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ABSTRACT 

 

 

PRIVACY PRESERVING MINUTIA-BASED FINGERPRINT 

TEMPLATE PROTECTION TECHNIQUES 
 

 

Jin Zhe 

 

 

 

 

Modern cryptosystems rely on password or token to generate keys. 

This leads to authenticate the key instead of the user. Biometric technology is 

likely to provide a new level of security to authenticate the user for various 

applications. Yet if the stored biometric template is compromised, invasion of 

user privacy is inevitable. For instance, an approximation of fingerprint image 

can be reconstructed with high accuracy using existing technologies if the 

corresponding set of fingerprint minutia is revealed to an adversary. 

Furthermore, since biometric is irreplaceable and irrevocable throughout the 

individual’s lifetime, such an invasion implies a permanent loss of identity. 

Due to these inextricable mazes, a biometric system with protected template is 

required immediate attention. 

 

In this doctoral research, a study of biometric template protection has 

been carried out at two major approaches of biometric template protection, i.e. 

cancellable biometric and biometric cryptosystems. To improve the existing 

cancellable biometrics for fingerprint, two minutiae-based cancellable 

fingerprint template generation methods, namely 2-dimensional random 

projected minutiae vicinity decomposition (2D-RP-MVD), randomized graph-

based hamming embedding (RGHE) are proposed.  



iv 

 

Other than cancellable templates proposed in this thesis, another 

contribution is dedicated to biometric cryptosystems. Firstly, a complete point-

to-string conversion framework is proposed to transform minutiae set to an 

ordered fixed-length representation that is useful for biometric cryptosystems. 

As a proof-of-concept, the implementation using the generated binary 

templates in fuzzy commitment scheme is demonstrated. Secondly, a new 

biometric key binding construct along with cancellable transforms is proposed 

without using error correction codes (ECCs). Since ECC is abandoned, the 

security, privacy threat as well as limitations (e.g. security-performance trade-

off) associated with ECC no longer exist. 

 

Another importance of this thesis is devoted to the security and privacy 

analysis on the proposed methods. For instance, the proposed cancellable 

templates (i.e. 2D-RP-MVD and RGHE) are analyzed rigorously to justify the 

feasibility of non-invertibility and cancelability. In the point-to-string 

conversion framework, the randomness and the correlation between the binary 

templates generated from the proposed method are examined through the 

entropy estimation using second-order dependency tree and statistical 

independence test. While, in the proposed key binding construct, the security-

performance trade-off, security and the privacy leakage via some major attacks 

like Attack via Record Multiplicity (ARM), statistical attack, Surreptitious 

Key-Inversion Attack (SKI) are analyzed experimentally. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

Biometrics has been integrated in large-scale personal identification 

systems and the rapid proliferation of biometric recognition applications is a 

foreseeable trend in future. The foreseen pervasiveness of biometric 

authentication systems speeds up the growing biometric databases. However, 

if biometric databases breach is occurred, severe influences of biological 

nature of human are concerns. Particularly, the damage to person’s privacy 

and security is permanent due to the irrevocability and irreplaceability nature 

of human traits. Therefore, it urgently calls for an efficient and effective 

mechanism to protect the growing biometric databases. Unfortunately, the 

traditional data protection mechanism, e.g. encryption/decryption is infeasible 

indeed, which is attributed to the large variety of biometric samples in each 

acquisition. The unsuitability of traditional data protection mechanism 

motivates the creation of a new research area, namely biometric template 

protection that is devoted to create feasible solutions for protecting data with 

large variety such as fingerprint data. Although, a variety of techniques have 

been proposed in literature to address biometric template protection, there is 

no agree-upon solutions.  
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In this chapter, an overview of biometrics and fingerprint is first 

presented in Section 1.1. It covers the backgrounds of biometrics and 

fingerprint, fingerprint databases, and metrics of performance evaluation for 

generic biometric systems. The security and privacy of biometric systems is 

given in Section 1.2. This section includes the vulnerabilities of the biometric 

system, attackable points over the biometric system and categorization of 

biometric template protection approaches. In Section 1.3, the problem 

statements, including generic problems in biometric templates and specific 

problems in fingerprint minutiae-based templates, are presented. Apart from 

that, the objectives and contributions of this thesis are provided in Section 1.4, 

Section 1.5 respectively. Finally, the organization of this thesis is given in 

Section 1.6. 

 

1.1 Backgrounds of Biometrics and Fingerprints 

 In modern society, various security-demanded applications require a 

reliable and accurate identity verification/identification mechanism, such as 

door access system, country border crossing, e-commerce transactions etc. 

Traditionally, the knowledge of secrets like password is commonly used to 

authenticate the identity of a person. However, such authentication mechanism 

provides inherent and inevitable disadvantages that would potentially breach 

the security of applications. For instance, password is intended to restrict the 

use of protected resource. However, password can be easily shared to the 

unauthorized individuals; thus the intended security is compromised. 

Furthermore, it is annoying that password can be forgotten by a legitimate user 

who particularly owns multiple passwords across various applications. This is 
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also known as “too-many-passwords” issue. To be worse, certain applications 

enforce the rule that password needs to be changed on a regular basis, which is 

further inconvenienced users. Moreover, simple password can be fortuitously 

guessed by an adversary. Splash-Data, a password management company, 

reported that “password”, “123456”, and “12345678” are the top three most 

common passwords set by the users in 2012 (SplashData, 2012). Therefore, a 

dilemma can be observed that simple passwords are easy to be guessed while 

complex passwords are hard to remember. 

 

1.1.1 Biometrics 

 Biometric technology gives strong compensations to the knowledge-

based authentication. Firstly, biometric identifiers (e.g. fingerprint, iris) are of 

great convenient to the user as it is always in hand. Secondly, biometric 

identifiers would never be forgotten or lost by the legitimate user. Thirdly, 

biometric identifiers are not as easy to be shared or forged as password. In 

fact, using biometrics as means for identity authentication is a rather nature 

thought from the point of view of history. In the later nineteenth century, 

Alphonse Bertillon, a French policeman developed the first set of tools using 

anatomical traits including head length, head breadth, length of middle finger 

etc., collectively called Bertillon system, to identify repeat offenders 

(Bertillonage, 2011). Later, Faulds (1880), Herschel (1880) and Galton (1889) 

discovered that the ridge pattern in our fingertips is useful for identifying an 

individual. Based on their discoveries, fingerprint matching systems are 

developed to replace the inefficient Bertillon system. The fingerprint matching 

systems initially were manually operated by the experts. Until 1963, Mitchell 
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Trauring (Trauring, 1963) published the first research paper on automated 

fingerprint matching in journal Nature. Following Trauring’s work, other 

biometric traits are also used for automated matching system outlined on 

publications, such as voice (Pruzansky, 1963), face (Bledsoe, 1966), signature 

(Mauceri, 1965), hand geometry (Ernst, 1971), and iris (Daugman, 1993). 

With the great efforts paid by the aforementioned pioneers, the foundations of 

biometric recognition
1
 systems have been well established and biometric 

recognition has now become an integral part of many large-scale personal 

identification systems around the world. 

 

1.1.2 Fingerprints 

Among the various biometric modalities, fingerprint is probably the 

most widely used biometric trait for the biometric-based authentication 

systems (Maltoni et al., 2009). This may be largely attributed to its maturity. 

Firstly, fingerprint has been used in identifying people for over a century and 

the validity of fingerprint as means of authentication has been well established 

(Maltoni et al., 2009). Secondly, fingerprint recognition is one of the leading 

biometric-based technologies in the current market share. Further, The Wall 

Street Journal (The Wall Street Journal, 2014) forecasts that fingerprint 

recognition will continue to dominate the biometric markets in the foreseeable 

future (Krivokuća, 2014). The work presented in this thesis is based on the 

fingerprint modality. 

 

                                                           
1
 Biometric recognition refers to the automated recognition of individuals based on their biological and 

behavioural characteristics such as fingerprint, face, iris and voice (Jain et al., 2011). 
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Maltoni et al. (2009) classifies fingerprint features into three levels: 

namely level 1 (i.e. Global level), level 2 (i.e. Local level), and level 3 (i.e. 

Very-fine level). The features at the global level are based on the pattern of 

fingerprint ridge line flow, typically singular points (e.g. loop and delta) and 

coarse ridge shape (i.e. Arch, Loop and Whorl). Global level features are 

useful for fingerprint classification and indexing but less discriminative power 

for accurate matching (Maltoni et al., 2009). Features at local level are local 

ridge characteristics, namely minute details. There are two most prominent 

ridge characteristics, called ridge bifurcations and ridge termination. 

Generally, fingerprint minutiae are stable and robust to fingerprint impression 

conditions (Maltoni et al., 2009). Features at very-fine level refer to the intra-

ridge details including width, shape, curvature, edge contours of ridges etc. 

The most significant very-fine level feature is the finger sweat pores. 

However, very-fine level features can only be extracted from high-resolution 

(e.g. 1000 dpi) fingerprint image with good quality and unavailable to the 

most practical applications.  

 

 Each minutia can be associated with a number of attributes, including 

location coordinates, orientation, type (e.g. ridge termination or ridge 

bifurcation), a weight based on the quality of the fingerprint image in the 

neighbourhood of each minutia, and so on. However, from the common 

practices, only two attributes are used to represent a minutia: x- and y-

coordinates pertaining to the location of minutia in the fingerprint; the 

orientation 𝜃 of the ridge line to which the minutia is attached (Krivokuća, 

2014). Following the common practices, in this thesis, a minutia is represented 
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as (𝑥, 𝑦, 𝜃), i.e. coordinates x and y, and orientation 𝜃. Fig. 1.1 illustrates the (x, 

y) coordinates and the orientation, θ, of a bifurcation and a termination. 

 

 
(a) 

 
(b) 

 

Fig. 1.1: The x- and y-coordinates and orientation, 𝜃, of (a) a termination, and 

(b) a bifurcation. (Images obtained from Maltoni et al., 2009). 

 

1.1.3 Fingerprint Recognition System 

 Fig. 1.2 illustrates the architecture of the generic fingerprint 

recognition system. A generic fingerprint recognition system consists of four 

components: fingerprint sensor, feature extraction, storage and matcher. 

Sensor scans user’s fingerprint and passes the acquired fingerprint image to 

feature extractor. The feature extractor extracts the salient features from the 

fingerprint image and converts it into pre-defined format, called template. 

Traditionally, the template contains x- and y-coordinates location and 

orientation 𝜃 of all the minutiae extracted from fingerprint image, represented 

as 𝑚𝑖 = (𝑥𝑖, 𝑦𝑖, 𝜃𝑖), 𝑖 = 1,2 … , 𝑁, N is the total number of minutia extracted 

from the fingerprint image. 
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Fig. 1.2: The architecture of the generic fingerprint recognition system. 

 

In the enrolment stage (indicated by the dash orange arrows in Fig. 

1.2), user’s minutiae are extracted from fingerprint image and stored in the 

system database. The minutiae template is linked to the user’s corresponding 

identity. On the other hand, at the authentication stage (indicated by the solid 

red arrows in Fig. 1.2), a user provides a query sample of fingerprint to the 

sensor and the processes of image acquisition and minutia extraction are 

carried out. It is noted that the processes of image acquisition and minutia 

extraction are identical to the processes during the enrolment stage. The 

matcher then compares the minutiae features extracted from the query image 

to the minutiae template stored in the database associated with the claimed 

user identity and computes a numerical matching score. The resultant 

matching score is matched to the pre-defined threshold for successful 

authentication based on whether the score is above or below the pre-defined 

threshold. 
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1.1.4 Fingerprint Databases 

 In this thesis, the proposed methods are evaluated using eight well-

known fingerprint databases available in public domain, namely FVC2002 

(“The Second Fingerprint Verification Competition”, 2002), DB1 set A, DB2 

set A, DB3 set A, DB4 set A, and FVC2004 (“The Third Fingerprint 

Verification Competition”, 2004), DB1 set A, DB2 set A DB3 set A, DB4 set 

A. In general, these databases are established as a common benchmark 

allowing developers to unambiguously compare their algorithms (“The Third 

Fingerprint Verification Competition”, 2004). Each dataset contains 100 users 

and each user has eight (8) samples, hence there are 800 (100 × 8) fingerprint 

images in total. Table 1.1 summarizes the characteristics of the eight datasets. 

Fig. 1.3 illustrates some samples of FVC2002 and FVC2004 fingerprint 

images. Each row consists of three samples of fingerprint images that belong 

to the same user. 

 

Table 1.1: Summary of characteristics for FVC2002 and FVC2004 databases. 

Databases Sensor Type Image Size Amount Resolution 

FVC2002 

DB1 

Optical Sensor 

“TouchView II” 

388 ×374 

(142 Kpixels) 
100×8 500 (dpi) 

FVC2002 

DB2 

Optical Sensor 

“FX2000” 

296 ×560  

(162 Kpixels) 
100×8 569 (dpi) 

FVC2002 

DB3 

Capacitive 

sensor "100 SC" 

by Precise 

Biometrics 

300 × 300  

(88 Kpixels) 
100×8 500 (dpi) 

FVC2002 Synthetic 288 × 384 100×8 About 500 
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DB4 fingerprint 

generation 

(108 Kpixels) (dpi) 

FVC2004 

DB1 

Optical Sensor 

“V300” 

640 × 480  

(307 Kpixels) 
100×8 500 (dpi) 

FVC2004 

DB2 

Optical Sensor 

“U are U 4000” 

328 ×364  

(119 Kpixels) 
100×8 500 (dpi) 

FVC2004 

DB3 

Thermal 

sweeping Sensor 

300 × 480 

(144 Kpixels) 
100×8 512 (dpi) 

FVC2004 

DB4 
SFinGe v3.0 

288 × 384 

(108 Kpixels) 
100×8 

About 500 

(dpi) 

 

 

   

   

http://bias.csr.unibo.it/research/biolab/sfinge.html
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Fig. 1.3:  Samples of fingerprint images in FVC2002 and FVC2004. 

 

1.1.5 Metrics of Performance Evaluation 

In a generic biometric system, the most commonly used performance 

indicators are False Rejection Rate (FRR) and False Acceptance Rate (FAR). 

FRR refers to the probability that the system fails to detect a match between 

the input pattern and a matching template in the database. It measures the 

percent of valid inputs which are incorrectly rejected (Jain et al., 2011). FRR 

can be formulated in eq. (1.1). On the other hand, FAR refers to the 

probability that the system incorrectly matches the input pattern to a non-

matching template in the database. It measures the percent of invalid inputs 

which are incorrectly accepted (Jain et al., 2011). FAR can be calculated using 

eq. (1.2). 
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𝐹𝑅𝑅 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑 𝑔𝑒𝑛𝑢𝑖𝑛𝑒 𝑢𝑠𝑒𝑟𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑢𝑖𝑛𝑒 𝑎𝑐𝑐𝑒𝑠𝑠
× 100% (1.1) 

  

𝐹𝐴𝑅 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑖𝑚𝑝𝑜𝑠𝑡𝑒𝑟

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑝𝑜𝑠𝑡𝑒𝑟 𝑎𝑐𝑐𝑒𝑠𝑠
× 100% (1.2) 

 

Besides, there is another performance measurement commonly used, 

namely Equal Error Rate (EER). Equal Error Rate indicates the point at which 

both accept and reject rate are equal. EER provides a quick way to compare 

the accuracy between different biometrics systems. In general, the lower EER, 

the more accurate the system is (Jain et al., 2011). 

 

Apart from FAR, FRR and EER, an overall performance of a biometric 

system can be demonstrated by using the Receiver Operating Characteristic 

(ROC) curve. ROC is a comprehensive way to analyse the performance of a 

biometric system. It depicts the dependence of the false acceptance rate with 

the genuine acceptance rate (GAR) as the system threshold on match score is 

changed (Jain et al., 2011). Here, Genuine Acceptance rate (GAR) is 

calculated by the formula: GAR = 1 – FRR. 

 

Besides ROC curve, another performance indicator namely genuine-

impostor distribution is used to justify the performance of the proposed 

methods in this thesis. Typically, the genuine-impostor distribution 

demonstrates two peaks. One peak corresponds to the genuine distribution and 

the other corresponds to the impostor distribution. A clean separation between 
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the genuine and impostor distributions indicates better performance while 

strong overlapping between the genuine and impostor distribution implies 

poor performance. 

 

1.2 Security and Privacy of Biometric Systems 

 With the rapid proliferation of biometric systems in both desktop and 

mobile devices, using biometrics as means of identity verification or 

identification has raised much public concerns about the security and privacy 

of biometric data over the last decade. Public worry about violation of user 

privacy is not uncommon, since the biometric data is inextricably bound to 

one’s identity and a compromise would lead to a permanent loss of their 

identity. A most recent example of threat reported by FireEye, a security firm, 

shows that HTC One Max (an Android-based smart phone) stores fingerprint 

image in unencrypted/unprotected plain text with world readable permission 

(FireEye report, 2015). 

 

Based on the categorization proposed by Ratha et al. (2001), there are 

eight levels of attacks that can be launched against a biometric system. In this 

thesis, the eight levels of attacks are compiled and re-organized into seven 

attacks. An overview of these seven attack points is demonstrated by the Fig. 

1.4. 
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Fig. 1.4: Seven attack points in a biometric system (adopted from Ratha et al., 

2001). 

 

1. Spoofing: A fake biometric trait such as latex imitate of a fingerprint 

may be presented at the sensor. 

2. Replay Attack: An illegal data is injected into the channel between 

sensor and feature extractor and the data may be resubmitted to the 

system. 

3. Overrides Feature Extractor: The feature extraction module may be 

substituted by a Trojan horse program that generates pre-defined 

feature sets for matching. 

4. Channel Attack: The genuine feature sets may be replaced by the 

synthetic feature sets during the transmission between feature extractor 

and matcher; or the data passing between the system database and 

matcher module may be altered. 

5. Overrides Matcher: A Trojan horse program may be injected and 

replace the matcher to perform the intention of the attack. 
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6. Overrides Decision: The final decision generated by the matcher may 

be overridden during the transmission between the matcher module 

and the application. 

7. Database Attack: The original templates stored in the database may be 

revised or even removed and new templates may be intentionally 

introduced for intrusion. 

 

In this thesis, the 7
th

 attack (i.e. database attack) mentioned above is 

addressed and the focus is to design a biometric template protection method. 

This is due to the fact that database attack is one of the most potentially 

damaging attacks, which leads to the serious security breaches and privacy 

threats of biometric templates (Jain et al., 2008). Jain et al. (2008) also 

highlighted three vulnerabilities on the consequences of biometric template 

attack: (1) unauthorized access of biometric system by replacing the genuine 

template with imposter’s template; (2) genuine template can be illegally 

gained to create a physical spoof, thus, compromise both system security and 

user privacy; (3) stolen template can be involved in various abuse e.g. cross-

matching, function creep etc. 

 

For these inextricable mazes, a biometric system with strong template 

protection needs to be designed urgently. In general, the design criteria for 

biometric template protection scheme are (Teoh et al., 2006; Jain et al., 2008; 

Maltoni et al., 2009): 

 

 Diversity. Cross-matching between templates from the same user 
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across different applications must be prevented. 

 Cancelability. A new template can be reissued once the old template is 

compromised. 

 Irreversibility/Non-invertibility. It should be computationally 

infeasible to derive the original biometric template from the protected 

template and the helper data. 

 Performance preservation. The accuracy performance of an 

unprotected system should be preserved or improved. 

 

Generally, biometric template protection refers a set of techniques that 

mitigate the aftermaths due to the compromise of biometric templates 

databases for the purpose of malicious use. Technically, biometric template 

protection is to design a protect function and apply it into unprotected template 

to generate protected template as depicted in Fig. 1.5. The template protection 

methods proposed in literature can be broadly divided into two categories, 

namely, feature transformation approach (or cancellable biometrics) and 

biometric cryptosystem (or helper data methods) (Jain et al., 2008) as shown in 

Fig. 1.6.  

 

 

Fig. 1.5: Approach of biometric template protection. 
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Fig. 1.6: Categorization of Biometric Template Protection Methods (adopted 

from Jain et al., 2008). 

 

Cancellable biometrics (Ratha et al., 2007; Jain et al., 2008) is truly 

meant designed for biometric template protection. It refers to the irreversible 

transform of the biometric template to ensure security and privacy of the 

actual biometric template. Hence, instead of the original biometric data, only 

the transformed templates are stored. If a cancellable biometric template is 

compromised, a new template can be re-generated from the same biometrics. 

The schemes of cancellable biometrics vary according to different biometric 

modality and fingerprint minutia oriented template is solely focused in this 

thesis. Fig. 1.7 illustrates a block diagram of cancellable biometrics. 
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Fig. 1.7: A block diagram of cancellable biometrics. 

 

On the other hand, biometric cryptosystem serves the purpose of either 

securing the cryptographic key using biometric feature (key binding) or 

directly generating the cryptographic key from biometric feature (key 

generation) (Jain et al., 2008). For key binding approach, two well-known 

instances, fuzzy commitment and fuzzy vault, are proposed by Juels and 

Wattenberg (1999) and Juels and Sudan (2006) respectively. On the other 

hand, Dodis et al. (2008) introduced the key generation primitives, known as 

secure sketch and fuzzy extractor.  

 

1.3 Problem Statements 

 Along with the benefits of using biometric technologies, the 

vulnerabilities of security and privacy in biometric systems have been drawn a 

great attention. The problems, in this thesis, can be categorized into two parts: 

1) Problems related to a generic biometric system; 2) Specific problems 
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associated with fingerprint minutiae. A detailed description of problems 

related to generic biometric systems is given in the following: 

 

 Privacy – Biometric data acquired from human body or activities 

contain private and sensitive information. For instance, human 

fingerprint might reveal the sexual orientation of the corresponding 

identity (Williams et al., 2000) and disease (Weinreb, 1985); the 

diseases associated with eye, e.g. free-floating iris cyst and diffuse iris 

melanoma (Zhou, 2012). Such information is strongly associated with 

human privacy and privacy invasion would be inevitable if biometric 

data is exposed. Cavoukian et al. (2012) has pointed out that threats to 

informational privacy rights related to biometric data misuse, function 

creep and linkage of biometric data in diverse databases makes 

possible such unintended consequence as surveillance, profiling and 

discrimination. The global privacy and data protection community 

therefore have consistently argued against the use of biometrics, 

especially for centralized database of biometric data (Cavoukian et al., 

2012). 

 

 Irrevocability / non-revocable reference – Unlike password or token 

based authentication, biometric data cannot be reset or revoked if they 

are compromised. More specific, biometric data are permanently 

associated with an individual and biometric data cannot be re-issued 

once it is compromised. In the event of compromise, the solution is to 

either change with another biometric modality or alter the exposed one. 
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However, neither of two is feasible: (1) human have a limited 

biometric modalities, e.g. ten fingers, one face, two iris, etc.; (2) an 

alternation of exposed biometric data such as transplantation, cosmetic 

surgery is also highly infeasible. 

 

 Cross-matching - Multiple applications registered using one identical 

biometric modality are potentially linked. A biometric identity 

compromised in on application yields danger in other applications. 

 

 Trade-off between performance and non-invertibility – Template 

protection methods have demonstrated a trade-off between 

performance and non-invertibility (Nagar et al., 2010c; Wang et al., 

2012). This is due to the contradiction where non-invertibility requires 

to leak as little information about the original template as possible 

while high accuracy performance is achieved only when retains as 

much discriminative information from the original template as possible 

(Nandakumar and Jain, 2015). 

 

 

 Security breach and limitations triggered by error correction 

codes (ECCs) – Existing biometric key binding scheme, e.g. fuzzy 

commitment and fuzzy vault relies on error correction code (ECC) to 

mitigate biometric intra-user variations. Accordingly, those schemes 

are highly susceptible to a number of security and privacy attacks such 

as decodability attack (Simoen et al., 2009; Kelkboom et al., 2011), 

statistical attack (Rathgeb & Uhl, 2011) etc. Further, the employment 
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of error correction codes in biometric key binding enables a major 

limitation, namely security–performance tradeoff. That is, the larger 

key size/higher security results lower Genuine Acceptance Rate (GAR) 

and vice versa (Nagar, 2012; Kelkboom et al., 2012). 

 

The specific problems associated with fingerprint minutiae are 

described as follows: 

 

 Incompatibility between ISO-complaint minutiae template and 

fuzzy commitment - ISO/IEC 19794-2 compliant fingerprint minutiae 

template is an unordered and variable-sized point set data; in contrast, 

fuzzy commitment only accepts an ordered and fixed-length binary 

string. Such incompatibility leads that minutia template cannot be 

adopted in existing fuzzy commitment. 

 

 Alignment – In fingerprint minutia-based template protection 

methods, alignment is often required for accurate matching. However, 

a stable and reliable registration point e.g. core point and/or delta point 

for alignment is not always feasible to be extracted in the real world 

due to the low quality fingerprint images. In literature, fail to extract 

registration point usually leads to a high failure-to-capture-rate (FTCR) 

(Nandakumar et al., 2007; Nagar et al., 2008). 
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1.4 Research Objectives 

 Based on the problem statements discussed above, the following 

objectives are formulated in this thesis: 

 

 To design alignment-free template protection methods that generate 

fingerprint minutiae-based templates with satisfying cancelability, 

diversity, performance preservation, and irreversibility. 

 

 To propose a point-to-string conversion method that converts the 

variable-sized minutiae representation into an ordered and fixed-length 

representation. 

 

 To propose a biometric key binding along with cancellable transform 

without using error correction code (ECC). Thus, various security 

attacks and shortages associated with ECC are no longer valid. 

 

1.5 Contributions 

 The contributions of this thesis are as follows: 

 

 Two alignment-free fingerprint minutiae-based template protection 

methods, namely 2-Dimensional Random Projected Minutia Vicinity 

Decomposition (2D-RP-MVD), Randomized Graph-based Hamming 

Embedding (RGHE) are proposed. Moreover, analysis based on four 

criteria of biometric template protection, i.e. diversity, cancelability, 

non-invertibility and performance preservation is carried out to justify 
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the feasibility of the resultant templates generated from the proposed 

methods. 

 

 A generic kernel-based point-to-string conversion method is proposed 

to facilitate the conversion from variable size fingerprint minutiae set 

to an ordered and fixed-length representation that is useful for 

conventional cryptography and biometric cryptosystem like fuzzy 

commitment. Further, the randomness and the correlation between the 

binary templates generated from the proposed point-to-string 

conversion method are examined through the entropy estimation using 

second-order dependency tree and statistical independence test. 

 

 An ECC-free key binding scheme along with cancellable transform for 

fingerprint minutiae-based biometrics is proposed.  Since the ECC is 

abandoned, the proposed key binding scheme gets rid of the ECC-

based attacks (e.g. statistical attack) and shortages (e.g. security-

performance trade-off) effectively. Besides, the security and privacy of 

the proposed key binding scheme is justified by analysing the template 

non-invertibility, decodability attack, surreptitious key-inversion attack 

as well as other major attacks occurred in the existing key binding 

schemes. 

 

1.6 Thesis Organization 

 The thesis is organized as follows: In chapter 2, a literature review 

including minutiae-based cancellable fingerprint templates, minutiae-based 
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point-to-string conversion methods and biometric key binding is presented in 

detail. Two minutia-based cancellable fingerprint templates, namely Two-

Dimensional Random Projected Minutia Vicinity Decomposition (2D-RP-

MVD) and Randomized Graph-based Hamming Embedding (RGHE) are 

proposed in chapter 3. Thereafter, based on kernel learning method, a generic 

point-to-string conversion framework for fingerprint minutia is proposed in 

chapter 4. Apart from that, an ECC-free key binding scheme along with 

cancellable transforms is proposed for minutiae-based fingerprint biometrics 

presented in chapter 5. Finally, conclusion of this thesis is given in chapter 6. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

In this chapter, a literature review on biometric template protection 

methods is presented. It covers fingerprint minutiae-based cancellable 

templates, point-to-string conversion methods for fingerprint minutiae (i.e. 

ordered and fixed-length representation generation), and biometric key 

binding. Firstly, an overview of fingerprint minutiae-based cancellable 

templates is presented in Section 2.1. Thereafter, fingerprint minutiae-based 

point-to-string conversion approaches proposed in the literature is revisited in 

Section 2.2. Apart from that, an overview of biometric key binding schemes 

i.e. fuzzy commitment (FC) and fuzzy vault (FV) is provided in Section 2.3. 

Finally, a summary is given in Section 2.4. 

 

2.1 Overview of Fingerprint Minutia-based Cancellable Templates 

In the literature, a number of cancellable biometrics schemes have 

been proposed. These schemes generally can be categorized into two major 

approaches, namely Biometric Salting and Non-invertible Transforms (Jain et 

al., 2008). Resembling password salting in cryptography, Biometric Salting 

blends user-specific information, such as passwords or token with biometric 

data to derive a “distorted” version of the biometric template. A popular 

instance of Biometric Salting is BioHashing (Teoh et al., 2004). Non-

invertible Transforms is designed to transform raw biometric data into a new 
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form that cannot be inverted due to the many-to-one property of the 

transformation function. A well-known realization of non-inveritible 

transforms is reported by Ratha et al. (2007). 

 

Fingerprint minutia-based cancellable templates can be broadly 

divided into two categories: direct minutiae transform and indirect minutiae 

transform. Direct minutiae transform refers to direct transformation of the 

original minutiae information, i.e. location and orientation through a function. 

This approach is speedy since no additional operations are involved. The main 

disadvantage is the possible revelation of original minutia information if the 

non-invertible transform function is not properly designed. 

 

To address this issue, instead of using the original minutiae, indirect 

minutiae transform utilizes certain features that are invariant to translation, 

rotation and scaling. These features could be the minutia count in the 

geometrical objects such as triangle, cuboid, local distance and orientation of 

two minutiae etc. Indirect minutiae transformation approach conceals the 

original minutiae for improving security at the cost of higher computation time 

required to convert the minutiae into the invariant features. 

 

1) Direct minutiae transform 

For direct minutiae transform, Ratha et al. (2007) proposed three non-

invertible transform functions, namely Cartesian, polar and surface-folding 

transformation. Although the three transformation functions were claimed to 

be non-invertible due to the many-to-one mapping property, a scheme by Feng 
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et al. (2008) reveals that the surface-folding transform can be degenerated 

when the transformed template and parameters are revealed to the attacker. 

Meanwhile, Shin et al. (2009) also showed that the surface-folding transform 

could be inverted if at least two transformed templates originating from the 

same fingerprint are compromised (a. k. a. Attack via Record Multiplicity). 

 

Tulyakov et al. (2005) presented a method to hash fingerprint minutiae 

and perform fingerprint matching in hashed domain. In their method, a 

minutia is viewed as a point on a complex plane. Each minutia, along with its 

two nearest neighbors, is used to select one out of several symmetric 

functions. The selected function is then evaluated on the three minutiae to 

obtain the coordinates of the transformed minutia. It is computationally hard to 

reconstruct the original features with resultant hash values attributed to the 

one-way transformation characteristic of the hashing function. User can re-

enrol with a new hash function to generate new hash values when the old hash 

values are compromised. Hence, both the non-invertibility and reusability 

requirements are satisfied. However, performance degradation at 3% of equal 

error rate (EER) in the best case under FVC 2002 DB1 is unfavorable compare 

to baseline at EER =1.7%. 

 

Lee & Kim (2010) proposed a cancellable fingerprint template (bit-

string) using fingerprint minutiae as shown in Fig. 2.1(a). A 3-dimensional 

array illustrated in Fig. 2.1(b) is first defined and a number of cells contained 

in the 3D array are determined by the quantization level. One of the minutiae 

is then selected as the reference minutiae and the other minutiae are translated 
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and rotated based on reference minutia. The transformed minutiae fall into 

each cell according to the x-axis, y-axis and orientation. Each cell is marked as 

‘1’ if it contains more than one minutia and ‘0’ otherwise. Thus, a 1D bit-

string is generated by visiting the cells sequentially. It is noted that the bit-

string generated thus far is only based on one reference minutia. The processes 

aforementioned are repeated by using different minutiae as reference minutiae 

until the entire minutiae set was traversed. The binary template is 𝑛 × 𝑙 matrix, 

where n and l depict the number of minutiae and the length of 1D bit-string 

generated based on one minutia respectively. The resultant bits-string is 

   
 

Fig. 2.1: (a) the block diagram of generating bit-string from fingerprint 

minutiae proposed by Lee & Kim (2010); (b) demonstrates the 3-dimensional 

array. 
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permuted based on a user-specific PIN for revocability purpose. However, in 

the same PIN scenario, the accuracy performance deteriorated significantly. 

 

Instead of using equal-size tessellation (Lee & Kim, 2010), Jin et al. 

(2012) proposed a quantization method using polar-based sector; and the area 

of each sector differs by the radius. Subsequently, the sectors near the 

reference minutia have smaller area and otherwise. This leads to the smaller 

(resp. larger) quantization step around (resp. further away from) the reference 

minutia to tolerate fingerprint elastic deformation. Experiment shows certain 

performance improvement under the “stolen token” scenario (a.k.a. same PINs 

scenario: verification of an imposter’s biometric using the stolen token of the 

target user). 

 

Yang & Busch (2009) proposed another fingerprint template protection 

method based on minutia vicinity.  Given N minutiae {mi |i=1, 2,…, N}, each 

minutia mi with the three nearest neighboring minutiae {ci1,ci2 and ci3} 

together form a set of minutia vicinity Vi ={mi, ci1,ci2,ci3|i=1, 2,…, N}. Each 

minutia vicinity comprises 12 orientation vectors: mi→ci1, ci2→ci3, ci3→ci1, 

etc. The four coordinate pairs of Vi are then transformed based on the 5 (out of 

12) randomly selected orientation vectors in the respective minutia vicinity. 

Next, the random offsets are added to each Vi in order to conceal the local 

topological relationship among the minutiae in the vicinity. The transformed 

minutiae are thus regarded as a protected minutia vicinity with stored random 

offsets. 
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However, Simoens et al. (2010) pointed out that the coordinates and 

orientations of minutiae in Yang & Busch (2009) could inexhaustively be 

revealed if both random offsets and orientation vectors are disclosed to an 

adversary. They also showed that the attack complexity is considerably low 

(e.g., only 2
17

 attempts are required when the random offsets table is known 

with reference to 2
120

 attempts when the random offsets table is not known). 

Although Yang et al. (2010) later proposed a dynamic random projection 

which was originally outlined in Teoh et al. (2006) to alleviate this problem, 

dynamic random projection incurs substantially increased computation cost 

than that of random offsets addition in Yang & Busch (2009). 

 

A state-of-the-art fingerprint template representation is recently 

proposed by Cappelli et al. (2010), namely minutiae cylinder-code (MCC) as 

depicted in Fig. 2.2. The method shares the same concept of tessellation with 

Lee & Kim (2010) in quantization. Different from Lee & Kim (2010) that 

counts the number of minutiae in each cell, MCC considers the probability of 

finding a minutia within a certain range (fixed radius) around the cell. 

Compared to nearest-neighbor-based descriptor (Maltoni et al., 2009); fixed 

radius-based minutia descriptor is not much affected by the presence of 

missing or spurious minutiae. Thus, this would improve the accuracy 

performance. 
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Fig. 2.2: The basic idea of minutiae cylinder-code (MCC) proposed by 

Cappelli et al. (2010). 

 

However, Ferrara et al. (2012) proposed a recovery algorithm to reveal 

the original minutiae from the MMC template. A non-invertible scheme is 

hence proposed, namely protected minutia cylinder-code (P-MCC) by using 

binary principle component analysis. Although the non-invertibility of P-MCC 

template has been experimentally justified, it is still unable to fully protect the 

genuine minutiae points. For instance, it has been reported in Ferrara et al. 

(2012) that a portion of genuine minutiae (at least 25.4%) could be precisely 

recovered. Later, a two-factor protection scheme on P-MCC, namely 2P-MCC 

(Ferrara et al., 2014) is proposed to make the protected MCC template 

revocable.  

 

In the category of direct minutiae transform, other fingerprint minutia-

based cancellable templates proposed in literature can be found as follows: 

Yang et al. (2010a), Yang et al. (2010b), Yang & Busch (2012), Zhang et al. 

(2013), Moujahdi et al. (2014). 
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2) Indirect minutia transform 

On the other hand, indirect minutia transform usually offers higher 

privacy protection than the direct approach as location and orientation of 

minutiae are not directly revealed. Ang et al. (2005) proposed a key-dependent 

transformation scheme to produce a cancellable fingerprint template from a set 

of fingerprint minutiae. In this scheme, the minutia is transformed into a set of 

invariant feature, such as Euclidean distance between two minutiae, angle 

between ridges of one minutia with respect to another, number of ridges 

between two minutiae. The core point is required to be determined in prior, 

and a line through the core point is then specified. The line orientation, 

ranging from 0
o
 to 180

o
, is determined by the key transformation function. 

Different template can be obtained by changing the line orientation. 

 

Lee et al. (2007) proposed a binary cancellable fingerprint template via 

indirect minutia transformation. Firstly, the translation- and rotation-invariant 

feature set is extracted using local orientation around each minutia, which was 

adapted from Tico & Kuosmanen (2003). The feature set is then used as an 

input to a user-specific transformation function that outputs translational and 

rotational parameters for minutia transformation. The cancellable templates 

are generated by transforming each minutia based on the derived parameters. 

In the case where the template is compromised, a new template can be issued 

by changing the transformation functions. However, the accuracy performance 

can be degraded when the quality of the fingerprints is poor due to the strong 

relation between the invariant feature set and the orientation information 

around each minutia. 



32 

 

Nagar et al. (2010a, 2010b) described a method of extracting binary 

code from fingerprint using minutia and fingerprint ridges. For minutia 

feature, a cuboid-based feature extraction algorithm originally proposed by 

Sutcu et al. (2008) is adopted to extract the relative features (aggregate wall 

distance, minutiae average, and minutiae deviation from each randomly-

chosen cuboidal regions). This method offers high accuracy performance but it 

requires the use of the registration points of fingerprint image, which is 

difficult to detect precisely in poor quality image. 

 

Farooq et al. (2007) presented another method of generating binary 

fingerprint representation. Their idea is based on the fact that fingerprints can 

be represented by a set of triangles derived from multiple sets of minutiae 

triplets. Seven invariant features: length of three sides, three angles between 

each side and each minutia orientation; and height of the triangle are extracted 

and quantized into a 2
24

-bit binary string. However, this method requires 

exhaustive calculation of invariant features of all possible minutiae triplets, 

which results in high computational cost. Following the work of Farooq et al. 

(2007), Jin et al. (2010a, 2010b) attempted to reduce the length of bit-string by 

using minutiae pairs instead of minutiae triplets. Four invariant features, i.e. 

Euclidean distance between two minutiae, angular difference between two 

minutiae, two angles between minutia orientation and the segment connecting 

two minutiae, are extracted for histogram binning. Consequently, the size of 

template is reduced to 2
18

 and the performance is enhanced by introducing a 

majority-voting- based training process. 
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To address the reversibility of the representation for minutia vicinity 

presented in Yang & Busch (2009), Jin & Teoh (2011) proposed a minutia 

vicinity decomposition (MVD) technique to generate a template from a set of 

geometric invariant features, which conceals the location and orientation of a 

minutia. 

 

Ahmad et al. (2011a) proposed a pair-polar-coordinate-based 

fingerprint template protection scheme that explores the relative relationship 

of minutiae in a rotation and shift-free pair-polar framework. Three invariant 

features are extracted from a pair of neighbor minutiae, i.e. radial distance, 

angle between orientation of reference minutia and the connecting edge of a 

neighbor minutia in the counter-clockwise direction, and angle between 

orientation of neighbor minutia and the connecting edge of the reference 

minutia in the counter-clockwise direction. Non-invertibility is achieved due 

to the many-to-one mapping relation. A random translation parameter is 

introduced to further distort the minutia distribution. 

 

Wang & Hu (2012) proposed a cancellable fingerprint template based 

on a dense infinite-to-one mapping (DITOM). By refining the features 

considered in Jin et al. (2010a, 2010b), the proposed method elaborates three 

invariant features from a pair of minutiae. The three features are Euclidean 

distance between two minutiae, angle between the orientation of reference 

minutia and the direction of the line segment connecting the two minutiae, and 

angle between the orientation of neighbor minutia and the direction of the line 

segment connecting the two minutiae. The extracted features are then 
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quantized, hashed and binarized. Lastly, a complex vector is generated from 

the resultant bit-string by applying a discrete Fourier transform and the final 

template is obtained by blending the complex vector with a randomly 

generated parametric matrix. In addition to DITOM, Wang & Hu (2014) 

proposed another cancellable fingerprint template based on curtailed circular 

convolution, which demonstrates an improvement on accuracy and security 

over DITOM. 

 

Recently, Multi-line Code or MLC proposed by Wong et al. (2013) is a 

minutia descriptor constructed based on multiple lines centered at a reference 

minutia. Firstly, a straight line is drawn following the direction of the 

reference minutiae and constructs a number of overlapped circles with a pre-

defined radius. Then the neighbour minutiae are separated into different bins 

according to their orientation. Compute the mean of the distances between the 

centre of the circle and the included minutiae for each region. In the 

binarization stage, two techniques of binarzation methods are used, 1-bit and 

k-bits binarization. 1-bit binarzation is implemented based on a threshold 

while gray code is used in k-bits implementation. 

 

In the category of indirect minutiae transform, other instances of 

cancellable templates for fingerprint minutia proposed in literature can be 

found as follows: Ahmad & Hu (2010), Ahmad et al. (2011b), Liu et al. 

(2012), Wang & Hu (2013), Yang et al. (2013). 
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From the above literature, following observations can be made: (a) 

Most of the afore-discussed “non-invertible transforms” are in fact susceptible 

to partial or full inversion (e.g. Ratha et al., 2007; Yang & Busch, 2009); (b) 

Despite the non-invertibility of the transform (e.g., many-to-one function), 

most reviewed schemes enjoy strong security while sacrificing the 

corresponding accuracy performance (Ratha et al., 2007; Tulyakov et al., 

2007; Lee & Kim, 2010), thus demonstrating the inevitable security-

performance trade-off; (c) Alignment is often required for accurate matching, 

e.g.,  Ratha et al. (2007); Ang et al. (2005); Nagar et al. (2010a, 2010b); (d) 

Most of the methods have yet to catch up the high accuracy compare to pure 

minutiae matching, e.g., Farooq et al. (2007), Jin et al. (2010), Wang & Hu 

(2012); (d) Some methods suffer from high computation cost and large storage 

for template, e.g., Farooq et al. (2007), Jin et al. (2010). All these indicate that 

fingerprint minutia-based cancellable templates are still immature and there 

are much room to improve. 

 

2.2 Overview of Fingerprint Minutia-based Point-to-String 

Conversion Approaches 

In this section, point-to-string conversion approaches proposed in the 

literature are revisited. These methods can be broadly divided into three 

categories: (1) reference-based approach; (2) histogram-based approach; and 

(3) spectral transform approach. In reference-based approach, a fixed-size 

reference, such as circumference of a circle (Sutcu et al., 2007a; Sutcu et al., 

2007b), N random cuboids (Sutcu et al., 2008) is defined and then the 

biometric features are quantized into fixed-length representation. In 
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histogram-based approach, the fixed-length representation is generated based 

on the histogram, which is formed based on the tabulated frequencies of 

extracted features erected over discrete intervals on the extracted feature 

space. In the spectral transform approach, specific spectral transform 

technique, such as Fourier transform, is used to transform minutiae to 

corresponding domain, so that the fixed-length representation can be generated 

using specific analytical methods in that domain. 

 

1) Reference-based Methods 

Sutcu et al. (2007a, 2007b) proposed a geometric transformation to 

convert fingerprint minutiae into a fixed-length feature vector. This method 

uses the circumference of a circle as a reference and divides it into m equal-

width arcs. For every minutia pair, a straight line passing through these two 

points and mark its intersections onto the circumference of the circle shown in 

Fig. 2.3. A m-dimensional integer feature vector is then constructed by 

counting the number of projected minutiae in the respective arcs. One 

limitation of this method is that the transformation is not rotation-invariant, 

thus the fingerprints have to be aligned before transformation. The additional 

information such as registration point (e.g. core or delta point) is required for 

aligning two fingerprint images to be matched. Furthermore, the analysis of 

minimum entropy on the resultant representation is absent. Thus, the security 

of the representation under different attack scenarios remains uncertain. 
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Fig. 2.3: Illustrates the geometric transformation from fingerprint minutiae 

proposed by Sutcu et al. (2007a, 2007b). 

 

In another instance, namely local point aggregation, Sutcu et al. (2008) 

define a set of m random cuboids as reference on the fingerprint image and 

construct a m-dimensional integer feature vector using the number the 

minutiae points in each cuboid. The feature vector is then binarized into a bit-

string using user-specific thresholds obtained from the median of population 

minutiae quantity within each cuboid. Yet, this method assumes that all 

fingerprint images has to be pre-aligned. For accuracy performance, the 

proposed method achieves a low error rate when the auxiliary information (i.e. 

the token to generate random cuboids) is stored securely. The overall process 

is demonstrated in Fig. 2.4. The proposed method achieves a low error rate 

when the helper data is stored securely. However, the security and privacy is 

underestimated in the event that helper data is stolen. Apart from this method, 

Jakubowski & Venkatesan (2007) proposed a randomized radon transform and 

Jin et al. (2009) proposed a random triangle hashing scheme. Both of these 

methods adopt a similar strategy in converting the minutiae representation into 

a discrete feature vector. 
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Fig. 2.4: Demonstrating the local point aggregation approach proposed by 

Sutcu et al. (2008). 

 

Nagar et al. (2010b) consider a more robust set of features than Sutcu’s 

approach (Sutcu et al., 2008) by considering the average minutia coordinate 

within a cuboid, the standard deviation of the minutiae coordinates, and the 

aggregate wall distance. This method offers high accuracy performance but it 

requires registration points (e.g. high curvature points) to align the fingerprint 

image prior to feature extraction. The detection of registration points can be 

challenging on poor-quality images. 

 

Bringer & Despiegel (2010) generated a minutiae-vicinity-based 

binary feature vector, whereby a minutia vicinity is referred to as the 

neighbourhood structure around a central minutia within a pre-defined radius. 

This method extracts N number representative vicinities as reference using a 

vicinity selection procedure. With a number of minutia vicinities extracted 

from each fingerprint, each vicinity of the query template is matched against N 

number of vicinities of the enrolled template to identify the corresponding 
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enrolled vicinity to each query vicinity. Consequently, the matching score is 

concatenated to yield a fixed-length real-valued feature vector with N 

components and then binarized to a bit-string. Fig. 2.5 depicts the mechanism 

for obtaining a binary vector from a set representative vicinities and query 

vicinities. It is noted that the resultant bit-string is of around 50,000 bits long, 

which requires high storage capability. 

 

 

Fig. 2.5: Depicts the vicinity based mechanism proposed by Bringer & 

Despiegel (2010). 

 

Liu et al. (2012) proposed a fixed-length feature representation by 

using a minutiae descriptor, namely Random local region descriptor (RLRD). 

RLRD adopts Tico’s sampling structure (Tico & Kuosmanen, 2003) and take 

it as a reference. The RLRD is an orientation-based local structure, wherein a 

reference point is generated randomly and a set of uniformly random sampling 

points are generated along the circumference around the reference point. The 

order of sampling points is determined via a random seed. The RLRD feature 

is defined as the angle difference of local ridge direction between the sampling 
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point and reference point. For each sampling structure, a real-valued fixed-

length vector can be generated since the number of sampling points is fixed. 

The real-valued RLRD feature vector can be further converted into a bit-string 

for secure sketches measured in the Hamming space. However, the registration 

point (core or highest curvature point) has to be used to align the enrolled and 

query images before further processing. 

 

2) Histogram-based Methods 

For the histogram approach, Farooq et al. (2007) generated a binary 

fingerprint representation based on the histograms of triangular features 

generated from minutiae triplets. Seven invariant features: length of three 

sides (A1, A2, A3,), three angles between each side and each minutia 

orientation (S1, S2, S3), and height (H) of the triangle are extracted and 

quantized into 24 bits, which yields a 2
24

-bit binary string. Fig. 2.6 shows the 

main idea of the proposed scheme. However, this method requires high 

computational cost due to the exhaustive calculation of features for all 

possible minutiae triplets. Following this work, Jin et al. (2010b) attempted to 

reduce the length of bit-string by using minutiae pairs instead of minutiae 

triplets. Four invariant features, i.e. Euclidean distance between two minutiae, 

angular difference between two minutiae, two angles between minutia 

orientation and the segment connecting two minutiae, are extracted for 

histogram binning. Consequently, the size of template is reduced to 2
18

 and the 

performance is enhanced using a majority-voting-based training process. 
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Fig. 2.6: The minutiae triplet based bit-string generation proposed by Farooq 

et al. (2007). 

 

3) Spectral-Transform-based Methods 

Xu et al. (2008) proposed a Spectral Minutiae approach to convert a set 

of minutiae into a fixed-length feature vector. The proposed approach 

performs Fourier transform on a minutia set and re-maps the Fourier spectral 

magnitude onto polar-logarithmic coordinate. By doing so, the spectral 

minutiae representation is invariant to rotation, shifting and scaling variations. 

An analytical representation for minutiae is further proposed to minimize 

error, which can directly be evaluated on polar-logarithmic grids. As the 

number of grids is fixed, a fixed-length representation can be derived. 

However, the accuracy of this approach over point-to-point (minutiae) and 

two-stage procedure matching (minutia descriptor) approaches is inferior. 

 

Instead of using magnitude spectrum in Xu et al. (2008), Nandakumar 

use phase spectrum of minutiae, namely Binarized Phase Spectrum (BiPS) 

(Nandakumar, 2010). By incorporating fuzzy commitment and reliable bits 

selection for binarization techniques, BiPS achieves state-of-the-art accuracy 
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performance over other biometric cryptosystems. However, BiPS is not 

rotation-, shifting- and scaling-invariant. Hence, a proper alignment (focal 

point estimation) is still required. 

 

From the revisit of the point-to-string conversion methods, several 

concerns can be outlined as follows: (a) Most of the existing point-to-string 

conversion methods have yet to catch up with the high accuracy of the state-

of-the-art minutiae descriptor, i.e. MCC (Cappelli et al., 2010); (b) Most of the 

afore-discussed well-performed point-to-string conversion methods (Sutcu et 

al. (2007a, 2007b); Sutcu et al., 2008; Nagar et al., 2010); Liu et al., 2012; 

Nandakumar, 2010) rely on the pre-alignment or registration, which is not 

included in ISO minutia template (ISO/IEC 19794-2, 2005); (c) some methods 

either suffer from high computation cost (Farooq et al. 2007) or consume large 

storage for template (Bringer & Despiegel, 2010).  

 

Due to the aforementioned concerns in the existing point-to-string 

conversion methods, it is required to design a high-performing point-to-string 

conversion method with ISO/ IEC 19794-2 complaint fingerprint minutia 

template.  

 

2.3 Overview of Biometric Key Binding 

In literature, fuzzy commitment (Juels & Wattenberg, 1999) and fuzzy 

vault (Juels & Sudan, 2006) are the two of most prominent key binding 

schemes. Fuzzy commitment (Juels & Wattenberg, 1999) is meant to accept 

input in the binary string form, e.g. iriscode (Daugman, 1999) while fuzzy 
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vault (Juels & Sudan, 2006) binds the cryptographic key using point-based 

biometric feature, such as fingerprint minutia. 

 

Fuzzy commitment (Juels & Wattenberg, 1999) is originally designed 

to protect a cryptographic key and it is later being perceived as a technique for 

biometric template protection. Assume that the enrolled biometric template 𝑩 

is a n-bits binary string, in the enrolment stage (key binding), a codeword c is 

generated from the cryptographic key 𝑘𝑐 of length m (m < n) with error 

correction code (ECC); the bit-length of c is then become identical to 𝑩; then c 

is bit-wise XORed with 𝑩 and renders secure sketch 𝑦𝑐 = 𝑐 ⊕ 𝑩. The 𝑦𝑐 is 

stored in the database along with h(𝑘𝑐), where h(.) is a hash function. In key 

release stage, the query biometrics 𝑏𝑞 is XORed with 𝑦𝑐 to obtain a corrupted 

codeword, 𝑐∗ = 𝑦𝑐 ⊕ 𝑩′ = 𝑐 ⊕ (𝑩 ⊕ 𝑩′). The 𝑐∗ can be decoded to 𝑘∗, if 

the query bit-string is substantially similar to the enrolled template within the 

capacity of the ECC. The authentication is deem successful if 𝐡(𝑘𝑐) = 𝐡(𝑘∗). 

A block diagram of fuzzy commitment is demonstrated in Fig. 2.7. 

 

 It has been pointed out that fuzzy commitment is information-

theoretical secure only if the bits extracted from biometric features are 

uniformly and independently distributed (Zhou et al., 2011). Yet, it is hardly to 

fulfil in practice as biometric data are inherently structured and thus the 

features remain correlated even after go through feature extractor (Zhou et al., 

2011). This will propagate to binary representation if binarization process is 

not carefully attended. Besides that, privacy leakage is another crisis of fuzzy 

commitment due to bits redundancy introduced by Error Correction Codes 
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(ECC) (Zhou et al., 2011; Ignatenko, 2009; Smith, 2004). The aforementioned 

pitfalls trigger various attacks such as decodability attack (Simoens et al., 

2009; Kelkboom et al., 2011), statistical attack (Rathgeb & Uhl, 2011) and 

attack based on entropy analysis (Zhou et al., 2011). 

 

 

Fig. 2.7: A block diagram of fuzzy commitment. 

 

Simoen et al. (2009) proposed a decodability attack on fuzzy 

commitment scheme that exploits the correlation of multiple secure sketches 

that generate from the same subject biometric data. Kelkboom et al. (2011) 

further analyzed the attack and proposed a bit-permutation mechanism against 

decodability attack. Assume that biometric features 𝑏1
𝑒, 𝑏2

𝑒 are the two 

references of the same subject across two different applications; 𝑐1 and 𝑐2 are 
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the corresponding codewords. The secure sketch is obtained as W1
e = b1

e ⊕ c1 

and 𝑊2
𝑒 = 𝑏2

𝑒 ⊕ 𝑐2. The attacker can perform 𝑊1
𝑒 ⊕ 𝑊2

𝑒 = (𝑏1
𝑒 ⊕ 𝑏2

𝑒) ⊕

(𝑐1 ⊕ 𝑐2) = (𝑏1
𝑒 ⊕ 𝑏2

𝑒) ⊕ 𝑐3. Such attack is initiated by the work of Carter & 

Stoianov (2008) that is to check whether decoding XOR of two secure 

sketches leads to a valid codeword. If positive, the two secure sketches are 

most likely derived from the same subject. So, if 𝑏1
𝑒 ⊕ 𝑏2

𝑒 is small (this is 

usually true if 𝑏1
𝑒, 𝑏2

𝑒 are the samples of the same subject), the result of XOR 

operation will be close to valid codeword. 𝑊1
𝑒 ⊕ 𝑊2

𝑒 is then decodable with 

high probability. This attack is also known as Attacks via Record Multiplicity 

(ARM), where specifically outlined by Scheirer & Boult (2007) for fuzzy 

vault. 

  

Rathgeb & Uhl (2011) proposed a statistical attack based on ECCs that 

is commonly applied in fuzzy commitment to retrieve the most likely 

codeword. The attack collects adequate imposter templates 𝑏𝑝 and performs 

XOR successively with the stored secure sketch, 𝑠 = 𝑏𝑒 ⊕ 𝑐 where 𝑏𝑒 is the 

enrolled template and c is codeword, i.e. 𝑏𝑝 ⊕ 𝑠. Note that be is segmented 

into multiple chunks due to the computation speed. The XOR operation is thus 

on chunk-basis. Thereafter, the codeword of each chunk are collected and a 

histogram is generated by counting the occurrence frequency of codewords. A 

bin of histogram corresponding to the histogram maximum is considered as a 

success, which yields the most likely codeword for this chunk. 

 

Zhou et al. (2011) analyzed the security and privacy leakage of fuzzy 

commitment thoroughly under the conditions whereby the practical biometric 
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data are not uniformly and independently distributed. To assess the security 

and privacy leakage, several evaluation metrics have been proposed: 1) the 

security can be measured by average min-entropy, conditional entropy and 

conditional guessing entropy; 2) privacy protection consists of irreversibility 

and privacy leakage. Irreversibility can be measured by the same metrics in 

security assessment while privacy leakage can be measured by entropy loss 

and mutual information. With these assessment metrics, Zhou et al. (2011) 

concludes that the fuzzy commitment is highly vulnerable on security and 

privacy leakage due to the dependency of biometric features. 

 

Moreover, Scheirer & Boult (2007) introduce an attack, namely 

Surreptitious Key-Inversion Attack (SKI) on fuzzy vault, which is also an 

equivalently effective attack against fuzzy commitments. SKI refers to if the 

cryptographic key is known by an attacker, the biometric string that blended 

with codeword can be easily recovered through the XOR operation using the 

compromised cryptographic key and the secure sketch. Thus, the privacy 

leakage is inevitable. 

 

Apart from that, fuzzy commitment suffers from limitations that 

associated with ECCs. Firstly, Nagar (2012) and Kelkboom et al. (2012) point 

out that fuzzy commitments suffers from security (key size) – performance 

(GAR) trade-off; i.e. the longer key size (higher security) results lower GAR 

and vice versa. In fuzzy commitments, a codeword is composed of key and 

redundant bits and it is known that the number of redundant bits is 

proportional to the error correction capacity. Therefore, the small number of 
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redundant bits, which implies weaker correction capacity, will lead to the 

larger key size, which meant better security. This is attributed to the 

requirement that the codeword size has to be matched to the size of biometric 

string and hence is fixed. Secondly, Bringer et al. (2008) showed that the 

maximum key length and the decoding accuracy are upper bounded by the 

error correction capacity of the chosen ECC. 

 

Another drawback is since fuzzy commitments operates in hamming 

domain, it has imposed strict requirement on both feature representation 

(binary biometrics only is allowed) and matcher, i.e. Hamming distance 

(Dodis et al., 2004). This has severely limited the accuracy performance that 

can be accomplished as many effective feature extractors and matchers have to 

be abandoned. 

 

In contrast with binary string used in fuzzy commitment, fuzzy vault 

(Juels & Sudan, 2006) binds the cryptographic key using points-based 

biometric feature, such as fingerprint minutia. In the enrolment stage of fuzzy 

vault, an n-order polynomial 𝑃(𝜔) is selected to encode the key 𝑘𝑐 as the 

coefficients. The polynomial projection is then computed to embed the 

biometric feature T into a finite field. A large number of randomly generated 

chaff points s that do not lie on the selected polynomial 𝑃(𝜔) is added to 

constitute the protected point set. During the key extraction stage, a query 

unordered set T’ is presented in order to retrieve the key 𝑘𝑐. The polynomial 

𝑃(𝜔) can be reconstructed, only if T’ overlaps with T substantially. Once the 

polynomial 𝑃(𝜔) is successfully reconstructed, secret key 𝑘∗ can be 
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degenerated using error-correction coding. The security of fuzzy vault is relied 

on the hardness of polynomial reconstruction. A block diagram of fuzzy vault 

is illustrated in Fig. 2.8. 

 

 

Fig. 2.8: A block diagram of fuzzy vault. 

 

Several attacks against fuzzy vault also have been identified. Scheirer 

& Boult (2007) introduced three effective classes of attacks against fuzzy 

vault.  

 

1) Multiple Templates Attack (MTA): Also known as Attacks via Record 

Multiplicity (ARM). If an attack can harvest multiple secure sketches with 

same biometric feature locked by different vaults across different applications, 

it may be possible to correlate the multiple set of vaults and retrieve the 

genuine minutia set. 
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2) Surreptitious Key-Inversion Attack (SKI): If the key is known by an 

attack, the biometric template (e.g. minutia set) that blended with chaff points 

can be easily identified through the restored polynomial.  

 

3) Heterogeneity Attack: An ideal case is that the genuine and chaff 

points should be uniformly distributed so that no patterns of genuine and chaff 

points distribution can be detected. However, such assumption is hardly 

catered due to the dependency nature of biometric features. 

 

 From the aforementioned security and privacy issues of biometric key 

binding, four substantial observations can be summarized as follows:  

(1) Inherent dependency of biometric features. Without considering such 

constraint, deployment of fuzzy commitment will lead to a significant security 

reduction and severe privacy leakage. 

(2) Potentially poor accuracy performance due to the requirements of 

binary representation and matcher. 

(3) Vulnerabilities that associated to ECCs such as performance-key size 

trade-off and statistical attack. 

(4) Privacy attacks such as Decodability attack (ARM) and SKI attack. 

 

2.4 Summary 

In this chapter, literature review covered fingerprint minutia-based 

cancellable templates, fingerprint minutia-based point-to-string conversion 

and biometric key binding has been presented in detail. Although, these 

research topics have been studied extensively, it is observed that a number of 
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concerns in terms of the accuracy performance, alignment issue, and security, 

privacy attacks have yet been fully addressed and the overall performance of 

the existing works is still far from the satisfactory. 

 

For a quick glance on the above literature review, three tables are 

provided below to summarize the characteristics of the proposed methods in 

the respective categories. Table 2.1 summarizes the fingerprint minutiae-based 

cancellable templates available in the literature. While, the characteristics as 

well as limitations of the state-of-the-arts for the fingerprint minutiae-based 

point-to-string conversion is given in Table 2.2. Table 2.3 is served as a 

comparison of the two well-known instances of biometric key binding 

schemes, i.e. fuzzy commitment and fuzzy vault.  

 

From these enlightening works, the author greatly inspired from it and 

proposed: (1) two methods to generate the fingerprint minutiae-based 

cancellable templates presented in the chapter 3; (2) a kernel based point-to-

string conversion for fingerprint minutia presented in chapter 4; (3) a new 

biometric key binding scheme along with cancellable transform presented in 

chapter 5. 

 

Table 2.1: Summary of published research works on fingerprint 

minutiae-based cancellable templates. 

Methods 
Key 

Technique 
Distance Alignment Main drawback 

Direct minutiae transform 

Tulyakov et al. 

(2005) 

Generating 

hash 

function 

Hamming 

distance 
No 

Accuracy 

degradation 



51 

 

Ratha et al. 

(2007) 

Surface-

folding 

transform 

Hamming 

distance 
Yes 

Template is 

invertible (Feng et 

al., 2008; Shin et 

al., 2009) 

Lee et al. 

(2010) 

Generating 3D 

array 

quantization 

Normalized 

Hamming 

distance 

No 

Accuracy 

deteriorate in same 

PIN scenario 

Jin et al. 

(2010a, 2010b) 

Minutia pair 

histogram 

Normalized 

Hamming 

distance 

No 

Accuracy sensitive 

to low quality 

image  

Jin et al.  

(2012) 

Polar Grid 

based 3-Tuple 

Quantization 

Normalized 

Hamming 

distance 

No 
Large size of 

template  

Yang & Busch 

(2009) 

Minutia 

vicinity 

Hausdorff 

distance 
No 

Attack complexity 

reduces to 2
17 

if 

random offsets 

table is known 

Ferrara et al. 

(2012, 2014) 

Protected 

minutia 

cylinder-code 

(P-MCC); 

two factors P-

MCC 

Normalized 

Hamming 

distance 

No 

Better hamming- 

distance preserved 

matcher is desired 

Indirect minutiae transform 

Ang et al. 

(2005) 

Generating 

random lines 

Hamming 

distance 
Yes 

Partial minutia 

information leaked 

Lee et al. 

(2007) 

Construct 

user-specific 

transformation 

functions 

Normalized 

set difference 
No 

Poor accuracy 

when images 

quality low 

Nagar et al. 

(2010a, 2010b) 

Cuboid-based 

feature 

extraction 

Normalized 

Hamming 

distance 

Yes 

Requires 

registration point 

and ROI 

information 

Farooq et al. 

(2007) 

2
N
 

quantization 

Normalized 

Hamming 

distance 

No 

high computation 

cost and large 

storage for template 

Ahmad et al. 

(2011a) 

Construct pair-

polar-

coordinate 

Normalized 

set difference 
No 

Relatively high 

error rate and 

vulnerable to ARM 

Wang & Hu 

(2012) 

Dense infinite-

to-one 

mapping  

Normalized 

Euclidean 

distance 

No 

Large size of user-

specific key and 

vulnerable to ARM 

Wong et al. 

(2013) 

Multi-line 

Code 

Dice, 

NWAZZOO, 

DWID 

distances  

No 

Standalone MLC is 

not robust for bio-

crypto systems 
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Table 2.2: Various fixed-length minutia-based representations. 

Methods 
Proposed 

techniques 
Type Main limitations 

Reference-based approach 

Sutcu et al. 

(2007a, 2007b) 

Geometric 

Transformation 
Integer 

Require pre-alignment before 

transformation; Absence of 

minimum entropy analysis 

Sutcu et al. 

(2008) 

Local Point 

Aggregation 
Binary 

Requires pre-alignment; 

Performance in lost auxiliary 

information case is unknown 

Nagar et al. 

(2010b) 

Local Point 

Aggregation 
Binary 

Requires pre-alignment and 

additional information (e.g. 

boundary of ROI) 

Bringer & 

Despiegel (2010) 

Minutia vicinity-

based Histogram 
Binary 

Requires high storage 

capability for template 

Liu et al. (2012) 
Random Local 

Region Descriptor 
Real Requires pre-alignment 

Histogram-based approach 

Farooq et al. 

(2007) 

Minutiae Triplet 

based Histogram 
Binary 

Requires high storage 

capability for template and 

high computational cost 

Jin et al. (2010b) 
Minutiae Pair 

based Histogram 
Binary 

Re-train is required when new 

user is enrolled 

Spectral Transform approach 

Xu et al. (2008) Spectral Minutiae Real 

Accuracy over classic 

minutiae matching is 

unsatisfied 

Nandakumar 

(2010) 

Binarized Phase 

Spectrum (BiPS) 
Binary Requires pre-alignment 
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Table 2.3: Comparison of fuzzy commitment and fuzzy vault. 

Characteristics Fuzzy Commitment Fuzzy Vault 

Representation Fixed-length binary string Varied-size point-based sets 

Merits 

Intra-users variation 

tolerance via ECC; 

Generating compact size of 

secure sketch; 

Intra-users variation tolerance 

via ECC; Ability to secure 

point-based features (e.g. 

fingerprint minutia); 

Limitations 

Security-GAR trade-off, 

non-revocable, helper data 

needs to be carefully 

designed, difficult to find 

perfect codes for designed 

code length 

Security-GAR trade-off, non-

revocable, helper data needs to 

be carefully designed, 

difficulty to generated large 

number of chaff that are 

distinguishable to genuine 

points 

Parameters 

Key length L, length of 

codeword N, and error 

correcting capacity of the 

code 

Polynomial degree (k), size of 

the template set (r), and 

number of chaff points (q) 

Security-GAR 

tradeoff 

Higher values of (L/N) lead 

to lower GAR, but higher 

security and vice 

versa 

Higher values of (k/r) and q 

lead to lower GAR, but higher 

security and vice versa 

Possible Attacks 

Decodability attack 

(Simoens et al., 2009; 

Kelkboom et al., 2011), 

Statistical attack (Rathgeb & 

Uhl, 2011), Attack on 

entropy analysis (Zhou et 

al., 2011), Surreptitious 

Key-Inversion (SKI) 

(Scheirer & Boult, 2007) 

Attacks via Record 

Multiplicity (ARM), 

Surreptitious Key-Inversion 

(SKI), Blended Substitution 

Attacks (BSA) (Scheirer & 

Boult, 2007) 

Implementation 

for Fingerprint 
Bringer et al. (2008) 

Nandakumar et al. (2007), 

Yang & Verbauwhede (2005) 
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CHAPTER 3 

 

MINUTIAE-BASED CANCELLABLE FINGERPRINT TEMPLATES 

 

 

Cancellable biometrics is truly meant designed for biometric template 

protection. Following this approach, in this thesis, two methods to generate 

fingerprint minutiae-based cancellable template, namely two-dimensional 

random projected minutia vicinity decomposition (2D-RP-MVD) and 

randomized graph-based hamming embedding (RGHE) are proposed to 

protect fingerprint minutiae. For the former, 2D-RP-MVD extends the original 

1D random projection used in Biohash (Teoh et al., 2004) to a 2D feature 

representation, dubbed as minutia vicinity decomposition (MVD). MVD 

represents a set of 2D geometrical invariant features that implies the 

coordinates and orientation of minutia is concealed. Thus, the problem that 

minutiae location and orientation can be highly likely exposed from the 

minutia vicinity construct (Yang & Busch, 2009) is alleviated significantly. 

For the later, i.e. RGHE, minutia vicinity decomposition (MVD) is also 

adopted to generate a set of randomized geometrical invariant features using 

random projection. The randomized MVD is then embedded into a Hamming 

space by means of Graph-based Hamming Embedding. Due to the highly non-

linear equation system provided by RGHE, the generated template can be 

strongly protected against inversion. The experimental results and security 

analysis are discussed in depth at the subsequent sections. 
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3.1 Introduction 

Traditionally, reconstructing a fingerprint image from its minutiae set 

was thought to be infeasible, i.e. minutia is non-invertible to fingerprint image. 

However, this hypothesis has been overthrown when Hill (2001) demonstrated 

the first template inversion scheme for fingerprint. Since Hill’s attempt, a 

number of efficient methods have been proposed to reconstruct fingerprint 

image from minutiae efficiently (Ross et al., 2007; Cappelli et al., 2007; Feng 

& Jain, 2011). Due to the feasibility of minutia inversion, it is no longer secure 

to store the original minutiae as a biometric template. As a solution, a layer of 

protection (non-invertible transform) is applied to convert the original 

minutiae into a new representation. However, it is noticed that the accuracy 

performance is generally deteriorated when the non-invertible transform is 

applied (Ratha et al., 2007; Nagar et al., 2010c; Simoens et al., 2012). Thus, it 

remains being a challenging task to preserve the accuracy performance when 

the non-invertible transform is applied. 

 

Cancellable biometrics has been demonstrated as one of the efficient 

and effective solution for biometric template protection (Ratha et al., 2007; 

Jain et al., 2008).  In this chapter, two methods to generate fingerprint 

minutiae-based cancellable template, namely two-dimensional random 

projected minutia vicinity decomposition (2D-RP-MVD) and randomized 

graph-based hamming embedding (RGHE) are proposed in Section 3.2 and 

Section 3.3 respectively. Summary is given in Section 3.4. 
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3.2 Two-Dimensional Random Projected Minutia vicinity 

Decomposition (2D-RP-MVD) 

 

Yang & Busch (2009) proposed a cancellable fingerprint template 

based on minutia vicinity. Despite of the protected minutia vicinity 

representation salted by random offsets are claimed non-invertible, Simoens et 

al. (2010) pointed out that if an adversary has the knowledge in orientation 

vectors and random offsets, the coordinates and orientations of minutia in 

Yang & Busch’s proposal (2009) are likely to be revealed. Furthermore, it is 

computed that only 2
17

 attempts are required for an attack when the random 

offsets table is known with reference to 2
120

 attempts when the random offsets 

table is not known (Simoens et al., 2010). 

 

To rectify the highly likely revelation of the minutia location 

coordinates in Yang & Busch (2009), a two-dimensional random projected 

minutia vicinity decomposition (2D-RP-MVD) method is proposed to generate 

fingerprint minutiae-based cancellable template. Fig. 3.1 shows the block 

diagram of the minutia vicinity decomposition (MVD) with random projection 

(RP). Firstly, minutia vicinity formed from a set of fingerprint minutiae is 

decomposed into four minutia triangles. A set of geometric invariant features 

such as the length between two adjacent minutiae, orientation difference etc.  

MVD is then extracted, thus the location and orientation of a minutia is 

concealed in the stored template. This alleviates the problem of minutia 

location exposure found in Yang & Busch (2009); and then MVD feature is 

projected (i.e. inner product) onto a random space with a user-specific token. 

The 2D random projection provides three advantages:  
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Fig. 3.1: Block diagram of minutia vicinity decomposition (MVD) with 

random projection (RP). 

 

(1) Cancellability – a new template, in this proposal, can be easily 

generated by changing an external and independent token. 

 

(2) Enhanced non-invertibility – instead of using minutia information, 

i.e. location and orientation of minutia, in Yang & Busch (2009), the 

employment of geometric invariant features increases the difficulty to recover 

the original minutia significantly.  

 

(3) 2D feature matrix adaption - the original random projection (RP) 

used in Biohash (Teoh et al., 2004; Teoh et al., 2006) is merely for a one-

dimensional fixed length feature vector, which is not applicable for the MVD 

feature matrix. Note the MVD feature matrix is of varied size, i.e. 𝑁 × 36 

where N denotes the number of minutia vicinity found in fingerprint image. 

Therefore, a 2-dimensional random projection mechanism is designed as an 

extension of the original random projection (Teoh et al., 2004; Teoh et al., 



58 

 

2006). The 2D random projection is well fit for the situation, wherein the 

feature matrix is size varied and an exhaustive matching procedure is required. 

 

3.2.1 Minutia Vicinity Decomposition (MVD) 

Minutia vicinity decomposition (MVD) presented in (Jin & Teoh, 

2011) can be described as follows. Given a set of fingerprint minutiae, {mi|i = 

1, …,N}, a minutia vicinity Vi is defined as mi  together with three (3) nearest 

neighboring minutiae ci1, ci2, ci3 (measured in Euclidean distance), i.e. 

Vi={mi,ci1,ci2,ci3|i=1,…,N}. Each minutia vicinity is then decomposed into four 

minutiae triplets {Tir|i=1,…,N, r=1, 2, 3, 4}. The nine features, the length of 

three sides, the three internal angles and the relative orientation between two 

adjacent minutiae shown in Fig. 3.2 are selected as the invariant features. 

Hence, a feature vector consists of nine features, which can be described as 

follows: 

𝒖𝑟 = (𝑠1, 𝛼1, ∆𝑜1, 𝑠2, 𝛼2, ∆𝑜2, 𝑠3, 𝛼3, ∆𝑜3) (3.1) 

r=1,…,4 

where s1, s2, and s3 denote the length of the three sides in pixel; α1, α2 and α3 

represent the internal angles measured in degree; Δo1=|o1 − o2|, Δo2=|o2 – o3|, 

and Δo3=|o3 – o1| denote the relative orientation between two adjacent 

minutiae, where o1, o2, o3 are the orientations for minutiae m1, m2, m3, 

respectively. 
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Fig. 3.2: Invariant features extraction from minutia triplet. 

 

 

Recall the equation in eq. (3.1) that the features extracted from a single 

minutiae triplet form a 9-dimensional vector ur. By concatenating four 9-

dimensional vectors from the four minutiae triples of a minutia vicinity 

together, a vector u = [u1 u2 u3 u4] of 36 feature components for a minutia 

vicinity is obtained.  

 

The above process is repeated for the entire vicinity set (say N times) 

and consequently, the entire MVD features are stored in a matrix, U of size N 

× 36.  

 

However, MVD representation is a set of local features; it is 

irrevocable in the event of compromise. Therefore, another layer is required to 

make the MVD feature revocable and diversity. In this thesis, a two-

dimensional random projection is devised for such purpose and this is 

described in the Section 3.2.2. 
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3.2.2 Randomizing Minutia Vicinity Decomposition (RMVD) 

The feature matrix 𝑼 ∈ ℝ𝑁×36 represents a set of minutia vicinity 

containing the nearest neighborhood structure and the distance defined in the 

Euclidean space. U is projected onto a sequence of random subspace 

determined by an externally-derived pseudorandom sequence. This task can be 

done via a 3-step algorithm as follows: 

 Step (1). Use a token to generate a pseudo random matrix, {𝒓𝑖 ∈

ℝ𝑃|𝑖 = 1,2, … ,36} and transform the matrix into an orthonormal 

matrix {𝒓⊥𝑖 ∈ 𝑅𝑃|𝑖 = 1,2, … ,36} by applying the Gram–Schmidt 

process (Arfken & Weber, 1985). With this, an orthonormal matrix, 

𝑹 = [𝒓⊥1, … , 𝒓⊥36] ∈ ℝ36×𝑃, P ≤ 36 can be formed. 

 

 Step (2). Normalize the feature matrix 𝑼 ∈ ℝ𝑁×36. Let u
n
 be the n-th 

row of U, which represents the 36-dimensional feature vector 

generated from the n-th vicinity (out of N vicinities). The normalized 

feature matrix is denoted as �̅�, where ‖. ‖ is referred to the Euclidean 

norm. 

𝒖𝑖
𝑛̅̅̅̅ =

𝒖𝑖
𝑛

‖𝒖𝑛‖
 (3.2) 

i = 1,…,36 and n = 1,…,N 

 

 Step (3). Compute the randomized feature vector W using the 

following equation: 

𝐖 = �̅�𝑹 ∈ ℝ𝑁×𝑃 (3.3) 
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where the same 𝑹 for each user will be used in both enrolment and 

verification stage. Further, 𝑹 is determined by a user-specific token 

that can be either stored in the system or carried by the user depending 

on the specific applications. It is noted that the user-specific tokens 

refer to the distinctive tokens assigned to each user, which are used to 

generate distinctive 𝑹 to perform random projection described above. 

 

It is noted, since P ≤ 36, the size of the feature matrix after random 

projection is less than or equal to the one before random projection. The 

smaller number of P, the more dimensions reduced and vice versa. A low 

dimension feature vector provides a better irreversibility protection as the less 

structure information of the feature vector is preserved (Teoh & Chong, 2007; 

Liu et al., 2006). The performance-irreversibility trade-off on P will be 

presented experimentally in Section 3.2.4.1. 

 

3.2.3 Matching 

Matching two randomized minutia vicinity decomposition templates is 

performed in randomized domain, i.e. randomized MVD representation. The 

matching process is described as follows: given two randomized MVD 

templates with different sizes; matching is to search the two most similar 

randomized minutiae vicinities. Let 𝐖𝑒
𝑛 = [𝒘𝑒1

𝑛  𝒘𝑒2 
𝑛 𝒘𝑒3

𝑛 𝒘𝑒4
𝑛 ] and 𝐖𝑞

𝑚 =

[𝒘𝑞1
𝑚  𝒘𝑞2 

𝑚 𝒘𝑞3
𝑚 𝒘𝑞4

𝑚 ] be the 36-dimensional (9×4) feature vectors which are 

generated from n-th and m-th vicinity respectively. The matched pair scores, 

𝑝𝑖𝑗 of 𝐖𝑒
𝑖 and 𝐖𝑞

𝑗
 can be determined using eq. (3.4) and a matrix P = [pij] with 

size N × M can be formed thereafter. 
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𝑝𝑖𝑗 = min(‖𝒘𝑒
𝑖  , 𝒘𝑞

𝑗
‖) (3.4) 

i = 1,…, N and j = 1,…, M 

where ||.|| denotes the Euclidean distance between 𝒘𝑒
𝑖   and 𝒘𝑞

𝑗
. 

 

Next, we store the minimum value for each row in P, denoted as 𝑎𝑖. 

𝑎𝑖 = min𝑗(P𝑖𝑗) (3.5) 

i = 1,…, N and j = 1,…, M 

The score 𝑎𝑖 calculated is only the minimum value for each row in P 

which represents the similarity of the two vicinities. However, the total 

number of vicinities extracted from different fingerprint images (even from the 

same finger) may be varied enormously. Thus, the score, 𝑎𝑖 may not reflect 

the truly similarity between two fingerprint templates. Hence, the matching 

score should be normalized as follows: 

𝑠 =
∑ (𝑎𝑖 < 𝑡)𝑁

𝑖=1

√𝑁 × 𝑀
 (3.6) 

where t is a pre-defined threshold that is empirically established to determine a 

pair of genuine vicinity. Hence, the score obtained is real where a score is 

toward ‘0’ indicates a strong mismatch and otherwise. N and M are the 

numbers of minutiae found in query and enrolled fingerprint images. 

 

3.2.4 Experiments 

The experiments are carried out using two public fingerprint databases: 

FVC2002 (DB1, DB2, DB3 and DB4) (Fingerprint Verification Competition, 

2002) and FVC2004 DB2 (Fingerprint Verification Competition, 2004); each 

data set contains 100 fingerprints and each fingerprint has 8 different 
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impressions. Minutiae points used in this experiment are extracted using the 

commercialized fingerprint recognition software, VeriFinger 7.0 SDK 

(VeriFinger SDK). Six performance indicators are used to evaluate the 

proposed method as abbreviated below: 

 FAR – False Acceptance Rate 

 FRR – False Reject Rate 

 EER – Equal Error Rate 

 GD – Genuine distribution 

 ID – Imposter distribution 

 ROC – Receiver Operating Characteristic 

Two experimental protocols are applied as follows: (1) 1 vs 1: the first 

and second impressions of images in the data set are used as gallery and 

probes respectively. Hence, the matching process yields 5,050 matching 

scores, which comprises 100 and 4,950 genuine and imposter scores 

respectively. This strategy provides a benchmark for comparing the proposed 

method with other methods using the same strategy in literature (Yang & 

Busch, 2009; Ahmad et al., 2011; Wang & Hu, 2012; Wang & Hu, 2014); (2) 

FVC: standard experimental protocol for fingerprint verification competition 

is applied, where each impression is matched against the remaining 

impressions of the same identity to compute the false reject rate (FRR) while 

the first impression of each identity is matched against the first impression of 

the remaining identities to compute false acceptance rate (FAR). This protocol 

yields 2,800 genuine score and 4,950 imposter scores respectively. Generally 

this protocol is to evaluate the robustness of the proposed method. 
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3.2.4.1 Accuracy Performance 

For performance evaluation, two scenarios, genuine-token and stolen-

token scenario are carried out. For the genuine-token scenario, it is assumed 

that the secret token is securely stored, so each randomized MVD is salted by 

a random matrix determined by the user-specific token as shown in eq. (3.3). 

On the other hand, in the stolen-token scenario, the genuine user lost his/her 

token; therefore, the randomized MVDs are matched using an identical token. 

For genuine-token scenario, the performance results in terms of EER 

for all datasets are ideal (i.e. the EERs are close to 0). This indicates that all 

users can be correctly verified and no impostor will be falsely accepted under 

this scenario given an appropriate threshold for the matching score. Good 

performance is attributed to the binding of the external token with the 

biometric features, which increases the dissimilarity between different users 

tremendously.  

 

Considering stolen-token scenario, a token is generated in advance and 

this token is assigned to all users. The accuracy performance is computed by 

comparing the templates from all the 100 users with the same external token.  

 

 From the Table 3.1, it can be observed that approximately, the equal 

error rate of 1.02%, 0.98%, 16.15%, 15.98% and 17.75% for FVC2002 (DB1, 

DB2, DB3, DB4) and FVC2004 DB2 in 1 vs 1 protocol scenario are achieved 

while the equal error rate of 6.12%, 5.69%, 29.83%, 16.70% and 20.30% in 

FVC protocol scenario are obtained approximately. From the Table 3.1, it also 

can be observed that the performances on FVC2002 DB1 and DB2 are better 
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than the performance on FVC2002 DB3, DB4 and FVC2004 DB2 in both 

1vs1 and FVC protocols. This is due to the relatively good quality of 

fingerprint image for FVC2002 DB1 and DB2 whereas the quality of image 

for other fingerprints data sets is poor in terms of large elastic deformation, 

presence of partial image etc. Further, it is noticed that the performance for 1 

vs 1 protocol is better than the performance using FVC protocol. This is 

expected because the quality of images used in 1 vs 1 protocol (i.e. 1
st
 and 2

nd
 

image of each identity) is better compare to the quality of the rest images for 

the same identity (Ahmad et al., 2011; Wang & Hu, 2012).  

 

Table 3.1: Accuracy Performance in terms of EER (%) for two experiment 

protocols in stolen-token scenario for FVC2002 and FVC2004. 

Experiment 

Protocols 

Equal Error Rate (EER) (%) 

FVC2002 

DB1 

FVC2002 

DB2 

FVC2002 

DB3 

FVC2002 

DB4 

FVC2004 

DB2 

 1 vs 1 1.02 0.98 16.15 10.46 17.75 

FVC 6.12 5.69 29.83 16.70 20.30 

 

A performance comparison between the proposed method and the 

existing representative methods is carried out and summarized in Table 3.2. It 

can be observed that in FVC2002 DB1 and DB2, the proposed method 

outperforms the existing methods (Tulyakov et al., 2007; Yang & Busch, 

2009; Yang et al., 2010; Nagar et al., 2010b; Bringer & Despiegel, 2010; 

Ahmad et al., 2011; Wang & Hu, 2012; Wang & Hu, 2014). Further, it can be 

justified that the performance of Yang & Busch (2009) would be deteriorated 

if the selected direction may be likely based on a spurious minutia and the 
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further shifting of the rest of minutiae are distorted severely.  Therefore, such 

resultant template reduces the overall performance. However, the performance 

of the proposed method underperforms Wang & Hu (2012) and Wang & Hu 

(2014) in FVC2002 DB3. This is because the nearest neighbour structure (i.e. 

MVD) employed in the proposed method is not robust against missing or 

spurious minutiae that are occurred in FVC2002 DB3 data set more 

frequently. 

 

Table 3.2: Performance comparison with state-of-the-arts using 1 vs 1 protocol 

in stolen-token scenario for FVC2002 DB1 and DB2. 

Methods 

EER (%) 

FVC2002 

DB1 

FVC2002  

DB2 

FVC2002 

DB3 

FVC2002 

DB4 

FVC2004 

DB2 

*Proposed 

(2013) 
1.02 0.98 16.15 10.46 17.75 

Tulyakov et 

al., (2007)  
3 - - - - 

Yang & Busch 

(2009) 
- 

avg. 4.04 

(genuine-

token) 

- - - 

Yang et al., 

(2010) 
- 

Best case: 

0.72 

Worst case: 

2.23  

- - - 

Nagar et al., 

(2010b) 
- 3 - - - 

Bringer & 

Despiegel 

(2010) 

- 5.3 - - - 

Ahmad et al. 9 6 27 - - 
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(2011) 

Wang & Hu 

(2012) 
3.5 4 7.5 - - 

Wang & Hu 

(2014) 
2 2.3 6.12 - - 

Before RP 2.13 1.24 12.28 15.05 18.89 

 

‘-’ Denoted that results are not reported in the original paper.  

‘*’ EERs are not identical to the paper published in Jin et al., (2014) due to the 

latest feature extractor used for minutia extraction. 

 

 Besides, since the random projection is employed in Wang & Hu 

(2012) and the proposed method, back projection (Yang et al., 2010) has been 

demonstrated as a feasible method for template inversion. The analysis of the 

non-invertibility needs to be carefully justified. The non-invertibility analysis 

for the proposed method is presented in Section 3.2.4.3. 

 

The performance in stolen-token scenario using different dimensions 

(P value) as discussed in Section 3.2.2, varying from 10 to 36, is further 

investigated. Table 3.3 displays the equal error rate with respect to the 

different number of P (dimensions). It can be observed that with the decrease 

of dimensions, the performance deteriorates gradually. This can be understood 

that the more dimensions reduced, the less ability of preserving the structure, 

which causes the performance degradation. Fig. 3.3 shows the receiver 

operating characteristics (ROC) curves that serve as a comparison among the 

performance using different number of dimensions. 
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Table 3.3: Display the performance with respect to different dimensions (P) 

for FVC2002 (DB1-DB4) and FVC2004 DB2 databases. 

# of 

Dimensions (P) 
36 30 20 10 

EER (%) for 

FVC2002 DB1 
1.02 1.92 3.97 5.02 

EER (%) for 

FVC2002 DB2 
0.98 1.77 2.83 4.97 

EER (%) for 

FVC2002 DB3 
16.15 19.01 20.99 26.98 

EER (%) for 

FVC2002 DB4 
10.46 13.15 15.10 20.09 

EER (%) for 

FVC2004 DB2 
17.75 18.99 21.43 24.98 
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Fig. 3.3: ROC curves serves as a comparison among the performance based on 

different dimensions P using 1 vs 1 protocol in stolen-token scenario. 

 

The best performances (1.92%, 1.77%, 19.01%, 13.15% and 18.99% 

of EER) is achieved when the dimensionality is reduced to 30, which 

resembles the corresponding performance obtained before random projection 

(2.13%, 1.24%, 12.28%, 15.05% and 18.89% of EER), very close in DB2 and 

even better for DB1, thus signifying a good preservation of the actual MVD 

neighborhood structure after the projection. Fig. 3.4 demonstrates the 

corresponding ROC curves of before 2D random projection and after random 

projection at P = 30. In this figure, the good preserving of MVD neighborhood 

structure by random projection FVC2002 and FVC2004, respectively, can be 

seen. 
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Apart from above, the proposed method pays a less storage for the 

resultant template over the minutia triplet-based instance presented in Farooq 

et al., (2007). Assume there are N minutiae extracted in a fingerprint image, 

consequently, the template size of the proposed method is of N×36 (usually 

N<100) whereas the template with a length of 2
24

 bits is produced by Farooq 

et al., (2007), which is obviously discouraged. Furthermore, the computational 

time of the proposed method is also remarkable. This can be observed that 

there are two major computational overheads: (1) minutia triplet processing 

time. Assume that the one unit time is used to process one minutia triplet, the 

total computational time is merely of 4N for the proposed method whereas a 

number of 𝑁!/(𝑁 − 3)! 3! minutia triplets is required to be processed in 

Farooq et al., (2007); (2) feature vector projection. With a small size of feature 

vector (36-dimension), the time consumption of 2D random projection is 

rather slight. 
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Fig. 3.4: ROC curves demonstrate the good preservation before and after 

random projection using 1 vs 1 protocol in stolen-token scenario. 

 

3.2.4.2 Cancellability and Diversity 

The method introduced by Lee et al. (2010) is adopted to evaluate the 

cancellability and diversity. In this experiment, 100 templates for each of 

fingerprint impression by using 100 random factor/external tokens are 

generated. The templates were matched to each other for generating the so 

called pseudo-imposter score. In order to be fairly justified, each fingerprint 

impression used in the experiment takes turns to be the source in generating 

the cancellable template and the average EER is recorded. Hence, we obtained 

80,000 scores from 800 templates.  

 

It can be expected, a 0% of average EER is obtained. The genuine 

distribution, imposter distribution and pseudo-imposter distributions for the 

cancellability experiments are shown in Fig. 3.5. The impostor distribution 
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and pseudo-impostor distribution has a strong overlap as shown in Fig. 3.5, 

which implies that multiple templates generated using different tokens rather 

resemble a fresh template, even though multiple templates generated from the 

same image and the performance does not degraded. Therefore, cancellability 

criterion is satisfied. 

 

The experiment on evaluating the cancellability conducted above 

shows the fact that multiple templates generated from a single fingerprint 

image could be significantly distinguished, thus can be used in different 

physical applications without cross-matching. Therefore, it can be concluded 

that the result of the experiment carried out shows both cancellability and 

diversity can be achieved. 
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Fig. 3.5: Genuine distribution, impostor distributions for genuine-key scenario 

and pseudo-impostor distribution for FVC2002. 

 

3.2.4.3 Non-invertibility Analysis 

Non-invertibility in this context refers to the computational difficulty 

in learning the location and orientation of the minutia from the protected 

template and/or random matrix. This is mainly determined by two 

assumptions: (1) the secret token is known to an adversary; (2) both secret 

token and the protected template are revealed to the adversary.  

 

In the first assumption, assume that the random matrix, R is known by 

an adversary through the compromised secret token. Yet, according to eq. 

(3.3), R is fully uncorrelated with the feature matrix, U; it is rather hard for the 

adversary to learn any useful information of U with R alone. 
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For the second assumption, we assumed that an adversary has the 

knowledge of both protected template, W and random matrix, R as well as 

parameters and algorithm. However, the feature matrix U has been 

transformed into a random space by using eq. (3.3). Subsequently, in order to 

obtain the feature matrix U, the adversary has to solve an under-determined 

linear equation system (𝑼 =  𝐖𝑹−𝟏), which is computationally much more 

difficult compare to Jin & Teoh (2011). 

 

Even though, we assume the adversary can solve eq. (3.3), i.e. 

𝐖 =  𝐔𝑹𝑻  partially via pseudo-inverse operation. However, the feature 

matrix only comprises a set of local features, which do not correlate with 

location and orientation of minutiae. More specifically, if we assume that a 

minutia vicinity Vi occupies approximately a 50×50 pixels square in original 

images that are 388×374, 296×560 pixels respectively. The brute-force attack 

for guessing the correct x and y of Vi within the fingerprint image requires 

around (388-50) × (374-50) = 338×324 = 109512 attempts for DB1 and (296-

50) × (560-50) = 246×510 = 125460 attempts for DB2. Furthermore, there are 

360 possibilities in rotated degrees for Vi, thus the number of attempts increase 

to 39424320 and 45165600 respectively. Moreover, besides the estimation of 

minutiae location i.e. x axis and y, the minutia orientation is another factor 

which should also be taken into account. We noted there are 6 orientation 

differences, ±𝛥𝑜1, ±𝛥𝑜2 and ±𝛥𝑜3 in total contained in U, the total attack 

complexity for Vi is approximately 39424320×6=236545920≈2
28 

attempts for 

DB1 and 45165600×6=270993600≈2
28

 attempts for DB2. 
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Though, the experiment shows that the performance is decreased when 

a lower dimensions feature matrix applied; however, the lower dimension 

feature matrix produced by 2D random projection implies that the less 

structure information of the feature matrix is preserved, thus non-invertible 

property is enhanced. Hence, it is noted that the dimension of feature matrix is 

direct proportional to performance while it is inverse proportional to the 

difficulty of invertible property. 

 

To summarize that the proposed 2D-RP-MVD extended the original 

1D random projection used in Biohash (Teoh et al., 2004) to 2D random 

projection so that it can be applied to protect 2D minutiae-based MVD 

features. A better accuracy performance over the existing cancellable methods 

is achieved due to the strong discriminative power offered by the nearest 

neighborhood structure. More importantly, the properties of template 

protection, namely cancellability and diversity for 2D features matrix has been 

well justified, which is the main objective of the proposed 2D-RP-MVD. 

Although, the invariant features of MVD safeguards the location and 

orientation of minutiae; however, the security/non-invertibility provided by 

the 2D random projection has been pointed out to be weak against various 

attacks, e.g. attack via multiplication (ARM) in literature (Yang et al., 2010; 

Nagar, 2012). Therefore, stronger irreversible techniques to protect minutiae-

based features e.g. RMVD is demanded. 
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3.3 Randomized Graph-based Hamming Embedding (RGHE) 

 As discussed in Section 3.2.1, minutia vicinity decomposition (MVD) 

(Jin & Teoh, 2011) was proposed to conceal the location and orientation of the 

minutiae. However the MVD features are likely to reveal the minutia vicinity, 

e.g. four minutiae triangles after decomposition. Furthermore, two 

dimensional random projection-based MVD features (i.e. 2D-RP-MVD in 

Section 3.2) is inherited from random projection, which is also possibly 

invertible by applying back-projection operation (Yang et al., 2009). 

 

 To rectify the weak non-invertible issue, a Randomized Graph-based 

Hamming Embedding (RGHE) technique with strong non-invertibility is 

proposed to generate a secure cancellable fingerprint template. This technique 

is able to protect the MVD features and preserve the recognition performance 

in the original feature space. The Graph-based Hamming Embedding (GHE) is 

inspired by Weiss’s Spectral Hashing (Weiss et al., 2009), which was 

proposed to solve the big-data nearest-neighbor-search problem. Spectral 

Hashing searches for a binary mapping function that minimizes the average 

Hamming distance between the resulting binary codes with respect to the 

distance measured in the original space. However, original spectral hashing 

does not address specific cancellable biometric template design criteria such as 

diversity, non-invertible transformation, accuracy performance retention and 

“small data” (number of minutiae per template) nature in fingerprint template. 

Therefore, a substantial alteration has to be made to satisfy these requirements. 
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 In short, RGHE is able to (1) conceal the MVD structure significantly; 

(2) preserve the actual discriminative power before and after RGHE 

transformation and alleviates the security-performance trade-off originally 

caused by the intra-class variation of biometrics; (3) satisfy the cancelability 

and diversity with Random Projection. 

 

 

Fig. 3.6: Block diagram of randomized graph hamming embedding (RGHE). 

 

3.3.1 Methodology 

 The RGHE initially constructs a set of minutia vicinity that describes 

the nearest neighborhood structure in the Euclidean space. Each minutia 

vicinity is then decomposed into (4) minutiae triplets, where a set of geometric 

invariant features is derived from each triplet. Then, the invariant features are 

projected onto a random subspace determined by an externally-derived 

pseudorandom sequence. The aforementioned two processes are completely 
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identical to the Minutia vicinity Decomposition and Two-Dimensional 

Random Projection, which are presented in Section 3.2. Thereafter, the 

randomized minutia vicinity decomposition features (RMVD) are transformed 

using Graph-based Hamming Embedding to preserve the neighborhood 

structure of RMVD. The block diagram of RGHE is presented in Fig. 3.6. 

 

3.3.1.1 Minutia Vicinity Decomposition (MVD) and Randomizing MVD 

These two processes are completely identical to the minutia vicinity 

decomposition (MVD) and 2-dimensional random projection described in 

Section 3.2. Hence, the identical processes are not repeated in this section. 

 

3.3.1.2 Graph based Hamming Embedding (GHE) 

The trained RMVD Ω ∈ ℝ𝑁×36 consists of a set of N minutiae 

vicinities 𝒖 ∈ ℝ36 of a fingerprint image in the Euclidean space. Let 

G={U,W} be a weighted graph with vertex U for |U|=N and weight matrix 

𝐖 ∈ ℝ𝑁×𝑁. Each element wij of W denotes the global similarity of vertex 

pairs (ui, uj), which is measured by wij = exp(−||ui − uj||
2
 / σ

2
) with σ 

representing the bandwidth of heat kernel (Belkin & Niyogi, 2003). Our 

objective is to search a mapping function that preserves the Euclidean distance 

between the resultant m-components feature with respect to the minutia 

vicinities in the Euclidean space. 

 

This problem can be formulated by solving the following optimization 

problem (Weiss et al., 2009): 
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min φ∫W|| φ(ui) − φ(uj)||
2
p(ui)p(uj)duiduj (3.7) 

subject to 

φ(u) ∈ {-1, 1}m 

                                  ∫φ(u)p(u)du = 0 

∫φ(u)φ(u)
T
p(u)du = I 

where p(u) is the probability distribution of u. 

 

The second constraint ∫φ(u)p(u)du = 0 requires the flipping probability 

of each individual bit of the resultant binary code to be 0.5 and the third 

constraint ∫φ(u)φ(u)
T
p(u)du = I requires the bits to be uncorrelated. Although 

the optimization problem in (2.7) with the first constraint φ(u) ∈ {-1, 1}m  is 

NP hard, several analytical solutions are available by applying spectral 

relaxation, such as eigenfunctions of the weighted Laplace-Beltrami operators 

defined on manifolds (Belkin & Niyogi, 2003). 

 

Specifically, let 𝑳𝑝 be a weighted Laplacian operator that maps a 

function 𝜑 to 𝜓 = 𝐿𝑝𝜑 by 

𝜓(𝐮)/𝜑(𝐮)  = 𝐷(𝐮)𝜑(𝐮)𝑝(𝐮) − ∫ 𝐖(𝐬, 𝐮)𝜑(𝐬)𝑝(𝐬)𝑑𝐬
 

𝑠
 with 

𝐷(𝐮) = ∫ 𝐖(𝐮, 𝐬)𝑝(𝐬)𝑑𝐬
 

𝑠
. The solution for the minimization problem in eq. 

(3.7) is therefore eigenfunctions 𝜉 that satisfy 𝐿𝑝𝜉 = 𝛽𝜉 for a real-valued 𝛽. 

 

To solve the above problem, two assumptions have to be made: 1) p(u) 

is a separable distribution; 2) each input feature is drawn from a uniform 

distribution. It is noted if p(u) is separable, and the similarity between data 

points is defined by wij = exp(−||ui − uj||
2
 / σ

2
) then the eigenfunctions 𝜉 of the 
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𝐿𝑝 have an outer product form. The “outer-product” eigenfunctions are merely 

products of eigenfunctions along different dimensions and their eigenvalue is 

simply the product of the eigenvalues of these dimensions. Therefore, the first 

assumption implies that we may construct an eigenfunction 𝜉(𝐮) of 𝐿𝑝 using a 

product of 36 single-dimensional eigenfunctions, 𝜉(𝐮) = ∏ 𝜉(𝑢𝑖)
36
𝑖=1  

corresponding to each feature. The second assumption allows us to select the 

following eigenfunctions as the single-dimensional eigenfunctions of the 

single dimensional Laplacian 𝐿𝑝 in the small 𝜖, which is well studied in 

mathematics (Weiss et al., 2009): 

 𝜉𝑘(𝑥) = sin (
𝜋

2
+

𝑘𝜋

𝑏 − 𝑎
𝑥) (3.8) 

 𝛽𝑘 = 1 − 𝑒−
𝜖2

2
|

𝑘𝜋
𝑏−𝑎

|
 (3.9) 

where x is a single-dimensional arbitrary real feature uniformly distributed in 

the range of [a, b]; and  𝛽𝑘 is the corresponding eigenvalue of 𝜉𝑘(𝑥), which 

serves as an indicator for eigenfunctions selection for the GHE mapping. We 

notice that the assumption on uniformly distributed data may not fit the case in 

practice. However, the experimental result illustrates that eq. (3.8) works well 

on RMVD, although the experimental data might not be uniformly distributed. 

 

From the above description, a two-step algorithm can be derived: 1) 

Principal Component Analysis (PCA) alignment, 2) Eigenfunctions selection. 

Here, we take a multi-dimensional Gaussian as the distribution function for 

p(u) defined in eq. (3.7). This is attributed to the nice property of Gaussian 

distribution function that can be made separable by simply aligning the data 

along the axes by rotation, which motivates the use of PCA. It is important to 
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note that PCA in GHE merely serves the purpose of data alignment but not 

dimensionality reduction as applied in (Ratha et al., 2007; Ferrara et al., 2012). 

Therefore, the inversion issue (privacy breach) of back-projection in (Ratha et 

al., 2007; Ferrara et al., 2012) and the other projection-based techniques 

(Ratha et al., 2007) would not happen in our case. 

 

The second step is to compute m eigenfunctions using 𝜉𝑖(𝐲) =

∏ 𝜉𝑖(𝒚𝑗)36
𝑗=1  for i=1,…,m according to eq. (3.8), where y is the 36-dimensional 

PCA-aligned data. This can be done by evaluating the k eigenvalues for each 

of the 36 PCA directions using eq. (3.9) and sorting the resultant 36k 

eigenvalues ascending. After discarding eigenfunctions with zero eigenvalue, 

we select m eigenfunctions with the m smallest eigenvalues from the 

remaining eigenfunctions to form a m-components feature vector. The same 

process is repeated for N minutiae vicinities of an image. Finally, a N × m real-

valued feature matrix is obtained. 

 

The GHE is applied to every individual randomized MVD in both 

enrollment and verification stages. The parameters required to be stored 

during the enrollment stage are the range of Y (a and b) and the projection 

matrix R for data alignment. 

 

Note that GHE seeks a m-components feature vector from each 36-

dimensional RMVD feature vector of a minutia vicinity. By considering all the 

minutia vicinities, a GHE-extracted real-valued template of size N × m can be 

formed, where N is the number of minutiae. For instance, m can be set to 16, 
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32, 64, 129 or 256 components and this causes the corresponding real-valued 

template to take the size of N × 16, N × 32, N × 64, N × 128 or N × 256, 

respectively. Algorithm 3.1 presents the detailed flow of the proposed GHE 

method. 

 

Algorithm 3.1. Graph based Hamming Embedding (GHE) 

Input:  RMVD, Ω ∈ ℝ𝑁×36 and code length m 

Step 1: PCA Alignment 

1.1: Extracts eigenvectors Φ from the covariance matrix, C= ΩΩ
T
 

1.2: Project Ω to eigenspace, i.e. Y= Φ
T
Ω, where 𝐘 =  [𝐲1, … , 𝐲𝑁] ∈

ℝ𝑁×36 

1.3: Calculate a = min(Y) and b = max(Y) for eq. (3.8) and eq. (3.9). 

1.4: Calculate 36k eigenvalues from βk using eq. (3.9) and sort them in 

ascending order. 

 

Step 2: Eigenfunctions selection 

2.1 Compute m eigenfunctions according to the m smallest eigenvalues 

from step 1.4, i.e. 

      For i=1:m 

Compute  𝜉𝑖(y) = ∏ 𝜉𝑖(𝑦𝑟) ∈ ℝ36
𝑟=1  as in eq. (3.8). 

      End for 

2.2 Repeat Step 2.1 for all N minutiae vicinities, hence 𝜉𝒏 =

[𝜉𝟏, … , 𝜉𝒎], where n = 1,…,N. 

2.3 Form 𝚵 = [𝝃𝟏, … , 𝝃𝑵] ∈ ℝ𝑁×𝑚 

Output: The real-valued template 𝚵 for a set of minutia vicinity 

 

3.3.1.3 Matching 

The similarity between two distinct fingerprints represented by two 

resultant binary codes (𝚵𝑖 ∈ {0,1}𝑁1×𝑚 and 𝚵𝑗 ∈ {0,1}𝑁2×𝑚 containing N1 and 

N2 m-components templates, respectively) can be measured by the smallest 
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pairwise Euclidean distance between templates in 𝚵𝑖 with respect to those in 

𝚵𝑗 (measured in Euclidean distance). We devise an exhaustive searching 

strategy as follows. Let 𝚵𝑒 = [𝝃𝑒1, … , 𝝃𝑒𝑁1
] and 𝚵𝑞 = [𝝃𝑞1, … , 𝝃𝑞𝑁2

] be the 

binary vectors of N1 and N2 vicinities extracted from an enrolled and a query 

fingerprint image, respectively. The score of a matched pair pij in the 

comparison of 𝚵𝑒 and 𝚵𝑞 can be computed using eq. (3.10). With this, a score 

matrix P = [pij] of size N1 x N2 can be formed: 

 𝑝𝑖𝑗 = min (𝚵𝑒
𝑖 , 𝚵𝑞

𝑗
) (3.10) 

where ||.|| denotes the hamming distance between 𝚵𝑒
𝑖  and 𝚵𝑞

𝑗
. 

Next, we store the minimum value for each row in P, which is denoted 

as ai: 

ai = minj(Pij) for i= 1,…, N1 and j= 1,…, N2 (3.11) 

 

The matching score can then be computed by counting the number of 

ai that has a less value than the pre-defined threshold t. To avoid large 

variation in the results caused by non-trivial difference in magnitude led by 

unstable number of minutiae in the query and enrolled images, the matching 

score can be normalized as follows: 

𝑠 =
∑ (𝑎𝑖 < 𝑡)

𝑁1
𝑖=1

√𝑁1 × 𝑁2

 (3.12) 

Hence, the score obtained is real where a score is toward ‘0’ indicates a 

negative match and vice versa. 
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3.3.2 Experiments 

The experiments were conducted on two public fingerprint datasets, 

namely FVC2002 (Fingerprint Verification Competition, 2002) and FVC2004 

(Fingerprint Verification Competition, 2004). Each dataset consists of 100 

users, where each user has 8 samples. In total, there are 800 (100×8) 

fingerprint images. VeriFinger 7.0 SDK (VeriFinger SDK) was used for 

minutia extraction from the fingerprint images. The performance of the 

proposed method is evaluated using Equal Error Rate (EER) and receiver 

operating characteristic (ROC) as well as genuine-imposter distribution. 

 

For the experiments in sequel, two protocols are designed: 

(a) 1 vs 1 protocol: The first 100 samples of the same finger in all data sets 

(FVC2002 DB1, DB2, DB3 and DB4; FVC2004 DB2) are used as gallery and 

the second 100 samples of the same finger are regarded as probe. Hence, the 

matching yields 100 genuine scores and 9900 imposter scores. Note that this is 

a popular experimental setup, since the same setup has been employed by 

many existing methods (Yang & Busch, 2009; Ahmed et al., 2011; Wang & 

Hu, 2012; Wang & Hu, 2014).  

 

(b) FVC protocol: Fingerprint Verification Competition (FVC) protocol is 

applied, where each sample is matched against the remaining samples of the 

same finger to compute the False Rejection Rate (FRR) while the first sample 

of each finger is matched against the first sample of the remaining fingers to 

compute the False Acceptance Rate (FAR). This protocol results 2800 genuine 

scores and 4950 imposter scores respectively. 
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3.3.2.1 Accuracy Performances 

The performances in two scenarios, namely genuine-token and stolen-

token scenarios, are evaluated. For genuine-token, each individual is assigned 

a random matrix, which is used to mix with feature matrix as shown in eq. 

(3.3) and this random matrix is user specific. On the other hand, verification in 

the stolen-token scenario is the scenario where an impostor has stolen the 

token of the target user and uses the random matrix of the target user to 

perform verification. This is also known as the Lost Token Attack. 

 

Table 3.4: Accuracy Performance in terms of EER (%) for two experiment 

protocols in stolen-token scenario for FVC2002 and FVC2004. 

Experiment 

Protocols 

Equal Error Rate (EER) (%) 

FVC2002 

DB1 

FVC2002 

DB2 

FVC2002 

DB3 

FVC2002 

DB4 

FVC2004 

DB2 

 1 vs 1 2.07 0.90 10.28 10.44 15.80 

FVC 6.71 6.30 16.95 11.35 18.96 

 

For genuine-token scenario, the performance results in terms of EER 

for all datasets are ideal (the EERs are close to 0). This is due to the binding of 

the external token with the biometric features, which increases the 

dissimilarity between different users tremendously. 

 

In stolen-token scenario, a token is generated in advance and this token 

is assigned to all users. The accuracy performance is computed by comparing 

the templates from all the 100 users with the same external token. 
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From the Table 3.4, it can be observed that approximately, the equal 

error rate of 2.07%, 0.90%, 10.28%, 10.44% and 15.80% for FVC2002 (DB1, 

DB2, DB3, DB4) and FVC2004 DB2 in 1 vs 1 protocol scenario are achieved 

while the equal error rate of 6.71%, 6.30%, 16.%, 11.35% and 18.96% in FVC 

protocol scenario are obtained approximately. It also can be observed that: (1) 

the accuracy performances of FVC2002 DB1 and FVC2002 DB2 are better 

than the rest of data sets (i.e. FVC2002 DB3, DB4 and FVC2004 DB2); (2) 

the performance for 1 vs 1 protocol is better than the performance using FVC 

protocol. These observations are identical to the experiment observations in 

the proposed 2D-MVD-RP method. Thus, the justification in Section 3.2.4.1 

can be confirmed.  

 

The performance of RGHE for different number of components m is 

then investigated, where m ranges from 16 to 256. Table 3.5 illustrates the 

EER of RGHE with respect to different m. It is observed that the performance 

of RGHE improves as m increases for FVC2002 DB2. When m = 256, RGHE 

performs the best where the corresponding EER = 0.90%. While, the 

performances of RGHE demonstrates bell-shape-liked curve as m increases for 

other data sets. The lowest EERs achieved are 2.07% for FVC2002 DB1, 

10.28% for FVC2002 DB3, 10.44% FVC2002 DB4 and 15.80% FVC2004 

DB2 respectively where the corresponding m are16 for FVC2002 DB1 and 64 

for FVC2002 DB3, DB4 and FVC2004 DB2. The best accuracy from 

FVC2002 DB2 is somehow expected, since the features (minutia vicinity) 

extracted from other data sets are generally less discriminative than FVC2002 

DB2. It is noticed that the recognition performance deterioration occurs as m 
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increases in all the data set except FVC2002 DB2. This is due to the fact that 

RGHE does not converge to a deterministic functional form and this 

eventually brings down the performance when m increases (Raginksi & 

Lazebnik, 2009). Therefore, the selection of m for optimal performance is 

database-dependent. Fig. 3.7 demonstrates the corresponding ROC curves of 

GHE based on different values of m. 

 

Table 3.5: EER performance of the RGHE for different number of components 

m (EER obtained in stolen-token case with 1 vs 1 protocol). 

# of 

components, 

m 

FVC2002 

DB1 

FVC2002 

DB2 

FVC2002 

DB3 

FVC2002 

DB4 

FVC2004 

DB2 

16 3.19% 1.07% 12.41% 12.48% 17.40% 

32 2.07% 0.98% 11.47% 11.84% 17.24% 

64 2.18% 0.98% 10.28% 10.44% 15.80% 

128 2.93% 0.97% 11.16% 11.67% 16.93% 

256 2.98% 0.90% 11.73% 14.54% 17.28% 
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Fig. 3.7: Demonstrates the corresponding ROC curves of RGHE based on 

different values of m for the FVC2002 and FVC2004. 

 

Table 3.6 shows the EERs performance comparisons between the 

proposed method and the other methods in the literature using 1 vs 1 protocol. 

The proposed method achieves better performance than the most of the state-

of-the-arts (Tulyakov et al., 2007; Yang & Busch, 2009; Nagar et al., 2010b; 

Bringer & Despiegel, 2010; Ahmed et al., 2011; Wang & Hu, 2012, Wang & 

Hu, 2014) in FVC2002 DB2 whereas the proposed method underperforms 

Wang et al.’s method (Wang & Hu, 2012) in FVC2002 DB3 and Wang et al.’s 

method (Wang & Hu, 2014) FVC2002 DB1 and DB3. However, those 

methods are to be vulnerable to attack via record multiplicity (ARM) (Li and 

Hu, 2014). 
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Table 3.6: Performance accuracy of the proposed method in comparison with 

several state-of-the-art methods using 1 vs 1 protocol. 

Methods 

EER (%) in stolen-token scenario 

FVC2002 

DB1 

FVC2002 

DB2 

FVC2004 

DB3 

FVC2002 

DB4 

FVC2004 

DB2 

Proposed 2.07 0.90 10.28 10.44 15.80 

Ahmad et al., 

(2011) 
9 6 27 - - 

Wang & Hu 

(2012) 
3.5 4 7.5 - - 

Wang & Hu 

(2014) 
2 2.3 6.12 - - 

Tulyakov et al., 

(2007)  
3 - - - - 

Yang & Busch 

(2009) 
- Avg. 4.04 - - - 

Yang et al., 

(2010) 
- 

Best case: 

0.72 

Worst case: 

2.23 

- - - 

Nagar et al., 

(2010b) 
- 3 - - - 

Bringer & 

Despiegel 

(2010) 

- 5.3 - - - 

‘-’ Denoted that results are not reported in the original paper. 

 

3.3.2.2 Preservation of the Performance 

Apart from the above, we also investigate the recognition performance 

before and after RGHE. It is noted that the performance deterioration caused 

by GHE is rather insignificant. Among the five data sets, the accuracy 

deterioration only occurs in FVC2002 DB1 (from 1.02% to 2.07%). By 

contrast, the accuracy performances have been improved for FVC2002 DB2, 
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FVC2002 DB3, FVC2002 DB4 and FVC2004 DB2, as shown in Table 3.7, 

thus signifying a good preservation of the actual MVD neighborhood structure 

in the Euclidean space. 

 

Table 3.7: Accuracy comparison (EER %) in before and after RGHE 

transform using FVC protocol. 

 
FVC2002 

DB1 

FVC2002 

DB2 

FVC2002 

DB3 

FVC2002 

DB4 

FVC2004 

DB2 

Before 

RGHE 

Transform 

1.02 0.98 16.15 10.46 17.75 

After 

RGHE 

Transform 

2.07 0.90 10.28 10.44 15.80 

 

3.3.2.3 Revocability 

To evaluate this criterion, 100 sets of random matrices are first 

generated. Subsequently, 100 different templates are generated from a single 

fingerprint image based on these different random matrices. The 100 templates 

are compared with the genuine template and the resulting distances (scores) 

are used to generate a distribution called the pseudo-impostor distribution. The 

genuine-imposter and pseudo-imposter distributions for the revocability 

experiments are shown in Fig. 3.8. It can be observed that there is a strong 

overlap between the impostor distribution and pseudo-impostor distribution. 

This implies that the templates generated using different tokens and the same 

biometrics is no different to templates generated from biometric data 

belonging to a different identity. Therefore, the claim of revocability is 
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vindicated. 
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Fig. 3.8: Shows the genuine-imposter and pseudo-imposter distributions for 

the FVC2002 database. 

 

3.3.2.4 Diversity 

The experiment conducted in section 3.3.2.3 shows that even though 

the 100 different templates are generated from a single fingerprint image, they 

can still significantly be distinguished from the original template. That means 

individual can enrol different templates using the same finger at different 

physical applications without cross-matching. Therefore, the experiments 

conducted do not only vindicate the claim of revocability but also to validate 

the property of diversity. 

 

3.3.3 Non-invertibility and Computation Complexity Analysis 

In this section, the non-invertibility of RGHE is evaluated through (1) 

small range of shifting/small angle approximation analysis based on the study 

of two existing methods (Ratha et al., 2007); (2) evaluation of invertibility 

complexity. The computational complexity of RGHE is also provided in this 

section. In our context, non-invertibility refers to the computational hardness 
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in recovering the fingerprint minutia from the generated bit-string and/or 

helper data.  

 

1) Small range of shifting/small angle approximation analysis. To 

analyze the non-invertibility property of cancellable biometrics, many-to-one 

property of the transformation methods have always been taken as a main 

criterion for evaluation; yet, the poor design of many-to-one transformation 

function would always weaken or even compromise the non-invertibilitiy of 

transformation function (Nagar et al., 2010c; Feng et al., 2008). We reveal that 

small range of shifting/small angle approximation can weaken the many-to-

one property of the non-linear functions, which is less studied in the literature. 

 

A well-known instance proposed in literature is Ratha’s surface folding 

scheme (Ratha et al., 2007); it is shown that inappropriate parameters selected 

for minutia transformation leads to small range of shifting for the transformed 

minutiae. In fact, such transformation de-generates the many-to-one surface 

folding function to a linear function. Therefore, non-invertibility can be 

compromised via restoring the small shifted minutiae. Similar analysis is also 

applicable to another realization, namely, BioPharsor (Teoh & Ngo, 2006). 

Generally, BioPhasor can be formulated as follow: 

𝑎𝑗 =
1

𝑛
∑ tan−1 (

𝑥𝑖

𝑟𝑖𝑗
), 𝑗 = 1, … 𝑚, 𝑚 < 𝑛 and 𝑟 ≠ 0

𝑛

𝑖=1

 (3.13) 

where 𝑥𝑖 and 𝑟𝑖 represent an ordered fixed-length feature vector 𝑥𝑖 ∈ ℝ𝑛 and a 

set of random numbers respectively; and n and m denote the length of 𝑥𝑖 and 

𝛼𝑗 respectively. 
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If 𝜃 = (
𝑥𝑖

𝑟𝑖𝑗
) < 0.176 rad, then tan−1 (

𝑥𝑖

𝑟𝑖𝑗
) ≈

𝑥𝑖

𝑟𝑖𝑗
. This small angle 

approximation can be observed in Fig. 3.13(a). Hence, we analyze two cases 

separately, i.e. i) 𝜃 < 0.176 ; ii) 𝜃 ≥ 0.176. 

(1) For < 0.176 , the BioPhasor degenerates to: 

𝑎𝑗 =
1

𝑛
∑ (

𝑥𝑖

𝑟𝑖𝑗
)

𝑛

𝑖=1

= ∑ (
1

𝑛𝑟𝑖𝑗
𝑥𝑖)

𝑛

𝑖=1

 (3.14) 

or if  

𝑅𝑖𝑗 =
1

𝑛𝑟𝑖𝑗
 

𝑎𝑗 = ∑ 𝑅𝑖𝑗𝑥𝑖

𝑛

𝑖=1

 

(3.15) 

(2) If 𝜃 ≥ 0.176, the inverse tangent function can be approximated using 

infinite series. 

tan−1 (
𝑥𝑖

𝑟𝑖𝑗
) =

𝑥𝑖

𝑟𝑖𝑗
−

1

3
(

𝑥𝑖

𝑟𝑖𝑗
)

3

+
1

5
(

𝑥𝑖

𝑟𝑖𝑗
)

5

−
1

7
(

𝑥𝑖

𝑟𝑖𝑗
)

7

+ ⋯ (3.16) 

 

As a result, we reveal that 1) if  𝜃 < 0.176 , BioPhasor in eq. (3.15) is 

degenerated to a random projection. Thus, the accuracy performance can be 

preserved due to Johnson–Lindenstrauss lemma but the non-invertibility could 

be compromised if a pseudo-inverse is applied (Ferrara et al., 2012). On the 

other hand, when the angle is large, the non-linearity of BioPhasor becomes 

prominent but the preservation of accuracy performance could be traded off. 
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(a) 

 
(b) 

 

Fig. 3.9: The approximations of (a) the inverse tangent function by a linear 

function and (b) cosine function by the function 1 −
𝑥2

2
 . The approximation is 

more precise as the angle approaches 0. 

 

In the proposed RGHE, the sinus function in eq. (3.8) offers a many-

to-one mapping to ensure its non-invertitibility. Now, we carry out an analysis 

to investigate the small angle approximation issue. Firstly, we make the 

following manipulation: 
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𝜉𝑖 = ∏ sin (
𝜋

2
+

𝑖𝜋

𝑏 − 𝑎
𝑦𝑟) = ∏ cos (

𝑖𝜋

𝑏 − 𝑎
𝑦𝑟)

36

𝑟=1

36

𝑟=1

 (3.17) 

Let 𝜃 =
𝑖𝜋

𝑏−𝑎
𝑦𝑟, 

∏ cos (
𝑖𝜋

𝑏 − 𝑎
𝑦𝑟)

36

𝑟=1

= ∏ cos(𝜃)

36

𝑟=1

 (3.18) 

Small angle approximation for cosine function (cos(𝜃) ≈ 1 −
𝜃2

2
) is 

valid when   𝜃 < 0.664 rad, as shown in Fig. 3.9(b). In this case, the 

“many(outputs)-to-one(input)” of cosine function has been  reduced to a “two-

to-one” quadratic function, thus weakening the non-invertibility of the 

function. 

𝜉𝑖 = ∏ cos(𝜃)

36

𝑟=1

≈ ∏ [1 −
1

2
(

𝑖𝜋

𝑏 − 𝑎
𝑦𝑟)

2

]

36

𝑟=1

 (3.19) 

 

Therefore, it is worthwhile to investigate whether 𝜃 computed by 

RMVD template is in the range of small angle approximation attack. As such, 

we design an experiment as follows: 

1. Compute the mean and standard deviation of the angle from all the 

minutia vicinity decomposition in one RMVD template; 

2. Since there are 800 RMVD templates derived from each dataset, we 

further compute the average mean and average standard deviation from 

the 800 RMVD templates. 

The results presented in Table 3.8 show that the angle (in rad) is much 

larger than 0.664 rad, thus invalidating the small angle approximation 

analysis. Furthermore, the many-to-one property of RGHE is effective as the 
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mean and the range of angle shown in Table 3.8 indicate that multiple 

solutions exist (i.e. 𝜃 exceeds 2π). To provide a clearer demonstration on the 

range of angle, histograms that are plotted for a few samples are shown in Fig. 

3.10. 

 

Table 3.8: Mean and standard deviation for 𝜃 in Radian. 

Measurements FVC2002 DB1 FVC2002DB2 

Average Mean of angle (rad) 11.6851 13.0572 

Average S.T.D of angle (rad) 8.7962 10.6427 

Range of angle (rad) ≈ 1.57 to 48.69 ≈ 1.57 to 67.54 

Maximum number of possible 

inputs corresponding to an output 

of a single-dimensional 

eigenfunction 

8 10 

 

 

  

Fig. 3.10: Samples of the distribution of angle 𝜃. 

 

2) Evaluation of invertibility complexity. To evaluate the invertibility 

of the 36 dimensional eigenfunctions  𝜉𝑖 = ∏ sin (
𝜋

2
+

𝑖𝜋

𝑏−𝑎
𝑦𝑟)36

𝑟=1  in step 2.1 
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of algorithm 3.1, it is common to assume that 𝜉𝑖 is known in this invertibility 

analysis (e.g., after database is compromised). The hardness of inverting 𝜉𝑖 lies 

in the associated number of input possibilities. In table 3.8, it is known that 

there are 8 and 10 possible inputs associated with 𝜉𝑖 for FVC2002 DB1 and 

DB2, respectively. Hence, for FVC2002 DB1 and DB2, the invertibility 

complexity for single minutia vector decomposition is upper bounded by 8
36

 ≈ 

2
118

 and 10
36

 ≈ 2
129

, yielding 118 and 129 bits entropy, respectively. To invert 

N number of vicinities (all elements in Ξ in Step 2.3 of algorithm 3.1), the 

total invertibility complexity is therefore upper bounded by 8
36

N ≈ 2
118

N and 

10
36

N ≈ 2
129

N, yielding 118+log2(N) and 129+log2(N) bits entropy for 

FVC2002 DB1 and DB2, respectively. 

 

3.4 Summary 

In this chapter, two techniques, namely Two-Dimensional Random 

Projected Minutia Vicinity Decomposition (2D-RP-MVD) and Randomized 

Graph-based Hamming Embedding (RGHE), are proposed to generate 

cancellable fingerprint templates. More precisely, 2D-RP-MVD is designed 

for 2-dimensional feature matrix (e.g. MVD) and considered as an extension 

of the 1-diemensional random projection (RP) used in Biohash (Teoh et al., 

2004). Besides, 2D-RP-MVD utilizes geometrical invariant features as the 

source of template; thus, the original minutia coordinates and orientation is 

well concealed. As the main intention of 2D-RP-MVD, cancelability and non-

invertibility can be easily achieved by replacing the external assigned tokens. 

However, it has been found that random projection is possibly invertible by 

applying back-projection operation. It requires an additional layer to shield the 
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biometric templates. RGHE is therefore proposed to serve such purpose. 

Besides the strong non-invertibility provided by RGHE, it also preserves the 

accuracy performance compare to the original representation (e.g. minutiae 

descriptor). Thus, alleviate the security-performance trade-off. 
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CHAPTER 4 

 

POINT-TO-STRING CONVERSION: FINGERPRINT MINUTIA TO 

FIXED-LENGTH REPRESENTATIONS USING KERNEL METHODS 

 

 

ISO/IEC 19794-2 compliant fingerprint minutiae template is an 

unordered and variable-sized point set data. Such characteristic leads to the 

restriction for the applications that can only operate on fixed length binary 

data, such as cryptographic applications and certain biometric cryptosystems 

e.g. fuzzy commitment. In this chapter, a generic point-to-string conversion 

framework for fingerprint minutia is proposed based on kernel learning 

method to generate discriminative fixed length binary string that enables rapid 

matching. The proposed framework consists of four stages: minutiae 

descriptor extraction; kernel transformation method that is composed of 

Kernel Principal Component Analysis or Kernelized Locality-Sensitive 

Hashing for fixed length vector generation; dynamic feature binarization and 

matching. The promising experimental results on six datasets from FVC2002 

and FVC2004 justify the feasibility of the proposed framework in terms of 

matching accuracy, efficiency and template randomness. 
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4.1 Introduction 

 Fingerprint minutia is certainly the most widely-used fingerprint 

feature for fingerprint recognition (Maltoni et al., 2009). This is attributed to 

the observations: (1) minutia are generally reliable and robust to the image 

noise (Maltoni et al., 2009); (2) unlike global features such as singular point 

and coarse ridge line shape, minutia provide sufficient distinctiveness for 

matching (Maltoni et al., 2009). However, minutiae representation defined in 

ISO/IEC 19794-2 (ISO/IEC 19794-2, 2005) is unordered and variable in size. 

This is because the number of minutia extracted from multiple impressions of 

a finger can largely vary due to inherent variations like rotation, translation, 

and skin elastic deformation. Fig. 4.1 shows two different impressions of the 

same finger with very different number of detected minutiae. 

 

 

Fig. 4.1: Two different impressions of the same finger from FVC2004 DB1. 

There are 12 extracted minutiae in the left image while 27 minutiae in the 

right, where the circle and square markers represent minutia and core point, 

respectively. 
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 Traditionally, minutiae-based fingerprint matching is viewed as a 2D 

point pattern matching in the search of optimal minutiae pairs. Solving this 

matching problem with Hough transform for instance is computationally 

expensive and less effective due to its low robustness against non-linear 

fingerprint elastic deformation (Cappelli et al., 2010). In the past decade, a 

popular representation, minutiae descriptor, was introduced for fingerprint 

indexing by Hrechak & McHugh (1990) and was later extended for fingerprint 

recognition by Wahab et al., (1998). A minutiae descriptor characterizes 

information (e.g. intensity of image, ridge frequency, etc.) in a local 

neighborhood of a minutia. Generally, the minutiae descriptor can be divided 

into three categories depending on the feature type (Nagar, 2012): (1) image 

feature descriptor; (2) minutiae feature descriptor; and (3) texture feature 

descriptor. The image feature descriptor extracts image intensity information 

of the local region around a central minutia. The minutiae feature descriptor 

describes information about a set of neighbor minutiae around a central 

minutia. The texture feature descriptor captures texture information such as 

ridge orientation and ridge frequency around a central minutia. In this thesis, 

the minutiae feature descriptor is mainly focused on. 

 

 Minutiae feature descriptor allows local minutiae matching, i.e. 

matching two fingerprints according to the local minutiae structure (Cappelli 

et al., 2010) due to the rotation, translation, and scaling invariant properties of 

minutiae descriptor. This alleviates the need of manual fingerprint alignment 

during fingerprint registration. Thus, a high matching accuracy can be 

anticipated. To date, a state-of-the-art minutia feature descriptor, namely 
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Minutiae Cylinder Code (MCC) was reported by Cappelli et al. (2010). Other 

minutiae feature descriptors can be found as follows: Wahab et al. (1998); 

Jiang & Yau, (2000); Tico & Kuosmanen, (2003); Jea, & Govindaraju, (2005). 

 

 A well-known standard to compare two sets of minutiae descriptors is 

to carry out a two-stage procedure (Jiang & Yau, 2000): local descriptor 

matching and global template matching. In the former stage, the similarity 

values between all local descriptors extracted from the query and template are 

calculated. In the latter stage, the ratio of the matched descriptor pairs 

(determined by the threshold) over all the descriptor pairs is computed based 

on the similarity values as the final matching score between two fingerprints. 

The two-stage matching procedure has shown better robustness to spurious 

and missing minutia than the traditional minutiae point-to-point matching 

(Maltoni et al., 2009; Nagar, 2012; Jiang & Yau, 2000). 

 

 Although having such advantages, the minutiae feature descriptor and 

the minutiae template are: (1) computational expensive in matching due to 

exhaustive search of corresponding descriptor/minutiae pairs; (2) unordered 

and variable in size, which leads to inapplicable to certain biometric 

cryptographic applications, e.g., fuzzy identity based identification (FIBI) 

(Tan et al., 2012), Fuzzy commitment (Juels & Wattenberg, 1999). Therefore, 

it would be useful to convert minutiae to ordered and fixed-length 

representation that can be used in biometric cryptographic applications and 

allow fast matching due to the pure involvement of bitwise operations. 
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 In literature, a number of works for point-to-string conversion was 

reported, such as geometric transformation (Sutcu et al., 2007a; Sutcu et al., 

2007b), local point aggregation approach (Sutcu et al., 2008; Nagar et al., 

2010b), triplet histogram (Farooq et al., 2007), and spectral minutiae (Xu et 

al., 2008). However, the accuracy performance deteriorates usually when such 

a conversion was done (Farooq et al., 2007; Xu et al., 2008), which implies a 

drop in discriminability. This suggests that the point-to-string conversion and 

accuracy performance are in disagreement if the algorithm is not carefully 

designed. 

 

4.1.1 Motivations and Contributions 

 The primary motivations to construct a bit-string from sole minutiae 

feature descriptors are described as follows: 

 

 High-performing representation – From the literature review in 

Chapter 2 Section 2.2, it is observed that: (1) most of the algorithms reported 

in FVC2002 and FVC2004 employ a combined features set such as local ridge 

frequency and ridge counts, which are excluded in the ISO/IEC minutiae 

template; (2) the existing well-performed point-to-string conversion methods 

requires registration point, such as core point or delta point (Sutcu et al., 

2007a; Sutcu et al., 2007b; Sutcu et al., 2008; Nagar et al., 2010b; Liu et al., 

2012; Nandakumar, 2010), which is omitted in ISO/IEC minutiae template as 

well. Since minutiae template has been standardized by ISO/IEC 19794-2 

worldwide, an accurate representation of minutiae-only template that is 

compliant to the standard minutiae format (i.e. ISO/IEC 19794-2) is preferred. 
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 Demand for fast matching – Sole minutia and minutiae descriptor set 

are computational expensive in matching as discussed in Section 4.1. To 

alleviate the problem of high matching cost, converting minutiae template into 

binary representation and matching in the Hamming domain is a feasible 

solution due to the pure involvement of bit-wise operations. Furthermore, 

binary representation could facilitate 1: N identification schemes. 

 

 Usage in bio-crypto-key generation schemes – Most of the biometric 

cryptosystems such as fuzzy commitment (Juels & Wattenberg, 1999) and 

fuzzy identity-based identification schemes (Tan et al., 2012) necessitate the 

biometric data to be availed in the fixed-length ordered integer or bit-string 

form. However, the incompatibility problem exists for fingerprint minutia as it 

is unordered and variable in size. Hence, the research on point-to-string 

conversion methods is non-trivial. 

 

In this thesis, a novel usage of kernel learning (KL) method is 

demonstrate to construct a fixed-length ordered binary vector from unordered 

variable-size minutiae descriptor via a projection matrix. The KL was 

originally meant to map the input data to Reproducing Kernel Hilbert Space 

(RKHS) via the Mercer’s kernel function to harness a richer representation of 

the data distribution (Shawe-Taylor & Cristianini, 2004). However, instead of 

considering a direct point-to-string conversion problem, an unconventional 

treatment of using KL method to convert the fixed-size training samples to 

fixed-length vector is explored. In this regard, an admissible kernel function 

for this purpose is designed. According to Mercer’s theorem, only symmetric 

and positive definite (SPD) kernels would delineate valid RKHS (Shawe-
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Taylor & Cristianini, 2004). Unfortunately, such a SPD kernel is inadmissible 

in this problem when the non-metric dissimilarity measure is applied to 

compute the distance of a pair of unordered variable-size fingerprint 

templates. Hence it is a challenge to address this problem in this work. 

 

In the proposed framework, a minutiae descriptor known as Polar 

Grid-based 3-Tuple Quantization (PGTQ) proposed in (Jin et al., 2012) is 

adopted. However, the original PGTQ is simplified for kernel transformation 

purpose while preserving its alignment-free property. Two kernel methods, 

namely Kernel Principal Component Analysis (KPCA) and Kernelized 

Locality-Sensitive Hashing (KLSH) are explored to generate ordered and 

fixed-length feature vector. Then a dynamic feature binarization technique 

(Lim et al., 2012) is incorporated to convert the resulting transformed vector to 

bit-string. The main contributions of this work are as follows: 

 

 A generic point-to-string conversion framework via kernel-learning 

method is proposed. 

 A modified PGTQ minutia descriptor is proposed, which is alignment-

free and computationally efficient for kernel transformation. 

 A novel SPD kernel function based on a non-metric dissimilarity 

measure of a pair of unordered variable-size fingerprint templates is 

proposed. 

 It validates that the symmetric and positive definite property of a 

kernel function is essential for gaining good performance. 
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 Performance justifications for kernel PCA and kernel LSH on six 

benchmark databases and an effect analysis is provided when dynamic 

quantization is incorporated. 

 Entropy estimation via second-order dependency tree as well as 

statistical independence test to examine the randomness and the 

correlation between the binary templates of different identities are 

performed. 

 

The rest of this chapter is organized as follows: the preliminaries of 

kernel LSH, kernel PCA are introduced in Section 4.2. Details about the 

modified PGTQ descriptor, kernel-based transformation and template 

matching are described in Section 4.3. The experimental results and 

performance analysis are provided in Section 4.4. The entropy estimation of 

the resulted bit string is demonstrated in Section 4.5. The implementation of 

fuzzy commitment using proposed bit string is given in Section 4.6. Finally, 

discussion and conclusion are presented in Section 4.7. 

 

4.2 Preliminaries 

4.2.1 Kernel Principal Component Analysis 

Principal component analysis (PCA) is an orthogonal transformation 

that converts a set of correlated data into a set of linearly uncorrelated data, 

called principal component (Schölkopf et al., 1998). Let a set of data 𝐱𝑗, 

𝑗 = 1, … , ℓ, 𝐱𝑗 ∈ ℝ, ∑ 𝐱𝑗
ℓ
𝑗=1 = 0, the covariance matrix of 𝐱𝑗 can be defined 

as: 
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𝑪 =
1

ℓ
∑ 𝐱𝑗𝐱𝑗

T

ℓ

𝑗=1

 (4.1) 

 

Then the eigen-decomposition of the covariance matrix C can be 

solved by 

𝜆𝐯 = 𝑪𝐯 (4.2) 

where v and λ represent the eigenvectors and eigenvalues, respectively.  

 

To project a test feature, 𝐱𝑡𝑒𝑠𝑡 the projected feature vectors Y is 

computed by projecting 𝐱𝑡𝑒𝑠𝑡 onto principle component  𝐯𝒑𝒄 ⊂ 𝐯 as shown in 

eq. (4.3) 

 𝐘 = 𝐯𝒑𝒄
T 𝐱𝑡𝑒𝑠𝑡 (4.3) 

 

 

However, it is noted that PCA holds an improbable assumption that the 

data are multivariate Gaussian distributed. This limitation motivates the 

introduction of kernel PCA (Schölkopf et al., 1998). The basic idea of kernel 

PCA is to apply a nonlinear function Φ(∙) to a set of data 𝐱𝑗 on the kernel 

space. Let the data 𝐱𝑗 to be mapped onto a feature space, Φ(𝐱1), … , Φ(𝐱ℓ), 

where ∑ Φ(𝐱𝑗) = 0ℓ
𝑗=1 . The covariance matrix is computed by 

�̅� =
1

ℓ
∑ Φ(𝐱𝑗)Φ(𝐱𝑗)T

ℓ

𝑗=1

 (4.4) 

 

Similar to eq. (4.2), it is required to find eigenvalues �̅� and 

eigenvectors �̅� satisfying eq. (4.5) in the feature space 

�̅��̅� = �̅��̅� (4.5) 
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By substituting eq. (4.4) into eq. (4.5), the eigenvectors can be 

expressed in terms of coefficients 𝑎1, . . . , 𝑎ℓ and derived into eq. (4.6) 

(Schölkopf et al., 1999) 

�̅� = ∑ 𝑎𝑖Φ(𝐱𝑖)

ℓ

𝑖=1

 (4.6) 

 

By defining a ℓ × ℓ kernel matrix K, such that 

𝐊 = 𝑘(𝑥, 𝑦) = 〈Φ(𝑥) ∙ Φ(𝑦)〉 = Φ(𝑥)𝑇Φ(𝑦) (4.7) 

 

Substituting eq. (4.4), eq. (4.6), and eq. (4.7) into �̅��̅� = �̅��̅� yield 

ℓ�̃�𝜶 = 𝐊𝜶 (4.8) 

where 𝜶 and �̃� are the eigenvectors and eigenvalues of K. Then the 

eigenvectors is normalized using (𝒂𝑖)
T𝒂𝑖 = 1. 

 

The testing feature 𝐱𝑡𝑒𝑠𝑡 is projected onto the principle component as 

shown in eq. (4.9) by substituting eq. (4.6), eq. (4.7), where �̅�𝑝𝑐 ⊂ �̅� and 

�̅� ⊂ 𝜶. Some Mercer’s admissible kernels are Linear Kernel 𝑘(𝑥, 𝑦) = 𝑥T𝑦 +

𝑐, Polynomial Kernel 𝑘(𝑥, 𝑦) = (𝑎𝑥T𝑦 + 𝑐)𝑑, and Gaussian Kernel  𝑘(𝑥, 𝑦) =

exp (−‖𝑥 − 𝑦‖2/2𝜎2). 

�̅� = �̅�𝑝𝑐
TΦ(𝐱𝑡𝑒𝑠𝑡) = ∑ �̅�𝑖Φ(𝐱𝑖)

TΦ(𝐱𝑡𝑒𝑠𝑡) = ∑ �̅�𝑖𝑘(𝐱𝑖, 𝐱𝑡𝑒𝑠𝑡)

ℓ

𝑖=1

ℓ

𝑖=1

 (4.9) 

 

4.2.2 Kernelized Locality-Sensitive Hashing 

Locality-Sensitive Hashing (LSH) (Gionis et al., 1999; Charikar 2002) 

is an algorithm that searches approximate nearest neighbors that preserves the 

property: Pr[ℎ(𝑥𝑖) = ℎ(𝑥𝑗)] = 𝑠𝑖𝑚(𝑥𝑖, 𝑥𝑗), where h is the hash function and 
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𝑠𝑖𝑚(𝑥𝑖 , 𝑥𝑗) ∈ [0,1], is the similarity function. Charikar et al., (2002) proposed 

a hash function ℎ𝑐(𝑥) for inner product similarity: 𝑠𝑖𝑚(𝑥𝑖, 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗 based 

on rounding the output of a product with a random hyperplane: 

ℎ𝑐(𝑥) = {1 𝑤𝑐
𝑇𝑥 > 0  

0 otherwise
 (4.10) 

 

where 𝑤𝑐 = [𝑤𝑐1, 𝑤𝑐2, … , 𝑤𝑐𝑑]𝑇 is a random hyperplane from a zero-mean 

multivariate Gaussian  𝑁(0,1) of dimension d. It is noted that based on the 

random projection, the performance of LSH is provable due to the Johnson-

Lindenstrauss lemma (Johnson & Lindenstrauss, 1984). 

 

However, considering the case that the feature space embedding is 

unknown or computationally infeasible, it is therefore impossible to apply the 

original LSH in this case. Kulis and Grauman (2012) proposed the Kernelized 

Locality-Sensitive Hashing (KLSH) based on central limit theorem (CLT) 

(Rice, 2001), which allows approximation of a random vector using a set of 

training data. KLSH can be summarized in the following four steps: 

 

 Select p data points and form a kernel matrix K over this data. 

 Centralize the kernel matrix. 

 Form the hash table over database items: For each hash function 

ℎ(𝜙(𝑥)), form 𝒆𝑠by selecting n indices at random from [1, … , 𝑝], then 

form weighted matrix 𝑤 = 𝐊−1/2𝒆𝑠, and assign bits according to 

ℎ(𝜙(𝑥)) = sign(∑ 𝑤(𝑖)𝑘(𝑥, 𝑥𝑖)𝑖 ). Note that 𝒆𝑠 is a vector with ones 

in the entries corresponding to the indices of dataset S. 
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 For each query, form a hash key using these hash functions and 

employ existing LSH methods to find the approximate nearest 

neighbors. 

 

4.3 Proposed Framework 

 The proposed kernel learning-based framework for point-to-string 

conversion is shown in Fig. 4.2. Generally, this framework consists of four 

main components: minutiae descriptor extraction, kernel learning based 

transformation, feature binarization and matching. 

 

 
 

Fig. 4.2: Overall block diagram of the transformation for fixed-length 

representation, where 𝛀𝑡𝑟𝑎𝑖𝑛 and 𝛀𝑡𝑒𝑠𝑡 represent the training and testing 

samples of PGTQ-based minutiae descriptor, respectively. 

 

4.3.1 Polar Grid based 3-Tuple Quantization (PGTQ) 

 PGTQ (Jin et al., 2012) is an alignment-free minutiae descriptor that 

utilizes the variable-size tessellated quantization in polar coordinate. The 

sectors near the reference minutia have smaller area and vice versa. This leads 

to a smaller (resp. larger) quantization step surrounding (resp. further away 

from) the reference minutia to tolerate fingerprint elastic deformation. In the 
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original PGTQ-based descriptor, polar coordinate covers the entire image and 

produce lengthy bit-string, which leads to the computational infeasibility of 

kernel-based transformation in Section 4.3.2. As a solution, it considers the 

polar coordinate that only covers a partial image limited by the radius R. Thus, 

the bit-length of the resultant bit-string can be significantly reduced. The 

details of the modified PGTQ-based descriptor are described as follows: 

1. Let 𝑚𝑟 = {𝑥𝑟 , 𝑦𝑟 , 𝜃𝑟} be the reference minutiae. The neighboring 

minutiae within a radius R in Euclidean distance are rotated and 

translated based on the reference minutiae using eq. (4.11) and eq. 

(4.12). The transformed minutiae are represented as, 𝑚𝑡 =

{𝑥𝑖
𝑡 , 𝑦𝑖

𝑡, 𝜃𝑖
𝑡|𝑖 = 1, … 𝑁𝑅 − 1} where 𝑁𝑅 is the total number of minutiae 

within a pre-defined radius R. 

[
𝑥𝑖

𝑡

𝑦𝑖
𝑡] = [

cos 𝜃𝑟 − sin 𝜃𝑟

sin 𝜃𝑟 cos 𝜃𝑟
] [

𝑥𝑖 − 𝑥𝑟

−(𝑦𝑖 − 𝑦𝑟)] (4.11) 

 

 𝜃𝑖
𝑡 = {

𝜃𝑖 − 𝜃𝑟; 𝜃𝑖 ≥ 𝜃𝑟

360 + 𝜃𝑖 − 𝜃𝑟; 𝜃𝑖 < 𝜃𝑟
} (4.12) 

 

2. The translated and rotated minutiae are then converted into polar 

coordinates using eq. (4.13) and eq. (4.14). 𝜌𝑖 and 𝛼𝑖 indicate the radial 

distance (in pixels) and the radial angle of the i-th minutia in Polar 

coordinates (𝛼𝑖 ∈ (0, 360] ), respectively. 

𝜌𝑖 = √(𝑥𝑖
𝑡)2 + (𝑦𝑖

𝑡)2 (4.13) 

 

𝛼𝑖 = arctan (
𝑦𝑖

𝑡

𝑥𝑖
𝑡) (4.14) 
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3. 3-Tuple based Quantization. The 3-tuple based quantization is a sector-

based quantization for all minutiae. Each quantized minutia can be 

represented as a vector, 𝜔 = {𝜌𝑞 , 𝛼𝑞 , 𝜃𝑞}, such that 

𝜌𝑖
𝑞 = ⌊𝜌𝑖/𝑥⌋ (4.15) 

𝛼𝑖
𝑞 = ⌊𝛼𝑖/𝑦⌋ (4.16) 

𝜃𝑖
𝑞 = ⌊𝜃𝑖/𝑧⌋ (4.17) 

where ‘/’ denotes quotient; x, y and z indicate the radius of the polar 

grid segment (in pixels), radial angle for tolerance (𝑦 ∈ (0, 360]) and 

orientation angle to be tolerated 𝑧 ∈ (0, 360], respectively. The 

quantization level is hence determined by x, y and z. 

 

4. Binarization. After quantization, polar grids can be binarized using the 

quantized feature vector. A simple rule is defined to generate binary 

string that if a polar grid contains two and above minutia (represented 

in 𝜔 = {𝜌𝑞 , 𝛼𝑞 , 𝜃𝑞}) then it is marked as 1 otherwise 0.  The length of 

the resultant bit-string is 𝑙 = (𝑅/𝑥) × (360/𝑦) × (360/𝑧), which is 

equivalent to the total number of polar grids.  

 

The above steps are repeated for the remaining minutiae to generate 

the full binary PGTQ minutiae descriptor. This template, denoted as 𝛀 ∈

{0,1}𝑁𝑚×𝑙 is variable in size because the total minutiae number (𝑁𝑚) extracted 

from each fingerprint image is different. 

 

5. Matching. Due to variable-size of PGTQ-based minutiae descriptor, 

the typical two-stage matching strategy: local descriptor matching and 
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global matching is adopted. The local descriptor matching searches for 

the intersections between two binary strings in which the PGTQ-based 

descriptor is represented. 

 

Let 𝛀𝑒 = [𝒃1
𝑒; 𝒃2

𝑒 , … , 𝒃𝑛𝑒
𝑒 ] and 𝛀𝑞 = [𝒃1

𝑞; 𝒃2
𝑞 , … , 𝒃𝑛𝑞

𝑞 ] be the enrolled 

and query PGTQ-based minutiae descriptor sets that consist of 𝑛𝑒 and 𝑛𝑞 l-bit 

binary strings, respectively. From here onwards, we slightly abuse the notation 

of 𝒃, where 𝒃𝑖,𝑘 represents the k-th bit for i-th binary string where 1 ≤ 𝑘 ≤ 𝑙 

and 1 ≤ 𝑖 ≤ 𝑛𝑒 or 𝑛𝑞. To take into account the difference of minutiae quantity 

in the enrolled and query image, the similarity scores between two local 

descriptors 𝛀𝑒 and 𝛀𝑞 is normalized as follows:  

𝑆𝑖𝑗
𝑏 =

(𝑁𝑗
𝑞 + 𝑁𝑖

𝑒) ∑ (𝒃𝑗,𝑘
𝑞 • 𝒃𝑖,𝑘

𝑒 )𝑙
𝑘=1

(𝑁𝑗
𝑞)2 + (𝑁𝑖

𝑒)2
 (4.18) 

   

where 𝑆𝑏 denotes matching score between two binary strings and • represents 

the bitwise AND operator, 𝑁𝑖
𝑒 = ∑ (𝒃𝑖,𝑘

𝑒 )𝑙
𝑘=1  and 𝑁𝑗

𝑞 = ∑ (𝒃𝑗,𝑘
𝑞 )𝑙

𝑘=1  denote the 

total number of 1’s of the enrolled and query bit-strings, respectively. The 

∑ (𝒃𝑗,𝑘
𝑞 • 𝒃𝑖,𝑘

𝑒 )𝑙
𝑘=1  term in (4.18) sums the bit positions that have value ‘1’ in 

both the query and enrolled bit-strings. The scores 𝑆𝑏 ∈ ℝ𝑛𝑞×𝑛𝑒
 range from 0 

to 1 where ‘1’ indicates a perfect match and vice versa.  

 

Once the similarity score matrix 𝑆𝑏 is calculated from the local 

descriptor matching; a global matching process is carried out. Given the score 

matrix 𝑆𝑏 = {𝑠𝑖𝑗
𝑏 }, the final score can be calculated as: 

𝑆𝑃𝐺𝑇𝑄 = max {
1

𝑚
∑ 𝑠𝑗(𝑚𝑎𝑥),

𝑗

1

𝑛
∑ 𝑠𝑖(𝑚𝑎𝑥)

𝑖

} (4.19) 
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where 𝑠𝑗(𝑚𝑎𝑥) = max𝑖{𝑠𝑖𝑗
𝑏 } and 𝑠𝑖(𝑚𝑎𝑥) = max𝑗{𝑠𝑖𝑗

𝑏 } represent the maximum 

score component of i-th column and j-th row, respectively. The detailed 

matching process is illustrated in Algorithm 4.1. 

 

Algorithm 4.1: Matching Two PGTQ-based Minutiae Descriptors 

(variable-size) 

Input  𝛀𝑒, 𝛀𝑞, 𝑛𝑞 and 𝑛𝑒 

Function Prototype: 𝑠𝑖𝑚(𝛀𝑒, 𝛀𝑞) 

𝑛𝑒 ← size(𝛀𝑒) 

𝑛𝑞 ← size(𝛀𝑞) 

For  i = 1: 𝑛𝑒 

     𝐵𝑖
𝑒 = 𝛀𝑒(𝑖)  

      For  j = 1: 𝑛𝑞 

          𝐵𝑗
𝑞 = 𝛀𝑞(𝑗)  

             Calculate similarity score 𝑠𝑖𝑗
𝑏  between 𝒃𝑖

𝑒 and 𝒃𝑗
𝑞
 using eq. (4.18) 

      End for 

 End for 

 𝑆𝑏 = {𝑠𝑖𝑗
𝑏 } 

𝑠𝑗(𝑚𝑎𝑥) = max
𝑖

{𝑠𝑖𝑗
𝑏 } 

𝑠𝑖(𝑚𝑎𝑥) = max
𝑗

{𝑠𝑖𝑗
𝑏 } 

𝑆𝑃𝐺𝑇𝑄 = max {
1

𝑚
∑ 𝑠𝑗(𝑚𝑎𝑥),

𝑗

1

𝑛
∑ 𝑠𝑖(𝑚𝑎𝑥)

𝑖

} 

Output The matching score, 𝑆𝑃𝐺𝑇𝑄 between 𝛀𝑒 and 𝛀𝑞. 

 

4.3.2 Kernel Method based Fixed-length Transformation 

In the proposed framework, the fixed-length representation is induced 

by the fixed number of training samples and the projection matrix produced by 

the kernel methods. The procedure of the kernel learning-based point-to-string 

conversion can be described as follows: 

1. Kernel matrix computation. Let 𝛀 = {𝛀𝑡𝑟𝑎𝑖𝑛(𝑖)|𝑖 = 1: 𝑁𝑡𝑟𝑎𝑖𝑛} be a set 

of training samples for PGTQ-based minutiae descriptor and 𝑁𝑡𝑟𝑎𝑖𝑛 
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denotes the total number of 𝛀𝑡𝑟𝑎𝑖𝑛. A kernel matrix 𝑲 ∈ ℝ𝑁𝑡𝑟𝑎𝑖𝑛×𝑁𝑡𝑟𝑎𝑖𝑛 

can be constructed by using the following kernel function: 

𝑲(𝑖, 𝑗) = 𝑘 (𝛀𝑡𝑟𝑎𝑖𝑛(𝑖), 𝛀𝑡𝑟𝑎𝑖𝑛(𝑗))

= exp (− (1 − 𝑆𝑃𝐺𝑇𝑄(𝑖, 𝑗))
2

/2𝜎2) 
(4.20) 

 

where 𝑆𝑃𝐺𝑇𝑄 ∈ [0,1] is the dissimilarity measure that described in eq. 

(4.18) and eq. (4.19). 

 

Unlike Mercer’s kernel matrix that admits metrics such as inner 

product or Euclidean distance, the kernel matrix computed with sole 

𝑆𝑃𝐺𝑇𝑄(𝑖, 𝑗) is indeed non-SPD, in the sense that it is neither symmetric 

nor positive definite. This may potentially deteriorate the accuracy 

performance of Kernel based methods (Wu et al., 2005; Pȩkalska & 

Haasdonk, 2009). In order to rectify this problem, we follow 

Jayasumana et al. (2013) by applying a heat kernel function shown in 

eq. (4.20) to induce a SPD kernel function subject to specific range of 

spread factor, σ. The feasible range of σ that enables SPD property will 

be shown experimentally in Section 4.4.2. Experiment results show 

that SPD property is an essential factor for accuracy performance, 

which will be justified in Section 4.4.2 too. 

 

2. With the computed K, the projection matrix �̃� (i.e. eigenvectors of 

KPCA or weighted matrix of KLSH) can be obtained by eq. (4.8), 

�̅� ∈ ℝ𝑁𝑡𝑟𝑎𝑖𝑛×𝑁𝑑𝑖𝑚, where 𝑁𝑑𝑖𝑚 denotes the number of desired output 

dimension. 
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3. Transformation of variable-size PGTQ-based descriptor to fixed-

length real-valued representation. Let 𝛀𝑡𝑒𝑠𝑡 = {𝛀𝑡𝑒𝑠𝑡(𝑖)|𝑖 = 1: 𝑁𝑡𝑒𝑠𝑡} 

be a set testing samples of PGTQ-based descriptor. 

Step 1) 𝛀𝑡𝑒𝑠𝑡 is first matched with all training samples 𝛀𝑡𝑟𝑎𝑖𝑛(𝑖) 

for 1 ≤ 𝑖 ≤ 𝑁𝑡𝑟𝑎𝑖𝑛. Subsequently, a fixed vector 𝐯𝑓𝑙 ∈ ℝ1×𝑁𝑡𝑟𝑎𝑖𝑛 is 

formed by concatenating 𝑁𝑡𝑟𝑎𝑖𝑛 matching scores. 

𝐯𝑖
𝑓𝑙

← 𝑠𝑖𝑚(𝛀𝑡𝑒𝑠𝑡, 𝛀𝑡𝑟𝑎𝑖𝑛(𝑖)) (4.21) 

 

Step 2) 𝐯𝑖
𝑓𝑙

is then transformed into the kernel space using the kernel 

function defined in eq. (4.20), in which the transformed feature vector 

�̅�𝑓𝑙 can be described by 

�̅�𝑓𝑙 = exp (−(1 − 𝐯𝑓𝑙)2/2𝜎2) (4.22) 

 

Step 3) The fixed-length ordered real-valued vector can be generated 

by projecting the �̅�𝑓𝑙 using the projection matrix �̅�.  

𝑇𝑓𝑙 = �̅�𝑓𝑙�̅� (4.23) 

where �̅�𝑓𝑙 ∈ ℝ1×𝑁𝑡𝑟𝑎𝑖𝑛  and �̅� ∈ ℝ𝑁𝑡𝑟𝑎𝑖𝑛×𝑁𝑑𝑖𝑚. Thus, the length of 𝑇𝑓𝑙 

is 𝑁𝑑𝑖𝑚. Algorithm 4.2 presents the pseudo-code of kernel-method-

based transformation. 

 

Algorithm 4.2: Kernel Method based Fixed-length 

Transformation 

Input  𝛀𝑡𝑟𝑎𝑖𝑛, 𝛀𝑡𝑒𝑠𝑡, 𝑁𝑑𝑖𝑚and 𝜎 

Stage 1: Kernel Matrix Computation 

1.1: 𝑁𝑡𝑟𝑎𝑖𝑛 = length(𝛀𝑡𝑟𝑎𝑖𝑛) 

1.2: Initialize 𝑲(𝑖, 𝑗) = 1, 1 ≤ 𝑖, 𝑗 ≤ 𝑁𝑡𝑟𝑎𝑖𝑛 

1.3: For i = 1: 𝑁𝑡𝑟𝑎𝑖𝑛 

              For j = 1:i 
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                     𝑲(𝑖, 𝑗) = 𝑠𝑖𝑚(𝛀𝑡𝑟𝑎𝑖𝑛(𝑖), 𝛀𝑡𝑟𝑎𝑖𝑛(𝑗)) 

                     𝑲(𝑖, 𝑗) = exp (−(1 − 𝑘(𝑖, 𝑗))
2

/2𝜎2) 

              End for 

        End for 

1.4: Make K symmetric 

 

Stage 2: Compute The Projection Matrix �̅� 

2.1(a): �̅� ← KPCA(𝑲) or 

2.1(b): �̅� ← KLSH(𝑲), �̅� ∈ ℝ𝑁𝑡𝑟𝑎𝑖𝑛×𝑁𝑑𝑖𝑚 

 

Stage 3: Transform variable-size PGTQ to fixed-length 

vector 

3.1: Initialize 𝐯𝑓𝑙(𝑖), �̅�𝑓𝑙(𝑖) = 1; 1 ≤ 𝑖 ≤ 𝑁𝑡𝑟𝑎𝑖𝑛 

        For i=1: 𝑁𝑡𝑟𝑎𝑖𝑛 

𝐯𝑓𝑙(𝑖) ← 𝑠𝑖𝑚(𝛀𝑡𝑒𝑠𝑡, 𝛀𝑡𝑟𝑎𝑖𝑛(𝑖)) 

�̅�𝑓𝑙(𝑖) = exp (− (1 − 𝐯𝑓𝑙(𝑖))
2

/2𝜎2) 

        End for 

3.2: 𝑇𝑓𝑙 = �̅�𝑓𝑙�̅� 

3.3: Save 𝑇𝑓𝑙 

Output  The real-valued fixed-length representation 𝑇𝑓𝑙 

 

In our treatment, the training data (i.e. PGTQ descriptor) are required 

to be stored for fixed-length representations generation. However, if the 

training data stored in database is compromised, the security and privacy of 

the system is highly vulnerable to template replay, spoof construction and 

targeted false accepts (Nagar, 2012). To alleviate this problem, we adopted a 

random bits-toggling process presented in (Farooq et al., 2007). This process 

is to randomly select a fraction of bits and set 0 bit to 1 bit and vice-versa. 

Such a process resembles to adding noises with the intention to distort the 

training data. Since PGTQ descriptor is a feature matrix; the bits-toggling 

process is applied in row-wise basis. Further, techniques such as incremental 

KPCA (Chin & Suter, 2007) can be adapted to avoid re-training of new afresh 

projection matrix when a new user is enrolled to the system. 
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4.3.3 Feature Vector Binarization 

Biometric feature binarization is the process of converting real-valued 

biometric features into a binary string. Generally, two approaches, namely 

static and dynamic binarization techniques, are widely used based on the fixed 

or varied number of intervals defined in each feature space (Lim & Teoh, 

2012; Lim & Teoh, 2013). More specifically, biometric binarization can be 

decomposed into two essential components: biometric quantization and feature 

encoding. These components may be governed by a static or dynamic bit 

allocation algorithm, determining whether the quantity of binary bits allocated 

to every feature dimension is fixed or varied respectively. In this chapter, two 

different binarization methods, zero-thresholding quantization and reliability-

based dynamic quantization method (Lim et al., 2012) are investigated. 

 

 Zero-thresholding quantization. Each feature space is partitioned into 

two quantization intervals based on a global threshold (zero) and a 

single-bit encoding scheme with two binary labels (‘0’ and ‘1’) is 

employed. Zero-thresholding quantization is a special case of static 

quantization, wherein the threshold is zero. This quantization technique 

can be formulated by using a simple rule shown in eq. (4.24)  

𝑏𝑖 = {
1 if 𝑇𝑖

𝑓𝑙
≥ 0

0 if 𝑇𝑖
𝑓𝑙

< 0
 (4.24) 

 

where 𝑇𝑖
𝑓𝑙

denotes the i-th elements of the PGTQ-based template 𝑇𝑓𝑙 

and 𝑏𝑖 represents the i-th binary value corresponding to the i-th 

elements of  𝑇𝑓𝑙. 
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 Reliability-based dynamic quantization. In contract to static approach, 

dynamic quantization approach assigns a varied number of allocated 

bits to each feature component according to the distinct 

discriminability of user-specific feature. In this chapter, an instance of 

dynamic quantization, namely reliability-based dynamic quantization 

proposed by Lim et al. (2012) is adopted. I briefly describe the 

procedure of this method as follows: 

1. Statistical analysis 

Let I be the number of users participated the training process and 

𝑁𝑡 be the number of training samples for each user. 𝑇𝑓𝑙 denotes the 

real-valued fixed-length representation. 

Step 1.1 Compute the mean feature vector 𝜇𝑖
𝑓𝑚

 of user i, and the 

grand mean vector 𝜇𝘨. 

𝜇𝑖𝑑
𝑓𝑚

=
1

𝑁𝑡
∑ 𝑇𝑖𝑗𝑑

𝑓𝑙

𝑁𝑡

𝑗=1

𝜇𝑖
𝑓𝑚

= [𝜇𝑖1
𝑓𝑚

… 𝜇𝑖𝑁𝑑𝑖𝑚

𝑓𝑚
]

 (4.25) 

𝜇𝑑
𝘨

=
1

𝐼 ∙ 𝑁𝑡
∑ ∑ 𝑇𝑖𝑗𝑑

𝑓𝑙

𝐼

𝑖=1

𝑁𝑡

𝑗=1

𝜇𝘨 = [𝜇1
𝘨

… 𝜇𝑁𝑑𝑖𝑚

𝘨
]

 (4.26) 

      

where j and d denotes j-th sample of user i and d-th dimension of 𝑇𝑓𝑙 

respectively. 

 

Step 1.2 Compute the within-class variance vector 𝑣𝑖
𝑤𝑐 of i-th 

user and the between-class variance vector 𝑣𝑏𝑐. 
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𝑣𝑖𝑑
𝑤𝑐 =

1

𝑁𝑡
∑(𝑇𝑖𝑗𝑑

𝑓𝑙
− 𝜇𝑖𝑑

𝑓𝑚
)2

𝑁𝑡

𝑗=1

𝑣𝑖
𝑤𝑐 = [𝑣𝑖1

𝑤𝑐 … 𝑣𝑖𝑁𝑑𝑖𝑚

𝑤𝑐 ]

 
(4.27) 

 

  

𝑣𝑑
𝑏𝑐 =

1

𝐼
∑(𝜇𝑖𝑑

𝑓𝑚
− 𝜇𝑑

𝘨
)2

𝐼

𝑖=1

𝑣𝑏𝑐 = [𝑣1
𝑏𝑐 … 𝑣𝑁𝑑𝑖𝑚

𝑏𝑐 ]

 (4.28) 

 

Step 1.3 Calculate the signal-to-noise ratio vector 𝜀𝑖 of i-th user. 

𝜀𝑖 = [𝜀𝑖1 … 𝜀𝑖𝑁𝑑𝑖𝑚
] = [

𝑣1
𝑏𝑐

𝑣𝑖1
𝑤𝑐 …

𝑣𝑁𝑑𝑖𝑚

𝑏𝑐

𝑣𝑖𝑁𝑑𝑖𝑚

𝑤𝑐 ] (4.29) 

 

2. Reliability weight computation 

According to equal background probability mass of normal 

distribution, feature space is quantized into 2𝑛 intervals. Each interval 

is labeled with a n-bit gray code. With the fixed-length representation 

𝑇𝑓𝑙 obtained from Section 4.3.2, following conversion is performed. 

 

Step 2.1 Each real-valued component of  𝑇𝑓𝑙 is mapped to a n-bit 

gray code segment according to the interval labels. 

𝐺𝐶(𝑇𝑖𝑗𝑑
𝑓𝑙

) = [𝑏𝑖𝑗𝑑
1 … 𝑏𝑖𝑗𝑑

𝑛 ] (4.30) 

  

where 𝑏𝑖𝑗𝑑
𝑥 denotes the x-th bit allocated to d-th feature component for 

j-th samples of i-th user. 

 

Step 2.2 Compute the reliability weight vector 𝑤𝑑 for each 

binarized feature component by counting the agreeing bits at very bit 

position and dividing each summation. 
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𝑤𝑑 = {𝑤𝑑1, 𝑤𝑑2, … , 𝑤𝑑𝑛} = {∑ 𝑏𝑖𝑑1/𝐼,

𝐼

𝑖=1

∑ 𝑏𝑖𝑑2/𝐼,

𝐼

𝑖=1

… , ∑ 𝑏𝑖𝑑𝑛/𝐼,

𝐼

𝑖=1

} (4.31) 

 

Step 2.3 Repeat step 2.1 and 2.2 for all 𝑑 ∈ [1, 𝑁𝑑𝑖𝑚]. Then 

concatenate the all 𝑤𝑑 to obtain a user-specific reliability weight 

vector. 

 
3. Bit allocation based on weighted reliability and sorted feature 

Step 3.1 Sort the feature vector in descending order according to 

the signal-to-noise ratio 𝜀𝑖 obtained in step 1.3. The sorted indices of 

the feature components are stored as 

[𝑠𝑖(1), 𝑠𝑖(2), … , 𝑠𝑖(𝑁𝑑𝑖𝑚)] ← 𝑠𝑜𝑟𝑡𝑑𝑒𝑠𝑐(𝜀𝑖) (4.32) 

 

Step 3.2 In order for selecting most reliable 𝑀𝑟𝑏bits from 

extracted 𝑁𝑑𝑖𝑚 bits string, a reliability weight threshold 𝜏𝑟𝑤 is defined 

as 

𝜏𝑟𝑤 = 1 − 𝑁𝑠𝑡𝑒𝑝 (4.33) 

 

where 𝑁𝑠𝑡𝑒𝑝 denoting an incremental variable range from 0 to 0.5 with 

a sorting step of 𝑁𝑠𝑡𝑒𝑝 =
1

𝑁𝑡. The bit allocation process is described as 

follow: start from the first sorted feature component; if the j-th bit is 

satisfied with threshold rw , this bit is selected and proceed to the 

(𝑗 + 1) bits; otherwise, the j-th bit is ignored and the following (𝑗 + 1) 

bits are evaluated consecutively. Let 𝑀𝑏𝑖𝑡 be the number of bits for the 

binarized representation of 𝑇𝑓𝑙; consider that the total number of 

selected bits is less than 𝑀𝑏𝑖𝑡 after the selection process travelled the 
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entire sorted feature components; the same process repeats with a step 

down reliability weight threshold. 

 

Step 3.3 Once the most 𝑀𝑟𝑏 discriminable and reliable bits have 

been selected, the sort is terminated. The number of bits selected for d-

th feature components of the user, 𝑚𝑖𝑑
𝑏 ∈ {1, … , 𝑛}. 

𝑀𝑟𝑏 = ∑ 𝑚𝑖𝑑
𝑏

𝑁𝑑𝑖𝑚

𝑖=1

 (4.34) 

 

It can be observed that the quantization intervals are varied for 

different feature component. For every dimension d, the cutpoints of 2𝑚𝑖𝑑
𝑏

 

intervals and all 𝑚𝑖𝑑
𝑏  values are stored as helper data. 

 

4.3.4 Matching Two Fixed-length Representations 

It considers two types of representation for fixed-length matching: 

real-valued and binary.  

- [Real-valued]: Let 𝑇𝑘
𝑓𝑙𝑟,𝑒

and 𝑇𝑘
𝑓𝑙𝑟,𝑞

 be two fixed-length real-valued 

representations. The matching score is  

𝑆𝑟
𝑓𝑙

=
∑ (𝑇𝑘

𝑓𝑙𝑟,𝑒
∗ 𝑇𝑘

𝑓𝑙𝑟,𝑞
)

𝑁𝑑𝑖𝑚
𝑘=1

∑ (𝑇𝑘
𝑓𝑙𝑟,𝑒

)2𝑁𝑑𝑖𝑚
𝑘=1 + ∑ (𝑇𝑘

𝑓𝑙𝑟,𝑞
)2𝑁𝑑𝑖𝑚

𝑘=1

 (4.35) 

 

where ∗represents an element-wise multiplication operator; 

∑ (𝑇𝑘
𝑓𝑙𝑟,𝑒

)2𝑁𝑑𝑖𝑚
𝑘=1 and ∑ (𝑇𝑘

𝑓𝑙𝑟,𝑞
)2𝑁𝑑𝑖𝑚

𝑘=1  denote the summation of squared 

element of 𝑇𝑘
𝑓𝑙𝑟,𝑒

 and 𝑇𝑘
𝑓𝑙𝑟,𝑞

 respectively. 

- [Binary]: Let 𝑇𝑘
𝑓𝑙𝑟,𝑒

and 𝑇𝑘
𝑓𝑙𝑟,𝑞

be the two fixed-length binary 

representations. The matching score is 
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𝑆𝑏
𝑓𝑙

= 1 −
∑ (𝑇𝑘

𝑓𝑙𝑟,𝑒
⊕ 𝑇𝑘

𝑓𝑙𝑟,𝑞
)

𝑀𝑏𝑖𝑡
𝑘=1

𝑀𝑏𝑖𝑡
 (4.36) 

 

where ⊕ represents a bit-wise XOR operator; 𝑀𝑏𝑖𝑡denotes the bit-

length of the binary representation 𝑇𝑘
𝑓𝑙𝑟,𝑒

and 𝑇𝑘
𝑓𝑙𝑟,𝑞

. 

 

4.4 Experiment Analysis 

The experiments were conducted on six public fingerprint datasets, 

FVC2002 (DB1, DB2, DB3) and FVC2004 (DB1, DB2, DB3). Each dataset 

consists of 100 users with 8 samples per user. In total, there are 800 (100×8) 

fingerprint images for each dataset. VeriFinger 7 SDK was used for minutia 

extraction. The minutiae template is extracted according to ISO-complaint 

format for evaluation, i.e. (𝑥, 𝑦, 𝜃). The performance of the proposed 

framework is evaluated using Equal Error Rate (EER), Area under the curve 

(AUC) and receiver operating characteristic (ROC) as well as genuine-

imposter distribution. In addition, the degree-of-freedom (DOF) and entropy 

(bits)/information rate are used in the statistical independence test and for 

entropy estimation, respectively. 

  

4.4.1 Experiment Settings 

 Various representations involved in this chapter are abbreviated as 

follows: 

 VSB – variable-sized binary PGTQ-based template; 

 TKLSH – kernel LSH based fixed-length real-valued template; 

 TKPCA – kernel PCA based fixed-length real-valued template; 
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 TKLSH-ZT – kernel LSH based fixed-length binary template with 

zero-thresholding method; 

 TKPCA-ZT – kernel PCA based fixed-length binary template with 

zero-thresholding method; 

 TKLSH-DQ – kernel LSH based fixed-length binary template with 

dynamic quantization method; 

 TKPCA-DQ – kernel PCA based fixed-length binary template with 

dynamic quantization method; 

 

For matching, the matching technique described in algorithm 4.1 is 

used for VSB; eq. (4.35) is applied for fixed-length real-valued templates in 

TKLSH and TKPCA; and eq. (4.36) is used for matching fixed-length binary 

templates i.e. TKLSH-ZT, TKLSH-DQ, TKPCA-ZT and TKPCA-DQ). 

 

For VSB matching, the first sample (gallery) of every identity in each 

dataset is matched against the remaining samples (probe) of every identity for 

false rejection rate (FRR) calculation. On the other hand, the first sample of 

each identity is matched against the first sample of the remaining identities for 

false acceptance rate (FAR) calculation. This matching method yields 700 

genuine scores and 4950 imposter scores for each dataset. When matching the 

real-valued fixed-length representations, the first three samples of every 

identity are used for training and the remaining five are used for testing, 

yielding 400 genuine scores and 4950 imposter scores for each dataset. When 

matching fixed-length binary template, we consider the scenario where if user 

A is matched against user B, user A has to use user B’s helper data to generate 



130 

 

binary template and compare to user B’s binary template generated using its 

own helper data (i.e. user B’s helper data). This results 400 genuine scores and 

9900 imposter scores for each dataset. 

 

As discussed in Section 4.3.2, the bits-toggling process is applied to 

distort the training samples. However, Farooq et al. (2007) reveals that large 

number of randomly toggling bits deteriorate accuracy performance; anyhow, 

by carefully selecting a portion of bits for flipping, the error rate does not 

increase significantly (Farooq et al., 2007). In our experiment, a 5-bits 

toggling is set, which approximately is 50% (10 bits) of total number of 1s in 

each bit-string averagely. This indicates that a significant portion of noise 

(50%) has been added while accuracy does not decrease significantly as 

shown in Table 4.4. 

 

Table 4.1 tabulates various parameter settings used in the experiments. 

All parameter values in Table 4.1 are commonly applied to all six data sets, 

except the 𝑁𝑑𝑖𝑚, 𝑀𝑏𝑖𝑡 and kernel width 𝜎 in eq. (4.20) because these are 

dataset-specific parameters that requires tuning. 

 

Table 4.1: Parameters used in the experiments. 

 

Symbol(s) Description Value 

R Radius for polar coordinates (in pixel) 70 

x Radius of polar grid segment (in pixel) 10 

Y Radial angle of polar grid segment (in degree) 20 

Z Minutiae orientation angle (in degree) 30 

𝑁𝑡𝑟𝑎𝑖𝑛 Training samples of PGTQ-based minutiae 300 
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descriptor (for kernel matrix computation) (100 

identities and 3samples for each identity) 

𝜎 

Sigma used in the kernel function in eq. (4.20) 

(see Table 4.2) 

vary for 

different data 

sets 

K The size of kernel matrix 𝑲 ∈ ℝ𝑁𝑡𝑟𝑎𝑖𝑛×𝑁𝑡𝑟𝑎𝑖𝑛 300×300 

𝑁𝑑𝑖𝑚 

Number of desired dimension/length for real 

valued fixed-length representation (applied for 

both KLSH and KPCA) 

vary for 

different data 

sets 

𝑁𝑡
 

Training samples of each user for dynamic 

quantization 
3 

I 
Training number of user for dynamic 

quantization 
100 

g 
Number of Gaussian approximation elements 

for KLSH 
30 

𝑀𝑏𝑖𝑡 

Number of bits for the fix-length binary 

representation (applied for both KLSH and 

KPCA) 

vary for 

different data 

sets 

 

4.4.2 Feasible Range of σ for Kernel Function 

 As elaborated in Section 4.3.2, the SPD property of the kernel function 

defined in eq. (4.20) is valid only for certain feasible range. It can be observed 

that 𝜎 yielding positive definiteness (sole non-negative eigenvalues of kernel 

matrix) in the six data sets consistently ranges from 0.002 to 0.46, as shown in 

Table 4.2. 
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Table 4.2: The range of  𝜎 yielding positive definite kernel on the FVC2002 

and FVC2004 databases. 

𝜎 represents the 

width of 

Gaussian kernel 

in eq. (4.20) 

FVC2002 FVC2004 

DB1 DB2 DB3 DB1 DB2 DB3 

Range to be 

positive definite 

0.002-

0.47 

0.003-

0.44 

0.005-

0.41 

0.004-

0.35 

0.005-

0.40 

0.004-

0.46 

 

 We then conducted another set of experiments to observe whether SPD 

kernel can outperform non-SPD kernel. We examined this observation by 

comparing two experimental results: with heat kernel function (SPD) and 

without heat kernel function (non-SPD). From Table 4.3, it can be observed 

that, for both kernel PCA and kernelized LSH transformed binary template, 

the experimental results with heat kernel function consistently outperformed 

those without heat kernel function significantly throughout six FVC databases. 

Although, SPD is asserted not a definite factor to yield the best performance 

(Harandi et al., 2012), our experiments conversely substantiate that a SPD 

kernel function is indeed essential in our proposed construction. 

 

Table 4.3: Performance comparison between with and without heat function 

for real-valued templates: TKPCA and TKLSH. 

Heat 

Kernel 

FVC2002 (EER %) FVC2004 (EER %) 

DB1 DB2 DB3 DB1 DB2 DB3 

KLSH 

With 

Heat 

Kernel 

3.22 

@𝜎=0.34 

3.84 

@𝜎=0.33 

8.92 

@𝜎=0.33 

17.28 

@𝜎=0.27 

11.60 

@𝜎=0.33 

12.67 

@𝜎=0.25 

Without 

Heat 

Kernel 

5.95 6.27 14.49 19.85 19.22 16.71 
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KPCA 

With 

Heat 

Kernel 

3.34 

@𝜎=0.29 

3.71 

@𝜎=0.35 

8.19 

@𝜎=0.37 

17.17 

@𝜎=0.29 

10.78 

@𝜎=0.35 

12.29 

@𝜎=0.23 

Without 

Heat 

Kernel 

6.64 6.84 15.57 21.16 19.93 15.21 

 

4.4.3 Performance Evaluation 

Table 4.4 reports the equal error rate (EER) performance over six data 

sets. The corresponding receiver operating characteristic (ROC) curves and the 

area under curve (AUC) values are shown in Fig. 4.3. For EER performance, 

the smaller the better; while for AUC values, the larger the better. From these 

results, our observations are as follows: 

 

(1) The real-valued fixed-length representations (TKLSH and TKPCA) 

generated using kernel methods generally preserve the performance with 

respect to VSB template though they also shown outperformed VSB in some 

databases. The experimental result justified our analysis in Section 4.2, 

whereby KPCA extracts the maximum variance that is presented by a set of 

linearly uncorrelated variables - principal components and thus preserving 

discrimination power; while random hyperplane and central limit theory 

ensure the preservation of neighboring structure in KLSH. 

 

(2) The performance deteriorates drastically when zero-thresholding 

method (TKLSH-ZT and TKPCA-ZT) is used for binarization. This is 

expected because this naive direct binarization ignores information from user 

feature distribution; and consequently losing discriminative power after 

binarization. 
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(3) When TKLSH and TKPCA are binarized with dynamic 

quantization (DQ), the performance of TKLSH-DQ and TKPCA-DQ are 

preserved over the other representations. For some datasets such as FVC2004 

DB2 and DB3, the performances are slightly better than VSB. This result is 

expected because DQ is user-specific (Lim et al., 2012; Lim & Teoh, 2012; 

Lim & Teoh, 2013). The experimental results reported in Table 4.4 confirmed 

the preserved performance of dynamic quantization on fixed-length kernelized 

feature representation. 

 

More importantly, other minutiae descriptors can be flexibly replaced 

and integrated into the proposed framework. To further demonstrate the 

feasibility of the proposed method, Minutia Cylinder-Code (MCC)
2
, a state-of-

the-art minutiae descriptor, is considered. Abbreviation of MCC, MCC-KPCA 

and MCC-KPCA-DQ shown in Table 4.4 denote the MCC descriptor, real and 

binary fixed-length representations generated from MCC respectively. The 

accuracy performance of MCC-KPCA and MCC-KPCA-DQ shown in Table 

4.4 re-confirms the proposed method can preserve the performance after 

transformation. However, MCC is unprotected and hence MCC-KPCA and 

MCC-KPCA-DQ could be vulnerable to some security and privacy attacks as 

mentioned in Chapter 2 Section 2.2. In this circumstance, P-MCC (Ferrar et 

al., 2012), which is a protected version of MCC, can be applied. 

 

 

                                                           
2
MCC templates are generated using MCC SDK (Minutia Cylinder-Code SDK 2.0, 2015) 
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Table 4.4: Performance accuracy on FVC2002 and FVC2004 databases. 

Methods 
EER (%) for FVC2002 EER (%) for FVC2004 

DB1 DB2 DB3 DB1 DB2 DB3 

VSB 3.86
 

4.24
 

10.49
 

16.31
 

13.36
 

14.78
 

TKLSH 3.71 3.92 9.09 17.72 13.33 12.74 

TKLSH 

with 

toggling 

bits 

3.22 3.84 8.92 17.28 11.60 12.67 

TKPCA  3.60 3.51 8.81 17.57 10.47 10.72 

TKPCA 

with 

toggling 

bits 

3.34 3.71 8.19 17.17 10.78 12.29 

TKLSH-

ZT 
5.35 5.78 11.39 18.67 13.40 15.19 

TKPCA-

ZT 
14.87 10.78 15.44 18.27 16.71 17.49 

TKLSH-

DQ  

4.35 

(280bits) 

4.76 

(280bits) 

11.49 

(280bits) 

17.36 

(256bits) 

12.72 

(256bits) 

12.43 

(280bits) 

TKLSH-

DQ with 

toggling 

bits 

3.76 

(280bits) 

4.84 

(280bits) 

11.58 

(280bits) 

17.11 

(256bits) 

12.49 

(256bits) 

14.50 

(256bits) 

TKPCA-

DQ  

4.95 

(192bits) 

5.05 

(186bits) 

12.23 

(182bits) 

17.34 

(235bits) 

12.37 

(195bits) 

12.25 

(195bits) 

TKPCA-

DQ with 

toggling 

4.03 

(190bits) 

5.04  

(185bits) 

11.86 

(184bits) 

17.39 

(206bits) 

10.95 

(220bits) 

13.49 

(221bits) 
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bits 

MCC 0.60 0.59 3.91 3.97 5.22 3.82 

MCC-

KPCA 
0.20 0.19 2.30 4.70 3.13 2.80 

MCC-

KPCA-DQ 

0.44 

(256bits) 

0.33 

(200bits) 

4.17 

(256bit) 

4.56 

(256bits) 

5.28 

(300bits) 

4.43 

(256bits) 
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Fig. 4.3: ROC curves on FVC2002 and FVC2004 databases. 

  

Apart from the above, an accuracy comparison is conducted between 

the proposed methods with the state-of-the-arts (Nagar et al., 2010; Bringer & 

Despiegel, 2010; Farooq et al., 2007; Xu et al., 2009; Nandakumar, 2010) that 

generate fixed-length templates and the results are shown in Table 4.5. From 

the table, the performance of the proposed TKPCA-DQ and TKLSH-DQ is not 

better than (Nagar et al., 2010; Farooq et al., 2007; Xu et al., 2009; 

Nandakumar, 2010). However, we point out that: (1) in Nagar et al. (2010) 

only the first and last impression of each user is used for enrolment and testing 

respectively while only four samples 1,2,7,8 in Xu et al. (2009) are used for 

experiment. In contrast, all eight samples are used in our experiments (samples 

1th-3rd for training and samples 4th-8th for testing): (2) the database used in 

Farooq et al. (2007) is not publicly available and alignment is mandatary in 
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(Nagar et al., 2010; Nandakumar, 2010) (e.g. high curvature point) while our 

method is alignment-free. Nevertheless, when a superior minutiae descriptor 

such as MCC is incorporated, MCC-KPCA-DQ outperforms all the existing 

fixed length representation methods as shown in Table 4.5. 

 

Table 4.5: Accuracy comparison with the state-of-the-arts on FVC2002 and 

FVC2004 databases. 

Methods 
EER (%) for FVC2002 EER (%) for FVC2004 

DB1 DB2 DB3 DB1 DB2 DB3 

Nagar et al., (2010) - 3.00 - - - - 

Bringer & 

Despiegel, (2010) 
- 5.30 - - - - 

Farooq et al., 

(2007) 
1.59 * (private database used) 

Xu et al., (2009) - 3.86 - - - - 

Nandakumar, 

(2010) 
2.10 1.70 - - - - 

Proposed TKLSH-

DQ 
3.76 4.84 11.58 17.11 12.49 14.50 

Proposed TKPCA-

DQ 
4.03 5.04 11.86 17.39 10.95 13.49 

MCC-KPCA-DQ 0.44 0.33 4.17 4.56 5.28 4.43 

 

The time efficiency on various phases of the entire framework is also 

investigated and the results are shown in Table 4.6. The average time is 

captured by the experimental machine with Intel i7 (3.4GHz) CPU and 4GB 

RAM.  



141 

 

The matching efficiency on the fixed-length representation (𝑡𝑀𝐹𝐿𝑅 and 

𝑡𝑀𝐹𝐿𝐵) is much higher than that of the variable-size representation 𝑡𝑀𝑃𝑀𝐷 

because a two-stage matching algorithm has to be performed for variable-size 

representation. Particularly, for the binary fixed-length representation 𝑡𝑀𝐹𝐿𝐵, 

the average matching time has met the expectation for an efficient matching 

requirement compared to FVC2002 and FVC2004 (light category
3
). 

Furthermore, it is also observed that the operation on creating kernel matrix 

consumes the most time 𝑡𝐶𝐾𝑀during the training stage. However, this would 

not compromise the feasibility of the method in real time scenario because of 

two reasons: (1) kernel matrix creation is a one-time-operation (during the 

system setup); (2) kernel matrix creation is performed offline and it is not 

performed in the matching process. 

 

Table 4.6: Average time processed in different phases of the framework (in 

second). 

Different 

Phases 

Average Time (Seconds) for 

FVC2002 

Average Time (Seconds) for 

FVC2004 

DB1 DB2 DB3 DB1 DB2 DB3 

Training Stage 

Create PGTQ-

base Minutiae 

Descriptor 

(𝑡𝐶𝑃𝑀𝐷) 

0.0043 0.0057 0.0022 0.0052 0.0041 0.0070 

Generate Fixed-

length 
3.8191 5.8023 1.8623 5.2117 3.4975 6.6996 

                                                           
3
 The light category is intended for algorithms conceived for light architectures and therefore 

characterized by low computation cost, in limited memory storage and small template size 

(from FVC 2002, and FVC2004). 
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Representation 

(𝑡𝐺𝐹𝐿𝑅) 

Create Kernel 

Matrix with size 

of (300×300) 

(𝑡𝐶𝐾𝑀) 

610.9821 937.6017 260.3855 626.9327 487.7635 910.9222 

Matching Stage 

Matching in 

PGTQ-base 

Minutiae 

Descriptor 

(𝑡𝑀𝑃𝑀𝐷) 

0.0131 0.0214 0.0057 0.0142 0.0125 0.0226 

Matching in 

Real Fixed-

length 

Representation 

(𝑡𝑀𝐹𝐿𝑅) 

7.8238e-

006 

8.2109e-

006 

9.8168e-

006 

7.8208e-

006 

7.9370e-

006 

8.0894e-

006 

Matching in 

Binary Fixed-

length 

Representation 

(𝑡𝑀𝐹𝐿𝐵) 

4.4567e-

006 

4.5556e-

006 

5.1510e-

006 

3.1784e-

006 

4.0160e-

006 

4.6129e-

006 

 

4.5 Quantitative analysis on correlation of bit-strings 

4.5.1 The test of statistical independence 

 One common observation in biometric systems is that the security and 

accuracy is a trade-off. A binary biometric representation with good accuracy 

performance can be highly correlated (i.e. low entropy) and is easier to guess, 

thus heightening the possibility of a system-security violation. Hence, it is 

important for a practical system to maintain a good balance between accuracy 

performance and security. With our promising accuracy performance justified 

in the previous section, we now investigate the correlation of bit-strings (i.e. 

TKLSH-DQ and TKPCA-DQ) between different identities. 
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The experiments are carried out by adopting a test that was proposed 

by Daugman (2003). This test is virtually guaranteed to pass when the bit-

strings from different identities are compared, but failed when the bit-string of 

an identity is compared with another version of itself. More specifically, if 

binary templates of different users are independent among each other, the ideal 

expected proportion of agreeing bits between the binary strings for different 

identities, i.e. imposter distribution is 0.5. However, practically, it is 

impossible to expect that the bit-strings among different identities are perfectly 

uncorrelated due to the inevitable inherent correlation of the extracted features 

(Zhou et al., 2012). 

 

Considering that each comparison between two bits of binary template 

belonging to different identities is essentially a Bernoulli trial, the imposter 

distribution with mean 𝜇 and standard deviation 𝜎 corresponds to a binomial 

distribution having expectation of degree-of-freedom DOF. The DOF can be 

formulated as: 

DOF =
𝜇(1 − 𝜇)

𝜎2
 (4.37) 

 

 

If the binary templates are completely uncorrelated, the DOF is then 

equal to the length of the binary templates, which yields a perfect binomial 

distribution with mean µ=0.5 and variance 𝜎2 =
𝜇(1−𝜇)

DOF
= 9.7656 × 10−4. 

Generally, the stronger the correlation of the bit-strings is, the smaller the 

degree-of-freedom will be. It is observed in Table 4.7 that the mean and 

standard deviation/variance of the empirical imposter distribution deviates 
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from the ideal distribution, thus resulting in a lower DOF. This deviation is 

mainly caused by the bit dependency in the binary templates (Lim et al., 

2013). In fact, such deviation is expected, because the dynamic binarization 

scheme is designed based on the assumption of independence among 

individual feature dimensions, which may not be true in practice. 

 

Moreover, we notice that in kernel PCA, the generated feature vectors 

are linearly uncorrelated (see eq. 4.9); while feature vectors in kernelized LSH 

are not necessarily uncorrelated. In the event where other factors are identical, 

i.e. same input (PGTQ-based descriptors) and same dynamic quantization, we 

can reason that the bit-strings TKLSH-DQ exhibits higher correlativeness over 

TKPCA-DQ. Such reasoning can be confirmed from Table 4.7, where lower 

DOFs of TKLSH-DQ bit strings are observed. 

 

Table 4.7: DOFs for bit-string TKPCA-DQ and TKLSH-DQ on FVC2002 and 

FVC2004 databases. 

DOF 
FVC2002 FVC2004 

DB1 DB2 DB3 DB1 DB2 DB3 

TKPCA-

DQ 

143  

(192bits)
 

96 

(186bits)
 

123 

(182bits)
 

121 

(235bits)
 

115 

(195bits) 

68 

(195bits)
 

TKLSH-

DQ 

140 

(280bits) 

155 

(280bits) 

130 

(280bits) 

131 

(256bits) 

138 

(256bits) 

97 

(280bits) 

 

4.5.2 Entropy Estimation 

This section evaluates the randomness (entropy) of the binary 

templates generated from TKPCA-DQ and TKLSH-DQ. Zhou’s entropy 
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estimation method (Zhou et al., 2011) that is based on a second-order 

dependency tree proposed by Chow & Liu (1968) is adopted. Let 𝑃(𝑋) be the 

joint probability of feature 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑙]. The second-order dependency 

tree can be described as �̂�(𝑋) = ∏ 𝑃 (𝑥𝑢𝑖
|𝑥𝑢𝑗(𝑖)

) , 0 ≤ 𝑗(𝑖) ≤ 𝑖𝑙
𝑖=1  where 

[𝑢1, 𝑢2, … , 𝑢𝑙] is a permutation of index [1,2, … , 𝑙] and 𝑃 (𝑥𝑢1
|𝑥𝑢𝑗(1)

) =

𝑃(𝑥𝑢1
). To reduce the computational load, only bit pair formed by each bit 

with one of its prior bits is used for mutual information calculation 𝐼(𝑥𝑖, 𝑥𝑖′) in 

the entropy estimation, 𝑥𝑖 , 𝑥𝑖′ ∈ [1,2, … , 𝑙] and 𝑥𝑖 ≠ 𝑥𝑖′. If 𝑥𝑖 and 𝑥𝑖′  are 

independent, 𝐼(𝑥𝑖, 𝑥𝑖′) = 0. If completely dependent, 𝐼(𝑥𝑖, 𝑥𝑖′) = 𝐻(𝑥𝑖) =

𝐻(𝑥𝑖′). Chow & Liu (1968) optimized the estimation of Kullback-Leibler 

distance between the real distribution of X and the second-order dependency 

tree and indicated that Kullback-Leibler distance is dependent on variables: 

𝐷(𝑃(𝑋)| |�̂�(𝑋)) = ∑ 𝐻(𝑥𝑢𝑖
) − 𝐻(𝑋) − ∑ 𝐼(𝑥𝑢𝑖

, 𝑥𝑢𝑗(𝑖)
)𝑙

𝑖=2
𝑙
𝑖=1 , where  𝐻(𝑋) 

and ∑ 𝐻(𝑥𝑢𝑖
)𝑙

𝑖=1  represent entropy of feature X and the entropy sum of 

individual bits, respectively. Because minimizing the estimation error for 

Kullback-Leibler distance is equivalent to maximizing ∑ 𝐼(𝑥𝑢𝑖
, 𝑥𝑢𝑗(𝑖)

)𝑙
𝑖=2 , the 

best estimated entropy of X is 

�̂�(𝑋) = ∑ 𝐻(𝑥𝑢𝑖
) − max[𝑢1,𝑢2…,𝑢𝑙]{∑ 𝐼(𝑥𝑢𝑖

, 𝑥𝑢𝑗(𝑖)
)𝑙

𝑖=1 }𝑙
𝑖=1 .  

 

In the ideal case, i.e. feature X is uniformly and independently 

distributed; its entropy is identical to the feature bit-length, and the 

information rate equals to 1. Note that the information rate is described as 

average entropy per symbol, which can be computed as the ratio of the 

estimated entropy with respect to the feature bit-length. It ranges from 0 to 1 
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with the value 1 indicates the highest information rate. However, obtaining 

ideal information rate is nearly impossible in practice due to the inevitable 

dependency caused by the biometric feature extraction. Table 4.8 shows the 

estimated entropy in bits and information rate for FVC2002 and FVC2004 

databases. From Table 4.8, it can be observed that the maximum and 

minimum entropies obtained by the proposed schemes are 256 bits over 280 

bit-length string (FVC2002 DB2 for TKLSH-DQ) and 171 bits over 185 bit-

length string (FVC2004 DB2 for TKPCA-DQ), respectively. The information 

rates achieved by the proposed schemes are approximately from 0.9 to 0.94. 

These results have demonstrated the significant randomness of the binary 

templates compared to the results from (Zhou et al., 2011). 

 

Table 4.8: Estimated entropy in bits and information rate on FVC2002 and 

FVC2004 databases. 

Entropy & 

Information 

Rate 

FVC2002 FVC2004 

DB1 DB2 DB3 DB1 DB2 DB3 

TKPCA-DQ 
178/0.94 

(190bits) 

171/0.92 

(185bits)
 

172/0.93 

(184bits)
 

192/0.93 

(206bits)
 

205/0.93 

(220bits)
 

206/0.93 

(221bits)
 

TKLSH-DQ 
249/0.89 

(280bits) 

254/0.91 

(280bits) 

248/0.89 

(280bits) 

234/0.92 

(256bits) 

231/0.90 

(256bits) 

256/0.92 

(280bits) 

 

4.6 Implementation of Fuzzy Commitment 

In this section, fuzzy commitment scheme is implemented to observe 

the feasibility of the binary representations generated by the proposed 

methods. There is almost none of the works reported for fuzzy commitment 

scheme based on transformed minutiae bit string except Nandakumar (2010), 
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thus we compare our method with Nandakumar (2010) on FVC2002 DB1 and 

DB2. In this implementation, BCH error correction code is applied and 

TKLSH-DQ is used for demonstration. TKLSH-DQ is 280-bits representation 

for FVC2002.Yet, the length of the codeword for BCH is set to 511. So zero 

padding on TKLSH-DQ is required in order to perform XOR operation. Table 

4.9 shows the FAR/FRR of this implementation as well as comparison with 

Nandakumar (2010). Although, the results are poorer than Nandakumar’s 

work (2010), it can be justified that the proposed method is solely based on 

minutiae information while Nandakumar (2010) requires minutiae alignment 

(e.g. high curvature points), which is not ISO compliant. Thus the 

performance of the proposed method is comparable to state-of-the-art. 

 

Table 4.9: FAR/FRR of fuzzy commitment implementation using proposed 

TKLSH-DQ as well as comparison with Nandakumar (2010). 

Databases 

FMR/FNMR 

Nandakumar 

(2010) 

FAR/FRR (%) 

BCH (n, k) 

(511, 40) 
BCH (n, k) 

(511, 58) 
BCH (n, k) 

(511, 67) 

FVC2002 

DB1 
(0.1)/(12.5) (9.41)/(4) (4.18)/(6) (1.61)/(8.5) 

FVC2002 

DB2 
(0.1)/(8.9) (7.71)/(5.75) (3.05)/(9.5) (1.07)/(13.75) 

 

4.7 Discussion and Summary 

Several points regarding the usability of the proposed framework are 

further highlighted: (1) other than the modified PGTQ-based minutiae 

descriptor used in this implementation, various binary or real-valued minutiae 

descriptors, e.g. Minutiae Cylinder Code (MCC)  (Cappelli et al., 2010) can be 
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flexibly replaced and integrated into the proposed framework. This is because 

the proposed framework only converts the matching score of the minutiae 

descriptors from a variable-size descriptor to a fixed-length representation; (2) 

the matching algorithm between minutiae descriptors has to be carefully 

designed because the matching scores are used to form the kernel matrix, 

which is sensitive to the performance; (3) besides the stability-dependence 

dynamic quantization methods, other feature binarization methods such as 

DROBA (Chen et al., 2009) can also be applied. 

 

Finally, it is concluded that, in this chapter, a generic framework is 

proposed to convert variable-size minutiae descriptor into a fixed-length 

representation. The framework is comprised of four main components: 

minutiae descriptor extraction, fixed-length feature generation by kernel 

methods, feature binarization and matching. The experiment shows that the 

performance of the proposed TKPCA-DQ and TKLSH-DQ is comparable to 

the-state-of-the-arts for the fixed-length representations. Besides the feasible 

accuracy performance, high matching efficiency is also achieved. 

Furthermore, the framework provides good adaptability: The minutiae 

descriptor, kernel, and feature binarization components used in this 

implementation can easily be replaced with better state-of-the-art components. 

Additionally, the randomness and the correlation between the binary templates 

of different identities are extensively examined using entropy estimation with 

second order dependency tree and statistical independence test. In conclusion, 

all these advantages justify the feasibility of the proposed framework in 

applications. 
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CHAPTER 5 

 

BIOMETRIC CRYPTOSYSTEM: A NEW BIOMETRIC KEY 

BINDING AND ITS IMPLEMENTATION FOR FINGERPRINT 

MINUTIAE-BASED REPRESENTATION 

 

 

Despite Fuzzy Commitment (FC) is a theoretically sound biometric-

key binding scheme, it relies on error correction code (ECC) completely to 

mitigate biometric intra-user variations. Accordingly, FC suffers from the 

security–performance trade-off. That is, the larger key size/higher security 

always trades with poor key release success rate and vice versa. Additionally, 

the FC is highly susceptible to a number of security and privacy attacks. 

Furthermore, FC is limited to simple distance metrics such as Hamming 

distance to measure the dissimilarity of biometric features. This implies many 

efficient matching algorithms are to be abandoned. In this chapter, an ECC-

free key binding scheme along with cancellable transforms is proposed for 

minutiae-based fingerprint biometrics. Apart from that, the minutiae 

information is well protected with a strong non-invertible cancellable 

transform, which is crucial to prevent a number of security and privacy 

attacks. The scheme is not limited to binary biometrics as in FC but instead 

can be applied to various types of biometric features and hence a more 

effective matcher can be applied. Experiments conducted on FVC2002 and 

FVC2004 show that the accuracy performance is comparable to state-of-the-
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arts. It is further demonstrated that the proposed scheme is robust against 

several major security and privacy attacks. 

 

5.1 Introduction 

Biometric technology is likely to provide a heightened security level 

for identity verification and identification. Yet, the invasion of identity privacy 

is inevitable if the stored template is compromised. On the other hand, in 

cryptography, key management is mandatory for key storage, exchange and 

transaction, which remains a challenge task (Adam & Lloyd, 1999). The idea 

of using biometrics to lock and unlock a cryptography key is thus attractive 

since biometric trait is admissibly unique (Jain, 2013). In fact, the study of 

binding biometrics with cryptography key has been carried out in the past 

decade as a plausible solution for key management as well as for biometric 

template protection (Juels & Wattenberg, 1999; Juels & Sudan, 2006). As a 

result, biometric cryptosystem was born to respond to the needs of either 

securing the cryptographic key using biometrics (key binding) or generating 

cryptographic key from biometrics (key generation) (Jain et al., 2008). 

 

Despite key generation is an attractive proposition, it is difficult to be 

realized due to intra-user variability of biometrics that leads to a contradiction 

for achieving high key entropy and stability simultaneously (Jain et al., 2008). 

Furthermore, the original idea of key generation scheme is not designed for 

providing cancelability and non-linkability. The representative instances of 

key generation schemes can be found in (Vielhauer et al., 2002; Chang et al., 
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2004; Dodis et al., 2008). It is noted that due to the nature of biometric 

variability, key generation is less popular than that of the key binding scheme. 

 

For key binding approach, the basic idea is to embed the cryptographic 

key using biometric data. The cryptographic key is completely independent to 

the biometrics. A key is released only if the query instance with sufficient 

similarity to the template is supplied during the decoding stage. Error 

correction code (ECC) is employed to manage the variations of biometric data. 

The well-known instances of key binding approach are fuzzy commitment 

(Juels & Wattenberg, 1999) and fuzzy vault (Juels & Sudan, 2006). Despite 

effective, several vulnerabilities and drawbacks were recognized. This hinders 

the proliferation of key binding schemes. The details of vulnerabilities and 

drawbacks in key binding schemes have been discussed in Chapter 2 Section 

2.3. 

 

On the other hand, cancellable biometrics (Ratha et al., 2007) is a 

method for biometric template protection. It refers to the irreversible transform 

of the biometric data to ensure security and privacy of the biometric template 

can be protected. Hence, instead of the original biometric data, the 

transformed templates are stored. If a cancellable biometric template is 

compromised, a new template can be regenerated from the original biometric 

data. 

 

In a nutshell, while both biometric cryptosystems and cancellable 

biometrics serve to protect biometric template, the former is also meant to 
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protect key in cryptographic applications. However, both approaches are also 

suffered from accuracy performance, security and privacy issues. In this 

chapter, a new biometric key binding scheme is put forward by bridging the 

biometric cryptosystem and cancellable biometrics. In some sense, the 

proposed scheme achieves a middle-ground between the two main approaches 

but overcoming the limitations of both. It can thus be better served for both 

cryptographic key and biometric template protection. 

 

The organization of this chapter is as follow: Motivation and 

contribution are given in Section 5.2. The proposed key binding scheme and 

its implementation are presented in Section 5.3 and 5.4 respectively. The 

experimental results are provided in Section 5.5. In Section 5.6, security and 

privacy analysis are given. Finally, conclusion is followed by Section 5.7. 

 

5.2 Motivations and Contributions 

 The limitations of both biometric cryptosystems (i.e. fuzzy 

commitment and fuzzy vault) and cancellable biometrics have been 

summarized in Chapter 2. It is indeed challenging to resolve all these 

problems in their own regime. However, it is believable that the assimilation 

of both approaches would be a plausible response to this open problem. 

 

 In this chapter, an ECC-free key binding scheme along with 

cancellable transforms is proposed for minutiae-based fingerprint biometrics 

in place of fuzzy commitments. This idea is inspired from chaffing and 

winnowing scheme, which was conceived by Ron Rivest (Rivest, 1998). The 
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goal of chaffing and winnowing is to achieve confidentiality without using 

encryption when sending data over an insecure channel. However, the scheme 

that often used in conventional cryptography context cannot be applied 

directly to biometrics due to the stochastic nature of biometric data as well as 

various unique design criteria as aforementioned. Therefore, a major alteration 

to the original scheme has to be carried out. 

 

In this realization, the previous proposed alignment-free minutia 

descriptor, namely Minutia Vicinity Decomposition (MVD) (Jin & Teoh, 

2011) and a modified non-invertible transform, called Graph-based Hamming 

Embedding (GHE) are adopted to construct an adoptive cancellable transform 

that facilitates the binding of cryptographic key with fingerprint biometrics. 

The main contributions of this work are as follows: 

 

 A new ECC-free biometric key binding scheme and the realization in 

fingerprint biometrics are proposed. Since ECC is abandoned, the 

issues that associate with ECC such as security-performance trade-off 

and statistical attack are no longer exist. 

 

 A modified randomized GHE in constructing the cancellable transform 

is proposed. Therefore, cancelability criterion for template protection is 

satisfied. 
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 Several security and privacy analysis for the proposed scheme are 

performed; particularly focus on the major privacy attacks, such as 

ARM and SKI. 

 

 The proposed scheme is not limited to the binary feature representation 

and the matcher, but it can be applied to variety of biometric feature 

representations. 

 

5.3 Proposed Biometric Key Binding Scheme 

5.3.1 Methodology 

In this section, the conventional chaffing and winnowing scheme 

(CWS) (Rivest, 1998) is first reviewed, which is the primary source that 

inspired this work. The CWS comprises of two stages: 1) adding the fake 

packets (chaffs) and bogus message authentication code (MACs) based on a 

sequence of number and message, i.e. chaffing; 2) discarding packets with 

bogus MACs at receiver, i.e. winnowing. In this regard, an eavesdropper is 

clueless to identify which package is real or bogus without secret key 

information that is only shared by the genuine sender and receivers. An 

example of CWS is demonstrated in Fig. 5.1. Unfortunately, conventional 

CWS is not directly transferrable to the biometric-key binding scheme due to 

the fuzziness of biometric data as well as various unique design criteria as 

presented in Chapter 2. 

 

The proposed biometric-key binding scheme is illustrated in Fig. 5.2. 

For key binding, given a binary key k, encode 1s in k with true templates while 
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encode 0s with synthetic templates. The encoding process is to apply 

cancellable transform to both true and synthetic biometric templates with 

different transformation seed, in order to produce a series of cancellable 

templates. It is noted that for m-bits key, m cancellable transforms are required 

to encode the key entirely. This process corresponds to “chaffing” in CWS. 

 

 

Fig. 5.1: An example of chaffing and winnowing scheme adopted from 

(Wikipedia, 2015). 

 

On the other hand, the key release consists of a two-steps procedure: 1) 

apply m cancellable transforms to the query data yield m cancellable query 

instances; 2) match the cancellable query instances with the stored cancellable 

templates and compare the matching score with respect to a pre-defined 

threshold 𝜏. If the matching score 𝑠 ≥ 𝜏, release 1; otherwise 0. This 

corresponds to “winnowing” in CWS.  

 

The detailed algorithms for key binding and key release are presented 

in Algorithm 5.1 and 5.2 as follows: 
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Algorithm 5.1. Key Binding (Enrollment) 

Input: True template 𝛀𝑒, synthetic template 𝛀𝑠, m-bits 

key 𝑘 ∈ {0,1}, m cancellable transforms 𝐶𝑖=1
𝑚  

Encode m-bits key k using m cancellable transforms 

For i=1:m 

     if 𝑘𝑖 = 1 

         𝚵𝑖
𝑐 = 𝐶𝑖(𝛀𝑒) 

    else 

         𝚵𝑖
𝑐 = 𝐶𝑖(𝛀𝑠) 

End for 

Output: A set of cancellable templates 𝚵𝑖=1…𝑚
𝑐  

 

 

 

Algorithm 5.2. Key Extraction (Authentication) 

Input:  A set of cancellable templates 𝚵𝑐 obtained in 

Algorithm 1, matching threshold 𝜏, query biometric 

𝛀𝑞, m cancellable transforms 𝐶𝑖=1
𝑚  used in Algorithm 1. 

Step 1: Applying m cancellable transforms on query 

biometric. 

For i=1:m 

     𝚵𝑖
𝑞 = 𝐶𝑖(𝛀𝑞) 

End for 

 

Step 2: Match the enrolled cancellable templates 𝚵𝑐 

with query cancellable templates 𝚵𝑞 computed in step 1 

and release 1 or 0 based on similarity score. sim(.) 

denotes the similarity measure function. 

For i=1:m 

    sim(𝚵𝑖
𝑞
, 𝚵𝑖

𝑐) = s 

     if 𝑠 ≥ 𝜏 

         𝑘�̅� = 1 
else 

    𝑘�̅� = 0 
End for 

Output: Released m-bits key �̅�. 
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(a) Key Binding 

 

 

(b) Key Release 

Fig. 5.2: Diagrams for the proposed key binding scheme: (a) demonstrates the 

key binding with biometrics data that comprises of true template and synthetic 

template; (b) depicts the key release by presenting a query biometric template. 

 

5.3.2 Synthetic Templates Generation 

For key binding purpose, the proposed method employs both true and 

synthetic templates to generate a set of cancellable templates. Several options 

to create synthetic templates are suggested: 1) use different biometric 
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modalities: for instance, fingerprint template for true template and palm print 

template for synthetic template etc.; 2) use two different feature extraction 

algorithms on the same biometric data to generate true and synthetic 

templates; 3) use imposter template as synthetic template.  

 

However, an inconsiderate design of synthetic templates may leads to 

the revelation of the cryptography key easily. For instance, if the sizes of 

synthetic and true template differ and propagate to the cancellable template 

stage, the key can be easily determined. This is commonly found in fingerprint 

minutia as they are point set variable in size. Furthermore, the cancellable 

synthetic template should not be statistically differentiable to the cancellable 

true templates. For instance, the elements in a cancellable synthetic template 

are ranged from 0 to 1 while the range of cancellable true template is -1 to 0. 

 

To take into account the above cautions in generating synthetic 

template, random permuted version of true templates is used to generate the 

synthetic templates in this implementation. Such synthetic templates are: 1) of 

same length with true templates; 2) a randomized version of the true templates 

after cancellable transform. Hence it is highly unlikely to distinguish the true 

templates and synthetic templates statistically. The synthetic templates 

generation can be expressed as follows: 

𝛀𝒊
𝒔 = Perm(𝛀𝒊

𝒆)    (𝑖 = 1, … , 𝑁) (5.1) 

 

where 𝛀𝑠 and 𝛀𝑒 represent the synthetic and true templates, respectively and 

Perm(. ) denotes the random permutation function. 𝛀𝑖 refers to the i-th row of 

minutia vicinity decomposition (MVD) (Jin & Teoh, 2011) and N is the total 
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number of vicinities extracted from minutia set. The permutation seed is 

discarded after the process of synthetic template generation is completed. 

 

5.3.3 Cancellable Templates Generation 

 With the synthetic and true templates, the cryptography key can be 

encoded via a set of cancellable templates. The cancellable templates 

generation essentially consists of a two-steps procedure: 1) random 

permutation; 2) applying non-invertible feature transform. The steps are 

described as follows: 

1) Random permutation. In order to bind an m-bits key, m random 

permutations are required to generate m cancellable templates so that 

each cancellable template is used to encode the each bit of 

cryptography key. In the stage of key binding, random permutation 

with different seed is again applied to both true and synthetic templates 

subject to the specific bit in the key as expressed in eq. (5.2), while in 

the stage of key release, random permutation is applied to query 

template as expressed in eq. (5.3). 

𝛀𝑗,𝑖 = {
Perm(𝛀𝒊

𝒆) 𝑖𝑓 𝑘𝑗 = 1

Perm(𝛀𝒊
𝒔) 𝑖𝑓 𝑘𝑗 = 0

(𝑗 = 1, … , 𝑚), (𝑖 = 1, … , 𝑁)     (5.2) 

 

𝛀𝑗,𝑖 = Perm(𝛀𝒊
𝒒

)    (𝑗 = 1, … , 𝑚), (𝑖 = 1, … , 𝑁) (5.3) 

where 𝛀𝑠 and 𝛀𝑒 represent the synthetic and true templates, 

respectively and Perm(. ) denotes the random permutation function. 

𝛀𝑗,𝑖 refers to the i-th row of minutia vicinity decomposition (MVD) for 
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the j-th random permutations and N is the total number of vicinities 

extracted from minutia set.  

 

The permutation seeds applied on key binding are kept, which are used 

in key release stage in the identical order. Note that permutation in eq. (5.2) 

and eq. (5.3) is different from eq. (5.1) as the latter is meant for generating 

synthetic template and the seed will be discarded right after used. 

 

2) Non-invertible feature transform. The non-invertible transform is to 

ensure: (1) the key is strictly concealed; (2) the restoration of biometric 

features (e.g. minutiae) is computationally hard. For (1), the 

transformed template 𝚵 should be difficult to be recovered in order to 

prevent the leakage of the key. If 𝚵 is inverted and parameters of 

permutation function are learned by the adversary, the original features 

𝛀 can be restored thereafter. Once the entire set of 𝚵 is restored, the 

complexity of key retrieval reduces to 2
1
 because only two sources (i.e. 

true template and synthetic template) are used to encode the key. For 

(2), the raw biometric data (e.g. fingerprint minutiae) should not be 

recovered from 𝚵. For instance, fingerprint minutia should not be 

learned from a compromised 𝚵. This is identical to the requirement of 

non-inveritiblity for template protection. Therefore, non-invertible 

transform is a critical construct for the proposed key binding scheme. 
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5.4 Implementation 

5.4.1 MVD and RGHE 

In the implementation, a modified randomized graph-based hamming 

embedding transform (RGHE) is used to transform the fingerprint minutia 

vicinity decomposition (MVD) features into a non-invertible form. The 

propositions of MVD and RGHE have been described in Chapter 3 Section 3.2 

and 3.3 respectively. Hence, the identical processes are not repeated in this 

section. 

 

 

Fig. 5.3: Diagram of the modified randomized graph based hamming 

embedding (RGHE). 

5.4.2 Modified RGHE 

 It is noted that the original Randomized GHE described in Chapter 3 

(Section 3.3), which consists of a combination of random projection and GHE, 

is for cancellable biometric template construction with strong non-invertible 

property. Yet, it is not meant for key binding scheme that required addressing 

different set of design requirements. In this thesis, the Randomized GHE is 

modified as shown in Fig. 5.3 for the proposed key binding scheme. The 

modifications are described as follows: 
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a. Instead of using random projection on MVD (Jin & Teoh, 2011), the 

minutia vicinity vectors within MVD matrix is first randomly 

permuted. The reason is that the range values of these vectors are non-

uniform since they are extracted from triangles (length of three sides, 

three internal angles and orientation difference). Therefore, random 

permutation is done by row-wise basis, �̂�𝒊 = Perm(𝛀𝒊), 𝑖 = 1, … , 𝑁, 

which can preserve the characteristics of different features. 𝛀𝒊 and �̂�𝒊 

represent the original and the permuted template respectively; N is the 

total number of vicinities extracted from minutia set. 

b. Note that the original RGHE discussed in Chapter 3 Section 3.3 

applied a single-bit quantization scheme to covert the real-valued 

features to binary bits for speedy matching purpose. However, single-

bit quantization cannot preserve the Euclidean neighborhood structure 

effectively after mapping to Hamming space. In this construct, 

quantization step is omitted and found that accuracy performance can 

be gained, yet it wouldn’t compromise the non-invertible property 

significantly. This will be justified in Section 5.6. The details for the 

modified RGHE are given in Algorithm 5.3. 

Algorithm 5.3. Modified Randomize Graph based Hamming Embedding 

Input  Minutia vicinity Decomposition (MVD),  𝛀 ∈ ℝ𝑁×36 and code length 

�̂� 

Step 1: Random Permutation 

1.1: �̂� = 𝐏𝐞𝐫𝐦(𝛀) ∈ ℝ𝑁×36, Perm(.) denotes permutation function. 

 

Step 2: PCA Alignment 

2.1: Extracts eigenvectors Ф from the covariance matrix, C= �̂��̂�T
 

2.2: Project �̂� to eigenspace, i.e. Y=ФT�̂�, where Y = [y1, …,yN] ∈ ℝ𝑁×36 

2.3: Calculate a = min(Y) and b = max(Y) for eq. (5.4) and eq. (5.5). 

2.4: Calculate 36k eigenvalues from βk using eq. (5.4) and sort them in 
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ascending order. 

 

Step 3: Eigenfunctions selection 

3.1 Compute �̂� eigenfunctions according to the �̂� smallest eigenvalues from 

step 2.4, i.e. 

      For i=1:�̂� 

Compute  𝜉𝑖(𝐲) = ∏ 𝜉𝑖(𝑦𝑟) ∈ ℝ36
𝑟=1  as in eq. (5.4). 

      End for 

3.2 Repeat Step 3.1 for all N minutiae vicinities, hence 𝝃𝒏 = [𝝃𝟏, … , 𝝃�̂�], 

where n = 1,…,N. 

Output  Resulting template 𝚵 = [𝝃𝟏, … , 𝝃𝑵] ∈ ℝ𝑁×�̂� 

 

* The equations (5.4) and (5.5) used in algorithm 5.3 are displayed below. The 

two equations have been described in Chapter3 Section 3.3.1.2. The readers 

may refer that for more details. 

𝜉𝑘(𝑥) = sin (
𝜋

2
+

𝑘𝜋

𝑏−𝑎
𝑥)     (5.4) 

𝛽𝑘 = 1 − 𝑒
−

𝜖2

2
|

𝑘𝜋

𝑏−𝑎
|
2

     (5.5) 

 

5.4.3 Matching 

After executed algorithm 5.3, a template, 𝚵 with size N×�̂� can be 

formed, where N is the number of minutia vicinity. The dissimilarity of 

enrolled and query templates, 𝚵𝑒 = [𝝃𝑒1, … , 𝝃𝑒𝑁1
] ∈ ℝ𝑁1×�̂� and 𝚵𝑞 =

[𝝃𝑞1, … , 𝝃𝑞𝑁2
] ∈ ℝ𝑁2×�̂� can be computed by the smallest pairwise Euclidean 

distance between templates 𝚵𝑒 and 𝚵𝑞, where N1 and N2 are the number of 

vicinities extracted from an enrolled and a query fingerprint image. The score 

of a matched pair 𝑝𝑖𝑗 in the comparison of 𝚵𝑒 and 𝚵𝑞 can be computed using 

eq. (5.6). With this, a score matrix P = [pij] of size N1 x N2 can be formed: 

𝑝𝑖𝑗 = min(‖𝚵𝑒 , 𝚵𝑞‖)     (5.6) 

where ||.|| denotes the Euclidean distance between 𝚵𝑒 and 𝚵𝑞. 
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Next, the minimum value is stored for each row in P, which is denoted 

as ai: 

𝑎𝑖 = min𝑗(P𝑖𝑗)  for i= 1,…, N1 and j= 1,…, N2 (5.7) 

 

The matching score can then be computed by counting the number of 

𝑎𝑖 that has a greater value than the pre-defined threshold t. To avoid large 

variation in the results caused by non-trivial difference in magnitude led by 

unstable number of minutiae in the query and enrolled images, the matching 

score can be normalized as follows: 

𝑠 =
∑ (𝑎𝑖<𝑡)𝑁1

𝑖=1

√𝑁1×𝑁2
     (5.8) 

 

Hence, the score obtained is the real-valued score and the value ‘0’ 

indicates a strong negative match and vice versa. 

 

5.5 Experimental Results 

 The experiments are conducted on five public fingerprint datasets, 

FVC2002 (DB1, DB2, DB3 and DB4) (FVC2002, 2002) and FVC2004 DB2 

(FVC2004, 2004). Each dataset consists of 100 users with 8 samples per user. 

In total, there are 800 (100×8) fingerprint images for each dataset. VeriFinger 

7 SDK (Verifinger, 2015) was used for minutia extraction. The minutiae 

template is extracted according to ISO-complaint format for evaluation, i.e. 

(𝑥, 𝑦, 𝜃). The accuracy performance is evaluated using False Acceptance Rate 

(FAR), False Reject Rate (FRR), Genuine Acceptance Rate (GAR) as well as 

the receiver operating characteristic (ROC) curves. 
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In this experiment, two testing protocols are adopted: 1) 1vs1 protocol: 

the first and second impressions of each subject are used as gallery and probe 

respectively. Due to the relatively good in image quality, this protocol is 

widely used for the experiments in biometric cryptosystems (Nagar et al., 

2008; Nagar et al., 2010b; Li et al., 2010; Yang et al., 2013; Yang et al., 

2014a; Yang et al., 2014b). More precisely, such experimental setting can be 

justified that in biometric cryptosystems, the users are cooperative and willing 

to provide good quality biometric data to retrieve their cryptographic keys 

(Nandakumar et al., 2007; Xu et al., 2009). Hence, the matching yields 100 

genuine scores and 4950 imposter scores. Note that this is a popular 

experimental setup in fingerprint key binding scheme, since the same setup 

has been employed by state-of-arts (Nandakumar et al., 2007; Nagar et al., 

2008); 2) 1-8 protocol: the first impression of each subject is used as gallery 

and the rest of eight impressions of each subject are of probe. This protocol is 

to examine the robustness of the proposed method. Yet, it is noted that a 

poorer performance is anticipated via 1-8 protocol as the performance gap 

between the biometric cryptosystems and conventional biometric recognition 

systems has been acknowledged in Chapter 2 Section 2.3. This protocol results 

700 genuine scores and 4950 imposter scores. 

 

5.5.1 Accuracy Performance of the Modified RGHE 

 The accuracy performance of the original RGHE and the modified 

RGHE is first investigated. Fig. 5.4 shows the receiver operating characteristic 

(ROC) curves of the original RGHE and the modified RGHE. It can be 

observed that the accuracy performance of the latter is improved over the 
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former. This experiment confirms the justification given in Section 5.4.2, 

where the accuracy improvement is attributed by the removal of quantization 

in RGHE. 

 

 

Fig. 5.4: ROC curves are served as comparison of the accuracy performance of 

the original RGHE and the modified RGHE for FVC2002 DB1 and DB2. 

 

 



167 

 

5.5.2 The Key Release Error Rate (KRER) of the Proposed Key Binding 

Scheme 

 As discussed in Chapter 2 Section 2.3, one of the main limitations of 

existing key binding is the security-performance trade-off. However, such a 

trade-off is eliminated in the proposed scheme. In this thesis, the performance 

of key release is evaluated by a metric, namely key release error rate (KRER) 

that comprises of two common indicators, false acceptance rate (FAR) and 

false rejection rate (FRR). From Table 5.1, it is interesting to note that the 

KRER remains the same for key size m from 1, 16, 32, 64 to 128 bits. This 

surprising fact is attributed to the RGHE mechanism and two-stage matcher 

that applied in this scheme. First, row-wise permutation of MVD vectors 

within the MVD, described in eq. (5.2) and eq. (5.3) is invariant with respect 

to the two-stage matcher (Section 5.4.3). Recall in two-stage matcher, the 

pairwise distances of row minutia vicinity vectors are first exhaustively 

computed and the minimum value is taken for verification with respect to a 

chosen threshold value. Therefore, permutation would not alter the resulting 

KRER. This characteristic is propagated to matching of two cancellable 

templates if the non-invertible transformation adopted in this scheme, i.e. 

RGHE, could preserve the pairwise relative distances of row minutia vicinity 

vector of a MVD after transformation. From the experiments results, it is 

noticed that this assumption is hold for RGHE (performance preservation 

before and after transformation). Since all m distance scores are computed 

from the matching of m permuted cancellable templates and query input pair 

and all of them render identical distance scores, this implies that the KRER 

remains the same regardless m. 
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 To better illustrate this observation, let 𝚵1
𝑒 and 𝚵1

𝑞
 be the 1

st
 cancellable 

templates for enrolled and query pair and 𝑠1 be the distance of 𝚵1
𝑒 and 𝚵1

𝑞
. 

Similarly, 𝚵2
𝑒 and 𝚵2

𝑞
 be the 2

nd
 permuted cancellable templates for enrolled 

and query pair and 𝑠2 be the distance score of 𝚵2
𝑒 and 𝚵2

𝑞
. According to RGHE 

and two-stage matcher properties, it is known that 𝚵1
𝑒 and 𝚵2

𝑒 (also for 𝚵1
𝑞
 and 

𝚵2
𝑞
) are invariant with respect to the two-stage matcher, hence 𝑠1 = 𝑠2. By 

increasing the number of bits to m, the distance 𝑠𝑚 of 𝚵𝑚
𝑒  and 𝚵𝑚

𝑞
 is also 

identical to 𝑠1 and 𝑠2, i.e. 𝑠1 = 𝑠2 = ⋯ 𝑠𝑚. Since m distances among the 

cancellable templates 𝚵𝑒and 𝚵𝑞 are identical, the key release operation just 

resembles a-single matching that repeated for m times. Thus, this explains why 

KRER remain the same regardless m. 

 

 To further verify this observation, random projection (Johnson & 

Lindenstrauss, 1984) as a means of permutation function alternative, along 

with GHE is also examined and the KRERs are shown in Table 5.1. It can be 

observed that the KRERs for different m are no longer identical but slightly 

fluctuated. This is due to the row vectors in MVD after random projection is 

not exactly invariant to two-stage matcher despite the GHE still preserve the 

MVD structure. 

 

Table 5.1: Key release error rate for the proposed key binding scheme when 

the key length is increased. 

Databases 

Key-

length 

(bits) 

Random Permutation + GHE Random Projection + GHE 

1vs1 protocol 

(1
st
 & 2

nd
 

images) 

1-8 protocol 

(1
st
 to 8

th
 

images) 

1vs1 protocol 

(1
st
 & 2

nd
 

images) 

1-8 protocol 

(1
st
 to 8

th
 

images) 
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FAR 

(%) 

FRR 

(%) 

FAR 

(%) 

FRR 

(%) 

FAR 

(%) 

FRR 

(%) 

FAR 

(%) 

FRR 

(%) 

FVC2002 

DB1 

1 0.16 11 0.12 26.57 0.18 11 0.26 23.71 

16 0.16 11 0.12 26.57 0.1 11 0.55 23.14 

32 0.16 11 0.12 26.57 0.1 11 0.30 25.14 

64 0.16 11 0.12 26.57 0.02 11 0.12 25.71 

128 0.16 11 0.12 26.57 0.02 12 0.10 27.86 

FVC2002 

DB2 

1 0.061 3 0.12 13.14 0.16 2 0.34 13.29 

16 0.061 3 0.12 13.14 0.04 2 0.10 13.29 

32 0.061 3 0.12 13.14 0.02 3 0.20 13.14 

64 0.061 3 0.12 13.14 0.04 2 0.12 14.86 

128 0.061 3 0.12 13.14 0.02 2 0.10 15.29 

FVC2002 

DB3 

1 1.25 25 3.45 27.14 0.71 33 0.99 41.43 

16 1.25 25 3.45 27.14 0.54 32 0.77 42.43 

32 1.25 25 3.45 27.14 0.48 33  0.79 41.71 

64 1.25 25 3.45 27.14 0.44 35 0.75 43.86 

128 1.25 25 3.45 27.14 0.40 35 0.77 44.71 

FVC2002 

DB4 

1 1.49 21 3.47 21.86 0.57 38 0.97 33 

16 1.49 21 3.47 21.86 0.36 38 0.79 30.43 

32 1.49 21 3.47 21.86 0.26 38 0.79 29.14 

64 1.49 21 3.47 21.86 0.20 38 0.63 31.29 

128 1.49 21 3.47 21.86 0.14 38 0.55 32.43 

FVC2004 

DB2 

1 1.89 45 3.07 45.86 1.73 45 1.27 50 

16 1.89 45 3.07 45.86 1.39 39 0.77 43.71 

32 1.89 45 3.07 45.86 0.93 39 0.77 44.29 

64 1.89 45 3.07 45.86 0.59 43 0.77 45.29 

128 1.89 45 3.07 45.86 0.42 45 0.69 51 

 

Apart from the above, an accuracy comparison experiment has been 

conducted between the proposed scheme with state-of-the-arts (Nandakumar 

et al., 2007; Nagar et al., 2008; Nagar et al., 2010b; Nandakumar, 2010; Li et 

al., 2010; Li et al., 2012; Hartloff et al., 2013; Yang et al., 2013; Yang et al., 
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2014a; Yang et al., 2014b) in fingerprint modality. Note that only FVC2002 

DB1, DB2 and 1vs1 protocol are used for comparison as most of the literature 

(Nandakumar et al., 2007; Nagar et al., 2008; Nagar et al., 2010b; 

Nandakumar, 2010; Li et al., 2010; Li et al., 2012; Hartloff et al., 2013; Yang 

et al., 2013; Yang et al., 2014a; Yang et al., 2014b) follows this protocol. The 

state-of-the-arts of key binding schemes are partitioned into three groups: i.e. 

fuzzy vault, fuzzy commitment and other alignment-free bio-cryptosystems. 

From the results shown in Table 5.2, the observations are summarized as 

follows: 

 

 For fuzzy vault, the accuracy of the proposed scheme is better than the 

works (Nandakumar et al., 2007; Nagar et al., 2008; Li et al., 2010; 

Yang et al., 2013). Besides, there are two additional advantages 

provided by the proposed scheme: a) it is solely based on the minutiae 

information while the works (Nandakumar et al., 2007) requires 

minutiae alignment based on the high curvature points and additional 

information such as ridge orientation, frequency required by (Nagar et 

al., 2008;); b) a 2% of failure-to-capture rate (FTCR) in Nandakumar 

et al. (2007) and Nagar et al. (2008) is observed (e.g. failure for high 

curvature point extraction) while there is no failure-to-capture rate in 

the proposed method since no additional information is utilized for 

performance improvement. 

 

 For fuzzy commitment, it is observed that the KRER of the proposed 

scheme is comparable to the works Nagar et al. (2010b), Nandakumar, 
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(2010), Li et al. (2012) and Hartloff et al. (2013). Just to point out that 

for Nagar et al. (2010b) and Nandakumar, (2010), additional 

information such as focal point of high curvature regions is mandatory 

for minutiae alignment. 

 

 

 For minutiae-based alignment-free bio-cryptosystems, the proposed 

scheme outperforms Yang et al. (2014b) as observed in Table 5.2. 

Although a bio-cryptosystems recently reported by Yang et al. (2014a) 

shows an improvement both in security and accuracy performance. It is 

noticed that a helper data is exploited to reject the low quality query 

sample for decoding. However, the failure-to-decode rate is not 

reported so that the comparison cannot be fairly justified without such 

information. 

 

Table 5.2: Accuracy comparison between the proposed key binding scheme 

with the state-of-the-arts using 1 vs 1 protocol. 

Methods FVC2002 DB1 FVC2002 DB2 

Proposed 

FRR=11 (GAR=89); 

FAR=0.16 (Security - 

identical to key length) 

FRR=3 (GAR=97); 

FAR=0.061 (Security - 

identical to key length) 

Fuzzy Vault for fingerprint 

Nandakumar 

et al. (2007) 
- 

GAR=91; FAR=0.01; 

failure-to-capture rate 

(FTCR)=2 

Nagar et al. 

(2008) 
- 

GAR=95; FAR=0.01; 

failure-to-capture rate 

(FTCR)=2 

Yang et al. FRR=19; FAR=0.38  FRR=17; FAR=0.09 
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(2013) (14 bits security) (25 bits security) 

Li et al. (2010) 
GAR=85; FAR=0.00 

(29 bits security) 

GAR=93; FAR=0.00 

(32 bits security) 

Fuzzy Commitment for fingerprint 

Nandakumar, 

(2010) 

FNMR=12.5; FMR=0.1 

(Approx. 43 bits security) 

FNMR=8.9; FMR=0.1 

(Approx. 43 bits security) 

Nagar et al. 

(2010b) 
- 

GAR=85; FAR=0.13 

(Approx. 45 bits security) 

Hartloff et al. 

(2013) 

FRR=36.54; FAR=0.29 

(Approx. 143.2 bits security) 

FRR=26.48; FAR=0.23 

(Approx. 203.3 bits security) 

Li et al. (2012) 
FRR=18.6; FAR=0 

(39 bits security) 

FRR=8.03; FAR=0 

(45 bits security) 

Minutiae-based alignment-free bio-cryptosystems 

Yang et al. 

(2014b) 

FRR=8; FAR=0.59 

(Null) 

FRR=6; FAR=0.02 

(112 bits security) 

Yang et al. 

(2014a) 

FRR=4; FAR=0 

(Approx. 33 bits security) 

FRR=2; FAR=0 

(Approx. 37 bits security) 

 

It is further pointed out that the main objective of this work is to 

demonstrate the feasibility of the proposed key binding scheme using 

cancellable transforms with comparable accuracy performance. Nevertheless, 

the performance could be enhanced by using more effective minutiae 

descriptor derived from sole minutiae set. As a proof-of-concept, 2P-MCC 

(Ferrara et al., 2014), a cancellable and strong non-invertible representation 

derived from the state-of-the-art minutia descriptor, MCC (Cappelli et al., 

2010), is adopted in the proposed key binding scheme. Table 5.3 demonstrates 

that the proposed key binding scheme outperforms all the existing key binding 

schemes when 2P-MCC is incorporated. Such outstanding performance gained 
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is attributed to the capability of adopting high discriminative but non-restricted 

biometric representation and sophisticated matcher.  

 

Table 5.3: Key release error rate of the proposed key binding scheme by 

incorporating 2P-MCC using 1 vs 8 protocol. 

Key-

length 

(bits) 

Key release error rate (FAR/FRR)(%) 

FVC2002 

DB1 

FVC2002 

DB2 

FVC2002 

DB3 

FVC2004 

DB1 

FVC2004 

DB2 

1 0.06/3.29 0.06/2.57 0.83/16.71 0.99/17 0.73/16.43 

16 0/2.29 0/1.57 0/10.57 0/15.71 0/16.29 

32 0/2.43 0/1.57 0/11.71 0/16.14 0/14.42 

64 0/2.43 0/1.71 0/12 0/16.86 0/15.14 

128 0/2.43 0/1.86 0/13.29 0/17.29 0/16.86 

 

5.5.3 Cancelability 

Cancelability in this work refers to two scenarios: 1) if the 

cryptographic key is compromised, a new key can be re-issued and the KRER 

should be preserved; 2) if the random permutation seeds for cancellable 

templates generation are compromised, a set of new seeds is issued to generate 

cancellable templates and the decoding accuracy should be preserved as well. 

Several experiments have been designed to evaluate the cancelability under 

these two scenarios. 

 

A) Cancelability in Cryptographic Key Compromise Scenario 

To do this, 100 sets of key randomly are generated; each set consists of 

four keys with 16, 32, 64 and 128 bit-length respectively. The same 
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experimental protocol described in Section 5.5 is applied to evaluate the 

KRER by changing the keys repeatedly. It is observed that the KRER is 

identical to what it has presented in Section 5.5.2. This is expected, in fact, 

whether a key can be released correctly is subjected to the matching result of 

two cancellable templates as shown in Fig. 5.2. Key changing would not affect 

the KRER as they are completely independent. 

 

B) Cancelability in Permutation Seed Compromise Scenario 

On the other hand, to assess the cancelability in permutation seed 

compromise scenario, we also randomly generated 100 sets of random 

permutation seeds and perform the experiment described in Section 5.5 by 

changing the permutation seeds. Note that 100 sets of random permutation 

seeds produce 100 sets of cancellable template to bind and release the 

cryptographic key. As expected, the KRER is identical to the accuracy 

presented in Section 5.5.2. The accuracy preservation is due to the RGHE 

mechanism and two-stage matcher as discussed before. Row-wise permutation 

in MVD by changing the seeds is invariant to the two-stage matcher and thus 

the distance between two MVD is identical. Further, it has been shown that the 

characteristics of GHE (i.e. structure preservation of MVD before and after 

transformation) could preserve the relative distances propagated from MVD 

features. This is to prove the cancellable property in permutation seed 

compromise scenario is indeed achievable. 
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5.5.4 Complexity Analysis 

The time complexity on encoding and decoding are also investigated 

and the results are shown in Table 5.4. The average time is captured by the 

experimental machine with Intel i7 (3.4GHz) CPU and 4GB RAM. It can be 

observed from Table 5.4 that the average time of encoding and decoding is 

proportional to the bit-length of cryptographic key, which is straightforward 

due to the fact that more bits of the key requires more time to encode and 

decode it. In general, the time efficiency for the proposed key binding method 

is feasible for deployment. 

 

Table 5.4: Average time of encoding and decoding for the proposed key 

binding method in different bit-length. 

Databases 
Encoding 

(Seconds) 

Decoding 

(Seconds) 

FVC2002 

DB1 

16bits 0.1183 0.1042 

32bits 0.2509 0.2231 

64bits 0.4932 0.4360 

128bits 1.0013 0.8601 

FVC2002 

DB2 

16bits 0.1477 0.1385 

32bits 0.2896 0.2672 

64bits 0.5744 0.5417 

128bits 1.1522 1.0757 

 

5.6 Security and Privacy Analysis 

In this section, the security and privacy of the implementation for the 

proposed key binding scheme is investigated. More precisely, the terms of 
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privacy in this context refer to non-invertibility, non-linkability respectively 

while security refers the attacks for illegitimate access. As such, the analysis 

on the non-invertibility of the modified RGHE, Attacks via record multiplicity 

(ARM), Surreptitious Key-Inversion Attack (SKI) and statistical attack are 

given. 

 

5.6.1 Non-invertibility of the Modified RGHE 

The non-invertibility in this context refers that the cancellable 

templates generated by RGHE is computationally difficult to be reverted into 

minutia vicinity decomposition (MVD) features. This is to ensure that the 

original minutiae are securely protected (privacy preserving) and the spoofed 

impersonation derived from MVD is infeasible (security). 

 

The non-invertibility of the modified RGHE is imposed by two 

ingredients: 1) the sinus function in eq. (5.4) offers many-to-one mapping; 2) 

36 eigenfunctions product using 𝜉(𝐮) = ∏ 𝜉(𝑢𝑖)
36
𝑖=1  where 𝜉𝑖(𝑥) =

sin (
𝜋

2
+

𝑘𝜋

𝑏−𝑎
𝑥) in eq. (5.4). The 𝜃 of the sinus function in eq. (5.4) is first 

investigated. Because the many-to-one property is functioned, only when the θ 

of sinus function is greater than 2π and the larger θ the stronger non-

invertibility. To do this, the following experiments are conducted: a) compute 

the mean and standard deviation of the angle θ from each MVD feature 

matrix; b) Since there are 800 MVD feature matrices derived from each 

dataset, we further compute the average mean and average standard deviation 

from the 800 MVD feature matrices. The results presented in Table 5.5 show 

that the angle (in rad) is invalid for the small angle approximation analysis 
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while the many-to-one property of RGHE is effective as the mean and the 

range of angle indicate that multiple solutions exist (i.e.   exceeds 2π). 

 

Secondly, to evaluate the invertibility of the 36 dimensional 

eigenfunctions  𝜉𝑖 = ∏ sin(
𝜋

2
+

𝑖𝜋

𝑏−𝑎
𝑦𝑟)36

𝑟=1 , it is common to assume that 𝜉𝑖 is 

known in the analysis (e.g., after database is compromised). The hardness of 

inverting 𝜉𝑖 lies in the associated number of input possibilities. In Table 5.5, it 

is known that there are 8 and 10 possible inputs associated with 𝜉𝑖 for 

FVC2002 DB1 and DB2, respectively. Hence, for FVC2002 DB1 and DB2, 

the invertibility complexity for single minutia vector decomposition is upper 

bounded by 8
36

 ≈ 2
118

 and 10
36

 ≈ 2
129

, yielding 118 and 129 bits entropy, 

respectively. To invert N number of vicinities, the total invertibility 

complexity is therefore upper bounded by 8
36

N ≈ 2
118

N and 10
36

N ≈ 2
129

N, 

yielding 118+log2(N) and 129+log2(N) bits entropy for FVC2002 DB1 and 

DB2, respectively. 

 

Table 5.5: Mean and standard deviation for   in Radian. 

Measurements FVC2002 DB1 FVC2002DB2 

Average Mean of angle (rad) 11.6851 13.0572 

Average S.T.D of angle (rad) 8.7962 10.6427 

Range of angle (rad) ≈ 1.57 to 48.69 ≈ 1.57 to 67.54 

Maximum number of possible 

inputs corresponding to an 

output of a single-dimensional 

eigenfunction 

8 10 
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Additionally, the user privacy in this context is highly concerned due 

to the fact that minutiae points can be used to reconstruct the fingerprint image 

easily (Hill, 2001). To prevent the privacy leakage, the fingerprint minutiae 

points have to be protected securely. To do this, the MVD features reversal 

from the stored cancellable templates must be strictly prevented. This is 

equivalent to non-invertiblity problem of RGHE reasoned above. It has been 

demonstrated that such reversal is indeed infeasible due to computational 

hardness. Even in the event that MVD features are disclosed, converting the 

minutiae descriptor with invariant features into the absolute location and 

orientation of a minutia are rather challenging based on the existing techniques 

(e.g. Hill climbing). For example, a hill climbing approach may generate many 

spurious minutiae outside the region of interests (ROI) of the fingerprint 

image. Such reconstructed minutiae points may not lead to a high match score 

with another impression of the same finger (Nagar, 2012). 

 

5.6.2 Surreptitious Key-Inversion Attack (SKI) 

As discussed in Section 5.3.3, the key can be retrieved only if the 

entire set of cancellable templates is successfully reversed to the true and 

synthetic templates. The effort to recover the MVD features from a single 

cancellable template requires 118 and 129 bits entropy respectively (see 

Section 5.6.1). Therefore, the full recovery for a single key with length m 

requires 118𝑚 and 129𝑚 (m≥128) trials respectively. Therefore, the SKI 

attack is computationally infeasible. 
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5.6.3 ECC-based Attacks 

A. Attacks via record multiplicity (ARM) 

ARM in fuzzy commitment refers the decodability attack that has been 

discussed in Chapter 2 Section 2.3. In principle, ARM is feasible with high 

possibility due to the limitations of error correction codes employed. However, 

ARM is not possible in the proposed method as no ECC is employed.  

 

It is further pointed out that, without the knowledge of key, the 

adversary is still difficult to distinguish the cancellable templates generated 

from true template or synthetic template. Thus, the correlation analysis among 

the cancellable templates generated from true templates cannot be performed. 

As such, it can be reasoned that ARM on the set of cancellable templates is 

indeed infeasible. 

 

B. Statistical attack 

Similarly, statistical attack discussed in Chapter 2 Section 2.3 is also 

an ECC triggered attack. However, this attack is absent in the proposed key 

binding scheme due to the abandon of ECC. Further, statistical analysis on 

cancellable templates is hardly feasible due to: 1) without cryptographic key, 

no clue of cancellable templates generated from true or synthetic template; 2) 

cancellable templates produced by RGHE are statistical indistinctive as 

discussed in Section 5.3.3. 
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5.7 Discussion and Summary 

In this chapter, an ECC-free key binding scheme along with 

cancellable transforms is proposed for minutiae-based fingerprint biometrics 

in place of fuzzy commitments. The key binding process is accomplished by 

employing a series adoptive cancellable transforms and thresholding 

mechanism, which enjoys several merits. Firstly, the security-performance 

trade-off that attributed by ECC is resolved in the proposed key binding 

scheme. This is confirmed by the extensive experiments where the accuracy 

performances remain stagnant regardless increment of key size. Secondly, 

unlike fuzzy commitment, the scheme does not impose any restriction to the 

representation form of biometrics and hence matchers. A great flexibility of 

adopting effective feature extractors and robust matchers can be attained. 

Thirdly, the security and privacy of the proposed key binding construct that 

associated to non-invertibility and non-linkability criteria are justified. While 

ECC-free key binding scheme is still a new direction to study, we believe the 

proposed scheme has wide room to improve in security, privacy and 

recognition performance aspects in the future. We hope this work can provoke 

thoughts and discussions in this area. 
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CHAPTER 6 

 

CONCLUSION AND FUTURE WORKS 

 

 

In this thesis, a study towards minutia-based fingerprint template 

protection was carried out. As results of the study, four unique proposals have 

been presented, which cover the major approaches (cancellable biometrics and 

biometric cryptosystems) of biometric templates protection. Among the four 

proposals, two distinct cancellable fingerprint template generation methods, 

i.e. 2D-RP-MVD and RGHE, are dedicated to the biometric salting and non-

invertible transform (two sub-classes of cancellable biometrics) respectively. 

While, the rest of two proposals, i.e. point-to-string conversion and fingerprint 

key binding, are mainly devoted to biometric key binding (a sub-class of 

biometric cryptosystems). Each proposed method was elaborated and 

evaluated chapter-by-chapter throughout the thesis. As a final remark, this 

chapter summarizes the importance of this doctoral work and avenues the 

future works not only from the extension of this study but also other research 

opportunities in relevant realms. 

 

6.1 Summary of Thesis Chapters 

 An extensive literature review has been done in Chapter 2. It includes 

three aspects of study: 1) fingerprint minutia-based cancellable templates, 2) 

point-to-string conversion for fingerprint minutiae and 3) biometric key 

binding. Firstly, a categorization method for fingerprint minutia-based 
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cancellable templates was introduced, i.e. direct minutiae transform and 

indirect minutiae transform. The former approach is efficient in processing 

speed, but is of risk to minutiae revelation while the latter approach is just 

opposite to the former approach. At the end of this study, we revealed that the 

original random projection (RP) used in literature is merely for a 1D fixed 

length feature vector, which is not applicable for the 2D minutia-based feature 

representation. Further, the cancellable templates are weak against inversion 

due to the careless design of non-invertible functions. Apart from that, most of 

the proposed security-oriented cancellable templates trade with poor accuracy 

performance, thus demonstrating security-performance trade-off. Secondly, in 

the study of point-to-string conversion, a classification based on how a set of 

points is converted into ordered and fixed-length bit-string was introduced, i.e. 

reference-based approach, histogram-based approach, and spectral transform 

approach. We learned that the existing point-to-string conversion methods 

hardly compete with the state-of-the-art minutiae descriptor in performance 

accuracy thus far. Thirdly, in the study of biometric key binding, we found out 

that the existing ECC-enabled biometric key binding schemes suffers from 

security and privacy leakage via a number of attacks, e.g. Decodability attack 

(ARM), SKI attack and statistical attack etc. 

 

 Based on the findings from the study of fingerprint minutia-based 

cancellable templates, two distinct fingerprint minutia-based cancellable 

template generation methods were proposed in Chapter 3, i.e. two-dimensional 

random projected minutia vicinity decomposition (2D-RP-MVD) and 

randomized graph-based hamming embedding (RGHE). 2D-RP-MVD is 
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designed to extend the random projection used for 1D feature vector to 2D 

feature representation with the intention of adapting 2D minutiae-based 

feature representation, i.e. MVD. With 2D-RP-MVD, the objective of 

generating cancellable fingerprint templates is accomplished. Further, the 

utilized descriptor, i.e. MVD generates the geometrical invariant features that 

conceal the original minutia coordinates and orientations. This provides the 

additional protection over the original minutia vicinity construct wherein the 

original minutia coordinates and orientations are stored. Though, 2D-RP-

MVD excels in performance-preservation, it is vulnerable to reverse attack 

when the user-specific key is stolen by the adversary. This motivates us to 

design a transformation function with strong non-invertible property. RGHE 

was then presented. Essentially, RGHE offers a highly non-linear equation 

system involving multiple products of 36 sinus functions (a non-linear many-

to-one function), which makes MVD extremely hard to be retrieved through 

inverting this equation system even when the helper data is known by the 

adversary. The cancellability of RGHE can be achieved by amalgamating 2D-

RP-MVD. 

 

 Experimental results showed that both 2D-RP-MVD and RGHE 

manage to maintain the performance accuracy over the minutia descriptor 

(MVD). The overall performance accuracies in terms of EER for 2D-RP-

MVD and RGHE are better than the existing methods. In addition, the security 

and privacy of the two distinct cancellable template generation methods were 

analysed. 2D-RP-MVD is effective in generating cancellable template for 2D 

feature representation, but provides weak privacy. It was also shown that 
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RGHE, on the contrary, offers strong irreversibility against inversion due to 

the non-linear equation system. Furthermore, the irreversible strength of 

angle-based many-to-one (non-linear) function is addressed via the small 

angle approximation analysis. 

 

 Minutiae template (e.g. ISO-compliant format) extracted from a 

fingerprint image in each time may vary in terms of the amount, coordinates 

and orientation. The variability of minutia amount can be propagated to the 

minutiae descriptors (e.g. MCC) that are variable in size and unordered. Such 

characteristic of templates hinders the applications that only operate on 

ordered fixed-length representation, such as fuzzy commitment, dynamic 

quantization for template binarization, fingerprint indexing etc. Therefore, in 

Chapter 4, a complete point-to-string conversion framework based on kernel 

transformation method was proposed to convert the minutiae template into an 

ordered and fixed-length representation. In the proposed framework, two 

distinct branches of kernel transformation method were introduced, i.e. KPCA 

and KLSH. On top of that, the matching function of minutiae descriptor yields 

a non-SPD kernel matrix, thus a Gaussian-like kernel function is specially 

designed to induce SPD that is an essential factor for accuracy performance. 

The objective of point-to-string conversion is not accomplished without 

feature binarization. Thus, the real-valued fixed-length representation 

generated from kernel transformation methods is binarized into bit-string. The 

bit-string refers to one dimensional fixed-length binary vector. Two 

binarization techniques, static quantization (or precisely zero-thresholding) 

and dynamic quantization, were used to binarize the said representations for 
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comparison in this thesis. As a finishing touch, the implementation using the 

generated binary templates in fuzzy commitment scheme is also demonstrated. 

 

 The experiment conducted for point-to-string conversion framework 

showed that the accuracy performance is admissibly preserved among the 

minutiae descriptor (VSB), real-valued fixed-length representations (TKPCA 

and TKLSH) and binary fixed-length representations (TKPCA-DQ and 

TKLSH-DQ). Furthermore, the accuracy performance of DQ-based 

binarization outperforms the zero-thresholding based binarization in a 

significant extend. This is because DQ-based binarization utilizes the 

information of feature distribution for bits allocation while the zero-

thresholding based binarization totally ignores such information. In the aspect 

of computation complexity, the most of the time-consuming operations are 

executed off-line. The on-line runtime does not compromise the real time 

scenario considering the current computation technology. 

 

 The existing biometric key binding schemes utilize error correction 

codes (ECC) to mitigate the variability of biometric data. The security 

breaches and limitations associated with ECCs are therefore inevitable.  In the 

Chapter 5 of this thesis, an ECC-free biometric key binding construct was 

proposed and implemented for fingerprint minutiae. The key binding and 

release is accomplished with the thresholding mechanism and cancellable 

transforms, but without ECCs. Apparently, ECC associated security breaches 

and limitations no longer exist as ECC has been abandoned. As a fresh point 

of view, amalgamating cancellable biometrics for biometric key binding 
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creates a tangible solution with the intention of overcoming the security 

breach and limitations in a significant extend. Experimental results showed 

that the accuracy performances remain stagnant regardless increment of key 

size. Furthermore, the proposed key binding construct is immune to several 

major security and privacy attacks. Another merit is that more effective 

minutiae descriptor and matchers can be flexibly integrated as the proposed 

scheme does not impose any restriction to biometric representation and 

matchers. 

 

6.2 Future Works 

 In this section, some possible future works are briefly discussed. A 

straightforward one is to improve the proposed methods, for instance, 

algorithm modifications, processing flow optimization. On top of that, the 

potential works extended from this study would not be limited in inciting the 

practical usage of the proposed methods but discovering the new research 

opportunities in relevant realms. 

 

 Currently, biometrics is rapidly being adopted by mobile devices, such 

as Apple’s iPhone and Samsung's Galaxy series. The home button in the 

phone is also functioned as a fingerprint scanner used to unlock the phone. 

Since mobile devices are easy to be lost or stolen, the fingerprint data stored in 

the devices is highly vulnerable to privacy invasion. However, due to the 

technologies of small fingerprint sensor used in mobile devices, the fingerprint 

template protection methods for traditional (large) fingerprint sensors might 

not be adopted directly. As the proliferation of the fingerprint recognition in 
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mobile devices is foreseeable, it is necessary to modify the fingerprint 

template protection techniques to adopt the small-size fingerprint sensor in 

mobile environment. 

 

 As a practical application, a new user should be allowed to enrol to the 

application after it is set up. Yet, some algorithms (e.g. KPCA, KLSH and DQ 

for binarization) used in this thesis require a training procedure to compute the 

helper data during the application’s start-up. This implies that re-training 

becomes inevitably when a new user is enrolled to the system, which is 

impractical for real world applications. Literature suggested that incremental 

KPCA could be the decent solution to resolve the re-training issue. 

Nonetheless, the study on the optimized incremental algorithms to update the 

pre-trained helper data is still a future research direction. 

 

 In this thesis, there are four methods proposed with the intention of 

protecting fingerprint minutiae. Although the prototypes are evaluated via 

publicly available databases, transforming lab prototypes to real world 

applications requires solving a number of practical issues involving 

optimization in programming languages, study of software engineering. To the 

best of our knowledge, there is currently no fingerprint recognition system 

with practically template protection functionality. Thus, study the realization 

for the proposed methods or at least implementing partial functionality e.g. 

non-invertibility is one of the promising future works. 
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