.NTrees;
% NFeatures = opt.RF.NFeatures;

tic
b = TreeBagger(NTrees,data_matrix,ids,...
 'surrogate','off','oobvarimp', 'on','Options', Options);
toc

rf.b = b;

end

TrainBestRF.m

function [rf] = TrainBestRF(rf,opt)
%TRAINBESTRF Summary of this function goes here
% Detailed explanation goes here

%% Parallel Processing Initialization

EnableParallel = rf.RF.parallel;

if(EnableParallel)
 Options = statset('UseParallel','always',

'UseSubstreams','always');
 if(~(matlabpool('size') > 0)) % Check if matlabpool is

running

70

 matlabpool local 2; % Run matlabpool if it is not

started
 end
else
 Options = statset('UseParallel','never',

'UseSubstreams','always');
 if(matlabpool('size') > 0) % Check if matlabpool is running
 matlabpool close;
 end
end

rf.RF.paralleloption = Options;

%% RandStream Initialization

s = RandStream('mlfg6331_64' ,'Seed',0);
RandStream.setGlobalStream(s);
stream = RandStream.getGlobalStream;
reset(stream);

rf.RF.paralleloption = Options;

%% Initialization

NTrees = rf.RF.NTrees;
NFeatures = opt.best.NFeatures;
data_matrix = rf.database.data_matrix;
ids = rf.database.ids;
bf = rf.b;

%% Training

[~, sort_idx] = sort(bf.OOBPermutedVarDeltaError,'descend');
best_idx = sort_idx(1:NFeatures);

tic
bs = TreeBagger(NTrees,data_matrix(:,best_idx),ids,...
'surrogate','off','oobvarimp','on','Options', Options);
toc

rf.RF.best_idx = best_idx;
rf.RF.SelectBest = 1;
rf.b = bs;

end

71

FeatureExtract.m

function [feature_vector] = FeatureExtract(method,im,rf)
%FEATUREEXTRACT Summary of this function goes here
% Detailed explanation goes here

psize = rf.method.psize;

switch method
 case 'LBP'
 X = imresize(im, psize);
 mapping = rf.method.mapping;
 feature_vector = (lbp(X,1,8,mapping,'h'))';
 case 'GABOR'
 DownSamplingFactor = rf.param.gabor.Downsampling;
 X = double(im);
 X = imresize(X, psize,'bilinear');
 filter_bank = rf.method.filter_bank;
 feature_vector = filter_image_with_Gabor_bank_PhD...
 (X,filter_bank,DownSamplingFactor);
 case 'PHASE'
 DownSamplingFactor = rf.param.gabor.Downsampling;
 X = double(im);
 X = imresize(X, psize,'bilinear');
 filter_bank = rf.method.filter_bank;
 [pc,EO] = produce_phase_congruency_PhD(X,filter_bank);
 feature_vector = resize_pc_comps_PhD(pc,

DownSamplingFactor);
 otherwise
end

end

TestRF.m

function [result] = testRF(rf1, rf2, mode)
%TESTRF Summary of this function goes here

complete = 0;
rf = rf1;

if nargin == 2
 testmode = rf2;

elseif nargin == 3
 rfp = rf2;
 testmode = mode;
 complete = 1;
 para=0.3;
end

%% Display database trained

DatabaseName = rf.database.name;
fprintf('Database Name : %s\n',DatabaseName);

72

%% Best Feature Selection
b = rf.b;

if (complete)
 b1 = rfp.b;
end

%% Initialization

Method = rf.method.name;

if (complete)
 Method1 = rfp.method.name;
end
RootDir = pwd;

%% Test Operation

% 1 - Manual pick photo
% 2 - Test all test sample
% 3 - Face Detect Mode
switch testmode
 case 1
 %% Manual Mode

 graph = 0;

 if(graph)
 if (complete)
 Row = 4;
 else
 Row = 3;
 end
 else
 Row = 2;
 end

 disp('Manual');

 TrainPath = strcat(RootDir, '\database\train\',

DatabaseName,'\');
 TestPath = strcat(RootDir, '\database\test\',

DatabaseName,'\');
 [TestFile, PathName] = uigetfile(strcat(TestPath,'*.jpg'),

'Select test file');
 TestDir = strcat(PathName, TestFile);
 TrueClass = PathName((length(TestPath)+1):(length(PathName)-

1));

 for i=1:rf.database.NSample
 if strcmp(TrueClass,rf.database.SampleList{i})
 TrueLabel = i;
 end
 end

 ori = imread(TestDir);
 if (length(size(ori)) == 3)
 X = rgb2gray(ori);

73

 end

 feature_vector = FeatureExtract(Method,X,rf);
 feature_vector = feature_vector';

 if (complete)
 feature_vector1 = FeatureExtract(Method1,X,rfp);
 feature_vector1 = feature_vector1';
 end

 if (rf.RF.SelectBest)
 feature_vector = feature_vector(:,rf.RF.best_idx);
 if (complete)
 feature_vector1 =

feature_vector1(:,rfp.RF.best_idx);
 end
 end

 tic
 [Y,scores,stdevs] = predict(b,feature_vector);

 if (complete)
 [Y1,scores1,stdevs] = predict(b1,feature_vector1);
 end
 toc

 figure;
 if (complete)
 subplot(Row,1,1);
 else
 subplot(Row,1,1);
 end
 imshow(ori);
 title('Testing Image');

 label = rf.database.SampleList(str2num(cell2mat(Y)));
 Line1 = ['True Class : ' TrueClass ' (' num2str(TrueLabel)

')'];

 if (complete)
 finalscores = (1-para)*scores+para*(scores1);
 [FinalSc, FinalIdx] = max(finalscores)
 label = rf.database.SampleList(FinalIdx);
 Line2 = ['Predict Class : ' char(label) ' ('

num2str(FinalIdx) ')'];

 if (graph)
 subplot(Row,1,3);
 bar(scores);
 title('Prediction Score for Each Class (GABOR)');
 xlabel('Class');
 ylabel('Prediction Scores');

 subplot(Row,1,4);
 bar(scores1);
 title('Prediction Score for Each Class (PHASE)');
 xlabel('Class');
 ylabel('Prediction Scores');
 end

74

 StoreScore = [scores;scores1];
 else
 Line2 = ['Predict Class : ' char(label) ' (' char(Y)

')'];

 if (graph)
 subplot(Row,1,3);
 title('score');
 bar(scores);
 title('Prediction Score for Each Class');
 xlabel('Class');
 ylabel('Prediction Scores');
 end
 StoreScore = scores;
 end

 if (complete)
 subplot(Row,1,1);
 else
 subplot(Row,1,1);
 end
 MatchImgPath = strcat(TrainPath,label,'\');
 DirImg = dir([char(MatchImgPath), '*.jpg']);
 MatchImg = strcat(MatchImgPath,DirImg(1).name);

 subplot(Row,1,2);
 imshow(imread(char(MatchImg)));
 title('Match Image');

 xmsg = {Line1 ; Line2;' '};
 xlabel(xmsg);

 case 2
 %% Auto TestMode
 para=0:0.1:1.0;

 disp('Auto Test Mode');

 NSample = rf.database.NSample;
 SampleList = rf.database.SampleList;

 TestPath = strcat(RootDir, '\database\test\',

DatabaseName,'\');
 TestDir = dir(TestPath);
 TestDir = TestDir([TestDir.isdir]);
 TestDir(strncmp({TestDir.name}, '.', 1)) = [];

 NTest = length(TestDir);
 NRemoveTest = 0;
 TestLabel = [];
% TestName = [];

 % Compare TestDir with Train Database, remove untrained test

dir

75

 for i=1:NTest
 found = 0;
 for j=1:NSample
 if strcmp(TestDir(i-NRemoveTest).name,SampleList{j})
 TestLabel = [TestLabel; j];
 found = 1;
 break;
 end
 end

 if (~found)
 TestDir(i) = [];
 NRemoveTest= NRemoveTest+1;
 end
 end

 NVerifiedSample = length(TestLabel);
 TotalTest = 0;
 StorePredict = [];
 StoreScore = [];
 StoreScore1 = [];
 Error = 0;

 % Compute the Total Number
 tic
 for i=1:NVerifiedSample
 SampleDir = strcat(TestPath, TestDir(i).name);
 InfoTestDir = dir([SampleDir , '*.jpg']);
 NumTestEach =

length(InfoTestDir(not([InfoTestDir.isdir])));
 for j=1:NumTestEach
 str = strcat(SampleDir,'\',InfoTestDir(j).name);

 X = imread(str);
 if (length(size(X)) == 3)
 X = rgb2gray(X);
 end

 feature_vector = FeatureExtract(Method,X,rf);
 feature_vector = feature_vector';

 if (complete)
 feature_vector1 = FeatureExtract(Method1,X,rfp);
 feature_vector1 = feature_vector1';
 end

 if (rf.RF.SelectBest)
 feature_vector =

feature_vector(:,rf.RF.best_idx);
 if (complete)
 feature_vector1 =

feature_vector1(:,rfp.RF.best_idx);
 end
 end

 [Y,scores] = predict(b,feature_vector);

 PredictClass = str2num(cell2mat(Y));

76

 if (complete)
 [Y1,scores1] = predict(b1,feature_vector1);
 end

 if (PredictClass ~= TestLabel(i))
 Error=Error+1;
 end

 StoreResult= [TestLabel(i),PredictClass];
 StorePredict = [StorePredict; StoreResult];
 StoreScore = [StoreScore; scores];
 TotalTest = TotalTest +1;

 if (complete)
 StoreScore1 = [StoreScore1; scores1];
 end
 end
 end
 toc

 if (complete)
 StoreRec = [];
 for i=1:length(para)
 y = para(i);
 finalscores = (1-y)*StoreScore+y*(StoreScore1);
 [FinalSc, FinalIdx] = max(finalscores,[],2);
 temp = StorePredict(:,1) - FinalIdx;
 correctIdx =find(temp==0);
 Recognition_Rate =

length(correctIdx)/length(StorePredict(:,1));
 StoreRec = [StoreRec; Recognition_Rate];
 AllPredict{i} = [StorePredict(:,1) FinalIdx];
 end
 result.StoreRec = StoreRec;
 result.scores1 = StoreScore1;
 result.predicttable = AllPredict;
 else

 Recognition_Rate = (TotalTest-Error)/TotalTest

 result.predicttable = StorePredict;
 end

 case 3
 %% FaceDetect Mode

 disp('FaceDetect Mode');

 addpath('C:\OpenCV2.4\mexopencv-master');
 classifier =

cv.CascadeClassifier('C:\OpenCV2.4\data\haarcascades\haarcascade_fro

ntalface_alt2.xml');

 TestPath = strcat(RootDir,'*.jpg');
 [TestFile, PathName] = uigetfile(TestPath, 'Select test

file');
 TestDir = strcat(PathName, TestFile);

 ori = imread(TestDir);

77

 if (length(size(ori)) == 3)
 gray = rgb2gray(ori);
 end

 histgray = cv.equalizeHist(gray);
 boxes =

classifier.detect(histgray,'ScaleFactor',1.20,'MinNeighbors',2,'MinS

ize',[24,24]);

 figure,
 imshow(ori);

 count = 0;

 for i = 1:numel(boxes)

rectangle('Position',boxes{i},'EdgeColor','g','LineWidth',2);
 CropImg{i} = imcrop(gray,boxes{i});
 count = count+1;
 end

 for i = 1:count

 X = CropImg{i};

 feature_vector = FeatureExtract(Method,X,rf);
 feature_vector = feature_vector';

 if (rf.RF.SelectBest)
 feature_vector = feature_vector(:,rf.RF.best_idx);
 end

 [Y,scores,stdevs] = predict(b,feature_vector);

 label{i} = rf.database.SampleList(str2num(cell2mat(Y)));
 textstr = [char(label{i}) ' (' char(Y) ')'];
 text(boxes{i}(1),boxes{i}(2), textstr,

'FontSize',10,'BackgroundColor',[.7 .9 .7]);
 end
 StoreScore = [];
 otherwise
end

result.testmode = testmode;
result.scores = StoreScore;

end

78

DisplayRF.m

function [rf] = DisplayRF(rf,display)
%DISPLAYRF Summary of this function goes here
% Detailed explanation goes here

% if (rf.RF.SelectBest)
% b = rf.bs;
% disp('Display Selected Feature RF Information');
% else
% b = rf.bf;
% disp('Display Full RF Information');
% end

b = rf.b;

show = display.show;
param = display.param;

b = fillProximities(b);

% OOBError

if (show.ooberror)
 figure;
 plot(oobError(b));
 xlabel('number of grown trees')
 ylabel('out-of-bag classification error')
end

% Feature Importance

if (show.featureimp)figure;
 bar(b.OOBPermutedVarDeltaError);
 xlabel('Feature Number');
 ylabel('Out-Of-Bag Feature Importance');

end

% Fraction In-Bag Observation

if (show.fracinbag)
 finbag = zeros(1,b.NTrees);
 for t=1:b.NTrees
 finbag(t) = sum(all(~b.OOBIndices(:,1:t),2));
 end
 finbag = finbag / size(b.X,1);
 figure;
 plot(finbag);
 xlabel('Number of Grown Trees');
 ylabel('Fraction of in-Bag Observations');
end

% Outlier

if (show.outlier)
 figure;

79

 hist(b.OutlierMeasure);
 xlabel('Outlier Measure');
 ylabel('Number of Observations');
 fprintf('List of Outlier > %d:\n',param.OutlierThreshold);
 b.Y(b.OutlierMeasure>param.OutlierThreshold)
end

% Class Margin

if (show.classmargin)
 figure;
 plot(oobMeanMargin(b));
 xlabel('Number of Grown Trees');
 ylabel('Out-of-Bag Mean Classification Margin');
end

% Error Each Tree

if (show.erroreachtree)
 figure;
 bar(error(b,b.X,b.Y,'mode','individual'));
 xlabel('Number of Grown Trees');
 ylabel('Classification Error');
end

% Recognition Rate

if (show.recognitionrate)
 err = oobError(b);
 rec_rate = (1-err(b.NTrees))/1

end

