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ABSTRACT

AN AUTOMATED APPROACH FOR THE MORPHOLOGICAL
CHARACTERIZATION OF ACTIVATED SLUDGE FLOCS AND
FILAMENTS USING IMAGE ANALYSIS

Lee Xue Yong

Activated sludge process is commonly used for mation of wastewater. The
proper settling of the sludge flocs in the actidagbudge wastewater treatment
process is crucial to the normal functioning of thgstem, where sludge
bulking/filamentous bulking presents a common armsigtent problem that
prevents good floc settleability. As a new formteéhnology, image processing
and analysis methods present potential solutiortkedong standing problem of
filamentous bulking faced by activated sludge waater treatment plants around
the world in a fast and timely manner. The maineoty of interest under
microscopic inspections are the sludge flocs amdfilamentous organisms. In
this research, illumination-invariant algorithms segment the floc and the
filament objects in the microscopic sludge imagagtured at 40 times and 100
times total magnification in brightfield microscoplgave been developed.
Analyses of the morphological parameters of themsgged objects are also done.
The standard physico-chemical tests of SVI, MLS®/el$ as laser particle sizing
for the sludge samples are conducted simultaneausifyimage acquisition and

the results of both methods are compared with edhbr to investigate the



effectiveness of digital image processing and amslyo act as a monitoring
system in the activated sludge wastewater treatp@tess. Average accuracies
of 71.85% and 67.86% respectively in Dice coeffitievalues have been
calculated from the image samples processed with ftbc segmentation
algorithm and filament segmentation algorithm.dstbeen found that the results
from digital imaging methods correlate well withoie from non-imaging
methods by means of similar shape of graph linegqa from different methods.
For similarity of graph line shape, Pearson’s datren coefficient returns values
larger than 0.8 in 5 of 6 samples processed forpemimg the method of digital
imaging and laser particle sizing. Morphologicatlgses of the floc objects have
also found a significant correlation pattern betmvéee results obtained and the
results from SVI (Sludge Volume IndeX§tudy in required images for processing

suggests 20 images as sufficient for processirgg flo
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CHAPTER 1

INTRODUCTION

1.1 Motivation of Study

Activated sludge wastewater treatment plants anenconly used in large
cities and communities worldwide for purificationf evastewater. For the
activated sludge process to be successful andrictiéun normally, the proper
settling of the sludge flocs in the activated skidgastewater treatment process is

an essential condition.

Preventing the normal functioning of the planttide found the common
and persistent problem of sludge bulking/filamestdaulking. This abnormal
condition involves the overgrowth of filamentousctaia or filaments, causing
the sludge flocs to be unable to settle/sedimeipgity due to structural

disruptions and ultimately lowering the performant¢he plants.

Under microscopic observations, different strudtwtaaracteristics and
guantity are observed for the floc objects andfilaenent objects of the activated
sludge samples for different plant performance d@rs. Structural changes

occur even before changes in measurement data tlengraditional physico-



chemical methods are detected. As such, image gsimgeand analysis methods
present potential solutions as an additional complgary monitoring system to
the long standing problem faced by activated sludgstewater treatment plants
around the world; incompletely solved by traditibrestablished methods.
Abnormal conditions may also be predicted and reeted time using digital

imaging methods.

1.2 Fundamentals of Digital Image, Digital Image Procesing and Analysis

An image can be defined as a two-dimensional sigegresented by a
function where the function value represents intensity ofowo
information for a given point specified by the spbtoordinates and . When ,

, and the amplitude values ofare all finite, discrete quantities, the image tha
being represented is a digital image (GonzaleZ.e2@09). Otherwise, it is an
analogue image. It is possible to specify the sssallisplayable point for digital

images due to their discrete nature. This poiRh®mvn as a pixel.

Tllumination (energy)

,/"// L\ source

& Imaging system

Scene element

Figure 1.1: Digital image concept illustration (Gorzalez et al., 2009)

Output (digitized) image

(Internal) image plane



Digital image processing and analysis can be défase processes whose
inputs and outputs are digital images. They exua#cibutes from the images, and

can recognize individual object based on thes#atés.

Both image processing and image analysis have Isganltaneously
covered by using the above term. By the basis @f tifference in output, one
may describe image processing as any form of irdtion processing which uses
images as input data and produces transformed/mddihages as output, and
image analysis as any form of information procegdirat uses images as input
data and produces descriptions and characteristidsem as output. Generally,
all variations in definitions presume that imageogassing techniques are
performed first, and then image analysis technigquesapplied. However, there is
no general consensus among authors regarding whage processing stops and
the related areas, image analysis and computeonvisegin (Gonzalez et al.,
2009) Hence, in general literature usage, the terms danarocessing” and
“image analysis” are not strictly differentiatedrin each other; either term can

usually be assumed to take on the definition offteer comprehensive term.

Generally, images are modified and transformed iniage processing
techniques to improve their pictorial informatioor human interpretation, or to
render them more suitable for autonomous machinmeepgons (McAndrew,
2004) Humans like their images to be sharp, clear andilédtwhile machines
prefer their images to be simple and unclutteredAMirew, 2004).
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For human interpretation purposes, useful operatiomclude edge
enhancement, noise removal, and blur removal; fachime perception, edge
detection and detail removal are helpful operatiédiigpresent, image processing
is finding more and more uses in a wide varietyfiefds concerning many
different operations. Image processing is done foultipurpose image
enhancement/restoration, artistic effects, medisdsualisation, industrial
inspection, law enforcement, human computer inbegaand other purposes and
fields. In the biological sciences, the understagdof various features of cell
biology, molecular biology and neuroscience amotigers all call for a critical
part and role for visualizations and image procesand analysis methods to play
in. Not only are structural characteristics viszeadi and studied, but they are also
increasingly transformed into more quantitative adand measurements for

further studies to be made upon them.

1.3 Wastewater Treatment Process

According to the Food and Agriculture Organizatioh the United
Nations, wastewater treatment generally has a ipahobjective of allowing
human and industrial effluents to be disposed dfavit danger to human health
or unacceptable damage to the natural environn@ptcombining physical,

chemical, and biological processes and operatiguig]s, biodegradable organic



matter, pathogenic bacteria and sometimes nutreggstsemoved from wastewater

in conventional wastewater treatment processes.

A generalized wastewater treatment diagram is seBigure 1.2.
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Figure 1.2: Generalized wastewater treatment diagna (Asano et al., 1985)

It can be seen from Figure 1.2 that there areeastlthree levels of
wastewater treatment: primary, secondary, andatgrar advanced. Additionally,
there is a preliminary treatment process that nsedi at removing coarse solids

and other large materials often found in raw waatew



Primary treatment process is also known as theharecal treatment level.
In this level both suspended and floating solidsl asettleable solids by
sedimentation are separated and removed from raagseand the process itself
is generally the first stage of wastewater treatm&he Food and Agriculture
Organization of the United Nations (FAO) statest thiiund 25 to 50% of the
incoming biochemical oxygen demand (B§)[b0 to 70% of the total suspended
solids (SS), as well as 65% of the oil and greasereamoved during primary

treatment.

Primary treatment is followed by the secondaratireent stage which is
considered a ‘biological’ stage compared to othages. Microorganisms which
feed on the residue waste and organic matter aptboged and generally aerobic
biological treatment processes are involved. At#igtasludge, trickling filters,
rotating biological contactors are all commonly disegh-rate processes, defined
by relatively small reactor volumes and high comicgions of microorganisms.
Combined with primary treatment, the FAO stated thdotal of 85 % of the
BODs and SS originally present in the raw wastewater some of the heavy

metals are typically removed from the effluent.

Additional treatment beyond secondary stage issicened tertiary or
advanced treatment. The stage is employed wheiifispgastewater constituents

that the previous treatment process cannot remavet e removed. Tertiary



treatment is capable of removing more than 99 merckall the impurities from

wastewater to produce an effluent approaching argiwvater quality.

1.3.1 The Activated Sludge Wastewater Treatment Sem

It can be seen from the previous section thav#n®us terms for different
methods of wastewater treatment mainly refer todifferent method used in/for
the secondary biological treatment stage. Howavegn be safely assumed that
when any wastewater treatment methods are mentidhey refer to the entire
wastewater treatment process flow encompassingtaties and not just the

secondary stage.

The activated sludge process/ wastewater treatpreness was invented
in the 28" century around 1914 in England. It is considemetie the most widely
used biological wastewater treatment process tallgyto its effectiveness and

flexibility since its invention from approximatebne century before.

The activated wastewater treatment process eabgimivolves:

1. The aeration of wastewater with aerobic microorgi@usi present
2. The removal of biological solids by means of seditagon
3. The returning/recycling of settled biological salidack into the aerated

wastewater



Point three is the single most important distingung feature of the
activated sludge treatment process compared to otethods invented and in use
before itself. Whenever wastewater is continuowedyated, enough oxygen is
eventually dissolved in the affluent such that @asi aerobic bacteria and other
types of microorganisms are able to grow, multi@pd consume the organic
solids/pollutants present in the affluent as “faodxidizing organic matter in
water to carbon dioxide and water (Bengtson anciMgl, 2011a). In the process,
the biomass known as “sludge flocs” that would ¢éwally settle is formed and
the affluent becomes purified. However, without tieeycling of the aerobic
microorganisms to raise their concentration in t@stewater, the biological
oxidation and purification is a very slow proceg&erigston and Stonecypher,

2013).

By continually returning most of the sludge floestloe “activated sludge”
formed at the later stage in suitable amounts ¢ovthstewater at the beginning,
the new system’s purification performance is imga\Tchobanoglous et al.,

2002;Grady et al., 199%esilind et al., 2004).

The activated sludge process has the advantageodiugng a high
quality effluent at reasonable operating and mamtee costs. Activated sludge
wastewater treatment plants are widely used alliradahe world in large cities

and communities where large volumes of wastewatestbe highly treated



economically. A diagram of a conventional activasagige wastewater treatment

plant is shown in Figure 1.3.
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Figure 1.3: Conventional activated sludge wastewatéreatment flow
diagram
(Credit: http://www.brighthub.com/environment/science-
environmental/articles/66158.aspx

Variations in activated sludge wastewater treatmgydgtems exist in
addition to the conventional variety depicted igife 1.3 (Bengtson and Malburg,
2011b). In all of the varieties, the secondaryifitarand the aeration tank/basin
are present. The secondary clarifier serves apl#ve where the sludge flocs that
have been formed are supposed to coalesce and &etbtlecome the activated
sludge. The term mixed liquor is used to refer bhe@ ttombination of the

wastewater influent and the return activated sludge

In the secondary clarifier of an activated sludgetewater treatment plant,
the sludge flocs of the mixed liquor within mustatesce and settle properly so

that the resultant activated sludge is produced,adso for them to not get carried



over to the next procedure as treated effluentsetyatively reduce the effluent’s

quality.

1.3.1.1 Filamentous Bulking as an Abnormal Conditio

Figure 1.4 illustrates the processes in a gooditguaixed liquor where
the flocs compact and coalesce and proper flodesstnht occurs. Figure 1.5
illustrates a case of filamentous bulking; here,thixed liquor involved would be
slow and difficult in sedimentation due to the aled disturbances by the
filamentous microorganisms. As can be seen fromurgigl.5, the proper
“gluing/binding together” of the flocs have beerfeetively hindered by the
growth of the filaments that is excessive. As subb,effluent becomes polluted

with the flocs that do not bind together and dosgitle.

10



Figure 1.4: Floc settlement
(Credit: http://web.deu.edu.tr/atiksu/ana52/ani4091.hjml

Figure 1.5: Filamentous bulking
(Credit: http://web.deu.edu.tr/atiksu/ana52/ani4091.hyml

11



The characteristics of good quality mixed liquon ¢ee seen in Figure 1.6.
Under microscopic observations, the most relevaaracteristics would be the
strong, large flocs indicating a balance betweea fbrmers and filament forming

bacteria.

Figure 1.6: Good quality mixed liquor
(Credit: http://web.deu.edu.tr/atiksu/ana52/ani4091.hjml

Filamentous bulking/ bulking sludge is a common pedsistent problem
that has affected all activated sludge wastewagatrhent plants since the early
days of the process’s invention and treatment lu®&.0xygen concentration, low
food to mass (F/M) ratio, wastewater septicity, lawtrient conditions are all
among the causes for filament overgrowth, prevgntinood mixed-liquor solid
compaction and settlement. In the monitoring of teasater treatment plants’
performances using image analysis techniques agdamentous bulking and as
a whole, the monitoring of filamentous microorgamilament growth plays an

important part.

12



1.3.1.2 Standard Conventional Monitoring Methods ad Definitions

There are various physico-chemical methods thatised traditionally to
monitor the performance of the activated sludgeteveater treatment plants. The
most important ones and those most relevant tatowly are discussed below.

Mixed Liquor Suspended Solids (MLSS): Total susmehsbolids (TSS)
in the aeration tank of the wastewater treatmeantpls termed as
MLSS.

Mixed Liquor Volatile Suspended Solids (MLVSS): Ytle
suspended solids (VSS) in the aeration tank of westewater
treatment plant is called MLVSS.

Sludge Volume Index (SVI): Sludge volume index &figed as the
volume in mL occupied by 1gram (g) of activateddglel preceded by
settling of the mixed liquor for 30 minutes. Itdetermined by using

the following formula:
(1.1)

where SSV30 is the volume of settled sludge in lifnbone containing 1
Litre (L) sample of mixed liquor noted after 30 mia.

MLSS is defined by the following formula:

T 7 $%& I( D% (1.2)
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where A is the weight of the filter plus dried sdengesidue in milligrams

(g) and B is the weight of the filter only in mg.

Generally speaking, relatively low SVI values irate good settling
ability for the sludge although values that are lm® may point towards another
type of abnormal condition, namely the pinpointcflmondition. A value of lower
than 120 mL/g may be considered satisfactory whilealue greater than 150
mL/g indicates a bulking condition for the sludgedahe plant (Jenkins et al.,
2003). However, all SVI values and indicated cdoditgiven are not fixed and
may vary depending on different plant parametersTdble 1.1 is shown some

typical SVI values and conditions for reference.

Table 1.1: SVI Values and Conditions

SVI (ml/g) Indicated Condition
<50 Pinfloc Potential
50 to 100 Good Range
100 to 150 Filament Growth
150 to 200 Bulking at High Flows
200 to 300 Bulking
> 300 Severe Bulking

(Credit: http://www.wrights-trainingsite.com/ActSlud1onb.Htm

14



1.3.1.3 Laser Particle Sizing Method

Laser patrticle sizing or laser particle size analysethod is a method that
utilizes laser diffraction analysis to measure sipé particles found within a

sample. An illustration of the method is shown igufe 1.7.

Figure 1.7: Laser particle sizing method
(Credit: http://particle.dk/methods-analytical-laboratoryipigle-size-by-
laser-diffraction/laser-diffraction-theoryy

In Figure 1.7, the blue light source is for meameets of small particles
and the red one for the detection of larger pasiclt is possible to measure
particle sizes from the range of roughly 0.02 ug@00 pum and above depending
on the lens used and then produce a particle sstabdtion graph from the
measured data by using one from the two calculatmdels of Fraunhofer

approximation or the Mie theory.

15



1.4 Research

1.4.1 Problem Statement

For the purpose of our study, it has been obsethegd

Changes in test measurements (SVI, etc) occursamiblay, hence little
or no time for precautionary measure is left oregireentation problems
take place (Gins et al., 2005).

Changes in sludge floc morphology that reflect ¢oowl changes happen
quicker and hence can tell state of plants befor@hi& microscopic
analyses can be done and correlated to physic-clhaétast values.

The laser particle analysis is also utilized to suea the sludge object’s
size distribution. The laser particle analyser heaveis expensive and
hence this is an uneconomical monitoring method.

Available literatures do not clearly describe arsbess segmentation
techniques/algorithms used; Built in image analgsifware methods are

used in many instances.

16



1.4.2 Objectives

The objectives of this research are as follow:

To utilize digital image processing techniques tevelop automated
methods that identify the flocs and the filamerdsrnd in the activated-
sludge wastewater treatment process.

To quantify and morphologically analyse the floasd athe filaments
identified.

To correlate digital imaging methods in this worlithwthe established

physico-chemical methods.

1.4.3 Organisation of Dissertation

The rest of the dissertation is organized as \dto

Chapter 2 provides literature review of image pssagg and analysis
techniques used in activated sludge wastewateniesd systems.

Chapter 3 describes the materials and methodshthvet been utilized in
the study. It gives an overview of sample collattend preparation under the
overall process of image acquisition, and also riless the algorithms developed
and the associated principles in steps.

Chapter 4 documents the result of the proposedritigns. It includes
assessment of proposed algorithms and correlatidmerphological parameter

analyses.

17



Finally the dissertation is concluded. This chept®ncludes the
dissertation and gives directions/recommendati@msirhprovement and future
studies.

The conclusion segment is followed by referenc&wdits for images

used in this dissertation from various sourcesrarleded in this section.

18



CHAPTER 2

LITERATURE REVIEW

2.1 Effectiveness of Image Analysis Methods

Conventional physico-chemical methods utilizing S{gludge volume
index) tests and others are unable to detect fitdous bulking events in time to
effectively remedy the abnormal situations (Ginglet2005). On the other hand,
the ability of different image analysis methodsbt® used as activated sludge
monitoring systems has been positively confirmed rogny authors after
comparisons with the classical physico-chemicalhoés$ (eg. SVI measurement)
(Amaral et al., 1999; Heine et al., 2000; Heinalet2001; Da Motta et al., 2001a;

Dagot et al., 2001; Amaral, 2003; Mesquita et2008; Mesquita et al., 2010).

Yu et al. (2009)managed to obtain closely correlated results with
activated sludge particle size measured by meateasef particle sizing method
and the size obtained from image analysis methodhé work of Heine et al.
(2000) and Heine et al. (2001) is found that excessive growth of filamentous
bacteria is recognisable by microscopic images loé ftactivated sludge

approximately 2 to 3 days earlier than by physatamical parameters. The

19



authors have built lab scale systems applying mhffecontrolled parameters and

have compared results of SVI measurements witimhge analysis results.

Figure 2.1 to Figure 2.3 show the results by tiseaechers.

Figure 2.1: Course of SVI values for two tanks (Heie et al., 2000)

20



Figure 2.2: Microscopic picture of an activated sldge sample from
aeration tank 1 at day 7 (Heine et al., 2000)

Figure 2.3: Microscopic picture of an activated sldge sample from
aeration tank 2 at day 7 (Heine et al., 2000)

It can be seen in Figure 2.1 that while the suddsnin the SVI value line
in the graph happens at around day 8-9 with the afoday 7 having a
comparatively normal value, filament objects aready detected in the observed

microscopic picture of the sludge at day 7.
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2.2 Image Acquisition and Image Analysis

For sludge floc microscopic image observationsiethieas been usage of
high magnifications to observe bacterial composgi@nd filamentous bacteria
inside the sludge. Usage of low magnifications &y or 100x) to observe the
flocs and the filaments combined with image analyss since become more
common (Liwarska-Bizukojc, 2005). The latter methedsimpler in its image
acquisition sample preparation being non-laboriand the results obtained are
also more objective and reproducible due to theraated image analysis process

employed (Liwarska-Bizukojc, 2005).

For the number of images required to obtain stesiby relevant results,
Liwarska-Bizukojc and Bizukojc (2005) reported tmnéirm that 40 is a sufficient

number.

In the work of Amaral (2003), the author divide@ thggregate objects of
his study into 3 size classes in his aerobic wastemtreatment process research
section. They have been divided into 3 size clas$emgregates ranging from
having an equivalent diameter of 0.0184 mm up forim, aggregates ranging
from having an equivalent diameter of 0.1 mm uft tam, and finally aggregates

with an equivalent diameter larger than 1 mm. Timalkest size class is simply
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rounded up and designated as having equivalenteti@mfor objects within the

range of 0.02 to 0.1 mm.

Perez et al. (2006) morphologically analysed thgrssnted floc objects of
their study using the morphological parameters g@fivalent diameter, 2-D
porosity, convexity, compactness, roundness amnctdralimension. Correlation
analysis of the morphological parameter valueseffloc objects detected in the
Pearson’s product momentum correlation coefficigp} was done to estimate
linear correlations. Significant correlation betweecertain  morphological
parameter pairs has been found by the authors.skmificant/high enough
coefficient values, roundness as defined by thbaathas been found to correlate
with convexity and compactness (and vice versajctédl dimension and

convexity have also been observed to correlate withl each other.

The work by the same group of authors also invast) the effect of
sample dilution on the size distribution of theeaitg detected and analysed. It has
been found and verified by the researchers thdt antincrease in the dilution of
the acquired activated sludge samples, the mearotihe flocs have been found
to decrease in significant amounts. By their rastile researchers concluded that
the sludge sample for digital images acquisitiooudth be prepared without
previous dilution in order to obtain accurate measwents of the microbial flocs

size (Perez et al., 2006).

23



The difference of morphology between flocs andniigamts can be seen in
their elongation degree and smoothness of bounddeyne et al., 2002).
According to R. Jennet al.,among parameters of aspect ratio, roundness, form
factor, fractal dimension and reduced radius ofatign, the most accurate
parameter in differentiating the two is the reducadius of gyration (Jenne et al.,
2002). The most unsuitable being the form factoioveed by the fractal
dimension. The result is obtained via a classificatrror comparison of 100

flocs and 100 filaments (manually identified).

Table 2.1 summarizes the literature review for imaggquisition and

image segmentation.

Table 2.1: Literature Review

Type of Sample Size on Slide )
) ] ] Segmentation
No. Literature Title Microscopy and and Number of
T ] Method
Magnification Acquired Image
Evaluation of activated
sludge systems b
) 9 sy ) Y o 25uL ,
1. image analysis Brightfield, 100x ) References no. ¢
] 200 total images
procedures (Mesquital
et al., 2008)
Correlation between
sludge settleability ang 25uL ,
image analysis o 200 total images not
2. ) ) ) Brightfield, 100x ) ) ] References no. ¢
information using including previous
Partial Least Squares| data
(Mesquita et al., 2009
Monitoring of activated| Brightfield, 100x 25uL ,
3. . - ) ) References no. ¢
sludge settling ability and 40x using 200 images per
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through image
analysis: validation on

full-scale wastewater

stereo microscope

sample:
&

20 images per sample

treatment plants for stereo
(Mesquita et al., 2009
A comparison betweer
bright field and phase- 25uL ,

contrast

image analysis

techniques in activated

sludge
morphological
characterization
(Mesquita et al., 2010

Brighrfield and
Phase Contrast,
both 100x

200 images total
~divided through
three replicate slides
around 20 images
obtained

for each slide

References no.8

and no. 9

Identifying different
types of bulking in an

activated sludge system

through
guantitative image
analysis (Mesquita et
al., 2011)

Brightfield 100x
total;

Epifluorescence

microscopy 200x

total

10uL
for brightfield, 150
total images, 3 slideg
per sample, (3 x 50
images/slide)
&
10uL
for epifluorescence,
100 total images, 2
slides per sample2 x
50 images/slide).

References no. §
for brightfield

Characterization of

activated sludge

abnormalities by image Brightfield 100x;

analysis and

chemometric

techniques (Mesquita et

al., 2011)

Fluorescence

microscopy 200x

Same as above

References no. ¢
for brightfield

work

Quantitative image
analysis for sludge
volume index and tota
suspended solids

prediction in activated

Brightfield and

Phase Contrast
100x;

Epifluorescence

microscopy 200x

Not described
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sludge system
disturbances (Mesquit
et al., 2011)

=4

Image Analysis in

Biotechnological

Brightfield 40x

total for aggregates

50uL
for filament and
aggregate, 18 image

each 1-cover-slip-

Use of boundary
image
segmentation
and percentile
based region

image

[2)

segmentation

g Processes: Applications  using stereo id and then
. slide;
to Wastewater microscope and . conjugating the
25 images for .
Treatment (Amaral, Phase contrast resultant images
] aggregate for sample, .
2003) 100x for filaments . to obtain
30 images for
] aggregate/floc
filaments for sample )
image, uses
aggregate image
to obtain
filament image
Activated sludge
monitoring of a Brightfield 40x o
50uL , Similar
wastewater treatment| total for aggregates ) )
) 30 images per sample algorithm as
plant using stereo i
9. o ) ) for filaments; observed
using image analysis| microscope; Phase
] 25 images per sample compared to no.
and partial least squares contrast 100x for
) ) for aggregates 8
regression (Amaral et filaments
al., 2005)
Bulking sludge
treatment by
microscopic _ )
10. ) Not mentioned - Not described
observation and
mechanical treatment
(Heine et al., 2000)
Early warning-system
for operation-failures in . Not well
11. ) . Not mentioned - .
biological stages of described

WWTPs by on-line
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image analysis (Heine
et al., 2001)

Feature analysis of Variance
1 activated sludge based Not mentioned ) Operator,
on microscopic images Laplacian
(Sikora et al., 2001) Operator, ...
Phase contrast,
Investigation on 100x for low power|
filamentous micro- | work (filamentous
organisms in sludge | counts, observing
13 foaming from pulp & floc structures), ) )
paper mill wastewater 1000x for
treatment plant identification of
(Larptansuphaphol et filamentous
al., 2010) organisms
Simultaneously
monitoring the particle
size distribution,
morphology and Software work ag
1 suspended solids Microscope not 40 images each programmed by
concentration in used sample the NI Vision
wastewater applying Assistant
digital image
analysis(DIA) (Yu et
al., 2009)

Complex
algorithm that
considers the

Characterisation of variance
activated sludge by A series of the grey-level
15. automated image Brightfield 100x

analysis (Da Motta et
al., 2001b)

of at least 70 imageg

histogram with
steps briefly

described
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Characterisation of
activated sludge

by automated image

Series of 70
images (meso-scal
visualisation at
x100 magnification
in brightfield),

[¢)

Similar to above

and software

analysis : & of 50 images work using
6. Validation on full-scale (macro-scale procedures
plants (Da Motta et al.] visualisation at x25 embedded within
2002) magnification, Visilog
blackfield) for
some samples
Brightfield; floc
size distributions
Impacts of determined by a
morphological, Malvern
physical and chemicall Mastersizer/E
17. properties on instrument with a - -
dewaterability of 300mm lens which
activated sludge (Jin et measures particles
al, 2004) in the range 0.9—
546 um, uses light
scattering.
Impacts of structural At least 10 images Software work
characteristics on _(_10(_))( for calculating
18 activated sludge floc Same as 17 but ngt magnification) were

stability (Wilén et al.,
2003)

involving filaments

taken for floc fractal

dimension analysis

floc fractal
dimensions via
IMAGEJ
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19.

Microbial community
structure in activated
sludge floc
analysed by
fluorescence in situ
hybridization and its
relation to floc stability
(Wilén et al., 2008)

Brightfield 60x
inverted lens for
microbial
community
structures of the

flocs

Phase contrast 10
40x lenses for floc;

Phase contrast and

>100 images for floc

Manual software

work

20.

Use of image analysis

in the study of
competition between
filamentous and non-
filamentous bacteria

(Contreras et al., 2004

Phase contrast
1000x

10uL ,

3 slides per sample,
3-5 image per slide

randomly acquired

Software work
using Global
Lab Image 2.10

software

21.

Towards on-line
quantification of flocs
and filaments by image
analysis (Jenné et al.

2002)

Phase contrast

1000x objective

Not described in
detail, the used
“novel automatic
histogram-based
thresholding
method”
combines the
commonly used
Intermeans
algorithm with
the calculation of]
extremes in the
first and second
derivative of the
grayscale image|

histogram

22.

Activated sludge image
analysis data
classification: an LS-

SVM approach (Gins et

Brighrfield 10x10

References work
of Jenné et al.
(2003)
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al., 2005)
Activated sludge

Algorithm with
morphology
characterization

o ) segmentation
Brightfield 120x | 1 drop, 50 images pegr )
23. _ step based in
through an image total sample )
i Zack algorithm
analysis procedure o
for binarisation
(Perez et al., 2006)
Image analysis to ]
] Dark field Software work
estimate the . ) ficall
. microscopy usingspecifically
settleability and )
i 50x using stereo developed
24. concentration of . - ]
) microscope; software in
activated sludge

. 25x for sludge floc
( Grijspeerdt et al.,

Microsoft Visual
size measurement
1997)

C++

It can be seen from the table that methods &doy according to teams
of researchers. In many of the documentations #genentation algorithms are

not considered the main focus of study and hencee Hzeen only briefly

explained and documented.
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CHAPTER 3

MATERIALS AND METHODS

3.1 Methodology Overview

In this chapter we shall discuss the experimentatquures. The parts for
the procedures include:

1) Laboratory based work for data acquisition and mloyshemical tests and
measurements

2) Software based work or the development of algomthvhich encompass
digital imaging segmentation and morphological peeter analysis of the
floc and filament objects

3) Establishment of result correlation for the impleneel physico-chemical

methods and digital imaging methods

The flowchart describing the methodology for thee@rch work is shown

in Figure 3.1.
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[ Sample Collection } Physico-Chemical tests (SV1,
l MLSS, Laser Particle Analysis, etc)

Image Acquisition }

!

Image Preprocessing ]
—_—

!

Image Object Segmentation ]

l

Morphological Parameter Extraction &
Analysis(roundness, compactness, convexity, etc.)

>~

Data Comparison and Analysis }
End ]

Figure 3.1: Flowchart o methodology

3.2Image Acquisition

The samples of waste water are acquired from thieaséed sludge tank
of local wastewater treatment pla that deals with municipal effluents. F
image acquisition a Zeiss Primostar microscope pgid with a CCD camel
(Zeiss AxioCan ERC 5s) connected to a personal computer is taseapture the
digital imagesA sample is prepared simply by placing 80ul of a¢&dasludge
sample onto anicroscopic slide using micro pipetad is then covered from tl
top with a 23x 23 mm cover slipThe sample is observed aup to 100 and more

images are captured under the objective magnificatf x£ for mainly floc
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observations and analysis and x10 for filament olad®ns and analysis
filaments both in brightfield microscopy. The simtibn platform is a laptop
computer with Intel Centrino Duo Intel 1.66GHz CPMATLAB software is

used for programming. All images are saved in JR#gSformat. The image

resolution is 1920 x 2560 pixels.

For the ‘floc’ algorithm, a total number of 55 inesgfor each day/sample,
half the number of the total number of roughly imh@dges captured covering the
entire cover slip area are used as inputs and gsede For the ‘filament’
algorithm, from the entire set of roughly equivdlemmber of captured images
when snapped in a way that covers the whole cdiearea for a day/sample, the

number of inputs for a day averages to about 52.

A sample ‘floc’ image in x4 from a sample is shomrFigure 3.2.

Figure 3.2: Sample ‘floc’ image with x4 objective ragnification
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Another image in x10 is shown in Figure 3.3.

Figure 3.3: Sample ‘filament’ image with x10 objedize magnification

In Figure 3.2, a pixel is equivalent to 0.838 mmmder in its length in
both horizontal and vertical axis while in Figure83it is equivalent to 0.332

micrometer.

3.3 Physico-Chemical Tests

The Malvern Mastersizer MS2000 laser particle simalyzer is used in
this work for lazer particle size analysis. A refrae index of 1.04 has been
chosen for the samples as according to the comagiderthat the refractive index
of the samples is to be very close to that of waigf.05) (Waiteet al, 1998).
The physico-chemical tests of SVI, and MLSS or Tafe also carried out

simultaneously on the same day which activatedgew@mples are collected.
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3.4 Floc Segmentation Algorithm

3.4.1 Stepwise Flow

1. Input Original Color Images

The images acquired from samples wastewater tegdtplants are used
as inputs. The images otherwise known as ‘floc msapave been captured in x4
objective magnification for containing the flocs.
2. Grayscale transform of Images

The images are transformed into grayscale forntis thie threshold value
obtained via the Otsu thresholding method.
3. H-minima transform

A value of 50 is used for the scalar thresholdalde that determines the
depth of difference.
4. Implement Median Filtering

A size of 25x25 for the window ffilter is used.
5. Implement Average Filtering

A size of 50x50 for the windowf/filter is used.
6. Local Thresholding Binarisation

The ‘Niblack’ Method is chosen and used here witimdow size of

500x500k value of -0.2 and offset value of 5.
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7. Clearing of Borde-attached objects

Incompletely captured objects are deleted aftey e implementation «
this step.
8. Removal of Small Objec

Image segmentation noise ieaned off by removing objects smaller ti
a total area of around 2500 pixels. The exact numbpixels used as the varial
number is 2457 as is equivalent to 0.05% of thal toumber of pixels foun

within an input image

The overall flowchart of tF floc algorithm can be seen in Figure .

|

«— — — —

‘_

|

Figure 3.4 Flowchart of floc segmentation algorithm
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3.4.2 Explanations and Elaborations

In the proposed algorithm the H-minima transformused. This operation
eliminates the regional minima in the images ttaatehan intensity/depth less than
a given thresholding value. A smoothing effectade observed from the result
of this operation. As the first step of the aldamt the filament objects are still

present and visible after the operation is complete

It is observed that at x4 objective magnificatitime filaments are very
thin and threadlike. Median filtering with a modeeist large window size is then
applied to the resultant image to effectively arfficiently eliminate the thin
filament objects. Median filtering is followed by average filtering process to

further smoothen the image.

Next, a local thresholding binary conversion in tNélack method

produces the segmentation result ‘floc’ image.

Local thresholding/adaptive thresholding, as opgos® global
thresholding methods that treats the entire imagea avhole, computes the
threshold value for each pixel by using the valokall pixels contained within
the same local window. As such, the process regeadifferent localities until

the window covers the entire image. Niblack lotmesholding iblack, 1986 is
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a simple and elegant technique that was originddlyeloped for document/text
images. The threshold value is obtained by firétutating the local mean and
then a value is added to the result depending enldbal standard deviation.
Assume that by narrowing the processing scope bgegssing local areas instead
of the entire image, the pixel intensity value &tidn of both objects and
background hence gets narrowed so and such thagréqgh model of two
peaks/clusters becomes valid for the pixel intgngdue histogram, and also that
local background pixels are always significantlyrgexr in number than
foreground/object pixels, the mean can be seeraltonthin the range of the
background intensity values; and to move the maaside of the background

intensity value range, the standard deviation vedusilized.

*ne &1 . %)&("&$""O&)! (- (3.1)

The value of k is positive for bright objects arebative for dark objects
since the direction of movement is determined lenriable. Normally the value
of 0.2/-0.2 is chosen as the optimum value. ‘Crespnts an offset variable. As
have been stated in the previous section, the sati&’ and ‘c’ are set to -0.2

and 5, and the window size used is 500x500.
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3.5 Filament Segmentation Algorithm

3.5.1 Stepwise Flow

1. Input Original Color Images

The images shapped and saved in the previouoeessie used as inputs.
The images otherwise known as ‘filaments imagesehlaeen captured in x10
objective magnification for containing the filamsent
2. Grayscale transform of Images

The images are transformed into grayscale forntis thie threshold value
obtained via the Otsu method.
3. H-minima transform

A value of 30 is used for the scalar thresholdalde that determines the
depth of difference.
4. Implement Median Filtering

A size of 25x25 for the windowf/filter is used.
5. Morphological Erosion

Disk structural element with a 10-pixel-radiusiged.
6. Addition of Images from Step 3 & Step 5

The Eroded image from step 5 is complimented aludé with the image
from step 3. Images containing only the filamergioas are produced after this

step.
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7. Binary Conversion

The image from the previous step is binary comeemising the Otsu
method.
8. Implement Average Filtering

A size of 50x50 for the windowf/filter is used.
9. Local Thresholding Binarisation

The ‘Niblack’ Method is chosen and used here witimdow size of
500x500, k value of -0.2 and offset value of 5.
10. Morphological Dilation

Disk structural element with a 10-pixel-radiusised.
11. Imposition of Enlarged Floc Object Areas

The steps starting from no. 8 form the continuatd the developed floc
algorithm leading to the current step to furtheluee the noise of the input image
to be used for the next following step 12.
12. Implement Hough Transform for Straight Line &xion

This step makes dots and lines that seem likeeorglarts of a larger
straight line to connect together to restore the. i
13. Morphological Parameter Filtering of ImagesirStep 7 & Step 12

The morphological parameter of ‘Roundness’ is uss@ with a threshold

value of 0.15.
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14. Merging of Both Images from Step
The images are merged with each other producingheetation result
that incorporate existent regions from both inpdise logical OR operation

used in this ste

The overall flowchart of the filament algchm can be seen as in Figure

[ Original Grayscale image ]
[ H-minima transform }\
1‘ Lf

v

Enlarged Floc Areas Imposed

v

Hough Transform

[ Mcdian Filtering J Tloc Algorithm Continued
[ Erosion ]
Compliment ¢
[ Addition
v v
[ Binary Conversion 1\[ Enlarged Floc Areas

‘ v

Morphological parameter “filtering™

—/
S

[ Morphological parameter “filtering”

— ) )

Merging

I
( i ]

Figure 3.5: Flowchart of filament segmentation algorithm




3.5.2 Explanations and Elaborations

The *filament’ algorithm developed here incorpogatke ‘floc’ algorithm

that has already been developed.

The H-minima transform operation of step 3 produbese again a
smoothened image but with the filament objects istihct. A threshold value of
30 has been used instead of 50 as in floc segn@mtagorithm for even more

preservation of filament objects.

The next median filtering operation erases tharfdat objects from the

images.

The erosion operation of step 5 is a grayscald@ragperation. Grayscale
erosion operations selects for an image pixel dheest value of intensity found
for all the pixels covered by the selected strusturelement with its centre
pinned on the aforementioned pixel. The overaleraiffect is of a darkened

image with dark regions enlarged and light regiercsied.

For step 6, the complement of the resultant image fstep 5 and the
image from step 3 are added together to produceukgut image. The former
image can be termed the ‘floc’ image while theelathe termed the ‘floc &
filament’ image. There are three types of region®lved in the process. The first
region is the one representing the floc object srédae second region the one
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representing the filament areas and the third regsothe background region
having neither floc nor filament. The ‘floc’ imagehether complemented or not
has no region 2 but only the first and the thigioas. Region 1 and 3 are roughly
identical with each other in both the ‘floc’ imaged the ‘floc & filament’ image.

The complemented ‘floc’ image when added to thec'fi filament’ image

overloads pixel intensity values of region 1 an decome over/more than 255.
The pixels from region 2 however get added witlemsity values that do not push
them over 255. The end result is that only filamarject regions are retained/left

behind after step 6.

For as large as possible a matching between tles amed pixel intensity
values of region 1 and 3 from the ‘floc’ image ahd ‘floc & filament’ image, no
significant altering or changes are to be done #fie median filtering step which
eliminated the filaments. In such a way the higlpesisible fidelity and matching
is to be obtained and achieved. The Erosion stegeseas a semi-insurance-step
to make the intensity values that get added inatifdition step becomes slightly
larger than the values otherwise, making for péilfaeaching the 255 threshold
so that overloading is definitely reached for thexzessary areas. A moderately
large structuring has been chosen so that signifidarkening can occur but not

too large that the floc object regions get too eged.
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After the subsequent binary conversion, the opamnadt the left-hand-side
of the flowchart of Figure 3.4 comes to an end.sThbbncludes the first

segment/section of the algorithm.

From the first part of the algorithm, we can ses the algorithm is robust
across different background lighting conditions degtures due to step no. 6
described. For this important consequence to hapiperusage of the median
filter also plays an indispensible role becauskiag as the filaments captured are
thin and threadlike, they would be eliminated aftex operation regardless of the
intensity difference between their pixels and thekground pixels. Overall there
needs to be no care taken to ensure a constangroackl lighting condition

when performing image acquisition/capturing atglloperators.

For the second part of the algorithm, the rightehaie of the flowchart
starts with continuing with certain parts of theveleped floc segmentation
algorithm. Average filtering continued by the Nitkalocal thresholding is
implemented. After then to bulk up the floc objettiss detected, a morphological

dilation process is performed.

The enlarged floc objects are then imposed onrttagé produced by step

7 for noise reduction.
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Next, the Hough transform operation for detectitrgight lines is applied
to the resultant image. Through the Hough transfammsonnected single dots and
dots at the edge of a shorter line that form laggegight lines become connected
with themselves and with each other (restoring lthe) if the accumulated
guantity of dots for a possible line/longer linefasind to be greater than the set

threshold value.

Any straight line can be defined by the foryr= mx + cin the Cartesian
coordinate system where m and c¢ are constantsié¢fiae the lines while andy
are the point coordinate variables. By tallying thentity of thex andy value
pair that fits into any particular m and c valuérpé can be seen that sufficient
such quantity indicates either an already exissimgight line or one such line to
be connected. Connected parts of a line will hav@icuousx andy value pairs
while unconnected ones will not; the unconnectetliaes to be joined together

by this operation provided that the separatingadists/gaps are not too large.

The basic concept for Hough transform for line détde described above
can be explained in another way that describesearsion from thex y) space to
the (M, 9 space. In this case the and y value pairs described above are
represented as dots of lines crossing each othéhanfn, ¢ space, while

continuous value pairs indicate continuous gradwiifferent lines.
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The actual implementation of the Hough transformlifte detection as is
done in Matlab uses yet another form of represemtatreating the ‘Hough space
graph’ with waveform curves representing each data point of thex; y) space.
Again different curves crossing at any one spotceiteés a possible line. Such
crossings at any one spot are to be accumulatedtheamd thresholded for the

determination of line existence.

Also, the Cartesian coordinate system comes wahirtherent problem of
having vertical lines defined by an infinite valioe the slope/ gradient variable of
m. Therefore the Hough transform is by default impated using the Polar

coordinate system.

By making the resultant connected lines into binargges, the resultant
binary image of the Hough transform as well asithage from step 7 both go

through the morphological parameter filtering operanext.

The parameter employed here is roundness. It b lusee to eliminate the
segmented binary regions that are not sufficielgngated. Roundness is
defined here as the ratio of an object’'s area tarele/disc’s area with the

circle/disc equal in length to the object. It isfadows:

2 &% &

L% R (3.2)

The roundness of an object as defined above vinoesa value of 1 for a

circle to values closer to zero for increasinglynglated objects in a similar layout
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fashion found in an image. For our purposes, ‘eébiog’ used here indicates
object length in a way that do not consider a ima more compact layout as less
elongated than another one layout of it in whicksistraight; at the same time
however, the differences in roundness values capgéle differences in layouts
are not considered as significant enough. The tlérigrm of equation (3.2) is
defined as the major axis length, which is the fengf the major axis of the
ellipse that has the same normalized second centialents as the object. Only
objects with roundness values lesser than the vehesen in both images

indicating they themselves as long objects remtiér the operation.

The usage of the Hough transform has enabled uectesh dots that
potentially form filament lines to be connected hwetach other. Unconnected
round dots are to be eliminated if processed by ste 13 skipping step no. 12
but they remain and stay if the Hough transformraten caused them to be
connected to an extrapolated line which is judgele a filament in our case. At
the same time however, we can expect new noideeiiorm of fake filaments or
connected lines that are not filaments added ma¢sult. To compensate for the
drawback, the floc objects had been explicitly dete using the developed ‘floc’
algorithm as well as dilated to enlarge them arehtimposed on the image of
step 7 to eliminate the existing dots originatingni the floc objects. This step
however, also breaks up certain previously-conmgedtaments even when

unenlarged floc objects are used for impositiore Tihal merging step allows for
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the detected lines from both branches to meet antbime providing for a more

comprehensive image/segmentation result.

The result gives the segmented filaments.

3.6 Assessment of Segmentation Accuracy

For verifying the segmentation accuracy of the @allgms, ground truth
images have been hand-drawn using the software GiithPthe original color
images as reference or base. The overlapping afthges from manual drawing
(ground truth) and algorithm output produces trusifve, false positive, true
negative and false negative areas. Segmentationraagc values via various

metrics may be obtained thereforth by calculatisimg their area values.

The Dice’s coefficient metric (also known as thae®aen index among
other names) that is commonly and extensively usethmage segemntation

quality validation is utilized in our study anddsfined as below:

_ 678
~ 6789:897;

DC

678
 789<==><?@AB

(3.3)

where TP=True positive, FP=False positive and TNeTregative.
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The study of Zou et al. (2004) finds the Dice &ioednt “a simple and
useful summary measure of spatial overlap, whiah lma applied to studies of

reproducibility and accuracy in image segmentation”

3.7 Morphological Parameters for Analysis of Flocs

Morphological parameter analysis involving the foparameters of
equivalent diameter, roundness, compactness angexiy are done after the
objects have been segmented. These morphologicahpters have been chosen
as they describe different properties of circulbjeots. Their definitions can be

seen as follows:

Equivalent diameter= the diameter of a circle waithequivalent front facing area;

2 838
1w 2 &8& 3.4

("( %% 3 (4 5 (3.4)
C &) %% % (3.5)
coy 5 B, (3.6)

More documentations and discussions of the amalgseducted after the

successful object segmentation process can be fauhd succeeding Chapter 4.
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CHAPTER 4

RESULTS AND DISCUSSIONS

In this chapter we will discuss the results of gieposed algorithms as
well as the algorithm segmentation accuracy. THeseguent analyses utilizing
results from image processing and physico-chemmezthods will then be gone

through and discussed.

4.1 Step by Step Output Images

4.1.1 Floc Segmentation Algorithm

The output images for each of the step of the ldpeel floc algorithm can
be seen in Figure 4.1. For all 6 samples 55 imagegrocessed by the algorithm
out of the total number of approximately 110 imagesering the entire area of

the microscopic cover slip.
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1: Original input color image; 2: Grayscale image;

3: H-minima transformed image; 4: Median filterethige

Figure 4.1 (Continues on next page)
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5: Average filtered image; 6: Local thresholdingdisation;

7. Clearing of border objects; 8: Small object realo

Figure 4.1: Steps of floc segmentation algorithm

The output image of step 8 shown is the compleroétite actual black-

background-white-object image for better visuail@at

4.1.2 Filament Segmentation Algorithm

The output images for each of the step of the apesl filament algorithm

can be seen in Figure 4.2.
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1: Original input color image; 2: Grayscale image;

3: H-minima transform image; 4: Median filtered pea
5: After grayscale morphological erosion;

6: Addition of image 3 and image 5 complemented

Figure 4.2 (continues on next page)
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0. 10.

11. 12.

7: Binarized image, 8: Average filtering appliedmage 4;
9: Local thresholding binarization; 10: Morpholaagiclilation;
11: Image 10 imposed on image 7,

12: Implementation of Hough transform for line dxiten;

Figure 4.2 (continued)
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12b

12d.

12¢ 13a

12a: Grayscalization of image 12 in RGB red chant#h: Binarized image;
12c: Grayscalization of image 12 in RGB blue ch&ntd: Binarized image;
12e: Binary image of detected lines by Hough tramsf

13a: Short objects eliminated from image 7,

Figure 4.2 (continued)
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13. 14,

13b: Short objects eliminated from image 12;

14: Merging of image 13a and 13b;

Figure 4.2: Steps of filament segmentation algoritim

The output images of step 10, 13 and 14 are thelemnent of the actual
black-background-white-object images for bettemualsation. The image from
step 12 has the lines connected by the Hough transplotted in blue color.
With the image from step 12 as input, 12a is thagenwith only the red RGB
channel activated and then converted to grayscatt ¥b the subsequent
binarization result. 12c is the image with only thee RGB channel activated and

then converted to grayscale and 12d the followingtdy converted result.

Activating only the red channel for the input imagekes blue regions
black and white regions red while black regionsaemnthe same. Activating only
the blue channel makes white regions blue while laind black regions remain
the same. Thus, merging the two binary outputs fitbe previous steps via

logical operation give us an end image that is ftyinaith its black regions
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representing the blue regions of the Hough transfmrocessed image. 12e shows
this image. Further processing this image with rholpgical parameter filtering

gives 13b and 13a has the image from step 7 as inpu

4.2 Ground Truth Floc Segmentation Accuracy Test

For assessment, Figure 4.3 shows sets of imagdsfaf each different

input. The top left shows the original color imaghe top right shows the

segmented image, the bottom left shows the growntd tmage and the bottom

right image shows the combined image for assessment

The Dice coefficient value is calculated and digpdd under each of the

set of images.
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(a) DC=2*64364 /(64364+143484)= 128728 /207848= 61.9837

(b) DC=232838 / 319952 = 72.7728%

Figure 4.3 (continues on next page)
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(c) DC = 74.18189

(d) DC=70.8605%

Figure 4.3 (continued)
59




(e) DC=81.1048%

Figure 4.3 (continues on next pagt
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(f) DC=70.2651%

Figure 4.3: Assessment dfoc segmentation
Top Left: Original colored image, Top Righte§mentatin image,
Bottom Left:Ground truth image, Bottom Righhssessmerimage

The assessme images shown abovhave black regions represents
overlapping regions between segmented objects amagingd truth imag, pink
regions representing regions presin the segmented objects but not in
ground truth image, green regions showing the regiexisting in the groun
truth image but not in the segmented objects andll§i the white region

representing nc-object regions in both inputs.
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In ground truth verification terminology the repeasations are as follows:

- Black regions: Overlapping regions - True Posite
- Pinkregions: Segmented regions only - False Pasi
- Green regions: GT regions only - True Negiae
- White regions: Background regions - False Negjve

From a visual qualitative judgement perspectivee thegmentation
algorithm can be seen to be quite successful. Mages used for algorithm input
are generally as seen as above, where they arempigy and in many cases it is

difficult to differentiate between floc and noise.

For the first set of images used, the green olgjettte right hand side seen
to be touching the border has been classified ab su ground truth image
drawing via eye assessement. However, it seemsthieabbject is not really
touching the border from the algorithm processiggeeially if the upper part of
the object is counted out. The accuracy of the sagation for the first set is
expected to increase significantly if that objechot taken as a border object in

ground truth image making.

The accuracy values from Figure 4.3 are displapethble 4.1.
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Table 4.1: Dice Coefficient Values for Floc Images

Image Accuracy(Dice Coefficien
a 61.9337%
b 12.7728%
c 74.1818%
d 70.8605%
e 81.104&%
f 70.2651%
Average 71.853%

From the images in Figure 4.3, an average accwalue of 71.85% is
calculated. An accuracy of above 70% has been \asthequantitatively the
segmentation can therefore be judged to be good.

4.3 Ground Truth Filament Segmentation Accuracy Tes

The assessment of the filament segmentation agcuradhe Dice’s

coefficient criterion can be seen in Figure 4.4.
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(a) DC=2*10017/(10017+20781)= 20034 /30798 = 65.0497%

Figure 4.4 (continues on next page)
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(b) DC=2*13380/(13380+30886)= 60.4527%

Figure 4.4 (continued)
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(c) DC=2*3899/(3899+6090)= 78.0659%

Figure 4.4 (continued)
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(d) DC=2*1858/(1858+2491)= 8844%

Figure 4.4: Assessment of filamergegmentation
Top: Original colored image, Botton&ssessrent image

The ground truth image making of filament contagnimages is a proce
even more subjective and difficult than the coroegping one for flocs. Despi
so, we have done our best in making our grounch tmmages as accurate

possible.

The final set of images shows a filament object ftbesecond set and it

can be seen that segmentation for the individutdatied objects are in fact qu

good although sometimes the returned values may tebe a bit low

Overall, a visual qualiteve assessment clearly suggests that n

filament regions have been successfully segmentéldebdeveloped algorith
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The accuracy values from Figure 4.4 are displayetable 4.2. From the

sets ofa, b andc the average accuracy value has been calculated.

Table 4.2: Dice Coefficient Values for Filament Imges

Image Accuracy(Dice Coefficien
a 65.0497%
b 60.4527%
C 78.0659%
Average 67.856%

4.4 Assessment via Comparisons with non-Digital Intaing Methods

The first assessment in this section is via a @ispn with the laser

particle sizing method.
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CP, Sample 10-6304 CP, Samp|e 4 0.8460

(a) (d)
CP, Sample 209166 CP, Sample 5 0.8923

(b) (e)
CP, Sample 8 0-8243 CP’ Samp|e 60.8920

(©) )

Figure 4.5: Floc volume percentage vs particle siafistribution graphs for 6
samples for digital image analysis and laser partie size analyser methods

Figure 4.5 shows the distribution of particle simeng both methods (LPA:

Laser Particle size Analyser; IA: Image Analysi§he correlation coefficient

69



values from a Pearson’s correlation analysis agevéthues found at the bottom of
the individual graphs. The values show the sintjaoi the two lines plotted on
the same graph. The coefficient value itself ranffesn 0 to 1, indicating

increasing similarity as the value approaches a&mHFigure 4.5, we observe high
correlation values for all samples with all samples/ing a coefficient value

larger than 0.8 except for sample 1 only.

For a qualitative assessment, 8 samples have bieredi for graph

plotting and the results are seen in Figure 4.6.

(@)

Figure 4.6 (continues on next page)
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(b)

(©)

Figure 4.6: Floc volume percentage vs particle siafistribution graphs for 8
samples for digital image analysis and laser partie size analyser methods
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For the image analysis (IA) method as shown iufagt.6, the volume of
the detected floc objects have been calculatedsbyming all objects as being
spherical in shape, and by using the equivalemheliars of all detected 2D floc
objects as diameters of the 3D sphere objects . efjbezalent diameter parameter
used here is a parameter that specifies for itsevile diameter value of a circle

with the same area as the region being detectegracdssed.

The lines from 1A method in the graphs of Figuré dre the curve fitted
lines via the Gaussian fitting method in Matlab,king the data points fit into

multiple peak Gaussian function lines, defined els:

HIJ
FG—X M\
DEor& K (4.1)

where a is the amplitude, b is the centroid, elated to the peak width and n is

the number of peaks for fitting ranging from 1 to 8

The value of n is set to 1, giving only a singlep@roducing a normal
Gaussian shape. The resultant shapes make compawdh the post-fitted lines
from the laser particle size analyser method awviged by the equipment’'s

software more easily done.

Lines from both methods share the same x-axislddbe&ith the name

‘particle size’. For our purpose here, the detedked objects have been taken to

72



indicate and represent the particles processebleifaser particle size analyser
method considering how the floc objects are thetrposminent and big-sized

objects in the captured images of our sludge sanple

It is qualitatively observed that line shape simiies of the graphs exist
between the digital image analysis method (I1A) sredlaser particle size analyser
(LPA) method. The lines of two methods share thaesaolor if they are of the
same sample but are solid for IA method while umeated for LPA method. In
order not to have an overconjested graph, linem fedl samples have been
divided into 3 groups and plotted separately inag that makes for optimum ease

of comparison.

For peaks in both methods, in the first plot, s@amplis considerably
leftward of sample 6; in the second plot, samplesOfightward of sample 1 and
sample 1 rightward of sample 6; and finally in thed and last plot, all other

samples are towards the right of sample 6.

We can hence, observe qualitatively that the limes1 the IA method
have agreed in trend with the ones from the LPAhoet Combined with the
previous quantitative analysis, both qualitatived ajuantitative analyses have
managed to show strong evidence of correlation samdarity in the results of

digital imaging method to those of the laser p&tgizing method. This supports
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our hypothesis that digital imaging may be usedrasethod in place of laser

particle sizing.

Last but not least, it is noted that although theligative analysis utilized
8 samples, only 6 samples starting with the lalbésample 1’ in Figure 4.6 are
used for all the other analyses of our study duthé¢ofact that flament images

have not been satisfactorily captured for the firsi samples.

For the next analysis, the results obtained froenésts of TSS and SVI

are summarized in Table 4.3.

Table 4.3: Sludge Volume Index and Total Suspendéesblids

Sample [TSS or MLSS(mg/L) | SVI(mL/qg)
1 825 55.76
2 846 48.46
3 425 43.53
4 1002 117.76
5 997 122.37
6 884 139.14
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Figure 4.7: Line graph for IA & TSS using methodsacross 6 days
(TL: Total Length of filaments; TA: Total Area adbts)

From the work of Mesquita et al. (2011b), wheaotteld as such as a line
plot found in Figure 4.7, the lines from digitalaging methods alone and from
physico-chemical methods and digital imaging metheHare the same shape.
Despite two very different y axis in magnitude amehature with one being linear
with the other one being logarithmic, the extrentalyh shape similarity from the
work of Mesquita et al. (2011b) has been reprodues@ for this research. For
the plotting of the graph of Figure 4.7, the ar@dugs of the filament regions
have been used as the length values of the filan@uinsidering the case that the
filaments are highly thin and threadlike in shapeing naturally low in variability
in thickness and also due to the way the algorivorks, the length of filaments
and the area of filaments share a linear relatipnsith each other. Assuming the

case that the high correlation observed above holdsfor all range of values for
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the Total Length variable input, a linear reductionthe Total Length variable

values will still produce the same graph with hygbbrrelated line shapes.

Via a comparison with the similar line graphs ie traper by Mesquita et
al. (2011b), the condition of the plant as indidaltere throughout the samples is
seen to be very similar to the line shape and gdloethe normal condition graph.
The shape is very different and distinct from time @f the filamentous bulking
graph, giving the same results that the SVI vagies, namely that there has been
no instance of filamentous bulking in our samplekected. However, the line of
the zoogleal/ viscous bulking graph which is littléferentiated from the one of
the normal condition also shows a very high sintyao the line of our graph. By
observing the images from our database the posgibil the occurrence of this
condition can be ruled out due to the absence efsized floe objects that define

such a condition.

4.5 Floc Object Morphological Parameter Analysis

Morphological parameter analysis involving the rfoparameters of

equivalent diameter, roundness, compactness anexityiare done.

All the above morphological parameters except exjaiv diameter have

values that range from 0 to 1, indicating incregsidherence to the quality of the
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parameters themselves as is seen indicated by mia@res An explanatory

example can be seen in Figure 4.8.

Figure 4.8: Image with floc objects segmented andespective ‘roundness’
values labelled

The Pearson's linear correlation coefficients féwc f morphological

parameter pairs have been calculated and showalile ®.4.
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Table 4.4: Pearson Correlation Coefficients for Sapie 1 to Sample 6

Sample 1- SVI: 55.78 Sample 4- SVI: 117.76
ED Rd Cm Cv ED Rd Cm Cv
ED 1 -0.4750| -0.601§ -0.639B ED 1 -0.4906| -0.6571 -0.662p
Rd | -0.4750 1 0.8874 0.7529 Rd | -0.4906 1 0.8531f 0.7271
Cm | -0.6018| 0.8874 1 0.918Y Cm | -0.6571| 0.8531 1 0.9332
Cv | -0.6393| 0.7529] 0.9187% 1 Cv | -0.6626| 0.7271] 0.9332 1
(a) (d)
Sample 2- SVI: 48.46 Sample 5- SVI: 122.37
ED Rd Cm Cv ED Rd Cm Cv
ED 1 -0.4549] -0.6244 -0.649p ED 1 -0.3956| -0.478¢ -0.481f
Rd | -0.4549 1 0.8404 0.7023 Rd | -0.3956 1 0.8618 0.7348
Cm | -0.6245| 0.8404 1 0.9251 Cm | -0.4786| 0.8618 1 0.912%
Cv | -0.6499| 0.7023| 0.925] 1 Cv | -0.4814| 0.7348| 0.9121 1
(b) (e)
Sample 3- SVI: 43.53 Sample 6- SVI: 139.14
ED Rd Cm Cv ED Rd Cm Cv
ED 1 -0.5484| -0.6123 -0.604p ED 1 -0.5181| -0.7184 -0.723B
Rd | -0.5484 1 0.8971f 0.7314 Rd | -0.5181 1 0.8389 0.7108
Cm | -0.6122| 0.8971 1 0.9023 Cm | -0.7182| 0.8388 1 0.9284
Cv | -0.6042| 0.7314] 0.9023 1 Cv | -0.7238| 0.7103| 0.928] 1
(c) ()

The Pearson's linear correlation coefficients ¥eogn -1 and +1, where -1
corresponds to a perfect negative correlation ahdcerresponds to perfect

positive correlation.

From Table 4.4, the values calculated shown dosaetn to exhibit clear

and regular observable patterns that are correlgitbdhe SVI values.
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Table 4.5: Average Values of Morphological Parametdor Floc Objects
Divided into Three Size Classes for Sample 1 to Sghe 6

Sample 1- SVI: 55.78 Sample 4- SVI: 117.76
SizeClass] < 75um >=75um, >=150um SizeClass] < 75um | >=75um,< | >=150um
Ave\ <150um Ave\ 150um
Numbers 180 235 100 Numbers 174 252 93
Perc (515) 34.95% 45.63% 19.42% Perc (519) 33.53% 48.55% 17.92%
EqDia 60.8749 | 105.4973 | 197.1047 EqDia 58.6674( 106.4523 187.3347
Round. 0.7630 0.6307 0.4785 Round. 0.7265 0.5726 0.4698
Compact. | 0.8168 0.7335 0.5179 Compact. | 0.7926 0.6706 0.4589
Convexity | 0.9718 0.9413 0.8180 Convexity | 0.9643 0.9124 0.7862
(@) (d)
Sample 2- SVI: 48.46 Sample 5- SVI: 122.37
SizeClass| <75um | >=75um,< | >=150um SizeClass| < 75um >=75um, >=150um
Ave\ 150um Ave\ <150um
Numbers 215 375 109 Numbers 253 451 94
Perc(699) 30.76% 53.65% 15.599 Perc (798)| 31.70% 56.52% 11.78%
EqDia 61.7262 101.9941 195.7147 EqDia 61.2655 104.5754 172.4138
Round. 0.7350 0.6758 0.4942 Round. 0.7095 0.6005 0.4842
Compact. | 0.8099 0.7752 0.5362 Compact. | 0.7873 0.6996 0.5584
Convexity | 0.9731 0.9574 0.8363 Convexity [ 0.9656 0.9286 0.8467
(b) (e)
Sample 3- SVI: 43.53 Sample 6- SVI: 139.14
SizeClass| <75um | >=75um,< | >=150um SizeClass| < 75um >=75um, >=150um
Ave\ 150um Ave\ <150um
Numbers 652 658 64 Numbers 417 476 144
Perc374 | 47.45% 47.89% 4.66% Perc@037 | 40.21% 45.90% 13.89%
EqgDia 60.4760 100.5164 177.0159 EqgDia 60.3363 105.1724 190.2217
Round. 0.7725 0.6047 0.4111 Round. 0.7179 0.5877 0.4335
Compact. | 0.8324 0.7092 0.4710 Compact. | 0.7969 0.6776 0.4215
Convexity | 0.9728 0.9268 0.7874 Convexity | 0.9667 0.9126 0.7592
(©) ®

As with the previous tables, the same morphologyampaters of

equivalent diameter, roundness, compactness angexiy are used, and have

their average values calculated for the segmertex$ faccording 3 size class

divisions of small, medium and large. Two clustgmipings of data have been

observed for the data which are the grouping withtiackground highlighted in
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light red and the one in dark green. This pattgmees with the clustering pattern
of the SVI values that can be seen below the taflbe values with light red

background are seen to have values consistenggri@nan those in dark green. In
both cases the pattern was stronger for the smsiker classes of small and
medium and only slightly weaker for the large siass which is somehow
expected due to a less averaging and more outlieilenced effect due to less

objects belonging in this class among other reasons

The pattern observed persists even when no divisidioc objects into

size classes is made. This can be seen in Table 4.6
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Table 4.6: Average Values of Morphological Parametdor Size-Undivided
Floc Objects for Sample 1 to Sample 6

Sample 1- SVI: 55.78 Sample 4- SVI: 117.76
Numbers 515 Numbers 519
EqDia 107.6889 EqDia 104.9256
Round. 0.6474 Round. 0.6057
Compact. 0.7207 Compact. 0.6736
Convexity 0.9280 Convexity 0.9072
(a) (d)
Sample 2- SVI: 48.46 Sample 5- SVI: 122.37
Numbers 699 Numbers 798
EqDia 104.2233 EqDia 98.8353
Round. 0.6657 Round. 0.6214
Compact. 0.7486 Compact. 0.7108
Convexity 0.9433 Convexity 0.9307
(b) (e)
Sample 3- SVI: 43.53 Sample 6- SVI: 139.14
Numbers 1374 Numbers 1037
EqDia 85.0794 EqDia 98.9529
Round. 0.6753 Round. 0.6186
Compact. 0.7565 Compact. 0.6900
Convexity 0.9421 Convexity 0.9130
(©) ()

Size class division allows for more comparisordata values for more
proof of pattern existence as well as ideally a enpronounced trend in the
medium size class. It is observed here that théenmatobserved from the
undivided tables is similarly as strong as the onéhe divided medium class.
This proves the strength of the pattern identifialiopwing for a simple size-
undivided morphological parameter analysis to saffior state identification of

the water plant. However, it is to be seen thamase samples are utilized, the
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agreeing trends in multiple divisions would prowelde more useful as more

indication strength.

In Figure 4.9 the data of Table 4.6 are displapechart forms for another
observation of the trend discussed before. FronurEig.10 to Figure 4.12 the

data of Table 4.5 are used.

mm MF

o $
L "% &

. —t(

Figure 4.9: Chart of morphological parameter and SY values for 6 samples
(Left axis: bar chart; Right axis: line chart)

[ e
e $
3% &

Figure 4.10: Chart of morphological parameter and ¥l values for small
objects for 6 samplegLeft axis: bar chart; Right axis: line chart)
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Figure 4.11: Chart of morphological parameter and ¥ values for medium
objects for 6 samplegLeft axis: bar chart; Right axis: line chart)
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Figure 4.12: Chart of morphological parameter and ¥ values for large
objects for 6 samplegLeft axis: bar chart; Right axis: line chart)

4.6 Study on the Appropriate Number of Images for Pocessing

The distribution line graphs for the number of irsagrocessed by the
algorithm versus the calculated mean number obffmEr image have been plotted

and are shown in Figure 4.13.
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Figure 4.13: Number of images processedsithe mean numbelof flocs per
image distribution graph over 6 samplega~f: sample 1 to sample ¢

A total of 60 images have been processed for eaglsample for Figur
4.13.1t is observed here that for all samples, the nmmanber of flocs found pe
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image parameter has its values stabilized at appedgly/around the mark of 20

images being processed by the algorithm. It casdem that a sufficient number
of images for floc object processing has been @isedur research seeing as the
mean number of the floc objects per image stalsilaearound the 20-images-

processed mark.
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CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

5.1 Overview

In the research documented by this dissertatiooritifigns have been
successfully developed for the segmentation of ftbe and filament objects
found in sludge of the activated sludge waste waitaztment process (WWTP)
plants. The algorithms developed are backgroumhithation invariant and give
good segmentation results. An average Dice coefftoralue of 71.85% has been
obtained for the floc segmentation algorithm fooqassing the samples while for

the filament segmentation algorithm a value of 6%8has been obtained.

Correlation between the results of digital imagmethods and the results
of more established physico-chemical methods @e séen to be existent and
high in value in quantitative analysis. Similardishapes from digital imaging
method against laser particle sizing method grapdyred Pearson’s correlation
coefficient values larger than 0.8 in 5 of 6 sampbeocessed indicating high
similarity. The highly matching line shape is akseen in the graph of image
analysis against total suspended solids plus imagalysis method. In

morphological parameter analysis, when analysedithehlly, the morphological
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parameter values considered in the dissertatiomdoh floc object did not seem
to be correlated with each other in patterns tlginge according to the SVI
values; however, when analysed as whole by takiegaiverage values for all
objects first divided into 3 size class divisiordahen undivided, data trends that

correlated well to the SVI index values have beeseoved.

5.2 Future Work Recommendations

Future work should consider and analyse more mdogital parameters
such as fractal dimension for the discovery of ghlyi probable similar

correlation pattern in existence.

Lab-scale set up that allows for control of thektaonditions is also
highly useful to allow for a controllable and widange of SVI values which in
the current study is being determined by the sthtthe wastewater treatment

plant being visited for sludge sample collection.

To gain clearer microscopic visualizations of rwily the floc and
filament objects but also of other microscopic oigms, sample staining
procedures may be considered and conducted imtage acquisition procedures

of future studies.
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APPENDIX A

Matlab Programming Code

%% Floc Algo

gvl = imread('snap-01.jpg");qv2 = imread('shappag);

gv3 = imread('snap-03.jpg’);qv4 = imread('snapged);

gvs = imread('snap-05.jpg’); %And more...

qv ={qv1,qv2,qv3,qv4,qv5,qv6,qVv7,...
gv8,qv9,qv10,qv1l,qvl2,qvl3,qvl4,...
gv15,qv16,qv17,qv18,qv19,qv20,qv21,...
qv22,qv23,qv24,qv25,qv26,qv27,qv28};
qv29,qv30,qv31,qv32,qv33,qv34,qv35,...
qv36,qv37,qv38,qv39,qv40,qv41,qv42};

gvii = {qv43,qv44,qv45,qv46,qv47,qv48,qv49, ...
gvb0,gqv51,qv52,qv53,qv54,qv55,qvoe, ...
qv57,qv58,qv59,qv60,qv61,qv62,qv63, ...
gv64,qv65,qv66,qv67,qv68,qv69,qv70};
qv71,qv72,qv73,qv74,qv75,qv76,qv77, ...
qv78,qv79,qv80,qv81,qv82,qv83,qv84, ...
qv85,qv86,qv87,qv88,qv89,qv90,qv91l};

for x=1:35
hmin0{1,x} = imhmin(qv{1,x},50);
% figure,imshow(hminO{1,x});
end
for x=36:60
hmin0{1,x} = imhmin(qvii{1,x-35},50);
% figure,imshow(hminO{1,x});

end
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for x=1:60

meddd{1,x} = medfilt2(hmin0{1,x},[25 25]);
% figure,imshow(meddd{1,x},'Border",tight');
end

h = fspecial('average', [50 50));

for x=1:60

averaged{1,x} = imfilter(meddd{1,x},h,'replicate’);
end

for x=1:35

nb8{1,x}=im2uint8(niblack(averaged{1,x}, [500 50010.2, 5));

end

for x=36:60

nb8ii{1,x-35}=im2uint8(niblack(averaged{1,x}, [50800], -0.2, 5));

end

for x=36:60
borderclred{1,x}= ~imclearborder( ~nb8ii{1,x-35}nel
for x=1:35

borderclred{1,x}= ~imclearborder( ~nb8{1,x});end

for x=1:60

aroped{1,x}=bwareaopen (~borderclred{1,x},2457);%%9
% % figure,imshow(~aroped{1,x},'Border’,'tight’);

end

%% floc analysis

clear flcareacell flcroundnesscell flcformfactotcdlcEqdiacell flcconvexitycell
flcvolume EdRAFfCv;

flcLlEgDia=0; flcLRoundness=0; flclFormFactor=@1lfLonvexity=0; flclDenom=0;
flc2EqDia=0; flc2Roundness=0; flc2FormFactor=@2fConvexity=0; flc2Denom=0;
flc3EqDia=0; flc3Roundness=0; flc3FormFactor=@3fConvexity=0; flc3Denom=0;
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fferror=0;
kforcorr=1;
catobjs=0;
numflocacc=0;

allimg_volumetotal=0;

allimg_flocarea=0;

for y=1:55

flcEdctg(1,y)=0;

end

=1

for x=1:55

CC = bwconncomp(aropedGT2{1,x});

Lfloc = labelmatrix(CC);

sfl
=regionprops(aropedGT2{1,x},'Area’,'MajorAxisLengtRerimeter','PixelList','Equiv

Diameter','ConvexArea’);
numflocacc=numflocacc+CC.NumObijects;
meanflocnum(1,j)=numflocaccij;

=i+

for k=1:CC.NumObjects
flcareacell{1,x}(1,k)=sfl(k).Area;

roundness(k) = 4*(sfl(k).Area)/pi/((sfl(k).MajordsLength)*2);
flcroundnesscell{1,x}(1,k)=roundness(k);

formfactor (k)= 4*pi* (sfl(k).Area)/ ((sfl(k).Pemeter)*2);
flcformfactorcell{1,x}(1,k)=formfactor(k);
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convexity(k)=sfl(k).Area/sfl(k).ConvexArea;
flcconvexitycell{1,x}(1,k)=convexity(k);

flcEqdiacell{1,x}(1,k)= sfl(k).EquivDiameter *0.839

flevolume{1,x}(1,k)= 4/3*pi*(.5*flcEqdiacell{1,x}(1,k))"3;
% flcsurfacearea{l,x}(1,k)= 4*pi*(.5*flcEqdiacellf,x}(1,k))"2;

allimg_volumetotal=allimg_volumetotal+flcvolume{3(4 ,k);

% allimg_surfacearea=allimg_surfacearea-+flcsurfiseadad ,x}(1,k);

allimg_flocarea= allimg_flocarea+sfl(k).Area;%*0 8®.839*2;

if sfl(k).EquivDiameter < (75/0.839)
flcLlEgDia=flc1EgDia+sfl(k).EquivDiameter *0.839
flclRoundness=flc1Roundness+roundness(k);
flcLFormFactor=flc1FormFactor+formfactor(k);
flc1Convexity=flc1Convexity+convexity(k);
flclDenom=flclDenom+1;

else if sfl(k).EquivDiameter < (150/0.839)
flc2EgDia=flc2EgDia+sfl(k).EquivDiameter *0.839
flccRoundness=flc2ZRoundness+roundness(k);
flczFormFactor=flc2FormFactor+formfactor(k);
flczConvexity=flc2Convexity+convexity(k);
flccDenom=flc2Denom+1;
else
flc3EgDia=flc3EgDia+sfl(k).EquivDiameter *0.839
flc3Roundness=flc3Roundness+roundness(k);
flc3FormFactor=flc3FormFactor+formfactor(k);
flc3Convexity=flc3Convexity+convexity(k);
flc3Denom=flc3Denom+1,
end

end
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if formfactor(k)>1
ffmorethanl1{1,x}(1,k)=formfactor(k);
fferror=fferror+1;
end
EdRdFfCv(kforcorr,1)=sfl(k).EquivDiameter;
EdRdFfCv(kforcorr,2)=roundness(k);
EdRdFfCv(kforcorr,3)=formfactor(k);
EdRdFfCv(kforcorr,4)=convexity(k);
kforcorr=kforcorr+1,

z=0;
y=1
while catobjs ~=(kforcorr)
if ficEqdiacell{1,x}(1,k)< 60+z
flcEdctg(1,y)=flcEdctg(1,y)+1; %plotting in absolute numbers
catobjs=catobjs+1;
else

z=z+10;y=y+1,

end
end

end

end

rho=corr(EdRdFfCv);

flclEqDia=flc1EqDia/flclDenom; flclRoundness=fladidness/flclDenom;
flclFormFactor=flclFormFactor/flc1lDenom;
flc1Convexity=flc1Convexity/flclDenom;

flc2EgDia=flc2EqDia/flc2Denom; flc2Roundness=flaaihdness/flc2Denom;
flc2FormFactor=flc2FormFactor/flc2Denom;

flc2Convexity=flc2Convexity/flc2Denom;
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flc3EgDia=flc3EqDia/flc3Denom; flc3Roundness=fla@ihdness/flc3aDenom;
flc3FormFactor=flc3FormFactor/flc3Denom;

flc3Convexity=flc3Convexity/flc3Denom;

%% floc analysis ii

clear diadenom plotdia plotpercentvolume plotcurogetvolume plotpercentnumber
plotcumpercentnumber plotrd plotff plotcv plotrdpeumber;

clear plotffpercnumber plotcvpercnumber

kforcorr=0;

for z=1:60
diadenom(1,z)= 0;
plotdia(1,z)=0;
plotpercentvolume(1,z)=0;
plotcumpercentvolume(1,z)=0;

% plotpercentsurfarea(1,z)=0;

% plotcumpercentsurfarea(1,z)=0;
plotpercentnumber(1,z)=0;

plotcumpercentnumber(1,z)=0;

end
for y=1:10
plotrd(1,y)=-0.05+y*0.1,;
plotff(1,y)=-0.05+y*0.1;
plotcv(1,y)=-0.05+y*0.1;
plotrdpercnumber(1,y)=0;
plotffpercnumber(1,y)=0;
plotcvpercnumber(1,y)=0;
end
i=0;
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for x=1:55

[Lfloc,numfloc]=bwlabel(aropedGT2{1,x});

for k=1:numfloc

objincat=0;
z=0;
y=1,

while objincat ~=1
if flcEqdiacell{1,x}(1,k)< 40+z
diadenom(1,y)=diadenom(1,y)+1,;
plotdia(1,y)=plotdia(1,y)+flcEqdiac€ll,x}(1,k);
plotpercentvolume(1,y)=plotpercentvoi(fhy)+flcvolume
{1,x}(1,k)/allimg_volumetotal*100;
% %
plotpercentfarea(1,y)=plotpercentfarea(l,y)+flaf@erea{1,x}(1,k)/allimg_facingare
a*100;
% %
plotpercentsurfarea(l,y)=plotpercentsurfarea(llgptifacearea{l,x}(1,k)/allimg_su
rfacearea*100;

plotpercentnumber(1,y)=plotpercentnur{thg)+1/numflocacc*100;

objincat=1;
else

z=z+10;y=y+1;
end

end

objincat=0;
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%
%
%

z=0;

y=1;

while objincat ~=1

if flcroundnesscell{1,x}(1,k)<0.1+z %&& flcEgjacell{1,x}(1,k)>=100
plotrdpercnumber(1,y)=plotrdpercnumbss(tl/numflocacc*100;

objincat=1;

else %if flcEqdiacell{1,x}(1,k)>=100
z=z+.1;y=y+1;%end

end
if flcEqdiacell{1,x}(1,k)<100

objincat=1;

end

end

objincat=0;

z=0;

y=1;

while objincat ~=1

if flcformfactorcell{1,x}(1,k)<0.1+z
plotffpercnumber(1,y)=plotffpercnumbey(;1/numflocacc*100;

objincat=1;

else
z=z+.1y=y+1;

end

end

objincat=0;

z=0;

y=1;

while objincat ~=1

if flcconvexitycel{1,x}(1,k)<0.1+z
plotcvpercnumber(1,y)=plotcvpercnumber({1/numflocacc*100;
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objincat=1;

else
z=z+.1y=y+1;
end
end
end
end
for y=1:60
if (y~=1)

plotcumpercentvolume(1,y)=plotcumgeatvolume(1,y-1)+
plotpercentvolume(1,y);
% % plotcumpercentsurfarea(l1,y)fplmpercentsurfarea(1,y-1)+
plotpercentsurfarea(l,y);
plotcumpercentnumber(1,y)=plotcurcpatnumber(1,y-
1)+plotpercentnumber(1,y);
else
plotcumpercentvolume(1,y)=0+ plotamntvolume(1,y);
% % plotcumpercentsurfarea(l,y)d0tqercentsurfarea(l,y);
plotcumpercentnumber(1,y)=0+ploteetnumber(1,y);
end

if plotdia(1,y)==0
plotdia(1,y)=25+y*10;
end

if diadenom(1,y)==0
diadenom(1,y)=1;
end

end
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for z=1:60
plotdia(1,z)= plotdia(1,z)/diadenona{l
end

%% filament algo

hminO=cell(1,91);

for x=[64:91] %1:4 5:14 15:35 1:21 22:42 43:63
% figure,imshow(qv{1,x},'border’,tight’);
hminO{1,x} = imhmin(qvii{1,x-42},30); %50
end

clear quii

% figure,imshow(hminO{1,x});

meddd=cell(1,91);

erod=cell(1,91);

binary=cell(1,91);

for x=[64:91] %1:4 5:14 15:35 1:21 22:42 43:63

meddd{1,x} = medfilt2(hmin0{1,x},[25 25]); %theroterod or to averaged

erod{1,x} = imerode(meddd{1,x},(strel('disk’,10))
%  figure,imshow(erod{1,x});
add{1,x}=imadd( (255-erod{1,x} ),nmin0{1,x});
binary{1,x}=im2bw(add{1,x},graythresh(add{1,x})); %
HoughTransform
% figure,imshow(binary{1,x},'border’,'tight’);
end

h = fspecial('average', [50 50));

averaged = cell(1,42);

for x=[22:42]%1:4 5:14 15:35 1:21 22:42

averaged{1,x} = imfilter(meddd{1,x},h,'replicate’);
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% figure,imshow(averaged{1,x});

end;

clear meddd

nb8 = cell(1,42);

for x=[22:42]%1:4 5:14 15:35 1:21 22:42
nb8{1,x}=im2bw(niblack(averaged{1,x}, [500 500], -B 5)); %im2uint8
% figure,imshow(nb8{1,x},'Border','tight’);

end;

dilatnb8 = cell(1,42);

addbin = cell(1,42);

for x=[22:42]%1:4 5:14 1:21 22:42
dilatnb8{1,x}=imdilate(~nb8{1,x},(strel('disk’,25));%210(old)
% figure,imshow(~dilatnb8{1,x},'Border’,'tight’);

addbin{1,x}=or(binary{1,x},dilatnb8{1,x});
% figure,imshow(binary{1,x},'border’,'tight’);
% figure,imshow(addbin{1,x},'Border','tight’);

end

Hlines=cell(1,91);
for x=[64:91] %1:4 5:14 15:35 1:21 22:42 43:59

[Houghmatrix, theta, rho] = hough( ~addbin{1,x});

Hpeaks = houghpeaks(Houghmatrix, 1000,threshid’,0

Hlines{1,x} = houghlines(~addbin{1,x}, theta, rhblpeaks);

figure,imshow(addbin{1,x} ,'Border",'tight’);
figure, imshow(addbin{1,x} ,'Border’,'tighthold on

for k = 1:length(Hlines{1,x})
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xy = [Hlines{1,x}(k).pointl; Hlines{1,x}(k).poin2];
plot(xy(:,1),xy(:,2),"-",'LineWidth’,1,'Colotfue");
%% % Plot beginnings and ends of lines
%plot(xy(1,1),xy(1,2),-s','LineWidth',1,'Color'¢ilow");
%plot(xy(2,1),xy(2,2),-s','LineWidth’,1,'Colorgd");
end

if x==1 ;export_fig testl.png -native
elseif x==2 ;export_fig test2.png -native
elseif x==3 ;export_fig test3.png -native
elseif x==4 ;export_fig test4.png -native
%
elseif x==5 ;export_fig test5.png -native
elseif x==6 ;export_fig test6.png -native
elseif x==7 ;export_fig test7.png -native
elseif x==8 ;export_fig test8.png -native
elseif x==9 ;export_fig test9.png -native
elseif x==10 ;export_fig test10.png -native
elseif x==11 ;export_fig testll.png -native
elseif x==12 ;export_fig test12.png -native
elseif x==13 ;export_fig test13.png -native
elseif x==14 ;export_fig testl4.png -native
elseif x==15 ;export_fig test15.png -native
%
elseif x==16 ;export_fig test16.png -native
elseif x==17 ;export_fig testl7.png -native
elseif x==18 ;export_fig test18.png -native
elseif x==19 ;export_fig test19.png -native
elseif x==20 ;export_fig test20.png -native
elseif x==21 ;export_fig test21.png -native

end
% and more...

end;
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imported = cell(1,91);
imported{1,1}=importdata (‘testl.png’);
imported{1,2}=importdata (‘test2.png’);
imported{1,3}=importdata (‘test3.png’);
imported{1,4}=importdata (‘test4.png’);
imported{1,5}=importdata (‘test5.png’);
imported{1,6}=importdata (‘test6.png’);
imported{1,7}=importdata (‘test7.png’);
imported{1,8}=importdata (‘test8.png’);
imported{1,9}=importdata (‘test9.png’);
imported{1,10}=importdata (‘test10.png’);
imported{1,11}=importdata (‘testll.png’);
imported{1,12}=importdata (‘testl2.png’);
imported{1,13}=importdata (‘test13.png’);
imported{1,14}=importdata (‘testl4.png’);
imported{1,15}=importdata (‘test15.png’);
imported{1,16}=importdata (‘test16.png’);
imported{1,17}=importdata (‘testl7.png’);
imported{1,18}=importdata (‘test18.png’);
imported{1,19}=importdata (‘test19.png’);
imported{1,20}=importdata (‘test20.png’);
imported{1,21}=importdata (‘test21.png’);
% and more...
importedgrayR = cell(1,91);
importedbinR = cell(1,91);
for x=[64:91] %1:4 5:14 15:35 22:42 43:59
imported{1,x}(:,:,2:3) = 0; %% activatgb red channel only(from white and
black to red and black)-- non-red using Areas idetliinto black object
% figure,imshow(imported{1,x},'border’,'tight’);
importedgrayR{1,x} = rgh2gray(imported{1,x});
% figure,imshow(importedgrayR{1,x},'border",'tight
importedbinR{1,x} = im2bw(importedgrayR{1,x},.2);
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% figure,imshow(importedbinR{1,x},'border’,'tight
end

imported{1,1}=importdata (‘testl.png’);
imported{1,2}=importdata (‘test2.png’);
imported{1,3}=importdata (‘test3.png’);
imported{1,4}=importdata (‘test4.png’);
imported{1,5}=importdata (‘test5.png’);
imported{1,6}=importdata (‘test6.png’);
imported{1,7}=importdata (‘test7.png’);
imported{1,8}=importdata (‘test8.png’);
imported{1,9}=importdata (‘test9.png’);
imported{1,10}=importdata (‘test10.png’);
imported{1,11}=importdata (‘testll.png’);
imported{1,12}=importdata (‘test12.png’);
imported{1,13}=importdata (‘test13.png’);
imported{1,14}=importdata (‘testl4.png’);
imported{1,15}=importdata (‘test15.png’);
imported{1,16}=importdata (‘test16.png’);
imported{1,17}=importdata (‘testl7.png’);
imported{1,18}=importdata (‘test18.png’);
imported{1,19}=importdata (‘test19.png’);
imported{1,20}=importdata (‘test20.png’);
imported{1,21}=importdata (‘test21.png’);
% and more...
importedgrayB = cell(1,91);
importedbinB = cell(1,91);
for x=[64:91] %1:4 5:14 15:35 1:21 22:42 43:59
imported{1,x}(:,:,1) = 0; imported{1,x}(:,:,2) = 0; %% activate rgb blue channel
only(from white and black to blue and black)-- ndoe using Areas included into
black object
% figure,imshow(imported{1,x},'border’,'tight’);
importedgrayB{1,x} = rgb2gray(imported{1,x});
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% figure,imshow(importedgrayB{1,x},'border’,'tight
importedbinB{1,x} = im2bw(importedgrayB{1,x},.1);
% figure,imshow(importedbinB{1,x},'border",'tigh
end

AfterHough = cell(1,91);

for x=[1:21] %1:4 5:14 15:35 22:42 43:59
AfterHough{1,x}=or(importedbinR{1,x},~importedbinB{,x});
% figure,imshow(AfterHough{1,x},'border",'tight');

end

memberA=cell(1,91);

memberB=cell(1,91);

for x=[64:91] %1:4 5:14 15:35 1:21 22:42 43:59

CC = bwconncomp(~AfterHough{1,x}); %-~binary{1,xjnd ~AfterHough{1,x}

L = labelmatrix(CC);

S = regionprops(~AfterHough{1,x},
'‘Area’,'MajorAxisLength’,'Perimeter’,'PixelListg@vDiameter’);%L

%

for k=1:CC.NumObjects

roundness(k)=0;

roundness(k) = 4*(s(k).Area)/pi/((s(k).MajorAxishgth)"2);

end

% area_values = [s.Area];

% idx1 = find (area_values > 550); %550 %'findtedmines the indices of array
elements that meet a given logical condition

idx0 = find ( roundness <= .15); %.025 for skeled

% memberB{1,x} = ismember (L,idx0) ;%& ismemberifx1) ;
memberA{1,x} = ismember (L,idx0) ;
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[Lm,numm] = bwlabel(member{1,x});

sm = regionprops(Lm, 'Area’);

for k=1:numm
allimg_filarea=allimg_filarea+sm(k).Area;

end

end

mergemem=cell(1,91);

for x=[64:91] %1:4 5:14 15:35 1:21 22:42 43:59
mergemem{1,x}=or(memberB{1,x},memberA{1,x});
figure,imshow(~mergemem{1,x},'border’,'tight’)

end

%% GROUNDTRUTHSEGMENT
%%%%//GROUNDTRUTHSEGMENT//%%% %

GT3g = rgb2gray(GT39);

GT3g = im2bw(GT3g,graythresh(GT3Q));

% GT2iigcropped = rgh2gray(GT2iigcropped);

% GT2iigcropped = im2bw(GT2iigcropped,graythreshigcropped));
% GT1m =rgb2gray(GT1m);

% GT1m = im2bw(GT1m,graythresh(GT1m));

%%%%EXxtract Black(Pos-Pos) Only
pairfree=imfuse(~mergememiii{1,55},GT3Q); figure smow(pairfree,'border’,'tight’);
pairfreegray = rgb2gray(pairfree); figure,imshow(fyaegray, border’,'tight’);
CorrectSegmented3gc = im2bw(pairfreegray,.2);
figure,imshow(CorrectSegmented3gc,'border','tight)  %21/2/3/... variable name

change
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pairfree(:,:,2:3) = 0; %% acteagb red channel only(from white and
black to red and black)-- green GT included intackl object

pairfreegrayR = rgb2gray(pairfree); %figure,imsiiparrfreegrayR,'border’,'tight’);
CorrectandUnderSeg3gc = im2bw(pairfreegrayR,.2); %
figure,imshow(CorrectandUnderSeg3gc,'border’,"tight
UnderSegmented3gc=~xor(CorrectSegmented3gc,CancidtalerSeg3gc); %
figure,imshow(UnderSegmented3gc,'border’,'tight’); %oUnderSegmented = green
region

% %

pairfree=imfuse(~mergememiii{1,55},GT3g); %RBING

pairfree(:,:,1) = 0O; pairfree(;,:;,;3) = 0; %% iaate rgb green channel only(from
white and black to red and black)--- pink segmeimtetided into black object
pairfreegrayG = rgb2gray(pairfree);

CorrectandOverSeg3gc = im2bw(pairfreegrayG,.2)%
figure,imshow(CorrectandOverSeg3gc,'border', fjght'
OverSegmented3gc=~xor(CorrectSegmented3gc,CordotanSeg3gc); %
figure,imshow(OverSegmented3gc,'border','tight’);  %OverSegmented = pink
region

%

CC = bwconncomp(~CorrectSegmented3gc); % 2 lingisce bwlabel; -
L = labelmatrix(CC);
ss =regionprops(~CorrectSegmented3gc, Area’);
for k=1:length(ss)
if k==1; AreaCorrectSegmented3gc=0;
else
AreaCorrectSegmented3gc=AreaCorrectSegmented3(k).Area;
end
end
%
CC = bwconncomp(~UnderSegmented3gc); % 2 linescedbwlabel; -
L = labelmatrix(CC);
ss =regionprops(~UnderSegmented3gc,'Area’);
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for k=1:length(ss)
if k==1; AreaUnderSegmented3gc=0;
else
AreaUnderSegmented3gc=AreaUnderSegmented3j§e+sea;
end
end
%
CC = bwconncomp(~OverSegmented3gc); % 2 lines cedavlabel; -
L = labelmatrix(CC);
ss =regionprops(~OverSegmented3gc,'Area’);
for k=1:length(ss)
if k==1; AreaOverSegmented3gc=0;
else
AreaOverSegmented3gc=AreaOverSegmented3g¢#asX;
end
end
%
%
AreaAllSegments3gc=AreaCorrectSegmented3gc+Areatbedenented3gc+AreaO

verSegmented3gc;

%MorphParValuelLabelling

% [Cell,Label]=bwboundaries(~aroped3,'noholes");

% sfl
=regionprops(Label,'Area’,'MajorAxisLength','Pertarg'PixelList’,'EquivDiameter’,’
ConvexArea');

% imshow(label2rgb(Label, @jet, [.5 .5 .5]))

% hold on

% numfloc=length(Cell)

% for k=1:length(Cell)

% roundness = 4*(sfl(k).Area)/pi/((sfl(k).MajorAst.ength)"2);

%

% metric_string = sprintf('%2.2f',roundness);
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%

% boundary = Cell{k}; % obtain (X,Y) boundagpordinates corresponding to
label 'k'

% text(boundary(1,2)-35,boundary(1,1)+13,mettiiing,'Color','k’,...

% 'FontSize',10,'FontWeight','bold");

% end
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