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ABSTRACT 
 
 

AN AUTOMATED APPROACH FOR THE MORPHOLOGICAL 
CHARACTERIZATION OF ACTIVATED SLUDGE FLOCS AND 

FILAMENTS USING IMAGE ANALYSIS 
 
 

Lee Xue Yong 
 
 
 
 
 

 
Activated sludge process is commonly used for purification of wastewater. The 

proper settling of the sludge flocs in the activated sludge wastewater treatment 

process is crucial to the normal functioning of the system, where sludge 

bulking/filamentous bulking presents a common and persistent problem that 

prevents good floc settleability. As a new form of technology, image processing 

and analysis methods present potential solutions to the long standing problem of 

filamentous bulking faced by activated sludge wastewater treatment plants around 

the world in a fast and timely manner. The main objects of interest under 

microscopic inspections are the sludge flocs and the filamentous organisms. In 

this research, illumination-invariant algorithms to segment the floc and the 

filament objects in the microscopic sludge images captured at 40 times and 100 

times total magnification in brightfield microscopy have been developed. 

Analyses of the morphological parameters of the segmented objects are also done. 

The standard physico-chemical tests of SVI, MLSS as well as laser particle sizing 

for the sludge samples are conducted simultaneously with image acquisition and 

the results of both methods are compared with each other to investigate the 



 
 

effectiveness of digital image processing and analysis to act as a monitoring 

system in the activated sludge wastewater treatment process. Average accuracies 

of 71.85% and 67.86% respectively in Dice coefficient values have been 

calculated from the image samples processed with the floc segmentation 

algorithm and filament segmentation algorithm. It has been found that the results 

from digital imaging methods correlate well with those from non-imaging 

methods by means of similar shape of graph lines plotted from different methods. 

For similarity of graph line shape, Pearson’s correlation coefficient returns values 

larger than 0.8 in 5 of 6 samples processed for comparing the method of digital 

imaging and laser particle sizing. Morphological analyses of the floc objects have 

also found a significant correlation pattern between the results obtained and the 

results from SVI (Sludge Volume Index). Study in required images for processing 

suggests 20 images as sufficient for processing flocs. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Motivation of Study 

 

 Activated sludge wastewater treatment plants are commonly used in large 

cities and communities worldwide for purification of wastewater. For the 

activated sludge process to be successful and to function normally, the proper 

settling of the sludge flocs in the activated sludge wastewater treatment process is 

an essential condition.  

 

Preventing the normal functioning of the plants is to be found the common 

and persistent problem of sludge bulking/filamentous bulking. This abnormal 

condition involves the overgrowth of filamentous bacteria or filaments, causing 

the sludge flocs to be unable to settle/sediment properly due to structural 

disruptions and ultimately lowering the performance of the plants.  

 

Under microscopic observations, different structural characteristics and 

quantity are observed for the floc objects and the filament objects of the activated 

sludge samples for different plant performance conditions. Structural changes 

occur even before changes in measurement data using the traditional physico-
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chemical methods are detected. As such, image processing and analysis methods 

present potential solutions as an additional complementary monitoring system to 

the long standing problem faced by activated sludge wastewater treatment plants 

around the world; incompletely solved by traditional established methods. 

Abnormal conditions may also be predicted and remedied in time using digital 

imaging methods. 

 

1.2 Fundamentals of Digital Image, Digital Image Processing and Analysis 

 

An image can be defined as a two-dimensional signal, represented by a 

function ���� �� where the function value represents intensity or colour 

information for a given point specified by the spatial coordinates �  and � . When � , 

� , and the amplitude values of �  are all finite, discrete quantities, the image that is 

being represented is a digital image (Gonzalez et al., 2009). Otherwise, it is an 

analogue image. It is possible to specify the smallest displayable point for digital 

images due to their discrete nature. This point is known as a pixel.  

 
Figure 1.1: Digital image concept illustration (Gonzalez et al., 2009) 
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Digital image processing and analysis can be defined as processes whose 

inputs and outputs are digital images. They extract attributes from the images, and 

can recognize individual object based on these attributes.  

 

Both image processing and image analysis have been simultaneously 

covered by using the above term. By the basis of their difference in output, one 

may describe image processing as any form of information processing which uses 

images as input data and produces transformed/modified images as output, and 

image analysis as any form of information processing that uses images as input 

data and produces descriptions and characteristics of them as output. Generally, 

all variations in definitions presume that image processing techniques are 

performed first, and then image analysis techniques are applied. However, there is 

no general consensus among authors regarding where image processing stops and 

the related areas, image analysis and computer vision begin (Gonzalez et al., 

2009). Hence, in general literature usage, the terms “image processing” and 

“image analysis” are not strictly differentiated from each other; either term can 

usually be assumed to take on the definition of the wider comprehensive term. 

 

Generally, images are modified and transformed via image processing 

techniques to improve their pictorial information for human interpretation, or to 

render them more suitable for autonomous machine perceptions (McAndrew, 

2004). Humans like their images to be sharp, clear and detailed while machines 

prefer their images to be simple and uncluttered (McAndrew, 2004).  
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For human interpretation purposes, useful operations include edge 

enhancement, noise removal, and blur removal; for machine perception, edge 

detection and detail removal are helpful operations. At present, image processing 

is finding more and more uses in a wide variety of fields concerning many 

different operations. Image processing is done for multipurpose image 

enhancement/restoration, artistic effects, medical visualisation, industrial 

inspection, law enforcement, human computer interfaces, and other purposes and 

fields. In the biological sciences, the understanding of various features of cell 

biology, molecular biology and neuroscience among others all call for a critical  

part and role for visualizations and image processing and analysis methods to play 

in. Not only are structural characteristics visualized and studied, but they are also 

increasingly transformed into more quantitative data and measurements for 

further studies to be made upon them.  

 

1.3 Wastewater Treatment Process 

 

 According to the Food and Agriculture Organization of the United 

Nations, wastewater treatment generally has a principal objective of allowing 

human and industrial effluents to be disposed of without danger to human health 

or unacceptable damage to the natural environment. By combining physical, 

chemical, and biological processes and operations, solids, biodegradable organic 
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matter, pathogenic bacteria and sometimes nutrients are removed from wastewater 

in conventional wastewater treatment processes. 

 

 A generalized wastewater treatment diagram is seen in Figure 1.2. 

 

 

Figure 1.2: Generalized wastewater treatment diagram (Asano et al., 1985) 

 

 It can be seen from Figure 1.2 that there are at least three levels of 

wastewater treatment: primary, secondary, and tertiary or advanced. Additionally, 

there is a preliminary treatment process that is aimed at removing coarse solids 

and other large materials often found in raw wastewater. 
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  Primary treatment process is also known as the mechanical treatment level. 

In this level both suspended and floating solids and settleable solids by 

sedimentation are separated and removed from raw sewage and the process itself 

is generally the first stage of wastewater treatment. The Food and Agriculture 

Organization of the United Nations (FAO) states that around 25 to 50% of the 

incoming biochemical oxygen demand (BOD5), 50 to 70% of the total suspended 

solids (SS), as well as 65% of the oil and grease are removed during primary 

treatment. 

 

 Primary treatment is followed by the secondary treatment stage which is 

considered a ‘biological’ stage compared to other stages. Microorganisms which 

feed on the residue waste and organic matter are employed and generally aerobic 

biological treatment processes are involved. Activated sludge, trickling filters, 

rotating biological contactors are all commonly used high-rate processes, defined 

by relatively small reactor volumes and high concentrations of microorganisms. 

Combined with primary treatment, the FAO states that a total of 85 % of the 

BOD5 and SS originally present in the raw wastewater and some of the heavy 

metals are typically removed from the effluent.  

 

 Additional treatment beyond secondary stage is considered tertiary or 

advanced treatment. The stage is employed when specific wastewater constituents 

that the previous treatment process cannot remove must be removed. Tertiary 
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treatment is capable of removing more than 99 percent of all the impurities from 

wastewater to produce an effluent approaching drinking-water quality. 

 

1.3.1 The Activated Sludge Wastewater Treatment System  

 

 It can be seen from the previous section that the various terms for different 

methods of wastewater treatment mainly refer to the different method used in/for 

the secondary biological treatment stage. However, it can be safely assumed that 

when any wastewater treatment methods are mentioned, they refer to the entire 

wastewater treatment process flow encompassing all stages and not just the 

secondary stage.  

 

The activated sludge process/ wastewater treatment process was invented 

in the 20th century around 1914 in England. It is considered to be the most widely 

used biological wastewater treatment process today due to its effectiveness and 

flexibility since its invention from approximately one century before. 

 

 The activated wastewater treatment process essentially involves: 

 

1. The aeration of wastewater with aerobic microorganisms present 

2. The removal of biological solids by means of sedimentation 

3. The returning/recycling of settled biological solids back into the aerated 

wastewater 
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Point three is the single most important distinguishing feature of the 

activated sludge treatment process compared to other methods invented and in use 

before itself. Whenever wastewater is continuously aerated, enough oxygen is 

eventually dissolved in the affluent such that various aerobic bacteria and other 

types of microorganisms are able to grow, multiply, and consume the organic 

solids/pollutants present in the affluent as “food”, oxidizing organic matter in 

water to carbon dioxide and water (Bengtson and Malburg, 2011a). In the process, 

the biomass known as “sludge flocs” that would eventually settle is formed and 

the affluent becomes purified. However, without the recycling of the aerobic 

microorganisms to raise their concentration in the wastewater, the biological 

oxidation and purification is a very slow process (Bengston and Stonecypher, 

2013). 

 

By continually returning most of the sludge flocs or the “activated sludge” 

formed at the later stage in suitable amounts to the wastewater at the beginning, 

the new system’s purification performance is improved (Tchobanoglous et al., 

2002; Grady et al., 1999; Vesilind et al., 2004).  

 

The activated sludge process has the advantage of producing a high 

quality effluent at reasonable operating and maintenance costs. Activated sludge 

wastewater treatment plants are widely used all around the world in large cities 

and communities where large volumes of wastewater must be highly treated 
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economically. A diagram of a conventional activated sludge wastewater treatment 

plant is shown in Figure 1.3. 

 
Figure 1.3: Conventional activated sludge wastewater treatment flow 

diagram 
 (Credit: http://www.brighthub.com/environment/science-

environmental/articles/66158.aspx ) 
 

Variations in activated sludge wastewater treatment systems exist in 

addition to the conventional variety depicted in Figure 1.3 (Bengtson and Malburg, 

2011b). In all of the varieties, the secondary clarifier and the aeration tank/basin 

are present. The secondary clarifier serves as the place where the sludge flocs that 

have been formed are supposed to coalesce and settle to become the activated 

sludge. The term mixed liquor is used to refer to the combination of the 

wastewater influent and the return activated sludge. 

 

In the secondary clarifier of an activated sludge wastewater treatment plant, 

the sludge flocs of the mixed liquor within must coalesce and settle properly so 

that the resultant activated sludge is produced, and also for them to not get carried 
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over to the next procedure as treated effluents to negatively reduce the effluent’s 

quality. 

 

1.3.1.1 Filamentous Bulking as an Abnormal Condition 

 

Figure 1.4 illustrates the processes in a good quality mixed liquor where 

the flocs compact and coalesce and proper floc settlement occurs. Figure 1.5 

illustrates a case of filamentous bulking; here, the mixed liquor involved would be 

slow and difficult in sedimentation due to the observed disturbances by the 

filamentous microorganisms. As can be seen from Figure 1.5, the proper 

“gluing/binding together” of the flocs have been effectively hindered by the 

growth of the filaments that is excessive. As such, the effluent becomes polluted 

with the flocs that do not bind together and do not settle. 
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Figure 1.4: Floc settlement  
(Credit: http://web.deu.edu.tr/atiksu/ana52/ani4091.html ) 

 

Figure 1.5: Filamentous bulking 
(Credit: http://web.deu.edu.tr/atiksu/ana52/ani4091.html ) 
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The characteristics of good quality mixed liquor can be seen in Figure 1.6. 

Under microscopic observations, the most relevant characteristics would be the 

strong, large flocs indicating a balance between floc formers and filament forming 

bacteria. 

  

 

Figure 1.6: Good quality mixed liquor 
(Credit: http://web.deu.edu.tr/atiksu/ana52/ani4091.html ) 

 

Filamentous bulking/ bulking sludge is a common and persistent problem 

that has affected all activated sludge wastewater treatment plants since the early 

days of the process’s invention and treatment use. Low oxygen concentration, low 

food to mass (F/M) ratio, wastewater septicity, low nutrient conditions are all 

among the causes for filament overgrowth, preventing good mixed-liquor solid 

compaction and settlement. In the monitoring of wastewater treatment plants’ 

performances using image analysis techniques against filamentous bulking and as 

a whole, the monitoring of filamentous microorganism/filament growth plays an 

important part. 
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1.3.1.2 Standard Conventional Monitoring Methods and Definitions  

 

There are various physico-chemical methods that are used traditionally to 

monitor the performance of the activated sludge wastewater treatment plants. The 

most important ones and those most relevant to our study are discussed below. 

·  Mixed Liquor Suspended Solids (MLSS): Total suspended solids (TSS) 

in the aeration tank of the wastewater treatment plant is termed as 

MLSS.  

·  Mixed Liquor Volatile Suspended Solids (MLVSS): Volatile 

suspended solids (VSS) in the aeration tank of the wastewater 

treatment plant is called MLVSS.  

·  Sludge Volume Index (SVI): Sludge volume index is defined as the 

volume in mL occupied by 1gram (g) of activated sludge preceded by 

settling of the mixed liquor for 30 minutes. It is determined by using 

the following formula:  

 	
� �
		
��������

��		 �������  (1.1) 

where SSV30 is the volume of settled sludge in Imhoff cone containing 1 

Litre (L) sample of mixed liquor noted after 30 minute.  

MLSS is defined by the following formula: 

 ��		� � �
� ����� � �������


������� ��!��"��!#��$�%&�'���!(��!)$�% � ������  (1.2) 
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where A is the weight of the filter plus dried sample residue in milligrams 

(g) and B is the weight of the filter only in mg. 

 

Generally speaking, relatively low SVI values indicate good settling 

ability for the sludge although values that are too low may point towards another 

type of abnormal condition, namely the pinpoint floc condition. A value of lower 

than 120 mL/g may be considered satisfactory while a value greater than 150 

mL/g indicates a bulking condition for the sludge and the plant (Jenkins et al., 

2003). However, all SVI values and indicated condition given are not fixed and 

may vary depending on different plant parameters. In Table 1.1 is shown some 

typical SVI values and conditions for reference. 

 

Table 1.1: SVI Values and Conditions 

 

SVI (ml/g) Indicated Condition 

< 50 Pinfloc Potential 
50 to 100 Good Range 
100 to 150 Filament Growth 
150 to 200 Bulking at High Flows 
200 to 300 Bulking 

> 300 Severe Bulking 
 

 

(Credit: http://www.wrights-trainingsite.com/ActSlud1onb.html) 
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1.3.1.3 Laser Particle Sizing Method 

 

Laser particle sizing or laser particle size analysis method is a method that 

utilizes laser diffraction analysis to measure sizes of particles found within a 

sample. An illustration of the method is shown in Figure 1.7. 

 

 

Figure 1.7: Laser particle sizing method  
(Credit: http://particle.dk/methods-analytical-laboratory/particle-size-by-

laser-diffraction/laser-diffraction-theory/ ) 
 

 

In Figure 1.7, the blue light source is for measurements of small particles 

and the red one for the detection of larger particles. It is possible to measure 

particle sizes from the range of roughly 0.02 up to 2000 µm and above depending 

on the lens used and then produce a particle size distribution graph from the 

measured data by using one from the two calculation models of Fraunhofer 

approximation or the Mie theory. 
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1.4 Research 

 

1.4.1 Problem Statement 

 

 For the purpose of our study, it has been observed that: 

·  Changes in test measurements (SVI, etc) occurs with a delay, hence little 

or no time for precautionary measure is left once sedimentation problems 

take place (Gins et al., 2005).  

·  Changes in sludge floc morphology that reflect condition changes happen 

quicker and hence can tell state of plants beforehand if microscopic 

analyses can be done and correlated to physic-chemical test values. 

·  The laser particle analysis is also utilized to measure the sludge object’s 

size distribution. The laser particle analyser however, is expensive and 

hence this is an uneconomical monitoring method. 

·  Available literatures do not clearly describe and assess segmentation 

techniques/algorithms used; Built in image analysis software methods are 

used in many instances. 
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1.4.2 Objectives 

 

 The objectives of this research are as follow: 

�  To utilize digital image processing techniques to develop automated 

methods that identify the flocs and the filaments found in the activated-

sludge wastewater treatment process. 

�  To quantify and morphologically analyse the flocs and the filaments 

identified. 

�  To correlate digital imaging methods in this work with the established 

physico-chemical methods.  

 

1.4.3 Organisation of Dissertation  

 

 The rest of the dissertation is organized as follows: 

Chapter 2 provides literature review of image processing and analysis 

techniques used in activated sludge wastewater treatment systems. 

 Chapter 3 describes the materials and methods that have been utilized in 

the study. It gives an overview of sample collection and preparation under the 

overall process of image acquisition, and also describes the algorithms developed 

and the associated principles in steps. 

 Chapter 4 documents the result of the proposed algorithms. It includes 

assessment of proposed algorithms and correlation and morphological parameter 

analyses.  
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 Finally the dissertation is concluded. This chapter concludes the 

dissertation and gives directions/recommendations for improvement and future 

studies. 

 The conclusion segment is followed by references. Credits for images 

used in this dissertation from various sources are included in this section. 
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CHAPTER 2 

 

LITERATURE REVIEW  

 

 

2.1 Effectiveness of Image Analysis Methods 

 

Conventional physico-chemical methods utilizing SVI (sludge volume 

index) tests and others are unable to detect filamentous bulking events in time to 

effectively remedy the abnormal situations (Gins et al., 2005). On the other hand, 

the ability of different image analysis methods to be used as activated sludge 

monitoring systems has been positively confirmed by many authors after 

comparisons with the classical physico-chemical methods (eg. SVI measurement) 

(Amaral et al., 1999; Heine et al., 2000; Heine et al., 2001; Da Motta et al., 2001a; 

Dagot et al., 2001; Amaral, 2003; Mesquita et al., 2008; Mesquita et al., 2010). 

 

Yu et al. (2009) managed to obtain closely correlated results with 

activated sludge particle size measured by means of laser particle sizing method 

and the size obtained from image analysis method. In the work of Heine et al. 

(2000) and Heine et al. (2001), it is found that excessive growth of filamentous 

bacteria is recognisable by microscopic images of the activated sludge 

approximately 2 to 3 days earlier than by physical-chemical parameters. The 
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authors have built lab scale systems applying different controlled parameters and 

have compared results of SVI measurements with the image analysis results. 

 

Figure 2.1 to Figure 2.3 show the results by the researchers.  

 

 
Figure 2.1: Course of SVI values for two tanks (Heine et al., 2000) 
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Figure 2.2: Microscopic picture of an activated sludge sample from 
aeration tank 1 at day 7 (Heine et al., 2000) 

 

Figure 2.3: Microscopic picture of an activated sludge sample from 
aeration tank 2 at day 7 (Heine et al., 2000) 

 

It can be seen in Figure 2.1 that while the sudden rise in the SVI value line 

in the graph happens at around day 8-9 with the dot of day 7 having a 

comparatively normal value, filament objects are already detected in the observed 

microscopic picture of the sludge at day 7. 
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2.2 Image Acquisition and Image Analysis 

 

For sludge floc microscopic image observations, there has been usage of 

high magnifications to observe bacterial compositions and filamentous bacteria 

inside the sludge. Usage of low magnifications (eg. 50× or 100×) to observe the 

flocs and the filaments combined with image analysis has since become more 

common (Liwarska-Bizukojc, 2005). The latter method is simpler in its image 

acquisition sample preparation being non-laborious and the results obtained are 

also more objective and reproducible due to the automated image analysis process 

employed (Liwarska-Bizukojc, 2005).  

 

For the number of images required to obtain statistically relevant results, 

Liwarska-Bizukojc and Bizukojc (2005) reported to confirm that 40 is a sufficient 

number.  

 

In the work of Amaral (2003), the author divided the aggregate objects of 

his study into 3 size classes in his aerobic wastewater treatment process research 

section. They have been divided into 3 size classes of aggregates ranging from 

having an equivalent diameter of 0.0184 mm up to 0.1 mm, aggregates ranging 

from having an equivalent diameter of 0.1 mm up to 1 mm, and finally aggregates 

with an equivalent diameter larger than 1 mm. The smallest size class is simply 
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rounded up and designated as having equivalent diameters for objects within the 

range of 0.02 to 0.1 mm. 

 

Perez et al. (2006) morphologically analysed the segmented floc objects of 

their study using the morphological parameters of equivalent diameter, 2-D 

porosity, convexity, compactness, roundness and fractal dimension. Correlation 

analysis of the morphological parameter values of the floc objects detected in the 

Pearson’s product momentum correlation coefficient (rp) was done to estimate 

linear correlations. Significant correlation between certain morphological 

parameter pairs has been found by the authors. For significant/high enough 

coefficient values, roundness as defined by the authors has been found to correlate 

with convexity and compactness (and vice versa), fractal dimension and 

convexity have also been observed to correlate well with each other. 

 

The work by the same group of authors also investigated the effect of 

sample dilution on the size distribution of the objects detected and analysed. It has 

been found and verified by the researchers that with an increase in the dilution of 

the acquired activated sludge samples, the mean size of the flocs have been found 

to decrease in significant amounts. By their results the researchers concluded that 

the sludge sample for digital images acquisition should be prepared without 

previous dilution in order to obtain accurate measurements of the microbial flocs 

size (Perez et al., 2006). 
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The difference of morphology between flocs and filaments can be seen in 

their elongation degree and smoothness of boundary (Jenne et al., 2002). 

According to R. Jenne et al., among parameters of aspect ratio, roundness, form 

factor, fractal dimension and reduced radius of gyration, the most accurate 

parameter in differentiating the two is the reduced radius of gyration (Jenne et al., 

2002). The most unsuitable being the form factor followed by the fractal 

dimension. The result is obtained via a classification error comparison of 100 

flocs and 100 filaments (manually identified). 

 

Table 2.1 summarizes the literature review for image acquisition and 

image segmentation.  

 

Table 2.1: Literature Review 

No. Literature Title 

Type of 

Microscopy and 

Magnification 

Sample Size on Slide 

and Number of 

Acquired Image 

Segmentation 

Method 

1. 

Evaluation of activated 

sludge systems by 

image analysis 

procedures (Mesquita 

et al., 2008) 

Brightfield, 100x 
25uL , 

200 total images 
References no. 9 

2. 

Correlation between 

sludge settleability and 

image analysis 

information using 

Partial Least Squares 

(Mesquita et al., 2009) 

Brightfield, 100x 

25uL , 

200 total images not 

including previous 

data 

References no. 9 

3. 
Monitoring of activated 

sludge settling ability 

Brightfield, 100x 

and 40x using 

25uL , 

200 images per 
References no. 9 
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through image 

analysis: validation on 

full-scale wastewater 

treatment plants 

(Mesquita et al., 2009) 

stereo microscope sample: 

& 

20 images per sample 

for stereo 

4. 

A comparison between 

bright field and phase-

contrast 

image analysis 

techniques in activated 

sludge 

morphological 

characterization 

(Mesquita et al., 2010) 

Brighrfield and 

Phase Contrast, 

both 100x 

25uL , 

200 images total 

~divided through 

three replicate slides; 

around 20 images 

obtained 

for each slide 

References no.8 

and no. 9 

5. 

Identifying different 

types of bulking in an 

activated sludge system 

through 

quantitative image 

analysis (Mesquita et 

al., 2011) 

Brightfield 100x 

total; 

Epifluorescence 

microscopy 200x 

total 

10uL 

for brightfield, 150 

total images, 3 slides 

per sample, (3 x 50 

images/slide) 

& 

10uL 

for epifluorescence, 

100 total images, 2 

slides per sample, (2 x 

50 images/slide). 

References no. 8 

for brightfield 

6. 

Characterization of 

activated sludge 

abnormalities by image 

analysis and 

chemometric 

techniques (Mesquita et 

al., 2011) 

Brightfield 100x; 

Fluorescence 

microscopy 200x 

Same as above 

References no. 9 

for brightfield 

work 

7. 

Quantitative image 

analysis for sludge 

volume index and total 

suspended solids 

prediction in activated 

Brightfield and 

Phase Contrast 

100x; 

Epifluorescence 

microscopy 200x 

- Not described 
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sludge system 

disturbances (Mesquita 

et al., 2011) 

8. 

Image Analysis in 

Biotechnological 

Processes: Applications 

to Wastewater 

Treatment (Amaral, 

2003) 

Brightfield 40x 

total for aggregates 

using stereo 

microscope and 

Phase contrast 

100x for filaments 

50uL 

for filament and 

aggregate, 18 images 

each 1-cover-slip-

slide; 

25 images for 

aggregate for sample, 

30 images for 

filaments for sample 

Use of boundary 

image 

segmentation 

and percentile 

based region 

image 

segmentation 

and then 

conjugating the 

resultant images 

to obtain 

aggregate/floc 

image, uses 

aggregate image 

to obtain 

filament image 

9. 

Activated sludge 

monitoring of a 

wastewater treatment 

plant 

using image analysis 

and partial least squares 

regression (Amaral et 

al., 2005) 

Brightfield 40x 

total for aggregates 

using stereo 

microscope; Phase 

contrast 100x for 

filaments 

50uL , 

30 images per sample 

for filaments; 

25 images per sample 

for aggregates 

Similar 

algorithm as 

observed 

compared to no. 

8 

10. 

Bulking sludge 

treatment by 

microscopic 

observation and 

mechanical treatment 

(Heine et al., 2000) 

Not mentioned - Not described 

11. 

Early warning-system 

for operation-failures in 

biological stages of 

WWTPs by on-line 

Not mentioned - 
Not well 

described 
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image analysis (Heine 

et al., 2001) 

12. 

Feature analysis of 

activated sludge based 

on microscopic images 

(Sikora et al., 2001) 

Not mentioned - 

Variance 

Operator, 

Laplacian 

Operator, … 

13. 

Investigation on 

filamentous micro-

organisms in sludge 

foaming from pulp & 

paper mill wastewater 

treatment plant 

(Larptansuphaphol et 

al., 2010) 

Phase contrast, 

100x for low power 

work (filamentous 

counts, observing 

floc structures), 

1000x for 

identification of 

filamentous 

organisms 

 

- - 

14. 

Simultaneously 

monitoring the particle 

size distribution, 

morphology and 

suspended solids 

concentration in 

wastewater applying 

digital image 

analysis(DIA) (Yu et 

al., 2009) 

Microscope not 

used 

40 images each 

sample 

Software work as 

programmed by 

the NI Vision 

Assistant 

15. 

Characterisation of 

activated sludge by 

automated image 

analysis (Da Motta et 

al., 2001b) 

Brightfield 100x 

A series 

of at least 70 images 

 

Complex 

algorithm that 

considers the 

variance 

of the grey-level 

histogram with 

steps briefly 

described 
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16. 

Characterisation of 

activated sludge 

by automated image 

analysis : 

Validation on full-scale 

plants (Da Motta et al., 

2002) 

 

Series of 70 

images (meso-scale 

visualisation at 

x100 magnification 

in brightfield), 

& of 50 images 

(macro-scale 

visualisation at x25  

magnification, 

blackfield) for 

some samples 

 

 

Similar to above 

and software 

work using 

procedures 

embedded within 

Visilog 

17. 

Impacts of 

morphological, 

physical and chemical 

properties on 

dewaterability of 

activated sludge (Jin et 

al, 2004) 

Brightfield;  floc 

size distributions 

determined by a 

Malvern 

Mastersizer/E 

instrument with a 

300mm lens which 

measures particles 

in the range 0.9–

546 um, uses light 

scattering. 

- - 

18. 

Impacts of structural 

characteristics on 

activated sludge floc 

stability (Wilén et al., 

2003) 

Same as 17 but not 

involving filaments 

At least 10 images 

(100x 

magnification) were 

taken for floc fractal 

dimension analysis 

 

Software work 

for calculating 

floc fractal 

dimensions via 

IMAGEJ 
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19. 

Microbial community 

structure in activated 

sludge floc 

analysed by 

fluorescence in situ 

hybridization and its 

relation to floc stability 

(Wilén et al., 2008) 

 

Phase contrast 10-

40x lenses for floc; 

Phase contrast and 

Brightfield 60x 

inverted lens for 

microbial 

community 

structures of the 

flocs 

>100 images for floc 
Manual software 

work 

20. 

Use of image analysis 

in the study of 

competition between 

filamentous and non-

filamentous bacteria 

(Contreras et al., 2004) 

Phase contrast 

1000x 

10uL , 

3 slides per sample, 

3-5 image per slide 

randomly acquired 

Software work 

using� Global 

Lab Image 2.10 

software 

21. 

Towards on-line 

quantification of flocs 

and filaments by image 

analysis (Jenné et al., 

2002) 

Phase contrast 

1000x objective 
- 

Not described in 

detail, the used 

“novel automatic  

histogram-based 

thresholding 

method” 

combines the 

commonly used 

Intermeans 

algorithm with 

the calculation of 

extremes in the 

first and second 

derivative of the 

grayscale image 

histogram 

22. 

Activated sludge image 

analysis data 

classification: an LS-

SVM approach (Gins et 

Brighrfield 10x10 - 

References work 

of Jenné et al. 

(2003) 
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    It can be seen from the table that methods vary a lot according to teams 

of researchers. In many of the documentations the segmentation algorithms are 

not considered the main focus of study and hence have been only briefly 

explained and documented.  

 

 

 

 

 

 

 

 

 

 

al., 2005) 

23. 

Activated sludge 

morphology 

characterization 

through an image 

analysis procedure 

(Perez et al., 2006) 

Brightfield 120x 

total 

1 drop, 50 images per 

sample 

Algorithm with 

segmentation 

step based in 

Zack algorithm 

for binarisation 

24. 

Image analysis to 

estimate the 

settleability and 

concentration of 

activated sludge 

( Grijspeerdt et al., 

1997) 

Dark field 

microscopy 

50x using stereo 

microscope; 

25x for sludge floc 

size measurement 

- 

Software work 

using specifically 

developed 

software in 

Microsoft Visual 

C + + 
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CHAPTER 3 

 

MATERIALS AND METHODS 

 

 

3.1 Methodology Overview 

 

 In this chapter we shall discuss the experimental procedures. The parts for 

the procedures include: 

1) Laboratory based work for data acquisition and physico-chemical tests and 

measurements 

2) Software based work or the development of algorithms which encompass 

digital imaging segmentation and morphological parameter analysis of the 

floc and filament objects 

3) Establishment of result correlation for the implemented physico-chemical 

methods and digital imaging methods 

 

The flowchart describing the methodology for the research work is shown 

in Figure 3.1. 

 



 

3.2 Image Acquisition

 

The samples of waste water are acquired from the activated sludge tanks 

of local wastewater treatment plants

image acquisition a Zeiss Primostar microscope equipped with a CCD camera 

(Zeiss AxioCam ERC 5s) connected to a personal computer is used to capture the 

digital images. 

sample onto a 

top with a 23 ×

images are captured under the objective magnification of x4

32 

Figure 3.1: Flowchart of methodology

 

Image Acquisition 

The samples of waste water are acquired from the activated sludge tanks 

wastewater treatment plants that deals with municipal effluents. For 

image acquisition a Zeiss Primostar microscope equipped with a CCD camera 

m ERC 5s) connected to a personal computer is used to capture the 

digital images. A sample is prepared simply by placing 80µl of activated sludge 

microscopic slide using micro pipette and is then covered from the 

× 23 mm cover slip. The sample is observed and 

images are captured under the objective magnification of x4

  

f methodology  

The samples of waste water are acquired from the activated sludge tanks 

that deals with municipal effluents. For 

image acquisition a Zeiss Primostar microscope equipped with a CCD camera 

m ERC 5s) connected to a personal computer is used to capture the 

sample is prepared simply by placing 80µl of activated sludge 

and is then covered from the 

. The sample is observed and up to 100 and more 

images are captured under the objective magnification of x4 for mainly floc 
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observations and analysis and x10 for filament observations and analysis 

filaments both in brightfield microscopy. The simulation platform is a laptop 

computer with Intel Centrino Duo Intel 1.66GHz CPU. MATLAB software is 

used for programming. All images are saved in JPEG file format. The image 

resolution is 1920 x 2560 pixels.  

 

For the ‘floc’ algorithm, a total number of 55 images for each day/sample, 

half the number of the total number of roughly 110 images captured covering the 

entire cover slip area are used as inputs and processed. For the ‘filament’ 

algorithm, from the entire set of roughly equivalent number of captured images 

when snapped in a way that covers the whole cover slip area for a day/sample, the 

number of inputs for a day averages to about 52. 

 

A sample ‘floc’ image in x4 from a sample is shown in Figure 3.2. 

 

 
Figure 3.2: Sample ‘floc’ image with x4 objective magnification 
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Another image in x10 is shown in Figure 3.3. 

 
Figure 3.3: Sample ‘filament’ image with x10 objective magnification 

 

In Figure 3.2, a pixel is equivalent to 0.838 micrometer in its length in 

both horizontal and vertical axis while in Figure 3.3, it is equivalent to 0.332 

micrometer. 

 

3.3 Physico-Chemical Tests 

 

The Malvern Mastersizer MS2000 laser particle size analyzer is used in 

this work for lazer particle size analysis. A refractive index of 1.04 has been 

chosen for the samples as according to the consideration that the refractive index 

of the samples is to be very close to that of water (n<1.05) (Waite et al., 1998). 

The physico-chemical tests of SVI, and MLSS or TLS are also carried out 

simultaneously on the same day which activated sludge samples are collected.  
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3.4 Floc Segmentation Algorithm  

 

3.4.1 Stepwise Flow 

 

1. Input Original Color Images  

 The images acquired from samples wastewater treatment plants are used 

as inputs. The images otherwise known as ‘floc images’ have been captured in x4 

objective magnification for containing the flocs. 

2. Grayscale transform of Images 

 The images are transformed into grayscale forms with the threshold value 

obtained via the Otsu thresholding method. 

3. H-minima transform 

 A value of 50 is used for the scalar threshold variable that determines the 

depth of difference. 

4. Implement Median Filtering 

 A size of 25x25 for the window /filter is used. 

5. Implement Average Filtering 

 A size of 50x50 for the window/filter is used. 

6. Local Thresholding Binarisation 

 The ‘Niblack’ Method is chosen and used here with window size of 

500x500, k value of -0.2 and offset value of 5. 

 



 

7. Clearing of Border

 Incompletely captured objects are deleted after this the implementation of 

this step. 

8. Removal of Small Objects

 Image segmentation noise is cl

a total area of around 2500 pixels. The exact number of pixels used as the variable 

number is 2457 as is equivalent to 0.05% of the total number of pixels found 

within an input image.

 

The overall flowchart of the

Figure 3.
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7. Clearing of Border-attached objects 

Incompletely captured objects are deleted after this the implementation of 

8. Removal of Small Objects 

Image segmentation noise is cleaned off by removing objects smaller than 

a total area of around 2500 pixels. The exact number of pixels used as the variable 

number is 2457 as is equivalent to 0.05% of the total number of pixels found 

within an input image. 

The overall flowchart of the floc algorithm can be seen in Figure 3.4.

Figure 3.4 Flowchart of floc segmentation algorithm 

Incompletely captured objects are deleted after this the implementation of 

eaned off by removing objects smaller than 

a total area of around 2500 pixels. The exact number of pixels used as the variable 

number is 2457 as is equivalent to 0.05% of the total number of pixels found 

floc algorithm can be seen in Figure 3.4. 

 
of floc segmentation algorithm  
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3.4.2 Explanations and Elaborations 

 

In the proposed algorithm the H-minima transform is used. This operation 

eliminates the regional minima in the images that have an intensity/depth less than 

a given thresholding value. A smoothing effect is to be observed from the result 

of this operation. As the first step of the algorithm, the filament objects are still 

present and visible after the operation is complete. 

 

 It is observed that at x4 objective magnification, the filaments are very 

thin and threadlike. Median filtering with a moderately large window size is then 

applied to the resultant image to effectively and efficiently eliminate the thin 

filament objects. Median filtering is followed by an average filtering process to 

further smoothen the image.  

 

Next, a local thresholding binary conversion in the Niblack method 

produces the segmentation result ‘floc’ image. 

 

Local thresholding/adaptive thresholding, as opposed to global 

thresholding methods that treats the entire image as a whole, computes the 

threshold value for each pixel by using the values of all pixels contained within 

the same local window. As such, the process repeats for different localities until 

the window covers the entire image. Niblack local thresholding (Niblack, 1986) is 
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a simple and elegant technique that was originally developed for document/text 

images. The threshold value is obtained by first calculating the local mean and 

then a value is added to the result depending on the local standard deviation. 

Assume that by narrowing the processing scope by processing local areas instead 

of the entire image, the pixel intensity value variation of both objects and 

background hence gets narrowed so and such that the graph model of two 

peaks/clusters becomes valid for the pixel intensity value histogram, and also that 

local background pixels are always significantly larger in number than 

foreground/object pixels, the mean can be seen to fall within the range of the 

background intensity values; and to move the mean outside of the background 

intensity value range, the standard deviation value is utilized. 

 

 * +!,�&-. �� ��&(� / �.� � �%)&("&$"�"�0!&)!�(� � �-  (3.1) 

 

 

The value of k is positive for bright objects and negative for dark objects 

since the direction of movement is determined by the variable. Normally the value 

of 0.2/-0.2 is chosen as the optimum value. ‘C’ represents an offset variable. As 

have been stated in the previous section, the values of ‘k’ and ‘c’ are set to -0.2 

and 5, and the window size used is 500×500. 
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3.5 Filament Segmentation Algorithm  

 

3.5.1 Stepwise Flow 

 
1. Input Original Color Images  

 The images snapped and saved in the previous sessions are used as inputs. 

The images otherwise known as ‘filaments images’ have been captured in x10 

objective magnification for containing the filaments. 

2. Grayscale transform of Images 

 The images are transformed into grayscale forms with the threshold value 

obtained via the Otsu method. 

3. H-minima transform 

 A value of 30 is used for the scalar threshold variable that determines the 

depth of difference. 

4. Implement Median Filtering 

 A size of 25x25 for the window/filter is used. 

5. Morphological Erosion 

 Disk structural element with a 10-pixel-radius is used. 

6. Addition of Images from Step 3 & Step 5 

 The Eroded image from step 5 is complimented and added with the image 

from step 3. Images containing only the filament regions are produced after this 

step. 
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7. Binary Conversion 

 The image from the previous step is binary converted using the Otsu 

method. 

8. Implement Average Filtering 

 A size of 50x50 for the window/filter is used.  

9. Local Thresholding Binarisation 

 The ‘Niblack’ Method is chosen and used here with window size of 

500x500, k value of -0.2 and offset value of 5.  

10. Morphological Dilation 

 Disk structural element with a 10-pixel-radius is used. 

11. Imposition of Enlarged Floc Object Areas 

 The steps starting from no. 8 form the continuation of the developed floc 

algorithm leading to the current step to further reduce the noise of the input image 

to be used for the next following step 12. 

12. Implement Hough Transform for Straight Line Detection 

 This step makes dots and lines that seem like broken parts of a larger 

straight line to connect together to restore the line. 

13. Morphological Parameter Filtering of Images from Step 7 & Step 12 

 The morphological parameter of ‘Roundness’ is used here with a threshold 

value of 0.15. 

 

 

 



 

14. Merging of Both Images from Step 13

 The images are merged with each other producing segmentation results 

that incorporate existent regions from both inputs. The logical OR operation is 

used in this step.

 

The overall flowchart of the filament algorit

Figure 3.
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14. Merging of Both Images from Step 13 

The images are merged with each other producing segmentation results 

that incorporate existent regions from both inputs. The logical OR operation is 

used in this step. 

The overall flowchart of the filament algorithm can be seen as in Figure 3.5.

Figure 3.5: Flowchart of filament segmentation algorithm 

 
 

The images are merged with each other producing segmentation results 

that incorporate existent regions from both inputs. The logical OR operation is 

hm can be seen as in Figure 3.5. 

 

filament segmentation algorithm  
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3.5.2 Explanations and Elaborations 

 

The ‘filament’ algorithm developed here incorporates the ‘floc’ algorithm 

that has already been developed. 

 

The H-minima transform operation of step 3 produces here again a 

smoothened image but with the filament objects still intact. A threshold value of 

30 has been used instead of 50 as in floc segmentation algorithm for even more 

preservation of filament objects. 

 

The next median filtering operation erases the filament objects from the 

images. 

 

The erosion operation of step 5 is a grayscale erosion operation. Grayscale 

erosion operations selects for an image pixel the lowest value of intensity found 

for all the pixels covered by the selected structuring element with its centre 

pinned on the aforementioned pixel. The overall after effect is of a darkened 

image with dark regions enlarged and light regions eroded. 

 

For step 6, the complement of the resultant image from step 5 and the 

image from step 3 are added together to produce the output image. The former 

image can be termed the ‘floc’ image while the latter be termed the ‘floc & 

filament’ image. There are three types of regions involved in the process. The first 

region is the one representing the floc object areas, the second region the one 
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representing the filament areas and the third region is the background region 

having neither floc nor filament. The ‘floc’ image whether complemented or not 

has no region 2 but only the first and the third regions. Region 1 and 3 are roughly 

identical with each other in both the ‘floc’ image and the ‘floc & filament’ image. 

The complemented ‘floc’ image when added to the ‘floc & filament’ image 

overloads pixel intensity values of region 1 and 3 to become over/more than 255. 

The pixels from region 2 however get added with intensity values that do not push 

them over 255. The end result is that only filament object regions are retained/left 

behind after step 6.  

 

For as large as possible a matching between the areas and pixel intensity 

values of region 1 and 3 from the ‘floc’ image and the ‘floc & filament’ image, no 

significant altering or changes are to be done after the median filtering step which 

eliminated the filaments. In such a way the highest possible fidelity and matching 

is to be obtained and achieved. The Erosion step serves as a semi-insurance-step 

to make the intensity values that get added in the addition step becomes slightly 

larger than the values otherwise, making for perfectly reaching the 255 threshold 

so that overloading is definitely reached for the necessary areas. A moderately 

large structuring has been chosen so that significant darkening can occur but not 

too large that the floc object regions get too enlarged.  
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After the subsequent binary conversion, the operation at the left-hand-side 

of the flowchart of Figure 3.4 comes to an end. This concludes the first 

segment/section of the algorithm. 

 

From the first part of the algorithm, we can see that the algorithm is robust 

across different background lighting conditions and textures due to step no. 6 

described. For this important consequence to happen the usage of the median 

filter also plays an indispensible role because as long as the filaments captured are 

thin and threadlike, they would be eliminated after the operation regardless of the 

intensity difference between their pixels and the background pixels. Overall there 

needs to be no care taken to ensure a constant background lighting condition 

when performing image acquisition/capturing at all by operators. 

 

For the second part of the algorithm, the right-hand-side of the flowchart 

starts with continuing with certain parts of the developed floc segmentation 

algorithm. Average filtering continued by the Niblack local thresholding is 

implemented. After then to bulk up the floc objects thus detected, a morphological 

dilation process is performed. 

 

The enlarged floc objects are then imposed on the image produced by step 

7 for noise reduction. 

 



45 
 

Next, the Hough transform operation for detecting straight lines is applied 

to the resultant image. Through the Hough transform, unconnected single dots and 

dots at the edge of a shorter line that form larger straight lines become connected 

with themselves and with each other (restoring the line) if the accumulated 

quantity of dots for a possible line/longer line is found to be greater than the set 

threshold value.  

 

Any straight line can be defined by the form: y = mx + c in the Cartesian 

coordinate system where m and c are constants that define the lines while x and y 

are the point coordinate variables. By tallying the quantity of the x and y value 

pair that fits into any particular m and c value pair, it can be seen that sufficient 

such quantity indicates either an already existing straight line or one such line to 

be connected. Connected parts of a line will have continuous x and y value pairs 

while unconnected ones will not; the unconnected sections to be joined together 

by this operation provided that the separating distances/gaps are not too large.  

 

The basic concept for Hough transform for line detection described above 

can be explained in another way that describes conversion from the (x, y) space to 

the (m, c) space. In this case the x and y value pairs described above are 

represented as dots of lines crossing each other in the (m, c) space, while 

continuous value pairs indicate continuous gradient of different lines. 
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The actual implementation of the Hough transform for line detection as is 

done in Matlab uses yet another form of representation, creating the ‘Hough space 

graph’ with waveform curves representing each dot/ data point of the (x, y) space. 

Again different curves crossing at any one spot indicates a possible line. Such 

crossings at any one spot are to be accumulated and then thresholded for the 

determination of line existence. 

 

Also, the Cartesian coordinate system comes with the inherent problem of 

having vertical lines defined by an infinite value for the slope/ gradient variable of 

m. Therefore the Hough transform is by default implemented using the Polar 

coordinate system. 

 

By making the resultant connected lines into binary images, the resultant 

binary image of the Hough transform as well as the image from step 7 both go 

through the morphological parameter filtering operation next. 

 

The parameter employed here is roundness. It is used here to eliminate the 

segmented binary regions that are not sufficiently elongated. Roundness is 

defined here as the ratio of an object’s area to a circle/disc’s area with the 

circle/disc equal in length to the object. It is as follows:   

 1��("(�%%� �
2���&$�&

3����(�)4 5  (3.2) 

The roundness of an object as defined above varies from a value of 1 for a 

circle to values closer to zero for increasingly elongated objects in a similar layout 
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fashion found in an image. For our purposes, ‘elongation’ used here indicates 

object length in a way that do not consider a line in a more compact layout as less 

elongated than another one layout of it in which it is straight; at the same time 

however, the differences in roundness values caused by the differences in layouts 

are not considered as significant enough. The ‘length’ term of equation (3.2) is 

defined as the major axis length, which is the length of the major axis of the 

ellipse that has the same normalized second central moments as the object. Only 

objects with roundness values lesser than the value chosen in both images 

indicating they themselves as long objects remain after the operation. 

 

The usage of the Hough transform has enabled unconnected dots that 

potentially form filament lines to be connected with each other. Unconnected 

round dots are to be eliminated if processed by step no. 13 skipping step no. 12 

but they remain and stay if the Hough transform operation caused them to be 

connected to an extrapolated line which is judged to be a filament in our case. At 

the same time however, we can expect new noise in the form of fake filaments or 

connected lines that are not filaments added into the result. To compensate for the 

drawback, the floc objects had been explicitly detected using the developed ‘floc’ 

algorithm as well as dilated to enlarge them and then imposed on the image of 

step 7 to eliminate the existing dots originating from the floc objects. This step 

however, also breaks up certain previously-connected filaments even when 

unenlarged floc objects are used for imposition. The final merging step allows for 
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the detected lines from both branches to meet and combine providing for a more 

comprehensive image/segmentation result.  

 

 The result gives the segmented filaments. 

 

3.6 Assessment of Segmentation Accuracy  

 

For verifying the segmentation accuracy of the algorithms, ground truth 

images have been hand-drawn using the software GIMP with the original color 

images as reference or base. The overlapping of the images from manual drawing 

(ground truth) and algorithm output produces true positive, false positive, true 

negative and false negative areas. Segmentation accuracy values via various 

metrics may be obtained thereforth by calculation using their area values.  

 

The Dice’s coefficient metric (also known as the Sørensen index among 

other names)  that is commonly and extensively used in image segemntation 

quality validation is utilized in our study and is defined as below: 

DC = 
6�78

6�789:897;
 

 = 
6�78

789<==><?@AB
 , (3.3) 

where TP=True positive, FP=False positive and TN=True negative. 
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 The study of Zou et al. (2004) finds the Dice coefficient “a simple and 

useful summary measure of spatial overlap, which can be applied to studies of 

reproducibility and accuracy in image segmentation”. 

 

3.7 Morphological Parameters for Analysis of Flocs 

 

Morphological parameter analysis involving the four parameters of 

equivalent diameter, roundness, compactness and convexity are done after the 

objects have been segmented. These morphological parameters have been chosen 

as they describe different properties of circular objects. Their definitions can be 

seen as follows: 

 

Equivalent diameter= the diameter of a circle with an equivalent front facing area; 

 1��("(�%%� � � 2���&$�&

3����(�)4 5  (3.4) 

 C��'&-)(�%% �
23����&$�&

'�$!��)�$ 5  (3.5) 

 C�(0��!)� �
&$�&

-�(0���4����&$�&   (3.6) 

 

 More documentations and discussions of the analyses conducted after the 

successful object segmentation process can be found in the succeeding Chapter 4.  
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CHAPTER 4 

 

RESULTS AND DISCUSSIONS 

 

In this chapter we will discuss the results of the proposed algorithms as 

well as the algorithm segmentation accuracy. The subsequent analyses utilizing 

results from image processing and physico-chemical methods will then be gone 

through and discussed.  

 

4.1 Step by Step Output Images  

 

4.1.1 Floc Segmentation Algorithm 

 

 The output images for each of the step of the developed floc algorithm can 

be seen in Figure 4.1. For all 6 samples 55 images are processed by the algorithm 

out of the total number of approximately 110 images covering the entire area of 

the microscopic cover slip. 
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1: Original input color image; 2: Grayscale image;  

3: H-minima transformed image; 4: Median filtered image 

 

Figure 4.1 (Continues on next page) 

 

 

 

 

 

4. 3. 

2. 1. 
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5: Average filtered image; 6: Local thresholding binarisation; 

7: Clearing of border objects; 8: Small object removal 
 

Figure 4.1: Steps of floc segmentation algorithm 

 

The output image of step 8 shown is the complement of the actual black-

background-white-object image for better visualisation. 

 

4.1.2 Filament Segmentation Algorithm 

 

The output images for each of the step of the developed filament algorithm 

can be seen in Figure 4.2. 

 

5. 6. 

7. 8. 
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1: Original input color image; 2: Grayscale image;  

3: H-minima transform image; 4: Median filtered image; 

5: After grayscale morphological erosion;  

6: Addition of image 3 and image 5 complemented 

Figure 4.2 (continues on next page) 

1. 2. 

3. 4. 

5. 6. 
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7: Binarized image,  8: Average filtering applied to image 4; 

9: Local thresholding binarization; 10: Morphological dilation; 

11: Image 10 imposed on image 7;  

12: Implementation of Hough transform for line detection; 

Figure 4.2 (continued) 

 

7. 8. 

9. 10. 

11. 12. 
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12a: Grayscalization of image 12 in RGB red channel; 12b: Binarized image;  

12c: Grayscalization of image 12 in RGB blue channel; 12d: Binarized image;  

12e: Binary image of detected lines by Hough transform;  

13a: Short objects eliminated from image 7; 

Figure 4.2 (continued) 

 

12a. 12b. 

12c. 12d. 

12e 13a. 
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13b: Short objects eliminated from image 12; 

14: Merging of image 13a and 13b; 

 

Figure 4.2: Steps of filament segmentation algorithm 

 

The output images of step 10, 13 and 14 are the complement of the actual 

black-background-white-object images for better visualisation. The image from 

step 12 has the lines connected by the Hough transform plotted in blue color.  

With the image from step 12 as input, 12a is the image with only the red RGB 

channel activated and then converted to grayscale and 12b the subsequent 

binarization result. 12c is the image with only the blue RGB channel activated and 

then converted to grayscale and 12d the following binary converted result.  

 

Activating only the red channel for the input image makes blue regions 

black and white regions red while black regions remain the same. Activating only 

the blue channel makes white regions blue while blue and black regions remain 

the same. Thus, merging the two binary outputs from the previous steps via 

logical operation give us an end image that is binary with its black regions 

13. 14. 
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representing the blue regions of the Hough transform processed image. 12e shows 

this image. Further processing this image with morphological parameter filtering 

gives 13b and 13a has the image from step 7 as input. 

 

4.2 Ground Truth Floc Segmentation Accuracy Test 

 

 For assessment, Figure 4.3 shows sets of images of 4 for each different 

input. The top left shows the original color image, the top right shows the 

segmented image, the bottom left shows the ground truth image and the bottom 

right image shows the combined image for assessment. 

 

 The Dice coefficient value is calculated and displayed under each of the 

set of images. 
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(a) DC=2*64364 /(64364+143484)= 128728 /207848= 61.9337% 

 

 

(b) DC=232838 / 319952 = 72.7728% 

Figure 4.3 (continues on next page) 



 

 

(c) DC = 74.1818%

(d) DC=70

59 

= 74.1818% 

70.8605% 
Figure 4.3 (continued) 

 

 

 

 



 

 

(e) DC=81
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81.1048% 

Figure 4.3 (continues on next page)

 

 

3 (continues on next page) 



 

(f) DC=70

 Top Left: 
Bottom Left: 
 

The assessment

overlapping regions between segmented objects and ground truth image

regions representing regions present 

ground truth image, green regions showing the regions existing in the ground 

truth image but not in the segmented objects and finally the white regions 

representing non
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70.2651% 

Figure 4.3: Assessment of floc segmentation 
Top Left: Original colored image, Top Right: Segmentatio

Bottom Left: Ground truth image, Bottom Right: Assessment 

assessment images shown above have black regions representing 

overlapping regions between segmented objects and ground truth image

regions representing regions present in the segmented objects but not in the 

ground truth image, green regions showing the regions existing in the ground 

truth image but not in the segmented objects and finally the white regions 

representing non-object regions in both inputs. 

 

 

floc segmentation  
egmentation image,  
Assessment image    

have black regions representing 

overlapping regions between segmented objects and ground truth image, pink 

in the segmented objects but not in the 

ground truth image, green regions showing the regions existing in the ground 

truth image but not in the segmented objects and finally the white regions 
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In ground truth verification terminology the representations are as follows: 

 

- Black regions: Overlapping regions     - True Positive  
- Pink regions: Segmented regions only  - False Positive 
- Green regions: GT regions only          - True Negative 
- White regions: Background regions       - False Negative  

 

From a visual qualitative judgement perspective, the segmentation 

algorithm can be seen to be quite successful. The images used for algorithm input 

are generally as seen as above, where they are quite noisy and in many cases it is 

difficult to differentiate between floc and noise. 

 

For the first set of images used, the green object at the right hand side seen 

to be touching the border has been classified as such in ground truth image 

drawing via eye assessement. However, it seems that the object is not really 

touching the border from the algorithm processing especially if the upper part of 

the object is counted out. The accuracy of the segmentation for the first set is 

expected to increase significantly if that object is not taken as a border object in 

ground truth image making.  

 

The accuracy values from Figure 4.3 are displayed in Table 4.1. 
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Table 4.1: Dice Coefficient Values for Floc Images 

Image Accuracy(Dice Coefficient) 

a 61.9337% 

b 72.7728% 

c 74.1818% 

d 70.8605% 

e 81.1048% 

f 70.2651% 

Average 71.8531% 

 

 From the images in Figure 4.3, an average accuracy value of 71.85% is 

calculated. An accuracy of above 70% has been achieved, quantitatively the 

segmentation can therefore be judged to be good. 

 

4.3 Ground Truth Filament Segmentation Accuracy Test 

 

The assessment of the filament segmentation accuracy in the Dice’s 

coefficient criterion can be seen in Figure 4.4. 
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(a) DC=2* 10017/( 10017+ 20781)= 20034 /30798 = 65.0497% 

Figure 4.4 (continues on next page) 
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(b) DC=2*13380/(13380+30886)= 60.4527% 

Figure 4.4 (continued) 
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(c) DC=2*3899/(3899+6090)= 78.0659% 

Figure 4.4 (continued) 

 
 
 
 
 



 

Top: 

 

The ground truth image making of filament containing images is a process 

even more subjective and difficult than the corresponding one for flocs. Despite 

so, we have done our best in making our ground truth images as accurate as 

possible.  

 

The final set of images shows a filament object from the 

can be seen that segmentation for the individual detected objects are in fact quite 

good although sometimes the returned values may seem to be a bit low.

 

Overall, a visual qualitati

filament regions have been successfully segmented by the developed algorithm.
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(d) DC=2*1858/(1858+2491)= 85.4449

Figure 4.4: Assessment of filament segmentation 
Top: Original colored image, Bottom: Assessm

The ground truth image making of filament containing images is a process 

even more subjective and difficult than the corresponding one for flocs. Despite 

so, we have done our best in making our ground truth images as accurate as 

he final set of images shows a filament object from the 

can be seen that segmentation for the individual detected objects are in fact quite 

good although sometimes the returned values may seem to be a bit low.

Overall, a visual qualitative assessment clearly suggests that many 

filament regions have been successfully segmented by the developed algorithm.

 

 
4449% 

segmentation  
Assessment image    

The ground truth image making of filament containing images is a process 

even more subjective and difficult than the corresponding one for flocs. Despite 

so, we have done our best in making our ground truth images as accurate as 

he final set of images shows a filament object from the second set and it 

can be seen that segmentation for the individual detected objects are in fact quite 

good although sometimes the returned values may seem to be a bit low. 

ve assessment clearly suggests that many 

filament regions have been successfully segmented by the developed algorithm. 
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The accuracy values from Figure 4.4 are displayed in Table 4.2. From the 

sets of a, b and c the average accuracy value has been calculated. 

 

Table 4.2: Dice Coefficient Values for Filament Images  

Image Accuracy(Dice Coefficient) 

a 65.0497% 

b 60.4527% 

c 78.0659% 

Average 67.8561% 

 

 

4.4 Assessment via Comparisons with non-Digital Imaging Methods 

 

 The first assessment in this section is via a comparison with the laser 

particle sizing method. 
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 CP, Sample 1: 0.6304 
(a)  

 CP, Sample 2: 0.9166 
(b)  

 CP, Sample 3: 0.8243 
(c)  

 CP, Sample 4: 0.8460 
(d)  

 CP, Sample 5: 0.8923 
(e)  

 
CP, Sample 6: 0.8920 

(f)

Figure 4.5: Floc volume percentage vs particle size distribution graphs for 6 
samples for digital image analysis and laser particle size analyser methods 

 

 Figure 4.5 shows the distribution of particle size using both methods (LPA: 

Laser Particle size Analyser; IA: Image Analysis). The correlation coefficient 
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values from a Pearson’s correlation analysis are the values found at the bottom of 

the individual graphs. The values show the similarity of the two lines plotted on 

the same graph. The coefficient value itself ranges from 0 to 1, indicating 

increasing similarity as the value approaches 1. From Figure 4.5, we observe high 

correlation values for all samples with all samples having a coefficient value 

larger than 0.8 except for sample 1 only.  

 

For a qualitative assessment, 8 samples have been utilized for graph 

plotting and the results are seen in Figure 4.6. 

  

 
(a)  
 

Figure 4.6 (continues on next page) 
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(b)  

 
(c)  
 

Figure 4.6: Floc volume percentage vs particle size distribution graphs for 8 
samples for digital image analysis and laser particle size analyser methods  
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 For the image analysis (IA) method as shown in Figure 4.6, the volume of 

the detected floc objects have been calculated by assuming all objects as being 

spherical in shape, and by using the equivalent diameters of all detected 2D floc 

objects as diameters of the 3D sphere objects. The equivalent diameter parameter 

used here is a parameter that specifies for its value the diameter value of a circle 

with the same area as the region being detected and processed. 

 

 The lines from IA method in the graphs of Figure 4.6 are the curve fitted 

lines via the Gaussian fitting method in Matlab, making the data points fit into 

multiple peak Gaussian function lines, defined as below:   

 � � D &E�
FG�

HIJ K
LK

� MNO
PQR  (4.1) 

 

where a is the amplitude, b is the centroid, c is related to the peak width and n is 

the number of peaks for fitting ranging from 1 to 8.  

 

The value of n is set to 1, giving only a single peak producing a normal 

Gaussian shape. The resultant shapes make comparisons with the post-fitted lines 

from the laser particle size analyser method as provided by the equipment’s 

software more easily done. 

 

 Lines from both methods share the same x-axis labeled with the name 

‘particle size’. For our purpose here, the detected floc objects have been taken to 
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indicate and represent the particles processes in the laser particle size analyser 

method considering how the floc objects are the most prominent and big-sized 

objects in the captured images of our sludge samples. 

 

It is qualitatively observed that line shape similarities of the graphs exist 

between the digital image analysis method (IA) and the laser particle size analyser 

(LPA) method. The lines of two methods share the same color if they are of the 

same sample but are solid for IA method while unconnected for LPA method. In 

order not to have an overconjested graph, lines from all samples have been 

divided into 3 groups and plotted separately in a way that makes for optimum ease 

of comparison.  

 

For peaks in both methods, in the first plot, sample 2 is considerably 

leftward of sample 6; in the second plot, sample 00 is rightward of sample 1 and 

sample 1 rightward of sample 6; and finally in the third and last plot, all other 

samples are towards the right of sample 6.  

 

We can hence, observe qualitatively that the lines from the IA method 

have agreed in trend with the ones from the LPA method. Combined with the 

previous quantitative analysis, both qualitative and quantitative analyses have 

managed to show strong evidence of correlation and similarity in the results of 

digital imaging method to those of the laser particle sizing method. This supports 
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our hypothesis that digital imaging may be used as a method in place of laser 

particle sizing. 

 

Last but not least, it is noted that although the qualitative analysis utilized 

8 samples, only 6 samples starting with the label of ‘sample 1’ in Figure 4.6 are 

used for all the other analyses of our study due to the fact that filament images 

have not been satisfactorily captured for the first two samples. 

  

For the next analysis, the results obtained from the tests of TSS and SVI 

are summarized in Table 4.3. 

 

Table 4.3: Sludge Volume Index and Total Suspended Solids  

Sample TSS or MLSS(mg/L) SVI(mL/g)  

1 825 55.76 

2 846 48.46 

3 425 43.53 

4 1002 117.76 

5 997 122.37 

6 884 139.14 
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Figure 4.7:  Line graph for IA & TSS using methods across 6 days  
(TL: Total Length of filaments; TA: Total Area of flocs) 

 

  From the work of Mesquita et al. (2011b), when plotted as such as a line 

plot found in Figure 4.7, the lines from digital imaging methods alone and from 

physico-chemical methods and digital imaging methods share the same shape. 

Despite two very different y axis in magnitude and in nature with one being linear 

with the other one being logarithmic, the extremely high shape similarity from the 

work of Mesquita et al. (2011b) has been reproduced here for this research. For 

the plotting of the graph of Figure 4.7, the area values of the filament regions 

have been used as the length values of the filaments. Considering the case that the 

filaments are highly thin and threadlike in shape, being naturally low in variability 

in thickness and also due to the way the algorithm works, the length of filaments 

and the area of filaments share a linear relationship with each other. Assuming the 

case that the high correlation observed above holds true for all range of values for 
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the Total Length variable input, a linear reduction in the Total Length variable 

values will still produce the same graph with highly correlated line shapes.  

 

Via a comparison with the similar line graphs in the paper by Mesquita et 

al. (2011b), the condition of the plant as indicated here throughout the samples is 

seen to be very similar to the line shape and values for the normal condition graph. 

The shape is very different and distinct from the one of the filamentous bulking 

graph, giving the same results that the SVI values give, namely that there has been 

no instance of filamentous bulking in our samples collected. However, the line of 

the zoogleal/ viscous bulking graph which is little differentiated from the one of 

the normal condition also shows a very high similarity to the line of our graph. By 

observing the images from our database the possibility of the occurrence of this 

condition can be ruled out due to the absence of oversized floc  objects that define 

such a condition. 

 

4.5 Floc Object Morphological Parameter Analysis 

 

 Morphological parameter analysis involving the four parameters of 

equivalent diameter, roundness, compactness and convexity are done. 

 

All the above morphological parameters except equivalent diameter have 

values that range from 0 to 1, indicating increasing adherence to the quality of the 
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parameters themselves as is seen indicated by their names. An explanatory 

example can be seen in Figure 4.8. 

 

Figure 4.8: Image with floc objects segmented and respective ‘roundness’ 
values labelled 

 

The Pearson's linear correlation coefficients for floc morphological 

parameter pairs have been calculated and shown in Table 4.4. 
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Table 4.4: Pearson Correlation Coefficients for Sample 1 to Sample 6  
 

Sample 1- SVI: 55.78 

 ED Rd Cm Cv 

ED 1 -0.4750 -0.6018 -0.6393 

Rd -0.4750 1 0.8874 0.7529 

Cm -0.6018 0.8874 1 0.9187 

Cv -0.6393 0.7529 0.9187 1 

(a) 
 

Sample 2- SVI: 48.46 

 ED Rd Cm Cv 

ED 1 -0.4549 -0.6245 -0.6499 

Rd -0.4549 1 0.8404 0.7023 

Cm -0.6245 0.8404 1 0.9251 

Cv -0.6499 0.7023 0.9251 1 

(b) 
 

Sample 3- SVI: 43.53 

 ED Rd Cm Cv 

ED 1 -0.5484 -0.6122 -0.6042 

Rd -0.5484 1 0.8971 0.7314 

Cm -0.6122 0.8971 1 0.9023 

Cv -0.6042 0.7314 0.9023 1 

(c) 

 

Sample 4- SVI: 117.76 

 ED Rd Cm Cv 

ED 1 -0.4906 -0.6571 -0.6626 

Rd -0.4906 1 0.8531 0.7271 

Cm -0.6571 0.8531 1 0.9332 

Cv -0.6626 0.7271 0.9332 1 

(d) 
 

Sample 5- SVI: 122.37 

 ED Rd Cm Cv 

ED 1 -0.3956 -0.4786 -0.4814 

Rd -0.3956 1 0.8618 0.7348 

Cm -0.4786 0.8618 1 0.9125 

Cv -0.4814 0.7348 0.9125 1 

(e)�
 

Sample 6- SVI: 139.14 

 ED Rd  Cm  Cv  

ED 1 -0.5181 -0.7182 -0.7238 

Rd  -0.5181 1 0.8388 0.7103 

Cm  -0.7182 0.8388 1 0.9282 

Cv  -0.7238 0.7103 0.9282 1 

(f) 

The Pearson's linear correlation coefficients vary from -1 and +1, where -1 

corresponds to a perfect negative correlation and +1 corresponds to perfect 

positive correlation. 

 

From Table 4.4, the values calculated shown do not seem to exhibit clear 

and regular observable patterns that are correlated with the SVI values. 
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Table 4.5: Average Values of Morphological Parameter for Floc Objects 
Divided into Three Size Classes for Sample 1 to Sample 6  

Sample 1- SVI: 55.78 
   SizeClass 
Ave\  

< 75um  >=75um, 
<150um  

>=150um  

Numbers  180 235 100 
Perc (515)  34.95% 45.63% 19.42% 

EqDia  60.8749 105.4973 197.1047 
Round. 0.7630 0.6307 0.4785 

Compact. 0.8168 0.7335 0.5179 
Convexity  0.9718 0.9413 0.8180 

(a) 

Sample 2- SVI: 48.46 
   SizeClass 
Ave\  

< 75um >=75um,<
150um 

>=150um 

Numbers  215 375  109  

Perc(699)  30.76% 53.65% 15.59% 

EqDia  61.7262 101.9941 195.7167 

Round.  0.7350 0.6758 0.4942 

Compact.  0.8099 0.7752 0.5362 

Convexity  0.9731 0.9574 0.8363 

(b) 

Sample 3- SVI: 43.53 
   SizeClass 
Ave\ 

< 75um  >=75um,<
150um  

>=150um  

Numbers  652 658  64  

Perc(1374)  47.45% 47.89% 4.66% 

EqDia  60.4760 100.5163 177.0159 

Round. 0.7725 0.6047 0.4111 

Compact.  0.8324 0.7092 0.4710 

Convexity  0.9728 0.9268 0.7874 

(c) 

 

 

 

 

Sample 4- SVI: 117.76 
   SizeClass 
Ave\ 

< 75um  >=75um,<
150um  

>=150um  

Numbers  174 252  93  

Perc (519)  33.53% 48.55% 17.92% 

EqDia  58.6674 106.4522 187.3367 

Round. 0.7265 0.5726 0.4698 

Compact. 0.7926 0.6706 0.4589 

Convexity  0.9643 0.9124 0.7862 

(d) 

Sample 5- SVI: 122.37 
   SizeClass 
Ave\ 

< 75um  >=75um, 
<150um  

>=150um  

Numbers  253 451 94 

Perc (798)  31.70% 56.52% 11.78% 

EqDia  61.2655 104.5754 172.4138 

Round. 0.7095 0.6005 0.4842 

Compact. 0.7873 0.6996 0.5584 

Convexity  0.9656 0.9286 0.8467 

(e) 

Sample 6- SVI: 139.14 
   SizeClass 
Ave\ 

< 75um  >=75um, 
<150um  

>=150um  

Numbers  417 476 144 

Perc(1037)  40.21% 45.90% 13.89% 

EqDia  60.3363 105.1724 190.2217 

Round. 0.7179 0.5877 0.4335 

Compact. 0.7969 0.6776 0.4215 

Convexity  0.9667 0.9126 0.7592 

(f)

As with the previous tables, the same morphology parameters of 

equivalent diameter, roundness, compactness and convexity are used, and have 

their average values calculated for the segmented flocs according 3 size class 

divisions of small, medium and large. Two clusters/groupings of data have been 

observed for the data which are the grouping with the background highlighted in 
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light red and the one in dark green. This pattern agrees with the clustering pattern 

of the SVI values that can be seen below the tables. The values with light red 

background are seen to have values consistently larger than those in dark green. In 

both cases the pattern was stronger for the smaller size classes of small and 

medium and only slightly weaker for the large size class which is somehow 

expected due to a less averaging and more outlier-influenced effect due to less 

objects belonging in this class among other reasons.  

 

The pattern observed persists even when no division of floc objects into 

size classes is made. This can be seen in Table 4.6. 

 

 

 

 

 

 

 

 

 

 

 

 

�
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Table 4.6: Average Values of Morphological Parameter for Size-Undivided 
Floc Objects for Sample 1 to Sample 6 �

Sample 1- SVI: 55.78 

Numbers  515 
EqDia  107.6889 

Round. 0.6474 

Compact. 0.7207 

Convexity  0.9280 

(a) 

Sample 2- SVI: 48.46 

Numbers  699 
EqDia  104.2233 

Round. 0.6657 

Compact.  0.7486 

Convexity  0.9433 

 (b) 

Sample 3- SVI: 43.53 

Numbers   1374  

EqDia  85.0794 

Round. 0.6753 

Compact. 0.7565 

Convexity  0.9421 

 (c) 

 

Sample 4- SVI: 117.76 

Numbers  519 

EqDia 104.9256 

Round. 0.6057 

Compact. 0.6736 

Convexity  0.9072 

 (d) 

Sample 5- SVI: 122.37 

Numbers  798 

EqDia  98.8353 

Round. 0.6214 

Compact. 0.7108 

Convexity  0.9307 

 (e) 

Sample 6- SVI: 139.14 

Numbers  1037 

EqDia 98.9529 

Round. 0.6186 

Compact. 0.6900 

Convexity  0.9130 

 (f) 

 Size class division allows for more comparison of data values for more 

proof of pattern existence as well as ideally a more pronounced trend in the 

medium size class. It is observed here that the pattern observed from the 

undivided tables is similarly as strong as the one in the divided medium class. 

This proves the strength of the pattern identified, allowing for a simple size-

undivided morphological parameter analysis to suffice for state identification of 

the water plant. However, it is to be seen that as more samples are utilized, the 
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agreeing trends in multiple divisions would prove to be more useful as more 

indication strength. 

  

 In Figure 4.9 the data of Table 4.6 are displayed in chart forms for another 

observation of the trend discussed before. From Figure 4.10 to Figure 4.12 the 

data of Table 4.5 are used. 

 

 
Figure 4.9: Chart of morphological parameter and SVI values for 6 samples 

(Left axis: bar chart; Right axis: line chart)  

 
Figure 4.10: Chart of morphological parameter and SVI values for small 

objects for 6 samples (Left axis: bar chart; Right axis: line chart)  
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Figure 4.11: Chart of morphological parameter and SVI values for medium 

objects for 6 samples (Left axis: bar chart; Right axis: line chart)  
 

 
Figure 4.12: Chart of morphological parameter and SVI values for large 

objects for 6 samples (Left axis: bar chart; Right axis: line chart)  
 

 

4.6 Study on the Appropriate Number of Images for Processing 

 

The distribution line graphs for the number of images processed by the 

algorithm versus the calculated mean number of flocs per image have been plotted 

and are shown in Figure 4.13. 
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Figure 4.13: 
image distribution graph 

  

A total of 60 images have been processed for each day/sample for Figure 

4.13. It is observed here that for all samples, the mean number of flocs found per 
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(a)  

 

(b)  

 

(c)   

13: Number of images processed vs the mean number 
image distribution graph over 6 samples (a~f: sample 1 to sample 6)

A total of 60 images have been processed for each day/sample for Figure 
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(d)  

 

(e)  

 

(f)  

s the mean number of flocs per 
(a~f: sample 1 to sample 6) 

A total of 60 images have been processed for each day/sample for Figure 

It is observed here that for all samples, the mean number of flocs found per 
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image parameter has its values stabilized at approximately/around the mark of 20 

images being processed by the algorithm. It can be seen that a sufficient number 

of images for floc object processing has been used for our research seeing as the 

mean number of the floc objects per image stabilizes at around the 20-images-

processed mark.  
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

 

5.1 Overview 

 

In the research documented by this dissertation algorithms have been 

successfully developed for the segmentation of the floc and filament objects 

found in sludge of the activated sludge waste water treatment process (WWTP) 

plants. The algorithms developed are background illumination invariant and give 

good segmentation results. An average Dice coefficient value of 71.85% has been 

obtained for the floc segmentation algorithm for processing the samples while for 

the filament segmentation algorithm a value of 67.86% has been obtained. 

 

 Correlation between the results of digital imaging methods and the results 

of more established physico-chemical methods are also seen to be existent and 

high in value in quantitative analysis. Similar line shapes from digital imaging 

method against laser particle sizing method graph produced Pearson’s correlation 

coefficient values larger than 0.8 in 5 of 6 samples processed indicating high 

similarity. The highly matching line shape is also seen in the graph of image 

analysis against total suspended solids plus image analysis method. In 

morphological parameter analysis, when analysed individually, the morphological 
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parameter values considered in the dissertation for each floc object did not seem 

to be correlated with each other in patterns that change according to the SVI 

values; however, when analysed as whole by taking the average values for all 

objects first divided into 3 size class division and then undivided, data trends that 

correlated well to the SVI index values have been observed.  

 

5.2 Future Work Recommendations 

 

Future work should consider and analyse more morphological parameters 

such as fractal dimension for the discovery of a highly probable similar 

correlation pattern in existence.  

 

Lab-scale set up that allows for control of the tank conditions is also 

highly useful to allow for a controllable and wider range of SVI values which in 

the current study is being determined by the state of the wastewater treatment 

plant being visited for sludge sample collection. 

 

 To gain clearer microscopic visualizations of not only the floc and 

filament objects but also of other microscopic organisms, sample staining 

procedures may be considered and conducted in the image acquisition procedures 

of future studies. 
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APPENDIX A 

 

Matlab Programming Code 

 

%% Floc Algo 

  

 qv1 = imread('snap-01.jpg');qv2 = imread('snap-02.jpg'); 

 qv3 = imread('snap-03.jpg');qv4 = imread('snap-04.jpg'); 

 qv5 = imread('snap-05.jpg'); %And more... 

  qv = {qv1,qv2,qv3,qv4,qv5,qv6,qv7,... 

     qv8,qv9,qv10,qv11,qv12,qv13,qv14,... 

     qv15,qv16,qv17,qv18,qv19,qv20,qv21,... 

     qv22,qv23,qv24,qv25,qv26,qv27,qv28}; 

     qv29,qv30,qv31,qv32,qv33,qv34,qv35,... 

     qv36,qv37,qv38,qv39,qv40,qv41,qv42}; 

 qvii = {qv43,qv44,qv45,qv46,qv47,qv48,qv49, ... 

     qv50,qv51,qv52,qv53,qv54,qv55,qv56, ... 

     qv57,qv58,qv59,qv60,qv61,qv62,qv63, ...     

     qv64,qv65,qv66,qv67,qv68,qv69,qv70};    

     qv71,qv72,qv73,qv74,qv75,qv76,qv77, ... 

     qv78,qv79,qv80,qv81,qv82,qv83,qv84, ...  

     qv85,qv86,qv87,qv88,qv89,qv90,qv91}; 

  

for x=1:35 

     hmin0{1,x} = imhmin(qv{1,x},50); 

%  figure,imshow(hmin0{1,x});      

end 

for x=36:60 

     hmin0{1,x} = imhmin(qvii{1,x-35},50); 

%  figure,imshow(hmin0{1,x});      

end 
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for x=1:60 

    meddd{1,x} = medfilt2(hmin0{1,x},[25 25]); 

% figure,imshow(meddd{1,x},'Border','tight'); 

end 

  

h = fspecial('average', [50 50]); 

for x=1:60 

averaged{1,x} = imfilter(meddd{1,x},h,'replicate'); 

end 

  

for x=1:35 

nb8{1,x}=im2uint8(niblack(averaged{1,x}, [500 500], -0.2, 5)); 

end 

for x=36:60 

nb8ii{1,x-35}=im2uint8(niblack(averaged{1,x}, [500 500], -0.2, 5)); 

end 

  

for x=36:60    

borderclred{1,x}= ~imclearborder( ~nb8ii{1,x-35});end 

for x=1:35    

borderclred{1,x}= ~imclearborder( ~nb8{1,x});end 

  

for x=1:60   

aroped{1,x}=bwareaopen (~borderclred{1,x},2457);%4915 

% % figure,imshow(~aroped{1,x},'Border','tight'); 

end 

  

%% floc analysis 

clear flcareacell flcroundnesscell flcformfactorcell flcEqdiacell flcconvexitycell 

flcvolume EdRdFfCv; 

 flc1EqDia=0; flc1Roundness=0; flc1FormFactor=0; flc1Convexity=0; flc1Denom=0; 

 flc2EqDia=0; flc2Roundness=0; flc2FormFactor=0; flc2Convexity=0; flc2Denom=0; 

 flc3EqDia=0; flc3Roundness=0; flc3FormFactor=0; flc3Convexity=0; flc3Denom=0; 
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fferror=0; 

kforcorr=1; 

catobjs=0; 

numflocacc=0; 

allimg_volumetotal=0; 

  

allimg_flocarea=0; 

  

for y=1:55 

flcEdctg(1,y)=0; 

end 

j=1; 

for x=1:55             

CC = bwconncomp(aropedGT2{1,x});  

Lfloc = labelmatrix(CC); 

sfl 

=regionprops(aropedGT2{1,x},'Area','MajorAxisLength','Perimeter','PixelList','Equiv

Diameter','ConvexArea'); 

  

numflocacc=numflocacc+CC.NumObjects; 

meanflocnum(1,j)=numflocacc/j; 

j=j+1; 

  

for k=1:CC.NumObjects 

flcareacell{1,x}(1,k)=sfl(k).Area; 

  

roundness(k) =   4*(sfl(k).Area)/pi/((sfl(k).MajorAxisLength)^2); 

flcroundnesscell{1,x}(1,k)=roundness(k); 

  

formfactor (k)=  4*pi* (sfl(k).Area)/ ((sfl(k).Perimeter)^2); 

flcformfactorcell{1,x}(1,k)=formfactor(k); 
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convexity(k)=sfl(k).Area/sfl(k).ConvexArea; 

flcconvexitycell{1,x}(1,k)=convexity(k); 

  

flcEqdiacell{1,x}(1,k)= sfl(k).EquivDiameter *0.839;   

  

flcvolume{1,x}(1,k)= 4/3*pi*(.5*flcEqdiacell{1,x}(1,k))^3; 

% flcsurfacearea{1,x}(1,k)=  4*pi*(.5*flcEqdiacell{1,x}(1,k))^2; 

  

allimg_volumetotal=allimg_volumetotal+flcvolume{1,x}(1,k); 

% allimg_surfacearea=allimg_surfacearea+flcsurfacearea{1,x}(1,k); 

  

allimg_flocarea= allimg_flocarea+sfl(k).Area;%*0.839*0.839*2;        

  

if sfl(k).EquivDiameter < (75/0.839) 

    flc1EqDia=flc1EqDia+sfl(k).EquivDiameter *0.839;   

    flc1Roundness=flc1Roundness+roundness(k);     

    flc1FormFactor=flc1FormFactor+formfactor(k); 

    flc1Convexity=flc1Convexity+convexity(k); 

    flc1Denom=flc1Denom+1; 

else if sfl(k).EquivDiameter < (150/0.839) 

    flc2EqDia=flc2EqDia+sfl(k).EquivDiameter *0.839;  

    flc2Roundness=flc2Roundness+roundness(k);         

    flc2FormFactor=flc2FormFactor+formfactor(k); 

    flc2Convexity=flc2Convexity+convexity(k);     

    flc2Denom=flc2Denom+1; 

    else  

    flc3EqDia=flc3EqDia+sfl(k).EquivDiameter *0.839;  

    flc3Roundness=flc3Roundness+roundness(k);         

    flc3FormFactor=flc3FormFactor+formfactor(k);     

    flc3Convexity=flc3Convexity+convexity(k);     

    flc3Denom=flc3Denom+1; 

    end 

end 



99 
 

  

if formfactor(k)>1 

  ffmorethan1{1,x}(1,k)=formfactor(k); 

  fferror=fferror+1; 

end 

EdRdFfCv(kforcorr,1)=sfl(k).EquivDiameter; 

EdRdFfCv(kforcorr,2)=roundness(k); 

EdRdFfCv(kforcorr,3)=formfactor(k); 

EdRdFfCv(kforcorr,4)=convexity(k); 

kforcorr=kforcorr+1; 

  

    z=0; 

    y=1; 

    while catobjs ~=(kforcorr) 

      if flcEqdiacell{1,x}(1,k)< 60+z 

          flcEdctg(1,y)=flcEdctg(1,y)+1;             %plotting in absolute numbers 

          catobjs=catobjs+1; 

      else 

          z=z+10;y=y+1; 

       

      end 

    end 

  

end 

end 

rho=corr(EdRdFfCv); 

 flc1EqDia=flc1EqDia/flc1Denom; flc1Roundness=flc1Roundness/flc1Denom; 

flc1FormFactor=flc1FormFactor/flc1Denom; 

flc1Convexity=flc1Convexity/flc1Denom;  

 flc2EqDia=flc2EqDia/flc2Denom; flc2Roundness=flc2Roundness/flc2Denom; 

flc2FormFactor=flc2FormFactor/flc2Denom; 

flc2Convexity=flc2Convexity/flc2Denom;  
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 flc3EqDia=flc3EqDia/flc3Denom; flc3Roundness=flc3Roundness/flc3Denom; 

flc3FormFactor=flc3FormFactor/flc3Denom; 

flc3Convexity=flc3Convexity/flc3Denom;  

  

%% floc analysis ii 

clear diadenom plotdia plotpercentvolume plotcumpercentvolume plotpercentnumber 

plotcumpercentnumber plotrd plotff plotcv plotrdpercnumber; 

clear plotffpercnumber plotcvpercnumber 

kforcorr=0; 

  

for z=1:60 

              diadenom(1,z)= 0; 

              plotdia(1,z)=0; 

              plotpercentvolume(1,z)=0; 

              plotcumpercentvolume(1,z)=0; 

%               plotpercentsurfarea(1,z)=0;               

%               plotcumpercentsurfarea(1,z)=0; 

              plotpercentnumber(1,z)=0; 

              plotcumpercentnumber(1,z)=0; 

end 

for y=1:10 

      

            plotrd(1,y)=-0.05+y*0.1;         

         

            plotff(1,y)=-0.05+y*0.1;          

        

            plotcv(1,y)=-0.05+y*0.1; 

            

              plotrdpercnumber(1,y)=0; 

              plotffpercnumber(1,y)=0; 

              plotcvpercnumber(1,y)=0; 

end 

i=0; 
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 for x=1:55 

      

          [Lfloc,numfloc]=bwlabel(aropedGT2{1,x}); 

  

    for k=1:numfloc 

         

   objincat=0;  

        z=0; 

        y=1;            

  

    while objincat ~=1 

      if  flcEqdiacell{1,x}(1,k)< 40+z 

            diadenom(1,y)=diadenom(1,y)+1; 

            plotdia(1,y)=plotdia(1,y)+flcEqdiacell {1,x}(1,k);            

            plotpercentvolume(1,y)=plotpercentvolume(1,y)+flcvolume 

{1,x}(1,k)/allimg_volumetotal*100; 

% %           

plotpercentfarea(1,y)=plotpercentfarea(1,y)+flcfacingarea{1,x}(1,k)/allimg_facingare

a*100; 

% %             

plotpercentsurfarea(1,y)=plotpercentsurfarea(1,y)+flcsurfacearea{1,x}(1,k)/allimg_su

rfacearea*100; 

            plotpercentnumber(1,y)=plotpercentnumber(1,y)+1/numflocacc*100;      

                     

             

          objincat=1;                     

      else  

          z=z+10;y=y+1; 

      end 

       

    end 

     

     objincat=0; 
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     z=0; 

     y=1; 

     while objincat ~=1 

     if  flcroundnesscell{1,x}(1,k)<0.1+z %&& flcEqdiacell{1,x}(1,k)>=100 

          plotrdpercnumber(1,y)=plotrdpercnumber(1,y)+1/numflocacc*100; 

           

          objincat=1; 

     else %if flcEqdiacell{1,x}(1,k)>=100  

          z=z+.1;y=y+1;%end 

     end  

%      if flcEqdiacell{1,x}(1,k)<100 

%           objincat=1;  

%       end 

     end 

     objincat=0; 

     z=0; 

     y=1; 

     while objincat ~=1 

     if flcformfactorcell{1,x}(1,k)<0.1+z 

          plotffpercnumber(1,y)=plotffpercnumber(1,y)+1/numflocacc*100; 

           

          objincat=1; 

     else  

          z=z+.1;y=y+1; 

     end  

     end 

     objincat=0; 

     z=0; 

     y=1; 

     while objincat ~=1 

     if  flcconvexitycell{1,x}(1,k)<0.1+z 

          plotcvpercnumber(1,y)=plotcvpercnumber(1,y)+1/numflocacc*100; 
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          objincat=1; 

     else  

          z=z+.1;y=y+1; 

     end  

     

     end 

     

   end 

        

 end    

      

     for y=1:60 

        if (y~=1) 

                plotcumpercentvolume(1,y)=plotcumpercentvolume(1,y-1)+    

plotpercentvolume(1,y); 

% %                 plotcumpercentsurfarea(1,y)=plotcumpercentsurfarea(1,y-1)+ 

plotpercentsurfarea(1,y); 

                plotcumpercentnumber(1,y)=plotcumpercentnumber(1,y-

1)+plotpercentnumber(1,y); 

             else 

                plotcumpercentvolume(1,y)=0+ plotpercentvolume(1,y); 

% %                 plotcumpercentsurfarea(1,y)=0+plotpercentsurfarea(1,y); 

                plotcumpercentnumber(1,y)=0+plotpercentnumber(1,y); 

        end 

         

        if plotdia(1,y)==0 

            plotdia(1,y)=25+y*10; 

        end 

        

        if diadenom(1,y)==0 

            diadenom(1,y)=1; 

        end 

     end 
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     for z=1:60 

              plotdia(1,z)= plotdia(1,z)/diadenom(1,z); 

     end      

  

%% filament algo 

  

hmin0=cell(1,91); 

for x=[64:91] %1:4 5:14 15:35 1:21 22:42 43:63 

% figure,imshow(qv{1,x},'border','tight'); 

 hmin0{1,x} = imhmin(qvii{1,x-42},30);  %50  

end  

clear qvii 

%  figure,imshow(hmin0{1,x}); 

  

meddd=cell(1,91); 

erod=cell(1,91); 

binary=cell(1,91); 

for x=[64:91] %1:4 5:14 15:35 1:21 22:42 43:63 

 meddd{1,x} = medfilt2(hmin0{1,x},[25 25]); %then to erod or to averaged 

  

 erod{1,x} = imerode(meddd{1,x},(strel('disk',10)) ); 

  %      figure,imshow(erod{1,x}); 

     add{1,x}=imadd( (255-erod{1,x} ),hmin0{1,x});    

 binary{1,x}=im2bw(add{1,x},graythresh(add{1,x})); % method followed by 

HoughTransform 

%    figure,imshow(binary{1,x},'border','tight'); 

end 

  

 h = fspecial('average', [50 50]);  

 averaged = cell(1,42);  

for x=[22:42]%1:4 5:14 15:35 1:21 22:42   

averaged{1,x} = imfilter(meddd{1,x},h,'replicate'); 
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% figure,imshow(averaged{1,x}); 

end; 

clear meddd 

 nb8 = cell(1,42); 

for x=[22:42]%1:4 5:14 15:35 1:21 22:42   

nb8{1,x}=im2bw(niblack(averaged{1,x}, [500 500], -0.2, 5)); %im2uint8 

%   figure,imshow(nb8{1,x},'Border','tight'); 

end; 

 dilatnb8 = cell(1,42); 

 addbin = cell(1,42);  

for x=[22:42]%1:4 5:14 1:21 22:42 

dilatnb8{1,x}=imdilate(~nb8{1,x},(strel('disk',25)) );%10(old)  

% figure,imshow(~dilatnb8{1,x},'Border','tight'); 

  

 addbin{1,x}=or(binary{1,x},dilatnb8{1,x}); 

% figure,imshow(binary{1,x},'border','tight'); 

% figure,imshow(addbin{1,x},'Border','tight');  

end 

  

Hlines=cell(1,91); 

for x=[64:91] %1:4 5:14 15:35 1:21 22:42 43:59  

    

[Houghmatrix, theta, rho] = hough( ~addbin{1,x});          

  

Hpeaks = houghpeaks(Houghmatrix, 1000,'threshold',0);    

  

Hlines{1,x} = houghlines(~addbin{1,x}, theta, rho, Hpeaks);  

  

    figure,imshow(addbin{1,x} ,'Border','tight'); 

    figure, imshow(addbin{1,x} ,'Border','tight'), hold on 

  

    for k = 1:length(Hlines{1,x}) 
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   xy = [Hlines{1,x}(k).point1; Hlines{1,x}(k).point2]; 

   plot(xy(:,1),xy(:,2),'-','LineWidth',1,'Color','blue'); 

%%% Plot beginnings and ends of lines 

%plot(xy(1,1),xy(1,2),'-s','LineWidth',1,'Color','yellow'); 

%plot(xy(2,1),xy(2,2),'-s','LineWidth',1,'Color','red'); 

    end 

         

    if x==1  ;export_fig test1.png -native 

elseif x==2  ;export_fig test2.png -native 

elseif x==3  ;export_fig test3.png -native 

elseif x==4  ;export_fig test4.png -native 

%      

elseif x==5  ;export_fig test5.png -native     

elseif x==6  ;export_fig test6.png -native     

elseif x==7  ;export_fig test7.png -native     

elseif x==8  ;export_fig test8.png -native 

elseif x==9  ;export_fig test9.png -native 

elseif x==10  ;export_fig test10.png -native 

elseif x==11  ;export_fig test11.png -native 

elseif x==12  ;export_fig test12.png -native 

elseif x==13  ;export_fig test13.png -native 

elseif x==14  ;export_fig test14.png -native                    

elseif x==15  ;export_fig test15.png -native 

%      

elseif x==16  ;export_fig test16.png -native    

elseif x==17  ;export_fig test17.png -native   

elseif x==18  ;export_fig test18.png -native 

elseif x==19  ;export_fig test19.png -native 

elseif x==20  ;export_fig test20.png -native 

elseif x==21  ;export_fig test21.png -native 

    end 

% and more...   

end; 
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imported = cell(1,91); 

imported{1,1}=importdata ('test1.png'); 

imported{1,2}=importdata ('test2.png'); 

imported{1,3}=importdata ('test3.png'); 

imported{1,4}=importdata ('test4.png'); 

imported{1,5}=importdata ('test5.png'); 

imported{1,6}=importdata ('test6.png'); 

imported{1,7}=importdata ('test7.png'); 

imported{1,8}=importdata ('test8.png'); 

imported{1,9}=importdata ('test9.png'); 

imported{1,10}=importdata ('test10.png'); 

imported{1,11}=importdata ('test11.png'); 

imported{1,12}=importdata ('test12.png'); 

imported{1,13}=importdata ('test13.png'); 

imported{1,14}=importdata ('test14.png'); 

imported{1,15}=importdata ('test15.png'); 

imported{1,16}=importdata ('test16.png'); 

imported{1,17}=importdata ('test17.png'); 

imported{1,18}=importdata ('test18.png'); 

imported{1,19}=importdata ('test19.png'); 

imported{1,20}=importdata ('test20.png'); 

imported{1,21}=importdata ('test21.png'); 

% and more... 

importedgrayR = cell(1,91); 

importedbinR = cell(1,91); 

for x=[64:91] %1:4 5:14 15:35 22:42 43:59 

 imported{1,x}(:,:,2:3) = 0;           %% activate rgb red channel only(from white and 

black to red and black)-- non-red using Areas included into black object 

% figure,imshow(imported{1,x},'border','tight'); 

 importedgrayR{1,x} = rgb2gray(imported{1,x}); 

%  figure,imshow(importedgrayR{1,x},'border','tight'); 

  importedbinR{1,x} = im2bw(importedgrayR{1,x},.2);      
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%   figure,imshow(importedbinR{1,x},'border','tight'); 

end 

  

imported{1,1}=importdata ('test1.png'); 

imported{1,2}=importdata ('test2.png'); 

imported{1,3}=importdata ('test3.png'); 

imported{1,4}=importdata ('test4.png'); 

imported{1,5}=importdata ('test5.png'); 

imported{1,6}=importdata ('test6.png'); 

imported{1,7}=importdata ('test7.png'); 

imported{1,8}=importdata ('test8.png'); 

imported{1,9}=importdata ('test9.png'); 

imported{1,10}=importdata ('test10.png'); 

imported{1,11}=importdata ('test11.png'); 

imported{1,12}=importdata ('test12.png'); 

imported{1,13}=importdata ('test13.png'); 

imported{1,14}=importdata ('test14.png'); 

imported{1,15}=importdata ('test15.png'); 

imported{1,16}=importdata ('test16.png'); 

imported{1,17}=importdata ('test17.png'); 

imported{1,18}=importdata ('test18.png'); 

imported{1,19}=importdata ('test19.png'); 

imported{1,20}=importdata ('test20.png'); 

imported{1,21}=importdata ('test21.png'); 

% and more... 

importedgrayB = cell(1,91); 

importedbinB = cell(1,91); 

for x=[64:91] %1:4 5:14 15:35 1:21 22:42 43:59 

imported{1,x}(:,:,1) = 0; imported{1,x}(:,:,2) = 0;   %% activate rgb blue channel 

only(from white and black to blue and black)-- non-blue using Areas included into 

black object 

% figure,imshow(imported{1,x},'border','tight'); 

 importedgrayB{1,x} = rgb2gray(imported{1,x}); 
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%  figure,imshow(importedgrayB{1,x},'border','tight'); 

  importedbinB{1,x} = im2bw(importedgrayB{1,x},.1);      

%    figure,imshow(importedbinB{1,x},'border','tight'); 

end 

  

AfterHough = cell(1,91); 

for x=[1:21] %1:4 5:14 15:35 22:42 43:59 

AfterHough{1,x}=or(importedbinR{1,x},~importedbinB{1,x}); 

% figure,imshow(AfterHough{1,x},'border','tight'); 

end 

  

memberA=cell(1,91); 

memberB=cell(1,91); 

for x=[64:91] %1:4 5:14 15:35 1:21 22:42 43:59 

CC = bwconncomp(~AfterHough{1,x});  %~binary{1,x} and ~AfterHough{1,x} 

L = labelmatrix(CC); 

s = regionprops(~AfterHough{1,x},  

'Area','MajorAxisLength','Perimeter','PixelList','EquivDiameter');%L 

  

%  

for k=1:CC.NumObjects 

roundness(k)=0; 

roundness(k) =   4*(s(k).Area)/pi/((s(k).MajorAxisLength)^2); 

  

     

end     

% area_values = [s.Area]; 

% idx1 = find (area_values > 550);  %550 %'find' determines the indices of array 

elements that meet a given logical condition  

idx0 = find ( roundness <= .15); %.025 for skeled 

  

% memberB{1,x} =  ismember (L,idx0) ;%& ismember(L,idx1) ; 

memberA{1,x} =  ismember (L,idx0) ; 
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[Lm,numm] = bwlabel(member{1,x}); 

sm = regionprops(Lm,  'Area'); 

for k=1:numm 

    allimg_filarea=allimg_filarea+sm(k).Area; 

end 

  

end 

  

mergemem=cell(1,91); 

for x=[64:91] %1:4 5:14 15:35 1:21 22:42 43:59 

     mergemem{1,x}=or(memberB{1,x},memberA{1,x}); 

     figure,imshow(~mergemem{1,x},'border','tight'); 

end 

  

%% GROUNDTRUTHSEGMENT 

%%%%//GROUNDTRUTHSEGMENT//%%%  % 

GT3g = rgb2gray(GT3g); 

GT3g = im2bw(GT3g,graythresh(GT3g)); 

% GT2iigcropped = rgb2gray(GT2iigcropped); 

% GT2iigcropped = im2bw(GT2iigcropped,graythresh(GT2iigcropped)); 

% GT1m = rgb2gray(GT1m); 

% GT1m = im2bw(GT1m,graythresh(GT1m)); 

  

%%%%Extract Black(Pos-Pos) Only 

pairfree=imfuse(~mergememiii{1,55},GT3g); figure,imshow(pairfree,'border','tight');   

pairfreegray = rgb2gray(pairfree); figure,imshow(pairfreegray,'border','tight');   

CorrectSegmented3gc = im2bw(pairfreegray,.2);  

figure,imshow(CorrectSegmented3gc,'border','tight');     %1/2/3/... variable name 

change 
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pairfree(:,:,2:3) = 0;                    %% activate rgb red channel only(from white and 

black to red and black)-- green GT included into black object 

pairfreegrayR = rgb2gray(pairfree);  %figure,imshow(pairfreegrayR,'border','tight');  

CorrectandUnderSeg3gc = im2bw(pairfreegrayR,.2); % 

figure,imshow(CorrectandUnderSeg3gc,'border','tight'); 

UnderSegmented3gc=~xor(CorrectSegmented3gc,CorrectandUnderSeg3gc);    % 

figure,imshow(UnderSegmented3gc,'border','tight');   %UnderSegmented = green 

region 

% %  

pairfree=imfuse(~mergememiii{1,55},GT3g);      %REDOING   

pairfree(:,:,1) = 0; pairfree(:,:,3) = 0;    %% activate rgb green channel only(from 

white and black to red and black)--- pink segmented included into black object 

pairfreegrayG = rgb2gray(pairfree); 

CorrectandOverSeg3gc = im2bw(pairfreegrayG,.2);       % 

figure,imshow(CorrectandOverSeg3gc,'border','tight'); 

OverSegmented3gc=~xor(CorrectSegmented3gc,CorrectandOverSeg3gc);   % 

figure,imshow(OverSegmented3gc,'border','tight');      %OverSegmented = pink 

region 

%  

  

CC = bwconncomp(~CorrectSegmented3gc); % 2 lines replace bwlabel; -      

L = labelmatrix(CC); 

ss =regionprops(~CorrectSegmented3gc,'Area'); 

for k=1:length(ss) 

    if k==1; AreaCorrectSegmented3gc=0; 

    else 

     AreaCorrectSegmented3gc=AreaCorrectSegmented3gc+ss(k).Area; 

    end 

end 

% 

CC = bwconncomp(~UnderSegmented3gc); % 2 lines replace bwlabel; -      

L = labelmatrix(CC); 

ss =regionprops(~UnderSegmented3gc,'Area'); 
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for k=1:length(ss) 

    if k==1; AreaUnderSegmented3gc=0; 

    else 

     AreaUnderSegmented3gc=AreaUnderSegmented3gc+ss(k).Area; 

    end 

end 

% 

CC = bwconncomp(~OverSegmented3gc); % 2 lines replace bwlabel; -      

L = labelmatrix(CC); 

ss =regionprops(~OverSegmented3gc,'Area'); 

for k=1:length(ss) 

    if k==1; AreaOverSegmented3gc=0; 

    else 

     AreaOverSegmented3gc=AreaOverSegmented3gc+ss(k).Area; 

    end 

end 

%  

%  

AreaAllSegments3gc=AreaCorrectSegmented3gc+AreaUnderSegmented3gc+AreaO

verSegmented3gc; 

  

%MorphParValueLabelling 

% [Cell,Label]=bwboundaries(~aroped3,'noholes'); 

% sfl 

=regionprops(Label,'Area','MajorAxisLength','Perimeter','PixelList','EquivDiameter','

ConvexArea'); 

% imshow(label2rgb(Label, @jet, [.5 .5 .5])) 

% hold on 

% numfloc=length(Cell) 

% for k=1:length(Cell) 

% roundness =   4*(sfl(k).Area)/pi/((sfl(k).MajorAxisLength)^2); 

%  

%   metric_string = sprintf('%2.2f',roundness); 
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%    

%   boundary = Cell{k};     % obtain (X,Y) boundary coordinates corresponding to 

label 'k' 

%   text(boundary(1,2)-35,boundary(1,1)+13,metric_string,'Color','k',... 

%        'FontSize',10,'FontWeight','bold'); 

% end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 


