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KINECT SENSOR ON MOBILE ROBOT 

AUTONOMOUS INDOOR MOBILE ROBOT NAVIGATIO 

 

 

ABSTRACT 

 

 

Vehicle had been founded thousands years ago. It was evolved from human powered 

to engine propelled and its development showing no sign of stopping. The criteria of 

recent automobile development are focusing on safety and environment friendly. 

Autonomous vehicle is the current trend of research which emphasizing on improves 

traffic efficiency and reduces accident caused by human error. Autonomous mobile 

robot even developed into indoor applications to carry out numerous logistic tasks. 

Autonomous robotics in indoor environments is traditionally done using a 

combination of laser range finders, time of flight cameras, and/or stereo vision. This 

work proposes the use of the Microsoft® Kinect sensor as an alternative lower-cost 

modality for low-cost mobile robotics. The indoor environment is scanned by Kinect 

sensor and processed to produce a global map which contains all robots’ navigable 

region within the indoor environment. By using the global map, robot path planner is 

able to search through the environment and generates path to reach its destination 

from a starting point. For better motion performance, path is being smoothened 

afterward to reduce the number of turning point in path. During its navigations, it 

might face new obstacle that never recorded in global map. Obstacle detection and 

avoidance module are implemented on the robot to detect new static and dynamic 

obstacle during robot’s forward motion. A modification on global map will carry-out 

after a static obstacle is found to facilitate subsequence path planning routine. As the 

result, the mobile robot is shown to be capable of navigating a previously captured 

global map autonomously with obstacle detection and avoidance functions. 
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CHAPTER 1 

 

 

 

1 INTRODUCTION 

 

 

 

1.1 Background 

 

As technology evolves, autonomous robots have become more and more popular in 

the manufacturing, health care, security, military and similar sectors. The primary 

benefit of this technology is that it can function without human intervention and yet 

perform better under certain circumstances. In other words, autonomous robots can 

replace human in tasks which are dangerous, repetitive and require high levels of 

concentration over a long time.  

 

 Unlike manual-control robot, autonomous robot does not rely on live input 

commands. Autonomous robot makes decisions by itself based on its sensor inputs 

and pre-defined behaviours. Therefore, it can operate with minimum of human 

supervision and correction. Hence, it behaves as an autonomous individual in its 

environment. 

 

Autonomous indoor mobile robots are required to navigate through an indoor 

environment. In order for an indoor mobile robot to be considered autonomous, it 

must at least have the following capabilities. First, it should be able to locate itself 

within the indoor environment. Second, it should be able to plan its path to reach it 

destination. Third, it should be able to correct itself if it deviates from the planned 

path. Fourth, it should be able to detect and avoid new obstacles. There are also 

many other capabilities an autonomous mobile robot needs, depending on its 

function and how the word ‘autonomous’ being defined by the designer. 
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1.2 Problem Statement 

 

Obstacles for outdoor mobile robot are diversified, for instance trees, slopes, traffic 

lights, road lanes, vehicles, pedestrians, and other environmental factors common in 

outdoor environments. On the other hand, indoor mobile robot only needs to process 

data that concerning the navigable floor areas and possible indoor obstacles such as 

furniture, human and wall. Although the environment classification’s complexity is 

slightly lower, indoor mobile robot still having strict criterion on sensor requirement. 

 

There are many types of sensors which can be used by autonomous indoor 

mobile robots. Popular choices include laser range finders, time-of-flight cameras 

and stereo camera as shown in figure 1-1. However, these sensors can be either too 

expensive or too computationally complex (or both) for this application. Laser and 

time-of-flight sensors are one of the costly devices which price can goes from a 

thousand to tens thousands USD. Stereo camera can be built economically but it 

requires additional calibration and complex data processing if compared to laser 

sensor or time-of-flight camera.  

 

 

Figure 1-1: Advance Range Sensor  

(Ptgrey 2013, Sick 2013, Mesa-imaging 2013) 

 

 

Kinect was introduced by Microsoft® at year 2010.It immediately created a 

huge wave that hit the world of video gaming. The first version of Kinect appears as 

an Xbox360 video game console and function as a player’s motion sensing input 

device and its microphone also allow user to interact using voice. Instead of having a 

controller in player’s hand, Kinect allow player to interact with the game by using 
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their body. In other word, Kinect changes ordinary gaming style (finger interact) into 

a brand new method (whole body interact).  

 

 

Figure 1-2: Xbox Gaming with Kinect 

(John 2010) 

 

 

Besides, Microsoft® Kinect
TM

 drew interest from robotics hobbyists as well. 

This sensor is a low cost device which able to produces RGB image, depth image 

and sound recordings. Although its depth accuracy and sensing range are not as good 

as advance range sensors, Kinect sensor still provides a good trade-off between price 

and data quality for indoor mobile robotics. 

 

One other benefit of the Kinect sensor is the numerous open source Kinect
TM

 

libraries available for developers, easing implementation of the Kinect sensor on 

other applications besides gaming. Some examples of these libraries are OpenKinect, 

OpenNI, Kinect for Windows, Point Cloud Library (PCL), and the Robotic 

Operation System (ROS). 

 

 

 

1.3 Aims and Objectives 

 

The main aim of this project is to produce a robot which able to navigate through-out 

an indoor environment autonomously, freely, and accurately without collision with 

obstacles. To achieve this, Kinect sensor is used as the vision sensor together with 
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other sensors if requires. Besides, this robot which equipped with Kinect sensor 

should have similar standard or small deviation in term of level of performance with 

robot which equipped with advance system and sensors. 

 

 In this project, there are few objectives to be achieved: 

 

 To apply new technology, Kinect sensor on robotic application.  

 To apply 3D computer vision technology on mobile robot navigation. 

 To provide mobile robot the ability to generate path to its destination. 

 To provide mobile robot the ability to localize itself in indoor environment.
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CHAPTER 2 

 

 

 

2 LITERATURE REVIEW 

 

 

 

Advance autonomous mobile robots are mostly equipped with advance sensors to 

acquire different type of data, for instance robot’s and obstacles’ position, heading, 

moving speed through sensors such as laser range finder, radar sensor, global positioning 

system, digital compass, inertia measurement unit, time of flight and stereo camera. 

Together with navigation intelligent, these robots performed numerous impressive tasks 

that purveying conveniences into human’s life.  

 

These reviews are going to explore the sensors of most autonomous mobile robot 

deployed on acquiring self and environments’ situations as while as the newly emerging 

sensor technology that applicable in mobile robotic. Besides, there are also discussions 

on the algorithms implemented in providing robot artificial intelligent based on their 

assigned task respectively. 

 

 

 

2.1 Range Sensor 

 

Autonomous mobile robots are not a new development and many types of range 

sensors have been implemented. Start from the most basic level, it can be using 

cheap ultrasonic and infra-red distance sensors. Mobile robots are able to find out the 

one dimension distance between itself and the obstacle in front.  
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Figure 2-1: Ultrasonic and Infra-red Range Sensor 

(Maxbotic 2013, Sparkfun 2013) 

   

 

These sensors are very simple and easy to build but having poor performance 

in certain aspect. Infra-red range sensor has low sensing area while ultrasonic range 

sensor has large sensing are but low space resolution. Both of them are suitable for 

beginner in educational purpose and not suitable in precise space measuring for 

advance autonomous mobile robot.  

 

   

Figure 2-2: Ultrasonic Sensor’s Sensing Ranges 

(karsten and Ewald 2009) 

 

 

 

2.1.1 Passive Stereo Vision 

 

Stereo vision does not actively transmit pulses and observe reflections. Instead it 

passively captures light from different positions with overlap. By using multiple 

images from 2 or more cameras placed at a defined offset, stereo matching algorithm 

able to calculate the distance of the object captured in the images. The array of 

distances calculated is often called depth or disparity map. Stereo matching faced 

problems such as lack of texture, occlusion, discontinuity and noise. Several 
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techniques have been developed to improve the correspondence problem such as 

intensity, feature and phase based (Hile and Zheng 2004).  

 

Besides, algorithms which generate depth maps from stereo cameras for 

mobile robotics are also a popular research topic. This technology has been widely 

used in a lot of robotic application. NASA’s Mars Exploration Rover (MER) 

missions was applied autonomous passive stereo vision (Goldberg, Mark and Larry 

2002) as a terrain observer while the rover navigating on Mars. In this application, 

stereo vision is a better choice of range sensor because the environment is an 

unknown terrain, it might have laser and infra-red disturbances that can interfere 

other type of sensor which expect to receive reflected pulses.  

 

 

Figure 2-3: Mars Exploration Rover 

 (Goldberg, Mark and Larry 2002) 

 

 

 In unmanned robotic ground vehicle development field, stereo vision 

technology provides useful disparity map for navigation. Few researchers have been 

applied the disparity map on mobile robot mainly performing obstacle location, 

detection and avoidance task (Hasan, Hamzah and Johar 2009) (Mingxiang and 

Yunde, 2006). The basic obstacle avoidance rules are robot will turn to the other side 

if there is an obstacle in front of it and so on. However, these were not adequate 

anymore for robot nowadays because they are not only expected obstacle avoidance 

ability but also navigation within places.  
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Figure 2-4: Obstacle Detection and Avoidance 

 (Mingxiang and Yunde, 2006) 

 

 

 

Figure 2-5: Flow Chart of Simple Obstacle Avoidance Robot 

(Hasan, Hamzah and Johar 2009) 

 

 

A stereo vision based driver assistance project called Enpeda Project (Liu 

2007) from university of Auckland applied stereo and motion Analysis towards 

Analysis and Understanding of Traffic. However, the result was influenced by 

outdoor environment such as snow, rain, light and road condition etc. Unlike MER 

who moving in much slower speed, the system was not responds fast enough if the 

vehicle moving in high speed on road. In other word, the quality of image is 

extremely important for stereo algorithm because the algorithm is very sensitive to 

noise and take time to process.  

 

Ordinary stereo vision system use 2 camera to capture 2 different images with 

offset. However, conventional camera is limited by their field of view. It can only 

capture image around 70 degree horizontally. Su, Luo and Zhu (2006) were 

implementing an effective way to increase field of view, which is constructing an 
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omnidirectional vision system by using mirrors in conjunction with stereo cameras to 

generate disparity map. Although the field of view increased, the signal to noise ratio 

decreased compared with ordinary stereo image. Besides, defocusing effect becomes 

obvious due to the different of focal length of mirrors and cameras. 

 

 

Figure 2-6: Omnidirectional Vision System 

(Su, Luo and Zhu 2006) 

 

 

In DARPA grand challenge 2004, a team called Terramax implemented 

stereo vision system on their desert challenger (Broggi et al., 2006). Their vision 

system provides V-disparity representation for its path planner. Since the system is 

designed to work in unstructured environment, ground correlation line had been 

computed to differentiate vehicle pitch angle. With the useful dynamic pitch 

information, region of interest can be accurately located. This allows system to 

allocate ground and region to search for obstacle. Thereafter, a global map is 

matched up with the local map generated by the stereo disparity map to estimates the 

vehicle actual coordinate on the earth.   

 

 

Figure 2-7: Original and Processed Images of Terramax 

(Broggi et al., 2006) 
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2.1.2 Laser Range Finder 

 

Laser range finders and time-of-flight cameras are currently the highest accuracy 

sensors in range measurement (Stoyanov et al., 2011, Salvi, Pages and Batlle 2004). 

They are usually used in autonomous mobile robots or vehicles which require precise 

range measurement to facilitate algorithms such as localization and mapping. Stereo 

vision performance can be as good as laser range finders under some conditions, but 

the computational power needed to executes stereo algorithm is significant (Antunes 

et al., 2012). In other word, laser range finder’s data do not require another step of 

matching process and hence, its sensing speed is another advantage besides its 

accuracy. Due to their high performance, these range sensors are normally some 

order of magnitude more expensive than other range sensors. 

 

Laser range finder had been widely used in the robotic development field and 

holds the crown among other navigator devices due to its speed and data accuracy. 

This is a popular method to acquiring 3D data as well as generates local map. A 2D 

laser range finder had been deployed on an autonomous robot (Surmann et al., 2001) 

to generate 3D map. Their approach is to rotate the 2D laser range finder with 

horizontal axis of rotation. Therefore, a 3D range finder is built on the basis of 2D 

range finder with servo motor. The rotation provides vertical scanning and repels the 

need of sensor upgrading. Therefore, the quality of the map generated is largely 

depends on the servo motor’s resolution.  

 

 

Figure 2-8: Rotational Laser Range Finder 

(Surmann et al., 2001) 
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 Stanford’s robot car ‘Stanley’ was the winner of Defence Advanced Research 

Projects Agency (DARPA) grand challenge 2005 who had autonomously travels 142 

miles through Mojave Desert in 6 hours and 54 minutes (Thrun et al., 2006). 

Together with GPS, Radar, Stanley was equipped with 5 SICK
®
 laser range finders 

on the vehicle roof to form an environment sensor group. 5 of them are pointed 

forward to the driving direction, but slightly different in tilt angles. The laser range 

finders are used to monitor the surrounding environment while far obstacles are 

detected by radar range finder. 

 

 

Figure 2-9: Stanley’s Laser Range Finder 

(Thrun et al., 2006) 

 

 

 

Figure 2-10: Stanley’s Local Map 

(Thrun et al., 2006) 

 

 

 Stanley is not interested its rear’s condition but only the front environment 

conditions are being monitored carefully because in desert, neither vehicle’s 
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movement nor path planning will be affected by the vehicle’s rear condition. 

However, rear and front conditions are equally important if it wanted to drives in 

urban road and the complexity is very different from driving in desert.  

 

 

 

2.1.3 Microsoft Kinect  

 

 

Figure 2-11: Kinect’s Naked View 

(Smisek, Jemcosek and pajdla 2011) 

 

 

Kinect has becomes more and more popular in robotic development recent years due 

to its acceptable price and quality. The whole Kinect come together with sensors and 

actuator listed below: 

 RGB camera  

 IR projector 

 IR receiver 

 Accelerometer 

 Microphone array 

 

The IR sensor is kind of active stereo vision camera where its depth camera 

emits structured infra-red light, receives it upon reflection from the object in front. It 

can easily be affected by sunlight because it is using infra-red and making it not 

working well under strong light or sunlight (EL-laithy, Huang and Yeh 2012). It also 

having a limited depth sensing ranges which around 0.5 meters to 5.5 meters. 

Therefore, almost all robots with Kinect sensors embedded are designed for indoor 

applications. But it has advantage over passive stereo vision where it able and best to 
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be function in the dark. Furthermore, Kinect’s data streams do not require to undergo 

matching process likes stereo vision.  

 

 Correa et al. (2012) developed an autonomous indoor surveillance robot 

power by Kinect sensor. The depth image had been segmented into 5 sections and the 

darkness of each section in represent the distance from the robot to obstacle in front. 

Simple rules based algorithm navigates the robot away from the section which 

having shorter distance. It seems simple in navigation algorithm but artificial neural 

network (ANN) has been applied in the path recognition. ANN is used to recognise 8 

types of path the robot is facing from the 5 segments depth image. This method 

reduces depth map process’s difficulty and simplifying the depth image by 

segmented it into 5, but reduces and wasted the Kinect data’s resolution. The path 

way robot move must not be too confusing in order ANN can recognize it based on 

low resolution depth image.  

 

 

Figure 2-12: Segmented Depth Map & ANN Recognized Paths 

(Correa et al., 2012) 

 

 

 Kinect sensor has been applied on altitude control of quadrotor helicopter 

(Stowers, Hayes and Bainbridge 2011). Kinect is used for measuring the height of 

the helicopter by depth data. Therefore, it is mounted under the craft and pointing 

downward to the ground. PID algorithm was applied to maintain helicopter’s altitude 

during flight and the suitability of Kinect sensor in highly vibrates and dynamic 

environment has been evaluated. The result proved that Kinect is capable to function 

in high frequency vibration and it is important because some motor or engine used in 

ground robot create as much vibration as airborne robot that malfunction its sensor.  
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However, the Kinect was not wirelessly communicates with the main control 

computer but with cables. This limits the moving range of the quadcopter and 

reduced the practicality of this design. Ground robot has larger load capacity which 

able to equip its own main control PC inside itself and its motion only limited by 

battery capacity.    

 

 

Figure 2-13: Kinect Sensor on Quadrotor Helicopter 

(Stowers, Hayes and Bainbridge 2011) 

 

 

 

2.1.4 Sensors Merging 

 

No sensor can be optimized in all aspect, each of them having certain degree of 

disadvantage.  In normal practice, multiple and different type of sensors are merged 

in one application for the purpose of covering each other backside.  

 

 Asensio, Montiel and Montano (1998) had merged stereo vision and laser 

range finder on a mobile robot. It applied a stereo trinocular system which using 3 

synchronized CCD monochrome cameras and a 3D lidar laser range finder to 

generate depth map and perform door localization in indoor environment. Lin and 

Chen (2012) had merged omnidirectional camera with a SICK laser range finder to 

perform navigation and simultaneous localization and mapping (SLAM). WJ IV and 

Belvy (2001) had combined 3 range sensors which are Kinect, Bumblebee stereo 

camera and SICK laser range finder. Supplementary sensors such as rotary encoders 

are often added to autonomous mobile robots to perform dead reckoning localization. 
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Figure 2-14: Multiple Sensors Merged on Indoor Robot 

(Asensio, Montiel and Montano 1998, WJ IV and Belvy 2001) 

 

 

Besides the sensors mentioned above, other sensors such as global 

positioning system (GPS) and radar sensors have been used in advanced autonomous 

vehicle(Montemerlo et al., 2008, Thrun et al., 2006). Self-driving car “Junior” was 

took part in the DAPRA urban challenge 2007. The competition requires self-driving 

car driving in urban road condition with taking in all consideration a human driver 

will need to have. Junior had equipped with many type of sensors in order to hander 

data such as road location and situation in all directions, traffic light, self-location 

and speed and other vehicle location, speed and heading.  

 

 

Figure 2-15: Junior The Self-driving Car 

(Montemerlo et al., 2008) 
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Ordinary global positioning system cannot provides accurate measurements 

because it signals easily affected by several factors such as satellite’s position 

inaccuracy, atmosphere condition, signal’s barriers density, co-frequency inferences 

and receiver noises (earthmeasurements, 2000). 

 

 

 

2.2 Navigation and Algorithm 

 

2.2.1 Line Following 

 

Many automation companies such as Savant automation and SwissLog had develop 

automated guided vehicle (AGV). Transcar is an AGV product developed by 

SwissLog, designed to navigate in indoor environment for purpose of transporting 

goods in working environment such as hospital, warehouse or other hazardous area 

such as high temperature, radioactive or biohazard.  

 

 These types of AGV are normally working in swarm manner and everyone is 

controlled by a centre controlling unit. Transcar navigation system used line 

following method to navigate through the environment. The entire working 

environment of transcar is implanted with electromagnetic line that will be picked up 

by the transcar line sensor during its navigation. By following the line assigned by 

control unit, transcar able to navigates to its destination with obstacle detection 

ability. It also equipped with wireless transceiver which enable it to communicate 

with lift and door to enlarge it working area.  

 

 

Figure 2-16: Transcar and its Path Network 

(Swisslog 2013) 
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2.2.2 Localization  

 

Autonomous robot always faces local position tracking problem, especially indoor 

autonomous robot. In order to navigate reliably, robot must have the ability to 

localize itself in an indoor environment without the aid of GPS.  

 

 

 

2.2.2.1 Odometry 

 

 

Figure 2-17: Differential Drive Robot 

(Ganganath and Leung 2012) 

 

 

Ganganath and Leung (2012) applied localization on a mobile robot by using 

odometry system and Kinect sensor. It odometry system used 2 15-bits quadrature 

encoders to calculate the position and direction of the robot.  

 

 

Figure 2-18: Graphical Illustration on Odometry System 

(Ganganath and Leung 2012) 
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 The system state vector, Xk = [xk yk θk]
T
 describes the position of the mid 

point of the robot’s wheels’s width, W in X and Y axis while the heading of the robot 

describes by the θk at time step K. The change of heading can be calculated by the 

equation below:  

W
k

)lr( kk 



  

 

Where 

δ l = change of distance of left wheel 

δ r = change of distance of right wheel 

 

while the distance travelled by the mid point of the wheels, 
2

W
is calculated 

by the equation below: 

2

)lr( kk 



kd  

 

Therefore, the next position of the robot can be determine by the martrix 

below:  
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 By using these equations, the robot’s position can be estimated. However, the 

reliability of odometry system is very dependent on the encoder mounted on the 

robot. If the mechanical structure cannot make sure the accuracy, it only can be one 

of the algorithms among other localization method applied on the robot.  
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2.2.2.2 Monte Carlo Localization 

 

Monte Carlo localization (MCL) is a probabilistic approach to solve mobile robot’s 

position tracking problem. Its multi modal distribution basis and abilities to represent 

ambiguities and uncertainties make it a better choice among other technique. It was 

evolved for Markov localization and reduced the memory required in Markov’s 

method (Thrun 2002). However, MCL is a discrete state space filter which required 

to separates it working space into pieces.  

 

MCL mainly consists of 2 phase, measure and motion, and recursively 

computes it probability density of each space. If the robot starting position is 

unknown, the probabilities of each and every cell are equal. Then the algorithm goes 

into measure stage. It use measurement model to incorporate environment 

information from sensors and produces posterior probability density which content 

the densities of all cells. The cell who matches the current sensed information will 

denser than who does not. Normalization is done after multiplying different value to 

match and not matches’ cell’s density. After this phase, cell’s densities are more 

differentiable and higher confident in localization.  

 

The next phase is motion phase. The motion of the robot must be integral of 

cell. If each cell is 5cm, robot cannot move a 12cm as single movement to comply 

the localizer natural discrete basis. Since the robot movements cannot be 100% 

certain and accurate, the probability density shifted according to the movement and 

flatten depend on the degree of robot movement uncertainty.  

 

These 2 phases will repeat recursively every time step in order to track the 

position of robot.  
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2.2.2.3 Particle Filter 

 

Particle filter (PF) is very similar to MCL in the measure and motion phases. It is 

also a multi-model filter as MCL which mean it can track multiple landmarks in a 

single set of algorithm. However, PF has advantage over MCL on its continuous state 

space (Thrun 2002).  

 

The first step is to initializes a number of particles within the space where the 

robot moves. The initialized elements are particle’s x-y coordinate and heading. The 

resolution of the localiser is depends on the number of particle initialized at this state. 

Then, it enters into measurement stage. Robot’s and all particle’s distances to 

landmarks are computed. The different between particle’s distances to landmark with 

robot’s distance to landmark are the factor to decide the weight of the particle. A new 

set of particles will be selected based on their weight. In other word, particles that are 

closer to robot will have better chance to stay while further particle will less likely to 

stay as particle.  

 

After that, the robot will move and the movement will apply to all particles. 

Next, the measurement will repeat again on all particles. The measurement and 

motion steps will repeat recursively until the specific particle who closest to robot 

has much more weight than other and confident enough to produces robot coordinate 

over the space.   

 

 

Figure 2-19: Particle Filter in Action 

(Thrun 2002) 
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2.2.2.4 Kalman Filter Localization 

 

It undergo the same measurement and update cycle as MCL does but it using 

Gaussian method and calling predict and update cycle. In predict state, prior 

estimation is being moved by a desired distance using total probability method. Its 

mean is being shifted and its covariance increased. In update state, prior and 

measurement combined using Bayer’s rule to produces lower covariance estimation.  

 

In predict state:  

    

In update state:  

    

Where 

 µ = mean    σ
2
 = covariance 

µ
’
 = new mean    σ

2’
 = new covariance 

r = measurement uncertainty  w = motion uncertainty 

v = measurement mean  u = motion mean 

 

 

 

2.2.3 Path Planning 

 

The path planner will partitioned the space into grid cells and every planned 

movement are either up, down, left or right. The algorithm implemented in the 

planner is A* search. A map is required for the planner before it starts. The map can 

be update while the robot is moving due to the detection of new obstacle.  

 

The planner will first search the entire available grid cell adjacent to it to be 

its frontier for search tree expansion. If multiple grid cells are available, the planner 

will chooses the grid cell who takes lesser steps. The heuristic function is produced 

based on the distances between the grid cell and the goal.  
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Montemerlo et al. (2008) autonomous vehicle plan their path from a global 

map using dynamic programming based on hybrid A* search. Paths are computed for 

each discrete cell of route network definition file. It is a type of planner who instead 

of looking for the shortest path from starting point to goal, it plan the shortest path 

for every grid cell to goal. In other word, dynamic programming is able to handle 

large divergent sets of future decisions. This requires significant computation, 

especially when dealing with a large global map. Therefore, it will take more time in 

computations. 

 

 

Figure 2-20: A* Search and Dynamic Programming Result 

 

 

 

2.2.3.1 Path Smoother 

 

Since path planner produces a discrete action for the robot to move such as move 

forward, backward, turn 90°, -90°, the robot will move in very ‘robot’ way. Therefore, 

we need a smoother to fillet out those 90° sharp edges and make the robot moves in 

smooth way. The path smoother used gradient descent to minimize the functions 

below and optimize their minimizations: 

 

(pi - qi)
2
min  (qi - qi+1)

2
min 

qi = qi + A(pi - qi) 

qi = qi + B(qi+1 + qi-1 -2qi) 

  

Where   

p = original path 

q = smoothed path 
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Repeatedly running the above equations until the different between qi and qi+1 

less than a predefine threshold represents the smoothed path has converged. The 

constants A and B control the degree of filleting.  The planned path that smoothened 

by gradient descent method is suitable to steering robot but not differential driven 

robot. Since it do not have steered wheels, curved path requires more complex motor 

control computation than self-turning and straight line moving.   

 

 

Figure 2-21: Before and After Path Smoother 

 

 

 

2.2.4 Obstacle Handling 

 

2.2.4.1 Obstacle Detection 

 

Thrun et al. (2006) autonomous vehicle’s obstacle detection is done by detecting 

vertical points which exist above the detected ground plane. In outdoor environments, 

terrain slope and the rolling and pitching of the vehicle increases the difficulty of 

obstacle detection. The obstacles that are higher than the vehicle height are ignored. 

 

The expected difference between3D laser inter-ring distance and range can be 

computed to solve this issue. In the case for indoor terrain, it is assumed to be flat 

and the robot is assumed to never roll or pitch.  
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2.2.5 PID Controller 

 

Proportional, integral and derivative (PID) controller is a classic control system 

which has been developed for more than 100 years ago. It has been designed for 

closed loop feedback system to ensure fast respond, low overshot and low steady 

state error. There are 3 main elements in it: 

 

 Proportional : improves respond time but causes overshot if   excessive 

 Integral : reduces steady state error but causes windup if excessive 

 Derivative : reduces overshot but slow respond time down if excessive 

 

Below is the classic PID equation: 

)()()()(
0

te
dt

d
KdeKteKtu D

t

IP     

Where: 

u(t) = controller’s output at time t 

e(t) = error between set point and measured value at time t 

KP, KI, KD = constant for 3 elements 

 

 

Figure 2-22: PID Block Diagram 

 

 

 

2.2.5.1 PID Tuning 

  

There are several PID controller tuning methods available. Manual tuning is the most 

common method because does not involve any precise calculation but it required 

experiences and knowledge of each element nature. According to their characteristics, 
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tune and observe every effect cause by different configuration of each element is the 

way to tune the PID system manually. The first step is increase Kp until system 

oscillate constantly and reduce the Kp by half. Then the subsequence steps are to 

tune Ki and Kd according to the system requirements.  

 

Ziegler-Nichols tuning method is a proven method developed by John G. 

Ziegler and Nathaniel B. Nichols in the 1940s. It required user to look for the 

system’s ultimate gain, Ku and oscillation frequency, Tu before apply their formulas. 

 

Table 2-1: Ziegler-Nichols Tuning Equations 

 

 

 

Twiddle also called coordinate ascent is a PID algorithm that being 

introduced to self tuning system. It will try a lot of combinations of the 3 elements 

until the parameters converged. It starts by initializes all elements as zero, increase 

the first paramenter by a value dK. The new set of element will be tested and the 

average error resulted will be calculated and compared with the previous best error. 

If the new error is better than the best error, increase dK and repeat the above steps. 

If the error is worse the before, minus instead of add the dK to the element.  

 

If the error does not improves either, reduces the dK and repeats all the above 

steps until the dK less than a threshold. Therefore, all elements will be fine tune to 

the threshold automatically. 
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CHAPTER 3 

 

 

 

3 METHODOLOGY 

 

 

 

3.1 Robot Hardware 

 

3.1.1 Robot Driving System 

 

Mobile robot can be constructed to have different driving methods. Tricycle drive or 

Ackermann steering drive is the most popular method because almost all vehicles on 

the road using steer drive system (karsten and Ewald 2009). It requires a wheel that 

able to change its direction of axis of rotation in order to changes the robot’s moving 

heading. In autonomous mobile robot application, steer drive system requires at least 

a servo motor to control the steer wheel and a motor to propel forward and backward. 

When doing rotation, it causes 2 different radius of rotation on front and rear wheels. 

Front wheel or steer wheel will have larger radius than rear wheel. This characteristic 

increase the complexity of robot’s path planning if compares to other drive system.  

 

Omni-drive and Mecanum wheel drive is a different approach on robot 

driving method. It requires at least 3 driving wheels and do not need any hardware 

mechanism to control heading direction. Instead, it does not have specific heading 

direction because it emphasizes the control over the combination of motors’ rotation 

direction and speed so that is can moves in any direction directly. Synchro drive is 

somehow similar in this characteristic but it rotates all wheels to change its heading 

direction. Constructing these types of drive system requires more motors and 

expansive wheels. It does not suitable for budgeted project and low cost robot.  
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Figure 3-1: Mecanum Wheel and its Drive Method 

(karsten and Ewald 2009) 

 

 

 

Figure 3-2: Omni-Wheel and its Drive Method 

(Wikiversity 2013) 

 

 

 Differential wheeled drive system requires neither servo motor nor special 

wheel to control its heading direction. Instead it uses only 2 motors to control it 

heading direction, at the same time propel forward or backward. The degree of 

rotation is determines by the speed different between 2 wheels. It provides self-

turning ability which steer drive system does not and control simplicity that omni-

directional drive system does not provides. Moreover, the construction of this driving 

system requires lesser resources such as motor and wheel. Therefore, it is very 

suitable for budgeted project or robot.  
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3.1.2 Embedded System 

 

Robot’s actuators require controls from a microcontroller which able to generates 

low level control signal such as pulse width modulation and digital high-low TTL 

output. It is also required to handle robot’s sensor data which in the form of analog, 

pulse or different protocol serial inputs since computer cannot generate and receive 

these levels of signal but serial data through its serial port. The role of 

microcontroller is to act as manager that managing the operation of robot hardware 

based on computer command and report back their progress and performance.   

 

 

 

3.1.2.1 Arduino 

 

Arduino
TM

 is a very popular embedded system solution. It provides complete 

designed and preassembled circuit board that includes modules such as 

microcontroller, power management, IO, communication, memory, and so on. 

Besides providing hardware, Arduino
TM

 had their software libraries for user that 

designed specifically to work with the hardware.  The tasks of user are reduced to 

selecting suitable Arduino board and libraries that suitable for their applications. 

Then, user programs the board using Arduino programming IDE.  

 

 

Figure 3-3: Arduino
TM

 Logo 

(Arduino 2013) 

 

 

 Optimization is always the problem faced when adopting a developed product 

that designed for general purposes. The final application of Arduino board may not 

be utilized fully and causing wastages on power, spaces and money. Customized 

design may require in this situation.   
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3.1.2.2 PIC Microcontroller 

 

PIC is a series of microcontroller product from Microchip
® 

Technology Inc. It 

provides a range of microcontroller from 8-bits to 32-bits that suit for different 

purposes and applications. Besides hardware, Microchip
®
 also provides free 

microcontroller programming integrated development environment called MPLAB-

X and PIC compiler for user to program the microcontroller through a PIC 

programmer such as PICKIT and ICD.  

 

 

Figure 3-4: Microchip
®
 Logo 

(Microchip 2013) 

 

 

By selecting a suitable microcontroller and additional integrated circuit such 

as voltage regulator and voltage comparator, a customized circuit board specialized 

for application can be produced using smaller board size, lower power consumption 

and cheaper cost. Hence, PIC microcontroller was selected as the robot’s hardware 

processing unit due to its lower cost, simplicity, flexibility, and customizability.  

 

 

 

3.1.3 Robot Sensors  

 

Odometry is an extremely important part for mobile robot, especially autonomous 

mobile robot. Without odometry module, robot cannot perform autonomous 

navigation, localization and mapping. Odometry can be carry out be either using 

encoder sensor or visual sensor.  
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3.1.3.1 Visual Odometry 

 

By using the same Kinect sensor, visual odometry can be performed by using a open 

source library called Fovis. Fast odometry from VISion, called Fovis is a visual 

odometry library developed by VISion that estimate 3D motion of camera that 

provides RGB and depth data such as calibrated stereo camera and Kinect sensor.  

 

 It is different from other visual odometry that using RGB image only to 

calculates motions. Fovis using not only RGB but also depth images to estimates 

camera translation in X, Y, and Z axis and camera’s rotation in roll, pitch and yaw. 

By using this visual odometry, the cost for constructing the robot will be reduced 

because no additional sensors are needed in order to perform robot odometry.  

 

 

 

3.1.3.2 Rotary Encoder 

 

Rotary encoder measures rotation angle of its shaft. It is using optical sensors and 

coded disks to generate pulses. Direction of rotation indicates by the leading or 

lagging of pulse A and B, while pulse Z indicates a complete rotation. Its shaft can 

be directly mounted together with rotating motor’s shaft to measures motor rotation. 

The other way is to measures the actual distance travelled of the motor’s actuator by 

adding a wheel to the encoder shaft in contact with the actuator.  

 

The number of pulse per revolution can as high as 600PPR. Hence, it 

measurement revolution can be very optimism for most of the applications. It is a 

popular sensor in industry application due to it stability and accuracy and hence, it is 

categorized as a type of expansive sensor. 
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Figure 3-5: ESB Rotary Encoder and its Output Pulses 

(Cytron 2013) 

 

 

 

3.1.3.3 Optical Encoder 

 

Optical encoder can be built by a pair of Infar-red (IR) emitter and receiver and a 

coded disk. IR emitter emits IR light bean to the disk and IR receiver activated upon 

the reflection. The disk normally coded with reflective and non-reflective surface 

intervene and mounted on the rotating surface.  

 

The sensor measurement’s resolution is depends on the number of 

intervention of different surfaces on the coded disk. Due to the limitation of the size 

of IR bean emitted, the intervention cannot be smaller than the IR bean size. As the 

result, the pulse per revolution of this type of encoder is much lower. However, the 

major advantage of it is its cheap price if compared with rotary encoder.  

 

 

Figure 3-6: Simple Infra-red Emitter and Receiver Pair 

(Cytron 2013) 
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3.1.3.4 Range Sensor 

 

Due to the popularity of Xbox 360 video game console, its accessory Microsoft
®
 

Kinect
TM

 is the easiest available range sensor in Malaysia among other 3D range 

sensor likes Asus
®
 Xtion and PrimeSense

®
 Carmine. Moreover, it having a very 

competitive price compares to SICK
®

 laser range finder, bumblebee stereo camera or 

other type of range sensor.   

 

 Kinect sensor can be divided into 2 types, Kinect for Xbox and Kinect for 

Windows. Kinect for Xbox is the designed originally as Xbox game console 

accessory while Kinect for Windows is designed for computer application 

development. The one mentioned above is Kinect for Xbox which is cheaper and 

easier available because most of the Kinect owners use it as video game accessory 

only. However, it do not granted commercial license for developer to obtain financial 

benefit in business. On the other hand, Kinect for Windows is more expansive but it 

does grant commercial license for developer. 

 

 They do have some different in hardware such as the new near mode function 

added into Kinect for Windows. However, Kinect for Xbox can achieve same 

performance level with Kinect for Windows and yet costing a lower price. Hence, 

Kinect for Xbox was selected as the range sensor of the robot.  

 

 

 

3.2 Robot Software 

 

3.2.1 Kinect Software 

 

Programming tool such as C++, C# and Java cannot handle sensor data directly from 

its USB port. Kinect driver is needed between sensor and programming tool. There 

are many open source library available for Kinect developer such as OpenKinect, 

OpenNI, Kinect for Windows, Point Cloud Library (PCL), and the Robotic 

Operation System (ROS).   
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3.2.1.1 Libfreenect 

 

Libfreenect is open source library developed by OpenKinect community. This library 

provides more Kinect sensor drivers than OpenNI on the three main platforms, 

Windows, Linux and Mac operating system. It is easier to install Libfreenect in 

Linux platform because it was primarily developed in Linux, sub-sequencely to 

Windows and Mac operating system.  

 

Although it cannot access Kinect’s audio but compares to other driver, it 

provides more access to Kinect’s: 

 RGB Image   

 Depth Image  

 Servo Motor 

 Accelerometer 

 Indication LED 

 

 

Figure 3-7: OpenKinect Logo 

(Openkinect 2013) 

 

 

 

3.2.1.2 Kinect for Windows SDK 

 

Kinect
TM

 was originated from Microsoft
®
 but the first Kinect open source library was 

not published by her mother. Microsoft’s Kinect library was a closed source but 

eventually opened because dozen of libraries had developed and published by device 

hacker communities few months after the release of Microsoft
®
 Kinect

TM
.  

 

 Kinect for Windows SDK provides complete hardware access drivers. It not 

only provides access to data streaming but options and setting for each type data 

stream and hence, achieves higher level of control over Kinect sensor. In the example 
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of camera setting, it provides the ability to control RGB camera’s contrast, white 

balance, Gamma, exposure and more setting that other driver do not provides.  

 

 Besides basic drivers, Kinect for Windows SDK also provides programming 

toolkits for developer on application developments. Human interaction is a main 

development direction of this SDK. Gesture & voice recognition, hand-pointer, face 

tracking and many other dimensions are the functions that demonstrating this SDK’s 

human comprehension ability. 

 

 Since this SDK is developed by Microsoft, the operating system running the 

SDK must be Windows. This weakens its compatibility from other Kinect software 

which demonstrates better cross platform capability. Besides, this SDK is full with 

human interaction functions but it is lacking with 3D space modelling and 

manipulation functions. This characteristic repels developer who design robot with 

purpose of navigation through spaces.  

 

 

Figure 3-8: Kinect for Windows Logo 

(Kinect for Windows 2013) 

 

 

 

3.2.1.3 OpenNI 

 

Open Natural Interaction, called OpenNI framework is an open source software 

development kit that facilitates developer in creating middleware library and 

application for natural and organic interactive device such as Microsoft Kinect, Asus 

Xtion and PrimeSense Carmine. Together with PrimeScene Nite middleware, it 

provides sensor driver to acquire data from sensor. It able to access sensor’s RGB 

and depth camera and hence generating image streams to middleware libraries or 

applications. Besides, its application programming interface able to provide skeleton 
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and posture detection, image recording and playback based on the images streams 

read from the registered sensor.   

 

 

Figure 3-9: Role of OpenNI between Device and Application 

(OpenNI 2013) 

 

 

 In the case of autonomous mobile robot this paper concern,  OpenNI API will 

be enough to acquires RGB and depth image streams only. Control over Kinect’s 

servo motor and accelerometer data are additional functions that robot does not need. 

Driver flexibility over numerous type of sensor is another advantage for OpenNI. 

Besides, it is a cross platform driver which able to run in different computer OS and 

hence provides flexibility for developer in platform selection. 

 

 

 

3.2.1.4 Point Cloud Library  

 

Point Cloud Library (PCL) is a large scale standalone open source project that 

contains numerous algorithms and functions for image and point cloud processing. It 

do not contains specific driver for sensor likes OpenNI does. Instead, it requires 

sensor driver API to acquire data from sensor before its library can be deployed for 
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processing. In other word, PCL is a third party library that processes the sensor data 

for application purposes.  

 

 It contains many aspect of algorithm that had been developed contributed by 

its researcher community around the world. This PCL framework contains many 

state-of-the art algorithm including segmentation, clustering, filtering, registration, 

feature estimation and so on. All these functions are processed over a type of data 

format called point cloud. It is the output of 3D realization process with an input of 

2D depth image.  

 

Opposites from Kinect for Windows SDK, this library research direction is 

more toward 3D space modelling and manipulating instead of human comprehension. 

Besides, it is supported in the 3 main operation systems and this cross platform 

ability ease developer in their application development. Hence, it is a better choice 

for robot navigation application that neglects human comprehension. 

 

 

Figure 3-10: Point Clout Library Logo 

(Pointclouds 2013) 

 

 

 

3.2.2 Programming Tools 

 

3.2.2.1 Operating System  

 

Microsoft Windows is a well-developed operating system (OS) for computer, web 

server, mobile and other devices. It has the highest percentage of market share in 

computer OS used. Almost all ordinary computer user use Windows as their 
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computer’s OS due to its intuitiveness and user friendliness. However, it does not 

favoured by some software developers due to the limitations of Windows OS.  

 

Cost is one of the important reasons. Windows is not a free open source OS. 

Users have to pay for the new OS every time it gets obsoleted by its new versions. 

Besides, there are times of payments for its software subsequently such as Microsoft 

Office, Visual Studio, antivirus, and so on.   

 

Linux is a free open source OS. It has preinstalled office software suite, 

software development IDE and other free software and no antivirus is needed 

because it is free from virus. It has free long term support and free upgrade to any 

versions of it.  However, machine’s driver is a common problem faced by Linux user 

when they install this OS in new machine for the first time. 

 

Customizability is greatest advantage Linux over Windows OS. Linux OS is 

virtually limitless customizability. The amount computer resources needed to run 

Linux OS is much lowers the Windows. Software developed in Linux is able to 

customize by user so that it run in more efficient manner. Windows uses pre-

customized manner that able to suit majority user and normal application but 

sacrificing it efficiency.  

 

Linux popularity in robotic software development can be observed. Robotic 

Operating System (ROS) is a library that helps robotic developer in robot software 

development. It was first sourly developed in and for Ubuntu OS. The other OS such 

as Windows and OS X are for experimental only. Visual odometry library, Fovis is 

also a software that only developed for Linux platform.  

 

 

 

3.2.2.2 Cmake 

 

Cmake is an open source, cross platform build system that designed to help user to 

build, test and package software. It is helpful in configuring software linked files and 

compilation process especially project that includes multiple libraries. By using a 
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cmake file that contains project specifications, Cmake is able generates native 

makefiles and workspace for respective IDE.  

 

 

Figure 3-11: Cmake Graphical User Interface 

 

 

 In Linux, source code and cmake file can be written in basic text editor and 

then compile using ‘cmake’ and ‘make ’commands in terminal or command line 

interface (CLI). CLI will compile the source code, related header file and generates 

error if there is any. An executable file of the software is generated if a successful 

builds with no error and run the program by using ‘./program_name’ command.  

 

 An alternative way to program in Linux is to use a developed IDE such as 

NetBean and Eclipse. They provide a better coding interface and many helpful 

functions that basic text editor does not have such as pre-compile error detection, 

debugging, user interface generation and so on.   

 

 

 

3.3 Project Job Scope  

 

3.3.1 Hardware design and Fabrication  

 

Autodesk
®
 Inventor

®
 is the 3D computer aided design software implemented in 

robot’s mechanical hardware structure design. Professional student version of 
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Inventor
®
 is available for free download and use. It can accelerates the designing 

process by providing functions such as visualization, measurement, part creation, 

parts assembly, standard part selection and so on. 

 

 

Figure 3-12: Autodesk Inventor User Interface 

 

 

The design criteria are developed such the way that it must be able to fit in all 

components onto the structure in correct position and secured holding. No parts and 

components shell vibrate or moved while the robot moving. Moreover, it must be 

able moving forward, backward, left turn and right turn with all loads added on-

board.  The errors caused in movements by the robot shell stay in an acceptable range 

where it is able to be compensated and corrected by control system during run time.  

 

 

 

3.3.2 Hardware Control  

 

For the purpose of navigation, the differential wheeled drive robot only has 2 DC 

motors to be controlled in this case. Besides output, robot also equipped with sensors 

that encode and measure the robot motions and feeding data to robot’s control system. 

Therefore, the microcontroller system must be designed to meet these requirements. 

It must be able to control the motor through motor driver which require control 

signal such as digital IO and PWM. Moreover, the circuit of board of microcontroller 

must be able to receive and process encoder sensors data which are in pulse form.   
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The microcontroller circuit board design can be done by using EAGLE, a 

printed circuit board (PCB) design software which developed by CadSoft. It enables 

users to draw schematics by providing a bunch of electronics components libraries. 

After the schematic is done, user can arranges the components in layout to form the 

actual PCB. Besides, Eagle provides advances error checking function such as 

electrical rule check (ERC), design rule check (DRC), and autorouter that helps user 

to accelerates and identify the imperfections in their design process.  

 

 

Figure 3-13: Eagle Circuit and Layout Design Interface 

 

 

 PCB then need to be fabricated, soldered and electrical connectivity tested 

before program can be written into the microcontroller. The microcontroller program 

is developed in the MPLAB-X IDE and XC-16 compiler provided by Microchip
®
. It 

first needs to have a communication module that able to communicate with computer 

through serial port.  Instructions are received at this module and distributed to other 

respective module.   

 

 

Figure 3-14: MPLAB-X Programming IDE 
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A timer is required to evoke the control system module which needs to be run 

in a constant time interval. The control system will first take in encoder sensor data 

that measures the robot’s motion from sensor interface module. Next, error is 

calculated based on the input command’s desired value and the sensor value. A 

compensator should generate the respective DC motor speed based on the error and 

its gain. Lastly, PWM and digital IO modules will generate DC motor driver control 

signals to drive the robot in controlled manner.   

 

 

 

3.3.3 Kinect Programming  

 

Kinect programming is the toughest and the most challenging part in this project. 

Object oriental programming (OOP) is a popular programming paradigm in field of 

computer software and all Kinect libraries had it developed over OOP manner. 

However, OOP is an unfamiliar method of programming for author if compared with 

C or C++ in procedural programming. Therefore, the basic of OOP must be picked 

and brushed up in order to proceed with those Kinect libraries.    

 

The next task is to explore, learn and get familiar with the libraries used. 

Trying out those libraries with Kinect sensor directly is required in order to 

understand it thoroughly in term of its functionally, guiding theory, purposes, effects 

and the parameters required.  

 

 

Figure 3-15: Text Editor and Command Line Interface Programming in 

Ubuntu Platform 
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There are many modules of libraries PCL provides. For instance noise filters, 

points clustering, segmentation, registration, transformation, and other useful and 

related modules to the project.  

 

After knowing the capability of the libraries, robot’s software architecture 

shall be developed. It starts with the abilities or functions of the robot, complexity 

increases when number of robot’s functions increases. A flow of the routines shall be 

drafted based on the designed robot’s functions. Then, suitable libraries or methods 

are chosen and allocated in respective routine. The connections between routines and 

modules are the last challenge for the software architecture.   

 

 

 

3.3.4 Robot’s Intelligent   

 

Robot is required to perform several tasks that fulfilling the project needs. The first 

task is to perform localization within indoor environment. There are several types of 

localization method proposed but not all are applicable on this robot and indoor 

situation. The requirement of the adopted localization method must meet the 

available sensors’ and hardware capabilities such as the field of view of the range 

sensor, resolution of the encoder, and the processing power of the on-board computer. 

A localization method will be decided based on its complexity and suitability when 

applied in this application.   

 

 The concept of path planning  is not difficult or even easy in understanding it. 

However, when putting concept onto real application, it requires time to fine-tune 

until it suit the indoor environment application. Besides, path smoothing algorithm 

also needed to be modified so that it suits the robot’s driving system. In obstacle 

handling part, robot have to distinguish either the obstacle is a static and dynamic 

object. After that, specific algorithm shall be used to on respective type of obstacle 

and making sure the respond time to obstacle is as fast as possible or in an acceptable 

range to keep robot away from collisions.    
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3.4 Project Management  

 

There are total 47 weeks for this project, starts from 4
th

 June 2012 until 22
nd

 April 

2013. The tasks descried in section 3.3 are well distributed among these 47 weeks. 

The time line of this project is divided into four major quarters. Each quarter 

indicates an important milestone and achievement for the project.  

 

 The first quarter is mainly focusing on literature review and robot hardware. 

Start with designing the robot’s hardware structure, and follow by the fabrication and 

assembly of each designed parts. Next, the design and fabrication of robot’s 

electronics takes part. It includes the design of power distribution in the robot and the 

design of microcontroller and sensors PCB. The last task in this section is the 

combination and testing of the robot overall hardware functionality. By completing 

this quarter, a workable differential wheeled drive robot is produced and it can be 

controlled manually by sending command to its on-board microcontroller.   

 

 Second quarter in the project time line is focusing on the study and research 

on the Kinects’ libraries. This task alone had occupied the entire quarter of time line 

because it is extremely important and its successfulness will rank the overall quality 

of this project. Besides, well understanding on the libraries facilitates and smoothen 

the process of system design in the next quarter.   

 

 The third quarter contains all software designing part. Based on the available 

libraries that had been studied in second quarter, module such as localization and 

path planning are being developed in this section. Moreover, these modules are 

needed to be linked together in a constructive manner. At the end of this quarter, a 

robot’s software with ability to navigate in indoor environment shall be presented.  

 

The last quarter of the project’s time line contains the developments of 

linkage between software and hardware. Upon the completion of the linkage, a 

complete robot is considered done. The task after that is to have the robot tested and 

debug if there is any defect in the system. The performances of robot are recorded to 

documentation purposes. After all, the last task of this quarter is to produces a report 

of the robot that documented all parts of the robot and other related information.  
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Figure 3-16: Project Gantt Chart 



45 

 

 

 

CHAPTER 4 

 

 

 

4 RESULTS AND DISCUSSIONS 

 

 

 

4.1 Global Map 

 

To reduce the required computational power by the robot, it does not perform 

mapping of the environment during navigation. In other words, it neither keep track 

of the path is had travelled nor produces a map of the environment at the end. This 

significantly reduces on-board computational requirements the advantage becomes 

more obvious when the environment's size growing larger.  

 

However, mobile robots still need a map in order to navigate. Hence, before 

the robot can be deployed, it first needs a full and complete map of the environment, 

called the global map. This map contains all the robot navigable locations in the 

environment and is pre-processed to occupy minimal memory space. The acquisition 

and processes of global map are carry-out manually and separately from the robot 

navigation architecture.  

 

 

 

4.1.1 Global Map Acquisition 

 

The robot working environment can first be scanned by Kinect compatible 3D 

reconstruction software such as Scenect, ReconstructMe or Skanect to produce a raw 

scanned 3D point cloud. There are some limitations on these software such as the 

point cloud’s size and trial version water mark. Besides, users are required to move 
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the sensor slowly and smoothly in environment with sufficient object and color to 

maintain the tracking performance frame by frame.  

 

 

Figure 4-1: Skanect and Scenect 3D Reconstruction Software Interface 

 

 

Kinect sensor can be hand held while scanning the environment, providing 

the hand can move in steady and constant speed without jerking. A better approach 

applied in this project was to place the Kinect sensor on the robot to scans the 

environment while the robot is manually controlled to slowly move around in the 

environment. Several scans were carried out due to the size of the environment and 

the sensor motion’s smoothness when scanning the environment.   

 

 

 

4.1.2 Global Map Processes 

 

The raw scanned environment point cloud was undergoes a series of processes that 

specially designed to transforming it into useful data for robot during its navigation. 
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Figure 4-2: Global Map Process Flows 
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4.1.2.1 Voxel Grid Filter 

 

Raw scanned environment normally contains millions of points depends on its size. 

Its large file size causes heavy computational load to computer which is not desirable 

in software optimization. Many points are actually not meaningful because they are 

just very close to or simply overlapped each other. This filter performs point cloud 

down-sampling with purpose to reduce the size of point cloud. It removed point 

cloud’s color and using fewer meaningful points to represent multiple adjacent points 

according to the given density parameter. The density parameter is set according to 

the needs of the subsequent processes. In this case, the distance between filtered 

points was set to 0.035 meter and the original global map with 3 million over points 

had reduced to 179503 points. As the result, down-sampled point cloud with memory 

size several times smaller than original’s is prepared.  

 

 

Figure 4-3: Result of Voxel Grid Filter 

 

 

 

4.1.2.2 Radius Outliner Remover 

 

Raw scanned point cloud tends to be noisy even after the process of down-sampling. 

This filter removes points that do not have much close neighbours surrounding it. It 

counts the number of neighbour a point has in its surrounding with certain radius.  

The parameters, number of neighbour and neighbour searching radius are set by 

observing its overall noise remover performance. In this case, point with less than 9 
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neighbours in its search radius of 0.07 meter is considered as noise and removed 

from the point cloud. As the result, 2777 noise points had been removed and the 

point cloud remained 176726 points.   

 

 

Figure 4-4: Result of Radius Outliner Remover 

 

 

 

4.1.2.3 Plane Segmentation 

 

A plane is needed to be detected and extracted from the point cloud. This plane 

segmentation method use random sample consensus (RANSAC) plane detection 

method with parameters such as distance threshold, epsilon threshold and maximum 

iteration to differentiate plane model. Distance threshold is the manipulating 

parameter and its value is related to the quality of the raw scanned environment point 

cloud. Low quality scan has planes lay on different plane coefficient and larger 

threshold is required to include all shifted planes. In this case, distance threshold was 

set to 0.1 meter and epsilon angle of 25°. As the result, plane model was detected and 

differenced from the point cloud.  
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4.1.2.4 3D Transformation 

 

Since the raw scanned point cloud can be produced in free hand holding method, its 

orientation in coordinate system can only be detected after plane segmentation. 

Using the output plane’s coefficient produced by the planar segmentation method, a 

transformation matrix is calculated based on the detected plane’s coefficient with 

respected to the global XY-plane. This transformation matrix transforms the entire 

environment point cloud with respect to the global coordinate system. It aligns the 

global map’s plane/floor to XY-plane. This step provides the global map a capability 

on 2D map’s position processing using only point’s X and Y coordinates. Besides, it 

also facilitates the map’s height processing by using only point’s Z coordinate.  

 

 

 

4.1.2.5 Plane Indices Extraction 

 

This function separates the environment point cloud into two, plane and obstacle 

point cloud. It saves the indices points that have been recorded in planar 

segmentation as a plane point cloud and saves the rest as obstacle into another point 

cloud. This is an effort to facilitate the subsequence processes which requires 

separate processing for plane and obstacle point cloud.  

 

 

Figure 4-5: Result of Plane Segmentation, 3D Transformation and Plane Indices 

Extraction 
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4.1.2.6 Pass Through Filter  

 

At this stage, plane and obstacle point clouds are both ready for processes that based 

on global coordinate system. Pass through filter is used to remove obstacle point that 

located outside axis rejection boundaries. By setting the Z axis limits between zero 

and H, where H is the robot’s height with additional tolerances, obstacles or part of 

obstacles which higher than H or lower than zero are removed. Since the field of 

interest in detecting obstacle is limited up to robot’s height, obstacle which higher 

than robot’s height is considered not an obstacle. In this case, H was set as 0.45 

meter given the actual robot height is 0.28 meter and as the result, obstacle point 

cloud is reduced and limited to robot’s obstacle detection region.  

 

 

Figure 4-6: Result of Pass Through Filter in Z Axis 

 

 

 

4.1.2.7 Plane Up-sampling 

 

The purpose of up-sampling is to standardize plane point cloud density. Raw scanned 

point cloud normally does not have evenly distributed point density, especially for 

large environment which had multiple scanned. By up-sampling the plane point 

cloud, the plane resolution increases and obtains equal density at all regions. This 

point cloud’s quality improvement process facilitates the subsequence processes 

which require constant inter-point distances in plane point cloud. In this case, the 

parameter is set so that plane contains 70 points in a circle with 0.05 meter.  
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Figure 4-7: Result of Up-Sampling 

 

 

 

4.1.2.8 Plane-Obstacle Overlap Remover 

 

Both plane and obstacle point clouds are projected onto XY-plane at the beginning of 

this process to ensure that they do not have difference in Z axis. Then, radius search 

is carried-out on every plane’s points. The purpose of this radius search is to remove 

plane’s point which having obstacle point located within its circular radius R, given 

R is the maximum radius length of robot with additional tolerances. This remover 

designed to reduce plane’s size by eliminating point that having obstacle above or 

even nears it. In this case, R is set as 0.27 meter given the robot dimension is 0.4 

meter by 0.35 meter and as the result, the remaining plane point cloud indicates robot 

navigable location within the environment.  

 

 

Figure 4-8: Result of Plane-Obstacle Overlap Remover 
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4.1.2.9 Euclidean Distance Clustering 

 

The last step of these series of processes is to perform Euclidean distance clustering 

on plane point cloud. This clustering method groups points into different groups 

based on several parameters such as cluster distance and minimum-maximum cluster 

size. The purpose of this clustering is to remove plane that discontinued from that 

main plane. By remains the largest plane cluster and discard the rest, a complete 

robot navigable map, called global map is produced as the final output of these series 

of processes. This map in this case contains 84218 which considered smaller memory 

size than the raw scanned map which contains 3 million over pints and it provides 

much more meaningful information for robot during its navigation.   

  

 

Figure 4-9: Result of Euclidean Distance Clustering 

 

 

 

Figure 4-10: Comparison between Raw Scanned and Processed Global Map 
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4.2 Particle Filter 

 

After the global is prepared, robot is now able to use it in path planning process. The 

purpose of this specially designed filter is to find out the robot’s position and heading 

direction in its working environment before robot starts its navigations. Without this 

starting location’s information, robot cannot perform path searching and it reduces 

robot’s localization’s intelligent because robot might need to start at a same point 

every time it starts its navigation. 

 

Particles are created on the global map at the beginning. Each particle is 

assigned a random coordinate and heading and act as a possible robot’s location and 

heading direction. They are initially planned to be evenly distributed throughout 

global map with a density that depends on the robot's size and the desired 

localization’s resolution. The denser the initial particles are, the higher the resolution 

of the localization is. However, large number of particle will cause heavy 

computational load to the robot’s on-board computer which having limited 

computing resources.  

 

Hence, a starting zone with size multiple times smaller than global map is 

created for robot to start navigates. This starting zone can be assigned as the part of 

the global map such as living room in house scenario and kitchen in restaurant 

scenario instead of the entire environment. The purpose of this solution is to 

effectively reduce the number of tracking particle created. As the result, this method 

compromised robot’s overall localization’s intelligent due to the limited localization 

region, but effectively improves software efficiency.  

 

 

 

4.2.1 Filter’s Phases 

 

Right after the particles were created, particles entered an update phase. Their 

distances to the edge of the global map in six directions are recorded. These distances 

are calculated by searching the present of global map’s point in the specific direction 

and distance. The searching path is increased until no global map’s point is found in 
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the specific search radius. This process is carried-out on all particle’s six sixty degree 

intervene direction with respected to the particle heading.  

 

 In measurement phase, robot with unknown location and heading will self-

turn to six direction with sixty degree each intervene and measures the distance of 

first obstacle encountered with width of 6 centimetre. The obstacle might be wall that 

had recorded in global map or new obstacles which never been recorded. Taking six 

reading or more in different directions is to reduce the disturbances bought by new 

obstacle in measuring the range of surrounding environment. Both particles and 

robot range data are now ready for the next process.  

 

  Important weight of every particle is being calculated using Gaussian 

probability. It takes particle range data, robot range data, and sensor measurement 

noise to determine how likely this particle located near to the actual robot location. 

This process assigns higher weight to particle if its measurements have high degree 

of similarity to robots’. The Gaussian probability equation (4.1) below calculates the 

probability of sensor range data for 1 dimension Gaussian with mean of particle 

range data and sensor measurement noise.  

 

    (4.1) 

 

Where 

µ = particle range data 

x = robot range data 

σ = sensor measurement noise 

 

 Particles with heavier weight are most likely to be survived after a resampling 

process. This resampling process mean to removes particle with lighter weight which 

locates further from robot actual location. As the result, particle which locates closer 

to robot actual position will survive and remain in as heavier particle.  
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Figure 4-11: Particle filter in Action 

 

 

If certain particle’s weight exceeds 80% of total particles, robot position and 

heading will be decided using the particle identity. Else if there is no particle having 

such high value, it indicates that robot measurements are under large new obstacle 

disturbances or the environment has similar geometry. Robot is required to move 

forward for 30 centimetres and repeat the above procedures. In this context, particles 

are also requires to move exactly same distance as robot instructed before entering 

update phase. The overall filter process is descripted in the flow chart figure 4-12.  
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Figure 4-12: Particle Filter Flows 
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4.2.2 Filter Performance 

 

In successful cases, this filter requires five to six filter loops and takes about 120 

seconds to identify robot position. But most of the time its values diverged and fail to 

localize itself. The percentage of success of this filter is about 20%.  

 

Table 4-1: Particle Filter Experimental Result 

Experiments Result Time Taken (second) 

1 Success 110 

2 Fail - 

3 Diverged 150 

4 Diverged 130 

5 Fail - 

 

 

The poor performance of this filter is caused by the parameter and data it 

acquires and use in this filter. Taking distance to global map’s edges is a good way in 

particle identification, but distortions do occurs in robot’s environment measurement 

due to new obstacle or small changes in the environment.  

 

 

 

4.3 Path Planner 

 

In road mobile vehicle path planning, route network definitions file (RNDF) that 

indicating the navigable location in an open area is utilized. Indoor mobile robot does 

not have this pre-acquired, large scale and publicly available vehicle navigable road 

information. It needs to first acquires a global map and process it in order to identify 

the navigable region in the environment. Then only it can plan its path on the 

navigable area indicated in the global map. A planner was specially designed based 

on the robot specification to plan robot path, allowing the robot to navigate through 

the environment autonomously.  
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4.3.1 Path Searching 

 

A* with heuristic is the path searching technique implemented in searching robot 

navigation’s path. The global map is first partitioned into multiple discrete cells. The 

size of the cells determines the resolution of the path. Smaller cell’s size is able to 

generate smoother path and provides mobile robot the ability in reaching the 

destination with smaller error.  

 

From the starting point, 8 cells in 8 equally separated directions are explored 

by a single cell step. The cell’s navigability is first being tested by calculating its 

number of global map’s point inside the cell using PCL KdTree search. If it is a 

navigable cell, it will be stored in a vector. This vector stores all cells that had been 

explored and every time before the planner explores new cell, it will check this 

vector if the new cell ever exits and explored before.  

 

A cost is assigned into each cell which is important when determining the 

next most optimal cell going to be further explored among the eight. The heuristic 

function used in determining the cell's cost is calculated by the Euclidean distance 

between the exploring point and end point. The best approach is to use cell distance 

instead of Euclidean distance as the A* heuristic function as stated in equation (4.2). 

However, computing heuristic distance is much simpler than cell distance and less 

time consumption as stated in equation (4.3). Therefore, path searching does not 

search the best path in some scenarios but the searching process is performed in 

slightly faster speed. Figure 4-13 demonstrates the effect of using Euclidean distance 

as heuristic function, the red lines are the non-optimal path search and the green lines 

are the optimal path.   

 

  (4.2) 

           (4.3) 

 

Where 

CD = Cell distance 

ED = Euclidean distance 
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Figure 4-13: Non-Optimized Path Search and Optimized Path Smoother 

 

 

 The searching process will continue until an explored cell has destination 

point located inside it. By using this method, the maximum steady state error caused 

is the radius of cell’s size. As stated before, smaller cell’s size will caused smaller 

steady state error but time taken in path planning will at the same time increased. 

This robot has size 40 cm by 40cm and its path planner use 15cm as the cell’s size. 

The maximum steady state error is 7.5cm. This amount of error with respect to the 

robot’s size is acceptable for robot that does not require millimetre accuracy.   

 

 

 

4.3.2 Path Smoother 

 

The output of this path search is a vector of point which connects the start and end 

points by linking them with lines. It is very impracticable for robot to move in that 

way because it contains too many turning points. Therefore, the path should be 

optimized after that.  

 

 Gradient descent smoother has been tested as one of the path smoother. It 

output smoothed path in curved-liked form. This type of output is very suitable for 

steering drive robot but increase driving complexity for differential drive robot. 
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Moreover, this method smoothen path by shifts the path’s point and sometimes 

points are being shifted toward or even on non-navigable region.  

 

 A specially designed path smoother this robot implemented checks whether 

any obstacle exists within the straight line connecting the start and end points. It 

looks for points that can be bypassed and then connects them up to reduce the 

number of lines in the path. It uses the same method path planner used in detecting 

navigable cell. Figure 4-13 above demonstrates how this smoother improves the non-

optimal path search. In the figure 4-14 below, the red lines are the path before 

smoothing and green lines are path after smoothing. The number of turning points 

the green path has is significantly reduced compared to red path. 

 

This path smoother ensures that none of the path exceeds the navigable map 

boundary. This is a better approach compared to the gradient descent smoothing 

method which shifts paths into non-navigable areas. Besides, this smoother output no 

curved line. Moving in a straight line and self-turning are much easier than moving 

in an arc path for this robot. Figure 4-14 again shows the comparison between 

unsmoothed path in red, smoothed path in green and gradient descent smoothed path 

in blue. 

 

 

(a) 
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(b) 

Figure 4-14: Comparison of Different Planned Path 

 

 

 

4.3.3 Path Planner Performance 

 

The time taken for robot path planning largely depends on the size of the global map, 

processing unit and the distance between start and goal point. The orientation of 

obstacles also significantly affects the path process time. Table 4-2 shows an 

experiment that measures the time taken path planner needs to plan a path. These 

experiments were conducted using an approximately 80 meter square global map 

shown in figure 4-10 and a Dell laptop with Intel® i5 2.5GHz processor and 4GB 

DDR3 ram. 

 

Table 4-2: Result of Path Length against Processing Time 

Path Length (meter) Processing Time (second) 

3 4 

6 10 

10 18 
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4.4 Obstacle Handler 

 

Indoor mobile robot will encounters obstacle such as wall, door, staircase, furniture, 

human or other robot. All known obstacles which insides global map are already 

taken into account during path planning. New obstacles are those which never been 

recorded in global map but exist in local map. It can be detected and responded 

during robot’s navigation using a specially designed obstacle handler. 

 

 

 

4.4.1 Obstacle Detection 

 

After the path has been prepared, the robot will start to move to its first point. While 

it is moving forward, the Kinect sensor captures the depth data (called the local map) 

in front of the robot with 57 degree by 47 degree field of view. 

 

Instead of checking the entire space captured in front, the robot only checks if 

any obstacle exists in the given path’s direction. A translation in local map’s Z axis is 

done at the beginning. It means to shift the local map backward by robot forward 

travelled distance. Then, a pass-through filter is used to filter the local map into a 

rectangular region of interest with dimensions robot width by robot height by path 

length. It is then checked for any existing points (obstacles) inside this rectangular 

obstacle detection region. Since the sensor's height on the robot is a known constant, 

the implementation of plane segmentation to detect floor can be avoided in the local 

map. Any point below the robot’s height can be simply ignored since this robot is not 

design to work with traverse staircases or steep slopes. 

 

The local map is then transformed to the next point of path, Pn+1 and heading 

to Pn+2 using trigonometry (4.4), (4.5) and transformation equations (4.7). Then it 

checks again for obstacles points in the rectangular region with length d2 calculated 

from equation (4.6). The green lines in figure 4-15 are the robot navigation path and 

the field of view of the Kinect sensor are transformed to detect obstacle in different 

locations. 
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    (4.4) 

  (4.5) 

           (4.6) 

    (4.7) 

 

Ideally full path obstacle detection can be done immediately as figure 4-15 

demonstrated if the whole path is located within the sensor field of view. However, 

the 5.5 meter maximum depth range limits its ability to achieve that. Moreover, 

looking too many steps/points forward increases the robot's respond delay since the 

obstacle detection routine is only performed in the event invoked by a successful 

depth image obtained.  

 

 

Figure 4-15: Transformation of Kinect Field of View Through-out Entire Path 

 

 

 

4.4.2 Obstacle Avoidance 

 

When robot detects any obstacle in its path, it will stop and wait for clearance. This 

is an effort to distinguish between static and dynamic obstacles. Dynamic obstacle 

will move away from the robot’s path after a few seconds but static obstacles will not.  
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Static obstacle is assumed and confirmed if clearance does not occur 3 second 

after robot detected it. If a static obstacle is detected, its size and location are 

recorded for global map modification process. The obstacle cluster is measured from 

the local map using Euclidean cluster extraction. It is then transformed to match with 

the current position of robot referring to the global map using the transformation 

equation (4.8) and (4.9). 

 

    (4.8) 

          (4.9) 

 

 Since the local map is captured in such the way that the floor is on the XZ-

plane with the Z-axis points forward, the obstacle cloud needs to be transformed -90° 

about X-axis so that both obstacle and global map are refer to same floor. Moreover, 

it also needs to rotate -90° about Z-axis to align with the robot’s heading. 

  

Now the obstacle and global map point cloud are aligned, those points of the 

global map which have obstacle points above it are removed. The robot is then ready 

to re-plan its path to reach its destination. Figure 4-16 demonstrate a global map 

modification and re-planning after a static obstacle found during its navigation. 

 

 

Figure 4-16: Global Map Modification and Path Re-planning 
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4.4.3 Obstacle Handler Performance 

 

New obstacles in path can be identified and reacted to in less than a second. This 

respond time is acceptable since both robot and dynamic obstacle are not moving in 

high speed in indoor environment. However, this value can be altered depending on 

the number of turning points exist in path and the maximum range for detecting 

obstacles within the local map. Experiments were carried-out to test the time taken 

for motors to stop after appearance of obstacle. 

 

Table 4-3: Robot’s Respond Time to Obstacle 

Maximum Detection 

Distance (meter) 
Number of Turning Point Respond Time (second) 

3 3 0.5 

3 6 0.8 

5 4 0.5 

5 8 1.0 

 

 

 

4.5 Motor Control 

 

Once the robot’s smoothed navigation path is prepared, robot has to instruct the 

hardware to perform motion tasks. Robot’s on-board computer controls the robot 

hardware by sending control signal to the microcontroller through USB serial port. 

The instructions includes move forward, left self-turn, right self-turn, pause motion, 

resume motion and travelled distance request.  

 

Self-turn instruction is launched when there is a discrepancy between current 

robot’s heading and the next heading direction of the planned path. After a match is 

achieved in both heading direction, forward motion instruction is launched to instruct 

a forward motion. Travelled distance requests are also sent during forward motion to 

acquire forward travelled distance which needs in obstacle detection module.  
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When robot is in forward motion, obstacle detection module is invoked to 

discover the present of new obstacle in robot planned path. When an obstacle is 

found, a pause motion instruction is launched immediately to avoid collision. 

Resume motion instruction is launched when obstacle is removed and robot’s path is 

clear to navigate. These motions instructions will keeps sending to control the 

hardware until robot reached its destination.  

 

 

 

4.6 Visual Odometry 

 

To reduce the number of sensors used and the overall cost, robot position 

measurement is carried out without any hardware sensor at the beginning. Instead, 

3D visual odometry using FOVIS was implemented to measure robot motion. XYZ 

translation, roll, pitch and yaw can be determined using the Kinect sensor. It utilizes 

RGB and depth images to measures robot's motions during the robot's self-turning 

and forward motion. The overall software architecture of the robot with visual 

odometry as the motion sensor is shown in figure 4-17.  
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Figure 4-17: Overall Software Architecture with Visual Odometry 
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Therefore, the mounting accuracy of Kinect sensor on robot is very crucial in 

order to maintain the motion measurement’s accuracy. The centre of the wheels’ 

rotation axis is aligned right below the visual centre of the sensor as shown in figure 

4-22. Moreover, the sensor’s tilt must be parallel with the floor plane so that the local 

map does not need to be further transformed before processing.  

 

 

 

4.6.1 Visual Odometry Performance  

 

The implemented visual odometry does not measure rotation accurately in confined 

spaces and places filled with plain surfaces obstacle. Besides, linear movement in a 

long and empty space also causes inaccuracy in measurement of forward travelled 

distances. Figure 4-18(a) red rectangles shown the region in the global map where 

Fovis cannot measures rotation well and yellow rectangle for linear movements.  

 

 

                                          (a)                                             (b) 

Figure 4-18: Week Performed Region (a) and Planned Compared to Actual 

Travelled Path (b) 

 

 

As the result the robot loses track of the distance and angle travelled. 

However, the robot was still able to reach the target area safely with discrepancies. 

Figure 4-18(b) showed an example of robot test run where the planned path is shown 

in green and the robot’s actual travelled path in blue. 
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Therefore, this odometry system is replaced by encoder odometry system 

which provides more stable and reliable performance.  It uses optical sensor, infra-

red emitter and receiver pair to detect the changes of the encoder disk which attached 

on the robot’s wheel.  

 

 

 

4.7 Hardware Architecture  
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Environment

 

Figure 4-19: Hardware Architecture 

 

 

Components of hardware include: 

 Kinect sensor 

 14 .1” Laptop 

 USB-UART converter 

 Microcontroller 

 Encoder sensor 

 DC motor and driver 

 12V battery 

 

All the hardware are mounted and connect on a wheeled differential drive 

robot in the manner descripted in figure 4-19. The Kinect sensor is powered by a 

12V battery and its data is processed by the on-board computer. The computer is then 

outputs signals to microcontroller through serial port using USB to UART converter. 

According to the control signals, the microcontroller controls the motors’ speed and 

direction using 2 DC motor drivers. These drivers control the DC motors which 

powered by a 12V on-board battery. 
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Figure 4-20: The Robot Complete Hardware 

 

 

 

4.7.1 Robot Hardware Structure 

 

The structure is designed to hold all components on board. Weight of all components 

is approximately 8 kg. There are total 4 wheels attached to the robot’s structure. 2 

free wheels are mounted at the front of the robot base. Its function is mainly 

providing support and balance for the robot. There are 2 driving wheels mounted at 

the back of the robot base. They are powered by 2 DC motors separately. Motor 

output shaft is mounted directly to the wheel using a coupling designed to hold 

motor’s output shaft together with the wheel. Therefore, it is a differential drive 

based mobile robot with additional 2 supporting free wheels. The length of the 

robot’s structure is 35 centimetres and width is 40 centimetre.  

 

 

Figure 4-21: Structure Isometric View 
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Figure 4-22: Placement of Kinect Sensor on Robot’s Structure 

 

 

 Kinect sensor is placed on 2 ‘L’ bars which mounted at 23centimetre above 

ground. Sensor placement is aligned with the centre point between 2 wheels, both 

front and side direction. The tilt of the sensor is designed parallel with the floor. 

After putting the Kinect sensor on there, the centre of sensor is approximately 25 

centimetres above ground and 30 centimetres behind the robot’s front edge. With a 

minimum sensing distance of 50centimetres and viewing angle of 57° by 47°, robot 

have a blind area of 15 centimetres in front as shown in figure 4-23.  

 

 

Figure 4-23: Kinect Sensor Field of View 

 

 

 

4.7.2 Encoder Odometry 

 

Infra-red emitter and receiver pair does not provide as high resolution, simplicity and 

stability as rotary encoder does in performing distance encoding. However, to reduce 

the cost of building this robot, infra-red emitter and receiver pair is used instead of 
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rotary encoder in performing robot’s odometry because it only cost around RM5 

each. It is an acceptable track-off between price and encoding quality since high 

encoder’s resolution is not required in this application.  

 

It provides higher stability and reliability in measuring robot’s motion than 

visual odometry. Besides, it reduces the computational load for the on-board 

computer because this odometry routine is carry-out by PIC. Therefore, the overall 

software architecture has changed to manner shown in figure 4-24.  
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Figure 4-24: Software Architecture with Encoder Odometry 

 

 

 An encoder disk is designed with total 40 black and white color intervals. The 

number of interval is limited due to the size of IR bean emitted by this emitter. These 

intervals are printed on a piece of paper which in circular shape with radius same as 

robot wheels’. It is attached on the inner side of both robots’ driving wheels facing 

the IR encoder. IR encoders placed in 1cm distance near to the disk and parallel with 

wheel rotational axis.    
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Figure 4-25: IR Sensor and Encoder Disk 

 

 

 The voltage across IR receiver decreases when IR reflected from the white 

interval of the encoder disk, and increases when IR reflected from the black interval 

of the encoder disk. Therefore, a LM393 voltage comparator is used to distinguish 

the color of encoder disk’s interval sensed by the IR sensor. It compares the IR 

receiver voltage with a reference voltage which set by a 5kΩ potential meter. By 

tuning the potential meter, the threshold of the IR sensor can be fine-tuned to detect 

color changes more accurately. The digital output of the comparator is then sent to 

microcontroller which detects and counts the pulses.  

 

 

Figure 4-26: Schematic and Board of IR Encoder Board 

 

 

The performance of encoder odometry is much better than the visual 

odometry. It provides less than 1.2 centimetre error in a single movement which 

caused by the encoder disk’s resolution.  
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This error might accumulate and becomes significant as the moving path’s 

length increase. However, it still falls in the acceptable range since the size of the 

indoor environment is not too large until it can causes meter of error for robot. 

 

 

 

4.7.3 DC Motor and Driver 

 

SPG50-100k from Cytron is the DC geared motor model used in the robot. It has 

higher speed to torque ratio which is suitable for slightly heavy robot moving in 

slower speed. MD10C from Cytron is the DC motor driver used to control the DC 

geared motors. It has high maximum continuous motor driving current of 13 Ampere 

which is important for high torque low speed motor. It requires 2 inputs, direction 

control in digital input form and speed control in PWM form. A 12V battery is used 

to power the motor and its driver. Figure 4-27 shown the motor’s shaft and wheel 

coupling mounting on the robot structure. 

 

 

Figure 4-27: DC Motor and Shaft-Wheel Coupling 
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4.7.4 Robot Embedded System 

 

dsPIC33FJ128MC802 microcontroller from Microchip was implemented in the robot 

embedded system as the processing unit that handles encoder sensor data, USB 

communication data, and generates motor control signals. It is powered by the USB-

UART converter which supplying 5V to the circuit board. Since this PIC use only 

3.3V, a 3.3V voltage regulator is used to step down the supply voltage to the level 

PIC need.  

 

 Input captures module is used to read encoder sensor data which are in digital 

pulse form. It takes 2 channels to receive 2 encoders’ data. Respective interrupts will 

be generated when a channel detects a voltage changing edges from the sensor. 

Numbers of pulses are recorded and by substituting robot wheel’s radius, distance 

travelled of each wheel can be calculated.  

 

 

 

Where  

D = wheel’s travelled distance 

a = accumulated pulse 

PPR = encoder’s pulse per revolution 

R = wheel radius 

 

 Pulse Width Modulation (PWM) module is used to generate speed control 

signal to the DC motor drivers. The frequency of the PWM is set at 1k Hz which 

allow the motor to function as normal. Universal Asynchronous Receiver Transmitter 

(UART) module is used to communicate with computer through a UART to USB 

converter with baud rate of 9600kbps. Serial communication at this speed provides 

stability and having lesser probability of error if compared with high speed serial 

communication. Moreover, a timer is used to invoke compensator routine which 

calculates suitable robot motor’s speed based on the input command from computer. 

The overall schematic and layout design are shown in figure 4-28 and 4-29 below.  
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Figure 4-28: Schematic of Microcontroller Board 

 

 

 

Figure 4-29: Motor Driver, Microcontroller Board and USB-UART Converter 

 

 

 

4.7.5 Communication Protocol  

 

To prevent data distortion and loss during the communication between computer and 

microcontroller, a special serial communication protocol has been developed to 

ensure the completeness of software-hardware communication system.  

 

 The data transferred using this protocol can be divided into 2 types, motion 

data and function data. Function data are those instructions that instructs robot to 

pause motion, resume motion, or request motion status from microcontroller. 
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Motion data are those instructions that instructs robot to move in different 

manner. Motion data are sent in as a series of bytes, starting by a start byte which 

assigned as unsigned char 32. When UART receiver module received this start byte 

from computer, it indicates a starts of the motion data series and prepares to receive 

the subsequence motion data. The next byte in this series in the motion types can be 

either move forward, left turn or right turn. The magnitude of the motion, distance or 

angle is followed after that by using 2 bytes. Therefore, the maximum distance robot 

can moves in a single path is 65535 in centimetre. After the fourth bytes of motion 

instruction series has been received, microcontroller will carry-out the motion 

instruction on the next timer interrupt.  

 

Table 4-4: Motion Data Series 

Number of Byte Data Type Data Description 

1 Start Byte Assigned as unsigned char 32 

2 Motion Type Forward / Left turn / Right turn 

3 Magnitude Byte 1 Lower byte of motion magnitude 

4 Magnitude Byte 2 Higher byte of motion magnitude 

 

Communication of the motion data series having one safety feature which 

function data do not have. From computer point of view, it expects an 

acknowledgement reply from microcontroller every time after a motion data is sent. 

The acknowledgement reply must be exactly the same as the previous sent data. 

Mismatch of the reply and data will cause an abortion of current data series sending 

and followed by re-sending procedures. This feature ensures correct data are being 

received by the microcontroller before it starts to perform. 
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Byte 4
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Byte 4

Feedback

Matched?

Yes

Restart No

UART-USB 
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Figure 4-30: Motion Command’s Communication Protocol 
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4.7.6 Motor Control System 

 

The control system routine is invoked by a microcontroller’s timer which overflown 

and interrupted 24 times per second. In other word, the motor control system module 

will be executed every 0.041667 second. It controls the speed of the 2 motors 

according to the amount of distance instructed from computer.  

 

This motor control system takes motion command’s magnitude either for 

forward, left turn or right turn as the reference or set distance. Then it compares set 

distance with travelled distance generated from the input capture module. By 

averaging the accumulated encoders’ counts from both left and right wheels, total 

robot’s travelled distances can be calculated by multiplies the counts with wheel 

circumference-encoder’s pulse per revolution ratio. Distance error is calculated from 

subtracting set distance from travelled distance.  

 

Robot’s wheels are needed to be move in synchronized manner to ensure 

robot’s heading direction while moving forward will not change since it is able to 

cause inaccuracy in motion. Besides, inaccuracies also occur when the centre of 

rotation shifted during robot self-turning as the result of unsynchronized motor 

motion. Therefore, maintaining the synchronization of both motor is the second task 

of this control system. An alignment error is calculated by finding the different 

between left and right encoders’ counts.  

 

Both distance and alignment errors are then multiply by their respective 

proportional constant. Left motor output speed is decided by subtraction of distance 

and alignment output while right motor output is decided by summation of distance 

and alignment output. Both motors’ speeds are limited between 70% and 20% of the 

top speed. The upper speed limitation is to prevent motor from moving too fast and 

the lower speed limitation is to overcome the minimum speed motor can respond to 

when desire speed is lower than that. The overall control system simulation diagram 

is shown in figure 4-31 below. An example of the averaged motor output speed is 

demonstrated in figure 4-32.  
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Figure 4-31: Motor Control System Diagram 

 

 

 

Figure 4-32: Graph of Speed against Travelled Distance 

 

 

 

4.8 Overall Performance  

 

By combining all software and hardware modules together, the mobile robot is able 

to navigate from its starting location to destination point with errors. Errors can built-

up and accumulates from the imperfection of every module. Starts from a low quality 

scan of the environment which causes inaccurate records of robot navigable area. 

Path planner will be affected and generates the non-optimized path. The accumulated 

encoder’s resolution error also contributed a very small part of overall error. 
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However, these errors are negligible as long as the global map was acquired in 

proper manner.  

 

The largest source of error is occurred during the localization section. The 

poor performance of the particle filter fail to matches robot’s surrounding ranges 

with particles’ and hence generates inaccurate starting point for robot. The inaccurate 

starting point caused certain degree of global map shift and therefore, robot is 

navigates with error along the path. Figure 4-33 shown the planned path (green) and 

an example of robot’s travelled path (yellow) with error along the entire path which 

caused by an inaccurate start location.  

 

 

Figure 4-33: Result of Starting Point’s Coordinate and Heading Error 

 

 

A fix point is then assigned for robot as its starting point to start its 

navigations as the effort of eliminates the starting point error caused by unsuccessful 

localization. As the result, the map shifted error was solved and the robot is able to 

navigates by following the flow chart below during it navigation.  
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Figure 4-34: Overall Robot’s Functionality Flow Chart 
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CHAPTER 5 

 

 

 

5 CONCLUSION AND RECOMMENDATIONS 

 

 

 

In conclusion, the overall concept has been proved workable. Kinect sensor has 

shown its capability in 3D image processing and vast possibility in robotic 

applications. By using the Kinect sensor’s libraries, numerous functions can be added 

onto the mobile robot to perform tasks such as indoor map acquisition, robot 

localization, obstacle handling and navigation.  

 

This mobile robot has achieved the project’s aim by performing navigation 

through-out an indoor environment autonomously, safely and some-how accurately. 

Besides, the cost of building this robot is still maintained far below advance devices 

equipped mobile robot. As the result, it can be applied in indoor environments like 

libraries, factories, and houses to perform tasks like goods transportation or 

surveillance. It can also be further modified if specialist functions are desired. 

 

 However, there are still plenty of spaces of improvements on this robot. 

Particle filter localization has only been performed once at the start of navigation due 

to the prohibitive computational cost. It is thus not useful for localizing and tracking 

the robot throughout its path. An alternative method is to track the robot after every 

motion step (or every few steps) would improve the reliability of the robot’s 

position-sensing, given such methods did not interfere with the response time of 

obstacle detection. 

 

 Instead of acquires environment scan manually, global map can be acquired 

by robot autonomously without human intervention. Moreover, besides robot 
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navigable area, global map can include more information such as landmark 

identification and location. These information are very helpful in many localization 

methods. Landmark detection is also a better approach to perform particle filter 

instead of measuring map boundary as this robot’s particle filter does.  

 

This work has also shown the limitation of visual odometry in certain 

situations. Encoders are a possible way to improve dead-reckoning of the robot’s 

motion. Optical encoders are well functioning in this project, but in improving 

odometry resolution, rotary encoder with 500 pulses per revolution can be 

implemented together with advance position tracking algorithm such as Kalman filter 

in 2 dimensions. Additionally, since this robot is only workable in flat indoor 

environment, accelerometers and gyroscopes could be added to aid inertia 

measurement and terrain slope as well as robot posture detection which enable robot 

to expand its workable environment type.  

 

In obstacle handling, this robot distinguish static and dynamic obstacle by 

checking obstacle’s speed. Obstacle in too low speed or no speed which still remain 

in robot path 3 seconds after the robot stopped is considered a static obstacle. This 

method cannot identify the moving direction of the obstacle in or outside robot path. 

By tracking obstacle’s heading and speed, prediction and projection of obstacle’s 

moving path can aid the robot’s navigation when moving in environment with many 

obstacles which moving high speed. 
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Abstract—Autonomous robotics in indoor environments are 

traditionally done using a combination of laser range finders, 

time of flight cameras, and/or stereo vision. This work proposes 

the use of the Microsoft® Kinect sensor as an alternative lower-

cost modality for low-cost mobile robotics. The mobile robot is 

shown to be capable of navigating a previously captured global 

map autonomously with obstacle detection and avoidance 

functions. 

 

Index Terms - Indoor autonomous mobile robot, path planning, 

obstacle avoidance, localiazation, kinect sensor. 

 

INTRODUCTION 
As technology evolves, autonomous robots have become 

more and more popular in the manufacturing, health care, 
security, military and similar sectors. The primary benefit of 
this technology is that it can function without human 
intervention and yet perform better under certain 
circumstances. In other words, autonomous robots can replace 
human in tasks which are dangerous, repetitive and require 
high levels of concentration over a long time. 

Unlike manual-control robot, autonomous robot do not rely 
on live input commands. An autonomous robot makes 
decisions by itself based on its sensor inputs and pre-defined 
behaviors. Therefore, it can operate with a minimum of human 
supervision and correction and hence, it behaves as an 
autonomous individual in its environment. 

Autonomous indoor mobile robots are required to navigate 
through an indoor environment. In order for an indoor mobile 
robot to be considered autonomous, it must at least have the 
following capabilities. First, it should be able to locate itself 
within the indoor environment. Second, it should be able to 
plan its path to reach its destination. Third, it should be able to 
correct itself if it deviates from the planned path. Fourth, it 
should be able to detect and avoid new obstacles. There are 
also many other capabilities an autonomous mobile robot 
needs, depending on its function and how the word 
‘autonomous’ being defined by the designer.  

This work focuses on navigation in an indoor environment. 
The autonomous robot only needs to process data concerning 
the navigable floor areas and possible obstacles without also 
considering forests, slopes, traffic lights, road lanes, 
pedestrians, and other environmental factors common in 
outdoor environments.  

There are many types of sensors which can be used by 
autonomous indoor mobile robots. Popular choices include 
laser range finders, time-of-flight cameras and stereo vision. 
However, these sensors can be either too expensive or too 
computationally complex (or both) for this application.  

Kinect was introduced by Microsoft
®
 at year 2010.It 

immediately created a huge wave that hit the world of video 
gaming and drew interest from robotics hobbyists as well. The 
Kinect sensor is a low cost device which produces an RGB 
image, a depth image and sound recordings. Although the 
depth accuracy and range are not as good as that of a laser 
sensor, it still provides a good trade-off between price and data 
quality for indoor mobile robotics. 

One other benefit of the Kinect sensor is the numerous 

open source Kinect libraries available for developers, easing 
implementation of the Kinect sensor on mobile robots. Some 
examples of these libraries are OpenKinect, OpenNI, Kinect 
for Windows, Point Cloud Library (PCL), and the Robotic 
Operation System (ROS). 

This paper presents a set of algorithms implemented on an 
autonomous indoor mobile robot to do path searching, path 
smoothing, particle filter, obstacle detection and obstacle 
avoidance. The overall process (including obtaining Kinect 
sensor data) is also presented. 

 

RELATED WORKS 
a. Range Sensors 

Autonomous mobile robots are not a new development and 
many types of range sensors have been implemented. Using 
very basic ultrasonic and infra-red distance sensors, mobile 
robots are able to find out the distance of the obstacle in front. 
These sensors are very simple and easy to build but have poor 
performance due to the limited sensing range and accuracy.  

Laser range finders and time-of-flight cameras are 
currently the highest accuracy sensors in range 
measurement[1,2]. They are usually used in autonomous 
mobile robots or vehicles which require precise range 
measurement to facilitate algorithms such as localization and 
mapping[3,4]. Due to their high performance, these range 
sensors are normally at least an order of magnitude more 
expensive than ultrasonic sensors. 

Stereo vision does not actively transmit pulses and observe 
reflections. Instead it passively captures light from 2 different 
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positions with overlap. Algorithms which generate depth maps 
from stereo cameras for mobile robotics are a popular research 
topic[5,6]. Stereo vision performance can be as good as laser 
range finders under some conditions, but the computational 
power needed to executes stereo algorithm is significant[7]. 

Therefore, robot developers have experimented with 
merging multiple sensors on a single mobile robot[8,9]. 
Besides the sensors mentioned above, other sensors such as 
global positioning system (GPS) and radar sensors have been 
used in advanced autonomous vehicle[10,11].  

The Microsoft
®
 Kinect is a kind of active stereo vision 

camera with an RGB camera and microphone array. Its depth 
camera emits structured infra-red light which can easily be 
affected by sunlight[12]. Therefore, almost all robots with 
Kinect sensors embedded are designed for indoor applications. 
It also been used together with laser and stereo range finders 
to perform indoor navigation tasks[13]. Supplementary 
sensors such as rotary encoders are often added to autonomous 
mobile robots to perform dead reckoning localization[14, 15].  

b. Navigation 
Some autonomous vehicles[10, 11] plan their path from a 

global map using dynamic programming based on hybrid A* 
search[8]. Paths are computed for each discrete cell of route 
network definition file. Dynamic programming is able to 
handle large divergent sets of future decisions and is used to 
provide a complete path. This requires significant 
computation, especially when dealing with a large global map. 
The planned path is then smoothened by gradient descent 
method since self-turning is not applicable for steering 
vehicle.   

Obstacle detection is done by detecting vertical points 
which exist above the detected ground plane. In outdoor 
environments, terrain slope and the rolling and pitching of the 
vehicle increases the difficulty of obstacle detection. The 
obstacles that are higher than the vehicle height are ignored.  
The expected differencebetween3D laser inter-ring distance 
and range can be computed to solve this issue. In the work 
presented here, the indoor terrain is assumed to be flat and the 
robot is assumed to never roll or pitch. 

Kalman and particle filters are a popular method to predict 
dynamic obstacle motions and paths. Collision can be avoided 
by avoiding the predicted dynamic obstacle path. Kalman and 
particle filters are also used to estimate vehicle state such as 
position, heading and speed, hence performing absolute 
localization[15,8].  

 

NAVIGATION CONCEPT 

a. Software Architecture 

OpenNI is the library used to interfaces with Kinect sensor. 
It provides 2 data stream, RGB image and depth image. The 
libraries used to process these images are the Point Cloud 
Library (PCL) and Fovis. The overall data and process flow 
are shown in Fig. 1.  
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Figure 1. Software Architecture. 

b. Global Map 
To reduce the required computational power by the robot, 

it does not perform mapping of the environment during 
navigation. In other words, it does not keep track of the path is 
has traversed or produce a map of the environment at the end. 
This significantly reduces on-board computational 
requirements, with this advantage becoming more obvious 
when the environment's size growing larger.  

However, mobile robots still need a map in order to 
navigate. Hence, before the robot can be deployed, it first 
needs a full and complete map of the environment, called the 
global map. This map contains all the robot navigable 
locations in the environment and is pre-processed to occupy 
minimal memory space.  

The global map is produced manually and separately from 

the robot. The environment can first be scanned by Kinect 
compatible 3D reconstruction software such as Scenect, 
ReconstructMe or Skanect to produce a 3D point cloud (Fig. 2, 
left). This global map then undergoes a series of modifications 
for suitability (Fig. 2, right).  

 Voxel Grid filter – Down-sampling to reduce point 
cloud size and hence the computational time. 

 Radius Outliner Remover – Filters out noise points. 

 Plane Segmentation – Determines planes and their 
plane coefficients. The largest is set to be the floor. 

 3D transformation – Transforms point cloud so that 
the floor detected is on XY-plane. 

 Extract floor point indices – To differentiate between 
floor and obstacle. 

 Remove overlapped indices – Remove floor points 
which have obstacles above or near it. 

 Floor clustering – Only continuous floor points are 
kept. 
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Figure 2. Raw scanned (left) and processed (right) global map. 

c. Particle Filter 
The particle filter is a very easy and direct localization 

method[16]. Particles are created on the global map with a 
density that depends on the robot's size. Each particle is 
assigned a random coordinate and heading. 

In the measure phase, robot motions are recorded. By self-
turning to certain degrees, the robot measures the distance of 
its surrounding in the environment. In the update phase, all 
particles are moved by the robot’s motions as recorded at 
measure phase. The particles’ surrounding distances are being 
measured too in the global map. The particles’ weights are 
then computed based on the similarity between its’ and the 
robot’s surrounding distances.  

After resampling, particles which are located closer to 
robot exact location are more likely to survive. The robot’s 
initial position will be confirmed if particle weight has 
exceeded a certain threshold. No particle filter routine will be 
executed after that in order to reduce computational resource 
demands during navigation.  

d. Path Searching 
A* with heuristic is the path searching technique 

implemented in this paper. The global map is first partitioned 
into discrete cells, the size of the cells determines the 
resolution of the path. From the starting point, 8 cells in 8 
equally separated directions are explored by a single cell step 
and a cost is assigned into each cell. The cell's cost is used to 
determine the next cell which is optimal to be further explored 
among the eight. The heuristic function used in determining 
the cell's cost is calculated by the Euclidean distance between 
the exploring point and end point, as shown in (1).  

  

Where CD = Cell Distance, 
  ED = Euclidean Distance 

The output of this path search is a vector of point which 
connects the start and end points by linking them with lines. It 
is very impracticable for robot to move in that way because it 

contains too many turning points. Therefore, the path should 
be optimized after that. 

e. Path Smoothing 
The path smoother checks whether any obstacle exists 

within the straight line connecting the start and end points. It 
looks for points that can be bypassed and then connects the 
others to reduce the number of lines in the path. In Fig. 3, the 
red lines are the path before smoothing and green lines are 
path after smoothing. After smoothing, the number of turning 
points required is reduced. 

The path smoother here ensures that none of the path 

exceeds the navigable map boundary. This is better compared 

to the gradient descent smoothing method[10] which produces 

paths which cut into non-navigable areas. In this case, there is 

no arc line planned because the robot is a differential drive 

robot, not steering robot. Moving in a straight line and self-

turning are much easier than moving in an arc path. Fig. 3 

shows the unsmoothed path in red, the smoothed path in green 

and gradient descent smoothed path in blue. 

 

 

Figure 3. Three different planned paths. 

f. Obstacle Detection 
After the path has been prepared, the robot will start to 

move to its first point. While it is moving forward, the Kinect 
sensor captures the depth information (called the local map) in 
front of the robot with 57 degree by 47 degree field of view.  

Instead of checking the entire space in front, the robot only 
checks if any obstacle exists in the given path direction within 
the local map. A pass-through filter is used to filter the local 
map to a rectangle of robot width by robot height by path 
length which is then checked for any existing points 
(obstacles). Since the sensor's height on the robot is a known 
constant, the implementation of plane segmentation to detect 
floor can be avoided in the local map. Every point below the 
robot’s height can be simply ignored since this robot is not 
design to traverse staircases or steep slopes. 

The local map is then transformed to the next point of path, 
Pn+1 and heading to Pn+2 and checked again for obstacles using 
trigonometry (2), (3) and the transformation shown in (4). 
Ideally full path obstacle detection can be done immediately if 
the whole path is located within the sensor field of view. 
However, the 5.5 meter maximum depth range limits its ability 
to achieve that. Moreover, looking too many steps/points 
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forward increases the robot's respond delay. The obstacle 
detection routine is only performed in the event that a 
successful depth image obtained. 

  

  

  

g. Obstacle Avoidance 
When the robot detects any obstacle in its path, it will stop 

and wait for a few seconds. This is to distinguish between 
static and dynamic obstacles since dynamic obstacle will have 
moved out from the robot’s path after a few seconds while 
static obstacles would not.  

If a static obstacle is detected, its size and location are 
marked for modification of the global map. The obstacle 
cluster is measured from the local map using Euclidean cluster 
extraction. It is then transformed to match with the current 
position of robot referring to the global map using (5) and (6). 

  

  

Since the local map is captured in such a way that the floor 
is on the XZ-plane and the Z-axis points forward, the obstacle 
cloud needs to be transformed -90° about X-axis so that both 

obstacle and global map are refer to same floor and -90° about 
Z-axis to align with the robot’s heading.  

Now the obstacle and global map point cloud are aligned, 
those points of the global map which have obstacle points are 
removed. The robot is then ready to re-plan its path to reach its 
destination (section III.D), shown in Fig. 4. 

 

  

Figure 4. Global map modification and re-planning after static 
obstacle found.  

Robot Design 
a. Hardware Architecture 
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Figure 5. Hardware Architecture. 

 

All the hardware (Fig. 5) is mounted on a wheeled 

differential drive robot (Fig. 6). There is an on-board computer 

processing Kinect data which outputs signals to a 

microcontroller through serial port by a USB to UART 

converter. The microcontroller controls the motors’ speed and 

direction using 2 DC motor drivers. All devices besides the 

computer are powered by a 12V on-board battery.  

 

 
Figure 6. Robot hardware. 

 

b. Visual Odometry 
To reduce the number of sensors used and the overall cost, 

robot position measurement is carried out without any rotary 
encoder. Instead, 3D visual odometry using FOVIS was 
implemented to measure robot motion. XYZ translation, roll, 
pitch and yaw can be determined using the Kinect sensor. It 
utilizes RGB and depth images to measures robot's motions 
during the robot's self-turning and forward motion.  

Therefore, the mounting accuracy of Kinect sensor on 

robot is very crucial in order to maintain the motion 

measurement’s accuracy. The center of the wheels’ rotation 

axis is aligned right below the visual center of the sensor so 

that the local map does not need to be transformed before 

processing. Moreover, the sensor’s tilt must be parallel with 

the floor plane.  
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Experiments and Results 
The time taken for robot path planning largely depends on 

the size of the global map, processing unit and the distance 

between start and goal point. The orientation of obstacles also 

significantly affects the path process time. Table 1 shows a 

test measuring time taken to plan a path. This test was 

conducted using the approximately 80 meter square global 

map shown in fig. 7 and a Dell laptop with Intel
®
 i5 processor 

and 4GB DDR3 ram.  

Table 1. Result of path length against processing time. 

Path length (meter) Processing time (seconds) 

3 1 

6 3 

12 6 

 

New obstacles in path can be identified and reacted to in 

around half a second. This value can be altered depending on 

the number of turning points which exist in path and the 

maximum range for detecting obstacles within the local map.  

The implemented visual odometry does not measure 

rotation accurately in confined spaces and places filled with 

plain surfaces obstacle (shown as red boxes in fig. 7(a)). 

Besides, linear movement in a long and empty space (shown 

as a yellow box in fig. 7(a)) also causes inaccuracy in 

measurement of forward traveled distances.  

As the result the robot loses track of the distance and angle 

traveled. However, the robot was still able to reach the target 

area safely with few centimeter discrepancies. Fig. 7(b) 

showed an example of robot test run where the planned path is 

shown in green and the robot’s actual traveled path in blue. 

  

(a)                                    (b) 
Figure 7. Sections of global map and an example of robot traveled path. 

 

 

Conclusion and Future Works 
In conclusion, the overall concept has been proved 

workable. The mobile robot presented in this paper can be 
applied in indoor environments like libraries, factories and 
houses to perform tasks like goods transportation or 
surveillance. It can also be further modified if specialist 
functions are desired. 

Particle filter localization has only been performed once at 
the start of navigation due to the prohibitive computational 
cost. It is thus not useful for localizing the robot throughout its 
path. An alternative method is to localize the robot after every 
motion step (or every few steps) would improve the reliability 
of the robot’s position-sensing, given such methods did not 
interfere with the response time of obstacle detection.  

This work has also shown the limitation of visual 
odometry in certain situations. Encoders are a possible way to 
improve dead-reckoning of the robot’s motion. Additionally, 
accelerometers and gyroscopes could be added to measure 
terrain slope and robot posture. 
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