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ABSTRACT

Rateless  erasure  code  is  a  type  of  error-correction  code  for  erasure

channel.  Given  a  message  of  k  symbols,  it  generates  potentially  infinite

number  of encoded symbols,  which enables  the receiver  to  reconstruct  the

original message from any  k (1+ϵ)  coded symbols with high probability of

complete decoding (PCD),  i.e., 99.9% success probability, where  ϵ  denotes

the decoding inefficiency. 

Generally, the network traffic is dominated by short messages. The state-

of-art rateless erasure codes – LT code and Raptor code work efficiently only

for long messages. In response, this thesis proposes the rateless erasure codes

that  are efficient  in transmitting short  messages.  Our studies show that  the

Random code  – a  rateless erasure code with generator  matrix  of randomly

distributed 0 and 1, is able to reconstruct both short and long messages from

any  k+10  coded symbols  with high PCD even for small  k .  Utilising the

invariant PCD of Random code over the message length, we propose Micro-

Random code with improved high PCD using only k+1  encoded symbols. 

We also  propose two pseudo-random codes  that  have  better  decoding

complexities, i.e., systematic Random code and Stepping-Random (SR) code.

If the first k  encoded symbols are received intact, systematic Random code is

able to reconstruct the original message with negligible decoding complexity

while  SR  code  requires  O(k )  instead.  It  is  to  be  noted  that,  systematic
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Random  code  is  only  suitable  for  point-to-point  and  point-to-multipoint

transmissions while SR code works even in multipoint-to-point transmission.
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CHAPTER 1

INTRODUCTION

This chapter introduces the rateless erasure codes and their impact to

the  network  evolution.  Then,  issues  will  be  discussed  before  forming  the

research problem. The thesis outline and contributions will be presented at the

end of the chapter.

1.1 Erasure Code

Binary erasure channel (BEC) is a communication model, where each

input bit has an equal probability ρ  of erasure as shown in Figure 1.1 and ρ

is also known as the channel erasure probability. Such channel is common in

the Internet, where the packets are dropped due to  Cyclic Redundancy Code

(CRC) checking failure (packet error) or network congestion. 

Figure 1.1: BEC.

Generally,  the  erasure  code is  an  error-correction  code  for  BEC.

Given a message of  k  symbols (symbol is a sequence of bits), the erasure

code generates  n  encoded symbols, where  n>k . Correspondingly, one can

reconstruct  the  original  message  with  any  k  out  of  n  encoded symbols,

irrespective of the sequence as shown in Figure 1.2. Note that the blank circles
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in  the  figure denote  the  message  symbols  and the  hatched  circles  are  the

encoded symbols. The ratio k /n  is also known as the code rate.

Erasure  codes  such  as  Reed-Muller  code  have  been  deployed  in

spacecraft  and  Reed-Solomon  code  in  compact  discs  and  digital

communication  (Reed,  2000;  Wicker  and  Bhargava,  1999).  For  the  past

decades,  the  application  of  erasure  codes  has  been  studied  in  computer

networks (Rizzo, 1997; McAuley, 1990), wireless sensor networks (Kim et al.,

2004; Wen et al., 2007) and other wireless networks (Wang et al., 2005), etc. 

Original Message

Coded Symbols

Received Coded
Symbols

Reconstructed
Message

X X X XErasure Channel

Encoder

Decoder

Figure  1.2:  The  encoding  and  decoding  processes  of  typical  erasure
codes. 

1.2 Emergence of Rateless Erasure Codes

Generally,  the  erasure  codes  in  Section  1.1 do  not  generate  the

encoded symbols dynamically. Given a message of  k  symbols,  the sender

needs to pre-determine the total encoded symbols n  to generate wisely such

that  at  least  k  encoded symbols  are  received  by  the  receiver.  Basically,

addressing the problem with a large  n  value is undesirable as it wastes the

computational resource if the channel erasure probability ρ  is overestimated.
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Moreover,  the  estimation  is  difficult  in  wireless  networks,  where  ρ  may

change drastically over a short time.

To  address  the  inflexibility  in  erasure  codes,  Byers  et  al.  (1998)

proposed rateless erasure codes (in the name of digital fountain codes), where

a  message  of  k  symbols  is  encoded into  a  potentially  infinite  number  of

encoded symbols. Then, the receiver reconstructs the original message from

any  k (1+ϵ)  encoded symbols,  where  ϵ∈ℝ  denotes  the  decoding

inefficiency and  ϵ≥0  as shown in Figure  1.3. As compared to the erasure

codes in Section 1.1, the correct estimation of the channel erasure probability

is unnecessary. The sender may keep generating the encoded symbols until the

receiver  has  sufficient encoded symbols  (i.e., k (1+ϵ) )  to  reconstruct  the

original message. 

Original Message

Coded Symbols

Received Coded
Symbols

Reconstructed
Message

XErasure Channel

Encoder

Decoder

Figure  1.3:  The  encoding  and  decoding  processes  of  rateless  erasure
codes. 
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1.3 The Impact of Rateless Erasure Codes to Network Revolution

This section discusses the varying impacts of rateless erasure codes to

the networks in brief. 

 

1.3.1 Transmission Control Protocol (TCP)

Transmission  Control  Protocol  (TCP)  is  a  common  transport  layer

protocol in the Internet. It ensures the reliable packets delivery based on the

following control mechanisms:

• Flow  control  –  it  limits  the  transmission  rate  based  on  advertised

window.

• Sequence control – it ensures the packets are delivered in order based

on packet acknowledgement. 

• Error control – it detects the error packets based on checksum and lost

packets are retransmitted.

• Congestion  control  –   it  adapts  to  the  available  capacity  with

appropriate transmission rate.
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 Figure 1.4: TCP flow diagram.

Figure 1.4 explains the transmission mechanism of TCP. Initially, the

sender sends the message at a minimum rate. Whenever a packet is sent, an

acknowledgement  is  expected  from the receiver  as the signal  of successful

delivery  and  then  the  transmission  rate  will  be  increased.  Any

unacknowledged packet will  be retransmitted after the time-out period with

the transmission rate halved. This process continues until all the packets have

been delivered  successfully. Note  that  all  the packets  must  be delivered  in

order sequence. Any out-of-sequence packet is considered a packet loss event

and the sender has to retransmit from the last acknowledged packet.

The aforementioned transmission mechanism can be simplified with

the  emergence  of  rateless  erasure  codes.  Instead  of  identifying  and

retransmitting  the  lost  packets,  the  rateless  erasure  codes  enable  TCP  to

reconstruct  the  message  from any packets  irrespective  of  the  sequence,  as

demonstrated in Botos et al. (2010), Molnár et al. (2013), Molnár et al. (2014)

and Móczár et al.(2014). 
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Generally, TCP attempts  to  utilise  the  available  bandwidth  without

overwhelming  the  networks  with  excessive  packets.  Taking  a  different

perspective, Raghavan and Snoeren (2006) argue that network congestion may

not  be  as  bad  as  we  think.  By  assuming  the  existence  of  perfect  rateless

erasure  codes,  the  authors  suggest  that  every  user  will  have  fair  use  of

bandwidth and no complicated congestion avoidance algorithm is required. 

The  idea  is  further  studied  by  Bonald  et  al.  (2009),  Chong  et  al.

(2012a,  2012b)  and  even  adopted  by  Global  Environment  for  Network

Innovations  (GENI)  in  designing  future  network  architecture  (Clark  et  al.,

2007). Their counter-intuitive results dispute the common belief that a network

will fall into congestion collapse without congestion control. 

1.3.2 Point-to-Multipoint and Multipoint-to-Point Transmissions

Consider the case, where a sender intends to transmit a message to a

large group of receivers in the networks as shown in Figure 1.5(a). Since each

channel  has  different  erasure  probability,  the  sender  will  be  flooded  with

acknowledgements from the receivers for different sequence of packets. Such

phenomenon  is  commonly  known  as  feedback  explosion.  Rateless  erasure

codes address this issue effectively as demonstrated by Abdullah et al. (2011),

Mammi et al. (2011), Du et al. (2013) and Abdullah et al. (2013). 
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Additionally,  rateless  erasure  codes  also  enable  a  message  to  be

received from multiple sources at the same time as shown in Figure  1.5(b)

(Zhu et al. 2010; Qadri et al., 2010; Bursalioglu et al.,2011).

(a) (b)

Figure  1.5:  (a)  Point-to-multipoint  transmission  and  (b)  multipoint-to-
point transmission.

1.4 Rateless Erasure Codes and Network Coding

Ahlswede  et  al.  (2000)  presented  a  perspective-changing  seminar

article  detailing network coding.  Generally, both rateless erasure codes and

network coding share many similarities as they provide reliable data transfer

with coding theory. Rateless erasure codes require nodes at only two ends (i.e.,

sender and receiver) to perform the encoding and decoding processes. On the

other hand, network coding needs intermediate nodes, source and sink to run

the  coding  operations.  Due  to  that,  network  coding  is  found  naturally  in

networks that require persistent cooperation among the nodes,  e.g.,  wireless

sensor networks (Ou et  al.,  2012; Rout and Ghosh, 2013), wireless ad hoc

networks  (Mehta  and  Narmawala,  2012;  Ebrahimi-Ghiri  and  Keshavarz-

Haddad, 2013), delay-tolerant networks (Zeng et al., 2012; Sheu et al., 2013),

etc. 

7



Although the development of the Internet is much influenced by the

end-to-end argument of Saltzer et al. (1984) (i.e., the network design should be

kept simple while leaving the core functions at the both ends), the dispute has

never stopped and we need a better Internet that meets the challenge of future

demand (Blumenthal et al., 2001; Moors, 2002). Many research projects have

been  carried  out  to  study  the  clean  slate  design  of  the  future  Internet

(Feldmann,  2007;  Pan  et  al.,  2011;  Fisher,  2014),  and  resulted  in  the

development of future Internet testbeds like GENI (Berman et al., 2014) and

FIRE  (Schwerdel  et  al.,  2014),  Information-Centric  Networking  (ICN)

(Ahlgren  et  al.,  2012;  Xylomenos  et  al.,  2013),  network encoded TCP

(Sundararajan et al., 2011; Kim et al., 2011; Chen et al., 2012), etc.

No one  knows if  the  future  Internet  will  be  totally  different  from

today's  host-centric  communication  model.  Therefore,  in  this  thesis  we use

rateless erasure codes in providing reliable data transmission, rather than using

the network coding method. 

1.5 Research Problem

We review the existing characteristics of the current network traffic

before forming the research problem. 

Generally,  the  network  traffic  characteristics  change  as  computer

technology advances. Zhang and Qiu (2000) observe that the Internet traffic is
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dominated  by  small  messages  of  10-20  kbytes,  but  the  large  portion  of

bandwidth is consumed by traffic of long messages, which is in the minority.

After two years, Brownlee et al. (2002) discovered that the average message

size  has  increased  to  50  kbytes.  Following  that,  Benson  et  al.  (2010)

discovered that 80% of the messages in the data centres are smaller than 10

kbytes. Most of the packet size are either in the range of 200 bytes or 1.4

kbytes. 

Figure 1.6: Distribution of flow size of CAIDA and CERNET from Zhang and
Ding (2012).

Recently,  Zhang  and  Ding  (2012)  discovered  that  90%  of  the

messages in China Education and Research Network (CERNET) are not larger

than 7 kbytes and 80% of them less than 10 packets as shown in Figure 1.6.

Additionally, 90% of messages are less than 2 kbytes in the Center for Applied

Internet  Data  Analysis  (CAIDA)  and  80% of  them  are  not  larger  than  5

packets. 
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We learn two things from the aforementioned observations on network

characteristics. First, the Internet traffic changes insignificantly for the past 10

years. Second, the majority of the messages are transmitted in less than 10

packets. 

We assume that the symbol size can occupy the maximum payload of

the  packet  and  the  symbol  size  of  l  bits  implies  the  symbol  is  the

concatenation of multiple of 1 bit. For clarity, we consider messages of less

than 500 symbols as short messages and those greater as long messages in the

thesis. Generally, the state-of-the-art rateless erasure codes (e.g., LT code and

Raptor  code  in  Section  2.2)  require  short  overhead  symbols  (i.e., k ϵ )  in

transmitting long messages and they cater to the needs of a minor group of

network users.  Hence,  we define the research problem of the thesis  as the

following:

“To design GF(2) rateless erasure codes that achieve high PCD with short

overhead symbols.”

1.6 Contribution and Outline

In  this  chapter,  we  have  introduced  rateless  erasure  codes  and

discussed their potential to revolutionise the traditional reliable transmission

approach. Nonetheless, rateless erasure codes are not widely deployed in the

Internet due to the state-of-the-art rateless erasure codes being only efficient in

transmitting long messages and the majority of the network traffic are short

messages instead. 
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To  highlight  the  research  problem,  we  review  the  state-of-the-art

rateless erasure codes for both long and short messages in Chapter 2. Most of

the short rateless erasure codes are derived from the LT code, in which they

obtain better performance by optimising the degree distribution.

Taking a different approach, we utilise the mathematical properties of

Random code in designing short rateless erasure codes. Chapter 3 introduces

Random code,  a  rateless  erasure  code  with  a  generator  matrix  of  random

distributed binary values. Given a message of k  symbols, Kolchin's theorem

shows that Random code (random matrix) is able to achieve a high probability

of complete decoding (PCD),  i.e., a 99.9% success probability to reconstruct

the original  message with  k+10  encoded symbols for a long message.  To

demonstrate the applicability in transmitting short messages, we prove that the

high PCD persists for short message as well. We will use these theorems to

construct short rateless erasure codes in the later chapters.

The  unique  decoding  capability  of  Random  code  appears  to  be

inefficient  for a very short  message,  e.g.,  k=10  symbols.  In this  case,   it

requires k+10=20  encoded symbols to achieve high PCD – that is double of

the total original message symbols. To address the issue, Chapter  4 proposes

Micro-Random code, a variation of Random code that achieves high PCD with

k+1  encoded symbols by dimensioning the symbol size appropriately before

and after the encoder and decoder. Such gain is obtained with the trade-off of

high decoding complexity and more decoding steps. 
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In order to simplify the decoding complexity, Chapter 5 proposes the

systematic  Random code that  reconstructs  original  message  with negligible

decoding complexity when the first  k  encoded symbols are received intact.

High PCD can be obtained with k+10  encoded symbols in lossy channel.

Chapter 6 proposes Stepping-Random (SR) Code that works in point-

to-point, point-to-multipoint and multipoint-to-point transmission scenarios. It

has the decoding complexity of  O(k )  if  the first  k  encoded symbols are

received intact.  Like systematic  Random code,  SR code requires a  total  of

k+10  encoded symbols  in  lossy  channel  with  decoding  complexity  of

O(k3
) . 

In Chapter 7, we extend the proposed GF(2) rateless erasure codes to

higher order in order to compare with RaptorQ code, a variant of Raptor code

that is built on the hybrid of GF(2) and GF(28). Note that, the focus of the

thesis  is  still  on  GF(2)  and  this  chapter  demonstrates  the  strength  of  our

rateless erasure codes in higher order finite field. 

In  Chapter  8,  we  discuss  the  performance  of  the  proposed  GF(2)

rateless erasure codes from different aspects. Finally, we draw a conclusion

and discuss the future work.
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CHAPTER 2

LITERATURE REVIEW

This chapter reviews the fixed rate erasure codes and the state-of-the-

art rateless erasure codes that are efficient in transmitting short messages or

long messages, or both. The corresponding category can be found in Figure

2.1.

13
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2.1 Fixed Rate Erasure Codes

Given a message of k  symbols, a fixed rate erasure code generates n

encoded symbols,  where  n>k .  Then,  the  original  message  can  be

reconstructed with any k  out of n  encoded symbols and n−k  is also known

as overhead symbols. As the number of generated encoded symbols, n  has to

be  pre-determined,  this  type  of  erasure  codes  is  also  known as  fixed  rate

erasure codes. Generally, a systematic erasure code uses the original message

symbols as part of the encoded symbols. Otherwise, it is called non-systematic

erasure code. 

2.1.1 Low Density Parity Check (LDPC) Code

Low-Density Parity-Check (LDPC) code is an error-correction code

that  was  first  proposed  by  Gallager  (1962).  His  coding  scheme,  which  is

known as Gallager Code, was found to be impractical to the computational

technologies  at  that  time.  The  code  has  been  neglected  for  decades  until

McKay and Neal (1995) rediscovered it as LDPC code. 

Generally, LDPC code contains a very low ratio of non-zero entries.

The  sparsity  enables  LDPC code  to  reconstruct  a  message  with  message-

passing  algorithm,  where  the  decoding complexity  is  linear  with  increased

message  size,  k .  An example  of  reconstructing  a  message  with  message-

passing algorithm is presented in a Tanner graph in Figure  Error: Reference

source not found (a). The  message bits are the circles at the bottom, where

three  of them are erased (denoted as  e ). The  constraints are represented by
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the squares at the top of the figure, and they constrain the summation of all the

connected nodes to be value 0. 

(a) (b)

(c) (d)

(e)
Figure 2.2: The message-passing algorithm reconstructs the erased bits in two
iterations.

Initially, all message bits send their respective values to each of their

connected constraints (Figure  2.2 (b)). The values are either 0, 1 or  e . If a

constraint  receives  only a  single  e  among the neighbouring  message bits,

then the value of e  can be determined instantly. For example, the constraint
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c1  receives (0,0, e)  from the connected message bits  (x1,x2, x4) . Therefore,

it deduces the value of x4  to be 0 (Figure 2.2 (c)). The same principle applies

to c2 , where it determines x5  to be 1 based on the values from x2  and x3 .

Note that the value of  x6  cannot be determined in current state because  c4

receives two e  from x3  and x5 . The process is repeated until all the erased

bits are recovered, or maximum iterations have been attempted. 

2.1.2 Tornado Code

Tornado code  (Luby et  al.,  2001)  is  the  preliminary  design  of  the

state-of-the-art rateless erasure code – Luby Transform (LT) Code, which we

will  review  in  a  later  section.  The  encoding  and  decoding  processes  of

Tornado code can be explained with the bipartite graph that is shown in Figure

2.3. The k  circles on the left columns are the message bits and βk  check bits

are shown on the right hand side, where 0<β<1 . Note that the check bits are

presented by square symbols in some papers. 

The  encoding  and  decoding  processes  is  similar  to  the  message-

passing algorithm in Section 2.1.1. Set each check bit to be the XOR of all the

neighbouring message bits. Then, all the message bits and the check bits are

sent to the receiver. For example, in Figure 2.3(a) the value of c1  is the sum

module-2 of  x1  and  x2  and the missing bit  x3  can be reconstructed with

c1+ x1+x2  as shown in Figure 2.3(b). 
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(a) (b)

Figure  2.3: (a) Encoding process and (b) decoding process of Tornado code.
Figure from Luby et al. (2001).

Tornado code employs multi-layer bipartite graph as shown in Figure

2.4. Generally, the encoder generates  βk  check bits from  k  message bits,

denoting them as layer-1 check bits. Then, the process is repeated again to

generate β
2k  check bits (layer 2) from the layer 1 check bits. The process is

repeated continuously until the final layer, where a conventional erasure code

is used. 

17



Figure  2.4:  Tornado  code  in  bipartite  graph  of  multiple  cascaded
layers (Figure from Luby et al. 2001).

2.2 Rateless Erasure Codes

The fixed rate erasure codes in Section 2.1 require prior knowledge of

the  channel  condition  such  that  the  sender  generates  sufficient  encoded

symbols  to  the  receiver.  Byers  et  al.  (1998)  proposed the  idea  of  rateless

erasure codes,  where a potentially  infinite  number of encoded symbols are

generated  from a  message  of  k  symbols.  Then,  one  may  reconstruct  the

original message from any n  encoded symbols with high success probability,

where 

n=k (1+ϵ) , (1)
ϵ  denotes the decoding inefficiency and k ϵ  the overhead symbols. The state-

of-the-art rateless erasure codes are presented in the following section. 
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2.2.1 Luby Transform (LT) Code

 Luby  (2002)  proposed  the  first  practical  rateless  erasure  (digital

fountain  code),  namely  Luby Transform (LT)  code.  It  has  a  well  designed

degree distribution that optimises the encoding and decoding complexities. 

2.2.1.1 Encoding and Decoding Processes

LT code generates the encoded symbols by selecting the degree  d

randomly from the degree distribution. Next, we select  d  distinct message

symbols  at  random,  add  them  together  (XOR  operation)  and  an  encoded

symbol of degree  d  is generated. For example, given a message of  k=10

symbols, i.e., M=(m0,m1,… ,m9)  and a degree d=3  is chosen from a degree

distribution.  Then,  three  unique  message  symbols  are  chosen  from  M

randomly  to  produce  an  encoded  symbol  x0 ,  where  x0=mi⊕m j⊕mk  and

i≠ j≠k .

Representing the encoded symbols and message symbols in bipartite

graph, the original message can be reconstructed in the following steps.

• Step 1: All the degree one encoded symbols propagate their values to

their connected message symbols respectively.

• Step 2: The connections between these degree one encoded symbols

and the respective message symbols are removed.

• Step 3: The message symbols that are involved in Steps 1 and 2 will

hold the latest values and then further propagate the latest values to all

their connected encoded symbols respectively. 

19



• Step 4: The encoded symbols that are involved in Step 3 will update

their  own  values  with  the  received  values  (XOR  operation)

respectively.

• Step  5:  The  connections  that  are  involved  in  Steps  3  and  4  are

removed.

• Step 6: Repeat from Step 1 until all the message symbols have been

reconstructed.

Figure 2.5 demonstrates the decoding process. The message has three

symbols  –  m0 ,  m1  and  m2 ,  in  which  they  are  located  at  the  top  of  the

bipartite graph in circle (see Figure 2.5(a)) and their values are unknown. The

square (i.e.,  c0 ,  c1 ,  c2  and  c3 )  at  the  bottom are the  received encoded

symbols of values 1, 0, 1 and 1, respectively. The c0  is a degree one encoded

symbol that links with  m0  and  c1  is a degree three encoded symbols that

links with all three message symbols. Both c2  and c3  are degree two encoded

symbols, in which their connections can be learned from the bipartite graph. 

(a) (b)

20



(c) (d)

(e) (f)

Figure 2.5: Example of LT decoding process.

We have a degree one encoded symbol (i.e.,  c0 ) that links with m0

(Step  1).  Then,  c0  propagates  its  value  directly  to  its  neighbour  and  the

corresponding connection is removed (Step 2). Then, m0  propagates its new

value to c1  and c3  (Step 3), where c1←c1⊕m0  and c3←c3⊕m0  (Step 4, see

Figure 2.5(b)). Then, the corresponding connections are removed (Step 5). As

a result, we have a new degree one encoded symbol (i.e., c3 ) that links with

m1 . Repeating from Step 1 – the  c3  propagates its value to its neighbour,

updating  the  new  value  and  removing  the  corresponding  connection  (see

Figure 2.5(c)). Then, m1  propagates the new value to the connected encoded

symbols (i.e., c1  and c2  in Figure 2.5(d)). This process continues until all the
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values of the message symbols have been reconstructed (see Figure 2.5(e) and

(f)). 

2.2.1.2 Degree Distribution

The number  of  degree  one  encoded  symbols  in  the  each decoding

iteration  is  termed  as  “ripple”.  The  performance  of  LT code  relies  on  the

careful design of degree distribution, where there must be at least a degree one

encoded symbol in the ripple. At the same time, the ripple size must be kept

small to minimize the decoding complexity. 

Luby proposes  the  Ideal  Soliton  distribution,  ρ (d )  that  fulfils  the

aforementioned requirements, where

ρ(d)={
1/k for d=1
1

d (d−1)
for d=2,3,… , k ,

(2)

d  denotes the degree and k  the total message symbols. 

Figure 2.6: Ideal Soliton distribution for k=100 . 
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The example of the Ideal Soliton degree distribution is presented in

Figure  2.6 for  k=100  with degree  d>50  truncated due to the probabilities

approaching zero. As observed, the Ideal Soliton degree distribution has the

highest  probability  for  degree  two encoded symbols  and  the  probability

gradually reduces as the degree increases. A small probability is assigned to

degree one encoded symbols in order to kick-start the decoding process (note

that the decoding process requires degree one encoded symbol to initiate, see

Section 2.2.1.1). 

Generally, the Ideal Soliton distribution is susceptible to the channel

erasure  probability.  A small  variation  in  the  degree  distribution  will  cause

ripple flats (zero degree one encoded symbol) in the middle of the decoding

process. In response, Luby proposed the Robust Soliton distribution  μ(d ) ,

where 

μ(d )=
ρ (d )+τ(d)

β
, (3)

for d=1,2,… , k , β=∑d=1

k
( ρ(d )+τ(d )) , R=c ln (k /δ)√ (k )  and

τ(d )={
R
dk

for d=1,… , k /R−1

R ln (R/δ )/k for d=k /R
0 for i=k /R+1,… , k

, (4)

for some constant c>0  and success probability 1−δ . 
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Figure 2.7: Robust Soliton distribution for k=100 . 

An example of Robust Soliton degree distribution for k=100 ,  c=1

and 1−δ=0.95  is presented in Figure 2.7. Note that the probability of degree

one encoded symbol has been increased. 

2.2.2 Raptor Code

The  aforementioned  LT  code  requires  decoding  complexity  of

O(k log(k /δ))  to  reconstruct  the  original  message  of  k  symbols  with

success probability  1−δ . Shokrollahi (2006) further improved the decoding

complexity to O ( k log(1 /ϵ))  by pre-coding the message in his Raptor Code.
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Let the original message be M  and the pre-code's encoded symbols

be M ' . Correspondingly, we do not need to reconstruct every symbol of the

original message but only a portion of  M ' . For example, the message bits

(the squares in the top row) in Figure  2.8 bipartite graph are precoded with

systematic erasure code and mapped to precoded message bits in the second

row. Then, they are encoded with LT code to produce the final encoded bits in

the last row. 

Raptor  code  has  excellence  performance  in  transmitting  long

messages, i.e., decoding inefficiency of ϵ≈0.03  for k=100,000  symbols and

ϵ≈0.04  for  k=65,535  symbols.  However, there is  no reported result  for

messages of less than 1,000 symbols.

2.2.3 RaptorQ Code

RaptorQ code (or RaptorQ) is a variant of systematic Raptor code that

is  patented  by  Qualcomm and is  constructed  based on the  hybrid  of  both

GF(2)  and GF(28) and it works for messages of tens to thousands of symbols.

Generally, RaptorQ code consists of two pre-coding stages. In the first pre-

25

Figure  2.8:  Bipartite  graph  of  Raptor  code.  Figure  from
Shokrollahi (2006).



coding  stage,  LDPC  code  generates  most  of  the  redundant  symbols

(intermediate symbols) for the overall pre-coding stage in GF(2). In the second

pre-coding stage, a small number of the redundant symbols are generated with

high density parity check (HDPC) code in GF(28). 

To  facilitate  the  discussion,  we  define  failure  probability as  the

probability  that  a  code  fails  to  reconstruct  the  original  message  with  m

overhead  symbols  (i.e.,  1  -  PCD)  and  express  it  in  exponents  of  ten.

According to the numerical results in Shokrollahi and Luby (2011), the failure

probabilities of RaptorQ code fluctuate  at about the same values as GF(28)

Random  code,  i.e.,  10−2.407 ,  10−4.815  and  10−7.223  at  zero,  one  and  two

overhead symbols, respectively as shown in the red lines in Figure 2.9 to 2.11,

where the x-axes and y-axes refer to message length and failure probabilities.

Nonetheless, RaptorQ code has a better encoding and decoding complexities

than Random code. 

Generally, our proposed rateless erasure codes in Chapter  3 to  6 are

constructed in GF(2). In order to to have a fair comparison with RaptorQ code,

the proposed codes are extended to GF(28) in Chapter  7 and compared with

RaptorQ code in terms of failure probabilities.
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(a) (b)

Figure  2.9:  The  failure  probabilities  of  RaptorQ  code  at  zero  overhead
symbol for (a) ρ=0.1  and (b) ρ=0.5 .

(a) (b)

Figure  2.10:  The  failure  probabilities  of  RaptorQ  code  at  one  overhead
symbol for (a) ρ=0.1  and (b) ρ=0.5 .

(a) (b)

Figure  2.11:  The  failure  probabilities  of  RaptorQ  code  at  two  overhead
symbol for (a) ρ=0.1  and (b) ρ=0.5 .

2.3 Other Rateless Erasure Code for Short Message Transmission

The  state-of-the-art  GF(2)  rateless  erasure  codes  in  Section  2.2

(except  RaptorQ  code,  which  is  not  GF(2)  code)  are  not  efficient  in
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transmitting  short  messages,  i.e.,  they  require  more  overhead  symbols  to

achieve  complete  decoding.  In  this  section,  we review the  rateless  erasure

codes that are dedicated for short messages transmission and name them as

short rateless erasure codes in the rest of the chapters. 

The short rateless erasure codes presented in the following are derived

from LT code due to its ameliorable degree distribution. Hyyti et al. (2007)

modeled the LT decoding process with Markov chain and optimised the degree

distribution  accordingly.  Nonetheless,  the  method  is  only  suitable  for  very

short messages due to state-space explosion. Given a message of symbol size

k ,  the  encoder  can  generate  a  total  of  2k−1  unique encoded symbols.

Accordingly, these unique encoded encoded symbols may form a total of 22k−1

states in the Markov chain. For example, for k=3  the state-space will be 128,

and for k=4 , the state-space will be 32,768. 

On the other hand, Bodine and Cheng (2008) improved the LT code in

transmitting short messages of  k=10 , 50 and 100 symbols and near 100%

redundant symbols (i.e., ϵ≈1.0 ) are required for them to achieve a complete

decoding.  With success probability of 99.5%, Zhu et al. (2007) managed to

achieve a complete decoding for messages of k=2,000  symbols with no extra

redundant  packets  (i.e.,  ϵ=0 ).  However,  there  is  no  reported  result  for

message of k<1,000  symbols.
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Zhang and Hranilovic (2009) introduced a short-length Raptor code,

where a message of k=64  symbols required decoding inefficiency of ϵ≈0.3

in order to achieve a complete decoding. As for message of k=256  symbols,

decoding inefficiency ϵ≈0.2  is imposed. 

Lu et al. (2013) proposed a new decoding process, namely the LT-W

decoding that improves the LT code. Whenever a ripple flats, the Wiedemann

algorithm is triggered to revive the ripple such that the LT decoding process

can be continued. Such method preserves the low decoding complexity of LT

code  while  improving  the  achievable  high  PCD  with  10  extra encoded

symbols. 

Generally, our proposed short rateless erasure codes are derived from

Random code (see Chapter 3) instead of LT code. To our best understanding,

Windowed code (Studholme and Blake, 2006) is the only erasure code that is

derived  from Random code.  We will  introduce  Windowed  code right  after

explaining Random code in Chapter 3.

2.4 Summary

This chapter reviews the state-of-the-art rateless erasure codes that are

efficient for long messages or short messages or both. Despite their excellent

performance,  our  proposed  rateless  erasure  codes  outperform  them  in  the

following aspects:

29



1. Our proposed GF(2) codes are derived from Chapter 3's Random code.

In general, they are able to reconstruct the original message from any

k+10  encoded  symbols  with  high  PCD,  but  with  the  trade-off  of

O(k3
)  decoding complexity. From the literature review, we found Lu

et al. (2013) has the identical performance in the simulation results but

there is no explicit equation that demonstrates its high PCD with ten

overhead symbols.

2. Chapter  4's  Micro-Random  code  achieves  high  PCD  with  k+1

encoded symbol,  but  with  the  trade-off  of  high  computational

complexity.  To  our  best  understanding,  there  is  no  GF(2)  rateless

erasure code that can achieve such result. 

3. We propose two pseudo-random codes – systematic Random code and

Stepping-Random code in Chapter  5 and  6, respectively. They have

better  decoding complexities  than Random code in channels  of low

erasure probabilities.

4. We extend the  proposed codes  to  GF(28)  codes  in  Chapter  7.  They

achieve much lower failure probabilities than RaptorQ code using the

same amount of overhead symbols.
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CHAPTER 3

RANDOM CODE

In this chapter, we introduce a rateless erasure code that is constructed

with  random matrix,  namely  Random code.  Kolchin's  theorem proves  that

Random code is able to achieve high PCD with ten overhead symbols for long

messages. Then, we complement the theorem by proving that high PCD is also

attainable for short messages transmission with ten overhead symbols. These

mathematical frameworks will be used to derive the proposed GF(2) rateless

erasure codes in later chapters. 

3.1 Random Matrix as Rateless Erasure Code

We illustrate the encoding and decoding processes of a rateless erasure

code with a general linear system of  k  unknowns and explicate them with

examples. 

3.1.1 Linear System and Rateless Erasure Code

The basic idea behind a rateless erasure code can be explicated with a

simple multivariate linear system of three unknown variables  m0 ,  m1  and

m2 . We can generate many linear equations from the system by combining

m0 , m1  and m2  randomly such as

x0 = a0,0m0+a0,1m1+a0,2m2

x1 = a1,0m0+a1,1m1+a1,2m2

x2 = a2,0m0+a2,1m1+a2,2m2

⋮ ⋮ ⋮

. (5)
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Each coefficient aij  has equal probability to be 0 or 1. Given the values of the

coefficients and the dependent  variables  x i ,  we can find out the unknown

variables with Gaussian elimination if and only if we have sufficient equations

to describe the system. 

Recall that a rateless erasure code is able to encode a message of k

symbols  into  a  potentially  infinite  number  of encoded symbols.  And,  the

receiver reconstructs the original message with any k (1+ϵ)  encoded symbols

irrespective of the sequence.  The aforementioned multivariate linear system

resembles a rateless erasure code of  k=3  symbols (bits),  i.e. m0 ,  m1  and

m2 . Each dependent variable (i.e., x i ) is analogous to an encoded symbol of

a  rateless  erasure  code.  Therefore,  to  determine  the  values  of  dependent

variables  (i.e., to reconstruct  the original  message),  we need at  least  k=3

independent linear equations (encoded symbols) such that a full rank matrix is

obtained.

3.1.2 Random Code

Given that a message of  kl  bits is segmented into  k  symbols with

each symbol size l  bits. Accordingly, these symbols can be represented as a

matrix M k×l , where
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M k×l = [
m0,0 m0,1 ⋯ m0, l−1

m1,0 m1,1 ⋯ m1, l−1

⋮ ⋮ ⋱ ⋮
mk−1,0 mk−1,1 ⋯ mk−1,l−1

]
= [

m0
1×l

m1
1×l

⋮

mk−1
1×l ] .

(6)

The mi , j  represents the entry at i  row j  column and mi
1×l  is the i-th  row

that consists of l  elements. Note that the row mi
1×l  can be treated as the i -th

message  symbol  of  l  bits.  We  denote  the  dimensions  of  the  matrix  in

superscript for clarity.

Random code is a rateless erasure code, where an encoded symbol is

be generated by combining the message symbols randomly. Correspondingly,

Random code has a generator matrix of randomly distributed binary values,

G n×k , where 

G n×k
= [

g0,0 g0,1 ⋯ g0,k−1

g1,0 g1,1 ⋯ g1,k−1

⋮ ⋮ ⋱ ⋮
gn−1,0 gn−1,1 ⋯ gn−1, k−1

]
= [

g0
1×k

g1
1×k

⋮

gn−1
1×k] .

(7)

Each  entry  gi , j  has  an equal  probability  to  be 0  or  1.  Then,  n  encoded

symbols  (denoted  as  X n×l )  can  be  generated  by  multiplying  G n×k  with

M k×l , i.e., 
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X n×l
= G n×k

×M k×l

= [
x0,0 x0,1 ⋯ x0,l−1

x1,0 x1,1 ⋯ x1,l−1

⋮ ⋮ ⋱ ⋮
xn−1,0 xn−1,1 ⋯ xn−1,l−1

]
= [

x0
1×l

x1
1×l

⋮

xn−1
1×l ] .

(8)

Note that a new encoded symbol can always be generated by multiplying a

new generator row matrix g1×k  with M k×l . Since the encoded symbols can

be generated dynamically without a pre-determined n , Random code is said

to be rateless. 

In the perspective of linear algebra, the encoded symbols are a list of

linear equations that combined the  k  message symbols randomly. Since the

encoded symbols  are  constructed  with  G n×k
×M k×l

=X n×l ,  we  can

reconstruct the original message if the sub-matrix of G n×k , denoted as ~
G k×k ,

is  non-singular  (i.e.,  ~
G k×k  is  invertible)  using  Gaussian  elimination  of

computational  complexity  O(k3
) .  Though  the  decoding  complexity  is

relatively high, Random code is able to reconstruct the original message from

a fixed number of overhead symbols irrespective of the message length (see

Sections 3.2 and 3.3). 
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3.1.3 An Example of Encoding and Decoding Processes

 Given that a message of three symbols is represented as 

M 3×3
=[ 1 1 0

0 1 1
1 0 1] , (9)

where each symbol consists of three bits. Say the sender has the first generator

row matrix  g0
1×3

=[1 1 0 ]  and the corresponding encoded symbol can be

obtained with 

g0
1×3

×M 3×3
= x0

1×3

= [ 1 0 1 ] .
. (10)

Given  that  the  second  and  third  generator  row  matrices  as

g1
1×3

=[ 0 1 1 ]  and  g2
1×3

=[1 0 1 ] ,  the corresponding encoded symbols

are x1
1×3

=[ 1 1 0 ]  and x2
1×3

=[ 0 1 1 ] , which are obtained with the same

method in Eq. (10). Then, the overall generator matrix and encoded matrix are 

G 3×3
=[

g0
1×3

g1
1×3

g2
1×3]=[

1 1 0
0 1 1
1 0 1] , (11)

and 

X 3×3
=[

x0
1×3

x1
1×3

x2
1×3]=[

1 0 1
1 1 0
0 1 1] . (12)

The  original  message  can  be  reconstructed  if  G 3×3  is  a  full  rank

matrix (i.e.,  rank (G 3×3 )=3 ).  However,  G 3×3  in Eq. (11) has only rank 2
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because  the  third  row  is  not  independent.  Hence,  an  additional encoded

symbol is required.

Say,  we  obtain  a  new encoded symbol  from  the  sender  –

g3
1×3

=[ 0 1 0 ]  and  x3
1×3

=[ 0 1 1 ] .  The  resulting  generator  matrix  and

encoded matrix are represented as 

G 4×3
=[

g0
1×3

g1
1×3

g2
1×3

g3
1×3]=[

1 1 0
0 1 1
1 0 1
0 1 0

] , (13)

and 

X 4×3
=[

x0
1×3

x1
1×3

x2
1×3

x3
1×3]=[

1 0 1
1 1 0
0 1 1
0 1 1

] . (14)

We noticed that the sub-matrix (i.e., g0
1×3 , g1

1×3  and g3
1×3 ) of G 4×3

is full rank (i.e., rank 3). Representing the sub-matrix as 

~G 3×3
=[

g0
1×3

g1
1×3

g3
1×3]=[

1 1 0
0 1 1
0 1 0] , (15)

 and their corresponding encoded symbols,

~X 3×3
=[

x0
1×3

x1
1×3

x3
1×3]=[

1 0 1
1 1 0
0 1 1] .

(16)

Since the inverse of ~
G 3×3  is,
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[ ~G 3×3]
−1

=[1 0 1
0 0 1
0 1 1] , (17)

applying [~G 3×3 ]
−1  to  ~

X 3×3  and we have reconstructed the original message

M 3×3  successfully, i.e., 

M 3×3
=[~G 3×3 ]

−1
×

~X 3×3
=[ 1 1 0

0 1 1
1 0 1] . (18)

3.2 Probability of Complete Decoding (PCD) for Long Messages

Generally, Random code reconstructs the original message with high

PCD from k+10  encoded symbols, or on average 1.6 overhead symbols. We

explicate the aforementioned statement for long messages transmission using

the following Kolchin's theorem and short messages transmission in Section

3.3.

Let  G (k+ m)×k  be  a  random  matrix  of  size  (k +m)×k .  Kolchin's

theorem  (Theorem  3.2.1  in  Kolchin,  1998)  states  that  the  probability  for

random matrix G (k+ m)×k  to have rank k−s  is

Pr ( rank(G (k+ m)×k
)=k−s)→Qkol (s ,m) , (19)

when k→∞ , where 

Q kol(s ,m)=2−s (m+ s)∏i= s+1

∞

(1−
1
2i )∏i=1

m+ s

(1−
1
2i )

−1

, (20)

for s≥0 , m∈Z  and m+s≥0 .
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Eq. (20) can be expressed as

Qkol (m)≡Qkol (0,m)= ∏
i=m+1

∞

(1−
1

2i ) , (21)

for  calculating  the  probability  to  have  full  rank  matrix  and  the  numerical

values are presented in  Table 3.1. As observed, the probability for a random

matrix  to  achieve  complete  decoding  with  exactly  k  encoded symbols  is

Qkol (0)=0.2888 . To achieve high PCD (99.9% successful decoding), ten extra

encoded symbols  (i.e.,  ten  overhead  symbols)  are  required,  i.e.,

Qkol (10)=0.9990 .

Generally, Eq. (21) is a cumulative distribution function (CDF). Let

Pkol(m)=Qkol(m)−Q kol(m−1)  be the probability mass function (PMF) for a

random matrix to reach full rank with  m  extra rows and  Pkol (0)=Qkol (0) .

Accordingly, the expected  extra  rows (expected  overhead symbols)  for  the

random code to reach full rank is

E(rank (G (k +m)×m
)=k ) = ∑

m=0

∞

mPkol (m)

≈ 1.6067…
, (22)

i.e., 1.6 extra rows are needed on average for random matrix to reach full rank.
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Table 3.1: The probability (CDF and PMF) for a random matrix to achieve
complete decoding with m  additional rows.

m m
0 0.288788 0.288788 11 0.999512 0.000488
1 0.577576 0.288788 12 0.999756 0.000244
2 0.770102 0.192526 13 0.999878 0.000122
3 0.880116 0.110014 14 0.999939 0.000061
4 0.938791 0.058675 15 0.999969 0.000030
5 0.969074 0.030283 16 0.999985 0.000016
6 0.984456 0.015382 17 0.999992 0.000007
7 0.992208 0.007752 18 0.999996 0.000004
8 0.996099 0.003891 19 0.999998 0.000002
9 0.998048 0.001949 20 0.999999 0.000001
10 0.999024 0.000976

Q
kol

(m) P
kol

(m) Q
kol

(m) P
kol

(m)

3.3 Probability of Complete Decoding (PCD) for Short Messages

Kolchin's theorem is an asymptotic equation. For small values of  k

(short messages), it is unclear if such an asymptotic equation is useful. In this

section, a theorem extending Kolchin’s work is formulated in order to explain

the PCD of Random code for short messages. 

We are aware of the similar work in MacKay (2005) and Shokrollahi

(2006),  whereby  the  upper  bound  of  the  PCD  is  given  as  a  function  of

overhead symbols. However, these papers do not explicitly deal with Random

code arguing that the encoding and decoding costs are prohibitive. Our work

herein departs from these works in that we use the exact PCD to dimension

Random  code  for  short  messages.  Moreover,  our  work  extends  Kolchin’s

theorem to  short  messages  in  support  of  Random code as  a  good rateless

erasure code. We present the theorem starting with the following lemma.
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Lemma  3.3.1.  Given  that  a  random  matrix  G (n−1 )×k  of  dimensions

(n−1)×k  has  rank  (n−1) ,  where  0<n≤k ,  then  the  probability  of

achieving rank n  with an extra row is 

p(n , k )=∏
i=1

n−1

(1−2i−k
) . (23)

Proof. Let  g1×k  be  a  new row matrix  with  2k
−1  possible  combinations

excluding the row matrix of all zeros. In order to have rank n  in G n×k , g1×k

must be independent of the other. Therefore,  g1×k  is limited to  τ(n−1,k )

possible combinations, where 

τ (n−1,k ) = 2k
−1−∑

i=1

n−1

( n−1
i )

= 2k
−1−(2n−1

−1)

= 2k
−2n−1 ,

(24)

and (⋅⋅)  is the binomial coefficient.

Each  of  the  generator  row  matrices  is  generated  independently.

Correspondingly, the probability of G (n−1 )×k  attaining rank n  with g1×k  is 
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p(n , k ) = p(n−1,k)×
τ(n−1,k )

2k

= p(n−2,k )×
τ(n−2,k )

2k ×
τ(n−1,k )

2k

=
τ(1,k )

2k ×
τ(2,k )

2k ×⋯×
τ(n−1, k )

2k

= ∏
i=1

n−1
τ(i , k )

2k

= ∏
i=1

n−1
2k

−2i

2k

= ∏
i=1

n−1

(1−2i−k) .

(25)

■

We study Lemma 3.3.1 with different matrix dimensions. Surprisingly,

we  find  that  the  probability  of  having  higher  rank  numbers  (i.e.,

rank=k −10,k −9,… , k )  in matrices  of different  column dimensions  has a

negligibly small difference. For example, the probability to have rank 20 (i.e.,

30−10 ) in G 20× 30  is identical to the case of having rank 30 (i.e., 40−10 ) in

G 30× 40 . For different values of k , we tabulated the PCD in Table 3.2 (using

Eq.  (23)  of  Lemma  3.3.1)  and  find  that  the  probabilities  converge  to  five

decimal  digits  after  k=30 .  The  precise  study  of  the  aforementioned

observation is given in the following Lemma 2.

Table  3.2: The probabilities of having the last ten rank numbers for
k−m=20  and k−m=30  and k  is fixed as 30. 

m m
10 0.99902 4 0.93879
9 0.99805 3 0.88012
8 0.99610 2 0.77010
7 0.99221 1 0.57758
6 0.98446 0 0.28879
5 0.96907

p(k-m, k) p(k-m, k)
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Lemma 3.3.2. Let  m∈ℤ
+ + and  0≤m<k .  Then, the probabilities  to have

rank k −m  in matrices of dimensions (k −m)×k  for different k  are similar,

i.e., 

|p(k −m+1,k+1)− p (k −m,k )|<δ , (26)
and δ→0  exponentially fast with finite and bounded increment k .

Proof. By induction on k , we show that δ<
1
2k ∏

x=m+1

k−1

( 2x
−1
2x ) . First, we note

that 

|p(k −m+1,k+1)− p (k −m, k )|<|p(k−m,k )− p(k −m−1,k −1)| . (27)

We may express | p(k −m, k )− p(k −m−1,k −1)|  as 

| p (k −m,k )− p (k−m−1,k−1)|

= | ∏
i=1

k−m−1

( 1−2i−k) −∏
i=1

k−m−2

( 1−2i−(k−1)) |
= |(1−21−k

)(1−22−k
)…(1−2−m−1

)−(1−2−k
)(1−21−k

)…(1−2−m−1
)|

= |(1−21−k
)(1−22−k

)…(1−2−m−1
)[ 1−(1−2−k

)] |
= |(1−21−k

)(1−22−k
)…(1−2−m−1

)[ 2−k ] |

= |( 1−
1

2k−1 ) ( 1−
1

2k−2 ) …( 1−
1

2m+1 ) [ 1

2k ] |
= |( 2k−1

−1
2k−1 ) ( 2k−2

−1
2k−2 ) …( 2m+1

−1
2m+ 1 ) [ 1

2k ] |
= |[ 1

2k ] ∏
x=m+ 1

k−1

( 2x
−1
2x ) | .

(28)

Let δ  denote |p(k −m+1,k+1)− p (k −m,k )| . Then, by Eq.( 28), 

δ<|[ 1
2k ] ∏

x=m+1

k−1

( 2x
−1
2x )| . (29)
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Since  ( 2x
−1
2x )<1  and  0≤m<k  for  all  δ∈ℝ

+  and

inf {|[ 1

2k ] ∏
x=m+1

k−1

( 2x
−1

2x )|}=0 ,  by  monotone  convergence  we  have  δ→0

driven by an exponential term 
1

2k .

■

To show that the probability of achieving complete decoding with m

extra rows is the same as p(k −m, k ) , we use the well known result of matrix

rank invariance  under transposition.  We state the following lemma without

proof.

Lemma  3.3.3. The  probabilities  to  have  rank  k −m  in  G (k −m)×k  and

G k ×(k −m)  are identical.

Lemma 3.3.3 asserts that the rank of a matrix is invariant to matrix

transposition. For example, the probability for G (k − 1)×k  to have rank k −1  is

0.57758 as stated in Table  3.2. Then, the probability to have rank  k −1  in

G k ×(k −1)  is also 0.57758. 
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Finally,  building  upon  Lemma  3.3.1  and  3.3.3,  we  propose  the

following theorem. 

Theorem 3.3.4. The  probability  to  have  rank  k  in  matrix  of  dimensions

(k+m)×k  for m≥0  is 

Pr (rank (G (k+m)×k )=k ) = p(k−m ,k)

= ∏
i=1

k−m−1

(1−2i−k
) .

(30)

For the ease of the explanation, we will use  QRC(m)  to denote the

PCD of Random code with m  overhead symbols, where 

QRC(m)=Pr (rank (G (k+m)×k
)=k ) . (31)

The probability to achieve complete decoding with  m  overhead symbols is

the  same  as  p(k −m,k )  in  the  Table  3.2 for  m=0,1,…,10 .  and

QRC(10)=Qkol (10)=0.99902 . 

Pairing Kolchin's theorem (see  Section 3.2) with Theorem 3.3.4, we

conclude that Random code is able to achieve high PCD with k+10  encoded

symbols irrespective of the message length. 

3.4 Random Code Variant – Windowed Code

 Studholme and Blake (2006) proposed a fixed weight pseudo-random

code, namely Windowed code, which has a better decoding complexity (i.e.,

O(k3 /2
) ) than Random code but with minor trade-off in PCD.
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Let σ  be the row weight of Windowed code, where 

σ=⌈ 2 log k ⌉ odd , (32)

i.e.,  the lowest odd integer greater than or equal to  2 log k .  An entry  i  is

chosen randomly from the row and its value is set to 1. The entry  i is also

known as the  initial 1. Then,  σ−1  1's are placed randomly within the next

w=2 √ k  entries (window) with the last entry linked to the first entry.

[
1 1 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 1 0
0 1 0 0 0 0 1 1 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

] (33)

An  example  of  Windowed  code's  generator  matrix  of  k=10  is

presented in Eq. (33).  The row weight,  σ=⌈ 2 log k ⌉ odd=3  and the window

w=2 √ k=6.3245≈7 . Say the initial 1 of the first row is the first entry. So, the

rest of σ−1=2  1's must be placed within the second to the seventh entries.

The initial 1 of the second row starts at third entries and rest of 1's must be

placed within fourth to ninth entries. The initial 1 of third row is located at the

seventh entry and the rest of 1's are placed in the next three entries and the

first three entries.

Though  Windowed  code  has  a  better  decoding  complexity  than

Random  code,  its  PCD  is  not  explained  using  rigorous  mathematics.  In

contrast, the PCD of Random code in transmitting long and short messages are

explained mathematically in Sections 3.2 and 3.3 respectively. 
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3.5 The Challenges of Random Code

Though Random code is able to reconstruct the original message with

high PCD with  k+10  encoded symbols,  it  is  challenged by the following

issues.

1. Decoding  inefficiency  is  high  for  short  messages.  For  example,  a

message of  k=10  symbols requires  k+10=20  encoded symbols in

order to reach high PCD. The decoding inefficiency is  ϵ=1  in this

case. 

2. The  decoding  complexity  of  Random  code  is  relatively  high,  i.e.

O(k3
) . 

3. Random code is a non-systematic rateless erasure code. The receiver

takes time to reconstruct the original message even if all the encoded

symbols are received intact.

We  address  the  first  issue  by  proposing  Micro-Random  Code  in

Chapter  4, where a high PCD is achievable with k+1  encoded symbol. The

second and third issues are addressed with the proposals of systematic  and

non-systematic pseudo-random codes in Chapters  5 and  6, where they have

better decoding complexities and PCD.
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CHAPTER 4

MICRO-RANDOM CODE

This chapter proposes a variant of Random code that achieves high

PCD with k+1  encoded symbols, i.e., one overhead symbol instead of k+10

encoded symbols as in Random code. As for the trade-off, such improvement

comes with a stringent requirement on computational resource.

4.1 High Decoding Inefficiency in Transmitting Short Messages

Recall that Chapter 3's Random code is able to reconstruct the original

message  with  high  PCD at  ten  overhead symbols,  irrespective  of  message

length  k . Manipulating Eq. (1), the decoding inefficiency of  Random code

can be expressed as 

ϵRC=
n
k
−1=

10
k

, (34)

with n=k+10 .

Generally,  Random code has  a  high  decoding  inefficiency  when a

message is short, e.g., in ten-digits. For example, the decoding inefficiency is

ϵRC=0.01  for  a  message  of  k=1,000  symbols,  but  ϵRC=1  for  k=10

symbols.  It  requires  k+10=20  encoded symbols  in  order  to  reconstruct  a

short  message  of  k=10  symbols  with  high  PCD  and  the  total  required

encoded symbols is double that of the total message symbols.
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4.2 Micro-Random Code

We explain the concept of symbol dimensioning before addressing the

aforementioned issue with Micro-Random code.

4.2.1 Symbol Dimensioning in Brief

Sections 3.2 and 3.3 have demonstrated that PCD of Random code is a

function of the total  received overhead symbols,  m  and is invariant to the

message  length,  k .  Say  we  have  a  message  of  1,000  bits.  Encoding  the

message in  k1=10  symbols with each symbol size  l1=100  bits (Case 1) is

no different than encoding the message in  k2=20  symbols of symbol size

l2=50  bits  (Case 2)  in  term of  PCD. Both  cases  require  k+10  encoded

symbols  in  order  to  reconstruct  the  original  message  with  high  PCD.

Nonetheless, the ten overhead symbols in Case 1 contribute the redundancies

of 10×l1=1000  bits but Case 2 only requires 10×l2=500  bits. 

The aforementioned example suggests that the decoding inefficiency

can be improved if we dimension the symbol size appropriately during the

encoding and decoding processes. In the rest of the chapter, we will use the

terms micro symbols, encoded micro symbols and encoded symbols to indicate

the symbols at different stages of the encoding and decoding processes. 

4.2.2 Improving Decoding Inefficiency with Micro Symbols

Let a message of kl  bits be segmented to k  symbols of size l  and

represented as a matrix
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M k×l
=[

m0
1×l

m1
1×l

⋮

mk−1
1×l ] , (35)

where  mi
1×l  represents  the  i -th  row  matrix  of  dimension  l  or  the  i -th

symbol of the original message with symbol size l . We denote the dimensions

in superscript for clarity. 

According  to  Chapter  3,  an encoded symbol  can  be  generated  by

multiplying  a  generator  row  matrix  G 1×k  with  M k×l ,  that  is

X 1×l
=G 1×k M k×l . Moreover, we need k+10  encoded symbols (each has size

l  bit) in order to reconstruct the original message with high PCD. To reduce

the  decoding  inefficiency,  we  dimension  each  message  symbol  into  α

symbols of smaller size, namely micro symbols as shown in Figure  4.1 (left

hand side).  Correspondingly, the  message  is  transformed from a matrix  of

dimensions k×l  into (αk )×( l /α ) , where α∈ℕ  and α  divides l . In other

words,  we  shrink  the  column  size  (symbol  size)  from  l  to  l /α  while

increasing the row size (total message symbol) from k  to αk . Then, the new

matrix is expressed as 

M kα×l /α
=[

m0
1×(l /α)

m1
1×(l /α)

⋮

mα k−1
1×(l /α)] . (36)

Note  that  both  M kα×l /α  and  M k×l  represent  the  same  message  but  in

different dimensions.
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By feeding  M kα×l /α  into  the  encoder,  it  generates  many  encoded

micro symbols of size l /α  bits, that is 

X ( ·)×(1 /α)
=[ x0

1×l /α

x1
1×l /α

⋮
] . (37)

We use  (· )  when  the  quantity  is  not  known.  Next,  we  regroup  each  α

encoded micro symbols into one encoded symbol of  l  bits (Figure 4.1 right

hand side), that is 

X ( ·)×l
=[ x0

1×l /α x1
1×l / α

… xα−1
1×l /α

xα
1×l /α xα+1

1×l / α
… x2α−1

1×l /α

⋮ ⋮ ⋮ ⋮
] . (38)

Each  l  bits encoded symbol comprises  α  encoded micro symbols of  l /α

bits. Alternatively, we can denote each encoded symbol x i
1×l  as

x i
1×l

=[ gα i
1×αk M αk×l /α gα i+1

1×αk M αk×l /α
… gα i+(α−1 )

1×α k M α k×l/ α] , (39)

50

Figure 4.1: The encoding process of Micro-Random code.



where g j
1×αk  are the corresponding generator row matrices.

Generally,  one encoded symbol  consists  of  α  encoded micro

symbols,  and  1/α  encoded symbol represents one  encoded micro symbol,

i.e., 

1  encoded symbol = α  encoded micro symbols
1/α  encoded symbol = 1  encoded micro symbol .

(40)

Since  αk  micro  symbols  are  used  in  the  encoding  process,  the  receiver

requires  αk+10  encoded micro symbols in order to achieve high PCD. In

other words, 

αk+10  encoded micro symbols =
1
α (αk+10 )  encoded symbols

= k+
10
α  encoded symbols ,

(41)

i.e., k+
10
α

 encoded symbols  are  needed.  As  we cannot  have  a  fractional

encoded symbol,  the number of extra encoded symbols required to achieve

high PCD is

nmRC=k+⌈ 10
α ⌉ . (42)

Once nmRC  encoded symbols have been received, the receiver extracts

αnmRC=α k+10  encoded micro  symbols  as  shown  in  Figure  4.2.  These

αk+10  encoded  micro symbols  are  sufficient  to  reconstruct  the  original

message  with  high  PCD.  Since  nmRC=k+⌈ 10
α ⌉  =k (1+ϵmRC) ,  the  decoding

inefficiency of Micro-Random code is 

ϵmRC=⌈ 10
α ⌉ 1

k
. (43)
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For example, let the symbol size be  l=10  bits. Then, a message of

size 100 bits  can be represented in  k=10  symbols of size  l=10  or  in a

matrix of size 10×10 . To improve the decoding inefficiency, we represent the

message in 20 micro symbols,  i.e.,  α=2  and each encoded symbol of size

l=5  bits. Then, we group each pair of the encoded micro symbols to form a

regular encoded symbol  of  10  bits.  Subsequently,  the  receiver  needs  only

k+ ⌈ 10/2 ⌉=15  encoded symbols to reconstruct the original message as they

have contributed 30 encoded micro symbols already. In this case, ϵmRC=0.5 . 

4.3 Performance Analysis

We analyse the performance of Micro-Random code in terms of the

PCD and the expected overhead symbols to achieve complete decoding.
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4.3.1 Probability of Complete Decoding (PCD)

Each encoded symbol of Micro-Random code has α  encoded micro

symbols. Hence, m  overhead symbols contributes mα  extra encoded micro

symbols.  Modifying  Eq.  (31),  the  PCD  of  Micro-Random  Code  with  m

overhead symbols can be expressed as 

QmRC(m ,α) = QRC(αm)

= ∏
i=1

k−αm−1

(1−2i−k
)

, (44)

and  the  numerical  values  are  presented  in  Table  4.1,  where  “>0.999999”

denotes a numerical value larger than 0.999999 but less than 1.0. According to

the  table,  as  α  increases,  lesser  overhead  symbols  ( m )  are  required  to

achieve high PCD (i.e.,  QmRC(m,α)≥0.999 ). In particular, we achieve high

PCD with only one overhead symbol if α≥10 . 

To examine whether it can reach high PCD at zero overhead symbol,

we substitute m=0  into Eq. (44),

QmRC(0,α) = QRC(α×0)

= QRC(0)

= ∏
i=1

k−1

(1−2i−k
),

(45)

and  QmRC(0,α)=0.28879 .  Apparently,  α  has no influence to  QmRC  when

m=0  and there is no way to achieve high PCD with zero overhead symbol

(i.e., m=0 ) with large value of α . Achieving high PCD with k+1  encoded

symbols (for α=10 ) is the best performance we can get. 
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Table 4.1: The PCD of Micro-Random code, QmRC(m,α)  for various m  and
α .

α
1 2 4 8 10 20

m

0 0.288788 0.288788 0.288788 0.288788 0.288788 0.288788
1 0.577576 0.770102 0.938791 0.996099 0.999024 0.999999
2 0.770102 0.938791 0.996099 0.999985 0.999999 >0.999999
3 0.880116 0.984456 0.999756 >0.999999 >0.999999 >0.999999
4 0.938791 0.996099 0.999985 >0.999999 >0.999999 >0.999999
5 0.969074 0.999024 0.999999 >0.999999 >0.999999 >0.999999
6 0.984456 0.999756 >0.999999 >0.999999 >0.999999 >0.999999
7 0.992208 0.999939 >0.999999 >0.999999 >0.999999 >0.999999
8 0.996099 0.999985 >0.999999 >0.999999 >0.999999 >0.999999
9 0.998048 0.999996 >0.999999 >0.999999 >0.999999 >0.999999
10 0.999024 0.999999 >0.999999 >0.999999 >0.999999 >0.999999

Alternatively, the aforementioned result can also be deduced from Eq.

(42), i.e., nmRC=k+⌈ 10
α ⌉ . Each increment in α  will reduce the total required

encoded symbols to achieve high PCD until α=10 . No improvement can be

made for α>10  as  [ nmRC ] α=10,11,…=k+1 .

 

4.3.2 Expected Overhead Symbols 

Let PMF to achieve high PCD be expressed as 

PmRC(m,α)=QmRC (m,α)−QmRC(m−1,α) , (46)

and 

PmRC(0,α)=QmRC(0,α) . (47)

Then, the expected overhead symbols can be expressed as 

EmRC(α)=∑
m=1

∞

mPmRC(m,α) , (48)

and the numerical  values are presented in Table  4.2.  Note that “<0.00001”

denotes a non-zero positive value that is less than 0.00001. 
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Table  4.2: The PMF of Micro-Random code for various  overhead symbols
m , segmentation factor α  and the expected value.

α
m 1 2 4 10
0 0.28879 0.28879 0.28879 0.28879
1 0.28879 0.48131 0.65000 0.71024
2 0.19253 0.16869 0.05731 0.00098
3 0.11001 0.04567 0.00366 <0.00001
4 0.05867 0.01164 0.00023 <0.00001
5 0.03028 0.00292 0.00001 <0.00001
6 0.01538 0.00073 <0.00001 <0.00001
7 0.00775 0.00018 <0.00001 <0.00001
8 0.00389 0.00005 <0.00001 <0.00001
9 0.00195 0.00001 <0.00001 <0.00001
10 0.00098 <0.00001 <0.00001 <0.00001

1.60666 1.02307 0.77658 0.71219E
mRC

(α)

With  α=10 ,  Micro-Random  code  requires  about  0.7  overhead

symbols on average to achieve complete decoding, as compared with Random

code ( α=1 ), which requires 1.6 overhead symbols. No further improvement

can be made for α>10  as it explained in Section 4.3.1.

4.3.3 Decoding Steps and Decoding Complexity

Recall that Micro-Random code dimensions the symbol size in order

to gain higher PCD with fewer overhead symbols. In particular, its generator

matrix  has  more  rows  but  less  columns,  i.e.,  G (α k+10)×αk  as  compared  to

Random  code,  i.e.,  G (k+10)×k .  Therefore,  it  is  non-trivial  to  examine  the

process to invert G (α k+10)×αk .

We present the pseudo-code of Gaussian elimination in Algorithm 4.1,

where  it  solves  the  augmented  matrix  [ G (αk +10)×αk|X (αk)×(l/ α)]  by  forming
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upper triangular matrix in Step 1 to 9 and backward substitution in Step 10 to

16 and the total XOR operations is expressed as

StepGE=∑
i=1

α k

∑
j=i+1

αk +10

( αk+
l
α ) +∑

i=2

αk

∑
j=i+1

αk
l
α . (49)

Note that the StepGE  may be slightly different for other optimised versions of 
Gaussian elimination.

Substituting α=1  and α=10  in StepGE  respectively, we obtain 

[StepGE ] α=1
=

1
2
k3

+k2l+
19
2
k2

+8 kl+ l , (50)

and ,

[ StepGE ]α=10
=500 k 3+10 k 2 l+950 k 2+8kl+

1
10

l . (51)

Clearly, the decoding complexity does not change for different  α ,  i.e.,  it

stays O(k3
) . Increasing α  introduces more symbols (micro symbols) to the

decoding process without affecting the complexity of the algorithm.

Taking the difference in between Eq. 51 and Eq. 50, 

[StepGE ] α=10
−[StepGE ] α=1

=
999

2
k3

+
1881

2
k2

+ l(9k2
−

9
10

) , (52)

yields a positive function for all positive integers k  and l . Therefore, α=10

imposes more decoding steps as compared with α=1 .

Algorithm 4.1: Gaussian elimination for Micro-Random code.
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Form upper triangular matrix

1: for i=1,2,…,αk         

2:     s  = Row number that has a leading non-zero i -entry.

3:     Exchange Row s  and Row i .

4:     for j=i+1, i+2,…,αk+10

5:         if Entry i  of Row j  is non-zero

6:             Row j  ← Row j   Row ⊕ i

7:         end if

8:     end for

9: end for

Backward substitution

10: for i=αk ,α k−1,… ,2                  

11:     for j=i−1,i−2,… ,1

12:         if Entry i  of Row j  is non-zero then

13:             Row j  ← Row j   Row ⊕ i

14:        end if

15:     end for

16: end for

4.4 Simulation Results

We study the performance of Micro-Random code for message length

k  and segmentation factor  α  with simulation. The symbols are represented

with Galois Field GF(2) matrices. The erasure probability of the channel is not

important  as  all  the encoded symbols  are  generated  independently  with

random matrix  (generator  matrix).  All  the  simulation  scenarios  have  been

repeated 1000 times and the average values are presented.

Let  the  symbol  sizes  be  fixed  to  120  bits  such  that  they  can  be

segmented to micro symbols of different sizes ( α  = 1, 2, 4, 5, 8, 10, 12, and
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15). Then, the message size is fixed to 1200, 12,000, 30,000 and 60,000 bits,

which represent messages of 10, 100, 250 and 500 symbols respectively. Note

that  α=1  also  represents  Random code,  where  all  the  message  symbols,

micro symbols,  encoded micro symbols and encoded symbols have the same

dimension.

Figure 4.3 shows PCD for each overhead symbol with different α  for

messages  (a)  k=10  and  (b)  k=100 .  Both  graphs  look  identical.  The

performance of  Random code can be learned from the line  α=1 , where it

achieves  high  PCD at  ten  overhead  symbols.  As  for  α=2 ,  each encoded

symbol consists of two encoded micro symbols. Thus, it achieves high PCD at

five overhead symbols.  The same observation  goes  for  α=4  to  10 –  the

higher  the  α ,  the faster  it  reaches the high PCD. However, no significant

improvement is observed after  α=10 . Such results are consistent with the

discussion in  Section 4.3.1. We have tried the messages of  k=50 , 250 and

500 symbols and they have identical results as shown in Figure 4.3. Overall,

the PCD of Micro-Random code does not change with the number of message

symbols k  but only the segmentation factor α .
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(a)

(b)

Figure 4.3: The PCD for messages of (a) k=10  and (b) k=100  symbols at
various overhead symbols and segmentation factor α .
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Figure 4.4 shows the average number of overhead symbols to achieve

complete  decoding for messages of  k=10  symbols.  It  shows a decreasing

trend  with  increasing  α ,  but  saturates  at  about  0.7  when  α=10 .  The

observation supports our previous discussion. There is no way to achieve the

high  PCD  with  zero  overhead  symbols  in  Micro-Random  code.  Identical

results are observed for messages of k=50 , 250 and 500 symbols.

Figure 4.4: The expected overhead symbols for messages of k=10  symbols
to achieve complete decoding at various segmentation factor α .

As mentioned in Chapter  3,  Random code reconstructs  the original

message with Gaussian elimination of decoding complexity  O(k3
) . In order

to achieve high PCD with only one  overhead symbol, Micro-Random code

dimensions each message symbol into  α=10  micro symbols. Hence,  10k

micro symbols are involved in the encoding and decoding processes. Though
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the decoding complexity is still O(k3
)  as O((10k )

3
)=O(k3

) , it is found that

the decoding time is relatively higher than Random code as observed in Figure

4.5, i.e., the decoding time increases exponentially with increasing α  as more

micro symbols sets involved in the decoding process. Note that we measure

the running time with a computer that uses i3 processor and inversion of the

matrices of dimensions  10×10 ,  100×100  and  250×250  are done using

unoptimised code.

Figure  4.5:  The  average  decoding  time  needed  to  reconstruct  the  original
message with Micro-Random code.

4.5 Deploying Micro-Random Code in Resource-Constrained Devices

Though  Micro-Random  code  requires  extensive  computational

resources, experiments we have done demonstrate that the time to reconstruct

short messages is acceptable in resource-constrained devices.
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4.5.1 Experiment Setting

In this experiment, the computer encodes the messages with Micro-

Random  code  and  broadcast  them  to  two  resource-constrained  devices

(Android devices) via Wi-Fi. Two sample files of 2,000 bytes and 5,000 bytes

are  used.  The  symbol  size  (packet  size)  is  fixed  to  1,000  bytes  with

segmentation factors of α=1 , 2, 5 and 10. In other words, messages of k=2

and  5  symbols  are  used  in  the  experiment.  The  receivers  will  gather

k+ ⌈ 10 /α ⌉  encoded symbols before reconstructing the original messages with

Gaussian elimination. Each scenario was repeated for 100 times. 

The  computer  runs  Windows  7  on  64 bits  i7  processor  with  4GB

RAM. The two Android devices  are Asus Nexus 7 and Alcatel  One Touch

(OT). Asus Nexus 7 is a mid-range Android device that runs on Quad-Core

1.2GHz with 1GB RAM (Asus Nexus 7: Hardware specification, 2014). On

the other hand, Alcatel OT is a low-end Android device with 1GHz CPU and

512MB RAM (Alcatel One Touch: Hardware specification, 2014). 

We use Python 3.4 (Python, a programming language, 2014) as the

main scripting language. Additionally, external python modules like bitstring

(bitstring, 2014) and serpent (Serpent, 2014) are used in order to manipulate

the bit  arrays and serialisation.  We also use CRCmod (CRCmod,  2014) to

compute the integrity of the packets. The Gaussian elimination algorithm can

be found in (Gaussian elimination, 2014).
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Figure 4.6: The screen-shot of QPython running in Alcatel OT. 

We run  the  Python  scripts  on  Android  devices  by  using  QPython

framework (QPython, 2014) as shown in Figure 4.6. It is a script engine that

that runs Python scripts seamlessly on Android devices. 

4.5.2 Experiment Result

Figure  4.7 presents  the  average  decoding time  for  messages  of  (a)

2000 bytes and (b) 5000 bytes in Asus Nexus 7 and Alcatel OT. Generally, the

larger  the  message  size,  the  longer  is  the  time  needed  to  reconstruct  the

original  messages.  Additionally,  as  the  segmentation  factor  α  increases,

Gaussian elimination needs to work on a larger matrix (in term of rows) and

therefore a longer time is  needed to reconstruct  the original messages.  For
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example, the time needed to reconstruct original messages of 2,000 bytes and

5,000 bytes  with  α=10  is  much longer  than the case where  α=1 .  Such

results are consistent with our findings in Section 4.4.

The Gaussian Elimination that we use does not utilise the multi-core

technology of the devices. Hence, both Android devices have about the same

decoding time though Alcatel OT appears to be a low-end device.  

4.6 Summary

Utilising the previous rigorous results and bounds given in Chapter 3,

Micro-Random code achieves  a  better  PCD at  fewer overhead symbols  by

dimensioning  the  symbols  appropriately,  but  with  the  trade-off  of  higher

decoding time. 
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(a)

(b)

Figure  4.7: The average decoding time of Micro-Random code for messages
of (a) 2,000 bytes, and (b) 5,000 bytes on Android devices.
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CHAPTER 5

SYSTEMATIC RANDOM CODE

This  chapter  proposes  a  variant  of  Random  code,  i.e., systematic

Random (SYSR) code that achieves better decoding complexity than Random

code on average. 

5.1 Systematic Rateless Erasure Code

A systematic rateless erasure code uses the original message as part of

the  encoded symbols  and  the  rest  are  generated  with  a  sequence  of  bit

operations.  Correspondingly, the  receiver  reconstructs  the  original  message

instantly if the first k  encoded symbols are received intact. In case of any lost

symbols,  the  receiver  will  reconstruct  the  message  from  the  subsequent

encoded symbols.

Figure  5.1 illustrates  the  encoding  and  decoding  processes  of  a

systematic rateless erasure code on a message of  k=4  symbols. The white

circles  denote the original  message symbols and the hashed circles  are the

generated  encoded symbols.  Note that  the encoder  generates  potentially  an

infinite number of encoded symbols with the original message as part of the

encoded symbols. 
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Figure  5.1:  The  encoding  and  decoding  processes  of  systematic
rateless erasure code. 

5.2 Systematic Random Code

In this section, we propose a systematic rateless erasure code, namely

systematic  Random (SYSR)  code  that  is  built  on  top  of  a  random matrix

framework. SYSR code outperforms Random code in erasure channels of low

error rate and performs as good as Random code in very lossy channels (e.g.,

where erasure probability, ρ=0.5 ). We will elaborate on the decoding process

with an example for the ease of explanation. 

5.2.1 Encoding Message

Systematic Random code generates two type of encoded symbols. 

• Part I encoded symbols are the first k  encoded symbols of  systematic

Random code (i.e.,  x0,x1,… , xk−1 ).  They are also the symbols of the

original message. 
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• Part II encoded symbol refers to the encoded symbols starting from

(k+1) -th  onwards  (i.e., xk , xk+1 ,… )  and  they  are  generated  with

Random code. 

A message of k  symbols with each symbol size l  bits is denoted as a matrix

of dimensions k×l , i.e., M k×l . The Part I encoded symbols are the original

message symbols and its generator matrix is an identity matrix. Then, each

Part II encoded symbol (coded row matrix) X 1× l  is independently generated

by multiplying a random row matrix G 1×k  with M k×l  , i.e., 

X 1×l
= G 1×k

×M k×l

= [ g0,0 … g0,k−1 ]×[
m0,0 … m0, l−1

⋮ ⋱ ⋮
mk−1,0 … mk−1, l−1

]
= [ x0,0 … x0, l−1] .

(53)

We assume that the receiver will receive both the encoded symbol X 1×l  and

the  corresponding  generator  matrix  G 1×k  at  the  same  time  as  they  are

embedded  in  the  same  packet  during  the  transmission.  Subsequently,  the

receiver reconstructs the original message with Gaussian elimination when it

has a full rank generator matrix.

5.2.2 Message Reconstruction

Since the Part I encoded symbols are the original message symbols,

the  decoding  process  is  completed  instantly  if  they  are  received  intact.

Otherwise, at least k+10  Part I and II encoded symbols are required in order

to reconstruct the original message with high PCD.
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Assume that the receiver has received a  Part I encoded symbols and

k+10−a  Part  II  encoded  symbols  from  the  lossy  erasure  channel.

Augmenting  the  encoded  symbol  matrices  X (k+10)×l  with  their  respective

generator row matrices G (k +10)×k , we can express them as

[ G (k+10)×k X (k+10)×l ]=[
~g 0,0 … ~g 0, k−1

⋮ ⋱ ⋮
~g a−1,0 … ~g a−1,k−1

g a ,0 … g a , k−1

⋮ ⋱ ⋮
g k−9,0 … g k−1,k−1

|
~x 0,0 … ~x 0,l−1

⋮ ⋱ ⋮
~x a−1,0 … ~x a−1, l−1

x a ,0 … x a , l−1

⋮ ⋱ ⋮
x k−9,0 … x k−1, l−1

] . (54)

where  gi , j  ( x i, j  ) denotes the  i -th row j -th entry in the generator matrix

(encoded symbol matrix).  We use the  tilde  notations  (e.g.,  ~g  and  ~x )  to

denote the Part I row matrices.

Before reconstructing the original message with Gaussian elimination,

we  apply  the  following  steps  to  reduce  the  dimensions  of  the  augmented

matrix.

Step 1: Identify a Part I generator row matrix. Then, denote the position of

the selected Part I generator as row i  and its non-zero entry at column j .

Step  2:  Add  (XOR)  row  i  of  both  generator  and  encoded  symbols  row

matrices to those Part II row matrices, for which their j  entries are non-zero.

Step 3: Remove row i  and column j  from the augmented matrix.

Step 4: Repeat from Step 1 until all the Part I row matrices are removed.
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We illustrate the matrix reduction with an example as follows. Assume

a message of  k=4  symbols and symbol size  l=2 . The receiver has  a=2

Part I encoded symbols and k+10−a=12  Part II encoded symbols. Then, the

augmented matrix can be represented as 

[ G 14×4|X 14×2 ]=[
1 0 0 0
0 1 0 0
1 0 g2,2 g2,3

⋮ ⋮ ⋮ ⋮
0 1 g13,2 g13,3

|
~x 0,0

~x 0,1
~x 1,0

~x 1,1

x 2,0 x 2,1

⋮ ⋮
x 13,0 x 13,1

] . (55)

Note that the first two row matrices belong to Part I and the rest are Part II.

Some values are defined explicitly as 0 or 1 for ease of explanation.

In Step 1, we select the first Part I encoded symbol in the generator

matrix and its first entry is non-zero, i.e  i=0  and  j=0 . In Step 2, we add

row i  to those Part II rows, in which their j  entries are non-zero. Then, row

i  and  column  j  are  removed  as  instructed  in  Step  3.  The  remaining

augmented matrix becomes 

[G 13×3|X 13×2 ]=[
    
 1 0 0
 0 g 2,2 g2,3

 ⋮ ⋮ ⋮
 1 g13,2 g 13,3

|
  

~x 1,0
~x 1,1

x 2,0⊕
~x 0,0 x 2,1⊕

~x 0,1

⋮ ⋮
x 13,0 x 13,1

] . (56)

We still have one Part I encoded symbol at second row ( i=1 ). Hence, we

repeat Step 1 and Step 2, adding row i  to the rest of Part II rows that have

non-zero values in entries j . After Step 3, we have
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[G 12×2|X 12×2 ]=[
    
    
  g 2,2 g 2,3

  ⋮ ⋮
  g13,2 g13,3

|
  
  
x 2,0⊕

~x 0,0 x 2,1⊕
~x 0,1

⋮ ⋮
x 13,0⊕

~x 1,0 x 13,1⊕
~x 1,1

] . (57)

Since  there  is  no  more  Part  I  encoded  symbol,  Gaussian  elimination  will

process  the  rest  of  the  generator  matrix  of  dimensions  12×2  (augmented

matrix of dimensions 12×4 ) as usual.

5.3 Performance Analysis

This section analyses the performance of SYSR code in terms of PCD

and its decoding algorithm (total number of XOR row operations).

5.3.1 Probability of Complete Decoding

Recall that there are two cases in the decoding process:

• Case I: Receive all the Part I encoded symbols intact and the message

is reconstructed instantly.

• Case II: Receive total of k+10  Part I and II encoded symbols and the

message is reconstructed with high PCD.

Given the channel erasure probability  ρ , the probability that Case I

occurs  is  a  binomial  function,  Binom(0, k ,ρ) .  Correspondingly,  the

probability  that Case II occurs is multiplication of  1−Binom (0,k ,ρ)  with

Random  code’s  PCD  equation  (Eq.  (21)).  Hence,  given  a  message  of  k

symbols, the probability for SYSR code to achieve complete decoding with

m  overhead symbols in channel with erasure probability, ρ  is
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QSYSR(m,k ,ρ)=Binom (0,k ,ρ)−[1−Binom(0, k ,ρ)]Q kol(m) . (58)

Then, the PMF of SYSR code is 

PSYSR(m,k ,ρ)=QSYSR(m,k ,ρ)−QSYSR (m−1,k ,ρ) , (59)

and 

PSYSR(0,k ,ρ)=QSYSR(0,k ,ρ) . (60)

Correspondingly, the expected overhead symbols can be expressed as 

∑
m=0

∞

mPSYSR(m,k ,ρ) . (61)

 

The PCD of SYSR code for  k=10  and 50 with increasing  m  are

presented in Table 5.1. Generally, SYSR code has a higher PCD than Random

code for the same m  when both ρ  and k  are small (comparing with Table

3.1). Both codes have about the same PCD when  ρ  and  k  increase. Same

observation is found on the expected overhead symbols presented in Table 5.2,

where 1.6 overhead symbols are required when ρ  and k  increase.
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Table 5.1: The PCD of SYSR code for k=10  and 50.

k=10 k=50
ρ = 0.01 ρ = 0.1 ρ = 0.5 ρ = 0.01 ρ = 0.1 ρ = 0.5

m=0 0.931995 0.536772 0.289483 0.719076 0.292454 0.288788
m=1 0.959609 0.724866 0.577989 0.833145 0.579753 0.577576
m=2 0.978018 0.850262 0.770326 0.909192 0.771286 0.770102
m=3 0.988537 0.921917 0.880233 0.952647 0.880734 0.880116
m=4 0.994147 0.960133 0.938850 0.975823 0.939106 0.938791
m=5 0.997043 0.979857 0.969104 0.987784 0.969233 0.969074
m=6 0.998514 0.989876 0.984471 0.993860 0.984536 0.984456
m=7 0.999255 0.994925 0.992215 0.996922 0.992248 0.992208
m=8 0.999627 0.997459 0.996103 0.998459 0.996119 0.996099
m=9 0.999813 0.998729 0.998050 0.999229 0.998058 0.998048
m=10 0.999907 0.999364 0.999025 0.999614 0.999029 0.999024



5.3.2 Decoding Algorithm of Random Code

Generally,  Gaussian  elimination  involves  two  algorithms  –

transforming the generator matrix (augmented matrix) into an upper triangular

matrix and subsequently to an identity matrix with backward substitution. We

will present the pseudo-codes for Random code and SYSR code to form upper

triangular matrices in this section and Section  5.3.3, respectively. Note that

both rateless erasure codes employ the same backward substitution and hence

it will not be discussed here.

Algorithm 5.1 and its corresponding flow chart in Figure 5.2 present

the process to form an upper triangular matrix.  The randMat represents the

generator matrix  and resultMat in second line is a blank matrix,  where the

pivoting rows (the row with the first non-zero element at  i -th entry) will be

added later on. 

The for-loop in lines 3 to 11 will loop through the k  columns of the

generator matrix in order to select the i -th pivoting row in each iteration (line

4). Then, the pivoting row will be moved from the randMat to the resultMat

(line 5). Next, it searches the remaining rows in randMat, for which their i -th
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Table 5.2: The expected overhead symbols to achieve complete decoding
in SYSR code for increasing k  and ρ .

ρ = 0.01 ρ = 0.1 ρ = 0.5
k=10 0.153629 1.046475 1.605126
k=50 0.634635 1.598415 1.606695

k=100 1.018593 1.606652 1.606695
k=200 1.391431 1.606695 1.606695



entries are non-zero and XORs them with the pivoting row (line 8). At the end

of line 12, the algorithm returns an upper triangular matrix.

Algorithm 5.1:  The pseudo-code for forming an upper triangular matrix with

Random code.

1: function FormUpperTriangularMatrix (randMat)

2:     resultMat = null matrix

3:     for i=0, 1,…, k −1  do

4:         pivotRow = SearchPivotRow( i ,randMat)

5:         Move pivotRow from randMat to resultMat

6:         for row in randMat do

7:             if i -th entry of row is non-zero then

8:                 row ← row  pivotRow⊕

9:             end if

10:       end for

11:     end for

12:     return resultMat

13: end function
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Figure 5.2: The flow chart of Random code to form upper triangular
matrix.
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5.3.3  Decoding Algorithm of SYSR Code

The pseudo-code for SYSR code to form upper triangular matrix is

presented in Algorithm  5.2 and the corresponding flow chart in Figure  5.3.

The  idnMat  and  randMat  denote  the  generator  matrices  of  Part  I  and  II

encoded symbols, respectively. Basically, Algorithm 5.2 has a similar structure

to Algorithm  5.1 except that the former will attempt to search the pivoting

rows from idnMat first before getting them from the randMat, if not found

(lines 4-10).

Algorithm 5.2:  The pseudo-code for forming an upper triangular matrix with

SYSR code.

1: function FormUpperTriangularMatrix (idnMat, randMat)

2:     resultMat = null matrix

3:     for i=0,1,…, k −1  do

4:         Search i -th pivoting row from idnMat as pivotRow

5:         if pivotRow ≠  NOT_FOUND then

6:             Move pivotRow from idnMat to resultMat

7:         else

8:             Search i-th pivoting row from randMat as pivotRow

9:             Move pivotRow from randMat to resultMat

10:       end if

11:       for row in randMat do

12:           if i -th entry of row is non-zero then

13:               row ← row  pivotRow⊕

14:           end if

15:        end for

16:     end for

17:     return resultMat

18: end function
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To explain the improved decoding algorithm in SYSR code, assume

a  Part I encoded symbols are received and they need to XOR with k+10−a
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Figure 5.3: The flow chart for SYSR code to form upper triangular matrix.



Part II rows, i.e.,  ∑
i=1

a

∑
j=1

k +10−a

(k+ l) , where one row operation consists of  k+l

XOR  operations.  After  that,  k−a  pivoting  rows  will  be  selected  from

randMat for similar XOR row operations and then removed (corresponding to

the  expression  ∑
i=1

k−a

∑
j=i+1

k +10−a

(k+ l) ).  Hence,  we  denote  the  number  of  XOR

operations for SYSR code to form an upper triangular matrix as χ , where 

χ = ∑
i=1

a

∑
j=1

k+10−a

(k+l)+∑
i=1

k−a

∑
j=i+ 1

k +10−a

(k+l)

= (k+l)[∑
i=1

a

∑
j=1

k+10−a

(1)+∑
i=1

k−a

∑
j=i+1

k+10−a

(1)]
= (k+l)[ 1

2
k2

+
19
2

k+
1
2

(a−a2
)] .

(62)

Since 0≤a≤k , Eq. 62 is a non-increasing function and each received

Part I encoded symbols will  reduce the number of XOR operations,  except

when  a=1 . Note that if all the Part I encoded symbols are received intact

(i.e.,  a=k ),  the  original  message  can  be  reconstructed  instantly  without

forming an upper triangular matrix with Algorithm 5.2.

Eventually, if none of the Part I encoded symbols are received (i.e.,

a=0 ), 

[ χ ]a=0=
1
2
k3

+
1
2
k2 l+

19
2

k2
+

19
2

k l , (63)

and  SYSR  code  has  the  same  decoding  complexity  as  Random  code  in

constructing an upper triangular matrix, i.e., O(k3
) .
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5.4 Numerical Result

In this section, we measure the performance of Random code, SYSR

code and SR code (introduced in Chapter 7) in terms of PCD and the average

number  of  XOR row operations  to  reconstruct  the  original  messages  (i.e.,

forming upper  triangular  matrix  and backward  substitution).  The simulator

consists of three main components – the sender (encoder), which generates the

encoded symbols  continuously, the erasure channel  that  drops  the encoded

symbols  with  erasure  probability  ρ  and  the  receiver  (decoder),  which

attempts  to  reconstruct  the  original  message  when  it  has  k+10  encoded

symbols. Each simulation scenario is repeated for 1000 times and the averaged

results are presented.

Figure  5.4 illustrates  the  PCD  of  SYSR  code  (simulation  and

analytical), Random code and SR code with incremental overhead symbols for

message length of  k=10  symbols. The interpolated lines in the graphs are

used to show the trends of the PCD with respect to each incremental overhead

symbol. When ρ=0.00 , both SYSR and SR code are able to reconstruct the

original message with high PCD from the first  k  encoded symbols (Part I

encoded  symbols)  and  no  overhead  symbol  is  required  (Figure  5.4(a)).

However,  as  ρ  increases  they  require  at  most  ten  overhead  symbols  to

achieve high PCD (Figure 5.4 (b) to (d)). Meanwhile, Random code requires

k+10  encoded symbols to reach high PCD in all the cases.
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(a) (b)

(c) (d)

Figure  5.4:   The  PCD  of  Random  code,  SYSR  code  and  SR  code  for

messages of k=10  symbols in channels of various erasure probabilities.

We observe that the PCD of SYSR code is similar to SR code in all

the  cases.  They  outperform  Random  code  when  the  channel  erasure

probability  is  small  and perform as good as Random code in a  very lossy

channel (e.g.,  ρ=0.5 ). Similar PCD results are obtained for messages with

k=10 , 50, 100 and 250 symbols in channels of various erasure probabilities.

Since SYSR code is able to achieve high PCD with ten overhead symbols

irrespective  of  the  message  length,  it  needs  an  average  of  1.6  overhead

symbols to achieve complete decoding in lossy channels as shown in Figure

5.5.
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Figure  5.6 presents the average number of XOR row operations for

Random code, SYSR code and SR code to form upper triangular matrices and

backward substitution  for  messages  of  k=100  symbols  subject  to  various

channel erasure probabilities. Overall, SYSR code requires the least XOR row

operations among the rest. In particular, when ρ=0.00  SYSR code receives

all  the  Part  I  encoded  symbols  intact  and  the  original  message  can  be

reconstructed  instantly. As  ρ  increases,  more Part  II  encoded symbols are

required in reconstructing the original messages due to missing Part I encoded

symbols.  Therefore,  the  total  XOR  row  operations  increases.  Meanwhile,

Random code requires about the same total  XOR row operations in all  the

cases  as  its  generator  matrices  only consist  of  randomly distributed  binary

values.
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Figure  5.5:   The  average  overhead  symbols  for  SYSR  code  to  achieve
complete decoding in channels of various erasure probabilities.



Generally, as ρ  increases, more Part II encoded symbols are involved

in the decoding process. Since the Part II encoded symbols are generated with

a random matrix, the performance of SYSR code approaches that of Random

code. Therefore,  we omit  the simulation results  for  ρ>0.5  in this chapter.

SYSR code will achieve high PCD with  k+10  encoded symbols (with 1.6

overhead symbols) under very lossy channel conditions and the total number

of required XOR row operations will be the same as Random code.

5.5 Summary

SYSR code is a systematic rateless erasure code that is built on top of

random  matrix.  It  achieves  better  PCD  with  fewer  decoding  steps  than

Random code in channels with low erasure probability.
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(a)

(b)

Figure 5.6: The average XOR row operations for Random code, SYSR code
and  SR  code  to  form  (a)  upper  triangular  matrix,  and  (b)  backward
substitution in channels of increasing erasure probabilities.
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CHAPTER 6

STEPPING-RANDOM CODE

Chapters  3's Random code and Chapter  4's Micro-Random code are

able  to  achieve  high  PCD  with  a  fixed  number  of  overhead symbols

irrespective  of  message length  k ,  but  with the trade-off of  high decoding

complexity. Though Chapter  5's  systematic  Random (SYSR) code achieves

better PCD and decoding complexity, it  works efficiently only for point-to-

point (i.e., one sender to one receiver) and point-to-multipoint (i.e., one sender

to many receivers) transmissions. In this chapter, we propose a non-systematic

pseudo-random  code,  namely  Stepping-Random  (SR)  code  that  works  in

point-to-point, point-to-multipoint and multipoint-to-point (i.e., many senders

to one receiver) transmissions.

6.1 Non-Systematic Pseudo-Random Code

In  the  following  sections,  we  will  explain  the  reason  SYSR code

performs inefficiently in multipoint-to-point transmission. Then, we propose a

variant,  namely  Stepping-Random (SR) code that  achieves  similar  PCD as

SYSR code but with slightly higher decoding complexity. 

6.1.1 Issue of SYSR Code in Multipoint-to-Point Transmission

In order to improve the network throughput, one may request the same

message (if available) from multiple sources concurrently (multipoint-to-point

transmission)  as  depicted  in  Figure  6.1.  Both  Random  code  and  Micro-

Random code are  applicable  in  this  transmission  paradigm because  all  the
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received encoded symbols form random matrices after all and the theorems in

Sections  3.2 and  3.3 have assured their  high PCD with a fixed number of

overhead symbols.

Figure 6.1: Multipoint-to-point transmission.

Generally,  Chapter  5's  systematic  Random  code  imposes  lower

decoding complexity among all the codes proposed in this thesis. However, it

does not work efficiently in multipoint-to-point transmission as each of its Part

I encoded symbols represents exactly one message symbol. This statement can

be  explained  using  the  classical  balls  and  bins  analysis  (Luby,  2002)  as

follows. 

Let  a  message of  k  bits  be represented  as  k  bins  and the Part  I

encoded symbol as balls. The classical balls and bins analysis indicates that on

average k ln(k /δ)  balls (Part I encoded symbols) are needed for each of the

k  bins (message of  k  bits) to be covered by at least one ball with success

probability 1−δ . For example, to have a success probability of 1−δ=0.99 ,

a  message of  k=100  bits  requires  100 ln(100/0.01)=921  Part  I  encoded

symbols to achieve high PCD. It implies that the Part I encoded symbols of

systematic Random code are less useful in multipoint-to-point transmission.
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6.1.2 Stepping Code

Though the Part I encoded symbols of SYSR code is the main factor

that improves the decoding complexity, it causes inefficiency in multipoint-to-

point transmission.  To address this issue, we suggest to generate  the Part  I

encoded symbols with Stepping code.

Stepping code is a block code. Each of its generator row matrices has

about  the  same  weight  as  the  Random  code,  i.e.,  w≈k /2 .  Instead  of

distributing the non-zero entries randomly, Stepping code organises them in

the order that is similar to Gray code – each row differs from the previous one

by only one bit. 

The  generator  matrix  of  Stepping  code  is  constructed  as  the

followings. Let w=⌈ k /2 ⌉ . Then, the first two rows, g0
s  and g1

s  have weights

of w  and w+1  respectively and they can be represented as 

g0
s
=[a0,0(w)  a0,1(w)  …  a0,k−1(w)] , (64)

and 

g1
s
=[a1,0(w+1)  a1,1(w+1)  … a1, k−1(w+1)] . (65)

The notation ai , j  defines the value of each entry, where

ai , j(w)={1 if j<w
0 otherwise

. (66)

Then, the rest of the rows g j  are expressed as 

g j
s={g0

s
≫ j /2 for j=2,4,6,…

g1
s≫( j−1)/2 for j=3,5,7,…

, (67)
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where ≫  is a right cyclic shift operator. 

For  example,  the  first  and second row of  the  generator  matrix  for

message of k=6  symbols are g0
s
=[ 1 1 10 0 0 ]  and g1

s
=[ 1 1 11 0 0 ] . Then, the

third and fourth rows are obtained by applying the right shift operator to the

first  and second rows,  i.e.,  g2
s
=[ 011100 ]  and  g3

s
=[ 011110 ] .  Using the

same method, the first six generator row matrix is presented in Eq. (68). 

G step
k×k

=[
g0
s

g1
s

g2
s

g3
s

g4
s

g5
s
]=[

1  1  1  0  0  0
1  1  1  1  0  0
0  1  1  1  0  0
0  1  1  1  1  0
0  0  1  1  1  0
0  0  1  1  1  1

] . (68)

The decoding method will be explicated together with SR code in Section 6.2. 

6.1.3 Stepping-Random (SR) Code

We propose a pseudo-random code, namely Stepping-Random (SR)

code that works in point-to-point, point-to-multipoint and multipoint-to-point

transmissions. Given a message of k  symbols, SR code generates two types

of encoded symbols:

 First  k  encoded symbols,  i.e.,  x0
s , x1

s ,…, xk−1
s  are  generated

with  Stepping  code  and  they  are  termed  as Part  I encoded

symbols. 
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 The  rest  of  the encoded symbols  from  k+1  onwards,  i.e.,

xk
r , xk+1

r ,…  are  generated  with Random code and termed  as

Part II encoded symbols.

Generally, SR code's generator matrix can be expressed as 

G SR
(k +(⋅))×k

=[ G step
k×k

G rand
(⋅)×k ] . (69)

We use (· )  when the quantity is not known. An example of a generator matrix

of k=6  is presented as Eq. (70), where the first k  rows are Stepping code's

generator matrix and the rest are generated with Random code. 

G SR
(k+(⋅))×6

=[
1 1 1 0 0 0
1 1 1 1 0 0
0 1 1 1 0 0
0 1 1 1 1 0
0 0 1 1 1 0
0 0 1 1 1 1
0 1 1 0 1 0
1 0 1 0 0 1
0 0 1 0 0 1
0 0 1 0 1 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

] . (70)

6.2 Message Reconstruction

The decoding algorithm for ideal channel will be discussed in Section

6.2.1 (decoding  in  ideal  channel)  and  the  full  version  (decoding  in  lossy

channel) in Section 6.2.2. 
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6.2.1 Decoding in Ideal Channel

Recall  that  the  Part  I encoded symbols  possess  a  Gray  code  like

structure, where each row matrix is differed from the previous one by only one

bit. This property enables SR code to reconstruct the original message with

sequential addition algorithm as shown in the following.

Let  x i
s  be  the  i -th  Part  I encoded symbol  and  its  corresponding

generator  row  matrix  as  gi
s .  Then,  the  sequential  addition  reconstructs  a

message symbol m j  by adding two encoded symbols in sequence. That is,

m j=x i
s
+x i−1

s , (71)

where i=1,2,…k−1  and j  is the index of non-zero entry in the addition of

gi
s  and  gi−1

s .  For  example,  adding  the  g0
s
=[ 1 1 1 0 0 0 ]  and

g1
s
=[ 1 1 1 1 0 0 ]  in  Eq.  (70)  will  reconstruct  the  message  symbol

m3 .

The original message can be reconstructed from the first  k  encoded

symbols (i.e.,  all  the Part  I encoded symbols). The sequential  addition will

reconstruct  k−1  message  symbols  and  the  last  message  symbol  mw−1

(where  w=⌈ k /2 ⌉ ) with Gaussian elimination. For example, assuming all the

Part I encoded symbols in Eq. (70) are received intact. Then, the sequential

addition  will  reconstruct  k−1  message  symbols  (i.e.,  adding  x0  and  x1
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reconstructs  m3 , adding  x1  and  x2  reconstructs  m0  and etc., except  m2 ).

The last message symbol m2  can be reconstructed with Gaussian elimination.

Sequential  addition  reconstructs  the  k−1  message  symbols  with

k−1  row operations,  i.e.,  the computational  complexity  is  O(k ) .  On the

other  hand,  the  last  message  symbol  can  be  reconstructed  with  Gaussian

elimination  of  computational  complexity  O(k3
) .  The  latter  computational

complexity can be ignored as it is used to construct only one symbol.

6.2.2 Decoding in Lossy Channel

In the previous section, we assume all the Part I encoded symbols are

received  intact  and  the  original  message  is  reconstructed  with  sequential

addition. No Part II encoded symbols are needed. In this section, we assume a

lossy channel and not all the Part I encoded symbols are received intact. Then,

the receiver requires a total of  k+10  Part I-II encoded symbols in order to

reconstruct the original message with high PCD. 

The full decoding algorithm of SR code in lossy channel consists of

the following steps:

• Step 1: Form the generator matrix from the received  k+10  Part I-II

encoded symbols.

• Step 2: Perform the sequential addition to the generator row matrices

that belongs to Part I encoded symbols.
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• Step 3: Add the reconstructed message symbols in Step 2 to the rest of

relevant encoded symbols.  Removing  the  columns  and  rows  that

correspond to the reconstructed message symbols in Step 2.

• Step  4:  Apply  Gaussian  elimination  to  reconstruct  the  remaining

symbols of the original message.

We will explain the aforementioned algorithm with the example below.

G SR
16×6

= [
1 1 1 0 0 0
1 1 1 1 0 0
0 1 1 1 1 0
0 1 1 0 1 0
1 0 1 0 0 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 1 1 0 0

] . (72)

Assuming a lossy channel transmission and we have received k+10

Part I-II encoded symbols. The generator matrix is formed in Step 1 as shown

in Eq. (72). Note that only two Part I encoded symbols (first two rows) are

received in sequence. The third Part I encoded symbol is not in sequence with

the second one. Reconstructing the fourth message symbol is done by adding

the  first  and  second encoded symbols,  i.e.,  m3=x0⊕x1  in  Step  2.  The

resulting generator matrix is presented in Eq. (73). 

G SR
(16)×6

=[
1 1 1 0 0 0
0 0 0 1 0 0
0 1 1 1 1 0
0 1 1 0 1 0
1 0 1 0 0 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 1 1 0 0

] . (73)

In  Step  3,  we  add  the  second encoded symbol  to  the  rest  of  the

encoded symbols, in which the fourth entries are non-zero. Then, the second
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row and the fourth column of the generator matrix are removed as shown in

Eq. (74). The resulting generator matrix will have smaller dimensions if we

have more Part I encoded symbols that are in sequence. 

G SR
(15)×5

= [
1 1 1  0 0
      
0 1 1  1 0

0 1 1  1 0
1 0 1  0 1
⋮ ⋮ ⋮  ⋮ ⋮
0 0 1  0 0

] . (74)

In Step 4, the first and the third Part I encoded symbols will combine

with  the  rest  of  the encoded symbols  to  form a  new  generator  matrix  of

dimensions  15×5 .  This new generator matrix  appears to be a message of

k=5  symbols and we reconstruct the original message from the rest of ten

overhead symbols with high PCD. 

Another example, given a message of k=100  symbols and we have

received 50 Part I encoded symbols and 60 Part II encoded symbols. In Step 1,

we form a generator matrix of dimensions 110×100  that represents these 110

encoded symbols. Assume that only some of the Part I encoded symbols are in

sequence.  Consider  the  case  that  we  manage  to  reconstruct  (1−β)k=20

message  symbols  in  Step  2.  Then,  20  rows  and columns  of  the  generator

matrix will be eliminated and the remaining generator matrix has dimensions

90×80  in  Step 3.  Generally, the resulting  generator  matrix  represents the

subset message of 80 symbols and we have  80+10=90  encoded symbols.
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Therefore,  in  Step  4  we  deploy  Gaussian  elimination  to  reconstruct  the

remaining message with high PCD. 

6.2.3 Decoding Complexity

Assume  a  lossy  channel  and  we  have  received  k+10  Part  I-II

encoded symbols. The sequential addition in Step 2 of the decoding process

only works on the sequential Part I encoded symbols. Let β  be the fraction of

the  Part  I encoded symbols  that  are  out  of  sequence  for  0≤β≤1 .  Then,

sequential addition only works on (1−β)k  Part I encoded symbols that are in

sequential order  – each of them contributing a single row operation and the

decoding complexity  becomes  O ((1−β)k ) .  Next,  in  Step  3 we shrink  the

matrix  dimensions  from  (k+10)×k  to  (βk+10)×β k .  The  operation

involves  (1−β)k  columns  and  each  column  involves  (βk+10)  row

operations. Therefore the decoding complexity is O((β−β
2
)k2

) .

Let  K=β k ,  Gaussian  elimination  requires  O(K3
)  to  solve  a

(K+10)×K  matrix.  In  other  words,  SR  code  requires  computational

complexity of  O ((β k)3 )  in Step 4. Hence, the overall decoding complexity

can be expressed as 

O ((1−β)k )+O ( (β−β
2
)k2 ) +O ( (β k)

3 ) . (75)

Note that β  is a variable. If all the Part I encoded symbols are received intact

( β=0 ), the decoding complexity can be simplified to  O(k ) . On the other

hand, if none of the Part I encoded symbols can be used in sequential addition,

the decoding complexity will be O ( k3) .
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6.2.4 Decoding in Multipoint-to-Point Transmission Scenario

Unlike Chapter 5's systematic Random code, the receiver of SR code

has the ability to reconstruct the original message by receiving the encoded

symbols from multiple sources. We represent the message as  M k×l  and the

Stepping  code  generator  matrix  as  G step
k×k .  Instead  of  generating  the  Part  I

encoded symbols  with  G step
k×k  directly,  we  randomise  the  columns  of  the

generator matrix and denote the resulting generator matrix as ~G step
k×k . Then, the

Part I encoded symbols can be generated using  X step
k×l

=
~G step

k×k M k×l . Note that

such action will not affect the rankness of the matrix. Additionally, we assume

that the receiver can learn the random seed from the identities of the encoded

symbols. 

Say the receiver receives q  Part I encoded symbols from q  sources,

where q≥k . Assume that these received Part I encoded symbols appear to be

random from each other. Then, the receiver just needs to receive another extra

10 Part II encoded symbols from any source in order to achieve high PCD.

Note that the sequential addition is not applicable in this case as all the Part I

encoded symbols  are  generated  from different  sources.  Hence,  the original

message has to be reconstructed with Gaussian elimination.  The simulation

results of SR code in multipoint-to-point transmission paradigm are presented

in Figures 6.12 and 6.13.
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6.3 Numerical Result

The simulation consists of three components – sender, erasure channel

and receiver. The sender generates the generator row matrices in the encoding

process, the erasure channel decides whether a generator row matrix should be

dropped  according  to  the  channel  erasure  probability  ρ  and  the  receiver

attempts to inverse the generator matrix. Each simulation has been repeated

for 1000 times and the average results are presented in graphs. 

Figures 6.2 to 6.7 illustrate the performance of SR code, Random code

and  Windowed  code  (see  Section 3.4)  in  channel  of  erasure  probabilities

ρ=0.00  to  0.05.  In  general,  SR code  has  a  higher  PCD as  compared  to

Random  code  and  Windowed  code  using  the  same  amount  of  overhead

symbols. Particularly, Figure 6.2 demonstrates that SR code is the only coding

scheme that is able to achieve complete decoding with zero overhead symbols

in an ideal channel (i.e., ρ=0 ). Nevertheless, the disparity between SR code

and Random code becomes negligible when the channel erasure probability

increases.
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Figure 6.2: The performance of Random code, Windowed code and SR
code in the channels of channel erasure probability ρ=0.00  for message
of k=100  symbols.

Figure 6.3: The performance of Random code, Windowed code and SR code
in  the  channels  of  channel  erasure  probability  ρ=0.01  for  message  of
k=100  symbols. 
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Figure 6.4: The performance of Random code, Windowed code and SR code
in  the  channels  of  channel  erasure  probability  ρ=0.02  for  message  of
k=100  symbols.

Figure 6.5: The performance of Random code, Windowed code and SR code
in  the  channels  of  channel  erasure  probability  ρ=0.03  for  message  of
k=100  symbols.
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Figure 6.6: The performance of Random code, Windowed code and SR code
in  the  channels  of  channel  erasure  probability  ρ=0.04  for  message  of
k=100  symbols.

Figure 6.7: The performance of Random code, Windowed code and SR code
in  the  channels  of  channel  erasure  probability  ρ=0.05  for  message  of
k=100  symbols.
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We vary the channel erasure probabilities from  ρ=0.1  to 0.9 (very

lossy channel). The results are similar among all three and part of the results (

ρ=0.5  and  0.7 ) are presented in Figures  6.8 and  6.9. We have tested the

performance of SR code for messages of k=100 , 300, 500 and 1000 symbols

in channels of various channel erasure probabilities. The results are identical

and one of the results ρ=0.5  is shown in Figure 6.10. 

Figure 6.8: The performance of Random code, Windowed code and SR code
in  the  channels  of  channel  erasure  probability  ρ=0.5  for  message  of
k=100  symbols.
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Figure 6.9: The performance of Random code, Windowed code and SR code
in  the  channels  of  channel  erasure  probability  ρ=0.7  for  message  of
k=100  symbols.

Figure 6.10: The performance of SR code in the channels of channel erasure
probability ρ=0.5  for messages of length 100, 300, 500 and 1000 symbols.
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Figure  6.11 demonstrates  the  decoding  complexity  of  SR code  for

various  channel  erasure  probabilities.  In  the  simulation,  the  sender

continuously  generates  the encoded symbols  for  a  message  of  k=100

symbols and the receiver attempts to reconstruct the original messages with

sequential addition and Gaussian elimination. 

Figure  6.11:  Total  message  symbols  that  are  reconstructed  with  sequential
addition and Gaussian elimination in channels of various erasure probabilities.

In  the  channel  of  zero  or  near-zero  packet  loss  probability,  the

majority  of  the  message  symbols  can  be  reconstructed  with  sequential

addition.  For  example,  in  ρ=0.1  about  80  out  of  100  symbols  were

reconstructed  with  sequential  addition  and  only  about  20  symbols  (i.e.,

β=0.2 ) needed to be reconstructed using Gaussian elimination. However, as

the channel  erasure probability  increases,  the major  portion of the original

message will be reconstructed with Gaussian elimination. On the other hand,

in a very lossy channel ( p=0.9 ) SR code performs as good as Random code

and it uses Gaussian elimination to reconstruct the messages most of the time. 
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Figures  6.12 and  6.13 illustrate  the  performance  of  SR  code  in

multipoint-to-point  transmission  paradigm with erasure  probability  ρ=0.1 .

Receiving  Part  I encoded symbols  from  q=5 ,  10,  15  and  20  sources

randomly will form a nearly full rank matrix as depicted in Figure 6.12(a) for

message of k=10  symbols and (b) message of k=50  symbols. Additionally,

doubling  the  total  number  of  sources  (i.e.,  q=2k )  will  not  improve  the

rankness  further.  After  all,  the  Part  I encoded symbols  are  generated  with

Stepping code instead of Random code and the theorems in Sections 3.2 and

3.3 do not apply here (i.e., it is not able to achieve high PCD with k+10  Part

I encoded symbols). 

Additionally, Figure 6.13 (a) and (b) illustrate that SR code is able to

achieve high PCD by combining k  Part I encoded symbols and 10 extra Part

II encoded symbols  (i.e., total  of  k+10  Part  I-II encoded symbols)  for

messages  of  k=10  and  k=50  symbols.  Note  that,  SR  code  deploys

Gaussian elimination to reconstruct the original message in multipoint-to-point

transmission paradigm – it has the same decoding complexity as Random code

in this case.

6.4 Summary

In this  chapter, we have proposed a non-systematic  rateless erasure

code, namely Stepping-Random (SR) code that demonstrates better PCD and

decoding complexity as compared with Random code and Windowed code in

channels of zero or near zero erasure probability. Additionally, it has identical
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performance with Random code in a very lossy channel. Unlike the systematic

Random code, which was proposed in the previous chapter, SR code works in

multipoint-to-point transmission paradigm with the trade-off of non-negligible

decoding complexity even if all the Part I encoded symbols are received intact.
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(a)

(b)

Figure 6.12: The achievable rankness by selecting k  Part I encoded symbols
randomly  from various  number  of  sources  for  messages  of  (a)  k=10  (b)
k=50  symbols.
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(a)

(b)

Figure  6.13:  The  PCD  of  randomly  selected  k+10  Part  I-II encoded
symbols from various number of sources.
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CHAPTER 7

RATELESS ERASURE CODES IN GF(28)

This  chapter  extends  our  proposed  GF(2)  rateless  erasure  code  to

higher order of finite field for gains in PCD. Though these  GF(28) rateless

erasure codes are not the focus of the thesis, they are presented here in order to

demonstrate the potential in attaining better PCD performance than RaptorQ

code – a Raptor code variant that is built on the hybrid of GF(2) and GF(28).

7.1 Random Code in GF(2q)

Random code  is  the  basic  design  of  our  proposed  rateless  erasure

codes. In this section, we will first generalise Random code to GF(2q) and the

resulting PCD equation will be used in the rest of the proposed GF(2q) rateless

erasure  codes.  We start  the  explanation  by  first  restating  Lemma  3.3.1  in

GF(2q) as the following. 

Lemma 7.1.1. Given that a GF(2q) random matrix G (q ) ,(n−1 )×k  of dimensions

(n−1)×k  has rank (n−1) , where  0<n≤k . Then, the probability to attain

rank n  with an extra row is 

p(q )
(n ,k )=∏

i=1

n−1

(1−2q( i−k)
) . (76)

Proof. In GF(2q), a random vector g(q ) ,1×k  of k  elements has 2kq
−1  possible

combination,  excluding the vector of all zeros.  In order to have rank  n  in

G (q ) ,n× k ,  g(q ) ,1×k  must  be  independent  of  all  the  rows  in  the  previous
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G (q ) ,(n−1 )×k .  Therefore,  g(q )1×k  is  limited  to  τ
(q)

(n−1,k )  possible

combinations, where 

τ
(q)

(n−1,k ) = 2kq
−1−∑

i=1

n−1

( n−1
i )(2q

−1)
i

= 2kq
−1−[ (2q

)
(n−1)

−1 ]
= 2kq

−2q (n−1) ,

(77)

and (⋅⋅)  is the binomial coefficient. Then, the probability for G (q ) ,(n− 1)×k  to

attain rank n  with g(q ) ,1×k  is 

p(q )
(n ,k ) = p(q)

(n−1,k )×
τ

(q)
(n−1,k )

2kq

= p(q)
(n−2,k )×

τ
(q )

(n−2,k )

2kq ×
τ

(q)
(n−1,k )

2kq

=
τ

(q )
(1,k)

2kq
×

τ
(q)

(2,k )

2kq
×⋯×

τ
(q)

(n−1,k )

2kq

= ∏
i=1

n−1
τ

(q)
(i , k )

2kq

= ∏
i=1

n−1 ( 2kq−2qi )
2kq

= ∏
i=1

n−1

( 1−2q(i−k)) ,

(78)

■

Generally,  Lemma  3.3.1  uses  i−k  in  the  exponents,  i.e.,  2i−k  while  the

exponent in Eq. (78) is q (i−k )  – they share the same exponential form but in

different  constant,  q .  Next,  Lemmas  3.3.2  to  3.3.4  are  restated  in  the

followings without proof.

First, the probabilities of the last few ranks for random matrices of

different dimensions differ insignificantly as stated below.
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Lemma 7.1.2.   Let  m∈ℤ
+  and  0≤m<k .  The  probabilities  to  have  rank

k−m   in GF(2q) random matrices of dimensions  (k−m)×k  for different k

are similar, i.e.,   

| p(q )(k−m+1,k+1)−p(q)(k−m,k )|<δ , (79)

and δ→0  exponentially fast with finite and bounded increment k . 

Secondly, the transposition of the random matrices will not change the

rankness as stated below.

Lemma  7.1.3.  The  probabilities  to  have  rank  k−m  in  G (q ) ,(k –m )×k  and

G (q ) ,k×(k−m)  are identical.

In short, we have determined the probability to attain rank k−m  in

GF(2q)  random  matrix  G (q ) ,(k –m )×k  in  Lemma  7.1.1.  Then,  Lemma  7.1.2

shows that such probability varies insignificantly for any two GF(2q) random

matrices of different dimensions with increasing  k . Since the rankness will

not  change  with  transposition  (Lemma  7.1.3),  we  conclude  the  following

theorem: 

Theorem 7.1.4. The probabilities to have rank k  in GF(2q) random matrix of

dimensions (k+m)×k  for m≥0  is 

Pr ( rank (G (k+m )×k )=k ) = p(q)(k−m , k )

= ∏
i=1

k−m−1

(1−2q (i− k ))

= QRC
(q)

(m) ,

(80)
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Let  the  failure  probability  be  defined  as  Pfail=1−  QRC
(q )

(m) .  The

corresponding numerical  results  for  GF(2q)  random matrices  of  dimensions

100×100  with extra  rows are presented in Figure  7.1.  As to facilitate  the

representation of long numerical values, we state the failure probabilities in

the exponents of 10 throughout the rest of this chapter.

Overall,  the probabilities  improve significantly with higher  q .  For

example, the failure probabilities at zero and ten overhead symbols for GF(2)

are  10−0.1480  and  10−3.010 .  However,  in  GF(28)  the  failures  probabilities

improve to 10−2.407  and 10−26.49  respectively.
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Figure  7.1: The failure probabilities of GF(2q) random matrices at various
additional rows. 



7.2 Micro-Random Code in GF(2q)

Generally,   Micro-Random code  attains  higher  PCD than  Random

code by using the micro symbols  in  the encoding and decoding processes.

Revising Eq. (44), the PCD of GF(2q) Micro-Random code is expressed as 

QMRC
(q ) (m,α) = QRC

(q ) (αm)

= ∏
i=1

k−αm−1

(1−(2q
)
i−k ) .

(81)

and the failure probability is defined as pfail=1−QMRC
(q )

(m,α) .

The  failure  probabilities  of  GF(2q)  Micro-Random  code  with

increasing overhead symbols using α=10  are presented in Table 7.1 and the

corresponding graph in Figure  7.2.  Additionally, the failure probabilities of

GF(28)  Micro-Random code  at  various  α  are  presented  in  Table  7.2 and

graphed in Figure 7.3.
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Table 7.1: The failure probabilities of Micro-Random code at various GF(2q) and m
overhead symbols using α=10 .

GF(2)
m=0 10-0.1480 10-0.5066 10-0.8520 10-1.178 10-1.492 10-1.799 10-2.104 10-2.407

m=1 10-3.010 10-6.498 10-9.876 10-13.22 10-16.54 10-19.86 10-23.18 10-26.49

m=2 10-6.021 10-12.52 10-18.91 10-25.26 10-31.59 10-37.92 10-44.25 10-50.57

m=3 10-9.031 10-18.54 10-27.94 10-37.30 10-46.65 10-55.98 10-65.32 10-74.65

m=4 10-12.04 10-24.56 10-36.97 10-49.34 10-61.70 10-74.05 10-86.39 10-98.74

m=5 10-15.05 10-30.58 10-46.00 10-61.38 10-76.75 10-92.11 10-107.5 10-122.8

m=6 10-18.06 10-36.60 10-55.03 10-73.42 10-91.80 10-110.2 10-128.5 10-146.9

m=7 10-21.07 10-42.62 10-64.06 10-85.46 10-106.9 10-128.2 10-149.6 10-171.0

m=8 10-24.08 10-48.64 10-73.09 10-97.51 10-121.9 10-146.3 10-170.7 10-195.1

m=9 10-27.09 10-54.66 10-82.12 10-109.5 10-137.0 10-164.4 10-191.8 10-219.1

m=10 10-30.10 10-60.68 10-91.15 10-121.6 10-152.0 10-182.4 10-212.8 10-243.2

GF(22) GF(23) GF(24) GF(25) GF(26) GF(27) GF(28)



Figure  7.2:  The  failure  probabilities  of  GF(2q)  Micro-Random  code  at
increasing number of overhead symbols. 
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Table  7.2: The failure probabilities of GF(28) Micro-Random code at various
α  and overhead symbols, m .

α=1 α=2 α=4 α=6 α=8 α=10
 m=0 10 -2.407 10 -2.407 10 -2.407 10 -2.407 10 -2.407 10 -2.407

 m=1 10 -4.815 10 -7.223 10 -12.04 10 -16.86 10 -21.67 10 -26.49

 m=2 10 -7.223 10 -12.04 10 -21.67 10 -31.31 10 -40.94 10 -50.57

 m=3 10 -9.631 10 -16.86 10 -31.31 10 -45.75 10 -60.20 10 -74.65

 m=4 10 -12.04 10 -21.67 10 -40.94 10 -60.20 10 -79.47 10 -98.74

 m=5 10 -14.45 10 -26.49 10 -50.57 10 -74.65 10 -98.74 10 -122.8

 m=6 10 -16.86 10 -31.31 10 -60.20 10 -89.10 10 -118.0 10 -146.9

 m=7 10 -19.26 10 -36.12 10 -69.84 10 -103.6 10 -137.3 10 -171.0

 m=8 10 -21.67 10 -40.94 10 -79.47 10 -118.0 10 -156.5 10 -195.1

 m=9 10 -24.08 10 -45.75 10 -89.10 10 -132.5 10 -175.8 10 -219.1

 m=10 10 -26.49 10 -50.57 10 -98.74 10 -146.9 10 -195.1 10 -243.2



To find the PMF of each additional overhead symbols, we revise Eq.

(46) and (47) as

PMRC
(q )  =  QMRC

(q)
(m ,α)−QMRC

(q )
(m−1,α) , (82)

and 

PMRC
(q )

(0,α)  =  QMRC
(q)

(0,α) . (83)

Utilising them, the numerical values are presented in Table 7.3. 
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Figure 7.3: The failure probabilities of GF(28) micro Random code at various α
and overhead symbols, m .



Generally,  a  lower  failure  probability  is  achievable  with  higher

GF(2q), α  and m . The failure probability at zero overhead symbol improves

with increasing order of GF(2q) and is invariant to  α . Additionally, GF(28)

Micro-Random code achieves failure probabilities of 10−26.49  at one overhead

symbol,  10−50.57  at  two  overhead  symbols  and  10−243.2  at  ten  overhead

symbols. 

On that account, we improve the performance of SYSR code and SR

code in the following sections by replacing their Part II's  GF(2) Random code

with GF(28) Micro-Random code. 

7.3 Systematic  Micro-Random  Code  and  Stepping-Micro-Random  

Code in GF(28)

We improve  SYSR code  and  SR code  by  replacing  their  Part  II's

GF(2)  Random code  with  GF(28)  Micro-Random code  using  segmentation

factor  α=10 .  The resulting GF(28) codes are named as  systematic Micro-

Random  (SYSMR)  code and  Stepping-Micro-Random  (SMR)  code,
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Table  7.3:  The PMF and the  mean of GF(28)  micro  Random code at
various α .

α=1 α=2 α=4 α=6 α=8 α=10
 m=0 10-0.001706 10-0.001706 10-0.001706 10-0.001706 10-0.001706 10-0.001706

 m=1 10-2.408 10-2.407 10-2.407 10-2.407 10-2.407 10-2.407

 m=2 10-4.816 10-7.223 10-12.04 10-16.86 10-21.67 10-26.49

 m=3 10-7.225 10-12.04 10-21.67 10-31.31 10-40.94 10-50.57

 m=4 10-9.633 10-16.86 10-31.31 10-45.75 10-60.20 10-74.65

 m=5 10-12.04 10-21.67 10-40.94 10-60.20 10-79.47 10-98.74

 m=6 10-14.45 10-26.49 10-50.57 10-74.65 10-98.74 10-122.8

 m=7 10-16.86 10-31.31 10-60.20 10-89.10 10-118.0 10-146.9

 m=8 10-19.27 10-36.12 10-69.84 10-103.6 10-137.3 10-171.0

 m=9 10-21.67 10-40.94 10-79.47 10-118.0 10-156.5 10-195.1

 m=10 10-24.08 10-45.75 10-89.10 10-132.5 10-175.8 10-219.1

Mean 10-2.41 10-2.407 10-2.407 10-2.407 10-2.407 10-2.407



respectively. These codes will be compared with RaptorQ code, the variant of

Raptor code that is built on the hybrid of GF(2) and GF(28). In the following,

we will  study the failure  probabilities  of the proposed codes using various

overhead symbols and channel erasure probabilities analytically. 

By  replacing  the  GF(2)  Random code  with  GF(28)  Micro-Random

code (using α=10 ), the PCD of SYSR, i.e., Eq. (58) is revised to 

QSYSR
(q )

(m)=B(0, k ,ρ)  +  [1−B (0,k ,ρ)] QMRC
(q)

(m ,10) . (84)

According to Section 5.4, SR code has the similar PCD as SYSR code. Hence,

QSR
(q )

(m)≈QSYSR
(q)

(m) , (85)

the PCD analysis on SYSR code is applicable to SR code.

Defining failure probability as 1−QSYSRC
(q) (m) , the numerical results of

both  SYSMR  code  and  SMR  codes  at  m=0  to  3  overhead  symbols  in

channels  of  various  erasure  probabilities  are  presented  in  Table  7.4 and

graphed in Figure 7.4. Both of them achieve failure probability of 10−3.148  at

zero overhead symbol with  ρ=0.001  and it increases to  10−2.407  in a very

lossy channel (e.g., ρ=0.5 ). At one overhead symbol, both systematic Micro-

Random code and Stepping-Micro-Random code achieve much lower failure

probabilities,  i.e.,  10−27.23  and  10−26.49  with  ρ=0.001  and  ρ=0.5 ,

respectively. Two overhead symbols further improve the failure probabilities

to 10−51.31  and 10−50.57  with the aforementioned channel erasure probabilities

respectively.  Meanwhile,  they  require  zero  overhead  symbol  to  achieve

complete decoding when ρ  =  0 . 
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Note that the improvement is not significant as compared to GF(28)

Random code from ρ  = 10−1  to 10−3 (See Figure 7.1). However, as discussed

in Chapter 5 and 6, SYSMR code (SYSR code) and SMR code (SR code) have

relatively better decoding complexities due to its Part I encoded symbols.

 

Comparing with the reported numerical  results  of RaptorQ code in

Shokrollahi  and  Luby  (2011),  the  failure  probabilities  of  RaptorQ  code

fluctuate  at  about  the  same values  as  GF(28)  Random code,  i.e.,  10−2.407 ,

10−4.815  and 10−7.223  for zero, one and two overhead symbols, respectively as

shown in Figure  2.9 to  2.11 of Section  2.2.3. Comparatively, SYSMR code

SMR code have much more significant improvement in PCD starting at one

overhead symbol onwards. 
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Table  7.4: The failure probabilities of systematic Micro-Random code and
Stepping-Micro-Random  code  for  m  =  0  to  3  in  channel  of  various
erasure probabilities.

ρ=0.001 ρ=0.005 ρ=0.01 ρ=0.05 ρ=0.1 ρ=0.5
m=0 10-3.148 10-2.605 10-2.469 10-2.407 10-2.407 10-2.407

m=1 10-27.23 10-26.69 10-26.55 10-26.49 10-26.49 10-26.49

m=2 10-51.31 10-50.77 10-50.63 10-50.57 10-50.57 10-50.57

m=3 10-75.40 10-74.85 10-74.72 10-74.65 10-74.65 10-74.65
 



7.4 Conclusion

We generalise both Random code and Micro-Random code to GF(2q)

and construct  systematic  Micro-Random code and Stepping-Micro-Random

code on GF(28).  The  proposed GF(28)  rateless  erasure codes  have  a  much

lower failure probabilities than RaptorQ code,  i.e.,  10−26.49  and  10−50.57  at

one and two overhead symbols, respectively. They can be used in the networks

that  have  expensive  retransmission  cost.  For  example,  the  communications

between low-earth-orbit satellites and ground stations are short due to rapid

nodes  mobility   (i.e.,  satellites  move  out-of-sign  if  the  messages  are  not

delivered in time). Therefore, messages must be reconstructed with the least

overhead symbols and a very low failure probability. 
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Figure  7.4: The failure probabilities of GF(28) systematic Micro-Random code
and Stepping-Micro-Random code at overhead symbols of m=0  to 3 in channels
of various erasure probabilities.



CHAPTER 8

CONCLUSION AND FUTURE WORK

To address  the  need  in  transmitting  short  messages  with  rateless

erasure codes, we introduce Random code and propose its variants, namely

MR code,  SYSR code and SR code in the previous chapters.  This chapter

compares  their  performance  in  term  of  PCD,  decoding  complexities  and

applicable  transmission  scenarios  altogether  before  drawing  the  conclusion

and then discussing the future work.

8.1 Probability of Complete Decoding (PCD) and Overhead Symbols

The  required  overhead  symbols  to  achieve  high  PCD  (i.e.,  99.9%

success probability to reconstruct the original message) are different for each

proposed rateless erasure code. Referring to Table 8.1,  Random code requires

k+10  encoded symbols (i.e., ten overhead symbols) to achieve high PCD no

matter  whether  the  channel  is  ideal  or  lossy.  On  the  other  hand,  with  a

segmentation factor  α=10 , Micro-Random code achieves the high PCD at

k+1  encoded symbols.  On the other hand, both SYSR code and SR code

have better performance when the channel erasure probabilities are low. They

require zero  overhead symbol in an ideal channel. Like Random code, both

SYSR code and SR code require ten overhead symbols to achieve high PCD

when the channels are lossy.
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Table 8.1: The total required encoded symbols to achieve high PCD.

Ideal Channel Lossy Channel

Random Code

Micro-Random Code

Systematic Random Code k

Stepping-Random Code k

k + 10 k + 10

k + 1 k + 1

k + 10

k + 10

Table 8.2 illustrates the average number of encoded symbols for each

code to achieve complete decoding. On average, Random code requires 1.6

overhead symbols to achieve complete decoding, irrespective of the message

length as proven in Chapter 3. Micro-Random code outperforms Random code

by achieving complete decoding with an average of 0.7 overhead symbols in

both ideal and lossy channels. On the other hand, both SYSR code and SR

code achieve complete decoding with zero overhead symbol if all their Part I

encoded symbols  are  received  intact  in  the  ideal  channel.  They require  an

average  of  about  1.6 overhead encoded symbols  in  lossy channel  just  like

Random code.

Table  8.2:  The  average encoded symbols  to  achieve  complete
decoding for each of the coding schemes. 

Ideal Channel Lossy Channel

Random Code

Micro-Random Code

Systematic Random Code k

Stepping-Random Code k

k + 1.6 k + 1.6

k + 0.7 k + 0.7

k + 1.6

k + 1.6
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8.2 Decoding Complexity

The decoding complexity of each code is presented in Table 8.3. Both

Random  code  and  Micro-Random  code  requires  decoding  complexity  of

O(k3
)  in all the channel conditions – ideal and lossy. However, the analysis

in Section  4.3.3 has suggested that Micro-Random code uses more time in

reconstructing the original messages.

Generally, the decoding complexities of SYSR code and SR code vary

according  to  the  channel  conditions  (to  be  precise,  the  sequence  of  the

received  Part  I encoded symbols).  SYSR  code  reconstruct  the  original

message with negligible decoding complexity if all the Part I encoded symbols

are received intact, especially in an ideal channel condition or O(k3
)  in lossy

channel.  On  the  other  hand,  SR code  requires  O(k )  in  an  ideal  channel

condition and O(k3
)  if the channel is lossy.

Table  8.3:  The  decoding  complexity  for  each  coding  scheme  in  various
channel conditions.

Ideal Channel

Random Code

Micro-Random Code

Systematic Random Code Negligible

Stepping-Random Code

Very Lossy
Channel

O(k3) O(k3)

O((αk)3) O((αk)3)

O(k3)

O(k) O(k3)

8.3 Transmission Scenarios

The  transmission  scenarios  of  the  aforementioned  rateless  erasure

codes are summarised in Table 8.4. Random code and Micro-Random code are
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built on GF(2) random matrix. Hence, they are suitable for all the transmission

scenarios as all the received encoded symbols forms a random matrix after all. 

SYSR code  has  the  smallest  decoding  complexity  among  the  rest.

However, it  is  applicable only at  one-to-one and one-to-many transmission

scenarios.  The decoding complexity of SR code is  slightly  higher than SR

code but SR code works in all transmission scenarios that listed in Table 8.4. 

Table  8.4: The applicability for each rateless erasure code in various
transmission scenarios.

One-to-One One-to-Many Many-to-One

Random Code ✓ ✓ ✓

Micro-Random Code ✓ ✓ ✓

Systematic Random Code ✓ ✓ ✗

Stepping-Random Code ✓ ✓ ✓

8.4 Conclusion

The state-of-art rateless erasure codes are efficient for long messages

but  the  majority  of  the  network  traffic  are  short  messages  instead.  To

overcome  this  issue,  this  thesis  proposes  rateless  erasure  codes  that  are

efficient in transmitting short messages. 

Chapter 3's Random code is built on random matrix and it possesses a

high  decoding  complexity.  Nonetheless,  the  mathematical  theorems  in

Sections  3.2 and  3.3 assure that Random code is able to achieve high PCD

with  k+10  encoded symbols in transmitting both short and long messages
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and in both ideal and lossy channels. These mathematical theorems are the key

design to the rest of the proposed rateless erasure codes. 

Chapter  4's  Micro-Random code achieves  high  PCD at  only  k+1

encoded symbols but with the trade-off of higher decoding complexity than

Random code. Both SYSR code (Chapter 5) and SR code (Chapter 6) possess

lower decoding complexity depending on the channel conditions. In particular,

SYSR code has the lowest decoding complexity but it only works in one-to-

one or one-to-many transmission scenarios. Though the decoding complexity

of  SR code is  higher  than SYSR code,  it  is  applicable  to  all  transmission

scenarios. 

8.5 Future Work

In this section, we will  discuss some future work to implement the

proposed rateless erasure codes. 

8.5.1 Transmitting Long Messages with Short Rateless Erasure Code

Generally, short  rateless  erasure code can be used to  transmit  both

short and long messages. We can transmit a long message with short rateless

erasure code by segmenting the long message into multiple short messages

and  sending  their  respective encoded symbols  in  different  sessions.  To

illustrate the idea, say we intend to transmit a message of k=1,000  symbols

to a receiver  with Random code,  in which it  promises  high PCD with ten

overhead symbols.  In  this  case,  only  1%  redundant encoded symbols  is

introduced and the decoding inefficiency ϵ=0.01 .
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Assuming  the  receiver  is  a  resource-constrained  device.  Instead  of

processing the 1000 symbols at one time, we segment the message into 10

short messages of 100 symbols and initiate the transmission (encoding) in ten

sessions. Such a method requires less computational resources. However, ten

overhead symbols are required in each session in order to reconstruct each

short  message  with  high  PCD.  In  other  words,  a  total  of  10×10=100

overhead symbols are needed in transmitting a message of k=1000  symbols

(segmented  to  ten  short  messages)  with  Random  code.  The  decoding

inefficiency becomes relatively high, i.e., ϵ=0.1 . A novel method is required

to address this issue.

8.5.2 Protocol Design

In order for the short rateless erasure code to be deployed widely, we

need to incorporate the short rateless erasure code into the TCP with minimum

modification. We have listed a few issues in designing such protocol.

8.5.2.1  Computational Specification

As we have suggested in previous section, the short rateless erasure

code can be used to transmit the long messages. Therefore, both sender and

receiver need to exchange the information about the computational resources

during the initialization. For example, the receiver needs to specify the total

message symbols and symbol size to transmit the message with no coding.
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8.5.2.2 Delay Acknowledgement

Instead  of  acknowledging  each  received  packet,  the  receiver  can

acknowledge a group of them. This mechanism is commonly known as the

delay acknowledgement in TCP research communities.

 

The  delay  acknowledgement  influences  the  performance  of  the

rateless  erasure  code  aided  TCP.  The  over-frequent  acknowledgement

introduces  unnecessary  delay  to  the  network  communication.  In  contrast,

insufficient  acknowledgement  will  increase  the  communication  overhead

caused by the short rateless erasure code as the sender unintentionally send

excessive code symbols that may not be needed by the receiver. 

We suggest the receiver send the first acknowledgement when the first

50% of the encoded symbols received. The second acknowledgement should

be sent when 75% of the acknowledgement received. The frequency of the

acknowledgement  will  be  double  and  eventually  the  receiver  will

acknowledge  the  sender  for  every  last  few received encoded symbols.  We

leave the detailed study in future work. 
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