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FACE RECOGNITION SYSTEM USING COMPLETE GABOR FILTER 

WITH RANDOM FOREST 

 

 

ABSTRACT 

 

 

This project attempts to resolve challenges like illumination changes, occlusions, and 

head orientation pose in face recognition by developing a technique called Complete 

Gabor Classifier with Random Forest. Complete Gabor Classifier is the hybrid 

method of Gabor Filter and oriented Gabor phase congruency image (OGPCI) to 

form a robust face recognition system. Gabor filter provides the magnitude 

information of Gabor responses, where OGPCI contains phase information of Gabor 

response. Random Forest is used as the learning framework to classify the images 

based on features extracted from Gabor Filter and OGPCI. This study uses three face 

databases, Faces96, Faces94 from University of Essex to evaluate the performance of 

algorithm and the Georgia Tech Face Database from Centre for Signal and Image 

Processing at Georgia Institute of Technology. All these databases vary according to 

different head scales, different head positions, different head orientations and 

different lighting illumination. The database Faces94 is modified to have occluded 

images to test the efficiency of the proposed hybrid algorithm. The proposed method 

achieved 100.00% recognition rate for the images with different head scales and 

different head positions in Faces96 database; 89.60% recognition rate for the images 

with different head orientations in Georgia Tech Face Database and 98.50% 

recognition rate for the partially occluded face images in Faces94 database. 
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 CHAPTER 1

 

 

 

1 INTRODUCTION 

 

 

 

1.1 Background 

 

Humans are very good at recognizing faces and complex patterns. Study shows that 

human starts to recognize faces as early as three-month-old (Barrera and Maurer, 

1981). Even a passage of time doesn’t affect this capability. It would be useful if 

computers can perform face recognition as robust as human. However, it’s a true 

challenge to build an automated system which models human ability to recognize 

faces. 

 

Therefore, face recognition had becomes one of the most desirable 

applications of image processing and analysis for the past few decades. The first 

automated face recognition can trace back to the 1960’s, where Woodrow W. 

Bledshoe worked on using computers to perform faces recognition (Bledsoe, 1966). 

Since then, the technologies using face recognition techniques have been evolving 

throughout the years. Nowadays, there are many different areas applying face 

recognition technique, such as information security, access management, biometrics, 

law enforcements, personal security and entertainment.  

 

Even though there are many journals and research paper on different face 

recognition approaches have been published throughout the years, most of the 

methods focus only on detecting frontal images with proper illumination. These 

methods can’t achieve high recognition rate when the image used has flaws like 

occlusion, insufficient lighting condition and slight orientation. These are the major 
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challenges in face recognition which need to be considered. Thus, face recognition 

has incorporates artificial intelligence elements like neural network to make 

recognition more robust. 

 

 

 

1.2 Problem Statement and Motivation 

 

According to (PetaPixel, 2012) Figure 1.1, the most popular online social network, 

Facebook with over 845 million active users has 250 million photos uploaded per 

day. It also claimed that Facebook have store more than 100 petabytes of photo and 

videos (PopPhoto, 2012). Most of the photos uploaded contain people with different 

faces, so Facebook has implemented auto-tagging feature which applies face 

recognition technology to differentiate unique human images (TheFacebookBlog, 

2011). This highlights the importance of face recognition in image-sharing 

community. 

 

 

Figure 1.1: Facebook Statistics Data (PetaPixel, 2012) 

 

 

 Furthermore, face recognition helps to improve biometric security features by 

encoding the human facial appearance as a password of unlocking personal property 

like credit card, door access, mobile phone and laptop. By using this technology, it is 

virtually impossible for the hackers to steal one’s “password”. 
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 Face recognition can be applied in indexing or retrieving video data based on 

the appearances of particular persons, which will be useful for reporters, moviegoers 

and forensic scientist. It will speed up the process of locating the particular persons 

in a video, instead of going through the video manually which are lengthy and tiring 

job.  

 

All the area of fields stated has shown the importance of face recognition in 

different area of fields. However, the real-life challenges in face recognition are yet 

to be solved. For example, the problem of detecting faces wearing glasses faced by 

(Han et al., 2000) and limitation of lighting condition (under-exposed or over-

exposed faces) faced by (Kong and Zhu, 2007). Apart for that, the challenges like 

face orientation variation, occlusion and extra face features like glasses and cap also 

affects the recognition rate. 

 

 All the applications and problem stated have become a motivation to study 

and evaluate the face recognition techniques. Besides, it also encourages the search 

and implementation of suitable face recognition method to overcome the limitations 

of problems discussed above. 

 

 

 

1.3 Aims and Objectives 

 

The aim of this project is to propose a face recognition technique, Complete Gabor 

Classifier with Random Forest. The proposed method is capable to recognize facial 

images with different head scales and different head positions, different lighting 

illumination, different head orientations and partially occluded images. The 

performance of the proposed method is measured in term of recognition rate on 

Faces96, Georgia Tech Face Database and Faces94 database. The performance of the 

proposed method is compared with the existing state-of-the-art algorithms such as 

PCA, LDA and Gabor-PCA. 
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1.4 Project Scope 

 

This project will be focusing on developing a method in recognizing faces of 

different identities from databases. The databases are downloaded from internet for 

standard benchmarking. The databases contain frontal facial images with different 

head scales and different head positions, different head orientations, different 

illumination and partially occluded image.  

 

The performance of proposed algorithm is measured in term of recognition 

rate. The project is focus on comparing the recognition rate of the proposed method 

with the available state-of-art algorithms. The speed of recognition is not discussed 

in this project. 

 

MATLAB R2012b is used as development tool for this project, where it 

provides necessary toolbox, libraries and functions for image processing module and 

learning framework. 

  

 

 

1.5 Report Outline 

 

Chapter 1 highlighted the background of the topic, the problem statement and 

motivation behind the project, the aims and objectives, project scope and report 

outline of each chapter. 

 

 Chapter 2 presents the literature review of the fields related to the project. 

The topics include overview of face recognition system, feature extraction, feature 

selection and face recognition approaches. 

 

 Chapter 3 covers the methodology of proposed face recognition algorithm. 

The theory of the proposed algorithm is explained at this chapter. 

 

 Chapter 4 summarizes the results obtained from this project. The results 

obtained from different facial images database are shown and discussed here. 
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Besides, the comparisons of proposed algorithm with state-of-the-art algorithms are 

shown. 

 

 Chapter 5 concludes the entire project and recommendations for future 

improvement are stated. 



 

 

 

 CHAPTER 2

 

 

 

2 LITERATURE REVIEW 

 

 

 

2.1 Face Recognition System 

 

In a complete face processing system, the acquired image will undergo several stages 

as shown in Figure 2.1. Face detection is the first stage of a face recognition system. 

In the face detection stage, the video captured in frame or still images is taken as an 

input. The input images need to be pre-processed to reduce computational effort. For 

example, the colour image (3-dimensional data) is converted to grayscale format (2-

dimensional data) or resize the high resolution picture to low resolution. This will 

improve the speed of processing and reduce the memory space.  

 

 

Figure 2.1: The Three Stage of a Face Recognition System  

 

 

 In the face detection stage, the image is scanned to extract the face region 

from the background. By doing so, unnecessary information is removed and only the 

important data are retained for further processing. Removing the unnecessary 

information helps to lower the dimension of image and thus reduces computation 

times. Unnecessary regions such as car, tree and building will be removed. The 
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retained data known as the region-of-interest should cover most of the important 

features of the face like eyes, nose and mouth. These features are essential for later 

recognition process. 

 

 The extracted face region is then feed into the feature extraction stage to 

select the face characteristics that resemble as a face. At this stage, original face 

image which is high-dimensional is reduced into a set of data known as feature to 

examine the traits of the data. After the features are generated, the best subset of 

these features is selected and passes to face recognition stage. The chosen features 

are used to train the classifier in recognizing faces. 

 

 In face recognition stage, the extracted face regions are classified according 

to the classes assigned. The distinctive features selected from previous stage are used 

to differentiate the characteristics of each class members. The system is trained using 

learning method to classify the face regions correctly. At the end of the stage, the 

face region is assigned to a label based on the training result. The rate of recognition 

is evaluated to measure the performance of face classification algorithm. 

 

 

 

2.2 Feature Extraction 

 

Human has no difficulty in recognizing faces, which seems to be an automated 

process in brains. For example, humans are able to recognize people they know even 

with glasses or caps. Human find no problem in recognizing people when they have 

added facial feature like moustache, beard, make up and expressions. These 

processes seem trivial to human, but they present a challenge for the computer to 

mimic this ability. The main problem of face recognition is to extract information 

from picture. The process of extracting face information is known as feature 

extraction. 

 

By referring to Figure 2.1, after the face detection stage is the feature 

extraction stage. The goal of feature extraction is to reduce the training facial image 

data which are high-dimensional to a set of valuable information known as features 
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for investigation. The extracted features are normally represented in subspace after 

transformation from the original image. After that, the distinctive features are 

selected to match with the input feature set. Redundant or non-relevant features are 

rejected during the process. Figure 2.2 illustrates the block diagram of feature 

extraction process (Belle, 2008). 

 

 

Figure 2.2: Feature Extraction Process 

 

 

 From the Figure 2.2, the feature extraction process involves dimensionality 

reduction, feature extraction and feature selection. Dimensionality reduction is the 

process of reducing the high dimensional training data (original image) to a set of 

low dimensional data known as features. 

   

 In the feature extraction stage, a filter is applied on the original image, the 

output of the filter is known as feature. The best subset from these created features is 

selected in the feature selection stage. In this stage, the important features are kept 

while the redundant features are discarded.  

 

 

2.2.1 Feature Extraction Method 

 

Viola and Jones (2001) used Haar basic functions as face feature extraction. 

Haar wavelet representation was first adopted in object detection by Papageorgiou et 

al. (1998). Basically, Haar filter calculates feature regions by adding up all the pixel 

value defined by the rectangular region. Viola and Jones used three kinds of 

rectangle features as shown in Figure 2.3 (Viola and Jones, 2004). 
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Figure 2.3: Example of Rectangle Features in a Detection Sub-window 

 

 

 In Figure 2.3, the value of two-rectangle features (A) and (B) is the difference 

between sum of pixel of grey and white rectangle. For three-rectangle features (C), it 

computes the difference between sum of pixels of two white rectangles and grey 

rectangle. Four-rectangle feature (D) computes difference between diagonal pairs of 

white and grey rectangles. The feature sets computed are large, consisting 160000 

features for 24 × 24 pixels. The formulas of computing Haar filter output for 

different rectangles feature are as follow: 

 

                      (2.1) 

                          (2.2) 

                                (2.3) 

 

Where    is the sum of pixels within white region is box and    is the sum 

of pixels within black region box.   is the number of white/black region box within 

the rectangles feature. 

 

 Gabor filter is another feature extraction method. Gabor feature 

representation consists of wavelet coefficients for different scales and orientations, 

making these features robust to rotation, translation, distortion and scaling. It was 

first used by Lades et al. (1993) for face recognition based on Dynamic Link 

Architecture which exploit high grey-level information and shape information. 

Vitomir and Nikola (2010) applies Gabor filter to represent facial image into 5 
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different scales and 8 different orientations which gives 40 different output images as 

shown in Figure 2.4.  

 

 

Figure 2.4: Gabor Representation of Face of 8 × 5 

 

 

 Existing face recognition technique used only Gabor magnitude information 

(Liu, 2004). The phase information of the Gabor filter is ignored due to its difficulty 

in extracting stable and discriminative features from the phase responses (Zhang et 

al., 2007). To overcome this instability, Baochang et al. (2008) formed the histogram 

of Gabor phase patterns using local binary method. This histogram is used as face 

descriptors and the results proven that Gabor phase responses do exhibit some face 

information. Baochang et al. method does not represent the face directly as it only 

represents the phase information in histogram and select the best face descriptors. 

Struc et al. (2008) implemented Oriented Gabor Phase Congruency Image (OGPCI) 

to extract stable phase information features. In Struc et al. paper, the face is 

represented with phase based Gabor-Fisher classifier (PBGFC), the results shows 

that PBGFC has lesser computational burden (lesser features) when compared to 

Gabor filter. Vitomir and Nikola (2010) combined both Gabor magnitude and phase 

information with LDA as the feature selection method to form a complete Gabor-

Fisher classifier. The result shows that it outperformed several face recognition 

techniques like PCA and LDA. Figure 2.5 shows the facial images represented in 

OGPCI form of different scales. 
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Figure 2.5 : Example of OGPCIs images 

 

 

 

2.2.2 Feature Selection Method 

 

After the features are computed, it is necessary to select the best subset of features 

that gives smallest classification error.  The method of classification will determines 

the classification error. Smaller classification error will yields better classification 

result. The direct method of feature selection is by examining every features subset 

and chooses the one that fulfils the defined criteria. However, this method is 

computational ineffective when there are huge number of subsets present. Recent 

paper has highlighted a list of effective method in feature selection (Marqués, 2010). 

The list includes exhaustive search, Sequential Forward Selection (SFS). Apart from 

that, Genetic algorithm can be applied in feature selection (Yang and Honavar, 1998). 

 

 Feature selection can be embedded in learning algorithm of face recognition. 

For example, Viola and Jones (2004) used Adaboost to select best features among 

160000 Haar extracted features and forms a strong classifier for face detection.  

 

 

 

2.3 Face Recognition 

 

Face recognition stage is closely related to face classification. It is a process to 

classify the face region into correct class label. Since face recognition has more than 

2 classes, it is name as multi-class problem. Normally, it will be mentioned as P class 

problem if there are P numbers of subjects. Face recognition is a challenging task as 

images of same person can be in different illuminations and pose. In addition, added 
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structures like cap, beard and moustache will complicate the recognition rate. Several 

approaches have been implemented to tackle such challenges. These approaches can 

be classified into three categories: appearance-based, feature-based and learning-

based approaches. 

 

 

 

2.3.1 Appearance-based Approach 

 

Appearance-based approaches use statistical methods to derive image (high-

dimensional) into a feature space (low-dimensional). Linear appearance approaches 

is commonly used, it performs linear dimension reduction to project the image into 

face vectors. The feature of the face can be represented using the projection weights. 

Examples of these methods are principal component analysis (PCA) and linear 

discriminant analysis (LDA)  

 

 PCA is one of the earlier approaches in facial recognition by using eigenfaces. 

Turk and Pentland (1991) applied Euclidean distance to measure and classify the 

input face images. First, the input image is projected into eigenspace and represented 

in a feature vector. Then, the input feature vector (weight vector) is compared with 

the training image feature vector to find the difference between them. The distance of 

these two vectors are calculated using Euclidean distance measure. The distance 

measures the similarity of input image to the training images. The lower the distance 

measure, the higher the matching score between the input image and the training 

image. Principle component analysis performs well in frontal images, but gives bad 

results when the images used have pose and illumination variation. 

 

 To alleviate these issues, Belhumeur et al. (1997) apply linear discriminant 

analysis (LDA) in face recognition. Unlike PCA, LDA models the complete set of 

face training in scatter matrix. The scatter matrix includes the difference between-

class (interpersonal) and within-class (intrapersonal). The same classes are group 

tightly together, while different classes are scatter as far away as possible from each 

other, maximizing the ratio of between-class to within class scatter. Similar to PCA 

similarity measurement, once the eigenvectors are obtained, any distance 
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measurement methods like Euclidean distance can be applied. However, LDA 

requires a large training sample for good classification which is not suitable for face 

recognition. A combination of PCA and LDA is adopted because its ability to reduce 

the training size (Zhao et al., 1998). In this method, PCA is applied first to reduce 

feature dimension before LDA projection. Figure 2.6 shows different face 

projections of LDA, PCA+LDA and PCA (Zhao et al., 2003). 

 

 

Figure 2.6: Different Linear Projection (from top): LDA, PCA+LDA and PCA 

 

 

 

2.3.2 Feature-based Approach 

 

Feature-based approaches extract local facial features like eyes, nose and mouth, then 

obtain their location and statistical information such as geometrical shape, intensity 

values, distance and angle between each features points. These face feature values 

(width, length, shape and position) are then feed into structural classifier for 

identification. Figure 2.7 illustrates how the face features are measured. The chin 

shape measurement is based on mouth and chin edge location (Brunelli and Poggio, 

1993). Feature-based approaches allow flexible deformation at the feature points, 

which is good for face image with pose variation.  
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Figure 2.7: Geometric Features-based Approach in Face Recognition 

 

 

 Sharif et al. (2011) applied Gabor wavelet to locate the features of face. 

Gabor filter was described as feature extraction method at Chapter 2.2.1. In Sharif et 

al method, Gabor filter is applied on face image and the peak intensity point of the 

filtered image is obtained. The extracted features points are then used to compare 

with the database. The database contains feature points information of the training 

images. The distance of feature points between the input image and training image 

are computed to measure the similarity. Figure 2.8 shows the results of the feature 

points are extracted from Gabor image. 

 

 

Figure 2.8: Left – Gabor Image, Right – Feature Points Extracted from the 

Peak of Gabor Image 

 

 

 

2.3.3 Learning-based Approaches 

 

Learning-based approach face recognition applies machine learning algorithms in 

classifying faces. Artificial neural network is one of the popular learning algorithms 

used in face recognition. Neural network was first demonstrated by Kohonen (1988) 
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to recognize aligned and normalized faces. Since then, many methods based on 

neural network have been proposed, like combining Gabor filter with neural network 

(Bhuiyan and Liu, 2007). 

 

 Besides neural network method, ensemble learning recently emerged as a 

prominent candidate in classification technique by combining all the classifiers to 

give a final output (Bauer and Kohavi, 1999). Random forest is one of the ensemble 

learning methods developed by Breiman (2001). Breiman used bagging method to 

reduce variance and avoid overfitting (Breiman, 1996). Ho (1998) combined 

Breiman’s bagging idea and random feature selection to construct a set of decisions 

trees to take advantages of overfitting solution. Random forest is a forest built from 

many classifications trees. Each tree output a class and the forest will select the class 

that have a maximum output votes. The term “random” means each node of trained 

tree is split using random selection input feature set. 

 

Random forest has been used in many image classifications. For example, 

Kouzani et al. use random forest to classify image by using image pixel value 

(Kouzani et al., 2007). However, Kouzani et al. method is sensitive to variations in 

lighting and expressions. Gabor filter was implement by Ghosal et al. (2009) as it 

was robust to illumination and expression. By combining Gabor filter and random 

forest, it formed a robust face classification (Ghosal et al., 2009). 

 

 Breiman (2001) has highlighted several advantages of using random forest as 

classification tool. Random forest does not need any template or model as reference, 

thus making the learning method straightforward. In addition, this method analyses 

the image region without extracting geometric property like edges. Random forest 

also allows classification with occlusion as the region is not sampled in an orderly 

manner but randomly. Through voting, it eliminates few falsely classified regions. 

Since random forest consists of many independent trees, parallel processing can be 

implemented to grow each tree separately.  

 

 

  



 

 

 

 CHAPTER 3

 

 

 

3 METHODOLOGY 

  

 

 

3.1 Overall Framework 

 

Figure 3.1 illustrates the flowchart of proposed algorithm, Complete Gabor Classifier. 

 

 

Figure 3.1: Proposed Algorithm Flowchart 
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 In Figure 3.1, the facial image is pre-processed (Section 3.3.1) before 

extracting the features. There are two methods of extracting features which are Gabor 

Filter (Section 3.4.1) and Oriented Gabor Phase Congruency Image (Section 3.4.2). 

The extracted features from each method are used to obtain the final output class 

through random forest (Section 3.5). The matching score of each class for Gabor and 

OGPCI are combined with a fusion parameter to form the final matching score for 

Complete Gabor Classifier (Section 3.6). The class that has the highest matching 

score is selected as the final class output. The overall program flow for this project is 

shown in Figure 3.2. 

 

 

Figure 3.2: Overall Program Framework  
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 The flowchart is divided into two stages, which are training and testing stage. 

The training stage is a process of training the framework to classify the face sample 

based on the training data. The testing stage is used to classify the test sample by 

applying the trained framework. 

 

In the training stage, the important features are extracted from the training 

sample images (face region). The extracted features are used to grow a random forest. 

At the end of training stage, the forest is built and the performance of the trained 

forest is evaluated. 

 

In the testing stage, the test sample (face region) is read by using the same 

feature extraction method as the trained forest. The extracted features are used to 

obtain the final output class through the trained random forest. The class of the test 

image is the maximum class output vote of the random forest.  

 

 

 

3.2 Database  

 

In this project, the performance of the algorithms is tested on different set of database. 

Different database are used to test the recognition performance of feature extraction 

algorithm and trained random forest. There are three sets of database used which are 

Faces94, Georgia Tech Face Database and Faces96. Faces94 contains facial images 

with different head scales and different head positions (Spacek, 2008). Georgia Tech 

Face Database contains frontal and tilted face images with different expression, 

orientation and features like wearing glasses (Nefian, 1999). Faces96 contains still 

frontal images which are used as the training set (Spacek, 2008). Some of the facial 

images of Faces96 are modified by adding black rectangular box as occlusion. These 

occluded images are used as the testing set. The details of each database are 

discussed at Section 4.3, 4.4 and 4.5. 
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3.3 Face Image Processing 

 

The face image in the database is processed before proceeding to the training process. 

Figure 3.3 shows the flowchart on how the face image is processed.  

 

 

Figure 3.3: Flow Chart of Face Image Processing 

 

 

 The face image is through the pre-processing where RGB colour image is 

converted to grayscale image. In the training stage, extracted features will be used to 

train the framework by growing the random forest. The details of each stage will be 

discussed in the following section. 

 

 

 

 

3.3.1 Pre-processing 

 

Pre-processing stage is a process of optimizing the image quality. Filter operations 

applied to the image to reduce image details for faster computational speed. Figure 

3.4 shows the flowchart of the pre-processing stage. 
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Figure 3.4: Flow Chart of Pre-processing Stage 

 

 

 In the pre-processing stage, RGB colour image is converted to grayscale 

image. An RGB image has three channels which are red, green and blue, where each 

channel has 8 bits, making a total of 24 bits; whereas a grayscale image contains only 

1 channel, which displays the intensity level in 8-bits. Grayscale conversion helps to 

reduce the dimensional size of image for faster computation. Figure 3.5 shows a 

RGB color image converts to a grayscale image. 

 

 
Figure 3.5: RGB to Grayscale Conversion 

 

 

 After the conversion process, the original dimension of the image, 180 × 200 

is resized to 64 × 64 pixels. This will reduce the computational speed 
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3.4 Feature Extraction 

 

In this project, the feature extraction methods used are Gabor filter and oriented 

Gabor phase congruency image (OGPCI). 

 

 

 

3.4.1 Gabor Filter 

 

As discussed in Chapter 2.2.1, Gabor face representation is robust against 

illumination and facial expression. A Gabor wavelet,       is defined as (Vitomir and 

Nikola, 2010): 

 

            
  

 

   
      

            
                 

 (3.1) 

 

Where, 

                  

                  , 

                                    
      

                             . 

                                                                      

                                        

 

 In this framework, the parameters     √  and           These are 

suggested by Struc et al. (2008).  To extract facial features, a filter bank is 

constructed featuring five scales and eight orientations, where           and   

       . The filter bank contains real and imaginary part of the Gabor filter. The real 

part of the filter bank is needed as it is commonly used for facial feature extraction. 

Figure 3.6 shows the real parts of Gabor filters (40 filters). 
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Figure 3.6: The Real Parts of Gabor Filter Bank Constructed in 8 Orientations 

and 5 Scales 

 

 

 To extract the features from an image, let             as a grayscale face 

image with the size of     pixels. Let           as a Gabor filter at the center 

frequency    and orientation   . The filtering operation is defined as the convolution 

of image        with Gabor filter          :  

 

                             (3.2) 

 

           is a complex filtering output that decomposed into real             

and imaginary parts            : 

 

             [         ] (3.3) 

             [         ] (3.4) 

 

 From here, the magnitude information of filtering output is computed: 

 

            √    
           

       (3.5) 

 

 The image of applying 40 different Gabor magnitude filters are shown at 

Figure 2.4. 
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 The image features generated is huge in number, as 40 Gabor filters are 

applied on single image, resulting increase of dimension size by 40 times. After the 

process of filter, an image of 64 × 64 pixels will becomes 163840 (64 × 64 × 40) 

diemensional size, which is too computational expensive. To resolve this problem, 

downsampling using rectangular grid method is implemented as shown in Figure 3.7 

(Vitomir and Nikola, 2010). In this method, only the pixels within the rectangular 

grid are retained, while the remaining pixels are discared, similar with resizing 

concept. For this project, downsampling factor is set to 128. The following 

calculation shows the steps of reducing 163840 features to 1000 features: 

 

                          

                          

                                                              

                                                                       √  √             

                                          

                                                   
 

  
  

  

  
        

                                    

                                                  

                                                                                                  

 

 

Figure 3.7: Downsampling Process (From Left to Right): (a) Magnitude 

Response of an Image, (b) Magnitude Response Image with Rectangular 

Sampling Grid, (c) Image After Downsampled. 
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3.4.2 Oriented Gabor Phase Congruency Image 

 

The face can be represented in Gabor phase information as discussed in Section 2.2.1. 

In this project, the features of the image are extracted using oriented Gabor phase 

congruency image (OGPCI). It is defined as follow  (Struc et al., 2008): 

 

             
∑                    

   
   

∑              
   
   

 (3.6) 

 

 Where           is the magnitude response of Gabor filter from Equation 

3.5.    is set to 0.0001 as a small constant that prevents divisions with zero. 

           denotes as a phase deviation measure defined as: 

 

              (           ̅      ) 

                                    |   (           ̅      )| (3.7) 

 

Where  ̅       denotes the mean phase angle at  -th orientation and 

          represents the phase angle of Gabor filter can be calculated using the value 

of real part and imaginary part of Gabor filter (from Equation 3.3 and 3.4): 

 

                (
         

         
) (3.8) 

 

 OGPCI computes the phase congruency by summing of p filter scale for each 

orientation, v. Thus, the feature generated is smaller compared to Gabor magnitude 

response. For example, taking an input image size of 64 × 64 pixels, using filter bank 

of 8 orientations × 5 scales, the total  features generated are 32768 (64 × 64 × 8) 

dimensional size. The filter scales, p are added together for each orientation, v, the 

dimensional size for OGPCI is 5 times lesser than Gabor magnitude information. The 

number of features generated is still too large for computational, so a downsampling 

is required to reduce the dimensional size. For Gabor magnitude filter, a 

downsampled image with factor of 128 can generates 1000 features. OGPCI 

information is 5 times lesser than Gabor magnitude information. Therefore, the 
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features size generated for OGPCI is 200. The steps of computing OGPCI are as 

follow (Vitomir and Nikola, 2010): 

 

1. The OGPCI are computed for   orientations of a facial image  (Example of 

OGPCI images generated for     are present in Figure 3.8). 

2. The computed OGPCIs are downsampled by factor of   and normalized 

3. The downsampled and normalized OGPCIs are concatenated to form 

augmented Gabor phase congruency feature vector. 

 

 

Figure 3.8: Example of all OGPCIs generated for       from original images 

 

 

 

3.5 Learning Framework 

 

There will be a number of redundant features among the extracted features, thus it is 

necessary to choose the important features. Random forest is used to evaluate the 

features importance and select the top important features for face recognition.  
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3.5.1 Random Forest 

 

Random forest is chosen as it offers many advantages as highlighted at Chapter 2.3.3.  

Unlike standard decision trees, each node in random forest is split using randomly 

selected features instead of best features. The selection of a random subset of 

features has solved the data overfitting problem as proposed by Tim Ho (Ho, 1998). 

Figure 3.9 shows the example of a random forest. 

 

 

Figure 3.9: Random Forest 

 

 

Random forest is constructed by T classification trees, where T is the total 

number of tree. In order to classify a test sample, the input vectors of test image are 

evaluated on each tree in the forest. Each tree gives a classification result which 

represent as a “vote”. The forest chooses the class having the most votes as the final 

classification output.  
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In this project, each tree is grown as follows: 

 

1. Let the number of training sample be N, and the number of features be 

M. 

2. Choose   times with replacement from N training cases (two-third), 

in-bag sample. The remaining (one-third), out-of-bag sample to 

estimate the error of tree. 

3. At each tree decision node, a number m of features is chosen 

randomly from M and calculate the best split decision among the m 

variables. The number of m should be lesser than M. 

4. Each tree is grown without pruning, to largest size possible. 

 

 The tree is grown using two-third of training sample ( ), while the remaining 

one-third       is left out. This remaining sample are known as OOB (out-of-bag) 

samples are to obtain the value of m. Breiman (2001) stated that the forest error rate 

depends on two things: 

 

1. The correlation between any two trees in the forest. Increasing the 

correlation will increases the forest error rate 

2. The strength of each tree. Increasing the strength will decrease the 

forest error rate. 

 

Increasing the value of potential predictors (m) increases the correlation and 

strength, vice versa. Hence, it is important to find the optimum value of m to balance 

these opposing effects. To do this, OOB error rate is used to tune m to achieve 

optimum value. The OOB sample is run through the finished tree to get the 

classification output. The OOB error is calculated by using the number of 

misclassified samples, averaged over all cases. The value of m can be adjusted 

(increasing or decreasing) to minimize the OOB error. It is suggested to begin the m 

value with square root of the total numbers of predictors (  √ ), and search for 

optimal value with respect to OOB error (Breiman, 2001). Figure 3.10 shows an 

example of decision tree grown. 
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Figure 3.10: Example of a Decision Tree Grown 

 

 

In Figure 3.10, the random decision tree is used to classify the data into 5 

classes:  “1”, “2”, “3”, “4” and “5”. In this example, there are 160 possible features 

to select in the pool. At each decision node, random selection of 13 features (√    

  ) is selected from the pool, and chooses the best split decision. The decision tree 

starts with a topmost node called root node with variable name “x14”, the best 

variable selected among the 13 features. The root node is split into left and right node 

by comparing the input feature value with a threshold value, 0.0687048. The 

threshold value for each split node is obtained using Gini’s diversity index. If it is 

smaller than the threshold value, it will proceed to left node; else it will proceed to 

right node. Note that at the left node, it stops further splitting as this node only 

contains 1 class (class “4”). The stop growing node is called leaf node. On the other 

side, the right node is containing more than 1 class (“1”, “2”, “3” and “5”). Thus, 

further splitting is required until it reaches leaf node, the node that contains 1 class 

output. This decision trees contains four levels of node depth, the first node (x14) has 

successfully classify class “4”, the second level node (x147) classify class “2”, then 

third level node (x116) classify class “5” and finally the fourth level node classify 

class “1” and class “3”. This is an example of a simple random decision tree used to 
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classify 5 classes. A collection of this random decision tree will form a forest which 

called random forest. 

 

The tree is grown in maximum size (no pruning) to keep the bias low and 

prevent overfitting. As the number of trees increases, the generalization error 

converges to a limit (Breiman, 2001). Breiman stated that growing up to 500 trees 

has presented a promising result.  

 

 

 

3.5.2 Feature Importance Selection 

 

After the trees in the forest are grown, the most discriminant features subset is to 

remove the redundant features. The selected features are used to regrow the trees. 

Figure 3.11 shows how the variable importance of each feature is computed. 
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Figure 3.11: Flow Chart of Computing Feature Importance 

 

 

To estimate the importance of m-th features  (Liaw and Wiener, 2002): 

 

1. For each grown tree, take the OOB cases and go through the tree. 

Count the number of votes for correct class. 

2. Randomly permutes the values of m-th features in OOB cases. 

3. Apply the tree again to the OOB cases with the permuted values and 

count the number of correct class. 

4. Subtract the number of correct class votes for permuted OOB cases 

from the correctly classified class of unaltered OOB cases. 
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The feature importance is defined as the average of this subtracted value over 

all the trees in the forest. Figure 3.12 illustrates a bar chart showing the feature 

importance value for 30 features. The higher the feature importance value, the higher 

the discriminant scores of the feature. 

 

 

Figure 3.12: Variables Importance for 30 Features 

 

 

 The features are sorted in descending order, from most importance to least 

importance. Then, regrow the random forest using the best features and compare 

with the random forest built using the full features. 

 

 

 

3.6 Complete Gabor Classifier 

 

Gabor filter computes magnitude and phase information. Most of the existing 

techniques of face recognition are using Gabor magnitude information. The phase-

based Gabor filter can be used in extracting face features (Struc et al., 2008). 

Combining between magnitude and phase information of Gabor filter have proved to 

create a robust face classification as discussed by Vitomir and Nikola (2010). The 

authors use linear discriminant analysis (LDA) as feature selection technique to form 
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Gabor-Fisher and Phase Based Gabor-Fisher classifier. The fusion of both classifier 

shows a promising result. 

 

 In this project, the feature selection is computed using random forest. After 

the forest of Gabor magnitude and phase information are grown, the matching score 

for both techniques are obtained. By combining matching score of Gabor filter 

classier,      and Oriented Gabor Phase Congruency Image,       , a final matching 

score, complete Gabor Classifier      is computed as follow: 

 

                        (3.9) 

  

Where γ         , denotes the fusion parameter that control the relative 

importance of the two matching score. When    , the CGC technique turns into 

GFC technique; When    , CGC turns into OGPCI method. Note that   value 

should be optimized to achieve the best recognition performance. To select the best 

performance, the   value tested in the range of 0 to 1, and increases with the step size 

of 0.1 and selects the   value that gives the best matching score. The overall block 

diagram for Gabor Complete Classifier is illustrated in Figure 3.13. 

 

 

Figure 3.13: Block Diagram of the Complete Gabor Classifier 
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3.7 Software Architecture 

 

The entire code is written in MATLAB, running using MATLAB R2012b. Matlab is 

chosen as it provides wide range of engineering tools like Image Processing Toolbox 

and Statistics Toolbox which are useful in this project. A well-developed library 

enables fast algorithm prototyping and reduces the time for debugging. 

 

For Gabor and phase feature extraction, external library developed by 

Vitomir Struc is used (Vitomir, 2012). The library named PhD Tool contains most of 

the image processing algorithms like PCA, LDA and Gabor. This library is used as 

the feature extraction of this project is related to Vitomir’s Method. 

 

For random forest, Matlab has provided a random forest library named 

TreeBagger, under Statistics Toolbox. TreeBagger is a function to construct random 

forest and the information is stored in TreeBagger class. Inside TreeBagger class, 

there are many independent decision trees constructed. The information of each trees 

is stored as classregtree class. 

 

 

 



 

 

 

 

 CHAPTER 4

 

 

 

4 RESULTS AND DISCUSSIONS 

 

 

 

4.1 Recognition Rate 

 

The recognition performance is evaluated in term of recognition rate. Recognition 

rate is the percentage of the number of correct label over the total number of testing 

image. It is known as rank-1 recognition. The formula of recognition rate is as follow: 

 

                       
                           

                                 
       (4.1) 

 

 

 

4.2 Results 

 

This section covers the result of each process for the proposed method, Complete 

Gabor Classifier with Random Forest. The process starts from the pre-processing 

stage. 

 

In the pre-processing stage, the test image undergoes grayscale conversion 

and resizing as shown in Figure 4.1. For example, the test image with true class label 

of 11 is converted from RGB colour format to grayscale format as shown in Figure 

4.1(b). Then, the test image is resized from 226 × 146 pixels to 64 × 64 pixels as 

shown in Figure 4.1(c) before proceeding to the feature extraction stage. 
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Figure 4.1: (a) Original Test Image. (b) Image After Grayscale Conversion (c) 

Image Resized to 64 × 64 Pixels. 

 

 

 In the feature extraction stage, Gabor and oriented Gabor phase congruency 

image filters (OGPCI) are applied on the 64 × 64 pixels grayscale test image. For 

Gabor Filter, there are total of 40 filtered images output (8 orientations × 5 scales) as 

shown in Figure 4.2. 

 

 
Figure 4.2: Gabor Magnitude Face Representation of Test Image 
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 The features extracted from 40 Gabor magnitudes is huge, a total of 163840 

features for 64 × 64 pixels image. Downsampling factor of 128 is used to reduce the 

filtered images from 64 × 64 pixels to 5 × 5 pixels, with a total of 1000 features. The 

downsampled Gabor magnitude output images are shown in Figure 4.3 

 

 

Figure 4.3 Gabor Magnitude Face Representation of Downsampled Test Image 

 

 

 For OGPCI, there are 8 orientations of filtered images. These 8 filtered 

images generate 32768 features for 64 × 64 pixels image. The 8 OGPCI filtered 

output images are shown in Figure 4.4. 

 

 

Figure 4.4: OGPCI Face Representation of Test Image 
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 The 8 OGPCI filtered images are downsampled with factor of 128, reducing 

the number of features from 32768 to 200. The downsampled OGPCI filtered images 

are shown in Figure 4.5. 

 

 

Figure 4.5: OGPCI Face Representation of Downsampled Test Image 

 

 

 The extracted features from Gabor filter and OGPCI are used as the input 

feature set of trained random forest. The random forest will predict the class of test 

image based on the input features set. The matching score of each class for Gabor 

Filter with Random Forest and OGPCI with Random Forest are shown in Figure 4.6 

and Figure 4.7. 

 

 

Figure 4.6: The Matching Score for Gabor Filter with Random Forest 
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Figure 4.7: The Matching Score for OGPCI with Random Forest 

 

 

Both Gabor and OGPCI have the highest matching score for class 11 (out of 

50 classes), which give correct prediction for the test image. The final matching 

score of Complete Gabor Classifer (CGC) is obtained by combining both matching 

score from Gabor and OGPCI with a fusion parameter, γ = 0.3. The final matching 

score of CGC is obtained as shown in Figure 4.8. 

 

 

Figure 4.8: The Final Matching Score for CGC with Random Forest 
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 The test image is classified as class 11 because the class 11 has the highest 

matching score for CGC as shown in the Figure 4.8. The matched image for class 11 

named “s11” is displayed as shown in Figure 4.9. 

 

 

Figure 4.9: Matched Image for Class 11, “s11” 

 

 

 

4.3 Faces96 Database  

 

Faces96 database was created by Dr Libor Spacek from University of Essex (Spacek, 

2008). Table 4.1 shows the information of Faces96 database. 
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Table 4.1: Faces96 Database Information 

Characteristics Faces96 

Number of Individuals 152 

Image per Individual 20 

Resolution (pixels) 180 × 200 

Background Complex (Glossy Poster) 

Head Scale Large Variation 

Head Turn, Tilt and Slant Minor Variation 

Position of Face Some Translation 

Image Lighting Variation Significant Changes 

Expression Variation Some 

Format 24-bit colour JPEG 

 

 

In this database, 40 individuals are selected randomly to train random forest. 

There are 20 images for each individual, 15 images are chosen as training set and the 

remaining 5 images are used as test set. Figure 4.10 shows the samples of Faces96 

database images which containing subjects with different head scales, different face 

positions and head tilting orientations.  

 

In this project, Faces96 is used to evaluate the performance of the Gabor 

Filter, oriented Gabor phase congruency image (OGPCI) and Complete Gabor 

Classifier on face image with different head scales and different head positions. 

 

 

Figure 4.10: Sample Faces96 Database Image 
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 A 64 × 64 pixels image with downsampling factor of 128 will generate 1000 

features by using Gabor Filter as discussed in Section 3.4.1. On the other hand, 200 

features are generated through oriented Gabor phase congruency image (OGPCI) 

method as discussed in Section 3.4.2. These features are used to grow trees for 

random forest in the range of 10 - 50 trees with the interval of 10. Table 4.2 shows 

the recognition rate for 10 - 50 trees using Gabor and OGPCI features on Faces96 

database. 

 

Table 4.2: Gabor (1000 Features) and OGPCI (200 Features) on Faces96 

Database 

Number of Trees 
Recognition Rate (%) 

Gabor OGPCI 

10 97.50 94.00 

20 99.50 99.00 

30 99.50 98.50 

40 100.00 98.50 

50 100.00 97.50 

100 100.00 98.50 

200 100.00 98.50 

 

 

 The result shows that both Gabor and OGPCI feature extraction methods 

achieve above 95% recognition rate with less than 50 trees. Both of the Gabor and 

OGPCI feature extraction methods can recognize faces with different head scales and 

different head positions. OGPCI has lower recognition rate compared to Gabor 

because the features computed for OGPCI (200 features) is lower than Gabor (1000 

features).  For OGPCI, the recognition rate is fluctuating when the forest is grown 

using small number of trees (10-50 trees). The recognition rate reached a stable level 

of 98.50% when more trees are used (100-200 trees).  The result is unstable if the 

number of trees used in random forest is less. Increasing the number of trees will 

give stable result as more trees give more classification vote. 

 

 Using the top 50 to 250 features of Gabor Filter with increment of 50 and the 

top 10 to 50 features of OGPCI with increment of 10, new forests are built using the 

only these top features. The results of the new classification performance are shown 

in Table 4.3 for Gabor Filter features and shown in Table 4.4 for OGPCI features. 
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Table 4.3: Recognition Rate (%) for Gabor Features on Faces96 Database 

Number of Trees 
Number of Features 

50 100 150 200 250 

10 97.50 97.50 98.50 98.50 97.00 

20 98.00 99.50 99.50 99.00 99.50 

30 98.50 99.00 99.00 99.50 99.00 

40 98.50 99.50 99.00 99.50 98.50 

50 99.00 99.00 99.00 100.00 99.50 

 

 

Table 4.4: Recognition Rate (%) for OGPCI Features on Faces96 Database 

Number of Trees 
Number of Features 

10 20 30 40 50 

10 88.50 93.50 94.00 94.50 93.50 

20 91.50 94.50 97.50 96.50 96.00 

30 90.00 96.00 96.00 96.50 97.00 

40 90.50 96.50 97.50 98.00 97.00 

50 91.00 95.50 97.50 98.00 97.50 

 

 

 The results show that the random forest computed using the best feature has 

almost the same performance as using all the features generated. For Gabor filter, the 

best classification result of 100.00% is obtained using 50 trees with 200 features. For 

OGPCI, the best recognition rate is 98% with 40 trees and 40 features. The 

recognition rate shows improvement when the number of trees and features increases.  

 

 Using the best recognition rate of random forest for both full features (Gabor 

with 50 trees and OGPCI with 20 trees) and top features (Gabor with 50 trees and 

200 features and OGPCI with 40 trees and 40 features), Complete Gabor Classifier is 

formed by combining the matching score of these two methods with a fusion 

parameter, γ. The fusion parameter increases with step size of 0.1 from 0.0 to 1.0. 

The recognition rate for each fusion parameter is tabulate in Table 4.5 
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Table 4.5: Complete Gabor Classifier on Faces96 Database 

Fusion Parameter, γ 
Recognition Rate (%) 

Using Best Features Using Full Features 

0.0 100.00 100.00 

0.1 100.00 100.00 

0.2 100.00 100.00 

0.3 100.00 100.00 

0.4 100.00 100.00 

0.5 100.00 100.00 

0.6 100.00 100.00 

0.7 100.00 100.00 

0.8 99.00 100.00 

0.9 98.50 99.50 

1.0 98.00 99.00 

 

 

 The best result of using Complete Gabor Classifier is 100.00% for both 

random forest, same as Gabor Filter (γ = 0.0). In Table 4.5, random forest using the 

best features maintain 100.00% recognition rate for γ = 0.0 to 0.7, while for full 

features, 100.00% recognition rate is achieved for γ = 0.0 to 0.8. The result shows 

that the random forest built using the top features has the same performance as using 

the full features. In Faces96 database, Gabor Filter is sufficient to achieve 100.00% 

recognition rate for all the test images. Figure 4.11 shows the output recognition 

results of applying Complete Gabor Classifier on Faces96 test sets. 



44 

 

Figure 4.11: Faces96 Facial Image Testing Result 

 

 

Complete Gabor Classifier can recognize image with different head scales 

and different head positions as shown in Figure 4.11. Taking the second column of 

Figure 4.11 (from the left), CGC classifies the testing image correctly even when the 

image has larger head scales and is positioning toward right. Therefore, Complete 

Gabor Classifier performs well for the facial image with different head scales and 

different head positions. 

 

 

 

4.4 Georgia Tech Face Database 

 

Georgia Tech Face Database contains frontal face image taken in between 

06/01/1999 to 11/15/1999 at Centre for Signal and Image Processing at  Georgia 

Institute of Technology (Nefian, 1999). The information of Georgia Tech Face 

Database is shown in Table 4.6. 
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Table 4.6: Georgia Tech Face Database Information 

Characteristics Faces96 

Number of Individuals 50 

Image per Individual 15 

Resolution (pixels) 150 × 150 

Head Turn, Tilt and Slant Major Variation 

Image Lighting Variation Significant Changes 

Expression Variation Some 

Format 24-bit colour JPEG 

 

 

In this experiment, all the individual (50 subjects) are chosen to train the 

random forest. Each individual contains 15 images, 10 of them are chosen as the 

training set, while the remaining 5 are selected as the testing set. Figure 4.12 shows 

the samples of Georgia Tech face database. This database contains frontal and tilted 

faces with different face expressions, different lighting conditions and different face 

features. This experiment is to evaluate the performance of the Gabor Filter, oriented 

Gabor phase congruency image (OGPCI) and Complete Gabor Classifier on different 

orientation, expression and lighting illumination of frontal face. 

 

 

Figure 4.12: Sample of Georgia Tech Face Database Images 
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 Random forest is grown from 100 to 500 trees with increment of 100. The 

recognition rate of using Gabor filter and OGPCI as feature extraction methods on 

Georgia Tech face database is shown in Table 4.7. 

 

Table 4.7: Gabor (1000 Features) and OGPCI (200 Features) on Georgia Tech 

Face Database 

Number of Trees 
Recognition Rate (%) 

Gabor OGPCI 

100 80.80 63.60 

200 86.80 67.20 

300 84.80 70.40 

400 86.40 70.40 

500 86.80 71.60 

1000 87.20 72.00 

 

 

 In Table 4.7, the difference between the recognition rate for the chosen trees 

of 500 and the chosen trees of 1000 is 0.40%. Comparatively, the difference between 

the chosen trees of 400 and the chosen trees of 500 is 0.40%. Therefore, in order to 

reduce the consumption of the memory and to have an efficient recognition rate, 

trees of 500 are chosen. 

 

The result shows that Gabor feature extraction method has better recognition 

rate than OGPCI because Gabor contains more features than OGPCI. For Georgia 

Tech face database, it requires more trees (around 500 trees) to achieve good 

recognition rate (> 80%) compared to Faces96 database. The reason is that the 

Georgia Tech face database has less samples (10 samples) compared to Faces96 (15 

samples). Thus, there are not enough training samples to form train the random forest. 

Besides, the number of features used to train the random forest is small, 1000 

features for Gabor filter and 200 features for OGPCI. Increasing the facial image 

resolution or reducing downsampling factor will increases the number of extracted 

features used in training . 
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The forest is regrow using the top 50 to 250 features for Gabor filter and top 

10 to 50 features for OGPCI. The classification results are shown in Table 4.8 and 

Table 4.9. 

 

Table 4.8: Recognition Rate (%) for Gabor Features on Georgia Tech Face 

Database 

Number of Trees 
Number of Features 

50 100 150 200 250 

100 75.60 76.40 80.00 81.60 84.00 

200 77.60 79.20 82.40 82.40 84.80 

300 78.80 82.00 82.80 84.40 85.20 

400 79.20 83.60 83.60 84.40 84.80 

500 78.40 83.20 84.40 84.00 86.40 

 

 

Table 4.9: Recognition Rate (%) for OGPCI Features on Georgia Tech Face 

Database 

Number of Trees 
Number of Features 

10 20 30 40 50 

100 59.60 56.40 61.60 61.20 61.20 

200 65.60 63.60 68.40 66.40 66.00 

300 64.80 66.00 70.00 67.20 68.40 

400 66.80 68.40 68.00 68.40 70.00 

500 66.80 68.40 67.60 69.60 70.40 

 

 

The results show that the random forest computed using the best feature has 

slightly lower performance than using all the features on Georgia Tech Face 

Database. For Gabor filter, the best classification result is 86.40% is obtained using 

500 trees with 250 features compared to 86.80% (Table 4.7) when all the features are 

used. For OGPCI, the best recognition rate is 70.40% when computed using 500 

trees with 50 features, slightly lower than 71.60% which used all OGPCI features as 

in Table 4.7. This concludes that the random forest built using top features has 

almost the same performance as using full features with only 0.40% lesser in 

recognition rate. The features used are reduced to 25% of full features but can 

produces almost similar performance using full features.  
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The best matching score from both random forest computed using best 

features, Gabor Filter (500 trees with 250 features) and OGPCI (500 trees with 50 

features) are combined with fusion parameter, γ to form Complete Gabor Classifier 

(CGC). For random forest grown using full features, the best recognition rate of 

Gabor Filter (500 trees) and OGPCI (500 trees) are combined to form CGC. The rate 

of recognition of CGC for each fusion parameter, γ is shown in Table 4.10. 

 

Table 4.10: Complete Gabor Classifier on Georgia Tech Face Database 

Fusion Parameter, γ 
Recognition Rate (%) 

Using Best Features Using Full Features 

0.0 86.40 86.80 

0.1 86.80 87.60 

0.2 88.40 88.00 

0.3 89.20 89.60 

0.4 88.40 89.20 

0.5 88.40 86.40 

0.6 86.80 84.80 

0.7 84.00 83.60 

0.8 82.40 81.20 

0.9 76.00 75.20 

1.0 70.40 71.60 

 

 

As shown in Table 4.10, the best recognition rate of using Complete Gabor 

Classifier is when γ = 0.3. The recognition rate for best features is 89.20% and the 

recognition rate for full features is 89.60%. CGC exploits the information of Gabor 

magnitude and phase information by combining the Gabor filter and OGPCI 

matching score, so the rate of recognition is increased. This concludes that the hybrid 

of Gabor and OGPCI has better performance than using single method. Figure 4.13 

shows the classification result of using Gabor, OGPCI and Complete Gabor 

Classifier on Georgia Tech Face Database. 
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Figure 4.13: The Classification Result from Gabor, OGPCI and CGC on 

Georgia Tech Face Database (Gabor Misclassify) 

 

 

 Gabor Filter failed to classify the result correctly in the Figure 4.13, but 

OGPCI gives correct class output. Complete Gabor Classifier (CGC) classifies the 

test image correctly because CGC is the hybrid of Gabor and OGPCI. CGC exploits 

OGPCI phase information to give correct classification results. Thus, combining both 

Gabor and OGPCI improves the face recognition rate. Similarly, CGC also exploits 

Gabor magnitude to correct OGPCI misclassification. The result is shown at Figure 

4.14. 
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Figure 4.14: The Classification Result from Gabor, OGPCI and CGC on 

Georgia Tech Face Database (OGPCI Misclassify) 

 

 

 Gabor Filter classifies the test image correctly, whereas OGPCI classify the 

image wrongly. By combining both Gabor and OGPCI, CGC identifies the test 

image correctly by exploiting the information of Gabor magnitude to improve the 

performance. Figure 4.15 shows some of the correct classification results using 

Complete Gabor Classifier with Random Forest. 
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Figure 4.15: Complete Gabor Classifier on Georgia Tech Face Database 

(Correct Classification) 

 

 

Complete Gabor Classifier recognizes facial image with different 

illumination lighting and facial orientation as shown in the first column from the left 

in Figure 4.15. Besides, CGC performs correctly for the test subjects with extra 

features like wearing caps and glasses in the second column and fourth column from 

the left in Figure 4.15. Furthermore, CGC recognizes facial image with different 

expressions as shown in the third and fourth column. 

 

Therefore, Complete Gabor Classifier with Random Forest can performs well 

for facial images with different head orientation, different facial expression, different 

lighting illumination and addition features like glasses. CGC had achieved 89.60% 

recognition rate when using 500 trees with 1000 Gabor Filter features and 200 

OGPCI features. The result can be further improved by the addition of the number of 

features used in growing random forest. 
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4.5 Faces94 Database (Occluded) 

 

Faces94 was created by Dr Libor Spacek (2008) from University of Essex, similar 

with Faces96 database. Table 4.11 shows the information of Faces94 database. 

 

Table 4.11: Faces94 Database Information 

Characteristics Faces94 

Number of Individuals 153 

Image per Individual 20 

Resolution (pixels) 180 × 200 

Background Plain Green 

Head Scale None 

Head Turn, Tilt and Slant Very Minor Variation 

Position of Face Minor Translation 

Image Lighting Variation None 

Expression Variation Minor changes 

Format 24-bit colour JPEG 

 

 

For Faces94 database, 40 subjects are chosen randomly for growing random 

forest. Fifteen out of twenty images per individual are chosen as the training set, 

while the remaining 5 images as the testing set. For testing set, the images are 

modified by adding different size of black box as occlusion. The details of each 

occlusion box used on Faces94 are shown in Table 4.12. 

 

Table 4.12: Details of Occlusion Boxes on Faces94 Database 

Properties 
Occluded Box No. 

1 2 3 4 5 

Size (w × h), pixels 100 × 30 100 × 50 100 × 30 100 × 70 40 × 100 

Occlusion 

Percentage (%) 
8.33 13.89 8.33 19.44 11.11 

Occluded Region Eyes 
Nose + 

Mouth 
Mouth Forehead Half face 

 

 

Faces94 is used for the occlusion test because this database do not have much 

variation, such as complex background, various light illumination, head tilting which 

will affects the recognition rate. This experiment is to test the effectiveness of face 
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recognition algorithm on occluded images. Figure 4.16 shows the example of the 

training set of Faces94 database and Figure 4.17 shows the samples of the occluded 

testing image set. 

 

 

Figure 4.16: Sample Training Set for Faces94 Database Image 

 

 

Figure 4.17: Sample Testing Set for Faces94 Database Image (Occluded) 
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 Random forest is grown using Gabor filter and oriented Gabor phase 

congruency image (OGPCI) feature extraction methods on the training set of Faces94 

database. The number of trees to grow is set in the range of 60 to 100 with increment 

of 10. After the random forest is grown, the testing set (occluded image) is evaluated 

using the random forest built to obtain the classification performance. The result is 

shown in Table 4.13.  

 

Table 4.13: Gabor (1000 Features) and OGPCI (200 Features) on Faces94 

Database 

Number of Trees 
Recognition Rate (%) 

Gabor OGPCI 

60 96.50 84.00 

70 96.00 86.50 

80 96.50 88.50 

90 96.50 87.50 

100 95.00 87.50 

500 97.00 89.00 

 

 

As shown in the Table 4.13, when the trees are grown using 500 trees, the 

recognition rate does not improves significantly, with 0.50% improvement from the 

best results obtained from 60 - 100 trees. 

 

Even with occlusion, the best recognition rate of 96.50% is achieved by 

growing 80 trees for Gabor Filter. On the other hand, OGPCI achieve 88.50% 

recognition rate with 80 trees. The extracted features for OGPCI is lesser than Gabor 

filter, thus it has lower recognition rate. The random forest is rebuilt again using the 

top features to test whether the newly built forest can replicate the performance of 

random forest using all features. The results are tabulated in Table 4.14 for Gabor 

Filter and Table 4.15 for OGPCI. 
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Table 4.14: Recognition Rate for Gabor Features on Faces94 Database 

Number of Trees 
Number of Features 

50 100 150 200 250 

60 78.50 82.50 87.00 91.00 93.50 

70 77.50 83.00 88.00 91.00 93.00 

80 79.50 83.00 89.00 90.50 92.50 

90 79.50 83.00 89.00 91.50 93.00 

100 80.50 84.00 88.50 91.00 93.50 

 

 

Table 4.15: Recognition Rate for OGPCI Features on Faces94 Database 

Number of Trees 
Number of Features 

10 20 30 40 50 

60 56.00 67.00 65.50 66.00 72.50 

70 56.00 68.00 67.00 66.00 74.00 

80 56.50 67.50 67.50 67.00 74.00 

90 56.50 67.50 69.00 68.50 74.00 

100 55.00 66.50 68.00 69.00 75.50 

 

 

 The result shows that when the random forest is regrow using the top features. 

The recognition rate is much lower than using all features. The best performance for 

Gabor filter is 93.50% using 100 trees with 250 features, while 75.50% for OGPCI 

using 100 trees with 50 features. This is due to the features like eyes, nose or mouth 

region are occluded, which cause the feature information degraded. Hence, features 

which are lower importance are needed to classify the facial image correctly. These 

less important features are not chosen for the newly built forest, so random forest 

built using best features will has lower recognition rate when compared to random 

forest built using all features. 

 

The best matching score from both random forest are computed using the top 

features, Gabor Filter (100 trees with 250 features) and OGPCI (100 trees with 50 

features). These combined with fusion parameter, γ to form Complete Gabor 

Classifier (CGC). For random forest using the full features, Gabor filter with 80 trees 

and OGPCI with 80 trees are combined to form CGC. The rate of recognition is 

shown in Table 4.16 for each fusion parameter, γ. 
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Table 4.16: Complete Gabor Classifier on Faces94 Database 

Fusion Parameter, γ 
Recognition Rate (%) 

Using Best Features Using Full Features 

0.0 93.50 96.50 

0.1 94.00 96.50 

0.2 94.50 97.00 

0.3 94.50 98.50 

0.4 94.00 98.50 

0.5 92.50 97.50 

0.6 88.50 97.50 

0.7 86.50 95.50 

0.8 81.00 93.00 

0.9 78.00 90.50 

1.0 75.50 88.50 

 

 

In the Table 4.16, the best recognition rate of using Complete Gabor 

Classifier is 94.50% with fusion parameter, γ = 0.3. Complete Gabor Filter used the 

information of the two matching score which is Gabor filter and oriented Gabor 

phase congruency image (OGPCI) to form an improved face recognition system. By 

choosing optimum fusion parameter (γ = 0.3), the face recognition rate is improved. 

Figure 4.18 shows the matching results of applying CGC on Faces94 database. 
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Figure 4.18: Complete Gabor Classifier on Faces94 Database (Correct 

Classification) 

 

 

In Figure 4.18, Complete Gabor Classifier successfully recognize facial 

image which is partially occluded. Even though the important features like eyes, 

mouth and nose are occluded, the proposed technique still able to classify the 

occluded test subject correctly. 

 

 

 

4.6 Comparisons with State-of-the-art Algorithms 

 

The proposed method, Complete Gabor Classifier with Random Forest (CGC-RF) is 

compared with the existing state-of-the-art algorithm like Principle Component 

Analysis (PCA), Linear Discriminant Analysis (LDA) and Gabor-PCA. Table 4.17 

presents the recognition rate for each algorithm on different database. 
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Table 4.17: Comparison of Recognition Rate for Different Algorithm on 

Different Database 

Method Faces96 
Georgia Tech 

Face Database 
Faces94 

CGC-RF (all)* 100.00 89.60 98.50 

CGC-RF (best)** 100.00 89.20 94.50 

PCA 90.50 50.40 81.50 

LDA 100.00 65.60 95.00 

Gabor-PCA 89.00 55.60 100.00 

* CGC-RF (all) is Completer Gabor Classifier with Random Forest using all the extracted features 

** CGC-RF (best) is Completer Gabor Classifier with Random Forest using the top extracted features 

 

 Table 4.17 includes the comparisons of random forest computed using all 

features and best features for Gabor, oriented Gabor phase congruency image 

(OGPCI) and Complete Gabor Classifier (CGC). CGC-RF for all and best features 

had achieved 100.0% of recognition rates on Faces96, outperforming PCA and 

Gabor-PCA. For Georgia Tech Face Database, CGC-RF for full features has 

recognition rates of 89.60%, outperforming PCA, LDA and Gabor-PCA. CGC-RF 

for full features results in competitive recognition rates of 98.50% on Faces94 

database, higher than PCA and LDA methods, but lower than Gabor-PCA. Gabor-

PCA achieved 100.0% recognition rates for Faces94, performing well for occluded 

faces. CGC-RF has lower performance than Gabor-PCA because the number of tree 

used for CGC-RF grown is less (60 – 100 trees). To have competitive performance, 

Breiman (2001) suggested to grow the forest using 500 trees. By growing more trees, 

CGC-RF (the proposed algorithm) will match with the performance of Gabor-PCA. 

In summary, CGC-RF performs well on all databases which contain images with 

different head scales, different head positions, different illumination changes and 

occlusion, making it a robust face recognition system. 

 

 

 

 



 

 

 

 

 CHAPTER 5

 

 

 

5 CONCLUSION AND RECOMMENDATIONS 

 

 

 

5.1 Conclusions 

 

In conclusion, this project proposed a face recognition algorithm called Complete 

Gabor Classifier with Random Forest. Complete Gabor Classifier exploits the 

features from magnitude and phase response of Gabor Filter. Random forest is used 

as the learning framework of proposed method. The performance of the proposed 

technique is evaluated on three available face databases, namely Faces94, Faces96 

and Georgia Tech Face Database. At the end of the results, the proposed techniques 

shown promising performance on all the dataset and outperform several available 

face recognition method like PCA, LDA and Gabor-PCA. This concludes that the 

proposed face recognition techniques has shown robust performance on facial images 

with different head scales, different head positions, different lighting illumination, 

facial expression and partially occluded area. 

 

 

 

5.2 Recommendations 

 

Training the random forest takes substantial amount of time. The training time 

increases when the number of features used and tree grow increases. Thus the 

random forest is grown using only 1000 features for Gabor filter and 200 features for 

OGPCI. To have better performance result, the number of input features should 

increases to around 80000 features as suggested by Ghosal et al. (2009). 
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 The proposed algorithm is tested on facial image with different head scales, 

different head positions, illumination variation and occlusion image. The 

performance of the Complete Gabor Classifier can be further evaluated by testing on 

lower resolution images.  

 

 Face recognition approaches can be further studies by finding approaches on 

classifying gender based on facial images, estimating the age of subject, or even 

categorizing the race of person. 
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APPENDICES 

 

 

 

APPENDIX A: Matlab Coding 

 

 

 

main.m 

close all; 
% clear all;   % comment it if need debug, clear all will clear 

breakpoint 

  

  
%% Mode Setting 

  
% TRAIN, TRAINBEST, LOAD 
mode = 'LOAD';    

  
% Load Mode Setting 
% EVAL, TEST 
loadmode = 'TEST'; 

  
% 1 - Manual pick photo 
% 2 - Test all test sample 
% 3 - Face Detect 
testmode = 1; 

  
%% Main Body 

  
% Feature to-be-added : Feature, Trained Time 
disp('========================');  
switch mode 
    case 'TRAIN' 
        disp('Training Mode (Full)');  

         
        methodname = 'GABOR';         % GABOR, PHASE 
        psize = [64 64]; 
        databasename = 'faces96';     % faces94, faces96 
        selecttype = 'all'; 

         
        enablesave = 1; 
        showplot = 1; 

         
        opt.method = struct('name',methodname,'psize', psize); 
        opt.param.gabor = struct('Downsampling', 128); 
        opt.RF = 

struct('NTrees',500,'parallel',1,'RandStream',0,'SelectBest',0); 
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        opt.database = struct('name', 

databasename,'fileselect',selecttype); 

         
        opt.database = InitDatabase(opt.database); 
        rf = TrainRF(opt);    

         
    case 'TRAINBEST' 
        disp('Training Mode (Best)');  

         
        rf = loadRF('ggg_500'); 
        enablesave = 1; 
        showplot = 1; 

         
        opt.best = struct('NFeatures', 10); 
        rf.RF.NTrees = 60; 

         
        rf = TrainBestRF(rf,opt);   

                
    case 'LOAD'  
        disp('Loading Mode');  
        loadfile1 = 'ggg_500';          %Gabor 
        loadfile2 = 'pgg_500';           %Phase 

         
        rf = loadRF(loadfile1); 

         
        complete = 1; 
        if(complete) 
            rfg = rf; 
            rf = loadRF(loadfile2); 
            rfp = rf; 
        end 

         
        switch loadmode 
            case 'EVAL' 
                disp('Evaluation Load Mode'); 
                showplot = 1; 
            case 'TEST' 
                disp('Testing Mode'); 

  
                showplot = 0; 
                if (complete) 
                    result = testRF(rfg,rfp,testmode); 
                else 
                    result = testRF(rf,testmode); 
                end 
            otherwise 
        end 

       
    otherwise 
end 

  
%% Plot Information 

  
if(showplot) 
    display.show = 

struct('ooberror',0,'featureimp',1,'fracinbag',0,... 
                

'coordinate',0,'outlier',0,'erroreachtree',0,'eigen',0,'classmargin'

,0,'recognitionrate',0); 
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    display.param = struct('OutlierThreshold', 10); 

  
    DisplayRF(rf,display); 
end 

  
%% Save Option 

  
if(strcmp('TRAIN',mode) || strcmp('TRAINBEST',mode)) 
    if(enablesave) 
        saveRF; 
    end 
end 

  
%% END 

  
disp('DONE'); 
disp('========================');  

 

 

InitDatabase.m 
function [ database ] = InitDatabase( database ) 
%INITDATABASE Summary of this function goes here 
%   Detailed explanation goes here 

  

  
traindir = strcat('database\train\',database.name); 

  
switch database.fileselect 
    case 'all' 
        temp = dir(traindir); 
        NSample = length(temp); 
        NSample = NSample-2; 

         
        SampleInfo = zeros(NSample,2); 
        SampleList = cell(NSample,1); 

  
        for i=1:NSample 
            SampleInfo(i,1) = i; 
            SampleName = temp(i+2).name; 
            SampleList{i} = SampleName; 
            TrainFiles = dir([traindir,'\',SampleName,'\*.jpg']); 
            SampleInfo(i,2) = 

length(TrainFiles(not([TrainFiles.isdir]))); 
        end 

  

  
    otherwise 
end 

  

  
database.dir = traindir; 
database.NSample = NSample; 
database.SampleInfo = SampleInfo; 
database.SampleList = SampleList; 

  
end 
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loadRF.m 

 

function [ rfData ] = loadRF(RFname ) 

  
if nargin == 0 
    mode = 'UI'; 
else 
    mode = 'DEFINED'; 
end 

  
switch mode 

     
    case 'UI' 
        loadfile = uigetfile('*.mat', 'Select load file' ); 

         
    case 'DEFINED' 
        loadfile = RFname; 
end 

  
loadcommand = ['load ' loadfile]; 
eval(loadcommand); 

  
fprintf('Load %s file completed \n',loadfile); 
rfData = rf; 
end 

 

 

TrainRF.m 

function [ rf ] = TrainRF( opt ) 
%INIT Summary of this function goes here 
%   Detailed explanation goes here 

  
%% Initialization of rf 

  
rf.method = opt.method; 
rf.param = opt.param; 
rf.database = opt.database; 
rf.RF = opt.RF; 

  

  
%% Parallel Processing Initialization 

  
EnableParallel = opt.RF.parallel; 

  
if(EnableParallel) 
    Options = statset('UseParallel','always', 

'UseSubstreams','always'); 
    if(~(matlabpool('size') > 0))     % Check if matlabpool is 

running 
        matlabpool local 2;     % Run matlabpool if it is not 

started 
    end 
else 
    Options = statset('UseParallel','never', 

'UseSubstreams','always'); 
    if(matlabpool('size') > 0)     % Check if matlabpool is running 
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        matlabpool close; 
    end 
end 

  

  
%% RandStream Initialization 

  
s = RandStream('mlfg6331_64' ,'Seed',0); 
RandStream.setGlobalStream(s); 
stream = RandStream.getGlobalStream; 
reset(stream); 

  
rf.RF.paralleloption = Options; 

  
%% Feature Extraction Method 

  
Method = rf.method.name; 
psize = rf.method.psize; 

  
if (strcmp(Method,'LBP')) 
    mapping=getmapping(8,'u2');  
    rf.method.mapping = mapping; 
end 

  
switch Method 
    case 'LBP' 
        disp('LBP'); 
    case 'GABOR'        
        filter_bank = construct_Gabor_filters_PhD(8, 5, psize); 
        rf.method.filter_bank = filter_bank; 
        disp('GABOR'); 
    case 'PHASE' 
        filter_bank = construct_Gabor_filters_PhD(8, 5, psize); 
        rf.method.filter_bank = filter_bank; 
        disp('PHASE'); 
    otherwise 
end 

  

  
%% Load Database & Feature Extraction 

  
fprintf('Train Database : %s \n',opt.database.name); 

  

  
NSample = opt.database.NSample; 
traindir = opt.database.dir; 
SampleList = opt.database.SampleList; 

  
data_matrix = []; 
ids = []; 
totalsample = 0; 

  
for i=1:NSample 
    NSampleEach = opt.database.SampleInfo(i,2); 
    TrainFiles = dir([traindir,'\',SampleList{i},'\*.jpg']); 
    for j=1:NSampleEach 
        str = 

strcat(traindir,'\',SampleList{i},'\',TrainFiles(j).name); 



69 

         
        X = imread(str); 
        if (length(size(X)) == 3) 
            X = rgb2gray(X);  
        end 

  
        feature_vector = FeatureExtract(Method,X,rf); 

         
        data_matrix = [data_matrix,feature_vector]; 
        ids = [ids;i]; 
        totalsample = totalsample+1; 
    end 
end 

  
data_matrix = double(data_matrix'); 

  

  
rf.database.data_matrix = data_matrix; 
rf.database.ids = ids; 
rf.database.totalsample = totalsample; 

  
disp('Finished Database Loading'); 

  
%% Random Forest Training 

  
disp('Training Random Forest'); 

  
NTrees = opt.RF.NTrees; 
% NFeatures = opt.RF.NFeatures; 

  
tic  
b = TreeBagger(NTrees,data_matrix,ids,... 
    'surrogate','off','oobvarimp', 'on','Options', Options ); 
toc 

  
rf.b = b; 

  
end 

  

 

 

TrainBestRF.m 

 

function [ rf ] = TrainBestRF( rf,opt ) 
%TRAINBESTRF Summary of this function goes here 
%   Detailed explanation goes here 

  
%% Parallel Processing Initialization 

  
EnableParallel = rf.RF.parallel; 

  
if(EnableParallel) 
    Options = statset('UseParallel','always', 

'UseSubstreams','always'); 
    if(~(matlabpool('size') > 0))     % Check if matlabpool is 

running 
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        matlabpool local 2;     % Run matlabpool if it is not 

started 
    end 
else 
    Options = statset('UseParallel','never', 

'UseSubstreams','always'); 
    if(matlabpool('size') > 0)     % Check if matlabpool is running 
        matlabpool close; 
    end 
end 

  
rf.RF.paralleloption = Options; 

  
%% RandStream Initialization 

  
s = RandStream('mlfg6331_64' ,'Seed',0); 
RandStream.setGlobalStream(s); 
stream = RandStream.getGlobalStream; 
reset(stream); 

  
rf.RF.paralleloption = Options; 

  
%% Initialization 

  
NTrees = rf.RF.NTrees; 
NFeatures = opt.best.NFeatures; 
data_matrix = rf.database.data_matrix; 
ids = rf.database.ids; 
bf = rf.b; 

  
%% Training 

  

  
[~, sort_idx] = sort(bf.OOBPermutedVarDeltaError,'descend'); 
best_idx = sort_idx(1:NFeatures); 

  
tic 
bs = TreeBagger(NTrees,data_matrix(:,best_idx),ids,... 
'surrogate','off','oobvarimp','on','Options', Options); 
toc 

  
rf.RF.best_idx = best_idx; 
rf.RF.SelectBest = 1; 
rf.b = bs; 

  
end 
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FeatureExtract.m 

function [ feature_vector ] = FeatureExtract( method,im,rf) 
%FEATUREEXTRACT Summary of this function goes here 
%   Detailed explanation goes here 

  
psize = rf.method.psize; 

  
switch method 
    case 'LBP' 
        X = imresize(im, psize); 
        mapping = rf.method.mapping; 
        feature_vector = (lbp(X,1,8,mapping,'h'))'; 
    case 'GABOR' 
        DownSamplingFactor = rf.param.gabor.Downsampling; 
        X = double(im); 
        X = imresize(X, psize,'bilinear'); 
        filter_bank = rf.method.filter_bank; 
        feature_vector = filter_image_with_Gabor_bank_PhD... 
            (X,filter_bank,DownSamplingFactor);  
    case 'PHASE' 
        DownSamplingFactor = rf.param.gabor.Downsampling; 
        X = double(im); 
        X = imresize(X, psize,'bilinear'); 
        filter_bank = rf.method.filter_bank; 
        [pc,EO] = produce_phase_congruency_PhD(X,filter_bank); 
        feature_vector = resize_pc_comps_PhD(pc, 

DownSamplingFactor); 
    otherwise 
end 

  
end 

  

 

 

TestRF.m 

function [ result ] = testRF(rf1, rf2, mode ) 
%TESTRF Summary of this function goes here 
 

complete = 0; 
rf = rf1; 

  
if nargin == 2 
    testmode = rf2; 

     
elseif nargin == 3 
    rfp = rf2; 
    testmode = mode; 
    complete = 1; 
    para=0.3; 
end 

  

  
%% Display database trained 

  
DatabaseName = rf.database.name; 
fprintf('Database Name : %s\n',DatabaseName); 
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%% Best Feature Selection 
b = rf.b; 

  
if (complete) 
    b1 = rfp.b; 
end 

  
%% Initialization 

  
Method = rf.method.name; 

  
if (complete) 
    Method1 = rfp.method.name; 
end 
RootDir = pwd; 

  
%% Test Operation 

  
% 1 - Manual pick photo 
% 2 - Test all test sample 
% 3 - Face Detect Mode 
switch testmode 
    case 1 
        %% Manual Mode 

         
        graph = 0; 

         
        if(graph) 
            if (complete) 
                Row = 4; 
            else 
                Row = 3; 
            end 
        else 
            Row = 2; 
        end 

         
        disp('Manual'); 

         
        TrainPath = strcat(RootDir, '\database\train\', 

DatabaseName,'\'); 
        TestPath = strcat(RootDir, '\database\test\', 

DatabaseName,'\'); 
        [TestFile, PathName] = uigetfile(strcat(TestPath,'\*.jpg'), 

'Select test file' ); 
        TestDir = strcat(PathName, TestFile); 
        TrueClass = PathName((length(TestPath)+1):(length(PathName)-

1)); 

         
        for i=1:rf.database.NSample 
            if strcmp(TrueClass,rf.database.SampleList{i}) 
                TrueLabel = i; 
            end 
        end 

         
        ori = imread(TestDir); 
        if (length(size(ori)) == 3) 
            X = rgb2gray(ori);  
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        end 

         
        feature_vector = FeatureExtract(Method,X,rf); 
        feature_vector = feature_vector'; 

         
        if (complete) 
            feature_vector1 = FeatureExtract(Method1,X,rfp); 
            feature_vector1 = feature_vector1'; 
        end 

         
        if (rf.RF.SelectBest) 
            feature_vector = feature_vector(:,rf.RF.best_idx);  
            if (complete) 
                feature_vector1 = 

feature_vector1(:,rfp.RF.best_idx);  
            end 
        end 

         
        tic 
        [Y,scores,stdevs] = predict(b,feature_vector); 

         
        if (complete) 
            [Y1,scores1,stdevs] = predict(b1,feature_vector1); 
        end 
        toc 

         
        figure; 
        if (complete) 
            subplot(Row,1,1); 
        else 
            subplot(Row,1,1);    
        end 
        imshow(ori); 
        title('Testing Image'); 

         
        label = rf.database.SampleList(str2num(cell2mat(Y))); 
        Line1 = ['True Class : ' TrueClass '  (' num2str(TrueLabel) 

')' ]; 

  
        if (complete) 
            finalscores = (1-para)*scores+para*(scores1); 
            [FinalSc, FinalIdx] = max(finalscores) 
            label = rf.database.SampleList(FinalIdx); 
            Line2 = ['Predict Class : ' char(label) '  (' 

num2str(FinalIdx) ')' ]; 

             
            if (graph) 
                subplot(Row,1,3); 
                bar(scores); 
                title('Prediction Score for Each Class (GABOR)'); 
                xlabel('Class'); 
                ylabel('Prediction Scores');  

  
                subplot(Row,1,4); 
                bar(scores1); 
                title('Prediction Score for Each Class (PHASE)'); 
                xlabel('Class'); 
                ylabel('Prediction Scores');  
            end 
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            StoreScore = [scores;scores1]; 
        else 
            Line2 = ['Predict Class : ' char(label) '  (' char(Y) 

')' ]; 

             
            if (graph) 
                subplot(Row,1,3); 
                title('score'); 
                bar(scores); 
                title('Prediction Score for Each Class'); 
                xlabel('Class'); 
                ylabel('Prediction Scores');  
            end 
            StoreScore = scores; 
        end 

         
        if (complete) 
            subplot(Row,1,1); 
        else 
            subplot(Row,1,1);    
        end 
        MatchImgPath = strcat(TrainPath,label,'\'); 
        DirImg = dir([char(MatchImgPath), '\*.jpg']); 
        MatchImg = strcat(MatchImgPath,DirImg(1).name); 

         
        subplot(Row,1,2);  
        imshow(imread(char(MatchImg))); 
        title('Match Image'); 

         
        xmsg = {Line1 ; Line2;' '}; 
        xlabel(xmsg); 

         

  

         
    case 2 
        %% Auto TestMode 
        para=0:0.1:1.0; 

         
        disp('Auto Test Mode'); 

         
        NSample = rf.database.NSample; 
        SampleList = rf.database.SampleList; 

  
        TestPath = strcat(RootDir, '\database\test\', 

DatabaseName,'\');      
        TestDir = dir(TestPath); 
        TestDir = TestDir([TestDir.isdir]); 
        TestDir(strncmp({TestDir.name}, '.', 1)) = []; 

         
        NTest = length(TestDir); 
        NRemoveTest = 0; 
        TestLabel = []; 
%         TestName = []; 

         
        % Compare TestDir with Train Database, remove untrained test 

dir 
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        for i=1:NTest 
            found = 0; 
            for j=1:NSample 
                if strcmp(TestDir(i-NRemoveTest).name,SampleList{j}) 
                    TestLabel = [TestLabel; j]; 
                    found = 1; 
                    break; 
                end 
            end 

             
            if (~found) 
                TestDir(i) = []; 
                NRemoveTest= NRemoveTest+1; 
            end 
        end 

         
        NVerifiedSample = length(TestLabel); 
        TotalTest = 0; 
        StorePredict = []; 
        StoreScore = []; 
        StoreScore1 = []; 
        Error = 0; 

         
        % Compute the Total Number 
        tic 
        for i=1:NVerifiedSample 
            SampleDir = strcat(TestPath, TestDir(i).name); 
            InfoTestDir = dir([SampleDir , '\*.jpg']); 
            NumTestEach = 

length(InfoTestDir(not([InfoTestDir.isdir]))); 
            for j=1:NumTestEach 
                str = strcat(SampleDir,'\',InfoTestDir(j).name); 

         
                X = imread(str); 
                if (length(size(X)) == 3) 
                    X = rgb2gray(X);  
                end 

                 
                feature_vector = FeatureExtract(Method,X,rf); 
                feature_vector = feature_vector'; 

                 
                if (complete) 
                    feature_vector1 = FeatureExtract(Method1,X,rfp); 
                    feature_vector1 = feature_vector1'; 
                end 

  
                if (rf.RF.SelectBest) 
                    feature_vector = 

feature_vector(:,rf.RF.best_idx); 
                    if (complete) 
                        feature_vector1 = 

feature_vector1(:,rfp.RF.best_idx);  
                     end 
                end 

                 
                [Y,scores] = predict(b,feature_vector); 

                 
                PredictClass = str2num(cell2mat(Y)); 

                 



76 

                if (complete) 
                    [Y1,scores1] = predict(b1,feature_vector1); 
                end 

                 
                if  (PredictClass ~= TestLabel(i)) 
                    Error=Error+1; 
                end 

                 
                StoreResult= [TestLabel(i),PredictClass]; 
                StorePredict = [StorePredict; StoreResult]; 
                StoreScore = [StoreScore; scores]; 
                TotalTest = TotalTest +1; 

                
                if (complete) 
                    StoreScore1 = [StoreScore1; scores1]; 
                end 
            end 
        end 
        toc 

         
        if (complete) 
            StoreRec = []; 
            for i=1:length(para) 
                y = para(i); 
                finalscores = (1-y)*StoreScore+y*(StoreScore1); 
                [FinalSc, FinalIdx] = max(finalscores,[],2); 
                temp = StorePredict(:,1) - FinalIdx; 
                correctIdx =find(temp==0); 
                Recognition_Rate = 

length(correctIdx)/length(StorePredict(:,1)); 
                StoreRec = [StoreRec; Recognition_Rate]; 
                AllPredict{i} = [StorePredict(:,1) FinalIdx]; 
            end 
            result.StoreRec = StoreRec; 
            result.scores1 = StoreScore1; 
            result.predicttable = AllPredict; 
        else 

             
            Recognition_Rate = (TotalTest-Error)/TotalTest 

         
            result.predicttable = StorePredict; 
        end 

         
    case 3 
        %% FaceDetect Mode 

         
        disp('FaceDetect Mode'); 

         
        addpath('C:\OpenCV2.4\mexopencv-master'); 
        classifier = 

cv.CascadeClassifier('C:\OpenCV2.4\data\haarcascades\haarcascade_fro

ntalface_alt2.xml'); 

         
        TestPath = strcat(RootDir,'\*.jpg'); 
        [TestFile, PathName] = uigetfile(TestPath, 'Select test 

file' ); 
        TestDir = strcat(PathName, TestFile); 

         
        ori = imread(TestDir); 
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        if (length(size(ori)) == 3) 
            gray = rgb2gray(ori);  
        end 

         
        histgray = cv.equalizeHist(gray); 
        boxes = 

classifier.detect(histgray,'ScaleFactor',1.20,'MinNeighbors',2,'MinS

ize',[24,24]); 

         
        figure, 
        imshow(ori); 

         
        count = 0; 

         
        for i = 1:numel(boxes) 
            

rectangle('Position',boxes{i},'EdgeColor','g','LineWidth',2); 
            CropImg{i} = imcrop(gray,boxes{i}); 
            count = count+1; 
        end   

           
        for i = 1:count 

             
            X = CropImg{i}; 

  
            feature_vector = FeatureExtract(Method,X,rf); 
            feature_vector = feature_vector'; 

  
            if (rf.RF.SelectBest) 
                feature_vector = feature_vector(:,rf.RF.best_idx);  
            end 

  
            [Y,scores,stdevs] = predict(b,feature_vector); 

  
            label{i} = rf.database.SampleList(str2num(cell2mat(Y))); 
            textstr = [char(label{i}) ' (' char(Y) ')']; 
            text(boxes{i}(1),boxes{i}(2), textstr, 

'FontSize',10,'BackgroundColor',[.7 .9 .7]); 
        end 
        StoreScore = []; 
    otherwise 
end 

  
result.testmode = testmode; 
result.scores = StoreScore; 

  
end 
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DisplayRF.m 

 

function [rf] = DisplayRF(rf,display) 
%DISPLAYRF Summary of this function goes here 
%   Detailed explanation goes here 

  
% if (rf.RF.SelectBest) 
%     b = rf.bs; 
%     disp('Display Selected Feature RF Information'); 
% else 
%     b = rf.bf; 
%     disp('Display Full RF Information'); 
% end 

  
b = rf.b; 

  
show = display.show; 
param = display.param; 

  
b = fillProximities(b); 

  
% OOBError 

  
if (show.ooberror) 
    figure; 
    plot(oobError(b)); 
    xlabel('number of grown trees') 
    ylabel('out-of-bag classification error') 
end 

  
% Feature Importance 

  
if (show.featureimp)figure; 
    bar(b.OOBPermutedVarDeltaError); 
    xlabel('Feature Number'); 
    ylabel('Out-Of-Bag Feature Importance'); 

     
end 

  
% Fraction In-Bag Observation 

  
if (show.fracinbag) 
    finbag = zeros(1,b.NTrees); 
    for t=1:b.NTrees 
        finbag(t) = sum(all(~b.OOBIndices(:,1:t),2)); 
    end 
    finbag = finbag / size(b.X,1); 
    figure; 
    plot(finbag); 
    xlabel('Number of Grown Trees'); 
    ylabel('Fraction of in-Bag Observations'); 
end 

  
% Outlier 

  
if (show.outlier) 
    figure; 
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    hist(b.OutlierMeasure); 
    xlabel('Outlier Measure'); 
    ylabel('Number of Observations'); 
    fprintf('List of Outlier > %d:\n',param.OutlierThreshold); 
    b.Y(b.OutlierMeasure>param.OutlierThreshold) 
end 

  
% Class Margin 

  
if (show.classmargin) 
    figure; 
    plot(oobMeanMargin(b)); 
    xlabel('Number of Grown Trees'); 
    ylabel('Out-of-Bag Mean Classification Margin'); 
end 

  
% Error Each Tree 

  
if (show.erroreachtree) 
    figure; 
    bar(error(b,b.X,b.Y,'mode','individual')); 
    xlabel('Number of Grown Trees'); 
    ylabel('Classification Error'); 
end 

  
% Recognition Rate 

  
if (show.recognitionrate) 
    err = oobError(b); 
    rec_rate = (1-err(b.NTrees))/1 

  
end 

  

  

  

  

  

  

  

 

 


