
RATELESS ERASURE CODES FOR SHORT
MESSAGES TRANSMISSION

CHONG ZAN KAI

DOCTOR OF PHILOSOPHY IN ENGINEERING
SCIENCE

LEE KONG CHIAN FACULTY OF ENGINEERING AND
SCIENCE

UNIVERSITI TUNKU ABDUL RAHMAN
MACRH 2016

RATELESS ERASURE CODES FOR SHORT MESSAGE
TRANSMISSION

By

CHONG ZAN KAI

A thesis submitted to the Department of Electrical and Electronic Engineering,
Lee Kong Chian Faculty of Engineering and Science,

Universiti Tunku Abdul Rahman,
in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Engineering
March 2016

To my beloved wife, daughter and family.

ii

ABSTRACT

Rateless erasure code is a type of error-correction code for erasure

channel. Given a message of k symbols, it generates potentially infinite

number of encoded symbols, which enables the receiver to reconstruct the

original message from any k (1+ϵ) coded symbols with high probability of

complete decoding (PCD), i.e., 99.9% success probability, where ϵ denotes

the decoding inefficiency.

Generally, the network traffic is dominated by short messages. The state-

of-art rateless erasure codes – LT code and Raptor code work efficiently only

for long messages. In response, this thesis proposes the rateless erasure codes

that are efficient in transmitting short messages. Our studies show that the

Random code – a rateless erasure code with generator matrix of randomly

distributed 0 and 1, is able to reconstruct both short and long messages from

any k+10 coded symbols with high PCD even for small k . Utilising the

invariant PCD of Random code over the message length, we propose Micro-

Random code with improved high PCD using only k+1 encoded symbols.

We also propose two pseudo-random codes that have better decoding

complexities, i.e., systematic Random code and Stepping-Random (SR) code.

If the first k encoded symbols are received intact, systematic Random code is

able to reconstruct the original message with negligible decoding complexity

while SR code requires O(k) instead. It is to be noted that, systematic

iii

Random code is only suitable for point-to-point and point-to-multipoint

transmissions while SR code works even in multipoint-to-point transmission.

iv

ACKNOWLEDGEMENT

I wish to express my gratitude to my supervisor, Prof. Goi Bok Min, co-

supervisor, Prof. Ewe Hong Tat, mentors Prof. Hiroyuki Ohsaki, and Dr.

Bryan Ng for their guidance. Their invaluable support and supervision have

enabled the timely completion of this work. I would like to extend my sincere

appreciation to many friends and lab members, to whom we have gone

through many difficulties for the past few years. Last but not least, I would

like to thank my parents for their understanding, my beautiful wife, Sophia

and my lovely daughter, Ning. They are my motivation to complete the work.

v

APPROVAL SHEET

This thesis entitled “RATELESS ERASURE CODES FOR SHORT

MESSAGE TRANSMISSION” was prepared by CHONG ZAN KAI and

submitted as partial fulfilment of the requirements for the degree of Doctor of

Philosophy in Engineering at Universiti Tunku Abdul Rahman.

Approved by:

(Prof. Ir. Dr. GOI BOK MIN) Date:…………………..
Professor/Supervisor
Department of Electrical and Electronic Engineering
Lee Kong Chian Faculty of Engineering Science
Universiti Tunku Abdul Rahman

(Prof. Dr. EWE HONG TAT) Date:…………………..
Professor/Co-supervisor
Department of Internet Engineering and Computer Science
Lee Kong Chian Faculty of Engineering Science
Universiti Tunku Abdul Rahman

vi

DECLARATION

I hereby declare that the thesis is based on my original work except for
quotations and citations which have been duly acknowledged. I also declare
that it has not been previously or concurrently submitted for any other degree
at UTAR or other institutions.

Name ____________________________
(CHONG ZAN KAI)

Date _____________________________

vii

TABLE OF CONTENTS

Page

ABSTRACT iii

ACKNOWLEDGEMENT v

APPROVAL SHEET vi

DECLARATION vii

LIST OF CONTENTS viii

LIST OF TABLES xii

LIST OF FIGURES xiv

LIST OF ABBREVIATIONS xviii

CHAPTER

1.0 INTRODUCTION 1

1.1 Error-Correction Code and Erasure Code 1

1.2 Emergence of Rateless Erasure Code 2

1.3 The Impact of Rateless Erasure Code to Network
 Revolution

4

 1.3.1 Transmission Control Protocol (TCP) 4

 1.3.2 Point-to-Multipoint and Multipoint-to-Point
 Transmissions

6

1.4 Rateless Erasure Code and Network Coding 7

1.5 Research Problem 8

1.6 Contribution and Outline 10

2.0 LITERATURE REVIEW 13

2.1 Fixed Rate Erasure Code 14

 2.1.2 Low Density Parity Check (LDPC) Code 14

 2.1.3 Tornado Code 16

2.2 Rateless Erasure Codes 18

 2.2.1 Luby Transform (LT) Code 19

 2.2.1.1 Encoding and Decoding Processes 19

 2.2.1.2 Degree Distribution 22

 2.2.2 Raptor Code 24

 2.2.3 RaptorQ Code 25

viii

2.3 Other Rateless Erasure Code for Short Message
 Transmission

27

2.5 Summary 29

3.0 RANDOM CODE 31

3.1 Random Matrix as Rateless Erasure Code 31

 3.1.1 Linear System and Rateless Erasure Code 31

 3.1.2 Random Code 32

 3.1.3 An Example of Encoding and Decoding Processes 35

3.2 Probability of Complete Decoding (PCD) for Long
 Messages

37

3.3 Probability of Complete Decoding (PCD) for Short
 Messages

39

3.4 Fixed Weight Random Code – Windowed Code 44

3.5 The Challenges of Random Code 46

4.0 MICRO-RANDOM CODE 47

4.1 High Decoding Inefficiency in Transmitting Short
 Message

47

4.2 Micro-Random Code 48

 4.2.1 Symbol Dimensioning in Brief 48

 4.2.2 Improving Decoding Inefficiency with Micro
 Symbols

48

4.3 Performance Analysis 52

 4.3.1 Probability of Complete Decoding (PCD) 53

 4.3.2 Expected Extra Coded Symbols 54

 4.3.3 Decoding Steps and Decoding Complexity 57

4.4 Simulation Results 57

4.5 Deploying Micro-Random Code in Resource-
 Constrained Devices

61

 4.5.1 Experiment Setting 62

 4.5.2 Experiment Result 63

4.6 Summary 64

ix

5.0 SYSTEMATIC RANDOM CODE 66

5.1 Systematic Rateless Erasure Code 66

5.2 Systematic Random Code 67

 5.2.1 Encoding Message 67

 5.2.2 Message Reconstruction 68

5.3 Performance Analysis 71

 5.3.1 Probability of Complete Decoding 71

 5.3.2 Decoding Algorithm of Random code 73

 5.3.3 Decoding Algorithm of SYSR Code 76

5.4 Numerical Result 79

5.5 Summary 82

6.0 STEPPING-RANDOM CODE 84

6.1 Non-Systematic Pseudo-Random Code 84

 6.1.1 Issues of SYSR Code in Multipoint-to-Point
 Transmission

84

 6.1.2 Stepping Code 86

 6.1.3 Stepping-Random (SR) Code 87

6.2 Message Reconstruction 88

 6.2.1 Decoding in Ideal Channel 89

 6.2.2 Decoding in Lossy Channel 90

 6.2.3 Decoding Complexity 93

 6.2.4 Decoding in Multipoint-to-Point Transmission
 Scenario

94

6.3 Numerical Result 95

6.4 Summary 102

7.0 RATELESS ERASURE CODES IN GF(28) 106

7.1 Random Code in GF(2q) 106

7.2 Micro-Random Code in GF(2q) 110

7.3 Systematic Micro-Random Code and Stepping-Micro-
 Random Code in GF(28)

113

7.4 Conclusion 116

x

8.0 CONCLUSION AND FUTURE WORK 117

8.1 Probability of Complete Decoding (PCD) and Overhead
 Symbols

117

8.2 Decoding Complexity 119

8.3 Transmission Scenarios 119

8.4 Conclusion 120

8.5 Future Work 121

 8.5.1 Transmitting Long Message with Short Rateless
 Erasure Code

121

 8.5.2 Protocol Design 122

 8.5.2.1 Computational Specification 122

 8.5.2.2 Delay Acknowledgement 123

BIBLOGRAPHY 124

ACHIEVEMENT 132

xi

LIST OF TABLES

Table Page

3.1 The probability (CDF and PMF) for a random
matrix to achieve complete decoding with m
additional rows.

40

3.2 The probabilities of having the last ten rank
numbers for k−m=20 and k−m=30 and k is
fixed as 30.

42

4.1 The PCD of micro Random code, QmRC(m,α) for
various m and α .

56

4.2 The PMF of micro-Random code for various
overhead symbols m , segmentation factor α and
the expected value.

57

5.1 The PCD of SYSR code for k=10 and 50 76

5.2 The expected overhead symbols to achieve
complete decoding in SYSR code for increasing k
and ρ .

76

7.1 The failure probabilities of Micro-Random code at
various GF(2q) and m overhead symbols using
α=10 .

115

7.2 The failure probabilities of GF(28) Micro-Random
code at various α and overhead symbols, m .

116

7.3 The PMF and the mean of GF(28) Micro Random
code at various α .

118

7.4 The failure probabilities of systematic Micro-
Random code and Stepping-Micro-Random code
for m=0 to 3 in channel of various erasure
probabilities.

120

8.1 The total required coded symbols to achieve high
PCD for each of the coding scheme.

124

xii

8.2 The average coded symbols to achieve complete
decoding for each of the coding schemes.

124

8.3 The decoding complexity for each coding scheme
in various channel conditions.

125

8.4 The applicability for each coding scheme in
various transmission scenarios.

126

xiii

LIST OF FIGURES

Figures Page

1.1 BEC. 1

1.2 The encoding and decoding processes of a typical
erasure codes.

2

1.3 The encoding and decoding processes of rateless
erasure codes.

4

1.4 TCP flow diagram. 5

1.5 (a) Point-to-multipoint transmission and (b)
multipoint-to-point transmission.

7

1.6 Distribution of flow size of CAIDA and
CERNET.

10

2.1 Category of erasure codes. 14

2.2 The message-passing algorithm reconstructs the
erased bits in two iterations.

16

2.3 (a) Encoding process and (b) decoding processes
process of Tornado code.

18

2.4 Tornado code in bipartite graph of multiple
cascaded layers.

19

2.5 Example of LT decoding process. 22

2.6 Ideal Soliton distribution for k=100 . 24

2.7 Robust Soliton distribution for k=100 . 25

2.8 Bipartite graph of Raptor code. 26

xiv

2.9 The failure probabilities of RaptorQ code at zero
overhead symbol for (a) ρ=0.1 and (b) ρ=0.5 .

28

2.10 The failure probabilities of RaptorQ code at one
overhead symbol for (a) ρ=0.1 and (b) ρ=0.5 .

28

2.11 The failure probabilities of RaptorQ code at two
overhead symbol for (a) ρ=0.1 and (b) ρ=0.5 .

28

4.1 The encoding process of Micro-Random code. 52

4.2 The decoding process of Micro-Random code. 54

4.3 PCD for messages of (a) k=10 and (b) k=100
symbols for various extra coded symbols and
segmentation factor α .

62

4.4 The expected number of extra coded symbols for
messages of k=10 symbols to achieve complete
decoding for various segmentation factor α .

63

4.5 The average decoding time needed to reconstruct
the original message that encoded with Micro-
Random code.

64

4.6 The screen-shot of QPython running in Alcatel
OT.

66

4.7 The average decoding time of micro-Random
code running on Android devices for messages of
(a) 2,000 bytes, and (b) 5,000 bytes.

68

5.1 The encoding and decoding processes of
systematic rateless erasure code.

70

5.2 The flow chart of Random code to form upper
triangular matrix.

79

5.3 The flow chart for SYSR code to form upper
triangular matrix.

81

xv

5.4 The PCD of Random code, SYSR code and SR
code for messages of symbols in channels of
various erasure probabilities.

84

5.5 The average overhead symbols for SYSR code to
achieve complete decoding in channels of various
erasure probabilities.

85

5.6 The average XOR row operations for Random
code, SYSR code and SR code to form (a) upper
triangular matrix, and (b) backward substitution
in channels of increasing erasure probabilities.

87

6.1 Multipoint-to-point transmission. 89

6.2 The performance of Random code, Windowed
code and SR code in the channels of channel
erasure probability ρ=0.00 for message of
k=100 symbols.

101

6.3 The performance of Random code, Windowed
code and SR code in the channels of channel
erasure probability ρ=0.01 for message of
k=100 symbols.

101

6.4 The performance of Random code, Windowed
code and SR code in the channels of channel
erasure probability ρ=0.02 for message of
k=100 symbols.

102

6.5 The performance of Random code, Windowed
code and SR code in the channels of channel
erasure probability ρ=0.03 for message of
k=100 symbols.

102

6.6 The performance of Random code, Windowed
code and SR code in the channels of channel
erasure probability ρ=0.04 for message of
k=100 symbols.

103

6.7 The performance of Random code, Windowed
code and SR code in the channels of channel
erasure probability ρ=0.05 for message of
k=100 symbols.

103

xvi

6.8 The performance of Random code, Windowed
code and SR code in the channels of channel
erasure probability ρ=0.5 for message of
k=100 symbols.

104

6.9 The performance of Random code, Windowed
code and SR code in the channels of channel
erasure probability ρ=0.7 for message of
k=100 symbols.

105

6.10 The performance of SR code in the channels of
channel erasure probability ρ=0.5 for messages
of length 100, 300, 500 and 1000 symbols.

105

6.11 Total message symbols that are reconstructed
with sequential addition and Gaussian elimination
in channels of various of erasure probabilities.

106

6.12 The achievable rankness by selecting k Part I
coded symbols randomly from various number of
sources for messages of (a) k=10 (b) k=50
symbols.

109

6.13 The PCD of randomly selected k+10 Part I-II
coded symbols from various number of sources.

110

7.1 The failure probabilities of GF(2q) random
matrices at various additional rows.

114

7.2 The failure probabilities of GF(2q) Micro-
Random code at increasing number of overhead
symbols.

116

7.3 The failure probabilities of GF(28) micro
Random code at various α and overhead
symbols, m .

117

7.4 The failure probabilities of GF(28) systematic
Micro-Random code and Stepping-Micro-
Random code at overhead symbols of m=0 to 3
in channels of various erasure probabilities.

121

xvii

LIST OF ABBREVIATIONS

BEC Binary erasure channel

BSC Binary symmetric channel

CDF Cumulative density function

CRC Cyclic redundancy check

MR Code Micro-Random Code

PCD Probability of complete decoding

PMF Probability mass function

SMR Code Stepping-Micro-Random Code

SR Code Stepping-Random code

SYSR Code Systematic Random Code

SYSMR Code Systematic Micro-Random Code

TCP Transmission control protocol

xviii

CHAPTER 1

INTRODUCTION

This chapter introduces the rateless erasure codes and their impact to

the network evolution. Then, issues will be discussed before forming the

research problem. The thesis outline and contributions will be presented at the

end of the chapter.

1.1 Erasure Code

Binary erasure channel (BEC) is a communication model, where each

input bit has an equal probability ρ of erasure as shown in Figure 1.1 and ρ

is also known as the channel erasure probability. Such channel is common in

the Internet, where the packets are dropped due to Cyclic Redundancy Code

(CRC) checking failure (packet error) or network congestion.

Figure 1.1: BEC.

Generally, the erasure code is an error-correction code for BEC.

Given a message of k symbols (symbol is a sequence of bits), the erasure

code generates n encoded symbols, where n>k . Correspondingly, one can

reconstruct the original message with any k out of n encoded symbols,

irrespective of the sequence as shown in Figure 1.2. Note that the blank circles

1

in the figure denote the message symbols and the hatched circles are the

encoded symbols. The ratio k /n is also known as the code rate.

Erasure codes such as Reed-Muller code have been deployed in

spacecraft and Reed-Solomon code in compact discs and digital

communication (Reed, 2000; Wicker and Bhargava, 1999). For the past

decades, the application of erasure codes has been studied in computer

networks (Rizzo, 1997; McAuley, 1990), wireless sensor networks (Kim et al.,

2004; Wen et al., 2007) and other wireless networks (Wang et al., 2005), etc.

Original Message

Coded Symbols

Received Coded
Symbols

Reconstructed
Message

X X X XErasure Channel

Encoder

Decoder

Figure 1.2: The encoding and decoding processes of typical erasure
codes.

1.2 Emergence of Rateless Erasure Codes

Generally, the erasure codes in Section 1.1 do not generate the

encoded symbols dynamically. Given a message of k symbols, the sender

needs to pre-determine the total encoded symbols n to generate wisely such

that at least k encoded symbols are received by the receiver. Basically,

addressing the problem with a large n value is undesirable as it wastes the

computational resource if the channel erasure probability ρ is overestimated.

2

Moreover, the estimation is difficult in wireless networks, where ρ may

change drastically over a short time.

To address the inflexibility in erasure codes, Byers et al. (1998)

proposed rateless erasure codes (in the name of digital fountain codes), where

a message of k symbols is encoded into a potentially infinite number of

encoded symbols. Then, the receiver reconstructs the original message from

any k (1+ϵ) encoded symbols, where ϵ∈ℝ denotes the decoding

inefficiency and ϵ≥0 as shown in Figure 1.3. As compared to the erasure

codes in Section 1.1, the correct estimation of the channel erasure probability

is unnecessary. The sender may keep generating the encoded symbols until the

receiver has sufficient encoded symbols (i.e., k (1+ϵ)) to reconstruct the

original message.

Original Message

Coded Symbols

Received Coded
Symbols

Reconstructed
Message

XErasure Channel

Encoder

Decoder

Figure 1.3: The encoding and decoding processes of rateless erasure
codes.

3

1.3 The Impact of Rateless Erasure Codes to Network Revolution

This section discusses the varying impacts of rateless erasure codes to

the networks in brief.

1.3.1 Transmission Control Protocol (TCP)

Transmission Control Protocol (TCP) is a common transport layer

protocol in the Internet. It ensures the reliable packets delivery based on the

following control mechanisms:

• Flow control – it limits the transmission rate based on advertised

window.

• Sequence control – it ensures the packets are delivered in order based

on packet acknowledgement.

• Error control – it detects the error packets based on checksum and lost

packets are retransmitted.

• Congestion control – it adapts to the available capacity with

appropriate transmission rate.

4

 Figure 1.4: TCP flow diagram.

Figure 1.4 explains the transmission mechanism of TCP. Initially, the

sender sends the message at a minimum rate. Whenever a packet is sent, an

acknowledgement is expected from the receiver as the signal of successful

delivery and then the transmission rate will be increased. Any

unacknowledged packet will be retransmitted after the time-out period with

the transmission rate halved. This process continues until all the packets have

been delivered successfully. Note that all the packets must be delivered in

order sequence. Any out-of-sequence packet is considered a packet loss event

and the sender has to retransmit from the last acknowledged packet.

The aforementioned transmission mechanism can be simplified with

the emergence of rateless erasure codes. Instead of identifying and

retransmitting the lost packets, the rateless erasure codes enable TCP to

reconstruct the message from any packets irrespective of the sequence, as

demonstrated in Botos et al. (2010), Molnár et al. (2013), Molnár et al. (2014)

and Móczár et al.(2014).

5

Generally, TCP attempts to utilise the available bandwidth without

overwhelming the networks with excessive packets. Taking a different

perspective, Raghavan and Snoeren (2006) argue that network congestion may

not be as bad as we think. By assuming the existence of perfect rateless

erasure codes, the authors suggest that every user will have fair use of

bandwidth and no complicated congestion avoidance algorithm is required.

The idea is further studied by Bonald et al. (2009), Chong et al.

(2012a, 2012b) and even adopted by Global Environment for Network

Innovations (GENI) in designing future network architecture (Clark et al.,

2007). Their counter-intuitive results dispute the common belief that a network

will fall into congestion collapse without congestion control.

1.3.2 Point-to-Multipoint and Multipoint-to-Point Transmissions

Consider the case, where a sender intends to transmit a message to a

large group of receivers in the networks as shown in Figure 1.5(a). Since each

channel has different erasure probability, the sender will be flooded with

acknowledgements from the receivers for different sequence of packets. Such

phenomenon is commonly known as feedback explosion. Rateless erasure

codes address this issue effectively as demonstrated by Abdullah et al. (2011),

Mammi et al. (2011), Du et al. (2013) and Abdullah et al. (2013).

6

Additionally, rateless erasure codes also enable a message to be

received from multiple sources at the same time as shown in Figure 1.5(b)

(Zhu et al. 2010; Qadri et al., 2010; Bursalioglu et al.,2011).

(a) (b)

Figure 1.5: (a) Point-to-multipoint transmission and (b) multipoint-to-
point transmission.

1.4 Rateless Erasure Codes and Network Coding

Ahlswede et al. (2000) presented a perspective-changing seminar

article detailing network coding. Generally, both rateless erasure codes and

network coding share many similarities as they provide reliable data transfer

with coding theory. Rateless erasure codes require nodes at only two ends (i.e.,

sender and receiver) to perform the encoding and decoding processes. On the

other hand, network coding needs intermediate nodes, source and sink to run

the coding operations. Due to that, network coding is found naturally in

networks that require persistent cooperation among the nodes, e.g., wireless

sensor networks (Ou et al., 2012; Rout and Ghosh, 2013), wireless ad hoc

networks (Mehta and Narmawala, 2012; Ebrahimi-Ghiri and Keshavarz-

Haddad, 2013), delay-tolerant networks (Zeng et al., 2012; Sheu et al., 2013),

etc.

7

Although the development of the Internet is much influenced by the

end-to-end argument of Saltzer et al. (1984) (i.e., the network design should be

kept simple while leaving the core functions at the both ends), the dispute has

never stopped and we need a better Internet that meets the challenge of future

demand (Blumenthal et al., 2001; Moors, 2002). Many research projects have

been carried out to study the clean slate design of the future Internet

(Feldmann, 2007; Pan et al., 2011; Fisher, 2014), and resulted in the

development of future Internet testbeds like GENI (Berman et al., 2014) and

FIRE (Schwerdel et al., 2014), Information-Centric Networking (ICN)

(Ahlgren et al., 2012; Xylomenos et al., 2013), network encoded TCP

(Sundararajan et al., 2011; Kim et al., 2011; Chen et al., 2012), etc.

No one knows if the future Internet will be totally different from

today's host-centric communication model. Therefore, in this thesis we use

rateless erasure codes in providing reliable data transmission, rather than using

the network coding method.

1.5 Research Problem

We review the existing characteristics of the current network traffic

before forming the research problem.

Generally, the network traffic characteristics change as computer

technology advances. Zhang and Qiu (2000) observe that the Internet traffic is

8

dominated by small messages of 10-20 kbytes, but the large portion of

bandwidth is consumed by traffic of long messages, which is in the minority.

After two years, Brownlee et al. (2002) discovered that the average message

size has increased to 50 kbytes. Following that, Benson et al. (2010)

discovered that 80% of the messages in the data centres are smaller than 10

kbytes. Most of the packet size are either in the range of 200 bytes or 1.4

kbytes.

Figure 1.6: Distribution of flow size of CAIDA and CERNET from Zhang and
Ding (2012).

Recently, Zhang and Ding (2012) discovered that 90% of the

messages in China Education and Research Network (CERNET) are not larger

than 7 kbytes and 80% of them less than 10 packets as shown in Figure 1.6.

Additionally, 90% of messages are less than 2 kbytes in the Center for Applied

Internet Data Analysis (CAIDA) and 80% of them are not larger than 5

packets.

9

We learn two things from the aforementioned observations on network

characteristics. First, the Internet traffic changes insignificantly for the past 10

years. Second, the majority of the messages are transmitted in less than 10

packets.

We assume that the symbol size can occupy the maximum payload of

the packet and the symbol size of l bits implies the symbol is the

concatenation of multiple of 1 bit. For clarity, we consider messages of less

than 500 symbols as short messages and those greater as long messages in the

thesis. Generally, the state-of-the-art rateless erasure codes (e.g., LT code and

Raptor code in Section 2.2) require short overhead symbols (i.e., k ϵ) in

transmitting long messages and they cater to the needs of a minor group of

network users. Hence, we define the research problem of the thesis as the

following:

“To design GF(2) rateless erasure codes that achieve high PCD with short

overhead symbols.”

1.6 Contribution and Outline

In this chapter, we have introduced rateless erasure codes and

discussed their potential to revolutionise the traditional reliable transmission

approach. Nonetheless, rateless erasure codes are not widely deployed in the

Internet due to the state-of-the-art rateless erasure codes being only efficient in

transmitting long messages and the majority of the network traffic are short

messages instead.

10

To highlight the research problem, we review the state-of-the-art

rateless erasure codes for both long and short messages in Chapter 2. Most of

the short rateless erasure codes are derived from the LT code, in which they

obtain better performance by optimising the degree distribution.

Taking a different approach, we utilise the mathematical properties of

Random code in designing short rateless erasure codes. Chapter 3 introduces

Random code, a rateless erasure code with a generator matrix of random

distributed binary values. Given a message of k symbols, Kolchin's theorem

shows that Random code (random matrix) is able to achieve a high probability

of complete decoding (PCD), i.e., a 99.9% success probability to reconstruct

the original message with k+10 encoded symbols for a long message. To

demonstrate the applicability in transmitting short messages, we prove that the

high PCD persists for short message as well. We will use these theorems to

construct short rateless erasure codes in the later chapters.

The unique decoding capability of Random code appears to be

inefficient for a very short message, e.g., k=10 symbols. In this case, it

requires k+10=20 encoded symbols to achieve high PCD – that is double of

the total original message symbols. To address the issue, Chapter 4 proposes

Micro-Random code, a variation of Random code that achieves high PCD with

k+1 encoded symbols by dimensioning the symbol size appropriately before

and after the encoder and decoder. Such gain is obtained with the trade-off of

high decoding complexity and more decoding steps.

11

In order to simplify the decoding complexity, Chapter 5 proposes the

systematic Random code that reconstructs original message with negligible

decoding complexity when the first k encoded symbols are received intact.

High PCD can be obtained with k+10 encoded symbols in lossy channel.

Chapter 6 proposes Stepping-Random (SR) Code that works in point-

to-point, point-to-multipoint and multipoint-to-point transmission scenarios. It

has the decoding complexity of O(k) if the first k encoded symbols are

received intact. Like systematic Random code, SR code requires a total of

k+10 encoded symbols in lossy channel with decoding complexity of

O(k3
) .

In Chapter 7, we extend the proposed GF(2) rateless erasure codes to

higher order in order to compare with RaptorQ code, a variant of Raptor code

that is built on the hybrid of GF(2) and GF(28). Note that, the focus of the

thesis is still on GF(2) and this chapter demonstrates the strength of our

rateless erasure codes in higher order finite field.

In Chapter 8, we discuss the performance of the proposed GF(2)

rateless erasure codes from different aspects. Finally, we draw a conclusion

and discuss the future work.

12

CHAPTER 2

LITERATURE REVIEW

This chapter reviews the fixed rate erasure codes and the state-of-the-

art rateless erasure codes that are efficient in transmitting short messages or

long messages, or both. The corresponding category can be found in Figure

2.1.

13

Figure 2.1: Category of erasure codes.

2.1 Fixed Rate Erasure Codes

Given a message of k symbols, a fixed rate erasure code generates n

encoded symbols, where n>k . Then, the original message can be

reconstructed with any k out of n encoded symbols and n−k is also known

as overhead symbols. As the number of generated encoded symbols, n has to

be pre-determined, this type of erasure codes is also known as fixed rate

erasure codes. Generally, a systematic erasure code uses the original message

symbols as part of the encoded symbols. Otherwise, it is called non-systematic

erasure code.

2.1.1 Low Density Parity Check (LDPC) Code

Low-Density Parity-Check (LDPC) code is an error-correction code

that was first proposed by Gallager (1962). His coding scheme, which is

known as Gallager Code, was found to be impractical to the computational

technologies at that time. The code has been neglected for decades until

McKay and Neal (1995) rediscovered it as LDPC code.

Generally, LDPC code contains a very low ratio of non-zero entries.

The sparsity enables LDPC code to reconstruct a message with message-

passing algorithm, where the decoding complexity is linear with increased

message size, k . An example of reconstructing a message with message-

passing algorithm is presented in a Tanner graph in Figure Error: Reference

source not found (a). The message bits are the circles at the bottom, where

three of them are erased (denoted as e). The constraints are represented by

14

the squares at the top of the figure, and they constrain the summation of all the

connected nodes to be value 0.

(a) (b)

(c) (d)

(e)
Figure 2.2: The message-passing algorithm reconstructs the erased bits in two
iterations.

Initially, all message bits send their respective values to each of their

connected constraints (Figure 2.2 (b)). The values are either 0, 1 or e . If a

constraint receives only a single e among the neighbouring message bits,

then the value of e can be determined instantly. For example, the constraint

15

c1 receives (0,0, e) from the connected message bits (x1,x2, x4) . Therefore,

it deduces the value of x4 to be 0 (Figure 2.2 (c)). The same principle applies

to c2 , where it determines x5 to be 1 based on the values from x2 and x3 .

Note that the value of x6 cannot be determined in current state because c4

receives two e from x3 and x5 . The process is repeated until all the erased

bits are recovered, or maximum iterations have been attempted.

2.1.2 Tornado Code

Tornado code (Luby et al., 2001) is the preliminary design of the

state-of-the-art rateless erasure code – Luby Transform (LT) Code, which we

will review in a later section. The encoding and decoding processes of

Tornado code can be explained with the bipartite graph that is shown in Figure

2.3. The k circles on the left columns are the message bits and βk check bits

are shown on the right hand side, where 0<β<1 . Note that the check bits are

presented by square symbols in some papers.

The encoding and decoding processes is similar to the message-

passing algorithm in Section 2.1.1. Set each check bit to be the XOR of all the

neighbouring message bits. Then, all the message bits and the check bits are

sent to the receiver. For example, in Figure 2.3(a) the value of c1 is the sum

module-2 of x1 and x2 and the missing bit x3 can be reconstructed with

c1+ x1+x2 as shown in Figure 2.3(b).

16

(a) (b)

Figure 2.3: (a) Encoding process and (b) decoding process of Tornado code.
Figure from Luby et al. (2001).

Tornado code employs multi-layer bipartite graph as shown in Figure

2.4. Generally, the encoder generates βk check bits from k message bits,

denoting them as layer-1 check bits. Then, the process is repeated again to

generate β
2k check bits (layer 2) from the layer 1 check bits. The process is

repeated continuously until the final layer, where a conventional erasure code

is used.

17

Figure 2.4: Tornado code in bipartite graph of multiple cascaded
layers (Figure from Luby et al. 2001).

2.2 Rateless Erasure Codes

The fixed rate erasure codes in Section 2.1 require prior knowledge of

the channel condition such that the sender generates sufficient encoded

symbols to the receiver. Byers et al. (1998) proposed the idea of rateless

erasure codes, where a potentially infinite number of encoded symbols are

generated from a message of k symbols. Then, one may reconstruct the

original message from any n encoded symbols with high success probability,

where

n=k (1+ϵ) , (1)
ϵ denotes the decoding inefficiency and k ϵ the overhead symbols. The state-

of-the-art rateless erasure codes are presented in the following section.

18

2.2.1 Luby Transform (LT) Code

 Luby (2002) proposed the first practical rateless erasure (digital

fountain code), namely Luby Transform (LT) code. It has a well designed

degree distribution that optimises the encoding and decoding complexities.

2.2.1.1 Encoding and Decoding Processes

LT code generates the encoded symbols by selecting the degree d

randomly from the degree distribution. Next, we select d distinct message

symbols at random, add them together (XOR operation) and an encoded

symbol of degree d is generated. For example, given a message of k=10

symbols, i.e., M=(m0,m1,… ,m9) and a degree d=3 is chosen from a degree

distribution. Then, three unique message symbols are chosen from M

randomly to produce an encoded symbol x0 , where x0=mi⊕m j⊕mk and

i≠ j≠k .

Representing the encoded symbols and message symbols in bipartite

graph, the original message can be reconstructed in the following steps.

• Step 1: All the degree one encoded symbols propagate their values to

their connected message symbols respectively.

• Step 2: The connections between these degree one encoded symbols

and the respective message symbols are removed.

• Step 3: The message symbols that are involved in Steps 1 and 2 will

hold the latest values and then further propagate the latest values to all

their connected encoded symbols respectively.

19

• Step 4: The encoded symbols that are involved in Step 3 will update

their own values with the received values (XOR operation)

respectively.

• Step 5: The connections that are involved in Steps 3 and 4 are

removed.

• Step 6: Repeat from Step 1 until all the message symbols have been

reconstructed.

Figure 2.5 demonstrates the decoding process. The message has three

symbols – m0 , m1 and m2 , in which they are located at the top of the

bipartite graph in circle (see Figure 2.5(a)) and their values are unknown. The

square (i.e., c0 , c1 , c2 and c3) at the bottom are the received encoded

symbols of values 1, 0, 1 and 1, respectively. The c0 is a degree one encoded

symbol that links with m0 and c1 is a degree three encoded symbols that

links with all three message symbols. Both c2 and c3 are degree two encoded

symbols, in which their connections can be learned from the bipartite graph.

(a) (b)

20

(c) (d)

(e) (f)

Figure 2.5: Example of LT decoding process.

We have a degree one encoded symbol (i.e., c0) that links with m0

(Step 1). Then, c0 propagates its value directly to its neighbour and the

corresponding connection is removed (Step 2). Then, m0 propagates its new

value to c1 and c3 (Step 3), where c1←c1⊕m0 and c3←c3⊕m0 (Step 4, see

Figure 2.5(b)). Then, the corresponding connections are removed (Step 5). As

a result, we have a new degree one encoded symbol (i.e., c3) that links with

m1 . Repeating from Step 1 – the c3 propagates its value to its neighbour,

updating the new value and removing the corresponding connection (see

Figure 2.5(c)). Then, m1 propagates the new value to the connected encoded

symbols (i.e., c1 and c2 in Figure 2.5(d)). This process continues until all the

21

values of the message symbols have been reconstructed (see Figure 2.5(e) and

(f)).

2.2.1.2 Degree Distribution

The number of degree one encoded symbols in the each decoding

iteration is termed as “ripple”. The performance of LT code relies on the

careful design of degree distribution, where there must be at least a degree one

encoded symbol in the ripple. At the same time, the ripple size must be kept

small to minimize the decoding complexity.

Luby proposes the Ideal Soliton distribution, ρ (d) that fulfils the

aforementioned requirements, where

ρ(d)={
1/k for d=1
1

d (d−1)
for d=2,3,… , k ,

(2)

d denotes the degree and k the total message symbols.

Figure 2.6: Ideal Soliton distribution for k=100 .

22

The example of the Ideal Soliton degree distribution is presented in

Figure 2.6 for k=100 with degree d>50 truncated due to the probabilities

approaching zero. As observed, the Ideal Soliton degree distribution has the

highest probability for degree two encoded symbols and the probability

gradually reduces as the degree increases. A small probability is assigned to

degree one encoded symbols in order to kick-start the decoding process (note

that the decoding process requires degree one encoded symbol to initiate, see

Section 2.2.1.1).

Generally, the Ideal Soliton distribution is susceptible to the channel

erasure probability. A small variation in the degree distribution will cause

ripple flats (zero degree one encoded symbol) in the middle of the decoding

process. In response, Luby proposed the Robust Soliton distribution μ(d) ,

where

μ(d)=
ρ (d)+τ(d)

β
, (3)

for d=1,2,… , k , β=∑d=1

k
(ρ(d)+τ(d)) , R=c ln (k /δ)√ (k) and

τ(d)={
R
dk

for d=1,… , k /R−1

R ln (R/δ)/k for d=k /R
0 for i=k /R+1,… , k

, (4)

for some constant c>0 and success probability 1−δ .

23

Figure 2.7: Robust Soliton distribution for k=100 .

An example of Robust Soliton degree distribution for k=100 , c=1

and 1−δ=0.95 is presented in Figure 2.7. Note that the probability of degree

one encoded symbol has been increased.

2.2.2 Raptor Code

The aforementioned LT code requires decoding complexity of

O(k log(k /δ)) to reconstruct the original message of k symbols with

success probability 1−δ . Shokrollahi (2006) further improved the decoding

complexity to O (k log(1 /ϵ)) by pre-coding the message in his Raptor Code.

24

Let the original message be M and the pre-code's encoded symbols

be M ' . Correspondingly, we do not need to reconstruct every symbol of the

original message but only a portion of M ' . For example, the message bits

(the squares in the top row) in Figure 2.8 bipartite graph are precoded with

systematic erasure code and mapped to precoded message bits in the second

row. Then, they are encoded with LT code to produce the final encoded bits in

the last row.

Raptor code has excellence performance in transmitting long

messages, i.e., decoding inefficiency of ϵ≈0.03 for k=100,000 symbols and

ϵ≈0.04 for k=65,535 symbols. However, there is no reported result for

messages of less than 1,000 symbols.

2.2.3 RaptorQ Code

RaptorQ code (or RaptorQ) is a variant of systematic Raptor code that

is patented by Qualcomm and is constructed based on the hybrid of both

GF(2) and GF(28) and it works for messages of tens to thousands of symbols.

Generally, RaptorQ code consists of two pre-coding stages. In the first pre-

25

Figure 2.8: Bipartite graph of Raptor code. Figure from
Shokrollahi (2006).

coding stage, LDPC code generates most of the redundant symbols

(intermediate symbols) for the overall pre-coding stage in GF(2). In the second

pre-coding stage, a small number of the redundant symbols are generated with

high density parity check (HDPC) code in GF(28).

To facilitate the discussion, we define failure probability as the

probability that a code fails to reconstruct the original message with m

overhead symbols (i.e., 1 - PCD) and express it in exponents of ten.

According to the numerical results in Shokrollahi and Luby (2011), the failure

probabilities of RaptorQ code fluctuate at about the same values as GF(28)

Random code, i.e., 10−2.407 , 10−4.815 and 10−7.223 at zero, one and two

overhead symbols, respectively as shown in the red lines in Figure 2.9 to 2.11,

where the x-axes and y-axes refer to message length and failure probabilities.

Nonetheless, RaptorQ code has a better encoding and decoding complexities

than Random code.

Generally, our proposed rateless erasure codes in Chapter 3 to 6 are

constructed in GF(2). In order to to have a fair comparison with RaptorQ code,

the proposed codes are extended to GF(28) in Chapter 7 and compared with

RaptorQ code in terms of failure probabilities.

26

(a) (b)

Figure 2.9: The failure probabilities of RaptorQ code at zero overhead
symbol for (a) ρ=0.1 and (b) ρ=0.5 .

(a) (b)

Figure 2.10: The failure probabilities of RaptorQ code at one overhead
symbol for (a) ρ=0.1 and (b) ρ=0.5 .

(a) (b)

Figure 2.11: The failure probabilities of RaptorQ code at two overhead
symbol for (a) ρ=0.1 and (b) ρ=0.5 .

2.3 Other Rateless Erasure Code for Short Message Transmission

The state-of-the-art GF(2) rateless erasure codes in Section 2.2

(except RaptorQ code, which is not GF(2) code) are not efficient in

27

transmitting short messages, i.e., they require more overhead symbols to

achieve complete decoding. In this section, we review the rateless erasure

codes that are dedicated for short messages transmission and name them as

short rateless erasure codes in the rest of the chapters.

The short rateless erasure codes presented in the following are derived

from LT code due to its ameliorable degree distribution. Hyyti et al. (2007)

modeled the LT decoding process with Markov chain and optimised the degree

distribution accordingly. Nonetheless, the method is only suitable for very

short messages due to state-space explosion. Given a message of symbol size

k , the encoder can generate a total of 2k−1 unique encoded symbols.

Accordingly, these unique encoded encoded symbols may form a total of 22k−1

states in the Markov chain. For example, for k=3 the state-space will be 128,

and for k=4 , the state-space will be 32,768.

On the other hand, Bodine and Cheng (2008) improved the LT code in

transmitting short messages of k=10 , 50 and 100 symbols and near 100%

redundant symbols (i.e., ϵ≈1.0) are required for them to achieve a complete

decoding. With success probability of 99.5%, Zhu et al. (2007) managed to

achieve a complete decoding for messages of k=2,000 symbols with no extra

redundant packets (i.e., ϵ=0). However, there is no reported result for

message of k<1,000 symbols.

28

Zhang and Hranilovic (2009) introduced a short-length Raptor code,

where a message of k=64 symbols required decoding inefficiency of ϵ≈0.3

in order to achieve a complete decoding. As for message of k=256 symbols,

decoding inefficiency ϵ≈0.2 is imposed.

Lu et al. (2013) proposed a new decoding process, namely the LT-W

decoding that improves the LT code. Whenever a ripple flats, the Wiedemann

algorithm is triggered to revive the ripple such that the LT decoding process

can be continued. Such method preserves the low decoding complexity of LT

code while improving the achievable high PCD with 10 extra encoded

symbols.

Generally, our proposed short rateless erasure codes are derived from

Random code (see Chapter 3) instead of LT code. To our best understanding,

Windowed code (Studholme and Blake, 2006) is the only erasure code that is

derived from Random code. We will introduce Windowed code right after

explaining Random code in Chapter 3.

2.4 Summary

This chapter reviews the state-of-the-art rateless erasure codes that are

efficient for long messages or short messages or both. Despite their excellent

performance, our proposed rateless erasure codes outperform them in the

following aspects:

29

1. Our proposed GF(2) codes are derived from Chapter 3's Random code.

In general, they are able to reconstruct the original message from any

k+10 encoded symbols with high PCD, but with the trade-off of

O(k3
) decoding complexity. From the literature review, we found Lu

et al. (2013) has the identical performance in the simulation results but

there is no explicit equation that demonstrates its high PCD with ten

overhead symbols.

2. Chapter 4's Micro-Random code achieves high PCD with k+1

encoded symbol, but with the trade-off of high computational

complexity. To our best understanding, there is no GF(2) rateless

erasure code that can achieve such result.

3. We propose two pseudo-random codes – systematic Random code and

Stepping-Random code in Chapter 5 and 6, respectively. They have

better decoding complexities than Random code in channels of low

erasure probabilities.

4. We extend the proposed codes to GF(28) codes in Chapter 7. They

achieve much lower failure probabilities than RaptorQ code using the

same amount of overhead symbols.

30

CHAPTER 3

RANDOM CODE

In this chapter, we introduce a rateless erasure code that is constructed

with random matrix, namely Random code. Kolchin's theorem proves that

Random code is able to achieve high PCD with ten overhead symbols for long

messages. Then, we complement the theorem by proving that high PCD is also

attainable for short messages transmission with ten overhead symbols. These

mathematical frameworks will be used to derive the proposed GF(2) rateless

erasure codes in later chapters.

3.1 Random Matrix as Rateless Erasure Code

We illustrate the encoding and decoding processes of a rateless erasure

code with a general linear system of k unknowns and explicate them with

examples.

3.1.1 Linear System and Rateless Erasure Code

The basic idea behind a rateless erasure code can be explicated with a

simple multivariate linear system of three unknown variables m0 , m1 and

m2 . We can generate many linear equations from the system by combining

m0 , m1 and m2 randomly such as

x0 = a0,0m0+a0,1m1+a0,2m2

x1 = a1,0m0+a1,1m1+a1,2m2

x2 = a2,0m0+a2,1m1+a2,2m2

⋮ ⋮ ⋮

. (5)

31

Each coefficient aij has equal probability to be 0 or 1. Given the values of the

coefficients and the dependent variables x i , we can find out the unknown

variables with Gaussian elimination if and only if we have sufficient equations

to describe the system.

Recall that a rateless erasure code is able to encode a message of k

symbols into a potentially infinite number of encoded symbols. And, the

receiver reconstructs the original message with any k (1+ϵ) encoded symbols

irrespective of the sequence. The aforementioned multivariate linear system

resembles a rateless erasure code of k=3 symbols (bits), i.e. m0 , m1 and

m2 . Each dependent variable (i.e., x i) is analogous to an encoded symbol of

a rateless erasure code. Therefore, to determine the values of dependent

variables (i.e., to reconstruct the original message), we need at least k=3

independent linear equations (encoded symbols) such that a full rank matrix is

obtained.

3.1.2 Random Code

Given that a message of kl bits is segmented into k symbols with

each symbol size l bits. Accordingly, these symbols can be represented as a

matrix M k×l , where

32

M k×l = [
m0,0 m0,1 ⋯ m0, l−1

m1,0 m1,1 ⋯ m1, l−1

⋮ ⋮ ⋱ ⋮
mk−1,0 mk−1,1 ⋯ mk−1,l−1

]
= [

m0
1×l

m1
1×l

⋮

mk−1
1×l] .

(6)

The mi , j represents the entry at i row j column and mi
1×l is the i-th row

that consists of l elements. Note that the row mi
1×l can be treated as the i -th

message symbol of l bits. We denote the dimensions of the matrix in

superscript for clarity.

Random code is a rateless erasure code, where an encoded symbol is

be generated by combining the message symbols randomly. Correspondingly,

Random code has a generator matrix of randomly distributed binary values,

G n×k , where

G n×k
= [

g0,0 g0,1 ⋯ g0,k−1

g1,0 g1,1 ⋯ g1,k−1

⋮ ⋮ ⋱ ⋮
gn−1,0 gn−1,1 ⋯ gn−1, k−1

]
= [

g0
1×k

g1
1×k

⋮

gn−1
1×k] .

(7)

Each entry gi , j has an equal probability to be 0 or 1. Then, n encoded

symbols (denoted as X n×l) can be generated by multiplying G n×k with

M k×l , i.e.,

33

X n×l
= G n×k

×M k×l

= [
x0,0 x0,1 ⋯ x0,l−1

x1,0 x1,1 ⋯ x1,l−1

⋮ ⋮ ⋱ ⋮
xn−1,0 xn−1,1 ⋯ xn−1,l−1

]
= [

x0
1×l

x1
1×l

⋮

xn−1
1×l] .

(8)

Note that a new encoded symbol can always be generated by multiplying a

new generator row matrix g1×k with M k×l . Since the encoded symbols can

be generated dynamically without a pre-determined n , Random code is said

to be rateless.

In the perspective of linear algebra, the encoded symbols are a list of

linear equations that combined the k message symbols randomly. Since the

encoded symbols are constructed with G n×k
×M k×l

=X n×l , we can

reconstruct the original message if the sub-matrix of G n×k , denoted as ~
G k×k ,

is non-singular (i.e., ~
G k×k is invertible) using Gaussian elimination of

computational complexity O(k3
) . Though the decoding complexity is

relatively high, Random code is able to reconstruct the original message from

a fixed number of overhead symbols irrespective of the message length (see

Sections 3.2 and 3.3).

34

3.1.3 An Example of Encoding and Decoding Processes

 Given that a message of three symbols is represented as

M 3×3
=[1 1 0

0 1 1
1 0 1] , (9)

where each symbol consists of three bits. Say the sender has the first generator

row matrix g0
1×3

=[1 1 0] and the corresponding encoded symbol can be

obtained with

g0
1×3

×M 3×3
= x0

1×3

= [1 0 1] .
. (10)

Given that the second and third generator row matrices as

g1
1×3

=[0 1 1] and g2
1×3

=[1 0 1] , the corresponding encoded symbols

are x1
1×3

=[1 1 0] and x2
1×3

=[0 1 1] , which are obtained with the same

method in Eq. (10). Then, the overall generator matrix and encoded matrix are

G 3×3
=[

g0
1×3

g1
1×3

g2
1×3]=[

1 1 0
0 1 1
1 0 1] , (11)

and

X 3×3
=[

x0
1×3

x1
1×3

x2
1×3]=[

1 0 1
1 1 0
0 1 1] . (12)

The original message can be reconstructed if G 3×3 is a full rank

matrix (i.e., rank (G 3×3)=3). However, G 3×3 in Eq. (11) has only rank 2

35

because the third row is not independent. Hence, an additional encoded

symbol is required.

Say, we obtain a new encoded symbol from the sender –

g3
1×3

=[0 1 0] and x3
1×3

=[0 1 1] . The resulting generator matrix and

encoded matrix are represented as

G 4×3
=[

g0
1×3

g1
1×3

g2
1×3

g3
1×3]=[

1 1 0
0 1 1
1 0 1
0 1 0

] , (13)

and

X 4×3
=[

x0
1×3

x1
1×3

x2
1×3

x3
1×3]=[

1 0 1
1 1 0
0 1 1
0 1 1

] . (14)

We noticed that the sub-matrix (i.e., g0
1×3 , g1

1×3 and g3
1×3) of G 4×3

is full rank (i.e., rank 3). Representing the sub-matrix as

~G 3×3
=[

g0
1×3

g1
1×3

g3
1×3]=[

1 1 0
0 1 1
0 1 0] , (15)

 and their corresponding encoded symbols,

~X 3×3
=[

x0
1×3

x1
1×3

x3
1×3]=[

1 0 1
1 1 0
0 1 1] .

(16)

Since the inverse of ~
G 3×3 is,

36

[~G 3×3]
−1

=[1 0 1
0 0 1
0 1 1] , (17)

applying [~G 3×3]
−1 to ~

X 3×3 and we have reconstructed the original message

M 3×3 successfully, i.e.,

M 3×3
=[~G 3×3]

−1
×

~X 3×3
=[1 1 0

0 1 1
1 0 1] . (18)

3.2 Probability of Complete Decoding (PCD) for Long Messages

Generally, Random code reconstructs the original message with high

PCD from k+10 encoded symbols, or on average 1.6 overhead symbols. We

explicate the aforementioned statement for long messages transmission using

the following Kolchin's theorem and short messages transmission in Section

3.3.

Let G (k+ m)×k be a random matrix of size (k +m)×k . Kolchin's

theorem (Theorem 3.2.1 in Kolchin, 1998) states that the probability for

random matrix G (k+ m)×k to have rank k−s is

Pr (rank(G (k+ m)×k
)=k−s)→Qkol (s ,m) , (19)

when k→∞ , where

Q kol(s ,m)=2−s (m+ s)∏i= s+1

∞

(1−
1
2i)∏i=1

m+ s

(1−
1
2i)

−1

, (20)

for s≥0 , m∈Z and m+s≥0 .

37

Eq. (20) can be expressed as

Qkol (m)≡Qkol (0,m)= ∏
i=m+1

∞

(1−
1

2i) , (21)

for calculating the probability to have full rank matrix and the numerical

values are presented in Table 3.1. As observed, the probability for a random

matrix to achieve complete decoding with exactly k encoded symbols is

Qkol (0)=0.2888 . To achieve high PCD (99.9% successful decoding), ten extra

encoded symbols (i.e., ten overhead symbols) are required, i.e.,

Qkol (10)=0.9990 .

Generally, Eq. (21) is a cumulative distribution function (CDF). Let

Pkol(m)=Qkol(m)−Q kol(m−1) be the probability mass function (PMF) for a

random matrix to reach full rank with m extra rows and Pkol (0)=Qkol (0) .

Accordingly, the expected extra rows (expected overhead symbols) for the

random code to reach full rank is

E(rank (G (k +m)×m
)=k) = ∑

m=0

∞

mPkol (m)

≈ 1.6067…
, (22)

i.e., 1.6 extra rows are needed on average for random matrix to reach full rank.

38

Table 3.1: The probability (CDF and PMF) for a random matrix to achieve
complete decoding with m additional rows.

m m
0 0.288788 0.288788 11 0.999512 0.000488
1 0.577576 0.288788 12 0.999756 0.000244
2 0.770102 0.192526 13 0.999878 0.000122
3 0.880116 0.110014 14 0.999939 0.000061
4 0.938791 0.058675 15 0.999969 0.000030
5 0.969074 0.030283 16 0.999985 0.000016
6 0.984456 0.015382 17 0.999992 0.000007
7 0.992208 0.007752 18 0.999996 0.000004
8 0.996099 0.003891 19 0.999998 0.000002
9 0.998048 0.001949 20 0.999999 0.000001
10 0.999024 0.000976

Q
kol

(m) P
kol

(m) Q
kol

(m) P
kol

(m)

3.3 Probability of Complete Decoding (PCD) for Short Messages

Kolchin's theorem is an asymptotic equation. For small values of k

(short messages), it is unclear if such an asymptotic equation is useful. In this

section, a theorem extending Kolchin’s work is formulated in order to explain

the PCD of Random code for short messages.

We are aware of the similar work in MacKay (2005) and Shokrollahi

(2006), whereby the upper bound of the PCD is given as a function of

overhead symbols. However, these papers do not explicitly deal with Random

code arguing that the encoding and decoding costs are prohibitive. Our work

herein departs from these works in that we use the exact PCD to dimension

Random code for short messages. Moreover, our work extends Kolchin’s

theorem to short messages in support of Random code as a good rateless

erasure code. We present the theorem starting with the following lemma.

39

Lemma 3.3.1. Given that a random matrix G (n−1)×k of dimensions

(n−1)×k has rank (n−1) , where 0<n≤k , then the probability of

achieving rank n with an extra row is

p(n , k)=∏
i=1

n−1

(1−2i−k
) . (23)

Proof. Let g1×k be a new row matrix with 2k
−1 possible combinations

excluding the row matrix of all zeros. In order to have rank n in G n×k , g1×k

must be independent of the other. Therefore, g1×k is limited to τ(n−1,k)

possible combinations, where

τ (n−1,k) = 2k
−1−∑

i=1

n−1

(n−1
i)

= 2k
−1−(2n−1

−1)

= 2k
−2n−1 ,

(24)

and (⋅⋅) is the binomial coefficient.

Each of the generator row matrices is generated independently.

Correspondingly, the probability of G (n−1)×k attaining rank n with g1×k is

40

p(n , k) = p(n−1,k)×
τ(n−1,k)

2k

= p(n−2,k)×
τ(n−2,k)

2k ×
τ(n−1,k)

2k

=
τ(1,k)

2k ×
τ(2,k)

2k ×⋯×
τ(n−1, k)

2k

= ∏
i=1

n−1
τ(i , k)

2k

= ∏
i=1

n−1
2k

−2i

2k

= ∏
i=1

n−1

(1−2i−k) .

(25)

■

We study Lemma 3.3.1 with different matrix dimensions. Surprisingly,

we find that the probability of having higher rank numbers (i.e.,

rank=k −10,k −9,… , k) in matrices of different column dimensions has a

negligibly small difference. For example, the probability to have rank 20 (i.e.,

30−10) in G 20× 30 is identical to the case of having rank 30 (i.e., 40−10) in

G 30× 40 . For different values of k , we tabulated the PCD in Table 3.2 (using

Eq. (23) of Lemma 3.3.1) and find that the probabilities converge to five

decimal digits after k=30 . The precise study of the aforementioned

observation is given in the following Lemma 2.

Table 3.2: The probabilities of having the last ten rank numbers for
k−m=20 and k−m=30 and k is fixed as 30.

m m
10 0.99902 4 0.93879
9 0.99805 3 0.88012
8 0.99610 2 0.77010
7 0.99221 1 0.57758
6 0.98446 0 0.28879
5 0.96907

p(k-m, k) p(k-m, k)

41

Lemma 3.3.2. Let m∈ℤ
+ + and 0≤m<k . Then, the probabilities to have

rank k −m in matrices of dimensions (k −m)×k for different k are similar,

i.e.,

|p(k −m+1,k+1)− p (k −m,k)|<δ , (26)
and δ→0 exponentially fast with finite and bounded increment k .

Proof. By induction on k , we show that δ<
1
2k ∏

x=m+1

k−1

(2x
−1
2x) . First, we note

that

|p(k −m+1,k+1)− p (k −m, k)|<|p(k−m,k)− p(k −m−1,k −1)| . (27)

We may express | p(k −m, k)− p(k −m−1,k −1)| as

| p (k −m,k)− p (k−m−1,k−1)|

= | ∏
i=1

k−m−1

(1−2i−k) −∏
i=1

k−m−2

(1−2i−(k−1)) |
= |(1−21−k

)(1−22−k
)…(1−2−m−1

)−(1−2−k
)(1−21−k

)…(1−2−m−1
)|

= |(1−21−k
)(1−22−k

)…(1−2−m−1
)[1−(1−2−k

)] |
= |(1−21−k

)(1−22−k
)…(1−2−m−1

)[2−k] |

= |(1−
1

2k−1) (1−
1

2k−2) …(1−
1

2m+1) [1

2k] |
= |(2k−1

−1
2k−1) (2k−2

−1
2k−2) …(2m+1

−1
2m+ 1) [1

2k] |
= |[1

2k] ∏
x=m+ 1

k−1

(2x
−1
2x) | .

(28)

Let δ denote |p(k −m+1,k+1)− p (k −m,k)| . Then, by Eq.(28),

δ<|[1
2k] ∏

x=m+1

k−1

(2x
−1
2x)| . (29)

42

Since (2x
−1
2x)<1 and 0≤m<k for all δ∈ℝ

+ and

inf {|[1

2k] ∏
x=m+1

k−1

(2x
−1

2x)|}=0 , by monotone convergence we have δ→0

driven by an exponential term
1

2k .

■

To show that the probability of achieving complete decoding with m

extra rows is the same as p(k −m, k) , we use the well known result of matrix

rank invariance under transposition. We state the following lemma without

proof.

Lemma 3.3.3. The probabilities to have rank k −m in G (k −m)×k and

G k ×(k −m) are identical.

Lemma 3.3.3 asserts that the rank of a matrix is invariant to matrix

transposition. For example, the probability for G (k − 1)×k to have rank k −1 is

0.57758 as stated in Table 3.2. Then, the probability to have rank k −1 in

G k ×(k −1) is also 0.57758.

43

Finally, building upon Lemma 3.3.1 and 3.3.3, we propose the

following theorem.

Theorem 3.3.4. The probability to have rank k in matrix of dimensions

(k+m)×k for m≥0 is

Pr (rank (G (k+m)×k)=k) = p(k−m ,k)

= ∏
i=1

k−m−1

(1−2i−k
) .

(30)

For the ease of the explanation, we will use QRC(m) to denote the

PCD of Random code with m overhead symbols, where

QRC(m)=Pr (rank (G (k+m)×k
)=k) . (31)

The probability to achieve complete decoding with m overhead symbols is

the same as p(k −m,k) in the Table 3.2 for m=0,1,…,10 . and

QRC(10)=Qkol (10)=0.99902 .

Pairing Kolchin's theorem (see Section 3.2) with Theorem 3.3.4, we

conclude that Random code is able to achieve high PCD with k+10 encoded

symbols irrespective of the message length.

3.4 Random Code Variant – Windowed Code

 Studholme and Blake (2006) proposed a fixed weight pseudo-random

code, namely Windowed code, which has a better decoding complexity (i.e.,

O(k3 /2
)) than Random code but with minor trade-off in PCD.

44

Let σ be the row weight of Windowed code, where

σ=⌈ 2 log k ⌉ odd , (32)

i.e., the lowest odd integer greater than or equal to 2 log k . An entry i is

chosen randomly from the row and its value is set to 1. The entry i is also

known as the initial 1. Then, σ−1 1's are placed randomly within the next

w=2 √ k entries (window) with the last entry linked to the first entry.

[
1 1 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 1 0
0 1 0 0 0 0 1 1 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

] (33)

An example of Windowed code's generator matrix of k=10 is

presented in Eq. (33). The row weight, σ=⌈ 2 log k ⌉ odd=3 and the window

w=2 √ k=6.3245≈7 . Say the initial 1 of the first row is the first entry. So, the

rest of σ−1=2 1's must be placed within the second to the seventh entries.

The initial 1 of the second row starts at third entries and rest of 1's must be

placed within fourth to ninth entries. The initial 1 of third row is located at the

seventh entry and the rest of 1's are placed in the next three entries and the

first three entries.

Though Windowed code has a better decoding complexity than

Random code, its PCD is not explained using rigorous mathematics. In

contrast, the PCD of Random code in transmitting long and short messages are

explained mathematically in Sections 3.2 and 3.3 respectively.

45

3.5 The Challenges of Random Code

Though Random code is able to reconstruct the original message with

high PCD with k+10 encoded symbols, it is challenged by the following

issues.

1. Decoding inefficiency is high for short messages. For example, a

message of k=10 symbols requires k+10=20 encoded symbols in

order to reach high PCD. The decoding inefficiency is ϵ=1 in this

case.

2. The decoding complexity of Random code is relatively high, i.e.

O(k3
) .

3. Random code is a non-systematic rateless erasure code. The receiver

takes time to reconstruct the original message even if all the encoded

symbols are received intact.

We address the first issue by proposing Micro-Random Code in

Chapter 4, where a high PCD is achievable with k+1 encoded symbol. The

second and third issues are addressed with the proposals of systematic and

non-systematic pseudo-random codes in Chapters 5 and 6, where they have

better decoding complexities and PCD.

46

CHAPTER 4

MICRO-RANDOM CODE

This chapter proposes a variant of Random code that achieves high

PCD with k+1 encoded symbols, i.e., one overhead symbol instead of k+10

encoded symbols as in Random code. As for the trade-off, such improvement

comes with a stringent requirement on computational resource.

4.1 High Decoding Inefficiency in Transmitting Short Messages

Recall that Chapter 3's Random code is able to reconstruct the original

message with high PCD at ten overhead symbols, irrespective of message

length k . Manipulating Eq. (1), the decoding inefficiency of Random code

can be expressed as

ϵRC=
n
k
−1=

10
k

, (34)

with n=k+10 .

Generally, Random code has a high decoding inefficiency when a

message is short, e.g., in ten-digits. For example, the decoding inefficiency is

ϵRC=0.01 for a message of k=1,000 symbols, but ϵRC=1 for k=10

symbols. It requires k+10=20 encoded symbols in order to reconstruct a

short message of k=10 symbols with high PCD and the total required

encoded symbols is double that of the total message symbols.

47

4.2 Micro-Random Code

We explain the concept of symbol dimensioning before addressing the

aforementioned issue with Micro-Random code.

4.2.1 Symbol Dimensioning in Brief

Sections 3.2 and 3.3 have demonstrated that PCD of Random code is a

function of the total received overhead symbols, m and is invariant to the

message length, k . Say we have a message of 1,000 bits. Encoding the

message in k1=10 symbols with each symbol size l1=100 bits (Case 1) is

no different than encoding the message in k2=20 symbols of symbol size

l2=50 bits (Case 2) in term of PCD. Both cases require k+10 encoded

symbols in order to reconstruct the original message with high PCD.

Nonetheless, the ten overhead symbols in Case 1 contribute the redundancies

of 10×l1=1000 bits but Case 2 only requires 10×l2=500 bits.

The aforementioned example suggests that the decoding inefficiency

can be improved if we dimension the symbol size appropriately during the

encoding and decoding processes. In the rest of the chapter, we will use the

terms micro symbols, encoded micro symbols and encoded symbols to indicate

the symbols at different stages of the encoding and decoding processes.

4.2.2 Improving Decoding Inefficiency with Micro Symbols

Let a message of kl bits be segmented to k symbols of size l and

represented as a matrix

48

M k×l
=[

m0
1×l

m1
1×l

⋮

mk−1
1×l] , (35)

where mi
1×l represents the i -th row matrix of dimension l or the i -th

symbol of the original message with symbol size l . We denote the dimensions

in superscript for clarity.

According to Chapter 3, an encoded symbol can be generated by

multiplying a generator row matrix G 1×k with M k×l , that is

X 1×l
=G 1×k M k×l . Moreover, we need k+10 encoded symbols (each has size

l bit) in order to reconstruct the original message with high PCD. To reduce

the decoding inefficiency, we dimension each message symbol into α

symbols of smaller size, namely micro symbols as shown in Figure 4.1 (left

hand side). Correspondingly, the message is transformed from a matrix of

dimensions k×l into (αk)×(l /α) , where α∈ℕ and α divides l . In other

words, we shrink the column size (symbol size) from l to l /α while

increasing the row size (total message symbol) from k to αk . Then, the new

matrix is expressed as

M kα×l /α
=[

m0
1×(l /α)

m1
1×(l /α)

⋮

mα k−1
1×(l /α)] . (36)

Note that both M kα×l /α and M k×l represent the same message but in

different dimensions.

49

By feeding M kα×l /α into the encoder, it generates many encoded

micro symbols of size l /α bits, that is

X (·)×(1 /α)
=[x0

1×l /α

x1
1×l /α

⋮
] . (37)

We use (·) when the quantity is not known. Next, we regroup each α

encoded micro symbols into one encoded symbol of l bits (Figure 4.1 right

hand side), that is

X (·)×l
=[x0

1×l /α x1
1×l / α

… xα−1
1×l /α

xα
1×l /α xα+1

1×l / α
… x2α−1

1×l /α

⋮ ⋮ ⋮ ⋮
] . (38)

Each l bits encoded symbol comprises α encoded micro symbols of l /α

bits. Alternatively, we can denote each encoded symbol x i
1×l as

x i
1×l

=[gα i
1×αk M αk×l /α gα i+1

1×αk M αk×l /α
… gα i+(α−1)

1×α k M α k×l/ α] , (39)

50

Figure 4.1: The encoding process of Micro-Random code.

where g j
1×αk are the corresponding generator row matrices.

Generally, one encoded symbol consists of α encoded micro

symbols, and 1/α encoded symbol represents one encoded micro symbol,

i.e.,

1 encoded symbol = α encoded micro symbols
1/α encoded symbol = 1 encoded micro symbol .

(40)

Since αk micro symbols are used in the encoding process, the receiver

requires αk+10 encoded micro symbols in order to achieve high PCD. In

other words,

αk+10 encoded micro symbols =
1
α (αk+10) encoded symbols

= k+
10
α encoded symbols ,

(41)

i.e., k+
10
α

 encoded symbols are needed. As we cannot have a fractional

encoded symbol, the number of extra encoded symbols required to achieve

high PCD is

nmRC=k+⌈ 10
α ⌉ . (42)

Once nmRC encoded symbols have been received, the receiver extracts

αnmRC=α k+10 encoded micro symbols as shown in Figure 4.2. These

αk+10 encoded micro symbols are sufficient to reconstruct the original

message with high PCD. Since nmRC=k+⌈ 10
α ⌉ =k (1+ϵmRC) , the decoding

inefficiency of Micro-Random code is

ϵmRC=⌈ 10
α ⌉ 1

k
. (43)

51

For example, let the symbol size be l=10 bits. Then, a message of

size 100 bits can be represented in k=10 symbols of size l=10 or in a

matrix of size 10×10 . To improve the decoding inefficiency, we represent the

message in 20 micro symbols, i.e., α=2 and each encoded symbol of size

l=5 bits. Then, we group each pair of the encoded micro symbols to form a

regular encoded symbol of 10 bits. Subsequently, the receiver needs only

k+ ⌈ 10/2 ⌉=15 encoded symbols to reconstruct the original message as they

have contributed 30 encoded micro symbols already. In this case, ϵmRC=0.5 .

4.3 Performance Analysis

We analyse the performance of Micro-Random code in terms of the

PCD and the expected overhead symbols to achieve complete decoding.

52

Figure 4.2: The decoding process of Micro-Random code.

4.3.1 Probability of Complete Decoding (PCD)

Each encoded symbol of Micro-Random code has α encoded micro

symbols. Hence, m overhead symbols contributes mα extra encoded micro

symbols. Modifying Eq. (31), the PCD of Micro-Random Code with m

overhead symbols can be expressed as

QmRC(m ,α) = QRC(αm)

= ∏
i=1

k−αm−1

(1−2i−k
)

, (44)

and the numerical values are presented in Table 4.1, where “>0.999999”

denotes a numerical value larger than 0.999999 but less than 1.0. According to

the table, as α increases, lesser overhead symbols (m) are required to

achieve high PCD (i.e., QmRC(m,α)≥0.999). In particular, we achieve high

PCD with only one overhead symbol if α≥10 .

To examine whether it can reach high PCD at zero overhead symbol,

we substitute m=0 into Eq. (44),

QmRC(0,α) = QRC(α×0)

= QRC(0)

= ∏
i=1

k−1

(1−2i−k
),

(45)

and QmRC(0,α)=0.28879 . Apparently, α has no influence to QmRC when

m=0 and there is no way to achieve high PCD with zero overhead symbol

(i.e., m=0) with large value of α . Achieving high PCD with k+1 encoded

symbols (for α=10) is the best performance we can get.

53

Table 4.1: The PCD of Micro-Random code, QmRC(m,α) for various m and
α .

α
1 2 4 8 10 20

m

0 0.288788 0.288788 0.288788 0.288788 0.288788 0.288788
1 0.577576 0.770102 0.938791 0.996099 0.999024 0.999999
2 0.770102 0.938791 0.996099 0.999985 0.999999 >0.999999
3 0.880116 0.984456 0.999756 >0.999999 >0.999999 >0.999999
4 0.938791 0.996099 0.999985 >0.999999 >0.999999 >0.999999
5 0.969074 0.999024 0.999999 >0.999999 >0.999999 >0.999999
6 0.984456 0.999756 >0.999999 >0.999999 >0.999999 >0.999999
7 0.992208 0.999939 >0.999999 >0.999999 >0.999999 >0.999999
8 0.996099 0.999985 >0.999999 >0.999999 >0.999999 >0.999999
9 0.998048 0.999996 >0.999999 >0.999999 >0.999999 >0.999999
10 0.999024 0.999999 >0.999999 >0.999999 >0.999999 >0.999999

Alternatively, the aforementioned result can also be deduced from Eq.

(42), i.e., nmRC=k+⌈ 10
α ⌉ . Each increment in α will reduce the total required

encoded symbols to achieve high PCD until α=10 . No improvement can be

made for α>10 as [nmRC] α=10,11,…=k+1 .

4.3.2 Expected Overhead Symbols

Let PMF to achieve high PCD be expressed as

PmRC(m,α)=QmRC (m,α)−QmRC(m−1,α) , (46)

and

PmRC(0,α)=QmRC(0,α) . (47)

Then, the expected overhead symbols can be expressed as

EmRC(α)=∑
m=1

∞

mPmRC(m,α) , (48)

and the numerical values are presented in Table 4.2. Note that “<0.00001”

denotes a non-zero positive value that is less than 0.00001.

54

Table 4.2: The PMF of Micro-Random code for various overhead symbols
m , segmentation factor α and the expected value.

α
m 1 2 4 10
0 0.28879 0.28879 0.28879 0.28879
1 0.28879 0.48131 0.65000 0.71024
2 0.19253 0.16869 0.05731 0.00098
3 0.11001 0.04567 0.00366 <0.00001
4 0.05867 0.01164 0.00023 <0.00001
5 0.03028 0.00292 0.00001 <0.00001
6 0.01538 0.00073 <0.00001 <0.00001
7 0.00775 0.00018 <0.00001 <0.00001
8 0.00389 0.00005 <0.00001 <0.00001
9 0.00195 0.00001 <0.00001 <0.00001
10 0.00098 <0.00001 <0.00001 <0.00001

1.60666 1.02307 0.77658 0.71219E
mRC

(α)

With α=10 , Micro-Random code requires about 0.7 overhead

symbols on average to achieve complete decoding, as compared with Random

code (α=1), which requires 1.6 overhead symbols. No further improvement

can be made for α>10 as it explained in Section 4.3.1.

4.3.3 Decoding Steps and Decoding Complexity

Recall that Micro-Random code dimensions the symbol size in order

to gain higher PCD with fewer overhead symbols. In particular, its generator

matrix has more rows but less columns, i.e., G (α k+10)×αk as compared to

Random code, i.e., G (k+10)×k . Therefore, it is non-trivial to examine the

process to invert G (α k+10)×αk .

We present the pseudo-code of Gaussian elimination in Algorithm 4.1,

where it solves the augmented matrix [G (αk +10)×αk|X (αk)×(l/ α)] by forming

55

upper triangular matrix in Step 1 to 9 and backward substitution in Step 10 to

16 and the total XOR operations is expressed as

StepGE=∑
i=1

α k

∑
j=i+1

αk +10

(αk+
l
α) +∑

i=2

αk

∑
j=i+1

αk
l
α . (49)

Note that the StepGE may be slightly different for other optimised versions of
Gaussian elimination.

Substituting α=1 and α=10 in StepGE respectively, we obtain

[StepGE] α=1
=

1
2
k3

+k2l+
19
2
k2

+8 kl+ l , (50)

and ,

[StepGE]α=10
=500 k 3+10 k 2 l+950 k 2+8kl+

1
10

l . (51)

Clearly, the decoding complexity does not change for different α , i.e., it

stays O(k3
) . Increasing α introduces more symbols (micro symbols) to the

decoding process without affecting the complexity of the algorithm.

Taking the difference in between Eq. 51 and Eq. 50,

[StepGE] α=10
−[StepGE] α=1

=
999

2
k3

+
1881

2
k2

+ l(9k2
−

9
10

) , (52)

yields a positive function for all positive integers k and l . Therefore, α=10

imposes more decoding steps as compared with α=1 .

Algorithm 4.1: Gaussian elimination for Micro-Random code.

56

Form upper triangular matrix

1: for i=1,2,…,αk

2: s = Row number that has a leading non-zero i -entry.

3: Exchange Row s and Row i .

4: for j=i+1, i+2,…,αk+10

5: if Entry i of Row j is non-zero

6: Row j ← Row j Row ⊕ i

7: end if

8: end for

9: end for

Backward substitution

10: for i=αk ,α k−1,… ,2

11: for j=i−1,i−2,… ,1

12: if Entry i of Row j is non-zero then

13: Row j ← Row j Row ⊕ i

14: end if

15: end for

16: end for

4.4 Simulation Results

We study the performance of Micro-Random code for message length

k and segmentation factor α with simulation. The symbols are represented

with Galois Field GF(2) matrices. The erasure probability of the channel is not

important as all the encoded symbols are generated independently with

random matrix (generator matrix). All the simulation scenarios have been

repeated 1000 times and the average values are presented.

Let the symbol sizes be fixed to 120 bits such that they can be

segmented to micro symbols of different sizes (α = 1, 2, 4, 5, 8, 10, 12, and

57

15). Then, the message size is fixed to 1200, 12,000, 30,000 and 60,000 bits,

which represent messages of 10, 100, 250 and 500 symbols respectively. Note

that α=1 also represents Random code, where all the message symbols,

micro symbols, encoded micro symbols and encoded symbols have the same

dimension.

Figure 4.3 shows PCD for each overhead symbol with different α for

messages (a) k=10 and (b) k=100 . Both graphs look identical. The

performance of Random code can be learned from the line α=1 , where it

achieves high PCD at ten overhead symbols. As for α=2 , each encoded

symbol consists of two encoded micro symbols. Thus, it achieves high PCD at

five overhead symbols. The same observation goes for α=4 to 10 – the

higher the α , the faster it reaches the high PCD. However, no significant

improvement is observed after α=10 . Such results are consistent with the

discussion in Section 4.3.1. We have tried the messages of k=50 , 250 and

500 symbols and they have identical results as shown in Figure 4.3. Overall,

the PCD of Micro-Random code does not change with the number of message

symbols k but only the segmentation factor α .

58

(a)

(b)

Figure 4.3: The PCD for messages of (a) k=10 and (b) k=100 symbols at
various overhead symbols and segmentation factor α .

59

Figure 4.4 shows the average number of overhead symbols to achieve

complete decoding for messages of k=10 symbols. It shows a decreasing

trend with increasing α , but saturates at about 0.7 when α=10 . The

observation supports our previous discussion. There is no way to achieve the

high PCD with zero overhead symbols in Micro-Random code. Identical

results are observed for messages of k=50 , 250 and 500 symbols.

Figure 4.4: The expected overhead symbols for messages of k=10 symbols
to achieve complete decoding at various segmentation factor α .

As mentioned in Chapter 3, Random code reconstructs the original

message with Gaussian elimination of decoding complexity O(k3
) . In order

to achieve high PCD with only one overhead symbol, Micro-Random code

dimensions each message symbol into α=10 micro symbols. Hence, 10k

micro symbols are involved in the encoding and decoding processes. Though

60

the decoding complexity is still O(k3
) as O((10k)

3
)=O(k3

) , it is found that

the decoding time is relatively higher than Random code as observed in Figure

4.5, i.e., the decoding time increases exponentially with increasing α as more

micro symbols sets involved in the decoding process. Note that we measure

the running time with a computer that uses i3 processor and inversion of the

matrices of dimensions 10×10 , 100×100 and 250×250 are done using

unoptimised code.

Figure 4.5: The average decoding time needed to reconstruct the original
message with Micro-Random code.

4.5 Deploying Micro-Random Code in Resource-Constrained Devices

Though Micro-Random code requires extensive computational

resources, experiments we have done demonstrate that the time to reconstruct

short messages is acceptable in resource-constrained devices.

61

4.5.1 Experiment Setting

In this experiment, the computer encodes the messages with Micro-

Random code and broadcast them to two resource-constrained devices

(Android devices) via Wi-Fi. Two sample files of 2,000 bytes and 5,000 bytes

are used. The symbol size (packet size) is fixed to 1,000 bytes with

segmentation factors of α=1 , 2, 5 and 10. In other words, messages of k=2

and 5 symbols are used in the experiment. The receivers will gather

k+ ⌈ 10 /α ⌉ encoded symbols before reconstructing the original messages with

Gaussian elimination. Each scenario was repeated for 100 times.

The computer runs Windows 7 on 64 bits i7 processor with 4GB

RAM. The two Android devices are Asus Nexus 7 and Alcatel One Touch

(OT). Asus Nexus 7 is a mid-range Android device that runs on Quad-Core

1.2GHz with 1GB RAM (Asus Nexus 7: Hardware specification, 2014). On

the other hand, Alcatel OT is a low-end Android device with 1GHz CPU and

512MB RAM (Alcatel One Touch: Hardware specification, 2014).

We use Python 3.4 (Python, a programming language, 2014) as the

main scripting language. Additionally, external python modules like bitstring

(bitstring, 2014) and serpent (Serpent, 2014) are used in order to manipulate

the bit arrays and serialisation. We also use CRCmod (CRCmod, 2014) to

compute the integrity of the packets. The Gaussian elimination algorithm can

be found in (Gaussian elimination, 2014).

62

Figure 4.6: The screen-shot of QPython running in Alcatel OT.

We run the Python scripts on Android devices by using QPython

framework (QPython, 2014) as shown in Figure 4.6. It is a script engine that

that runs Python scripts seamlessly on Android devices.

4.5.2 Experiment Result

Figure 4.7 presents the average decoding time for messages of (a)

2000 bytes and (b) 5000 bytes in Asus Nexus 7 and Alcatel OT. Generally, the

larger the message size, the longer is the time needed to reconstruct the

original messages. Additionally, as the segmentation factor α increases,

Gaussian elimination needs to work on a larger matrix (in term of rows) and

therefore a longer time is needed to reconstruct the original messages. For

63

example, the time needed to reconstruct original messages of 2,000 bytes and

5,000 bytes with α=10 is much longer than the case where α=1 . Such

results are consistent with our findings in Section 4.4.

The Gaussian Elimination that we use does not utilise the multi-core

technology of the devices. Hence, both Android devices have about the same

decoding time though Alcatel OT appears to be a low-end device.

4.6 Summary

Utilising the previous rigorous results and bounds given in Chapter 3,

Micro-Random code achieves a better PCD at fewer overhead symbols by

dimensioning the symbols appropriately, but with the trade-off of higher

decoding time.

64

(a)

(b)

Figure 4.7: The average decoding time of Micro-Random code for messages
of (a) 2,000 bytes, and (b) 5,000 bytes on Android devices.

65

CHAPTER 5

SYSTEMATIC RANDOM CODE

This chapter proposes a variant of Random code, i.e., systematic

Random (SYSR) code that achieves better decoding complexity than Random

code on average.

5.1 Systematic Rateless Erasure Code

A systematic rateless erasure code uses the original message as part of

the encoded symbols and the rest are generated with a sequence of bit

operations. Correspondingly, the receiver reconstructs the original message

instantly if the first k encoded symbols are received intact. In case of any lost

symbols, the receiver will reconstruct the message from the subsequent

encoded symbols.

Figure 5.1 illustrates the encoding and decoding processes of a

systematic rateless erasure code on a message of k=4 symbols. The white

circles denote the original message symbols and the hashed circles are the

generated encoded symbols. Note that the encoder generates potentially an

infinite number of encoded symbols with the original message as part of the

encoded symbols.

66

Figure 5.1: The encoding and decoding processes of systematic
rateless erasure code.

5.2 Systematic Random Code

In this section, we propose a systematic rateless erasure code, namely

systematic Random (SYSR) code that is built on top of a random matrix

framework. SYSR code outperforms Random code in erasure channels of low

error rate and performs as good as Random code in very lossy channels (e.g.,

where erasure probability, ρ=0.5). We will elaborate on the decoding process

with an example for the ease of explanation.

5.2.1 Encoding Message

Systematic Random code generates two type of encoded symbols.

• Part I encoded symbols are the first k encoded symbols of systematic

Random code (i.e., x0,x1,… , xk−1). They are also the symbols of the

original message.

67

• Part II encoded symbol refers to the encoded symbols starting from

(k+1) -th onwards (i.e., xk , xk+1 ,…) and they are generated with

Random code.

A message of k symbols with each symbol size l bits is denoted as a matrix

of dimensions k×l , i.e., M k×l . The Part I encoded symbols are the original

message symbols and its generator matrix is an identity matrix. Then, each

Part II encoded symbol (coded row matrix) X 1× l is independently generated

by multiplying a random row matrix G 1×k with M k×l , i.e.,

X 1×l
= G 1×k

×M k×l

= [g0,0 … g0,k−1]×[
m0,0 … m0, l−1

⋮ ⋱ ⋮
mk−1,0 … mk−1, l−1

]
= [x0,0 … x0, l−1] .

(53)

We assume that the receiver will receive both the encoded symbol X 1×l and

the corresponding generator matrix G 1×k at the same time as they are

embedded in the same packet during the transmission. Subsequently, the

receiver reconstructs the original message with Gaussian elimination when it

has a full rank generator matrix.

5.2.2 Message Reconstruction

Since the Part I encoded symbols are the original message symbols,

the decoding process is completed instantly if they are received intact.

Otherwise, at least k+10 Part I and II encoded symbols are required in order

to reconstruct the original message with high PCD.

68

Assume that the receiver has received a Part I encoded symbols and

k+10−a Part II encoded symbols from the lossy erasure channel.

Augmenting the encoded symbol matrices X (k+10)×l with their respective

generator row matrices G (k +10)×k , we can express them as

[G (k+10)×k X (k+10)×l]=[
~g 0,0 … ~g 0, k−1

⋮ ⋱ ⋮
~g a−1,0 … ~g a−1,k−1

g a ,0 … g a , k−1

⋮ ⋱ ⋮
g k−9,0 … g k−1,k−1

|
~x 0,0 … ~x 0,l−1

⋮ ⋱ ⋮
~x a−1,0 … ~x a−1, l−1

x a ,0 … x a , l−1

⋮ ⋱ ⋮
x k−9,0 … x k−1, l−1

] . (54)

where gi , j (x i, j) denotes the i -th row j -th entry in the generator matrix

(encoded symbol matrix). We use the tilde notations (e.g., ~g and ~x) to

denote the Part I row matrices.

Before reconstructing the original message with Gaussian elimination,

we apply the following steps to reduce the dimensions of the augmented

matrix.

Step 1: Identify a Part I generator row matrix. Then, denote the position of

the selected Part I generator as row i and its non-zero entry at column j .

Step 2: Add (XOR) row i of both generator and encoded symbols row

matrices to those Part II row matrices, for which their j entries are non-zero.

Step 3: Remove row i and column j from the augmented matrix.

Step 4: Repeat from Step 1 until all the Part I row matrices are removed.

69

We illustrate the matrix reduction with an example as follows. Assume

a message of k=4 symbols and symbol size l=2 . The receiver has a=2

Part I encoded symbols and k+10−a=12 Part II encoded symbols. Then, the

augmented matrix can be represented as

[G 14×4|X 14×2]=[
1 0 0 0
0 1 0 0
1 0 g2,2 g2,3

⋮ ⋮ ⋮ ⋮
0 1 g13,2 g13,3

|
~x 0,0

~x 0,1
~x 1,0

~x 1,1

x 2,0 x 2,1

⋮ ⋮
x 13,0 x 13,1

] . (55)

Note that the first two row matrices belong to Part I and the rest are Part II.

Some values are defined explicitly as 0 or 1 for ease of explanation.

In Step 1, we select the first Part I encoded symbol in the generator

matrix and its first entry is non-zero, i.e i=0 and j=0 . In Step 2, we add

row i to those Part II rows, in which their j entries are non-zero. Then, row

i and column j are removed as instructed in Step 3. The remaining

augmented matrix becomes

[G 13×3|X 13×2]=[

 1 0 0
 0 g 2,2 g2,3

 ⋮ ⋮ ⋮
 1 g13,2 g 13,3

|

~x 1,0
~x 1,1

x 2,0⊕
~x 0,0 x 2,1⊕

~x 0,1

⋮ ⋮
x 13,0 x 13,1

] . (56)

We still have one Part I encoded symbol at second row (i=1). Hence, we

repeat Step 1 and Step 2, adding row i to the rest of Part II rows that have

non-zero values in entries j . After Step 3, we have

70

[G 12×2|X 12×2]=[

 g 2,2 g 2,3

 ⋮ ⋮
 g13,2 g13,3

|

x 2,0⊕

~x 0,0 x 2,1⊕
~x 0,1

⋮ ⋮
x 13,0⊕

~x 1,0 x 13,1⊕
~x 1,1

] . (57)

Since there is no more Part I encoded symbol, Gaussian elimination will

process the rest of the generator matrix of dimensions 12×2 (augmented

matrix of dimensions 12×4) as usual.

5.3 Performance Analysis

This section analyses the performance of SYSR code in terms of PCD

and its decoding algorithm (total number of XOR row operations).

5.3.1 Probability of Complete Decoding

Recall that there are two cases in the decoding process:

• Case I: Receive all the Part I encoded symbols intact and the message

is reconstructed instantly.

• Case II: Receive total of k+10 Part I and II encoded symbols and the

message is reconstructed with high PCD.

Given the channel erasure probability ρ , the probability that Case I

occurs is a binomial function, Binom(0, k ,ρ) . Correspondingly, the

probability that Case II occurs is multiplication of 1−Binom (0,k ,ρ) with

Random code’s PCD equation (Eq. (21)). Hence, given a message of k

symbols, the probability for SYSR code to achieve complete decoding with

m overhead symbols in channel with erasure probability, ρ is

71

QSYSR(m,k ,ρ)=Binom (0,k ,ρ)−[1−Binom(0, k ,ρ)]Q kol(m) . (58)

Then, the PMF of SYSR code is

PSYSR(m,k ,ρ)=QSYSR(m,k ,ρ)−QSYSR (m−1,k ,ρ) , (59)

and

PSYSR(0,k ,ρ)=QSYSR(0,k ,ρ) . (60)

Correspondingly, the expected overhead symbols can be expressed as

∑
m=0

∞

mPSYSR(m,k ,ρ) . (61)

The PCD of SYSR code for k=10 and 50 with increasing m are

presented in Table 5.1. Generally, SYSR code has a higher PCD than Random

code for the same m when both ρ and k are small (comparing with Table

3.1). Both codes have about the same PCD when ρ and k increase. Same

observation is found on the expected overhead symbols presented in Table 5.2,

where 1.6 overhead symbols are required when ρ and k increase.

72

Table 5.1: The PCD of SYSR code for k=10 and 50.

k=10 k=50
ρ = 0.01 ρ = 0.1 ρ = 0.5 ρ = 0.01 ρ = 0.1 ρ = 0.5

m=0 0.931995 0.536772 0.289483 0.719076 0.292454 0.288788
m=1 0.959609 0.724866 0.577989 0.833145 0.579753 0.577576
m=2 0.978018 0.850262 0.770326 0.909192 0.771286 0.770102
m=3 0.988537 0.921917 0.880233 0.952647 0.880734 0.880116
m=4 0.994147 0.960133 0.938850 0.975823 0.939106 0.938791
m=5 0.997043 0.979857 0.969104 0.987784 0.969233 0.969074
m=6 0.998514 0.989876 0.984471 0.993860 0.984536 0.984456
m=7 0.999255 0.994925 0.992215 0.996922 0.992248 0.992208
m=8 0.999627 0.997459 0.996103 0.998459 0.996119 0.996099
m=9 0.999813 0.998729 0.998050 0.999229 0.998058 0.998048
m=10 0.999907 0.999364 0.999025 0.999614 0.999029 0.999024

5.3.2 Decoding Algorithm of Random Code

Generally, Gaussian elimination involves two algorithms –

transforming the generator matrix (augmented matrix) into an upper triangular

matrix and subsequently to an identity matrix with backward substitution. We

will present the pseudo-codes for Random code and SYSR code to form upper

triangular matrices in this section and Section 5.3.3, respectively. Note that

both rateless erasure codes employ the same backward substitution and hence

it will not be discussed here.

Algorithm 5.1 and its corresponding flow chart in Figure 5.2 present

the process to form an upper triangular matrix. The randMat represents the

generator matrix and resultMat in second line is a blank matrix, where the

pivoting rows (the row with the first non-zero element at i -th entry) will be

added later on.

The for-loop in lines 3 to 11 will loop through the k columns of the

generator matrix in order to select the i -th pivoting row in each iteration (line

4). Then, the pivoting row will be moved from the randMat to the resultMat

(line 5). Next, it searches the remaining rows in randMat, for which their i -th

73

Table 5.2: The expected overhead symbols to achieve complete decoding
in SYSR code for increasing k and ρ .

ρ = 0.01 ρ = 0.1 ρ = 0.5
k=10 0.153629 1.046475 1.605126
k=50 0.634635 1.598415 1.606695

k=100 1.018593 1.606652 1.606695
k=200 1.391431 1.606695 1.606695

entries are non-zero and XORs them with the pivoting row (line 8). At the end

of line 12, the algorithm returns an upper triangular matrix.

Algorithm 5.1: The pseudo-code for forming an upper triangular matrix with

Random code.

1: function FormUpperTriangularMatrix (randMat)

2: resultMat = null matrix

3: for i=0, 1,…, k −1 do

4: pivotRow = SearchPivotRow(i ,randMat)

5: Move pivotRow from randMat to resultMat

6: for row in randMat do

7: if i -th entry of row is non-zero then

8: row ← row pivotRow⊕

9: end if

10: end for

11: end for

12: return resultMat

13: end function

74

Figure 5.2: The flow chart of Random code to form upper triangular
matrix.

75

5.3.3 Decoding Algorithm of SYSR Code

The pseudo-code for SYSR code to form upper triangular matrix is

presented in Algorithm 5.2 and the corresponding flow chart in Figure 5.3.

The idnMat and randMat denote the generator matrices of Part I and II

encoded symbols, respectively. Basically, Algorithm 5.2 has a similar structure

to Algorithm 5.1 except that the former will attempt to search the pivoting

rows from idnMat first before getting them from the randMat, if not found

(lines 4-10).

Algorithm 5.2: The pseudo-code for forming an upper triangular matrix with

SYSR code.

1: function FormUpperTriangularMatrix (idnMat, randMat)

2: resultMat = null matrix

3: for i=0,1,…, k −1 do

4: Search i -th pivoting row from idnMat as pivotRow

5: if pivotRow ≠ NOT_FOUND then

6: Move pivotRow from idnMat to resultMat

7: else

8: Search i-th pivoting row from randMat as pivotRow

9: Move pivotRow from randMat to resultMat

10: end if

11: for row in randMat do

12: if i -th entry of row is non-zero then

13: row ← row pivotRow⊕

14: end if

15: end for

16: end for

17: return resultMat

18: end function

76

To explain the improved decoding algorithm in SYSR code, assume

a Part I encoded symbols are received and they need to XOR with k+10−a

77

Figure 5.3: The flow chart for SYSR code to form upper triangular matrix.

Part II rows, i.e., ∑
i=1

a

∑
j=1

k +10−a

(k+ l) , where one row operation consists of k+l

XOR operations. After that, k−a pivoting rows will be selected from

randMat for similar XOR row operations and then removed (corresponding to

the expression ∑
i=1

k−a

∑
j=i+1

k +10−a

(k+ l)). Hence, we denote the number of XOR

operations for SYSR code to form an upper triangular matrix as χ , where

χ = ∑
i=1

a

∑
j=1

k+10−a

(k+l)+∑
i=1

k−a

∑
j=i+ 1

k +10−a

(k+l)

= (k+l)[∑
i=1

a

∑
j=1

k+10−a

(1)+∑
i=1

k−a

∑
j=i+1

k+10−a

(1)]
= (k+l)[1

2
k2

+
19
2

k+
1
2

(a−a2
)] .

(62)

Since 0≤a≤k , Eq. 62 is a non-increasing function and each received

Part I encoded symbols will reduce the number of XOR operations, except

when a=1 . Note that if all the Part I encoded symbols are received intact

(i.e., a=k), the original message can be reconstructed instantly without

forming an upper triangular matrix with Algorithm 5.2.

Eventually, if none of the Part I encoded symbols are received (i.e.,

a=0),

[χ]a=0=
1
2
k3

+
1
2
k2 l+

19
2

k2
+

19
2

k l , (63)

and SYSR code has the same decoding complexity as Random code in

constructing an upper triangular matrix, i.e., O(k3
) .

78

5.4 Numerical Result

In this section, we measure the performance of Random code, SYSR

code and SR code (introduced in Chapter 7) in terms of PCD and the average

number of XOR row operations to reconstruct the original messages (i.e.,

forming upper triangular matrix and backward substitution). The simulator

consists of three main components – the sender (encoder), which generates the

encoded symbols continuously, the erasure channel that drops the encoded

symbols with erasure probability ρ and the receiver (decoder), which

attempts to reconstruct the original message when it has k+10 encoded

symbols. Each simulation scenario is repeated for 1000 times and the averaged

results are presented.

Figure 5.4 illustrates the PCD of SYSR code (simulation and

analytical), Random code and SR code with incremental overhead symbols for

message length of k=10 symbols. The interpolated lines in the graphs are

used to show the trends of the PCD with respect to each incremental overhead

symbol. When ρ=0.00 , both SYSR and SR code are able to reconstruct the

original message with high PCD from the first k encoded symbols (Part I

encoded symbols) and no overhead symbol is required (Figure 5.4(a)).

However, as ρ increases they require at most ten overhead symbols to

achieve high PCD (Figure 5.4 (b) to (d)). Meanwhile, Random code requires

k+10 encoded symbols to reach high PCD in all the cases.

79

(a) (b)

(c) (d)

Figure 5.4: The PCD of Random code, SYSR code and SR code for

messages of k=10 symbols in channels of various erasure probabilities.

We observe that the PCD of SYSR code is similar to SR code in all

the cases. They outperform Random code when the channel erasure

probability is small and perform as good as Random code in a very lossy

channel (e.g., ρ=0.5). Similar PCD results are obtained for messages with

k=10 , 50, 100 and 250 symbols in channels of various erasure probabilities.

Since SYSR code is able to achieve high PCD with ten overhead symbols

irrespective of the message length, it needs an average of 1.6 overhead

symbols to achieve complete decoding in lossy channels as shown in Figure

5.5.

80

Figure 5.6 presents the average number of XOR row operations for

Random code, SYSR code and SR code to form upper triangular matrices and

backward substitution for messages of k=100 symbols subject to various

channel erasure probabilities. Overall, SYSR code requires the least XOR row

operations among the rest. In particular, when ρ=0.00 SYSR code receives

all the Part I encoded symbols intact and the original message can be

reconstructed instantly. As ρ increases, more Part II encoded symbols are

required in reconstructing the original messages due to missing Part I encoded

symbols. Therefore, the total XOR row operations increases. Meanwhile,

Random code requires about the same total XOR row operations in all the

cases as its generator matrices only consist of randomly distributed binary

values.

81

Figure 5.5: The average overhead symbols for SYSR code to achieve
complete decoding in channels of various erasure probabilities.

Generally, as ρ increases, more Part II encoded symbols are involved

in the decoding process. Since the Part II encoded symbols are generated with

a random matrix, the performance of SYSR code approaches that of Random

code. Therefore, we omit the simulation results for ρ>0.5 in this chapter.

SYSR code will achieve high PCD with k+10 encoded symbols (with 1.6

overhead symbols) under very lossy channel conditions and the total number

of required XOR row operations will be the same as Random code.

5.5 Summary

SYSR code is a systematic rateless erasure code that is built on top of

random matrix. It achieves better PCD with fewer decoding steps than

Random code in channels with low erasure probability.

82

(a)

(b)

Figure 5.6: The average XOR row operations for Random code, SYSR code
and SR code to form (a) upper triangular matrix, and (b) backward
substitution in channels of increasing erasure probabilities.

83

CHAPTER 6

STEPPING-RANDOM CODE

Chapters 3's Random code and Chapter 4's Micro-Random code are

able to achieve high PCD with a fixed number of overhead symbols

irrespective of message length k , but with the trade-off of high decoding

complexity. Though Chapter 5's systematic Random (SYSR) code achieves

better PCD and decoding complexity, it works efficiently only for point-to-

point (i.e., one sender to one receiver) and point-to-multipoint (i.e., one sender

to many receivers) transmissions. In this chapter, we propose a non-systematic

pseudo-random code, namely Stepping-Random (SR) code that works in

point-to-point, point-to-multipoint and multipoint-to-point (i.e., many senders

to one receiver) transmissions.

6.1 Non-Systematic Pseudo-Random Code

In the following sections, we will explain the reason SYSR code

performs inefficiently in multipoint-to-point transmission. Then, we propose a

variant, namely Stepping-Random (SR) code that achieves similar PCD as

SYSR code but with slightly higher decoding complexity.

6.1.1 Issue of SYSR Code in Multipoint-to-Point Transmission

In order to improve the network throughput, one may request the same

message (if available) from multiple sources concurrently (multipoint-to-point

transmission) as depicted in Figure 6.1. Both Random code and Micro-

Random code are applicable in this transmission paradigm because all the

84

received encoded symbols form random matrices after all and the theorems in

Sections 3.2 and 3.3 have assured their high PCD with a fixed number of

overhead symbols.

Figure 6.1: Multipoint-to-point transmission.

Generally, Chapter 5's systematic Random code imposes lower

decoding complexity among all the codes proposed in this thesis. However, it

does not work efficiently in multipoint-to-point transmission as each of its Part

I encoded symbols represents exactly one message symbol. This statement can

be explained using the classical balls and bins analysis (Luby, 2002) as

follows.

Let a message of k bits be represented as k bins and the Part I

encoded symbol as balls. The classical balls and bins analysis indicates that on

average k ln(k /δ) balls (Part I encoded symbols) are needed for each of the

k bins (message of k bits) to be covered by at least one ball with success

probability 1−δ . For example, to have a success probability of 1−δ=0.99 ,

a message of k=100 bits requires 100 ln(100/0.01)=921 Part I encoded

symbols to achieve high PCD. It implies that the Part I encoded symbols of

systematic Random code are less useful in multipoint-to-point transmission.

85

6.1.2 Stepping Code

Though the Part I encoded symbols of SYSR code is the main factor

that improves the decoding complexity, it causes inefficiency in multipoint-to-

point transmission. To address this issue, we suggest to generate the Part I

encoded symbols with Stepping code.

Stepping code is a block code. Each of its generator row matrices has

about the same weight as the Random code, i.e., w≈k /2 . Instead of

distributing the non-zero entries randomly, Stepping code organises them in

the order that is similar to Gray code – each row differs from the previous one

by only one bit.

The generator matrix of Stepping code is constructed as the

followings. Let w=⌈ k /2 ⌉ . Then, the first two rows, g0
s and g1

s have weights

of w and w+1 respectively and they can be represented as

g0
s
=[a0,0(w) a0,1(w) … a0,k−1(w)] , (64)

and

g1
s
=[a1,0(w+1) a1,1(w+1) … a1, k−1(w+1)] . (65)

The notation ai , j defines the value of each entry, where

ai , j(w)={1 if j<w
0 otherwise

. (66)

Then, the rest of the rows g j are expressed as

g j
s={g0

s
≫ j /2 for j=2,4,6,…

g1
s≫(j−1)/2 for j=3,5,7,…

, (67)

86

where ≫ is a right cyclic shift operator.

For example, the first and second row of the generator matrix for

message of k=6 symbols are g0
s
=[1 1 10 0 0] and g1

s
=[1 1 11 0 0] . Then, the

third and fourth rows are obtained by applying the right shift operator to the

first and second rows, i.e., g2
s
=[011100] and g3

s
=[011110] . Using the

same method, the first six generator row matrix is presented in Eq. (68).

G step
k×k

=[
g0
s

g1
s

g2
s

g3
s

g4
s

g5
s
]=[

1 1 1 0 0 0
1 1 1 1 0 0
0 1 1 1 0 0
0 1 1 1 1 0
0 0 1 1 1 0
0 0 1 1 1 1

] . (68)

The decoding method will be explicated together with SR code in Section 6.2.

6.1.3 Stepping-Random (SR) Code

We propose a pseudo-random code, namely Stepping-Random (SR)

code that works in point-to-point, point-to-multipoint and multipoint-to-point

transmissions. Given a message of k symbols, SR code generates two types

of encoded symbols:

 First k encoded symbols, i.e., x0
s , x1

s ,…, xk−1
s are generated

with Stepping code and they are termed as Part I encoded

symbols.

87

 The rest of the encoded symbols from k+1 onwards, i.e.,

xk
r , xk+1

r ,… are generated with Random code and termed as

Part II encoded symbols.

Generally, SR code's generator matrix can be expressed as

G SR
(k +(⋅))×k

=[G step
k×k

G rand
(⋅)×k] . (69)

We use (·) when the quantity is not known. An example of a generator matrix

of k=6 is presented as Eq. (70), where the first k rows are Stepping code's

generator matrix and the rest are generated with Random code.

G SR
(k+(⋅))×6

=[
1 1 1 0 0 0
1 1 1 1 0 0
0 1 1 1 0 0
0 1 1 1 1 0
0 0 1 1 1 0
0 0 1 1 1 1
0 1 1 0 1 0
1 0 1 0 0 1
0 0 1 0 0 1
0 0 1 0 1 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

] . (70)

6.2 Message Reconstruction

The decoding algorithm for ideal channel will be discussed in Section

6.2.1 (decoding in ideal channel) and the full version (decoding in lossy

channel) in Section 6.2.2.

88

6.2.1 Decoding in Ideal Channel

Recall that the Part I encoded symbols possess a Gray code like

structure, where each row matrix is differed from the previous one by only one

bit. This property enables SR code to reconstruct the original message with

sequential addition algorithm as shown in the following.

Let x i
s be the i -th Part I encoded symbol and its corresponding

generator row matrix as gi
s . Then, the sequential addition reconstructs a

message symbol m j by adding two encoded symbols in sequence. That is,

m j=x i
s
+x i−1

s , (71)

where i=1,2,…k−1 and j is the index of non-zero entry in the addition of

gi
s and gi−1

s . For example, adding the g0
s
=[1 1 1 0 0 0] and

g1
s
=[1 1 1 1 0 0] in Eq. (70) will reconstruct the message symbol

m3 .

The original message can be reconstructed from the first k encoded

symbols (i.e., all the Part I encoded symbols). The sequential addition will

reconstruct k−1 message symbols and the last message symbol mw−1

(where w=⌈ k /2 ⌉) with Gaussian elimination. For example, assuming all the

Part I encoded symbols in Eq. (70) are received intact. Then, the sequential

addition will reconstruct k−1 message symbols (i.e., adding x0 and x1

89

reconstructs m3 , adding x1 and x2 reconstructs m0 and etc., except m2).

The last message symbol m2 can be reconstructed with Gaussian elimination.

Sequential addition reconstructs the k−1 message symbols with

k−1 row operations, i.e., the computational complexity is O(k) . On the

other hand, the last message symbol can be reconstructed with Gaussian

elimination of computational complexity O(k3
) . The latter computational

complexity can be ignored as it is used to construct only one symbol.

6.2.2 Decoding in Lossy Channel

In the previous section, we assume all the Part I encoded symbols are

received intact and the original message is reconstructed with sequential

addition. No Part II encoded symbols are needed. In this section, we assume a

lossy channel and not all the Part I encoded symbols are received intact. Then,

the receiver requires a total of k+10 Part I-II encoded symbols in order to

reconstruct the original message with high PCD.

The full decoding algorithm of SR code in lossy channel consists of

the following steps:

• Step 1: Form the generator matrix from the received k+10 Part I-II

encoded symbols.

• Step 2: Perform the sequential addition to the generator row matrices

that belongs to Part I encoded symbols.

90

• Step 3: Add the reconstructed message symbols in Step 2 to the rest of

relevant encoded symbols. Removing the columns and rows that

correspond to the reconstructed message symbols in Step 2.

• Step 4: Apply Gaussian elimination to reconstruct the remaining

symbols of the original message.

We will explain the aforementioned algorithm with the example below.

G SR
16×6

= [
1 1 1 0 0 0
1 1 1 1 0 0
0 1 1 1 1 0
0 1 1 0 1 0
1 0 1 0 0 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 1 1 0 0

] . (72)

Assuming a lossy channel transmission and we have received k+10

Part I-II encoded symbols. The generator matrix is formed in Step 1 as shown

in Eq. (72). Note that only two Part I encoded symbols (first two rows) are

received in sequence. The third Part I encoded symbol is not in sequence with

the second one. Reconstructing the fourth message symbol is done by adding

the first and second encoded symbols, i.e., m3=x0⊕x1 in Step 2. The

resulting generator matrix is presented in Eq. (73).

G SR
(16)×6

=[
1 1 1 0 0 0
0 0 0 1 0 0
0 1 1 1 1 0
0 1 1 0 1 0
1 0 1 0 0 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 1 1 0 0

] . (73)

In Step 3, we add the second encoded symbol to the rest of the

encoded symbols, in which the fourth entries are non-zero. Then, the second

91

row and the fourth column of the generator matrix are removed as shown in

Eq. (74). The resulting generator matrix will have smaller dimensions if we

have more Part I encoded symbols that are in sequence.

G SR
(15)×5

= [
1 1 1 0 0

0 1 1 1 0

0 1 1 1 0
1 0 1 0 1
⋮ ⋮ ⋮ ⋮ ⋮
0 0 1 0 0

] . (74)

In Step 4, the first and the third Part I encoded symbols will combine

with the rest of the encoded symbols to form a new generator matrix of

dimensions 15×5 . This new generator matrix appears to be a message of

k=5 symbols and we reconstruct the original message from the rest of ten

overhead symbols with high PCD.

Another example, given a message of k=100 symbols and we have

received 50 Part I encoded symbols and 60 Part II encoded symbols. In Step 1,

we form a generator matrix of dimensions 110×100 that represents these 110

encoded symbols. Assume that only some of the Part I encoded symbols are in

sequence. Consider the case that we manage to reconstruct (1−β)k=20

message symbols in Step 2. Then, 20 rows and columns of the generator

matrix will be eliminated and the remaining generator matrix has dimensions

90×80 in Step 3. Generally, the resulting generator matrix represents the

subset message of 80 symbols and we have 80+10=90 encoded symbols.

92

Therefore, in Step 4 we deploy Gaussian elimination to reconstruct the

remaining message with high PCD.

6.2.3 Decoding Complexity

Assume a lossy channel and we have received k+10 Part I-II

encoded symbols. The sequential addition in Step 2 of the decoding process

only works on the sequential Part I encoded symbols. Let β be the fraction of

the Part I encoded symbols that are out of sequence for 0≤β≤1 . Then,

sequential addition only works on (1−β)k Part I encoded symbols that are in

sequential order – each of them contributing a single row operation and the

decoding complexity becomes O ((1−β)k) . Next, in Step 3 we shrink the

matrix dimensions from (k+10)×k to (βk+10)×β k . The operation

involves (1−β)k columns and each column involves (βk+10) row

operations. Therefore the decoding complexity is O((β−β
2
)k2

) .

Let K=β k , Gaussian elimination requires O(K3
) to solve a

(K+10)×K matrix. In other words, SR code requires computational

complexity of O ((β k)3) in Step 4. Hence, the overall decoding complexity

can be expressed as

O ((1−β)k)+O ((β−β
2
)k2) +O ((β k)

3) . (75)

Note that β is a variable. If all the Part I encoded symbols are received intact

(β=0), the decoding complexity can be simplified to O(k) . On the other

hand, if none of the Part I encoded symbols can be used in sequential addition,

the decoding complexity will be O (k3) .

93

6.2.4 Decoding in Multipoint-to-Point Transmission Scenario

Unlike Chapter 5's systematic Random code, the receiver of SR code

has the ability to reconstruct the original message by receiving the encoded

symbols from multiple sources. We represent the message as M k×l and the

Stepping code generator matrix as G step
k×k . Instead of generating the Part I

encoded symbols with G step
k×k directly, we randomise the columns of the

generator matrix and denote the resulting generator matrix as ~G step
k×k . Then, the

Part I encoded symbols can be generated using X step
k×l

=
~G step

k×k M k×l . Note that

such action will not affect the rankness of the matrix. Additionally, we assume

that the receiver can learn the random seed from the identities of the encoded

symbols.

Say the receiver receives q Part I encoded symbols from q sources,

where q≥k . Assume that these received Part I encoded symbols appear to be

random from each other. Then, the receiver just needs to receive another extra

10 Part II encoded symbols from any source in order to achieve high PCD.

Note that the sequential addition is not applicable in this case as all the Part I

encoded symbols are generated from different sources. Hence, the original

message has to be reconstructed with Gaussian elimination. The simulation

results of SR code in multipoint-to-point transmission paradigm are presented

in Figures 6.12 and 6.13.

94

6.3 Numerical Result

The simulation consists of three components – sender, erasure channel

and receiver. The sender generates the generator row matrices in the encoding

process, the erasure channel decides whether a generator row matrix should be

dropped according to the channel erasure probability ρ and the receiver

attempts to inverse the generator matrix. Each simulation has been repeated

for 1000 times and the average results are presented in graphs.

Figures 6.2 to 6.7 illustrate the performance of SR code, Random code

and Windowed code (see Section 3.4) in channel of erasure probabilities

ρ=0.00 to 0.05. In general, SR code has a higher PCD as compared to

Random code and Windowed code using the same amount of overhead

symbols. Particularly, Figure 6.2 demonstrates that SR code is the only coding

scheme that is able to achieve complete decoding with zero overhead symbols

in an ideal channel (i.e., ρ=0). Nevertheless, the disparity between SR code

and Random code becomes negligible when the channel erasure probability

increases.

95

Figure 6.2: The performance of Random code, Windowed code and SR
code in the channels of channel erasure probability ρ=0.00 for message
of k=100 symbols.

Figure 6.3: The performance of Random code, Windowed code and SR code
in the channels of channel erasure probability ρ=0.01 for message of
k=100 symbols.

96

Figure 6.4: The performance of Random code, Windowed code and SR code
in the channels of channel erasure probability ρ=0.02 for message of
k=100 symbols.

Figure 6.5: The performance of Random code, Windowed code and SR code
in the channels of channel erasure probability ρ=0.03 for message of
k=100 symbols.

97

Figure 6.6: The performance of Random code, Windowed code and SR code
in the channels of channel erasure probability ρ=0.04 for message of
k=100 symbols.

Figure 6.7: The performance of Random code, Windowed code and SR code
in the channels of channel erasure probability ρ=0.05 for message of
k=100 symbols.

98

We vary the channel erasure probabilities from ρ=0.1 to 0.9 (very

lossy channel). The results are similar among all three and part of the results (

ρ=0.5 and 0.7) are presented in Figures 6.8 and 6.9. We have tested the

performance of SR code for messages of k=100 , 300, 500 and 1000 symbols

in channels of various channel erasure probabilities. The results are identical

and one of the results ρ=0.5 is shown in Figure 6.10.

Figure 6.8: The performance of Random code, Windowed code and SR code
in the channels of channel erasure probability ρ=0.5 for message of
k=100 symbols.

99

Figure 6.9: The performance of Random code, Windowed code and SR code
in the channels of channel erasure probability ρ=0.7 for message of
k=100 symbols.

Figure 6.10: The performance of SR code in the channels of channel erasure
probability ρ=0.5 for messages of length 100, 300, 500 and 1000 symbols.

100

Figure 6.11 demonstrates the decoding complexity of SR code for

various channel erasure probabilities. In the simulation, the sender

continuously generates the encoded symbols for a message of k=100

symbols and the receiver attempts to reconstruct the original messages with

sequential addition and Gaussian elimination.

Figure 6.11: Total message symbols that are reconstructed with sequential
addition and Gaussian elimination in channels of various erasure probabilities.

In the channel of zero or near-zero packet loss probability, the

majority of the message symbols can be reconstructed with sequential

addition. For example, in ρ=0.1 about 80 out of 100 symbols were

reconstructed with sequential addition and only about 20 symbols (i.e.,

β=0.2) needed to be reconstructed using Gaussian elimination. However, as

the channel erasure probability increases, the major portion of the original

message will be reconstructed with Gaussian elimination. On the other hand,

in a very lossy channel (p=0.9) SR code performs as good as Random code

and it uses Gaussian elimination to reconstruct the messages most of the time.

101

Figures 6.12 and 6.13 illustrate the performance of SR code in

multipoint-to-point transmission paradigm with erasure probability ρ=0.1 .

Receiving Part I encoded symbols from q=5 , 10, 15 and 20 sources

randomly will form a nearly full rank matrix as depicted in Figure 6.12(a) for

message of k=10 symbols and (b) message of k=50 symbols. Additionally,

doubling the total number of sources (i.e., q=2k) will not improve the

rankness further. After all, the Part I encoded symbols are generated with

Stepping code instead of Random code and the theorems in Sections 3.2 and

3.3 do not apply here (i.e., it is not able to achieve high PCD with k+10 Part

I encoded symbols).

Additionally, Figure 6.13 (a) and (b) illustrate that SR code is able to

achieve high PCD by combining k Part I encoded symbols and 10 extra Part

II encoded symbols (i.e., total of k+10 Part I-II encoded symbols) for

messages of k=10 and k=50 symbols. Note that, SR code deploys

Gaussian elimination to reconstruct the original message in multipoint-to-point

transmission paradigm – it has the same decoding complexity as Random code

in this case.

6.4 Summary

In this chapter, we have proposed a non-systematic rateless erasure

code, namely Stepping-Random (SR) code that demonstrates better PCD and

decoding complexity as compared with Random code and Windowed code in

channels of zero or near zero erasure probability. Additionally, it has identical

102

performance with Random code in a very lossy channel. Unlike the systematic

Random code, which was proposed in the previous chapter, SR code works in

multipoint-to-point transmission paradigm with the trade-off of non-negligible

decoding complexity even if all the Part I encoded symbols are received intact.

103

(a)

(b)

Figure 6.12: The achievable rankness by selecting k Part I encoded symbols
randomly from various number of sources for messages of (a) k=10 (b)
k=50 symbols.

104

(a)

(b)

Figure 6.13: The PCD of randomly selected k+10 Part I-II encoded
symbols from various number of sources.

105

CHAPTER 7

RATELESS ERASURE CODES IN GF(28)

This chapter extends our proposed GF(2) rateless erasure code to

higher order of finite field for gains in PCD. Though these GF(28) rateless

erasure codes are not the focus of the thesis, they are presented here in order to

demonstrate the potential in attaining better PCD performance than RaptorQ

code – a Raptor code variant that is built on the hybrid of GF(2) and GF(28).

7.1 Random Code in GF(2q)

Random code is the basic design of our proposed rateless erasure

codes. In this section, we will first generalise Random code to GF(2q) and the

resulting PCD equation will be used in the rest of the proposed GF(2q) rateless

erasure codes. We start the explanation by first restating Lemma 3.3.1 in

GF(2q) as the following.

Lemma 7.1.1. Given that a GF(2q) random matrix G (q) ,(n−1)×k of dimensions

(n−1)×k has rank (n−1) , where 0<n≤k . Then, the probability to attain

rank n with an extra row is

p(q)
(n ,k)=∏

i=1

n−1

(1−2q(i−k)
) . (76)

Proof. In GF(2q), a random vector g(q) ,1×k of k elements has 2kq
−1 possible

combination, excluding the vector of all zeros. In order to have rank n in

G (q) ,n× k , g(q) ,1×k must be independent of all the rows in the previous

106

G (q) ,(n−1)×k . Therefore, g(q)1×k is limited to τ
(q)

(n−1,k) possible

combinations, where

τ
(q)

(n−1,k) = 2kq
−1−∑

i=1

n−1

(n−1
i)(2q

−1)
i

= 2kq
−1−[(2q

)
(n−1)

−1]
= 2kq

−2q (n−1) ,

(77)

and (⋅⋅) is the binomial coefficient. Then, the probability for G (q) ,(n− 1)×k to

attain rank n with g(q) ,1×k is

p(q)
(n ,k) = p(q)

(n−1,k)×
τ

(q)
(n−1,k)

2kq

= p(q)
(n−2,k)×

τ
(q)

(n−2,k)

2kq ×
τ

(q)
(n−1,k)

2kq

=
τ

(q)
(1,k)

2kq
×

τ
(q)

(2,k)

2kq
×⋯×

τ
(q)

(n−1,k)

2kq

= ∏
i=1

n−1
τ

(q)
(i , k)

2kq

= ∏
i=1

n−1 (2kq−2qi)
2kq

= ∏
i=1

n−1

(1−2q(i−k)) ,

(78)

■

Generally, Lemma 3.3.1 uses i−k in the exponents, i.e., 2i−k while the

exponent in Eq. (78) is q (i−k) – they share the same exponential form but in

different constant, q . Next, Lemmas 3.3.2 to 3.3.4 are restated in the

followings without proof.

First, the probabilities of the last few ranks for random matrices of

different dimensions differ insignificantly as stated below.

107

Lemma 7.1.2. Let m∈ℤ
+ and 0≤m<k . The probabilities to have rank

k−m in GF(2q) random matrices of dimensions (k−m)×k for different k

are similar, i.e.,

| p(q)(k−m+1,k+1)−p(q)(k−m,k)|<δ , (79)

and δ→0 exponentially fast with finite and bounded increment k .

Secondly, the transposition of the random matrices will not change the

rankness as stated below.

Lemma 7.1.3. The probabilities to have rank k−m in G (q) ,(k –m)×k and

G (q) ,k×(k−m) are identical.

In short, we have determined the probability to attain rank k−m in

GF(2q) random matrix G (q) ,(k –m)×k in Lemma 7.1.1. Then, Lemma 7.1.2

shows that such probability varies insignificantly for any two GF(2q) random

matrices of different dimensions with increasing k . Since the rankness will

not change with transposition (Lemma 7.1.3), we conclude the following

theorem:

Theorem 7.1.4. The probabilities to have rank k in GF(2q) random matrix of

dimensions (k+m)×k for m≥0 is

Pr (rank (G (k+m)×k)=k) = p(q)(k−m , k)

= ∏
i=1

k−m−1

(1−2q (i− k))

= QRC
(q)

(m) ,

(80)

108

Let the failure probability be defined as Pfail=1− QRC
(q)

(m) . The

corresponding numerical results for GF(2q) random matrices of dimensions

100×100 with extra rows are presented in Figure 7.1. As to facilitate the

representation of long numerical values, we state the failure probabilities in

the exponents of 10 throughout the rest of this chapter.

Overall, the probabilities improve significantly with higher q . For

example, the failure probabilities at zero and ten overhead symbols for GF(2)

are 10−0.1480 and 10−3.010 . However, in GF(28) the failures probabilities

improve to 10−2.407 and 10−26.49 respectively.

109

Figure 7.1: The failure probabilities of GF(2q) random matrices at various
additional rows.

7.2 Micro-Random Code in GF(2q)

Generally, Micro-Random code attains higher PCD than Random

code by using the micro symbols in the encoding and decoding processes.

Revising Eq. (44), the PCD of GF(2q) Micro-Random code is expressed as

QMRC
(q) (m,α) = QRC

(q) (αm)

= ∏
i=1

k−αm−1

(1−(2q
)
i−k) .

(81)

and the failure probability is defined as pfail=1−QMRC
(q)

(m,α) .

The failure probabilities of GF(2q) Micro-Random code with

increasing overhead symbols using α=10 are presented in Table 7.1 and the

corresponding graph in Figure 7.2. Additionally, the failure probabilities of

GF(28) Micro-Random code at various α are presented in Table 7.2 and

graphed in Figure 7.3.

110

Table 7.1: The failure probabilities of Micro-Random code at various GF(2q) and m
overhead symbols using α=10 .

GF(2)
m=0 10-0.1480 10-0.5066 10-0.8520 10-1.178 10-1.492 10-1.799 10-2.104 10-2.407

m=1 10-3.010 10-6.498 10-9.876 10-13.22 10-16.54 10-19.86 10-23.18 10-26.49

m=2 10-6.021 10-12.52 10-18.91 10-25.26 10-31.59 10-37.92 10-44.25 10-50.57

m=3 10-9.031 10-18.54 10-27.94 10-37.30 10-46.65 10-55.98 10-65.32 10-74.65

m=4 10-12.04 10-24.56 10-36.97 10-49.34 10-61.70 10-74.05 10-86.39 10-98.74

m=5 10-15.05 10-30.58 10-46.00 10-61.38 10-76.75 10-92.11 10-107.5 10-122.8

m=6 10-18.06 10-36.60 10-55.03 10-73.42 10-91.80 10-110.2 10-128.5 10-146.9

m=7 10-21.07 10-42.62 10-64.06 10-85.46 10-106.9 10-128.2 10-149.6 10-171.0

m=8 10-24.08 10-48.64 10-73.09 10-97.51 10-121.9 10-146.3 10-170.7 10-195.1

m=9 10-27.09 10-54.66 10-82.12 10-109.5 10-137.0 10-164.4 10-191.8 10-219.1

m=10 10-30.10 10-60.68 10-91.15 10-121.6 10-152.0 10-182.4 10-212.8 10-243.2

GF(22) GF(23) GF(24) GF(25) GF(26) GF(27) GF(28)

Figure 7.2: The failure probabilities of GF(2q) Micro-Random code at
increasing number of overhead symbols.

111

Table 7.2: The failure probabilities of GF(28) Micro-Random code at various
α and overhead symbols, m .

α=1 α=2 α=4 α=6 α=8 α=10
 m=0 10 -2.407 10 -2.407 10 -2.407 10 -2.407 10 -2.407 10 -2.407

 m=1 10 -4.815 10 -7.223 10 -12.04 10 -16.86 10 -21.67 10 -26.49

 m=2 10 -7.223 10 -12.04 10 -21.67 10 -31.31 10 -40.94 10 -50.57

 m=3 10 -9.631 10 -16.86 10 -31.31 10 -45.75 10 -60.20 10 -74.65

 m=4 10 -12.04 10 -21.67 10 -40.94 10 -60.20 10 -79.47 10 -98.74

 m=5 10 -14.45 10 -26.49 10 -50.57 10 -74.65 10 -98.74 10 -122.8

 m=6 10 -16.86 10 -31.31 10 -60.20 10 -89.10 10 -118.0 10 -146.9

 m=7 10 -19.26 10 -36.12 10 -69.84 10 -103.6 10 -137.3 10 -171.0

 m=8 10 -21.67 10 -40.94 10 -79.47 10 -118.0 10 -156.5 10 -195.1

 m=9 10 -24.08 10 -45.75 10 -89.10 10 -132.5 10 -175.8 10 -219.1

 m=10 10 -26.49 10 -50.57 10 -98.74 10 -146.9 10 -195.1 10 -243.2

To find the PMF of each additional overhead symbols, we revise Eq.

(46) and (47) as

PMRC
(q) = QMRC

(q)
(m ,α)−QMRC

(q)
(m−1,α) , (82)

and

PMRC
(q)

(0,α) = QMRC
(q)

(0,α) . (83)

Utilising them, the numerical values are presented in Table 7.3.

112

Figure 7.3: The failure probabilities of GF(28) micro Random code at various α
and overhead symbols, m .

Generally, a lower failure probability is achievable with higher

GF(2q), α and m . The failure probability at zero overhead symbol improves

with increasing order of GF(2q) and is invariant to α . Additionally, GF(28)

Micro-Random code achieves failure probabilities of 10−26.49 at one overhead

symbol, 10−50.57 at two overhead symbols and 10−243.2 at ten overhead

symbols.

On that account, we improve the performance of SYSR code and SR

code in the following sections by replacing their Part II's GF(2) Random code

with GF(28) Micro-Random code.

7.3 Systematic Micro-Random Code and Stepping-Micro-Random

Code in GF(28)

We improve SYSR code and SR code by replacing their Part II's

GF(2) Random code with GF(28) Micro-Random code using segmentation

factor α=10 . The resulting GF(28) codes are named as systematic Micro-

Random (SYSMR) code and Stepping-Micro-Random (SMR) code,

113

Table 7.3: The PMF and the mean of GF(28) micro Random code at
various α .

α=1 α=2 α=4 α=6 α=8 α=10
 m=0 10-0.001706 10-0.001706 10-0.001706 10-0.001706 10-0.001706 10-0.001706

 m=1 10-2.408 10-2.407 10-2.407 10-2.407 10-2.407 10-2.407

 m=2 10-4.816 10-7.223 10-12.04 10-16.86 10-21.67 10-26.49

 m=3 10-7.225 10-12.04 10-21.67 10-31.31 10-40.94 10-50.57

 m=4 10-9.633 10-16.86 10-31.31 10-45.75 10-60.20 10-74.65

 m=5 10-12.04 10-21.67 10-40.94 10-60.20 10-79.47 10-98.74

 m=6 10-14.45 10-26.49 10-50.57 10-74.65 10-98.74 10-122.8

 m=7 10-16.86 10-31.31 10-60.20 10-89.10 10-118.0 10-146.9

 m=8 10-19.27 10-36.12 10-69.84 10-103.6 10-137.3 10-171.0

 m=9 10-21.67 10-40.94 10-79.47 10-118.0 10-156.5 10-195.1

 m=10 10-24.08 10-45.75 10-89.10 10-132.5 10-175.8 10-219.1

Mean 10-2.41 10-2.407 10-2.407 10-2.407 10-2.407 10-2.407

respectively. These codes will be compared with RaptorQ code, the variant of

Raptor code that is built on the hybrid of GF(2) and GF(28). In the following,

we will study the failure probabilities of the proposed codes using various

overhead symbols and channel erasure probabilities analytically.

By replacing the GF(2) Random code with GF(28) Micro-Random

code (using α=10), the PCD of SYSR, i.e., Eq. (58) is revised to

QSYSR
(q)

(m)=B(0, k ,ρ) + [1−B (0,k ,ρ)] QMRC
(q)

(m ,10) . (84)

According to Section 5.4, SR code has the similar PCD as SYSR code. Hence,

QSR
(q)

(m)≈QSYSR
(q)

(m) , (85)

the PCD analysis on SYSR code is applicable to SR code.

Defining failure probability as 1−QSYSRC
(q) (m) , the numerical results of

both SYSMR code and SMR codes at m=0 to 3 overhead symbols in

channels of various erasure probabilities are presented in Table 7.4 and

graphed in Figure 7.4. Both of them achieve failure probability of 10−3.148 at

zero overhead symbol with ρ=0.001 and it increases to 10−2.407 in a very

lossy channel (e.g., ρ=0.5). At one overhead symbol, both systematic Micro-

Random code and Stepping-Micro-Random code achieve much lower failure

probabilities, i.e., 10−27.23 and 10−26.49 with ρ=0.001 and ρ=0.5 ,

respectively. Two overhead symbols further improve the failure probabilities

to 10−51.31 and 10−50.57 with the aforementioned channel erasure probabilities

respectively. Meanwhile, they require zero overhead symbol to achieve

complete decoding when ρ = 0 .

114

Note that the improvement is not significant as compared to GF(28)

Random code from ρ = 10−1 to 10−3 (See Figure 7.1). However, as discussed

in Chapter 5 and 6, SYSMR code (SYSR code) and SMR code (SR code) have

relatively better decoding complexities due to its Part I encoded symbols.

Comparing with the reported numerical results of RaptorQ code in

Shokrollahi and Luby (2011), the failure probabilities of RaptorQ code

fluctuate at about the same values as GF(28) Random code, i.e., 10−2.407 ,

10−4.815 and 10−7.223 for zero, one and two overhead symbols, respectively as

shown in Figure 2.9 to 2.11 of Section 2.2.3. Comparatively, SYSMR code

SMR code have much more significant improvement in PCD starting at one

overhead symbol onwards.

115

Table 7.4: The failure probabilities of systematic Micro-Random code and
Stepping-Micro-Random code for m = 0 to 3 in channel of various
erasure probabilities.

ρ=0.001 ρ=0.005 ρ=0.01 ρ=0.05 ρ=0.1 ρ=0.5
m=0 10-3.148 10-2.605 10-2.469 10-2.407 10-2.407 10-2.407

m=1 10-27.23 10-26.69 10-26.55 10-26.49 10-26.49 10-26.49

m=2 10-51.31 10-50.77 10-50.63 10-50.57 10-50.57 10-50.57

m=3 10-75.40 10-74.85 10-74.72 10-74.65 10-74.65 10-74.65

7.4 Conclusion

We generalise both Random code and Micro-Random code to GF(2q)

and construct systematic Micro-Random code and Stepping-Micro-Random

code on GF(28). The proposed GF(28) rateless erasure codes have a much

lower failure probabilities than RaptorQ code, i.e., 10−26.49 and 10−50.57 at

one and two overhead symbols, respectively. They can be used in the networks

that have expensive retransmission cost. For example, the communications

between low-earth-orbit satellites and ground stations are short due to rapid

nodes mobility (i.e., satellites move out-of-sign if the messages are not

delivered in time). Therefore, messages must be reconstructed with the least

overhead symbols and a very low failure probability.

116

Figure 7.4: The failure probabilities of GF(28) systematic Micro-Random code
and Stepping-Micro-Random code at overhead symbols of m=0 to 3 in channels
of various erasure probabilities.

CHAPTER 8

CONCLUSION AND FUTURE WORK

To address the need in transmitting short messages with rateless

erasure codes, we introduce Random code and propose its variants, namely

MR code, SYSR code and SR code in the previous chapters. This chapter

compares their performance in term of PCD, decoding complexities and

applicable transmission scenarios altogether before drawing the conclusion

and then discussing the future work.

8.1 Probability of Complete Decoding (PCD) and Overhead Symbols

The required overhead symbols to achieve high PCD (i.e., 99.9%

success probability to reconstruct the original message) are different for each

proposed rateless erasure code. Referring to Table 8.1, Random code requires

k+10 encoded symbols (i.e., ten overhead symbols) to achieve high PCD no

matter whether the channel is ideal or lossy. On the other hand, with a

segmentation factor α=10 , Micro-Random code achieves the high PCD at

k+1 encoded symbols. On the other hand, both SYSR code and SR code

have better performance when the channel erasure probabilities are low. They

require zero overhead symbol in an ideal channel. Like Random code, both

SYSR code and SR code require ten overhead symbols to achieve high PCD

when the channels are lossy.

117

Table 8.1: The total required encoded symbols to achieve high PCD.

Ideal Channel Lossy Channel

Random Code

Micro-Random Code

Systematic Random Code k

Stepping-Random Code k

k + 10 k + 10

k + 1 k + 1

k + 10

k + 10

Table 8.2 illustrates the average number of encoded symbols for each

code to achieve complete decoding. On average, Random code requires 1.6

overhead symbols to achieve complete decoding, irrespective of the message

length as proven in Chapter 3. Micro-Random code outperforms Random code

by achieving complete decoding with an average of 0.7 overhead symbols in

both ideal and lossy channels. On the other hand, both SYSR code and SR

code achieve complete decoding with zero overhead symbol if all their Part I

encoded symbols are received intact in the ideal channel. They require an

average of about 1.6 overhead encoded symbols in lossy channel just like

Random code.

Table 8.2: The average encoded symbols to achieve complete
decoding for each of the coding schemes.

Ideal Channel Lossy Channel

Random Code

Micro-Random Code

Systematic Random Code k

Stepping-Random Code k

k + 1.6 k + 1.6

k + 0.7 k + 0.7

k + 1.6

k + 1.6

118

8.2 Decoding Complexity

The decoding complexity of each code is presented in Table 8.3. Both

Random code and Micro-Random code requires decoding complexity of

O(k3
) in all the channel conditions – ideal and lossy. However, the analysis

in Section 4.3.3 has suggested that Micro-Random code uses more time in

reconstructing the original messages.

Generally, the decoding complexities of SYSR code and SR code vary

according to the channel conditions (to be precise, the sequence of the

received Part I encoded symbols). SYSR code reconstruct the original

message with negligible decoding complexity if all the Part I encoded symbols

are received intact, especially in an ideal channel condition or O(k3
) in lossy

channel. On the other hand, SR code requires O(k) in an ideal channel

condition and O(k3
) if the channel is lossy.

Table 8.3: The decoding complexity for each coding scheme in various
channel conditions.

Ideal Channel

Random Code

Micro-Random Code

Systematic Random Code Negligible

Stepping-Random Code

Very Lossy
Channel

O(k3) O(k3)

O((αk)3) O((αk)3)

O(k3)

O(k) O(k3)

8.3 Transmission Scenarios

The transmission scenarios of the aforementioned rateless erasure

codes are summarised in Table 8.4. Random code and Micro-Random code are

119

built on GF(2) random matrix. Hence, they are suitable for all the transmission

scenarios as all the received encoded symbols forms a random matrix after all.

SYSR code has the smallest decoding complexity among the rest.

However, it is applicable only at one-to-one and one-to-many transmission

scenarios. The decoding complexity of SR code is slightly higher than SR

code but SR code works in all transmission scenarios that listed in Table 8.4.

Table 8.4: The applicability for each rateless erasure code in various
transmission scenarios.

One-to-One One-to-Many Many-to-One

Random Code ✓ ✓ ✓

Micro-Random Code ✓ ✓ ✓

Systematic Random Code ✓ ✓ ✗

Stepping-Random Code ✓ ✓ ✓

8.4 Conclusion

The state-of-art rateless erasure codes are efficient for long messages

but the majority of the network traffic are short messages instead. To

overcome this issue, this thesis proposes rateless erasure codes that are

efficient in transmitting short messages.

Chapter 3's Random code is built on random matrix and it possesses a

high decoding complexity. Nonetheless, the mathematical theorems in

Sections 3.2 and 3.3 assure that Random code is able to achieve high PCD

with k+10 encoded symbols in transmitting both short and long messages

120

and in both ideal and lossy channels. These mathematical theorems are the key

design to the rest of the proposed rateless erasure codes.

Chapter 4's Micro-Random code achieves high PCD at only k+1

encoded symbols but with the trade-off of higher decoding complexity than

Random code. Both SYSR code (Chapter 5) and SR code (Chapter 6) possess

lower decoding complexity depending on the channel conditions. In particular,

SYSR code has the lowest decoding complexity but it only works in one-to-

one or one-to-many transmission scenarios. Though the decoding complexity

of SR code is higher than SYSR code, it is applicable to all transmission

scenarios.

8.5 Future Work

In this section, we will discuss some future work to implement the

proposed rateless erasure codes.

8.5.1 Transmitting Long Messages with Short Rateless Erasure Code

Generally, short rateless erasure code can be used to transmit both

short and long messages. We can transmit a long message with short rateless

erasure code by segmenting the long message into multiple short messages

and sending their respective encoded symbols in different sessions. To

illustrate the idea, say we intend to transmit a message of k=1,000 symbols

to a receiver with Random code, in which it promises high PCD with ten

overhead symbols. In this case, only 1% redundant encoded symbols is

introduced and the decoding inefficiency ϵ=0.01 .

121

Assuming the receiver is a resource-constrained device. Instead of

processing the 1000 symbols at one time, we segment the message into 10

short messages of 100 symbols and initiate the transmission (encoding) in ten

sessions. Such a method requires less computational resources. However, ten

overhead symbols are required in each session in order to reconstruct each

short message with high PCD. In other words, a total of 10×10=100

overhead symbols are needed in transmitting a message of k=1000 symbols

(segmented to ten short messages) with Random code. The decoding

inefficiency becomes relatively high, i.e., ϵ=0.1 . A novel method is required

to address this issue.

8.5.2 Protocol Design

In order for the short rateless erasure code to be deployed widely, we

need to incorporate the short rateless erasure code into the TCP with minimum

modification. We have listed a few issues in designing such protocol.

8.5.2.1 Computational Specification

As we have suggested in previous section, the short rateless erasure

code can be used to transmit the long messages. Therefore, both sender and

receiver need to exchange the information about the computational resources

during the initialization. For example, the receiver needs to specify the total

message symbols and symbol size to transmit the message with no coding.

122

8.5.2.2 Delay Acknowledgement

Instead of acknowledging each received packet, the receiver can

acknowledge a group of them. This mechanism is commonly known as the

delay acknowledgement in TCP research communities.

The delay acknowledgement influences the performance of the

rateless erasure code aided TCP. The over-frequent acknowledgement

introduces unnecessary delay to the network communication. In contrast,

insufficient acknowledgement will increase the communication overhead

caused by the short rateless erasure code as the sender unintentionally send

excessive code symbols that may not be needed by the receiver.

We suggest the receiver send the first acknowledgement when the first

50% of the encoded symbols received. The second acknowledgement should

be sent when 75% of the acknowledgement received. The frequency of the

acknowledgement will be double and eventually the receiver will

acknowledge the sender for every last few received encoded symbols. We

leave the detailed study in future work.

123

BIBLIOGRAPHY

1. Abdullah, N.F., Doufexi, A., and Piechocki, R.J., 2011. Raptor codes

for infrastructure-to-vehicular broadcast services. IEEE Vehicular

Technology Conference, pp. 1 – 5.

2. Abdullah, N.F., Doufexi, A., and Piechocki, R.J., 2013. Raptor codes-

aided relaying for vehicular infotainment applications. IET

Communications, 7(18), pp. 2064 – 2073.

3. Ahlgren, B., Dannewitz, C., Imbrenda, C., Kutscher, D., and Ohlman,

B., 2012. A survey of information-centric networking. IEEE

Communications Magazine, 50(7), pp. 26 – 36.

4. Ahlswede, R., Cai, N., Li, S.Y., and Yeung, R.W., 2000. Network

information flow. IEEE Transactions on Information Theory, 46(4), pp.

1204 – 1216.

5. Alcatel One Touch: Hardware specification [Online]. Available at

http://www.imei.info/phonedatabase/13112-alcatel-ot-4011x/

[Accessed: 1 Nov 2014].

6. Asus Nexus 7: Hardware specification [Online]. Available at

http://www.asus.com/Tablets_Mobile/Nexus_7/specifications/

[Accessed: 1 Nov 2014].

7. Benson, T., Akella, A., and Maltz, D. A., 2010. Network traffic

characteristics of data centers in the wild. ACM SIGCOMM conference

on Internet Measurement, pp. 267 – 280.

8. Benson, T., Anand, A., Akella, A., and Zhang, M., 2010. Understanding

data center traffic characteristics. ACM SIGCOMM Computer

Communication Review, 40(1), pp. 92 – 99.

9. Berman, M., Chase, J.S., Landweber, L., Nakao, A., Ott, M.,

Raychaudhuri, D., Ricci, R., and Seskar, I., 2014. GENI: a federated

testbed for innovative network experiments. Elsevier Computer

Networks, 61, pp. 5 – 23.

124

10. Bitstring: a python module to construct, analyse and modify binary

data [Online]. Available at https://pypi.python.org/pypi/bitstring/3.1.3

[Accessed: 1 Nov 2014].

11. Blumenthal, M.S., and Clark, D.D., 2001. Rethinking the design of the

Internet: the end-to-end arguments vs. the brave new world. ACM

Transactions on Internet Technology (TOIT), 1(1), pp. 70 – 109.

12. Bodine, E.A., and Cheng, M.K., 2008. Characterization of Luby

transform codes with small message size for low-latency decoding.

IEEE International Conference on Communications, pp. 1195 – 1199.

13. Bonald, T., Feuillet, M., and Proutiere, A., 2009, Is the ''Law of the

Jungle'' sustainable for the Internet?, IEEE INFOCOM, pp. 28 – 36.

14. Botos, A., Polgar, Z. A., and Bota, V., 2010. Analysis of a transport

protocol based on rateless erasure correcting codes. IEEE

International Conference on Intelligent Computer Communication and

Processing (ICCP), pp. 465 – 471.

15. Brownlee, N., and Claffy, K.C., 2002. Understanding Internet traffic

streams: dragonflies and tortoises. IEEE Communications Magazine,

40(10), pp. 110 – 117.

16. Bursalioglu, O. Y., Caire, G., and Divsalar, D., 2011. Joint source-

channel coding for deep space image transmission using rateless codes.

Information Theory and Applications Workshop (ITA), pp. 1 – 10.

17. Byers, J.W., Luby, M., Mitzenmacher, M., and Rege, A., 1998. A

digital fountain approach to reliable distribution of bulk data. ACM

SIGCOMM Computer Communication Review, 28(4), pp. 56-67.

18. Chen, C.C., Tahasildar, G., Yu, Y.T., Park, J.S., Gerla, M., and

Sanadidi, M.Y., 2012. CodeMP: Network encoded multipath to support

TCP in disruptive MANETs. IEEE International Conference on

Mobile Adhoc and Sensor Systems (MASS), pp. 209 – 217.

19. Chong, Z.K., Goi, B.M., Ewe, H.T., Tan, S.W., and Bryan, Ng .C.K.B.,

2012a. Impact of fountain-based protocol in the uncongested and

congested network. International Conference on Computer and

Information Science (ICCIS), 2, pp. 747 – 754.

125

20. Chong, Z.K., Goi, B.M., Ohsaki, H., Ng, B.C.K., Ewe, H.T., 2013.

Stepping-Random Code: A Rateless Erasure Code for Short-Length

Messages. IEICE Transactions on Communications, E96-B (07), pp.

1764 – 1771.

21. Chong, Z.K., Ohsaki, H., Goi, B.M., Ewe, H.T., and Ng, C. K., 2012b.

Performance analysis of fountain-based protocol in CSMA/CA

wireless networks. International Symposium on Applications and the

Internet (SAINT), pp. 184 – 189.

22. Clark, D., Shenker, S. and Falk, A., 2007. GENI research plan (Version

4.5). Available at http://groups.geni.net/geni/raw-

attachment/wiki/OldGPGDesignDocuments/GDD-06-28.pdf

[Accessed: 1 October 2014].

23. CRCmod: A python module to compute Cyclic Redundancy Check

(CRC) [Online]. Available at https://pypi.python.org/pypi/crcmod

[Accessed: 1 Nov 2014].

24. Du, Q., Ren, P., Lu, J., and Chen, Z., 2013. A novel cooperative

multicast scheme based on fountain code. Communications and

Network, 5(03), pp. 144 – 149.

25. Ebrahimi-Ghiri, R., and Keshavarz-Haddad, A., 2013. Novel broadcast

schemes based on network codes for Ad Hoc networks with noisy

wireless links. IEEE Iranian Conference on Electrical Engineering

(ICEE), pp. 1 – 6.

26. Feldmann, A. (2007). Internet clean-slate design: what and why?.

ACM SIGCOMM Computer Communication Review, 37(3), pp. 59 –

64.

27. Fisher D., 2014. A look behind the future internet architectures efforts,

ACM SIGCOMM Computer Communication Review, 44 (3), pp. 45 –

49.

28. Gaussian elimination: Solver for GF(2) matrix [Online]. Available at:

https://github.com/zkchong/gaussian_elimination_py [Accessed: 1 Nov

2014].

126

29. Hyytia, E., Tirronen, T., and Virtamo, J., 2007. Optimal degree

distribution for LT codes with small message length. IEEE

International Conference on Computer Communications, pp. 2576 –

2580.

30. Kim, M., Médard, M., and Barros, J., 2011. Modeling network

encoded TCP throughput: A simple model and its validation. In

Proceedings of the 5th International ICST Conference on Performance

Evaluation Methodologies and Tools, pp. 131 – 140.

31. Kim, S., Fonseca, R., and Culler, D., 2004. Reliable transfer on

wireless sensor networks. IEEE Sensor and Ad Hoc Communications

and Networks, pp. 449 – 459.

32. Kolchin, V.F. 1998. Random Graphs (Encyclopedia of Mathematics

and its Applications). Cambridge University Press.

33. Lu, H., Lu, F., Cai, J., and Foh, C.H., 2013. LT-W: Improving LT

Decoding With Wiedemann Solver. IEEE Transactions on Information

Theory, 59(12), pp. 7887 – 7897.

34. Luby, M. G., Mitzenmacher, M., Shokrollahi, M. A., and Spielman, D.

A., 2001. Efficient erasure correcting codes., IEEE Transactions on

Information Theory, 47(2), pp. 569 – 584.

35. Luby, M., 2002. LT codes. IEEE Symposium on Foundations of

Computer Science, pp. 271 – 280.

36. MacKay, D.J.C., 2005. Fountain codes. IEE Proceedings-

Communications, 152(6), pp. 1062 – 1068.

37. MacKay, D.J.C., and Neal, R.M., 1995. Good codes based on very

sparse matrices. Cryptography and Coding, pp. 100 – 111.

38. Mammi, E., Palma, V., Neri, A., and Carli, M., 2011. Fountain code

based AL-FEC for multicast services in MANETs. Wireless

Telecommunications Symposium (WTS), pp. 1 – 7.

39. McAuley, A.J., 1990. Reliable broadband communication using a burst

erasure correcting code. ACM SIGCOMM Computer Communication

Review, 20(4), pp. 297 – 306.

127

40. Mehta, T., and Narmawala, Z., 2012. Performance enhancement of

multimedia traffic over wireless ad hoc networks using network

coding. IEEE Nirma University International Conference on

Engineering (NuiCONE), pp. 1 – 6.

41. Móczár Z., Molnar S., and Sonkoly B., 2014. Multi-platform

performance evaluation of digital fountain based transport. Science

and Information Conference (SAI), pp. 690 – 697.

42. Molnár, S., Móczár, Z., and Sonkoly, B., 2014. How to transfer flows

efficiently via the Internet?. International Conference on Computing,

Networking and Communications (ICNC), pp. 462 – 466.

43. Molnár, S., Móczár , Z., Temesváry, A., Sonkoly, B., Solymos, S., and

Csicsics, T., 2013. Data transfer paradigms for future networks:

Fountain coding or congestion control?. In IEEE IFIP Networking

Conference, pp. 1 – 9.

44. Moors, T., 2002. A critical review of "end-to-end arguments in system

design". IEEE International Conference on Communications, 2, pp.

1214 – 1219.

45. Ou, W., Yang, Z., Tang, L., and Zhongyang, G., 2012. Design of

wireless sensor network based on random linear network coding. IEEE

International Conference on Computer Science and Service System

(CSSS), pp. 986 – 990.

46. Pan, J., Paul, S., and Jain, R., 2011. A survey of the research on future

internet architectures. IEEE Communications Magazine, 49(7), pp.

26-- 36.

47. Python: a programming language [Online]. Available at:

https://www.python.org/ [Accessed: 1 Nov 2014]

48. Qadri, N.N., Fleury, M., Altaf, M., and Ghanbari, M., 2010. Multi-

source video streaming in a wireless vehicular ad hoc network. IET

Communications, 4(11), pp. 1300 – 1311.

49. QPython: Python on Android [Online]. Available at

http://qpython.com/ [Accessed: 1 Nov 2014].

128

50. Raghavan, B., and Snoeren, A. C., 2006. Decongestion control. In

Proceedings of the Fifth Workshop on Hot Topics in Networks

(HotNets-V), pp. 61 – 66.

51. Reed, I.S., 2000. A Brief History of the Development of Error

Correcting Codes. Computers and Mathematics with Applications,

39(11), pp. 89 – 93.

52. Rizzo, L., 1997. Effective erasure codes for reliable computer

communication protocols. ACM SIGCOMM computer communication

review, 27(2), pp. 24 – 36.

53. Rout, R.R., and Ghosh, S.K., 2013. Enhancement of lifetime using

duty cycle and network coding in wireless sensor networks. IEEE

Transactions on Wireless Communications, 12(2), pp. 656 – 667.

54. Saltzer, J.H., Reed, D.P., and Clark, D. D., 1984. End-to-end arguments

in system design. ACM Transactions on Computer Systems (TOCS),

2(4), pp. 277 – 288.

55. Schwerdel, D., Reuther, B., Zinner, T., Müller, P., and Tran-Gia, P.,

2014. Future internet research and experimentation: the G-Lab

approach. Elsevier Computer Networks, 61, pp. 102 – 117.

56. Serpent: a python module to serialize object [Online]. Available at

https://pypi.python.org/pypi/serpent [Accessed: 1 Nov 2014].

57. Sheu, J. P., Lee, C. Y., and Ma, C., 2013. An efficient transmission

protocol based on network coding in delay tolerant networks. IEEE

International Conference on Innovative Mobile and Internet Services

in Ubiquitous Computing (IMIS), pp. 399 – 404.

58. Shokrollahi, A., 2006. Raptor codes. IEEE Transactions on

Information Theory, 52(6), pp. 2551 – 2567.

59. Studholme, C., and Blake, I. 2006. Windowed erasure codes. IEEE

International Symposium on Information Theory, pp. 509 – 513.

60. Sundararajan, J. K., Shah, D., Médard, M., Jakubczak, S.,

Mitzenmacher, M., and Barros, J., 2011. Network coding meets TCP:

Theory and implementation. Proceedings of the IEEE, 99(3), pp. 490 –

512.

129

61. Wang, Y., Jain, S., Martonosi, M., and Fall, K., 2005. Erasure-coding

based routing for opportunistic networks. ACM SIGCOMM workshop

on delay-tolerant networking, pp. 229 – 236.

62. Wen, H., Lin, C., Ren, F., Yue, Y., and Huang, X., 2007.

Retransmission or redundancy: transmission reliability in wireless

sensor networks. IEEE International Conference on Mobile Ad hoc

and Sensor Systems, pp. 1 – 7.

63. Wicker, S. B., and Bhargava, V. K., 1999. Reed-Solomon codes and

their applications. John Wiley and Sons.

64. Xylomenos, G., Ververidis, C.N., Siris, V.A., Fotiou, N., Tsilopoulos,

C., Vasilakos, X., Katsaros, K.V., and Polyzos, G.C., 2013. A survey of

information-centric networking research. IEEE Communications

Surveys and Tutorials, 16 (2), pp. 1024 – 1049.

65. Zeng, D., Guo, S., Jin, H., and Leung, V., 2012. Dynamic segmented

network coding for reliable data dissemination in delay tolerant

networks. IEEE International Conference on Communications (ICC),

pp. 63 – 67.

66. Zhang, W., and Hranilovic, S., 2009. Short-length raptor codes for

mobile free-space optical channels. IEEE International Conference on

Communications, pp. 1 – 5.

67. Zhang, X. and Ding, W., 2012. Comparative Research on Internet

Flows Characteristics. International Conference on Networking and

Distributed Computing (ICNDC), pp. 114 – 118.

68. Zhang, Y., and Qiu, L., 2000. Understanding the End-to-End

Performance Impact of RED in aHeterogeneous Environment. Cornell

University.

69. Zhu, H., Zhang, C., and Lu, J., 2007. Designing of fountain codes with

short code-length. IEEE Signal Design and Its Applications in

Communications, pp. 65 – 68.

70. Zhu, X., Zhang, W., Li, B., and Zhang, L., 2010. Symmetric

Distributed Joint Source-Channel Coding Using Raptor Codes. IEEE

130

International Conference on Networking, Architecture and Storage

(NAS), pp. 317 – 321.

131

ACHIEVEMENT

PUBLICATION

1. Chong, Z.K., Goi, B.M., Ohsaki, H., Ng, B.C.K., and Ewe, H.T., 2015.
Improving The Probability of Complete Decoding of Random Code by
Trading-off Computational Complexity. IET Communications.
[Accepted on 1st September 2015].

2. Chong, Z.K., Goi, B.M., Ohsaki, H., Ng, B.C.K., and Ewe, H.T., 2015.
Systematic Rateless Erasure Code for Short Messages Transmission.
Computers & Electrical Engineering, Vol. 45, pp. 55 – 67.

3. Chong, Z.K., Goi, B.M., Ohsaki, H., Ng, B.C.K., and Ewe, H.T., 2015.
Probability of Complete Decoding of Random Codes for Short
Messages. Electronics Letters, 51(3), pp. 251 – 253.

4. Chong, Z.K., Goi, B.M., Ohsaki, H., Ng, B.C.K., and Ewe, H.T., 2013.
Stepping-Random Code: A Rateless Erasure Code for Short-Length
Messages. IEICE Transactions on Communications, E96-B (07), pp.
1764 – 1771.

5. Chong, Z.K., Goi, B.M., Ohsaki, H., Ng, B.C.K., and Ewe, H.T., 2012.
Design of Short-Length Message Fountain Code for Erasure Channel
Transmission. IEEE Conference on Sustainable Utilization and
Development in Engineering and Technology (STUDENT), pp. 239 –
241.

6. Chong, Z.K., Goi, B.M., Ewe, H.T., Tan S.W., and Ng, B.C.K., 2012.
Impact of Fountain-based Protocol in the Uncongested and Congested
Network. International Conference on Computer and Information
Sciences (ICCIS), 2, pp. 747 – 754.

7. Chong, Z.K., Ohsaki, H., Goi, B.M., Ng, B.C.K., and Ewe, H.T., 2012.
Performance Analysis of Fountain-based Protocol in CSMA/CA
Wireless Networks. The 12th IEEE/IPSJ International Symposium on
Applications and the Internet (SAINT), pp. 184 – 189.

RESEARCH PROJECTS

1. Transmitting Long-Length Messages to Resource Constraint Mobile
Computing Devices with Rateless Erasure Code, UTAR Research Fund
2014 – 2015.

2. Reliable Data Transfer for High Altitude Platform (HAP)’s Wireless
Access Networks, UTAR Research Fund 2013 – 2014.

3. Evaluation Of The Performance Of Rateless encoded TCP In Small-
Scale Networks., UTAR Research Fund, 2012 – 2013.

4. Qos And Over-Provisioning In Backbone Network, UTAR Research
Fund, 2011.

132

