

DEVELOPMENT OF PROGRAM FLOWCHART DRAWING TOOL

WONG KHAI MENG

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering

(Hons.) Software Engineering

Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

May 2016

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it

has not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature :

Name :

ID No. :

Date :

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “DEVELOPMENT OF PROGRAM

FLOWCHART DRAWING TOOL” was prepared by WONG KHAI MENG has

met the required standard for submission in partial fulfilment of the requirements for

the award of Bachelor of Science (Hons.) Software Engineering at Universiti Tunku

Abdul Rahman.

Approved by,

Signature :

Supervisor :

Date :

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2016, Wong Khai Meng. All rights reserved.

v

DEVELOPMENT OF PROGRAM FLOWCHART DRAWING TOOL

ABSTRACT

Novices faced extreme difficulties when trying to learn programming. Despite

having numerous advanced Integrated Development Environments (IDEs) available,

the learning process was still slow and difficult for them. This project was conducted

to produce a learning tool targeted at programming novices in order to minimize the

difficulties of the learning process. As flowchart drawing was part of the learning

process, this project aimed to introduce the basic concepts of programming through

the construction of flowcharts using a flowchart drawing tool. As a result of this

project, a flowchart drawing tool was produced. The developed tool featured several

core components, namely flowchart project loading and saving, flowchart printing,

flowchart construction, variable declaration, flowchart execution, source code

generation, as well as undo and redo performed actions. Then, evaluation was

performed on the developed tool by targeted users to solve the prepared questions

before feedback was elicited from them. In conclusion, the developed tool was able

to allow the participants to create flowcharts and simplify the learning process of

preliminary programming skills.

vi

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF SYMBOLS / ABBREVIATIONS xiii

LIST OF APPENDICES xiv

CHAPTER

1 INTRODUCTION 1

1.1 Background 1

1.1.1 Problem Statement 2

1.1.2 Proposed Approach/Solution 4

1.2 Aims and Objectives 4

1.2.1 Goals 4

1.2.2 Objectives 5

1.2.3 Project Scope 5

1.3 Conclusion 6

2 LITERATURE REVIEW 7

2.1 Introduction 7

2.2 Existing Flowchart Drawing Tools 7

2.2.1 Progranimate 8

vii

2.2.2 RAPTOR 11

2.2.3 ProGuide 14

2.2.4 Iconic Programmer 17

2.2.5 FLINT 19

2.2.6 SICAS 22

2.2.7 B# 24

2.2.8 Comparison 27

2.3 Proposed Features 28

2.4 Existing Development Methodologies 28

2.4.1 Agile Development (Feature Driven Development)

 29

2.4.2 Iterative and Incremental Development 32

2.4.3 Rapid Application Development (RAD) 33

2.4.4 Spiral Development 33

2.5 Existing Software Platforms 34

2.5.1 Windows Forms (WinForms) 34

2.5.2 Windows Presentation Foundation (WPF) 37

2.5.3 JavaFX 39

2.6 Conclusion 43

3 PROJECT METHODOLOGY AND PLAN 44

3.1 Implementation of Chosen Development Methodology 44

3.1.1 Develop an Overall Model 44

3.1.2 Build a Features List 44

3.1.3 Plan by Feature 45

3.1.4 Design by Feature 45

3.1.5 Build by Feature 45

3.2 Implementation of Chosen Software Platform 45

3.3 Project Plan 46

3.4 Conclusion 47

4 PROJECT SPECIFICATIONS 48

4.1 Fact Finding 48

viii

4.1.1 Interview 48

4.1.2 Survey 49

4.2 User Requirements 50

4.2.1 Functional Requirements 50

4.2.2 Non-Functional Requirements 50

4.3 User Interface Design 51

4.3.1 Menu Bar 52

4.3.2 Toolbox 52

4.3.3 Variable Inspector 53

4.3.4 Console 53

4.3.5 Flowchart Designer 54

4.4 Storyboard 54

4.4.1 Scenario 1: Draw a Flowchart 54

4.4.2 Scenario 2: Create, Edit and Display Variable 55

4.4.3 Scenario 3: Execute Flowchart 55

4.4.4 Scenario 4: Generate Source Code 55

4.5 Use Case Modelling 55

4.5.1 Use Case Diagram 55

4.5.2 Use Case Descriptions 56

4.6 FDD Deliverables 57

4.6.1 Develop an Overall Model 57

4.6.2 Build a Features List 57

4.6.3 Plan by Feature 57

4.6.4 Design by Feature 58

4.7 Conclusion 61

5 PROJECT IMPLEMENTATION AND TESTING 62

5.1 Class Diagrams 62

5.2 Version Control 62

5.3 Testing 63

5.3.1 Unit Testing 63

5.3.2 User Testing 63

5.4 Conclusion 65

ix

6 CONCLUSION AND RECOMMENDATIONS 66

6.1 Contribution 66

6.2 Limitations 67

6.3 Future Enhancements 68

6.4 Conclusion 68

REFERENCES 69

APPENDICES 72

x

LIST OF TABLES

 TABLE TITLE PAGE

1.1 Existing Flowchart Drawing Tools and Their

Weaknesses 3

2.1 Comparison between Flowchart Drawing Tools 27

xi

LIST OF FIGURES

 FIGURE TITLE PAGE

1.1 Sample Flowchart 1

2.1 Progranimate Screenshot 9

2.2 RAPTOR Main Window Screenshot 12

2.3 RAPTOR Console Window Screenshot 12

2.4 ProGuide Screenshot 15

2.5 Iconic Programmer Screenshot 17

2.6 Top-Down Chart Design Screenshot 20

2.7 FLINT Screenshot 20

2.8 SICAS Screenshot 23

2.9 B# Screenshot 26

2.10 FDD Project Lifecycle 29

2.11 Design Area Screenshot 35

2.12 Code-behind Screenshot 36

2.13 Designer Screenshot 36

2.14 XAML Design Area Screenshot 38

2.15 Code-behind Screenshot 38

2.16 FXML Document Screenshot 40

2.17 FXML Document Controller Screenshot 41

2.18 JavaFX Application Screenshot 41

xii

2.19 JavaFX Scene Builder Screenshot 42

3.1 Project Plan (a) 46

3.2 Project Plan (b) 46

4.1 User Interface Design 51

4.2 Menu Bar 52

4.3 Toolbox 52

4.4 Variable Inspector 53

4.5 Console 53

4.6 Flowchart Designer 54

4.7 Use Case Diagram 56

4.8 Features List 57

4.9 Features List Development Plan 58

4.10 Flowchart Printing Sequence Diagram 58

4.11 Project Management Sequence Diagram 59

4.12 Flowchart Designing Sequence Diagram 59

4.13 Variable Management Sequence Diagram 60

4.14 Flowchart Execution Sequence Diagram 60

4.15 Source Code Generation Sequence Diagram 61

4.16 Action Reversal Sequence Diagram 61

5.1 Number of Commits per Week 63

xiii

LIST OF SYMBOLS / ABBREVIATIONS

API Application Programming Interface

CPU Central Processing Unit

CSS Cascading Style Sheets

FLINT Flowchart Interpreter

GDI/GDI+ Graphics Device Interface

GUI Graphical User Interface

HTML HyperText Markup Language

JRE Java Runtime Environment

IDE Integrated Development Environment

IT Information Technology

Mac OS Macintosh Operating System

MVC Model-View-Controller

OS Operating System

RAPTOR Rapid Algorithmic Prototyping Tool for Ordered Reasoning

RUP Rational Unified Process

SDLC Software Development Life Cycle

URL Uniform Resource Locator

VB6.0 Visual Basic 6.0

VB.NET Visual Basic .NET

WPF Windows Presentation Foundation

XAML eXtensible Application Markup Language

xiv

LIST OF APPENDICES

 APPENDIX TITLE PAGE

A Interview Questions 72

B Interview Replies 76

C Pre-Evaluation Survey Questions 81

D Pre-Evaluation Survey Results 84

E Evaluation Questions 90

F Post-Evaluation Feedback Questions 91

G Post-Evaluation Survey Results 93

H Storyboards 96

I Use Case Descriptions 101

J Class Diagrams 109

K Unit Tests 120

CHAPTER 1

1 INTRODUCTION

1.1 Background

A flowchart is a basic and fundamental diagram representing a procedural workflow

to exhibit and to convey information in a clear and logical manner. It was first

introduced in the 1940s when computers were only starting to be unveiled to the

world (Shneiderman, et al., 1977, pp.373-381). It is now widely used by people

across many fields, including education, business and sales. Figure 1.1 shows a

sample flowchart that displays the current value of the “count” variable for 5 times.

Figure 1.1: Sample Flowchart

2

In the education industry, particularly during the pursuit of IT knowledge,

students will definitely come across the usage of flowcharts to graphically display

the logical order for the flow of programs for ease of comprehension, and there were

studies conducted indicating that they are quite effective for visual learners in both

writing and comprehending algorithms (Hall, 2007, pp.110-111). Moreover, some

flowchart drawing tools may be utilised to let students obtain hands-on experience

whilst learning and they were also proven to be able to improve learning and

recalling more effectively (Xinogalos, 2013, pp.1313-1322).

With the advancement of technologies and the ever-expanding libraries of

numerous programming languages that are potential targets for developing this

product on, it has become increasingly easier to develop software with complex

functionalities. Currently, there are quite a number of software applications as well

as websites available online that provide flowchart drawing services, either free or

paid. The services provided range from basic shape drawings, available at websites

such as www.draw.io and www.gliffy.com, to educational flowcharts from

applications like Progranimate, Raptor, Flint, B#, BACCII, SFC Editor, SICAS,

ProGuide and Iconic Programmer (Xinogalos, 2013, pp. 1313-1322), to high-level

flowcharts used in businesses, such as swimlane flowcharts, event-driven process

chain diagrams, workflow diagrams, process map and many others (SmartDraw, n.d.).

This project proposes a new flowchart drawing tool designed specifically for

students as they learn the programming fundamentals. The tool will feature an

interactive and user-friendly interface. Students could be able to draw flowcharts,

animate the flowchart, generate source code, create variables and declare data types

using the tool.

1.1.1 Problem Statement

Students with no prior knowledge of programming as well as having a weak logical

thinking would face a hard time to understand the fundamentals of programming.

Additionally, students are also vulnerable in the algorithmic problem solving aspects

3

of programming involving the basics of sequence selection and iteration (Scott, n.d.).

Although the existing education system incorporated the usage of flowcharts, they

are written on paper and are static, which does not provide any assistance in

improving comprehension in neither the dynamic nature of program execution nor

the control structures (Xinogalos and Satratzemi 2004, pp. 60-65). This can be

related to the time when I was just starting to learn the fundamentals of programming,

whereby the usage of flowcharts in my studies is limited.

When flowcharts were introduced to the learning process, I was taught to

write and to memorize the symbols with their usage and was required to mentally

walk through the processes of the flowcharts to validate their correctness. This was

hard to conduct as when there are many variables that require mental tracking, I

tended to lose track of the current values that they contain. Moreover, as my

understanding of data types and variables was still weak back then, I may have

created syntactically incorrect statements as I may have accidentally combined

variables of different data types together when I should not have did it.

Even though there are currently quite a number of existing tools available for

drawing flowcharts, there are some flaws in them that disrupt the entire learning

process for the programming fundamentals. Table 1.1 shows a list of the existing

flowchart drawing tools along with their weaknesses.

Table 1.1: Existing Flowchart Drawing Tools and Their Weaknesses

Weakness Flowchart Drawing Tools

No longer supported FLINT

Provides only basic flowchart drawing
www.draw.io, www.gliffy.com, Microsoft

Visio

Not available for free

BACCII, BACII++, B#, FLINT,

ProGuide, SICAS, SICAS-COL, H-

SICAS, Microsoft Visio

Not available in English language
Flowchart, Portugol IDE, Visual

Flowchart

Automatic source code generator

unavailable
FLINT, ProGuide

Flowchart symbols are not common

symbols

BACCII, BACII++, B#, Iconic

Programmer

Program animation unavailable BACCII, BACII++, SFC Editor

Universal data type RAPTOR, Iconic Programmer

4

Thus, this project is to create a flowchart drawing tool targeted at students

that unifies the strengths and eliminates the weaknesses of the existing tools.

1.1.2 Proposed Approach/Solution

The proposed solution is the development of a desktop tool that provides students the

ability to swiftly draw flowcharts in an interactive GUI. Besides that, it will feature

flowchart execution and display the current values and outputs of the flowchart. Then,

the tool could provide instant feedback whenever any syntax error or data type

mismatch occurred while designing the flowchart. Next, it will feature the ability to

generate the flowchart’s equivalent in pseudocode or source codes, such as C or C++

languages.

1.2 Aims and Objectives

1.2.1 Goals

This project aims to produce a flowchart drawing tool that could be used by students

to draw flowcharts and to simplify as well as to improve the process of learning

preliminary programming skills.

5

1.2.2 Objectives

This project aims to produce a flowchart drawing tool with the following objectives:

 To display the process flow of the program created by students.

 To evaluate the usefulness and effectiveness of the tool produced.

 To validate the accuracy of algorithms devised by students to solve their

problems

 To improve effectiveness of drawing flowcharts, by reducing error rates

while drawing flowcharts

 To improve efficiency of drawing flowcharts, by saving time in the drawing

of flowcharts

 To incorporate core programming principles, such as variable declarations,

data types, control structures, and correct programming syntax

 To provide the ability to execute visual programs, similar to coded programs

 To provide the ability to generate the designed flowchart’s equivalent in

program code.

1.2.3 Project Scope

This project is targeted at students with no programming background who are

currently learning the basics of programming. This project aims to create a flowchart

drawing tool that could assist students during flowchart training sessions. The tool

will feature an interactive GUI, where students could perform drag-and-drop

operations to create flowchart symbols in flowcharts.

The tool would also feature flowchart execution in one go in order to display

the values of variables and outputs produced by the designed flowchart. This allows

students to easily determine whether the flowchart produced behaved exactly as they

expected, or worked incorrectly due to inaccurate flowchart symbols being inserted

or mistakes in the statements produced. Additionally, the tool will also provide

6

instant visible feedback on any syntax errors produced during the flowchart setup.

Whenever there are any data type mismatches or invalid operators being used in any

flowcharts’ statements, the tool would notify the user about the issues produced and

prevent the statements from being updated until they are resolved. Moreover,

incorrect variable naming conventions will also prevent the students from creating

the variables until they conform to the required syntax.

The tool would also be able to generate and display the designed flowcharts’

equivalent in source code. This enables students to view and learn the syntax of

writing the source code of specific programming languages easily. The source code

that would be supported is C++. Additionally, the source codes produced would be

syntactically correct and are able to be copied and executed in an IDE to view as well

as to verify the outputs.

The scope of this project will not include the implementation of advanced

flowchart symbols like functions, and nested decisions, nested loops and loops in

decision statements due to time constraints and complexity. Moreover, the tool will

also not include the generation of other source codes from the flowcharts produced,

such as pseudocode, Java and C#. Besides that, variables with array data types will

not be included as well, as it is slightly too advanced for novices.

1.3 Conclusion

There are many difficulties faced by novice programmers when they start to learn the

programming fundamentals. Although there are existing tools that were designed to

tackle the problems, most of these tools still lack features to cover all the basic

knowledge required by students to advance to the next stage in programming. Thus,

this project is designed to produce a new flowchart drawing tool that fulfils the

requirements for learning basic programming.

7

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

In this chapter, only existing flowchart drawing tools that have the program

animation ability, a feature that executes the flowchart like a normal program, were

studied and evaluated extensively. Literature review was done by including well-

known and well-cited papers, as well as conducting fact finding with lecturers and

students. On top of that, a table of comparison was produced to compare and contrast

between the existing flowchart drawing tools. Additionally, suitable development

methodologies and development platforms were compared and contrasted.

2.2 Existing Flowchart Drawing Tools

Currently, there are several flowchart drawing tools that are developed for educating

novices on the fundamentals of programming. They are aimed at making the initial

stages of programming easier for novices by removing the complexities linked to

professional development environments and syntax writing, allowing them to focus

solely on the algorithmic problem solving of programming (Scott, n.d.). Then, these

tools enable users to create a simple yet complete program using just flowchart

representations alone. For novice programmers, this is vital as most of them could

comprehend program algorithms more easily using visual representations rather than

looking through program code (Hall, 2007, pp.110-111).

8

2.2.1 Progranimate

Progranimate is an interactive and dynamic visualisation programming tool targeted

towards novice programmers (Scott, n.d.). It emphasizes on enabling novices to

focus solely on their key weakness, which is the algorithmic problem solving aspects

of programming involving the basics of sequence selection and iteration (Scott, n.d.).

Progranimate is developed by Dr Andrew Scott, an assistant professor from the

University of Western Carolina.

Development Environment

Progranimate is developed in the Java programming language. It is free and can

either be installed as a stand-alone application or deployed over the Internet via

either Java web start or Java applet, removing the hassles of requiring installation of

applications into the local computers of users, but requiring an installation of the JRE

to continue.

Progranimate can be run on multiple operating systems, including Windows

and Mac OS, as it is platform independent. This makes it available for use anywhere

regardless of the operating systems of the computers that the novice programmers

possess.

Progranimate employs the imperative-procedural programming technique to

teach novices on the fundamentals. Additionally, Progranimate uses both drag-and-

drop functionality and code modification to produce flowcharts.

 Progranimate is separated into 3 major sections, with the flowchart and its

symbols positioned at the left, the code generator in the middle and the variable and

array inspectors at the right. The flowchart acts as the visual metaphor to visualize

the programming and execution process while the code generator will display the

syntactically correct code for the related programming language. Then, the variable

inspector is used to keep track on the variables declared and their respective values in

9

the project while the array inspector is used to record all the values of the arrays.

Figure 2.1 shows a screenshot of Progranimate.

Figure 2.1: Progranimate Screenshot (Scott, n.d.)

Features

Progranimate uses common flowchart symbols when designing flowcharts. Besides

that, different flowchart symbols are displayed using different colors. This allows for

easier distinction between flowchart symbols, thus reducing confusion and making it

easier to locate the key functionalities of the program and the algorithm modelled in

Progranimate (Scott, Watkins and McPhee, 2008b, pp.1-6).

Progranimate supports the ability to automatically generate source code

simultaneously with flowcharts when symbols are being added and removed. This

provides novices with the chance to learn about the syntax for the produced symbols’

10

equivalent in source codes. Progranimate provides support on a range of languages,

including Java-like pseudocode, Java, VB.NET, VB6.0, Pascal and JavaScript.

Progranimate offers the uniqueness of being able to perform synchronization

between the flowchart and the source code generated by highlighting both the

currently focused flowchart symbol with its related row in the source code. This

feature enables novices to learn and to recognize easily the source code and the

syntax required to be written in order to perform the expected results as produced

through creating the flowchart symbol.

Progranimate provides the ability to animate program flow by enabling

flowchart execution. When the program is executed, the currently executing line of

code and its relative flowchart representation are both highlighted simultaneously to

notify that they will be the ones being executed next. Besides that, the execution of

the program could be paused to allow manual execution. During the execution of the

program, the variable inspector will be keeping tabs on the variables that have been

declared along with their current values up until that point. In this way, novices could

observe the changes that would occur on the variables affected when the next

statement of the program is executed.

Progranimate also supports the declaration of variables and arrays in specific

data types, such as integer, double, character, string and boolean. For arrays, the size

and possible initial values that they may contain could also be set.

Limitations

Amongst the list of codes that could be generated, Progranimate fails to feature the

ability to generate codes in C or C++ language, which are also popular choices for

teaching the fundamentals of programming. Additionally, as it is developed in the

Java language, the execution speed of the tool will be slower than other tools

developed in C++ and C# language (Scott, Watkins and McPhee, 2008a, pp.498-508).

11

Evaluation

There were initial studies conducted on 185 students ranging from high school to

undergraduate studies to assess the usefulness of Progranimate. Based on the

preliminary findings, Progranimate was shown to be effective in all of the three

categories being evaluated on, namely usability, efficacy and problem solving

exercises (Scott, Watkins and McPhee, 2008b, pp.1-6).

2.2.2 RAPTOR

RAPTOR is a free flowchart-based programming environment designed specifically

to assist novices in algorithm visualization (Carlisle, et al., 2005, pp.176-180). It

allows novices to create algorithms just by utilising and compositing basic flowcharts

symbols. RAPTOR is developed through collaboration efforts between Martin

Carlisle, Terry Wilson, Jeffrey Humphries and Steven Hadfield from the Department

of Computer Science at the United States Air Force Academy, and is currently

maintained by Professor Martin Carlisle.

Development Environment

RAPTOR employs both the imperative-procedural and object-oriented programming

techniques, whereby the former is targeted at novice and intermediate programmers

while the latter is targeted at experienced programmers. It uses drag-and-drop

functionality to modify the symbols of the flowchart. It is developed in a

combination of programming languages, including Ada and C#, and runs as part of

the .NET Framework. It can be run only on the Windows operating system, but it

could also be executed in the Ubuntu operating system, albeit with some features

removed due to compatibility issues.

12

 RAPTOR is separated into two windows, with one being the main window

and the other being the console window. In the main window, the flowchart symbols

and variable inspector are visible on the left column while the rest of the space is

occupied by the flowchart being designed. The console window is used to display the

outputs produced from the executing flowchart. Figures 2.2 and 2.3 show the

screenshots of the main window and console window of RAPTOR respectively.

Figure 2.2: RAPTOR Main Window Screenshot

Figure 2.3: RAPTOR Console Window Screenshot

13

Features

RAPTOR has several built-in functions and features that generates random numbers,

perform trigonometric calculations, manipulating time functions, drawing graphics

and interfacing with pointing devices (Xinogalos, 2013, pp. 1313-1322).

Additionally, it supports an auto-completion feature in creating procedure calls and

provides the ability to develop additional procedures that could be called similar to

built-in procedures (Xinogalos, 2013, pp. 1313-1322). Besides that, RAPTOR

enforces syntax checking during the construction of flowcharts, thus preventing the

creation and execution of a syntactically incorrect program.

RAPTOR supports the ability to generate syntactically correct source code

for the flowchart produced. The range of languages it could generate includes Ada,

C#, C++ and Java. Moreover, additional languages could be supported by developing

a C# class for the other languages.

RAPTOR also offers the uniqueness of being able to create comments on the

flowchart directly. When comments are created, they appear as “talking bubbles”

next to the flowchart symbols that they were created for.

RAPTOR allows program animation through flowchart execution, similar to

Progranimate. It highlights the currently executing flowchart with a different colour,

enables manual walkthrough of the program and supports tracking of value for the

variables declared in the program.

Limitations

RAPTOR has the concept of creating weakly typed variables, whereby the same

variable used to store a value in one specific data type, could also be used to store a

value in another data type. This will prevent novices from learning the concept of

declaring strongly typed variables, which is also part of the core in understanding

programming.

14

Evaluation

An initial assessment on RAPTOR was done on three consecutive semesters of a

course in the US Air Force Academy during the years 2003 to 2004. The result of the

assessment showed that RAPTOR was more effective in developing problem solving

capabilities and understanding flow of control in students (Xinogalos, 2013, pp.

1313-1322). However, when one of the exams taken by the students required the

usage of arrays, students’ performance was bad because arrays in RAPTOR were

declared implicitly (Carlisle, Wilson, Humphries and Hadfield, 2005, pp. 176-180).

2.2.3 ProGuide

ProGuide is an educational environment designed to support students in problem

solving activities (Areias and Mendes, 2007, p. 89) and it uses a tutoring system

model (Xinogalos, 2013, pp.1313-1322). It is a dialogue based tool to support

weaker students to create basic algorithms by interacting with students during

program development (Areias, Mendes and Gomes, 2007). ProGuide is a product

from the joint efforts of Cristiana Areias, Antonio Mendes and Anabela Gomes. It is

developed partly based on inspiration obtained during the previous development of a

flowchart tool, SICAS by their research group (Areias, Mendes and Gomes, 2007).

Development Environment

ProGuide adapts its environment to the imperative-procedural approach in its

flowchart design, similar to Progranimate and RAPTOR. ProGuide creates the

flowchart by selecting the desired flowchart symbols and clicking on the round grey

circle found between flowchart symbols to add them.

ProGuide is divided into three main sections, namely the problem statement,

the editor and simulator, and text based communication. The problem statement on

15

the top left corner of the window shows the problem for the exercise that the students

are trying to solve after they selected an exercise from a range of customized

questions in the tool. The editor and simulator on the right half of the window is a

user-friendly iconic space that supports the design of algorithms using flowcharts

(Areias, Mendes and Gomes, 2007). The text based communication on the left

bottom corner of the window provides help, encouragement and guidance to students

when they are designing algorithms by way of hints, examples and questions to

trigger their reasoning skills (Areias, Mendes and Gomes, 2007). Figure 2.4 shows a

screenshot of ProGuide.

Figure 2.4: ProGuide Screenshot (Areias, Mendes and Gomes, 2007)

Features

ProGuide is preloaded with example problems and solutions that could be solved by

students as a means of learning programming algorithms. During the entire phase of

completing the examples chosen, students are guided by the communication

integrated in ProGuide that could slowly develop problem solving habits in students.

Whenever the editor and simulator detect any wrong design in the flowchart, the

communication will notify students by providing warnings and hints.

16

Similar to Progranimate and RAPTOR, ProGuide offers the ability to animate

flowchart execution. It highlights the currently executing flowchart by changing its

background colour and supports tracking of value for the variables declared.

ProGuide also enables students to read information regarding similar

problems or programming concepts by suggesting them. The built-in information

includes texts and examples in flowcharts that could be simulated, allowing better

understanding of the concept being explained (Areias, Mendes and Gomes, 2007).

Limitations

ProGuide does not emphasize on the concept of variable declaration. Variables are

declared on the fly and data types for them are implicitly declared, similar to

RAPTOR.

 ProGuide could not generate source codes. This is a major setback as students

could not easily relate between the flowchart symbols with sections of codes if they

are looking at the flowchart’s equivalent in codes for the same example. Next,

ProGuide is not available for use freely.

Evaluation

There was no assessment or evaluation conducted on the effectiveness of ProGuide

as a flowchart drawing tool.

17

2.2.4 Iconic Programmer

Iconic Programmer is an interactive tool that allows programs to be developed in the

form of flowcharts through a graphical and menu-based interface (Chen and Morris,

2005, pp. 104-107).

Development Environment

Iconic Programmer employs the imperative-procedural programming techniques for

its environment as it is targeted at novices. Iconic Programmer presents a single

window with an initial flowchart having a start and end symbols connected by a line

with a yellow square box in the middle between them. New flowchart symbols are

added by clicking on the box and selecting the type of statement to be inserted,

namely sequence, selection or repetition. After selection, users are presented with

several menus to decide on the actions that the flowchart symbol will do. When

flowchart symbols are created, they are not the common symbols used in flowcharts,

and the texts that appear on the symbols are only the actions that they will do, not the

entire statement itself. Figure 2.5 shows a screenshot of Iconic Programmer.

Figure 2.5: Iconic Programmer Screenshot (Chen and Morris, 2005, pp. 104-107)

18

Features

Iconic Programmer supports the ability to generate syntactically correct source code

for the flowchart produced. The languages it supports include pseudocode, C/C++,

Java and Turing.

Iconic Programmer offers the uniqueness of creating statements through the

use of menus instead of requiring users to create whole statements themselves.

Iconic Programmer also allows program animation through flowchart

execution in a step by step manner, similar to other tools, by highlighting the

currently executing flowchart symbol. During the program animation, explanations

in natural language are provided to explain on the variables’ values.

Limitations

As Iconic Programmer is designed to allow students to focus on the design and

development of algorithms, it does not provide syntax checking. Thus, whenever

students produced syntax errors but could execute the statements, they may

automatically assume that they actually created correct statements.

 Flowcharts developed in Iconic Programmer use text instead of common

symbols to indicate the actions of the symbols. This will cause complication in

students when they are drawing flowcharts during exams or some other situations

that use common symbols as they may be accustomed to the format of Iconic

Programmer.

 Only one data type for variables could be declared, which is the integer data

type. Even if they are not explicitly declared, they are implicitly declared by having

needed to store values that are of integer type.

19

Evaluation

Although Iconic Programmer was used by students in several courses in the past,

there was no proper assessment or evaluation conducted on it.

2.2.5 FLINT

FLINT is a visual development environment that facilitates the construction of top-

down design charts and the implementation and simulation of algorithms as

flowcharts (Crews and Ziegler, 1998, pp. 307-312). It presents programming to

students as activities surrounding design, implementation, testing and debugging

(Crews and Ziegler, 1998, pp. 307-312). It was developed to address problems

regarding syntax, problem solving and support for program execution in a unified

manner (Crews and Ziegler, 1998, pp. 307-312).

Development Environment

FLINT employs the imperative-procedural approach and uses the concept of creating

icons to develop flowcharts. This enables students to concentrate on pondering for

ways to solve the problem by hiding low-level details from them (Crews and Ziegler,

1998, pp. 307-312).

 FLINT is separated into two windows, a structure chart and the flowchart

interface itself. The structure chart is a division of a problem into major steps, where

each step will have its own flowchart that will be designed in the following flowchart

interface. In order to be able to develop a flowchart for a process, FLINT requires the

students to produce a structure chart, which will include the process. Then, in the

flowchart interface, the flowchart for the process is designed. Both the structured

chart and flowchart designs are created and modified by clicking on the desired

20

buttons that perform the different functions needed. Figures 2.6 and 2.7 show the

screenshots of the structure chart and the flowchart interface of FLINT respectively.

Figure 2.6: Top-Down Chart Design Screenshot (Crews and Ziegler, 1998, pp.

307-312)

 Figure 2.7: FLINT Screenshot (Crews and Ziegler, 1998, pp. 307-312)

21

Features

FLINT provides the ability to develop structure charts that provide the complete

picture of the whole system before the development of flowcharts. This is useful as it

emphasizes to students the importance of problem solving and design activities that

they should thought of first before they initiate the implementation of the program

(Crews and Ziegler, 1998, pp. 307-312).

FLINT allows program animation through manual flowchart execution,

similar to the other more advanced tools. It highlights the currently executing

flowchart and supports tracking of value for the variables declared in the program.

Limitations

FLINT is not freely available to use. Besides that, it does not provide the ability to

generate syntactically correct source codes. Additionally, it does not support data

type declaration for the variables that are created.

Evaluation

An experiment was carried out on the usefulness of structured flowcharts in

programming. The results produced showed that they were beneficial to students in

terms of reducing time needed to comprehend structured flowcharts, fewer errors,

greater confidence and less time required to answer questions and preference of

flowcharts as complexity increases (Xinogalos, 2013, pp.1313-1322).

22

2.2.6 SICAS

SICAS is an educational tool developed to assist in the learning of the basic concepts

of programming (Mendes, et al., 2005, pp.193-197). It allows designing of

algorithms through flowchart and execution of the produced algorithms by students.

This tool is developed by Antonio Mendes, Anabela Gomes, Micaela Esteves, and

Maria Marcelino from Portugal, as well as Crescencio Bravo and Miguel Redondo

from Spain.

Development Environment

SICAS employs the imperative-procedural approach for its flowchart algorithm. It

has two modes, a teacher mode and a student mode. In the former mode, teachers

could introduce problems to be solved by students and possibly providing solutions

to those problems, while in the latter mode, students will create their own algorithms

to solve the questions given, and compare their answers with the solutions provided,

if any (Marcelino, Mihaylov and Mendes, 2008, pp.T4A-7).

 SICAS is separated into four major sections, namely the toolbar dock, the

main content area, the variables and functions tabs, and the problem and console tabs.

The toolbar dock located near the top of the window contains the buttons of

structures utilised in the creation of the flowchart and the buttons for execution

purposes. The main content area located in the middle displays the flowchart to be

modified. The variables and functions tabs found on the middle right of the window

displays the variables and functions declared that could be used by the algorithm.

The problem and console tabs are located on the bottom, with the former showing the

current problem required to be solved, and the latter used to receive inputs and

display outputs. Figure 2.8 shows the screenshot of SICAS.

23

Figure 2.8: SICAS Screenshot (Gomes and Mendes, n.d.)

Features

SICAS supports algorithms for simple instructions, such as assignments, input or

output, repetition and selection instructions (Marcelino, Mihaylov and Mendes, 2008,

pp.T4A-7). Then, variables of numeric, string and array data types could be declared

and are tracked under the Variables pane.

To construct the flowchart, flowchart elements could be added by clicking

one of the elements in the toolbar dock and pointing at the flowchart (Marcelino,

Mihaylov and Mendes, 2008, pp.T4A-7). Besides that, they could be removed,

copied or modified at any point in time.

SICAS also provides the uniqueness of allowing its users to produce self-

defined functions in order to introduce them to the concept of modularization

(Marcelino, Anabela, Dimitrov and Mendes, 2004, pp8-6). Functions are also

constructed using the same algorithms and there are also pre-defined functions for

24

number and string manipulation (Marcelino, Anabela, Dimitrov and Mendes, 2004,

pp8-6).

SICAS automatically translates the produced flowchart algorithm into its

equivalent in pseudocode, C or Java code. Besides that, simulation of the algorithm

could be performed, with its users being able to control the simulation speed, to

pause the simulation, and to return and repeat certain simulation events (Marcelino,

Anabela, Dimitrov and Mendes, 2004, pp8-6).

Limitations

SICAS is not available to be used. Then, the symbol containing the decision

condition in SICAS does not conform to the common flowchart symbols syntax as it

uses a hexagon instead of a diamond.

Evaluation

SICAS was evaluated by both the programming lecturers as well as students, and the

overall response is quite positive. Lecturers liked the graphical interface, the

availability of functions, data type specifications for variable declarations and on top

of these, the algorithm simulation is highly welcomed (Marcelino, Anabela, Dimitrov

and Mendes, 2004, pp8-6).

2.2.7 B#

B# is an experimental iconic programming notation designed to provide initial

technological support in the learning of introductory programming (Cilliers, Calitz

and Greyling, 2005, pp.543-576). It provides an integrated visual environment in

25

order to enhance the learning experience of students in introductory programming

courses (Cilliers, Calitz and Greyling, 2005, pp.543-576). It was developed by the

Department of Computer Science and Information Systems at the Nelson Mendela

Metropolitan University in South Africa as a response to the challenge of increasing

throughput in introductory programming courses (Cilliers, Calitz and Greyling, 2005,

pp.543-576).

Development Environment

B# employs the imperative-procedural technique in the construction of its flowchart.

The flowchart being constructed uses a top-down single-sequence structure of icons

connected by lines (Cilliers, Calitz and Greyling, 2005, pp.543-576).

 B# consists of six sections, namely the development environment toolbox,

debugging toolbox, icon palette, flowchart editing area, variable declaration and

display area, and source code area. The development environment toolbox contains

the actions needed to manage the application, the debugging toolbox stores the

controls needed to animate the program, the icon palette contains the flowchart icons,

the flowchart editing area displays the flowchart being designed, the variable

declaration and display area keeps track of declared variables as well as displays the

program animation outputs, and the source code area displays the corresponding

source code of the constructed flowchart. Figure 2.9 shows the interface for B#.

26

Figure 2.9: B# Screenshot (Cilliers, Calitz and Greyling, 2005, pp.543-576)

Features

B# uses uncommon flowchart icons for its flowchart. Then, it supports the basic

fundamental algorithmic constructs of sequence, selection and iteration (Xinogalos,

2013, pp.1313-1322).

To construct the flowchart, flowchart icons are added by selecting one of the

icons from the icon palette and pointing at the desired position in the flowchart.

When the icons are added into the flowchart, a dialog box pops up for the

configuration of the properties required by the added icon (Cilliers, Calitz and

Greyling, 2005, pp.543-576).

B# provides the ability to animate the flowchart and also allows tracing

through the execution. Then, syntactically correct Borland Pascal source code is

generated alongside the constructed flowchart in the source code area.

27

Limitations

An empirical study was conducted in 2003 at Nelson Mendela Metropolitan

University on 59 first year students, and it was discovered that the performance of

the students is significantly improved with the inclusion of B# (Xinogalos, 2013,

pp.1313-1322).

Evaluation

SICAS was evaluated by both the programming lecturers as well as students, and the

overall response is quite positive. Lecturers liked the graphical interface, the

availability of functions, data type specifications for variable declarations and on top

of these, the algorithm simulation is highly welcomed (Marcelino, Anabela, Dimitrov

and Mendes, 2004, pp8-6).

2.2.8 Comparison

Table 2.1 shows a comparison between the existing flowchart drawing tools analysed

based on their available features.

Table 2.1: Comparison between Flowchart Drawing Tools

Tool Progranimate RAPTOR ProGuide
Iconic

Programmer
FLINT SICAS B#

Available

freely

Imperative-

procedural

technique

Object-

Oriented

technique

Flowchart

Design

Method

Drag-and-
drop

flowchart,

modify code

Drag-and-

drop
flowchart

Select icon

and add
Context menu

Buttons and

textboxes

Select icon

and add

Select icon

and add

Common

flowchart

symbols

 (Except

Decision)

Program

animation

28

Source code

generation

Target OS

Platform

Any (With

Java support)
Windows Windows Windows Windows Windows Windows

Evaluation

Special

features

Synchronized

flowchart and
source code

execution

Allows

development
of more

source code

generators,
flowchart

commenting

Uses a

tutoring
system

model

Natural

language
explanation

of flowcharts

Requires
step-wise

refinement

of
structured

flowchart

in problem
solving

Has
lecturer

mode and

student
mode, and

supports

backward
stepping

-

2.3 Proposed Features

In the proposed tool, it was conceptualized to contain the following significant

features:

 Project Management (create, load and save flowchart projects)

 Flowchart Printing (print flowchart)

 Flowchart Designing (add and remove flowchart symbols)

 Variable Management (create, edit and delete variables with data types)

 Flowchart Execution (execute flowchart to animate program)

 Source Code Generation (automatically generate syntactically correct source

code from designed flowchart)

 Action Reversing (undo and redo added and removed flowchart symbols)

2.4 Existing Development Methodologies

During the development of software products, one or more suitable software

methodologies are implemented in order to maximize development efficiency. The

development methodologies to be discussed are considered better than the traditional

waterfall methodology.

29

2.4.1 Agile Development (Feature Driven Development)

Agile development is a methodology that emphasizes on flexibility, proper planning,

early prototyping and continuous improvement of the prototypes produced. With this

methodology, software is developed in small, incremental cycles, whereby after each

cycle, prototypes with extra functionality are added until a complete product is

produced. As there are several processes under agile development, the specific

process that will be focused on is Feature Driven Development (FDD).

 FDD is a process that emphasizes on the progression of project development

through the features of the system to be developed. Features are the source of

requirements for FDD, similar to the way use cases and storyboards are to RUP and

Scrum respectively (Ambler, 2014). Figure 2.8 shows the five main activities of FDD

that are performed iteratively.

Figure 2.10: FDD Project Lifecycle (Ambler, 2014)

2.4.1.1 Develop an Overall Model

This process involves constructing an object model that highlights the domain

problem. Small groups are used to create detailed domain models, which are then

presented for peer reviews in order to obtain either one or a combination of proposed

30

models for use in each area of the domain (Lawton, 2015). The overall model is then

produced when these models merged over time.

2.4.1.2 Build a Features List

Using knowledge learnt during the modelling process, domains are sliced into

subject areas that contain information on business activities to establish a features list

(Lawton, 2015). A categorised list of features is represented by the steps used for

each business activity. Then, all the features are expressed in the form of “<action>

<result> <object>”. The features are expected to be completed within two weeks,

but in the event that any feature took longer than that duration, it is broken down in

smaller sections (Lawton, 2015).

2.4.1.3 Plan by Feature

Once the features list is properly established, programmers are assigned to handle

various feature sets (Lawton, 2015). This is done by way of creating the development

plan for the features with the assigned programmers.

2.4.1.4 Design by Feature

A design package for each feature is then produced and a chief programmer will then

select a group of features that should be developed within the available timeframe

(Lawton, 2015). Additionally, detailed diagrams for each feature are also created by

the chief programmer when the model refinement is underway (Lawton, 2015). After

that, prologues are produced and design inspection is conducted (Lawton, 2015).

31

2.4.1.5 Build by Feature

When design inspections are over, designers plan the activity for each feature and

develop the code for each respective class (Lawton, 2015). Finally, the completed

feature is combined with the main build after a successful code inspection and unit

test (Lawton, 2015).

Advantages

Agile development promotes higher customer satisfaction due to more frequent and

continuous delivery of functional software prototype with incremental additions of

functionality. Then, high interaction between customers and developers improves

customer confidence, as customers are aware of the progress of the software.

 Minor changes in the requirements during development are acceptable as it is

easy to adapt the prototype to the new requirements. Additionally, testing is

conducted during every iteration of the project life cycle, minimizing the likelihood

of bugs in the software.

Disadvantages

For some software deliverables, especially large-scale deliverables, it is difficult to

evaluate the amount of effort needed at the start of the SDLC (ISTQB Exam

Certification, n.d.). Then, there is a lack of design and documentation during the

commencement of the project.

 The deliverables for the project may not be accurate as there is a possibility

that the customer representative is unsure about the actual outcome expected from

the software (ISTQB Exam Certification, n.d.a). Additionally, Agile is unsuitable to

32

be executed by junior programmers as they lack the skill and experience for the

decision-making process required during development.

2.4.2 Iterative and Incremental Development

Iterative and incremental development is a methodology that is focused on the

gradual increment of software features along with a repetitive release and

improvement cycle. It is involved in the development and integration of various

software features at various times as well as the revision of the features in order to

improve on them.

Advantages

Firstly, the end products developed are highly representative of the expected

products required by clients as demonstration and adjustment of the functionalities of

the products are conducted during every iteration of the project. Next, the

complexities and risks of the projects are contained to enable the development team

to continuously review and adapt the projects to the changing requirements. The risk

of any delays in the project is minimized as core tasks of the project are completed

first.

Disadvantages

The implementation of this methodology requires developers with excellent technical

expertise and discipline in order to be able to conduct it effectively. Then, there will

be a high maintenance cost as errors unknown since the beginning of the project life

cycle will be improved through maintenance (UK Essays, 2013).

33

2.4.3 Rapid Application Development (RAD)

RAD is a methodology where components of software are developed in parallel as if

they are mini-projects (ISTQB, n.d.b). Working prototypes are swiftly produced in

order to gain feedback regarding the accuracy of the features in the prototypes with

the requirements.

Advantages

Firstly, RAD reduces project risk as there is a high involvement of client and

feedback during every iteration of the project cycle, increasing customer confidence

and product acceptance. Then, better quality software is produced, whereby it is

more usable and focuses more on the business issues faced by customers instead of

technical issues faced by developers.

Disadvantages

For low-cost and small-scale projects, implementing RAD is inefficient as the cost of

modelling and automated code generation is very high (ISTQB, n.d.b). Next, RAD

requires highly skilled developers and designers. Without them, the design and

quality of the software produced will be very poor.

2.4.4 Spiral Development

Spiral development combines the concept of iterative development and the emphasis

on risk analysis. It is mainly used in large-scale and expensive projects as these

projects are of high risk.

34

Advantages

Spiral development helps in providing better risk management as risky components

could be developed earlier in the project cycle, thus minimizing project risk. Apart

from that, new functionalities could be added later during the project cycle without

conflicting with the original requirements.

Disadvantages

The risk analysis conducted in this methodology requires extremely expert

individuals. Additionally, the projects’ successes are highly dependent on the risk

analysis phase, which puts more emphasis on the need to have experts conducting the

risk analysis. Then, it is possible that the spiral may continue indefinitely due to the

lack of good change discipline.

2.5 Existing Software Platforms

There are currently several potential platforms that the flowchart drawing tool could

be developed with and deployed on. Each platform has its own advantages and

disadvantages, and it is imperative that the most suitable platform is selected in order

to ensure the success in the completion and delivering of this project.

2.5.1 Windows Forms (WinForms)

WinForms is a GUI class library in the Microsoft .NET framework. It enables

developers to create rich client-based desktop applications in the Windows OS.

WinForms is event-driven, whereby it is idle during most of its lifetime while

waiting for user input.

35

Development Environment

Development using WinForms primarily involves the following areas, the design

area of a form class, the code-behind of the design area, and the designer of the form

class. The design area is the place where user interface controls from the toolbox are

added directly into the form shown, allowing developers to view the layout of the

controls on the form during design time instead of during runtime. The attributes and

events of the each control could be configured through the “Properties” window

when the control is currently being selected in the design area. The code-behind of

the design area handles the logic for all the controls in the form and is primarily the

location for developers to create development codes. The methods for handling

events of controls will appear here, whereby developers will need to write their own

codes to handle the event raised. The designer is the place that stores the

configuration codes for the controls in a form and links the events of controls to their

respective methods. The codes here are automatically generated every time a

configuration is made in the “Properties” window for any controls. Figures 2.11, 2.12

and 2.13 show the design area, code-behind and designer screenshots respectively.

Figure 2.11: Design Area Screenshot

36

Figure 2.12: Code-behind Screenshot

Figure 2.13: Designer Screenshot

Advantages

WinForms provides minimal functionality of user interface elements and events.

Additionally, as WinForms has existed for a long period of time, it contains many

libraries that support a diverse amount of functionalities that may be required by

37

developers. Then, docking support is also available that allows controls to

automatically rearrange when placed in a parent. Next, impaired users could utilise

WinForms more easily, thanks to the support of Microsoft Active Accessibility.

Limitations

WinForms is currently under maintenance mode, whereby it will receive no extra

features, but will continue to obtain bug fixes from Microsoft. Then, WinForms

controls are drawn using GDI+, which may cause software to behave strangely or

become unresponsive when the maximum limit of GDI objects is achieved.

2.5.2 Windows Presentation Foundation (WPF)

WPF is a flexible subsystem designed for rendering Windows-based desktop

applications with rich user experience by acting as a GUI framework. WPF utilises

Microsoft DirectX instead of GDI, which is an older graphics rendering API.

Development Environment

Development in WPF primarily involves the eXtensible Application Markup

Language, XAML design area and the code-behind for it. XAML is a declarative

markup language based on XML used to develop application user interfaces, and the

XAML design area is a place where controls could be added to the user interface

either through writing XAML codes or by dragging and dropping controls from the

toolbox onto the user interface display available as part of the design area. The

attributes for the controls could be configured either through the writing XAML

codes, by setting the attributes in the “Properties” window similar to WinForms, or

through the user interface display, which could only set certain attributes. However,

38

configuring attributes through the “Properties” window or the user interface display

will always automatically generate related XAML codes into the XAML design area.

Any modifications made in any one of these 3 areas will immediately update the user

interface display.

The code-behind for XAML will contain the code logic for the events of all

controls created as well as any other development logic produced by the developer.

Figures 2.14 and 2.15 display the XAML design area and code-behind screenshots

respectively.

Figure 2.14: XAML Design Area Screenshot

Figure 2.15: Code-behind Screenshot

39

Advantages

The usage of GPU in graphics rendering reduces CPU workload and speeds up

screen refreshes. Next, the introduction of XAML allows separation of GUI from

business logic, which resembles the good practices of a model-view-controller (MVC)

pattern.

 Type conversion in XAML, a method that converts a line of string to a target

type, allows values of controls’ properties to accept a line of string in a specific

format unique to each property instead of creating the same values for the properties

using multiple lines of XAML codes, making the XAML codes more compact and

streamlined.

Customized controls called “User Controls” could be created from scratch

using XAML for reuse in the application without the need to purchase new controls.

Besides that, the availability to create templates for controls and reuse them across

multiple controls also promotes reusability and reduces duplicated codes.

Limitations

WPF requires huge amount of design work done manually by developers. Besides

that, any additional dependency properties required for “User Controls” need to be

manually registered and this may lead to a bloated amount of codes when many

additional dependency properties are added.

2.5.3 JavaFX

JavaFX is a software platform for developing desktop applications and web

applications. It is designed to replace Swing, a GUI widget toolkit for Java, in

providing interactive ways for developers to design GUIs.

40

Development Environment

Development in JavaFX involves typically 3 types of files, the FXML Document, the

FXML Document Controller and the JavaFX Application. The FXML Document is

the place where the user interface of the application is created. Controls are created

and added to the application by typing in the related control’s codes with its

attributes. The FXML Document Controller is the code-behind for the FXML

Document and it handles the implementation logic for the controls. The JavaFX

Application acts as the starting point for the execution of the application, whereby it

creates and displays the user interface for the application. Figures 2.16, 2.17 and 2.18

show the FXML Document, FXML Document Controller and JavaFX Application

Screenshot respectively.

Figure 2.16: FXML Document Screenshot

41

Figure 2.17: FXML Document Controller Screenshot

Figure 2.18: JavaFX Application Screenshot

42

Advantages

Applications developed using JavaFX is platform-independent as the JavaFX uses

native code. Thus, any platform that supports Java could run applications developed

in JavaFX. Next, JavaFX has CSS support, and HTML as well as JavaScript could be

integrated into JavaFX applications.

Limitations

The client computers running JavaFX applications require the installation of JRE.

Next, JavaFX is still a maturing technology, as it lacks a lot of features available in

other platforms and frameworks. Then, the designing of the user interface only

displays the structure of the interface in codes. In order to design the user interface

visually, another application called JavaFX Scene Builder needs to be installed. This

application will automatically generate FXML codes for the controls created visually

in an FXML file, which could be used with a JavaFX project. Figure 2.19 shows the

screenshot for the JavaFX Scene Builder

Figure 2.19: JavaFX Scene Builder Screenshot

43

2.6 Conclusion

Many existing tools that were produced were due to the realization that the current

methodology of learning for novice programmers is difficult, time-consuming and

contains irrelevant information that is inappropriate at the current level of learning.

Based on the analysis conducted, the best candidates currently available to be utilised

to teach basic programming to novices are RAPTOR and Progranimate. Thus, the

features to be included flowchart drawing tool to be developed will mainly reference

the features available in these two programming environments.

44

CHAPTER 3

3 PROJECT METHODOLOGY AND PLAN

3.1 Implementation of Chosen Development Methodology

For this project, the chosen development methodology was Agile, and the process

selected to be utilised was Feature Driven Development (FDD).

3.1.1 Develop an Overall Model

Class diagrams of the tool to be developed were produced to represent the models

and the relationships between the models of the system. Moreover, attributes and

operations were also included along with the class diagrams.

3.1.2 Build a Features List

A list of features for the tool was created to provide a general view of all the

available actions that could be performed by users when they are using the tool.

45

3.1.3 Plan by Feature

A development plan based on the features listed in the features list was produced.

The features were planned for development in a sequential manner, but some features

may overlap and start before the development on the current feature is completed.

3.1.4 Design by Feature

When every feature becomes active, a sequence diagram will be produced for each of

them. Besides that, the design for the features and the object model may be refined

and updated over time due to small changes in the tool.

3.1.5 Build by Feature

Each feature is coded and implemented into the tool. By the end of this phase, a tool

with the newly working feature is completed.

3.2 Implementation of Chosen Software Platform

For this project, the selected software platform for the development of the flowchart

tool is WPF, and the development environment to be utilised is Microsoft Visual

Studio.

 Throughout the entire development, the MVC architectural pattern will be

implemented to segregate the model classes, business logics and user interfaces that

will be created. Then, the availability of user controls in WPF enables flowchart

symbols to be created as custom controls that could be dynamically created easily.

46

3.3 Project Plan

Figures 3.1 and 3.2 display the entire project plan.

Figure 3.1: Project Plan (a)

Figure 3.2: Project Plan (b)

47

In Project 1 shown in Figure 3.1 and partly shown in Figure 3.2, the requirements,

analysis and specifications of the project were planned. Then, in Project 2, the

project plan included the development of the proposed solution in phases based on

features, the types of testing involved and the production of the final project report.

3.4 Conclusion

FDD is an appropriate methodology for the progression of the development of this

project. The separation of features enables incremental additions be made to a

functional prototype and reduces the scope when detecting errors.

 WPF is the suitable platform for development mainly because of its flexibility

over other platforms, as it allows easy designing of user interfaces and creations of

“User Controls” by letting developers have more control during development.

48

CHAPTER 4

4 PROJECT SPECIFICATIONS

4.1 Fact Finding

4.1.1 Interview

Email interview was conducted with 3 lecturers who taught students learning the

fundamentals of programming. The lecturers were provided questions to gauge their

knowledge about the current state of learning of students and the existence of

flowchart drawing tools, as well as their opinions on the usefulness of the proposed

flowchart drawing tool based on its user interface. The interview questions are shown

in Appendix A, and the interview results are shown in Appendix B.

 Based on the interview conducted, several conclusions could be drawn.

Firstly, lecturers expected students to create flowcharts by hand, and they do face

some difficulties when drawing flowcharts and writing codes. Then, among several

basic programming concepts, variables and data types were considered easy to

students, while control structures and functions were deemed difficult to be

comprehended. In the context of flowchart and its symbols, they were perceived to

be neither hard nor easy for understanding.

 2 of the 3 interviewees did know of the existence of flowchart drawing tools

that could be suitable for use by students during their studies, yet they feel that those

tools could be improved on. Then, for the visual evaluation of the proposed tool’s

user interface, it was suggested to be informative and directional as new users of the

49

tool did not know the location to begin to learn to use the tool. However, all

interviewees held hopes that the proposed tool may be able to improve the quality of

learning among students.

4.1.2 Survey

The survey was utilised to gather information from the students about their learning

process on the fundamentals of programming. A total of 9 students completed the

survey. The survey questions are found in Appendix C, and the replies are found in

Appendix D.

 Based on the analysis conducted on the survey replies, several conclusions

could be drawn. Firstly, 55.6% or 5 students found it to be easy to learn

programming, while 3 students found it to be difficult and the rest neutral. Then, in

contrast with the perspective of lecturers, more than half, or 67% of students did use

applications to create flowcharts, with only the rest of them drew by hand. When

asked about the difficulty of constructing flowcharts using the selected methods, they

averaged a neutral rating. The problems commonly faced when using those methods

were mainly them being too time-consuming and for tools, they also involved

confusing interfaces.

 When asked about the improvements that they hoped to see in the tools

chosen, the main priority was on having a more user-friendly interface, with the rest

going to automatic source code generation. Additionally, among the programming

basics that the participants learnt, the decision control structure was surprisingly

rated the easiest followed by data types, with the rest revolving around the neutral

mark. Lastly, when asked about the importance of having certain features in a

possible future flowchart drawing tool, the participants rated high importance on

almost all of them, with the exception of variables and data type declaration,

whereby it obtained a more neutral score than the others.

50

4.2 User Requirements

The user requirements of the proposed tool are separated into functional and non-

functional requirements. The term “user” refers to the user of the proposed tool, and

the term “system” refers to the proposed tool.

4.2.1 Functional Requirements

1. User shall be able to create project.

2. User shall be able to load project.

3. User shall be able to save project.

4. User shall be able to execute flowchart.

5. User shall be able to print flowchart.

6. User shall be able to add symbol.

7. User shall be able to edit symbol.

8. User shall be able to remove symbol.

9. User shall be able to generate source code.

10. User shall be able to add variable.

11. User shall be able to edit variable.

12. User shall be able to delete variable.

13. User shall be able to undo action.

14. User shall be able to redo action.

4.2.2 Non-Functional Requirements

1. The tool shall be able to execute in Windows XP and above with no

compatibility issue.

2. The tool shall be able to execute with .NET 4.5.2 and above with no

compatibility issue.

3. The tool shall validate user input for expressions.

51

4. The tool shall validate user input for statements.

5. The tool shall validate user input for variables.

6. The tool shall prevent user from undoing removed Decision and Loop

symbols.

7. The tool shall prevent user from executing flowchart with insufficient inputs.

8. The tool shall prevent user from loading incorrect project file.

4.3 User Interface Design

The user interface design of the proposed tool is separated into several sections,

namely the menu bar, toolbox, variable inspector, console and the flowchart designer.

Figure 4.1 shows the user interface design of the tool.

Figure 4.1: User Interface Design

52

4.3.1 Menu Bar

The menu bar consists mainly of actions and shortcuts that are important to the utility

of the flowchart drawing tool. It supports actions such as the standard create, load

and save project, print flowchart, undo and redo actions, flowchart execution, source

code generation and the user guide. Figure 4.2 shows the menu bar.

Figure 4.2: Menu Bar

4.3.2 Toolbox

The toolbox stores the various types of flowchart symbols required during the design

of flowcharts. The symbols available include assignment, input or output, decision,

counter-controlled, pre-test and post-test loops. Figure 4.3 displays the toolbox.

Figure 4.3: Toolbox

53

4.3.3 Variable Inspector

The variable inspector keeps track on the variables declared and used in the designed

flowchart. Each value of the declared variables will only show the latest assigned

value from the executed flowchart. Most importantly, the variable inspector supports

the creation of variables when needed and the removal of variables when unused.

Figure 4.4 shows the variable inspector.

Figure 4.4: Variable Inspector

4.3.4 Console

The console contains two tabs, the Input Window tab and the Console Window tab.

The former is used to receive all the inputs required for the execution of flowcharts,

while the latter displays the outputs from the execution of flowcharts. Figure 4.5

displays the console.

Figure 4.5: Console

54

4.3.5 Flowchart Designer

The flowchart designer contains the flowchart that is currently being constructed.

Initially, the flowchart will consist of a start symbol and an end symbol connected

with an arrow. Figure 4.6 shows the flowchart designer.

Figure 4.6: Flowchart Designer

4.4 Storyboard

4.4.1 Scenario 1: Draw a Flowchart

This scenario was triggered when a user wants to draw a flowchart. For example, a

user wants to design a flowchart to display the value of 1 + 2. The storyboard for this

scenario could be found at Appendix H.1.

55

4.4.2 Scenario 2: Create, Edit and Display Variable

This scenario was triggered when a user wants to create, edit and display a variable

in the flowchart. For example, a user wants to design a flowchart to create a variable

named “a”, to store the result of 1 + 2 into “a” and to display the value of “a”. The

storyboard for this scenario could be found at Appendix H.2.

4.4.3 Scenario 3: Execute Flowchart

This scenario was triggered when a user wants to execute a flowchart. For example,

the user wants to execute the flowchart created from Scenario 2 to view the results.

The storyboard for this scenario could be found at Appendix H.3.

4.4.4 Scenario 4: Generate Source Code

This scenario was triggered when a user wants to generate the C++ source code of a

flowchart. For example, the user wants to generate the source code of the flowchart

created from Scenario 2. The storyboard for this scenario could be found at

Appendix H.4.

4.5 Use Case Modelling

4.5.1 Use Case Diagram

A use case diagram for the flowchart drawing tool was created. Figure 4.7 depicts the

use case diagram for the proposed tool.

56

uc Use Case Model

Flowchart Drawing Tool System

Student

Create

Variable

Declare Data

Type

Generate

Source Code

Assumptions:

1. Source code means either pseudocode or program code.

Execute

Flowchart

Drag-and-Drop

component

Create project

Sav e project

Remov e

symbol

Load project

Undo Action

Redo Action

Print

Flowchart

Delete

Variable

Edit Variable

Edit symbol

Add symbol

«include»

«include»

Figure 4.7: Use Case Diagram

4.5.2 Use Case Descriptions

Each of the use case shown in the use case diagram was elaborated in more detail in

each of their respective use case descriptions. The use case descriptions could be

found at Appendix I.

57

4.6 FDD Deliverables

4.6.1 Develop an Overall Model

The overall domain model of the system is separated into 3 parts due to the high

number of classes involved. They could be found in Appendix J, Figure 1 to Figure 3.

4.6.2 Build a Features List

There were a total of seven features in the features list. They were project

management, flowchart printing, flowchart designing, variable management,

flowchart execution, source code generation and action reversing. Figure 4.8 shows

the features list for the proposed flowchart drawing tool.

uc Features List

Features List

Project

Management
Flowchart Designing

Flowchart

Execution
Flowchart Printing Source Code

Generation

Variable

Management
Action Rev ersing

Figure 4.8: Features List

4.6.3 Plan by Feature

When producing the development plan for phases based on features, core

functionalities of the system, such as flowchart drawing, were prioritized and

developed first compared to usability functionalities like flowchart printing. Figure

4.9 displays the development plan for all the features listed in the features list.

58

Figure 4.9: Features List Development Plan

4.6.4 Design by Feature

The sequence diagrams for all the features in the features list were produced. Figures

4.10 to 4.16 display all the sequence diagrams for the features.

sd Flowchart Printing Sequence Diagram

Student

MainWindow View

ConfigureAndPrint()

OpenPrint()

ShowDialog()

Print()

Figure 4.10: Flowchart Printing Sequence Diagram

59

sd Project Management Sequence Diagram

Student

MainWindow View Project Controller

Save()

Save(data)

Save()

CreateProject(fi lename)

LoadData()

Create(fi lename)

ReturnData(data)

Load(fi lename)

CreateAndSave(fi lename)

LoadProject(fi lename)

ResetApplication()

SaveProject()

UpdateFlowchart(data)

Figure 4.11: Project Management Sequence Diagram

sd Flowchart Designing Sequence Diagram

Student

MainWindow View Flowchart

Controller

StatementController

RemoveStatement()

Remove()

UpdateData()

EditSymbol()

InsertSymbol()

UpdateDisplay()

AddSymbol()

UpdateAlignment()

RemoveSymboll()

DeleteSymbol()

UpdateLinks()

UpdateStatement()

Figure 4.12: Flowchart Designing Sequence Diagram

60

sd Variable Management Sequence Diagram

Student

MainWindow View VariableController

RemoveVariable(name)

UpdateVariable(name, datatype)

AddVariable()

CreateVariable()

UpdateDisplay()

UpdateDisplay()

RemoveVariable()

Update()

UpdateDisplay()

EditVariable()

CreateVariable(name, datatype)

RemoveVariable()

Figure 4.13: Variable Management Sequence Diagram

sd Flowchart Execution Sequence Diagram

Student

MainWindow View Execution

Controller

UpdateConsoleOutputs()

ExecuteAll()

GenerateCodes()

UpdateVariableValues()

ExecuteCodes()

ConfigureConsole()

ExecuteAll()

Figure 4.14: Flowchart Execution Sequence Diagram

61

sd Source Code Generation Sequence Diagram

Student

MainWindow View Source Code

Controller

DisplayCodes()

GenerateCode(type)

ReturnCodes(code)

Generate(type)

GenerateCode(type)

Figure 4.15: Source Code Generation Sequence Diagram

sd Action Rev ersal Sequence Diagram

Student

MainWindow View Action Controller

UpdateDisplay()

Revert()

RevertAction(type)

RevertAction(type)

Figure 4.16: Action Reversal Sequence Diagram

4.7 Conclusion

A user interface design, storyboard and use cases for the system to be developed

were produced. Then, the results for the first 4 non-development stages of the FDD

process were also shown.

62

CHAPTER 5

5 PROJECT IMPLEMENTATION AND TESTING

5.1 Class Diagrams

The overall class diagram for the developed tool was created in three diagrams with

only the classes’ names due to the high number of class involved. Then, all the

classes with attributes and operations were created separately. The class diagrams

could be found at Appendix J.

5.2 Version Control

During development, a source control management system was utilised to keep track

on changes made to the source code over time up until completion. The source

control management system used was Git. To ensure the changes made to Git were

more secure, a private repository was created in addition to the local repository in the

computer developing the tool. This was to ensure that there was still a backup

repository that could be accessed on other computers should any issues occur on the

current computer being used to develop the tool. On top of that, the local repository

could be reverted to the original state stored in the private repository if any local

changes that occurred and were committed were to be discarded. Figure 5.1 shows

the number of commits for each week, starting from the week of 30 May until the

week of 14 August.

63

Figure 5.1: Number of Commits per Week

5.3 Testing

5.3.1 Unit Testing

Unit testing was conducted on the developed tool to reduce the number of bugs in the

system and to ensure vital areas of the system work as normal. MSTest was the unit

testing framework utilised to create and execute the unit tests for the system. There

were a total of 92 unit tests created, and they were grouped into 6 distinct categories.

The unit tests could be found at Appendix K.

5.3.2 User Testing

A total of 6 students who just learnt the fundamentals of programming conducted

user testing on the developed flowchart drawing tool. The students were mainly first

year students pursuing a degree course in Software Engineering in UTAR. They were

given a survey to be filled up before they started evaluating the tool. Evaluation of

the tool involved familiarizing themselves with the tool and attempting to solve the

evaluation questions provided. After they completed the evaluation, they were asked

to provide feedback about the developed tool on an evaluation form.

64

5.3.2.1 Evaluation Process

During the evaluation process, participants were provided two questions in which

they had to attempt to solve using the flowchart drawing tool developed. The first

question involved warming up the participants on utilising the tool to perform basic

actions on the application, while the second question involved introducing to them

other functionalities that the tool could perform. The questions for the evaluation are

found in Appendix E.

5.3.2.2 Evaluation Feedback

Feedback was gathered from participants who evaluated the developed tool in order

to obtain insights about the tool. The feedback questions asked involved retrieving

the degree in which the developed tool fulfilled the proposed features listed, the

strengths and shortcomings, and any additional feedback about the tool. The

feedback questions could be found at Appendix F.

 Based on the analysis conducted on the feedback obtained, the user interface,

flowchart design process, variables and data type declaration, and source code

generation were fulfilled by the developed tool, while flowchart execution, flowchart

project management as well as flowchart undo and redo actions were more neutral as

these were not very clear and obvious in the tool. However, when asked about the

likeable features available in the tool, source code generation topped the responses,

followed by undo and redo actions, and flowchart creation. When asked about the

least adored features in the tool, undo and redo actions topped the responses, slightly

contradicting the previous result indicating it being the next best feature adored by

participants. The user interface of the tool also topped this question, suggesting that

there was a lack of information and instruction to users to guide them through the

features of the tool.

65

5.4 Conclusion

The final class diagram for the developed tool was produced. The version control

system used throughout the development was also included along with screenshots of

all the commits created. Additionally, user testing was carried out to verify and

validate the tool created to ensure the features developed were the required

specifications of its target end-users.

66

CHAPTER 6

6 CONCLUSION AND RECOMMENDATIONS

6.1 Contribution

At the end of this project, a flowchart drawing tool was produced. The flowchart

drawing tool was able to fulfil all of the objectives stated earlier in the project, as

shown in the following:

1. To display the process flow of the program created by students.

(A flowchart designed by the students could be displayed in the tool to show

the program flow.)

2. To evaluate the usefulness and effectiveness of the tool produced.

(The tool was evaluated by students who were newly exposed to

programming for maximum feedback on the usefulness and effectiveness of

the tool.)

3. To validate the accuracy of algorithms devised by students to solve their

problems.

(The tool could be executed by students to determine whether the algorithms

devised by them produced the correct outputs.)

4. To improve effectiveness of drawing flowcharts, by reducing error rates

while drawing flowcharts.

(Students only require to drag-and-drop their target flowchart symbols on the

arrows provided, and the tool will automatically draw and insert the symbol

and any arrows into the appropriate location in the flowchart.)

67

5. To improve efficiency of drawing flowcharts, by saving time in the drawing

of flowcharts.

(Students only require to drag-and-drop their target flowchart symbols on the

arrows provided, and the tool will automatically insert the symbol and any

additional arrows into the flowchart.)

6. To incorporate core programming principles, such as variable declarations,

data types, control structures, and correct programming syntax.

(Variables could be created with multiple data type choices, decision and

loops were included as flowchart symbols, and correct programming syntax

in writing source codes could be seen from the source codes generated.)

7. To provide the ability to execute visual programs, similar to coded programs.

(The flowchart could be executed by the tool to produce outputs.)

8. To provide the ability to generate the designed flowchart’s equivalent in

program code.

(Syntactically correct source code in C or C++ could be generated by the tool.)

6.2 Limitations

Although the flowchart drawing tool developed had achieved its intended objectives,

there were still several limitations on the tool due to lack of time and scope. The

following was a list of the limitations of the tool:

1. Nested decisions, nested loops, loops in decision statements, and pseudocode

generation were not included in the tool due to time constraints.

2. Functions and arrays were deemed slightly too advanced and thus were

excluded as the primary focus of this project was to introduce the

programming fundamentals to students first.

68

6.3 Future Enhancements

In the future, the flowchart drawing tool produced could be further enhanced to

overcome its limitations as well as increasing its arsenal of features. The following

list of features would be useful additions:

1. Nested decisions, nested loops and loops in decision statements

2. Pseudocode generation

3. Function declaration and function call

4. Variables with array data types

5. Execution step-by-step

6. Synchronized source code and flowchart displayed together in the same

window

6.4 Conclusion

This project successfully produced a flowchart drawing tool that fulfilled the project

objectives. Despite of that milestone, the tool still contained limitations that

prevented it from achieving its full potential. Thus, future enhancements on the tool

were encouraged in order to enable it to be commercialized.

69

REFERENCES

Ambler, S., 2014. Feature Driven Development (FDD) and Agile Modelling. [online]

Available at: <http://www.agilemodeling.com/essays/fdd.htm> [Accessed 19

March 2016].

Areias, C. and Mendes, A., 2007, June. A tool to help students to develop

programming skills. In Proceedings of the 2007 international conference on

Computer systems and technologies (p. 89). ACM.

Areias, C.M., Mendes, A.J. and Gomes, A.J., 2007. Learning to program with

ProGuide. In Proc. of International Conference on Engineering Education–ICEE.

Carlisle, M.C., Wilson, T.A., Humphries, J.W. and Hadfield, S.M., 2005, February.

RAPTOR: a visual programming environment for teaching algorithmic problem

solving. In ACM SIGCSE Bulletin (Vol. 37, No. 1, pp. 176-180). ACM.

Chen, S. and Morris, S., 2005. Iconic programming for flowcharts, java, turing,

etc. ACM SIGCSE Bulletin, 37(3), pp.104-107.

Crews, T. and Ziegler, U., 1998, November. The flowchart interpreter for

introductory programming courses. In Frontiers in Education Conference, 1998.

FIE'98. 28th Annual (Vol. 1, pp. 307-312). IEEE.

Gomes, A. and Mendes, A.J., Interactive system for algorithm development and

simulation.

Hall, M.S., 2007. Raptor: nifty tools. Journal of Computing Sciences in Colleges,

23(1), pp.110-111.

ISTQB Exam Certification, n.d.a. What is Agile model – advantages, disadvantages

and when to use it? [online] Available at:

<http://istqbexamcertification.com/what-is-agile-model-advantages-

disadvantages-and-when-to-use-it/> [Accessed 13 March 2016].

ISTQB Exam Certification, n.d.b. What is RAD model – advantages, disadvantages

and when to use it? [online] Available at: <

http://istqbexamcertification.com/what-is-rad-model-advantages-disadvantages-

and-when-to-use-it/> [Accessed 13 March 2016].

70

Cilliers, C., Calitz, A. and Greyling, J., 2005. The Application of The Cognitive

Dimension Framework for Notations as an Instrument for the Usability analysis of

an Introductory Programming tool. Alternation Journal, 12, pp.543-576.

Lawton, R., 2015. Feature Driven Development: A Guide. [online] Available at:

<http://www.arrkgroup.com/thought-leadership/feature-driven-development-a-

guide/> [Accessed 21 March 2016].

Marcelino, M., Mihaylov, T. and Mendes, A., 2008, October. H-SICAS, a handheld

algorithm animation and simulation tool to support initial programming learning.

In 2008 38th Annual Frontiers in Education Conference (pp. T4A-7). IEEE.

Marcelino, M., Gomes, A., Dimitrov, N. and Mendes, A., 2004, June. Using a

computer-based interactive system for the development of basic algorithmic and

programming skills. In International Conference on Computer Systems and

Technologies (e-Learning) (pp. 8-6).

Mendes, A.J., Gomes, A., Esteves, M., Marcelino, M.J., Bravo, C. and Redondo,

M.A., 2005. Using simulation and collaboration in CS1 and CS2.ACM SIGCSE

Bulletin, 37(3), pp.193-197.

Scott, A., n.d.. Progranimate, Program Visualisation and Animation for Novices.

[online] Available at: <

http://www.progranimate.com/aboutProgranimate/aboutMain.html> [Accessed 28

February 2016].

Scott, A., Watkins, M. and McPhee, D., 2007. A Step Back From Coding-An Online

Environment and Pedagogy for Novice Programmers. In Proceedings of the 11th

Java in the Internet Curriculum Conference (pp. 35-41).

Scott, A., Watkins, M. and McPhee, D., 2008a. Progranimate-A Web Enabled

Algorithmic Problem Solving Application. In CSREA EEE (pp. 498-508).

Scott, A., Watkins, M. and McPhee, D., 2008b, April. E-Learning For Novice

Programmers; A Dynamic Visualisation and Problem Solving Tool. In

Information and Communication Technologies: From Theory to Applications,

2008. ICTTA 2008. 3rd International Conference on (pp. 1-6). IEEE.

Shneiderman, B., Mayer, R., McKay, D. and Heller, P., 1977. Experimental

investigations of the utility of detailed flowcharts in programming.

Communications of the ACM, 20(6), pp.373-381.

SmartDraw, n.d.. Flowchart Types and Uses. [online] Available at:

<https://www.smartdraw.com/flowchart/flowchart-types.htm> [Accessed 26

February 2016].

71

UK Essays, 2013. Iterative and Incremental Development Of Software Models

Information Technology Essay. [online] Available at:

<http://www.ukessays.com/essays/information-technology/iterative-and-

incremental-development-of-software-models-information-technology-

essay.php?cref=1> [Accessed 13 March 2016].

Xinogalos, S., 2013, March. Using flowchart-based programming environments for

simplifying programming and software engineering processes. In Global

Engineering Education Conference (EDUCON), 2013 IEEE (pp. 1313-1322).

IEEE.

Xinogalos, S. and Satratzemi, M., 2004. Introducing novices to programming: a

review of teaching approaches and educational tools. In International Conference

on Education and Information Systems, Technologies and Applications (EISTA

2004), Orlando, USA, on July 21 (Vol. 25, No. 2004, pp. 60-65).

72

APPENDICES

APPENDIX A: Interview Questions

1. How do students do their exercise when they do practical exercises on

flowcharts?

(a) Drawing by hand

(b) Drawing using tools

(c) Others, please specify: ________________________

2. Do students have confusion when drawing symbols or writing codes?

(a) Yes

(b) No

3. On a scale of 1 to 5, with 1 being Very Easy and 5 being Very Hard, rate

whether each of the following programming concepts are difficult to be

understood by students:

Programming Concepts Very Easy

1

Easy

2

Normal

3

Hard

4

Very Hard

5

(a) Control Structures

(b) Data Types

(c) Variables

(d) Functions

(e) Flowchart

73

(f) Flowchart Symbols

(i) Terminal

(ii) Assignment

(iii) Input/Output

(iv) Connector

(v) Flowlines

(vi) Decision

(vii) Loops

4. Are you aware that there are existing tools that could be used to teach

programming to students in the form of flowcharts?

(a) Yes

(b) No

5. If you answered ‘Yes’ in Question 4, please answer the following questions:

(a) Which tool(s) do you know of?

(i) Progranimate

(ii) RAPTOR

(iii)Iconic Programmer

(iv) Others, please specify: _________________________

(b) Did you attempt to teach students to program and create flowcharts using

any of these tool(s)?

(i) Yes

(ii) No

(c) Do you feel that these tool(s) are suitable to be used by students to learn

programming and to create flowcharts?

(i) Yes

(ii) No

74

(d) What are your suggestions for improvement on these tool(s), if any, in

order to make them more suitable to be used as part of the teaching

materials?

Suggestions:

6. The design shown is an interface of a flowchart drawing tool currently under

development. The flowchart drawing tool features managing flowchart

projects, creating variables and defining data types, flowchart drawing,

program execution and generation of C++ source code from the created

flowchart. Based on the interface and these features, how useful do you think

are the following (Please elaborate, if possible):

(a) Interface Design

(b) Flowchart Project Management

75

(c) Variable Declaration

(d) Data Type Definition

(e) Flowchart Drawing

(f) Program Execution

(g) Source Code Generation from Flowchart

7. Do you think the usage of this tool in learning programming and drawing

flowchart will improve learning among students?

(a) Yes

(b) No

(c) Maybe

(d) I don’t know

76

APPENDIX B: Interview Replies

Participant 1 – A Participant 2 – B Participant 3 – C

1. How do students do their exercise when they do practical exercises on

flowcharts?

(a) Drawing by hand A B C

(b) Drawing using tools

(c) Others, please specify: ________________________

2. Do students have confusion when drawing symbols or writing codes?

(a) Yes A B C

(b) No

3. On a scale of 1 to 5, with 1 being Very Easy and 5 being Very Hard, rate

whether each of the following programming concepts are difficult to be

understood by students:

Programming Concepts Very

Easy

1

Easy

2

Normal

3

Hard

4

Very

Hard

5

(a) Control Structures A B C

(b) Data Types A B C

(c) Variables A B C

(d) Functions A B C

(e) Flowchart A B C

77

(f) Flowchart Symbols

(i) Terminal

(ii) Assignment

(iii) Input/Output

(iv) Connector

(v) Flowlines

(vi) Decision

(vii) Loops

B

A

A

A

A

A

A

B

B

B

A

C

C

C

C

B C

B C

B C

4. Are you aware that there are existing tools that could be used to teach

programming to students in the form of flowcharts?

(a) Yes B C

(b) No A

5. If you answered ‘Yes’ in Question 4, please answer the following questions:

(a) Which tool(s) do you know of?

(i) Progranimate

(ii) RAPTOR

(iii)Iconic Programmer B

(iv) Others, please specify: C – Cannot remember the name of the tools

(b) Did you attempt to teach students to program and create flowcharts using

any of these tool(s)?

(i) Yes

(ii) No B C

(c) Do you feel that these tool(s) are suitable to be used by students to learn

programming and to create flowcharts?

(i) Yes B C

(ii) No

78

(d) What are your suggestions for improvement on these tool(s), if any, in

order to make them more suitable to be used as part of the teaching

materials?

Suggestions:

(i) B – Do not be too restricted in the level and symbol used

(ii) C – The key problem is that the student can’t visualise the flow

of program execution. Suggest providing animated diagram to

show execution flow of their design algorithm. It can help them

counter-check the correctness of the algorithm.

6. The design shown is an interface of a flowchart drawing tool currently under

development. The flowchart drawing tool features managing flowchart

projects, creating variables and defining data types, flowchart drawing,

program execution and generation of C++ source code from the created

flowchart. Based on the interface and these features, how useful do you think

are the following (Please elaborate, if possible):

79

(a) Interface Design

(i) A – Look complicated, no idea how to start

(i) B – Good

(i) C – No title for each section.

(ii) No section to show source code.

(iii)Each section can be closed/minimised and zoom level can be

adjusted, so that user can view one or two section(s) in larger/clearer

view.

(b) Flowchart Project Management

(i) A – No idea

(i) B –???

(i) C – No suggestion.

(c) Variable Declaration

(i) A – Put under variable inspector column?

(i) B – Ok, good. But any differentiation between local or global

variable?

(i) C – When to declare variable in scope? In OO, the variable can be

declared right before it is being used; not necessary start at the

beginning of the function/method.

(d) Data Type Definition

(i) A – No idea

(i) B – Good. But should have choice as well.

(i) C – No issue found.

(e) Flowchart Drawing

(i) A – No idea

(i) B – Should be automatic right?

(i) C – Suggest that the control objects (assignment/input/output/

decision/loop) can be clicked and dragged into drawing workspace,

and then the user only need to modify the statements (e.g. add z ← x

80

+ y for assignment, add x > y for decision, etc.); the flowlines/arrows

will be redrawn automatically.

(f) Program Execution

(i) A – No idea

(i) B – OK

(i) C – Suggest providing animation to show execution flow.

(g) Source Code Generation from Flowchart

(i) A – No idea

(i) B – Good

(i) C – It will be good to show flowchart and source code side-by-side.

7. Do you think the usage of this tool in learning programming and drawing

flowchart will improve learning among students?

(a) Yes

(b) No

(c) Maybe A B C

(d) I don’t know

81

APPENDIX C: Pre-Evaluation Survey Questions

FYP II Survey

I am a final year UTAR student currently undergoing my Final Year Project Part 2

(FYP II), and I am currently developing a flowchart drawing tool for new students

learning the basics of programming.

The purpose of this survey is to gather feedback from students who recently learnt

the basics of programming in order to gain ideas on certain areas relating to the

learning process of programming.

I would like to thank you personally and on behalf of other UTAR students who

would benefit from your assistance in doing this survey. Your participation is very

much appreciated. None of the questions posted here will require any information

about you, and any responses given here will be kept for use only for FYP II.

* Required

Survey Questions

1. On a scale of 1 to 5, with 1 being least difficult and 5 being most difficult,

how hard is it to learn programming and draw flowcharts? *

 1 2 3 4 5

Least Difficult Most Difficult

2. How do you draw flowcharts for practicals and assignments requiring you to

draw flowcharts? * (Choose 1 only)

 Hand-Drawing

 Microsoft Visio

 Paint

 Flowchart drawing tools

 Other: ____________________________________

82

3. On a scale of 1 to 5, with 1 being least difficult and 5 being most difficult,

how hard is it to draw flowcharts using the selected tool? *

 1 2 3 4 5

Least Difficult Most Difficult

4. What are the problems that you commonly face when using the selected tool

to draw flowcharts? * (Check all that apply)

 Too much drawing

 Many steps to create each symbol

 Confusing interface

 Cannot load and save flowchart

 Other: ____________________________________

5. What additional features would you like to see on the tool you used to draw

flowcharts? * (Check all that apply)

 More user-friendly interface

 Flowchart execution

 Variables declaration

 Source code generation

 Create, load and save flowchart project

 Other: ____________________________________

6. On a scale of 1 to 5, with 1 being least difficult and 5 being most difficult,

rate whether the following are difficult to understand? *

 1 2 3 4 5

Decision (if…else)

Loop (for loop, while loop,

do…while loop)

Data Type (bool, char, float, int,

string)

Variable (naming convention,

usage)

Flowchart Symbols (Assignment,

Input/Output, Decision, Counter-

Controlled Loop, Pre-test Loop,

Post-test Loop)

83

7. On a scale of 1 to 5, with 1 being least important and 5 being most important,

rate the importance of having the following features in a flowchart drawing

tool? *

 1 2 3 4 5

User-friendly interface

Create flowcharts quickly and

easily

Flowchart execution

Declare variables and data types

Generate source code from

flowchart

Create, load and save flowchart

project

Undo and redo added and

removed flowchart symbols

84

APPENDIX D: Pre-Evaluation Survey Results

85

86

From a scale of 1 to 5, with 1 being the least difficult and 5 being the most difficult,

rate whether the following are difficult to understand:

87

From a scale of 1 to 5, with 1 being the least important and 5 being the most

important, rate the importance of having the following features in a flowchart

drawing tool:

88

89

90

APPENDIX E: Evaluation Questions

1. Design a flowchart that reads an integer input from the user and determines

the output to display based on the input entered. If the input entered is bigger

than 5, display “Value greater than 5”, else display “Value not greater than 5”.

Enter the input(s) required into the Input Window, and then execute the

flowchart to make sure the output displayed is correct. Save the flowchart

project after you completed it, and then close the application.

2. Load the project you saved. Modify the flowchart by replacing the Decision

symbol with a counter-controlled loop. The loop will repeat for the number of

times of the user input, and prints out the current loop count. Generate the

C++ source code for it and check whether the generated source code is

correct.

91

APPENDIX F: Post-Evaluation Feedback Questions

Flowchart Drawing Tool Evaluation Feedback

This evaluation is used to collect feedback on the flowchart drawing tool being tested.

* Required

1. On a scale of 1 to 5, with 1 being Does Not Fulfil and 5 being Strongly Fulfil,

rate whether the flowchart drawing tool fulfilled the following criteria? *

 1 2 3 4 5

User-friendly interface

Flowcharts could be created

quickly and easily

Variables and data types can be

declared

Flowchart could be executed

Source code generation

Create, load and save flowchart

project

Undo and redo flowchart symbols

2. What do you like best about the tool? * (Check all that apply)

 User-friendly interface

 Flowcharts could be created quickly and easily

 Variables and data types can be declared

 Flowchart could be executed

 Source code generation

 Create, load and save flowchart project

 Undo and redo flowchart symbols

 Other: ____________________________________

92

3. What do you like least about the tool? * (Check all that apply)

 User-friendly interface

 Flowcharts could be created quickly and easily

 Variables and data types can be declared

 Flowchart could be executed

 Source code generation

 Create, load and save flowchart project

 Undo and redo flowchart symbols

 Other: ____________________________________

4. (Optional) Provide any feedbacks or comments for the flowchart drawing tool.

__

93

APPENDIX G: Post-Evaluation Survey Results

From a scale of 1 to 5, with 1 being Does Not Fulfil and 5 being Strongly Fulfil, rate

whether the flowchart drawing tool fulfilled the following criteria:

94

95

96

APPENDIX H: Storyboards

Table H.1: Draw a Flowchart Storyboard

No. Scene Step

1. Create a new project.

2.

A flowchart with initial symbols

shown is created.

3.

Select the flowchart symbol

shown, drag and drop it on the

arrow in the flowchart.

4.

The flowchart will now look

like this.

5.

A dialogue box pops up as

shown when the flowchart

symbol was added.

6.

Select the type of action and

enter the expression shown, and

press “Done” to close the

dialogue box.

97

7.

The flowchart is completed and

will now look like this.

Table H.2: Create, Edit and Display Variable Storyboard

No. Scene Step

1. Create a new project.

2.

A flowchart with initial symbols

shown is created.

3.

Click on the “Create Variable”

button in the variable inspector.

4.

A dialogue box pops up as

shown.

5.

Enter the values shown and

press “Done” to close the

dialogue box.

98

6.

The new variable will appear in

the variable inspector as shown.

7.

Select the flowchart symbol

shown, drag and drop it on the

arrow in the flowchart.

8.

The flowchart will now look

like this.

9.

A dialogue box pops up as

shown when the flowchart

symbol was added.

10.

Select the variable and enter the

expression shown, and press

“Done” to close the dialogue

box.

11.

The flowchart will now look

like this.

99

12.

Select the flowchart symbol

shown, drag and drop it on the

arrow connecting to the “End”

symbol in the flowchart.

13.

The flowchart will now look

like this.

14.

Double-click on the newly

added flowchart symbol. A

dialogue box pops up as shown.

15.

Select the type of action and

enter the expression shown, and

press “Done” to close the

dialogue box.

16.

The flowchart is completed and

will now look like this.

Table H.3: Execute Flowchart Storyboard

No. Scene Step

1.

Click on the “Run All” menu

item or shortcut icon shown to

execute the flowchart. The

flowchart will be executed

100

completely once by the tool.

2.

The final value of the variable is

updated, and all the outputs

from the flowchart are displayed

as shown.

Table H.4: Generate Source Code Storyboard

No. Scene Step

1.

Select the C++ menu

item or select it from the

drop-down list and press

“Generate”.

2.

A source code dialog

pops up, and the C++

source code for the

flowchart is displayed as

shown.

101

APPENDIX I: Use Case Descriptions

Table I.1: “Create Project” Use Case Description

Use Case Name: Create Project ID: 1 Importance Level: High

Primary Actor: Student Use Case Type: Detail, Essential

Stakeholders and Interests:

Student – wants to create a new project.

Brief Description:

This use case describes about how a new project is created.

Trigger: Student wants to create a new project.

Type:

Relationships:

 Association: Student

 Include:

 Extend:

 Generalization:

Normal Flow of Events:

1. Student selects to create a new project.

2. System displays a directory dialogue box.

3. Student selects the directory to save the project in.

4. Student enters the name for the project.

5. Student confirms the project creation process.

6. System creates a new project and displays the default flowchart.

SubFlows:

1.1 Student saves the currently active project.

Alternate/Exceptional Flows:

Table I.2: “Load Project” Use Case Description

Use Case Name: Load Project ID: 2 Importance Level: High

Primary Actor: Student Use Case Type: Detail, Essential

Stakeholders and Interests:

Student – wants to load an existing project.

Brief Description:

This use case describes about how an existing project is loaded.

Trigger: Student wants to load an existing project.

Type:

102

Relationships:

 Association: Student

 Include:

 Extend:

 Generalization:

Normal Flow of Events:

1. Student selects to open an existing project file.

2. System displays a directory dialogue box.

3. Student browses to the directory with the project file.

4. Student selects the project file to load.

5. Student confirms the project loading process.

6. System loads the existing project and displays the existing flowchart and

variables.

SubFlows:

1.1 If there is an active project with unsaved changes, student saves the project.

Alternate/Exceptional Flows:

Table I.3: “Save Project” Use Case Description

Use Case Name: Save Project ID: 3 Importance Level: High

Primary Actor: Student Use Case Type: Detail, Essential

Stakeholders and Interests:

Student – wants to save a project.

Brief Description:

This use case describes about how a project is saved.

Trigger: Student wants to save a project.

Type:

Relationships:

 Association: Student

 Include:

 Extend:

 Generalization:

Normal Flow of Events:

1. Student selects to save the currently active project.

2. System displays a directory dialogue box.

3. Student selects the directory to save the project in.

4. Student enters the name for the project.

5. Student confirms the project saving process.

6. System saves the currently active project.

SubFlows:

2.1 If the currently active project is already associated with a project file, the

project saving process completes immediately. The rest of the steps are

skipped.

5.1 If saving on an existing file, the student confirms to save again.

Alternate/Exceptional Flows:

103

Table I.4: “Execute Flowchart” Use Case Description

Use Case Name: Execute Flowchart ID: 4 Importance Level: High

Primary Actor: Student Use Case Type: Detail, Essential

Stakeholders and Interests:

Student – wants to execute the flowchart.

Brief Description:

This use case describes about how a flowchart is executed.

Trigger: Student wants to execute the flowchart.

Type:

Relationships:

 Association: Student

 Include:

 Extend:

 Generalization:

Precondition: A flowchart has already been created.

Normal Flow of Events:

1. Student selects to execute the flowchart.

2. System executes the flowchart completely once.

3. The system displays the outputs produced and updates the variables’ values

in the variable inspector.

SubFlows:

Alternate/Exceptional Flows:

Table I.5: “Print Flowchart” Use Case Description

Use Case Name: Print Flowchart ID: 5 Importance Level: High

Primary Actor: Student Use Case Type: Detail, Essential

Stakeholders and Interests:

Student – wants to print out the flowchart.

Brief Description:

This use case describes about how a flowchart is printed out.

Trigger: Student wants to print the flowchart.

Type:

Relationships:

 Association: Student

 Include:

 Extend:

 Generalization:

Precondition: A flowchart has already been created.

Normal Flow of Events:

1. Student selects to print the flowchart.

2. System displays a printing dialogue box.

3. Student confirms to print the flowchart.

4. The flowchart is printed out from a printer in pdf format.

SubFlows:

3.1 Student modifies the printing configuration.

Alternate/Exceptional Flows:

1.1 Student does not print the flowchart.

104

Table I.6: “Add Symbol” Use Case Description

Use Case Name: Add Symbol ID: 6 Importance Level: High

Primary Actor: Student Use Case Type: Detail, Essential

Stakeholders and Interests:

Student – wants to add a new symbol to the flowchart.

Brief Description:

This use case describes about how a new symbol is added to the flowchart.

Trigger: Student wants to add a new symbol to the flowchart.

Type:

Relationships:

 Association: Student

 Include: Drag-and-drop symbol

 Extend:

 Generalization:

Precondition: A flowchart has already been created.

Normal Flow of Events:

1. Student selects the types of flowchart symbol to add.

2. Student selects an area in the flowchart to add the flowchart to.

3. System displays the flowchart with the symbol added into the selected area.

SubFlows:

Alternate/Exceptional Flows:

1.1 Student does not add the symbol to the flowchart.

Table I.7: “Edit Symbol” Use Case Description

Use Case Name: Edit Symbol ID: 7 Importance Level: High

Primary Actor: Student Use Case Type: Detail, Essential

Stakeholders and Interests:

Student – wants to edit a symbol that has been added to the flowchart.

Brief Description:

This use case describes about how a symbol that has been added to the flowchart is

edited.

Trigger: Student wants to edit a symbol that has been added to the flowchart.

Type:

Relationships:

 Association: Student

 Include:

 Extend:

 Generalization:

Precondition: A flowchart has already been created and a symbol has been added

to the flowchart.

Normal Flow of Events:

1. Student selects a flowchart symbol to be edited.

2. System displays a statement dialogue box.

3. Student modifies the statement of the symbol.

4. Student confirms the changes made to the symbol.

5. System displays the symbol with the updated statement in the flowchart.

105

SubFlows:

Alternate/Exceptional Flows:

3.1 Student does not change the statement of the symbol.

Table I.8: “Remove Symbol” Use Case Description

Use Case Name: Remove Symbol ID: 8 Importance Level: High

Primary Actor: Student Use Case Type: Detail, Essential

Stakeholders and Interests:

Student – wants to remove a symbol from the flowchart.

Brief Description:

This use case describes about how a symbol is removed from the flowchart.

Trigger: Student wants to remove a symbol from the flowchart.

Type:

Relationships:

 Association: Student

 Include:

 Extend:

 Generalization:

Precondition: A flowchart has already been created and a symbol has been added

to the flowchart.

Normal Flow of Events:

1. Student selects a flowchart symbol to be removed.

2. Student removes the flowchart symbol.

3. System displays the flowchart with the symbol removed.

SubFlows:

Alternate/Exceptional Flows:

2.1 Student retains the flowchart symbol.

Table I.9: “Create Variable” Use Case Description

Use Case Name: Create Variable ID: 9 Importance Level: High

Primary Actor: Student Use Case Type: Detail, Essential

Stakeholders and Interests:

Student – wants to create a new variable.

Brief Description:

This use case describes about how a new variable is created.

Trigger: Student wants to create a new variable.

Type:

Relationships:

 Association: Student

 Include: Declare Data Type

 Extend:

 Generalization:

Precondition: A flowchart has already been created.

106

Normal Flow of Events:

1. Student selects to create a new variable.

2. System displays a variable dialogue box.

3. Student fills in the details of the variable.

4. Student confirms to create the variable.

5. System displays the new created variable in the flowchart.

SubFlows:

2.1 Student declares the data type for the variable.

2.2 Student enters the name for the variable.

Alternate/Exceptional Flows:

2.1 Student does not create the variable.

Table I.10: “Edit Variable” Use Case Description

Use Case Name: Edit Variable ID: 10 Importance Level: High

Primary Actor: Student Use Case Type: Detail, Essential

Stakeholders and Interests:

Student – wants to edit an existing variable.

Brief Description:

This use case describes about how an existing variable is edited.

Trigger: Student wants to edit an existing variable.

Type:

Relationships:

 Association: Student

 Include:

 Extend:

 Generalization:

Precondition: A flowchart has already been created and a variable has been

created.

Normal Flow of Events:

1. Student selects the variable to be edited.

2. System displays the variable dialogue box.

3. Student modifies the details of the variable.

4. Student confirms changes made to the variable.

5. System displays the updated variable in the flowchart.

SubFlows:

2.1 Student changes the data type of the variable.

2.2 Student changes the name of the variable.

Alternate/Exceptional Flows:

2.1 Student does not modify the variable.

Table I.11: “Delete Variable” Use Case Description

Use Case Name: Delete Variable ID: 11 Importance Level: High

Primary Actor: Student Use Case Type: Detail, Essential

107

Stakeholders and Interests:

Student – wants to delete an existing variable.

Brief Description:

This use case describes about how an existing variable is deleted.

Trigger: Student wants to delete an existing variable.

Type:

Relationships:

 Association: Student

 Include:

 Extend:

 Generalization:

Precondition: A flowchart has already been created and a variable has been

created.

Normal Flow of Events:

1. Student selects on the variable to be deleted.

2. Student confirms to delete the variable.

3. System deletes the variable from the flowchart.

SubFlows:

Alternate/Exceptional Flows:

2.1 Student does not delete the variable.

Table I.12: “Generate Source Code” Use Case Description

Use Case Name: Generate Source Code ID: 12 Importance Level: High

Primary Actor: Student Use Case Type: Detail, Essential

Stakeholders and Interests:

Student – wants to generate the source code for the flowchart.

Brief Description:

This use case describes about how the source code for the flowchart is generated.

Trigger: Student wants to generate the source code for the flowchart.

Type:

Relationships:

 Association: Student

 Include:

 Extend:

 Generalization:

Precondition: A flowchart has already been created.

Normal Flow of Events:

1. Student selects to generate the source code for the flowchart.

2. Student confirms to generate the source code for the flowchart.

3. System generates the source code for the flowchart in a text file.

4. System displays a confirmation to indicate the source code has been

generated.

SubFlows:

Alternate/Exceptional Flows:

108

Table I.13: “Undo Action” Use Case Description

Use Case Name: Undo Action ID: 13 Importance Level: High

Primary Actor: Student Use Case Type: Detail, Essential

Stakeholders and Interests:

Student – wants to undo an action.

Brief Description:

This use case describes about how an action is undone.

Trigger: Student wants to undo an action.

Type:

Relationships:

 Association: Student

 Include:

 Extend:

 Generalization:

Precondition: A flowchart has already been created.

Normal Flow of Events:

1. Student undoes an action.

2. System reverts the flowchart back to before the action is produced.

SubFlows:

Alternate/Exceptional Flows:

1.1 Student does not undo the action.

Table I.14: “Redo Action” Use Case Description

Use Case Name: Redo Action ID: 14 Importance Level: High

Primary Actor: Student Use Case Type: Detail, Essential

Stakeholders and Interests:

Student – wants to redo an action.

Brief Description:

This use case describes about how an action is redone.

Trigger: Student wants to redo an action.

Type:

Relationships:

 Association: Student

 Include:

 Extend:

 Generalization:

Precondition: A flowchart has already been created.

Normal Flow of Events:

1. Student redoes an action.

2. System reverts the flowchart back to after the action is produced.

SubFlows:

Alternate/Exceptional Flows:

1.1 Student does not redo the action.

109

APPENDIX J: Class Diagrams

class Ov erall Class Diagram (Controller)

ActionController

CodeFactoryController

CodeGeneratorController

ConsoleController

ExecutionController

ProjectController

VariableController

ExecutionHelper

ExpressionHelper

FlowchartHelper

LinkPointHelper

VariableHelper

Observ ableVariableDeclarationStatement

Variable

MainWindow

AssignmentDialog

ExpressionDialog

DecisionDialogInputOutputDialog

VariableDialog

ArrowLineBase

Assignment

Connector Decision

InputOutput

LineConnector Terminal

AssignmentValidationRule

Ev aluateExpressionValidationRule

ExpressionValidationRule

InputOutputValidationRule

VariableValidationRule

Trigger

Use

Use

Use

Trigger

Use

Trigger

Use

Use

Trigger

Use

Trigger

Use

Use

Trigger

Use

Trigger

Use

Use

Trigger

Trigger

Use

Use

Use

Trigger

Trigger

Use

Use

Use

Trigger

Use

Trigger

Use

Trigger

Use

Trigger

Use

Use

Use

Trigger

Use

Use

Trigger

Trigger

Use

Use

Use

Trigger

Trigger

Use

Use

Use

Trigger

Figure J.1: Overall Class Diagram for Relationship with Controller Classes

110

class Ov erall Class Diagram (Model)

ConsoleContent

ConsoleReader

CustomCommands

ExtendedIterationStatement

Observ ableAssignmentStatement

Observ ableMethodInv okeExpression

Observ ableMethodReferenceExpression

Observ ablePrimitiv eExpression

Observ ableVariableReferenceExpression

CodeFactoryController

CodeGeneratorController

ConsoleController

ProjectController

VariableController

ExecutionHelper

ExpressionHelper
FlowchartHelper

Observ ableVariableDeclarationStatement
Variable

MainWindow

DecisionDialog

VariableDialog

Assignment Decision

VariableValidationRule

Store

Use

Store

Store

Use

Store

Use

Store

Use

Store

Use

Store
Store

Use

Store Use

Use

Store

Store

Use

Store

Use

Store

Use

Store

Use

Store

Store

Store

Use
Store

Figure J.2: Overall Class Diagram for Relationship with Model Classes

class Ov erall Class Diagram (View)

SourceCodeDialog

UserGuideDialog

ArrowLine

ArrowPolyline

DesignerCanv as

Symbol

ActionController

ExecutionHelper

FlowchartHelper

LinkPointHelper

MainWindow

AssignmentDialog

ExpressionDialog

DecisionDialog InputOutputDialog

VariableDialog

ArrowLineBase

Assignment

Connector

Decision InputOutput

LineConnector

Terminal

use

use

open

use

use

open

use

use

open

use

use

open

use

use

open

use

use

use

use
use

use

open

useuse
use

useuse

use

use

openuse

use

open

use

use

open

Figure J.3: Overall Class Diagram for Relationship with View Classes

111

class Controllers

ActionController

- instance: ActionController

+ ActionController()

+ AddUndo(UserAction, object[]): void

+ ClearStacks(): void

+ HasUndoItems(): bool

+ HasRedoItems(): bool

+ UndoLastAction(): void

+ RedoLastAction(): void

- MapUserAction(UserAction): UserAction

- PerformAction(UserAction, object[]): void

«property»

+ Instance(): ActionController

- UndoStack(): Stack<KeyValuePair<UserAction, object[]>>

- RedoStack(): Stack<KeyValuePair<UserAction, object[]>>

CodeFactoryController

+ CreateCodeConditionStatement(): CodeConditionStatement

+ CreateExtendedIterationStatement(Models.Enum.FlowchartSymbol): ExtendedIterationStatement

+ CreateInputOutputCodeExpressionStatement(): CodeExpressionStatement

+ CreateObservableAssignmentStatement(): ObservableAssignmentStatement

- CreateObservablePrimitiveExpression(): ObservablePrimitiveExpression

CodeGeneratorController

- instance: CodeGeneratorController

+ CodeGeneratorController()

+ GenerateCode(SourceCode, System.Windows.Controls.UIElementCollection): string

- ConvertToC(string*): void

- ConvertToCpp(string*): void

- HasVariableDeclaration(string): bool

- RetrieveVariable(string): Variable

- HasDisplayMethod(string): bool

- ChangeDisplayCodes(string, SourceCode): string

- GetContentWithinBrackets(string): string

- DeterminePlaceholderString(string): string

- DeterminePlaceholderString(Type): string

- HasReadMethod(string): bool

- ChangeReadCodes(string, SourceCode): string

«property»

+ Instance(): CodeGeneratorController

ConsoleController

- instance: ConsoleController

+ ConsoleController()

+ ClearInputConsoleDisplay(): void

+ AddCurrentOutput(string): void

+ AddUserInput(): void

+ UpdateConsoleDisplay(): void

«property»

+ Console(): ConsoleContent

+ InputConsole(): ConsoleReader

+ Instance(): ConsoleController

ExecutionController

- instance: ExecutionController

+ ExecuteAll(System.Windows.Controls.UIElementCollection, string*): ExecutionState

- InsertUserInputs(string*): void

- RunPostExecutionActions(ScriptVariables): void

- UpdateVariables(ScriptVariables): void

- CombineUserInputs(): string

- AddConsoleDisplays(ScriptVariable): void

«property»

+ Instance(): ExecutionController

ProjectController

- instance: ProjectController

+ ProjectController()

+ Load(string): bool

+ CreateAndSave(string, System.Windows.Controls.UIElementCollection): void

+ Save(System.Windows.Controls.UIElementCollection): void

- Save(FileStream, System.Windows.Controls.UIElementCollection): void

«property»

+ Instance(): ProjectController

+ FileName(): string

+ Statements(): System.CodeDom.CodeStatementCollection

INotifyPropertyChanged

VariableController

- instance: VariableController

- VariableController()

- Variables_CollectionChanged(object, System.Collections.Specialized.NotifyCollectionChangedEventArgs): void

+ CopyVariables(IEnumerable<Variable>): void

+ ClearVariables(): void

+ CreateVariable(string, Type, bool, object): void

+ UpdateVariable(string, string, Type, object): void

+ UpdateValue(string, object): void

+ RemoveVariable(string): void

+ RemoveVariable(Variable): void

+ VariableExists(string): bool

+ GetVariableByName(string): Variable

+ GetNormalVariables(): IEnumerable<Variable>

«property»

+ Variables(): ObservableCollection<Variable>

+ Instance(): VariableController

«event»

+ PropertyChanged(): PropertyChangedEventHandler

Figure J.4: Controller Classes

112

class HelperMethods

ExecutionHelper

+ GenerateScript(UIElementCollection, string, bool): string

+ CombineStatements(UIElementCollection, bool): CodeStatementCollection

- AddConsoleConfigurationStatements(CodeStatementCollection): void

- AddVariables(CodeStatementCollection): void

- GetPostLoopDecisionStatement(UIElementCollection, int): CodeStatement

- StoreInConditionalStatement(UIElementCollection, int*, CodeConditionStatement): void

- StoreInIterationStatement(UIElementCollection, int*, CodeStatementCollection, ExtendedIterationStatement): void

- GenerateCodes(CodeStatementCollection, CodeDomProvider, CodeGeneratorOptions, StringWriter): void

- IsInputOutputStatement(CodeStatement, bool): bool

- AddConsoleConfigurationMethod(CodeDomProvider, CodeGeneratorOptions, StringWriter): void

- AddToCollection(CodeStatement, CodeStatementCollection): void

- CreateConditionCodes(CodeDomProvider, CodeGeneratorOptions, StringWriter, CodeConditionStatement): void

- CreateInputCodes(StringWriter, CodeExpressionStatement): void

- CreateOutputCodes(StringWriter, CodeExpressionStatement): void

- GetParserClass(Type): string

- CreateLoopCodes(CodeDomProvider, CodeGeneratorOptions, StringWriter, ExtendedIterationStatement): void

- CreateAssignmentCodes(StringWriter, ObservableAssignmentStatement): void

- CreateVariableDeclarationCodes(StringWriter, ObservableVariableDeclarationStatement): void

+ IndentCodes(string): string

ExpressionHelper

+ IsSameDataType(Variable, string): bool

+ IsADataType(string): bool

+ IsBool(string): bool

- IsBool(Type): bool

+ IsCharacter(string): bool

- IsCharacter(Type): bool

+ IsFloat(string): bool

- IsFloat(Type): bool

+ IsInteger(string): bool

- IsInteger(Type): bool

+ IsString(string): bool

- IsString(Type): bool

+ IsVariable(string): bool

+ GetLastTerm(string): string

FlowchartHelper

- HEIGHT_BETWEEN_SYMBOLS: double = 60

+ OffsetLeftInCanvas: double

+ InsertIntoFlowchart(UIElementCollection, UIElement, int): void

- InsertRelatedSymbolsForDecision(UIElementCollection, Decision, int): void

- ManageLinks(UIElementCollection, UIElement, int): void

+ RemoveFlowchartSymbol(UIElementCollection, UIElement): void

- RemoveDecisionElements(UIElementCollection, int, FlowchartSymbol, Type): void

- GetLoopBackLineConnectorIndex(UIElementCollection, int): int

- RemoveFromFlowchart(UIElementCollection, UIElement): void

+ UpdateAlignment(UIElementCollection): void

- GetLargestWidth(UIElementCollection): double

- GetDecisionWidth(UIElementCollection, int*): double

- AlignDecisionElements(UIElementCollection, int, double*, int): int

LinkPointHelper

+ LinkPointsProperty: DependencyProperty = DependencyPrope... {readOnly}

+ GetLinkPoints(FrameworkElement): List<Point>

+ SetLinkPoints(FrameworkElement, List<Point>): void

+ AddLinkPoint(FrameworkElement, Point): void

+ ClearLinkPoints(FrameworkElement): void

+ CreateLinkLine(UIElement, UIElement, UIElementCollection, int, Branch): void

+ CreatePolylineLink(UIElement, UIElement, UIElementCollection, int, bool, Branch): void

- SetBindings(ArrowLineBase, UIElement, UIElement, int, int): void

+ UpdateLink(UIElement, UIElement, int, int): void

- CreateMultiBinding(UIElement, string, string): MultiBinding

- CreateBinding(UIElement, string): Binding

+ GetMultiBindingSource(DependencyObject, DependencyProperty): FrameworkElement

+ UpdateArrowLinks(UIElementCollection, Symbol): void

- GetPolylineIndex(UIElementCollection, int, int): int

VariableHelper

+ ConvertDataTypeName(string): string

Figure J.5: Helper Classes

113

class ValidationRules

ValidationRule

AssignmentValidationRule

+ Validate(object, CultureInfo): ValidationResult

«property»

+ AssignmentExpression(): string

+ NewVariableName(): string

ValidationRule

Ev aluateExpressionValidationRule

+ Validate(object, CultureInfo): ValidationResult

«property»

+ FirstExpression(): string

+ SecondExpression(): string

+ IsCondition(): bool

+ NewVariableName(): string

ValidationRule

ExpressionValidationRule

+ Validate(object, CultureInfo): ValidationResult

«property»

+ IsNewVariable(): bool

ValidationRule

InputOutputValidationRule

+ Validate(object, CultureInfo): ValidationResult

«property»

+ Expression(): string

ValidationRule

VariableValidationRule

+ Validate(object, CultureInfo): ValidationResult

+ InvalidNamingConvention(string): bool

+ VariableNameUsed(string): bool

«property»

+ CurrentVariable(): Variable

Figure J.6: Validation Rule Classes

114

class Models

INotifyPropertyChanged

ConsoleContent

+ ConsoleContent()

- Outputs_CollectionChanged(object, System.Collections.Specialized.NotifyCollectionChangedEventArgs): void

- NotifyPropertyChanged(string): void

«property»

+ Outputs(): ObservableCollection<string>

+ CurrentOutputs(): Queue<string>

«event»

+ PropertyChanged(): PropertyChangedEventHandler

INotifyPropertyChanged

ConsoleReader

- input: string

+ ConsoleReader()

- Outputs_CollectionChanged(object, System.Collections.Specialized.NotifyCollectionChangedEventArgs): void

- NotifyPropertyChanged(string): void

«property»

+ Input(): string

+ Inputs(): ObservableCollection<string>

«event»

+ PropertyChanged(): PropertyChangedEventHandler

CustomCommands

+ Redo: RoutedUICommand = new RoutedUICom... {readOnly}

+ Undo: RoutedUICommand = new RoutedUICom... {readOnly}

CodeIterationStatement

ExtendedIterationStatement

+ ExtendedIterationStatement(Enum.FlowchartSymbol)

«property»

+ LoopType(): Enum.FlowchartSymbol

CodeAssignStatement

INotifyPropertyChanged

Observ ableAssignmentStatement

+ ObservableAssignmentStatement()

- NotifyPropertyChanged(string): void

«property»

+ Left(): ObservableVariableReferenceExpression

+ Right(): ObservablePrimitiveExpression

+ FullExpression(): string

«event»

+ PropertyChanged(): PropertyChangedEventHandler

CodeMethodInvokeExpression

INotifyPropertyChanged

Observ ableMethodInv okeExpression

+ ObservableMethodInvokeExpression()

- NotifyPropertyChanged(string): void

«property»

+ Method(): ObservableMethodReferenceExpression

+ FullExpression(): string

«event»

+ PropertyChanged(): PropertyChangedEventHandler

CodeMethodReferenceExpression

INotifyPropertyChanged

Observ ableMethodReferenceExpression

+ ObservableMethodReferenceExpression()

- NotifyPropertyChanged(string): void

«property»

+ MethodName(): string

«event»

+ PropertyChanged(): PropertyChangedEventHandler

CodePrimitiveExpression

INotifyPropertyChanged

Observ ablePrimitiv eExpression

+ ObservablePrimitiveExpression()

+ GetContent(object): string

- NotifyPropertyChanged(string): void

«property»

+ Value(): object

«event»

+ PropertyChanged(): PropertyChangedEventHandler

CodeVariableDeclarationStatement

INotifyPropertyChanged

Observ ableVariableDeclarationStatement

+ ObservableVariableDeclarationStatement(Type, string, ObservablePrimitiveExpression)

- NotifyPropertyChanged(string): void

«property»

+ Name(): string

+ Type(): CodeTypeReference

+ InitExpression(): ObservablePrimitiveExpression

+ FullExpression(): string

«event»

+ PropertyChanged(): PropertyChangedEventHandler

CodeVariableReferenceExpression

INotifyPropertyChanged

Observ ableVariableReferenceExpression

+ ObservableVariableReferenceExpression()

- NotifyPropertyChanged(string): void

«property»

+ VariableName(): string

«event»

+ PropertyChanged(): PropertyChangedEventHandler

INotifyPropertyChanged

Variable

- name: string

- dataType: Type

- value: object

+ Variable(string, Type, bool)

+ Variable(string, Type, object, bool)

- NotifyPropertyChanged(string): void

«property»

+ Name(): string

+ DataType(): Type

+ Value(): object

+ DisplayName(): string

+ IsInitializationVariable(): bool

«event»

+ PropertyChanged(): PropertyChangedEventHandler

Figure J.7: Model Classes

115

class Views

Window

MainWindow

- executing: bool

+ MainWindow()

- WarmUpDispatcher(): void

- CommandBinding_CanExecute(object, CanExecuteRoutedEventArgs): void

- UndoFlowchartCommandBinding_CanExecute(object, CanExecuteRoutedEventArgs): void

- UndoFlowchartCommandBinding_Executed(object, ExecutedRoutedEventArgs): void

- RedoFlowchartCommandBinding_CanExecute(object, CanExecuteRoutedEventArgs): void

- RedoFlowchartCommandBinding_Executed(object, ExecutedRoutedEventArgs): void

- NewMenuItem_Executed(object, ExecutedRoutedEventArgs): void

- OpenMenuItem_Executed(object, ExecutedRoutedEventArgs): void

- ResetToDefault(string, bool): void

- ResetFlowchart(): void

- InsertSymbols(System.CodeDom.CodeStatementCollection, int): int

- CreateAppropriateSymbol(System.CodeDom.CodeStatement): Symbol

- SaveMenuItem_Executed(object, ExecutedRoutedEventArgs): void

- SetProjectTitle(string): void

- SaveAsMenuItem_Executed(object, ExecutedRoutedEventArgs): void

- PrintMenuItem_Executed(object, ExecutedRoutedEventArgs): void

- StartPrintingProcess(): void

- ExitMenuItem_Click(object, RoutedEventArgs): void

- AboutMenuItem_Click(object, RoutedEventArgs): void

- UserGuideMenuItem_Click(object, RoutedEventArgs): void

- ToolboxComponent_MouseMove(object, MouseEventArgs): void

- ShapesCanvas_Loaded(object, RoutedEventArgs): void

- AddInitialFlowchartSymbols(): void

- CreateVariable_Click(object, RoutedEventArgs): void

- DeleteVariable_Click(object, RoutedEventArgs): void

- VariablesListViewItem_MouseDoubleClick(object, MouseButtonEventArgs): void

- ShapesCanvas_DragEnter(object, DragEventArgs): void

- DetermineDragDropEffects(DragEventArgs): void

- ShapesCanvas_DragOver(object, DragEventArgs): void

- ShapesCanvas_Drop(object, DragEventArgs): void

- GetObjectFromData(IDataObject): object

- ExecuteAll_Click(object, RoutedEventArgs): void

- StopExecution_Click(object, RoutedEventArgs): void

- EndExecution(): void

- InputConsoleTextBox_KeyUp(object, KeyEventArgs): void

+ UpdateConsole(): void

- ShowExecutionErrorMessage(ExecutionState, string): void

+ DisplayErrorMessage(Variable): void

- GenerateC_Click(object, RoutedEventArgs): void

- GenerateCpp_Click(object, RoutedEventArgs): void

- CreateAndShowCodes(SourceCode): void

- GenerateSourceCodeButton_Click(object, RoutedEventArgs): void

+ UpdateArrowLinks(Symbol): void

+ ShapesCanvas_LayoutUpdated(object, EventArgs): void

- Window_SizeChanged(object, SizeChangedEventArgs): void

Figure J.8: MainWindow Class

116

class Conv erters

IValueConverter

OneTimeSingleValueConverter

+ Convert(object, Type, object, CultureInfo): object

+ ConvertBack(object, Type, object, CultureInfo): object

VisibilityBasedOnLoopConv erter

+ Convert(object, Type, object, CultureInfo): object

IMultiValueConverter

OneWayMultiValueConverter

+ Convert(object[], Type, object, CultureInfo): object

+ ConvertBack(object, Type[], object, CultureInfo): object[]

CombineTextConv erter

+ Convert(object[], Type, object, CultureInfo): object

OffsetConv erter

+ Convert(object[], Type, object, CultureInfo): object

IValueConverter

OneWaySingleValueConverter

+ Convert(object, Type, object, CultureInfo): object

+ ConvertBack(object, Type, object, CultureInfo): object

DetermineRedoCommandConv erter

+ Convert(object, Type, object, CultureInfo): object

DetermineUndoCommandConv erter

+ Convert(object, Type, object, CultureInfo): object

DisableWhenEmptyConv erter

+ Convert(object, Type, object, CultureInfo): object

DisableWhenTrueConv erter

+ Convert(object, Type, object, CultureInfo): object

HideWhenEmptyConv erter

+ Convert(object, Type, object, CultureInfo): object

Retriev eNormalVariableConv erter

+ Convert(object, Type, object, CultureInfo): object

ShortcutButtonImageSourceConv erter

+ Convert(object, Type, object, CultureInfo): object

ShowWhenTrueConv erter

+ Convert(object, Type, object, CultureInfo): object

TrimWhiteSpaceConv erter

+ Convert(object, Type, object, CultureInfo): object

VariableDataTypeStringConv erter

+ Convert(object, Type, object, CultureInfo): object

ExpressionExcludeLastTermConv erter

+ Convert(object, Type, object, CultureInfo): object

IValueConverter

TwoWaySingleValueConverter

+ Convert(object, Type, object, CultureInfo): object

+ ConvertBack(object, Type, object, CultureInfo): object

ExpressionGetLastTermConv erter

+ Convert(object, Type, object, CultureInfo): object

+ ConvertBack(object, Type, object, CultureInfo): object

Figure J.9: Converter Classes

117

class DialogBoxes

Window

AssignmentDialog

+ AssignmentDialog(Window)

+ AssignmentDialog(Window, CodeStatement)

- DoneButton_Click(object, RoutedEventArgs): void

- UpdateStatement(): void

- AssignmentExpression_Error(object, ValidationErrorEventArgs): void

- VariablesComboBox_SelectionChanged(object, SelectionChangedEventArgs): void

- ValidateAndManageControls(): void

- IsValidAssignment(): bool

- CreateExpressionButton_Click(object, RoutedEventArgs): void

- CreateExpressionButton_MouseEnter(object, MouseEventArgs): void

- CreateExpressionButton_MouseLeave(object, MouseEventArgs): void

«property»

+ AssignmentStatement(): CodeStatement

Window

DecisionDialog

+ DecisionDialog(Window)

+ DecisionDialog(Window, CodeStatement)

- ConfigureBindingPath(): void

- SetWindowHeight(): void

- DoneButton_Click(object, RoutedEventArgs): void

- UpdateExpression(): void

- IsCounterControlledLoop(): bool

- InitVariableNameTextBox_TextChanged(object, TextChangedEventArgs): void

- ValidateAndManageInitializationControls(): void

- ValidInitialization(): bool

- NoValidationError(): bool

- InitVariableNameTextBox_Error(object, ValidationErrorEventArgs): void

- InitVariableValueTextBox_TextChanged(object, TextChangedEventArgs): void

- Initialization_Error(object, ValidationErrorEventArgs): void

- CreateConditionExpressionButton_Click(object, RoutedEventArgs): void

- CreateExpressionButton_MouseEnter(object, MouseEventArgs): void

- CreateExpressionButton_MouseLeave(object, MouseEventArgs): void

- CreateIncrementExpressionButton_Click(object, RoutedEventArgs): void

- IncrementStatement_Error(object, ValidationErrorEventArgs): void

- ValidIncrement(): bool

- InitializationBorder_GotFocus(object, RoutedEventArgs): void

- CreateConditionExpressionButton_GotFocus(object, RoutedEventArgs): void

- IncrementStatementBorder_GotFocus(object, RoutedEventArgs): void

«property»

- Statement(): CodeStatement

Window

ExpressionDialog

- isCondition: bool

- newVariableName: string

- buttons: List<Button>

- buttonsEnabled: bool

- ExpressionDialog()

+ ExpressionDialog(Window, string, bool, string)

- Window_Loaded(object, RoutedEventArgs): void

- SetContentTemplateButtonsClickEvents(): void

- GetAllButtons(string): IEnumerable<Button>

- OperatorButton_Click(object, RoutedEventArgs): void

- DisableButtons(): void

- EnableButtons(): void

- TermTextBox_TextChanged(object, TextChangedEventArgs): void

- ValidateAndManageControls(): void

- ValidExpression(): bool

- HideErrors(): void

- DisplayErrors(): void

- TermTextBox_Error(object, ValidationErrorEventArgs): void

- RemoveButton_Click(object, RoutedEventArgs): void

- ExpressionStackPanel_Error(object, ValidationErrorEventArgs): void

- DoneButton_Click(object, RoutedEventArgs): void

«property»

+ Expression(): string

Window

InputOutputDialog

+ InputOutputDialog(Window)

- CreateComboBoxItems(): IEnumerable

+ InputOutputDialog(Window, CodeStatement)

- DoneButton_Click(object, RoutedEventArgs): void

- UpdateStatement(): void

- ActionComboBox_SelectionChanged(object, SelectionChangedEventArgs): void

- ActionComboBox_Error(object, ValidationErrorEventArgs): void

- ValidateAndManageControls(): void

- CreateExpressionButton_Click(object, RoutedEventArgs): void

- CreateExpressionButton_MouseEnter(object, MouseEventArgs): void

- CreateExpressionButton_MouseLeave(object, MouseEventArgs): void

«property»

+ InputOutputStatement(): CodeStatement

Window

SourceCodeDialog

+ SourceCodeDialog(Window)

+ SourceCodeDialog(Window, string)

- DoneButton_Click(object, RoutedEventArgs): void

- CopyButton_Click(object, RoutedEventArgs): void

«property»

+ SourceCode(): string

Window

UserGuideDialog

- UserGuideDialog()

+ UserGuideDialog(Window)

Window

VariableDialog

+ VariableDialog(Window)

+ VariableDialog(Window, Variable)

- CreateComboBoxItems(): IEnumerable

- DoneButton_Click(object, RoutedEventArgs): void

- UpdateVariable(BindingExpression): void

- VariableNameTextBox_TextChanged(object, TextChangedEventArgs): void

- VariableNameTextBox_Error(object, ValidationErrorEventArgs): void

- DataTypeComboBox_SelectionChanged(object, SelectionChangedEventArgs): void

«property»

- CurrentVariable(): Variable

Figure J.10: Dialog Classes

118

class UserControls

Assignment

- Assignment()

+ Assignment(FlowchartSymbol)

+ Assignment(FlowchartSymbol, CodeStatement)

- ConfigureBindingPath(): void

- Symbol_Initialized(object, EventArgs): void

- Symbol_Loaded(object, RoutedEventArgs): void

- Symbol_MouseDoubleClick(object, MouseButtonEventArgs): void

- Symbol_MouseMove(object, MouseEventArgs): void

UpdateLinkPoints(): void

Connector

+ Connector()

- Symbol_Initialized(object, EventArgs): void

Decision

+ DECISION_FALSE_BRANCH_DIRECTION: int = -1

+ DECISION_FALSE_BRANCH_LINK_INDEX: int = 2

+ DECISION_TRUE_BRANCH_DIRECTION: int = 1

+ DECISION_TRUE_BRANCH_LINK_INDEX: int = 3

- Decision()

+ Decision(FlowchartSymbol)

+ Decision(FlowchartSymbol, CodeStatement)

- ConfigureBindingPath(): void

- Symbol_Initialized(object, EventArgs): void

- Symbol_Loaded(object, RoutedEventArgs): void

- Symbol_MouseDoubleClick(object, MouseButtonEventArgs): void

- Symbol_MouseMove(object, MouseEventArgs): void

UpdateLinkPoints(): void

UpdatePathData(bool): void

Symbol_Unloaded(object, RoutedEventArgs): void

Canvas

DesignerCanv as

MeasureOverride(Size): Size

InputOutput

- InputOutput()

+ InputOutput(FlowchartSymbol)

+ InputOutput(System.CodeDom.CodeStatement)

- Symbol_Initialized(object, EventArgs): void

- Symbol_Loaded(object, RoutedEventArgs): void

- Symbol_MouseDoubleClick(object, MouseButtonEventArgs): void

- Symbol_MouseMove(object, MouseEventArgs): void

UpdateLinkPoints(): void

UpdatePathData(bool): void

LineConnector

+ LineConnector()

+ LineConnector(LineConnectorType)

«property»

+ ConnectorType(): LineConnectorType

UserControl

Symbol

loadWindow: bool = true

Symbol_Unloaded(object, RoutedEventArgs): void

UpdateLinkPoints(): void

UpdatePathData(bool): void

Symbol_DragOver(object, DragEventArgs): void

Symbol_LayoutUpdated(object, EventArgs): void

Symbol_SizeChanged(object, SizeChangedEventArgs): void

StatementTextBlock_TargetUpdated(object, System.Windows.Data.DataTransferEventArgs): void

«property»

+ Statement(): CodeStatement

+ SymbolType(): FlowchartSymbol

Terminal

+ Terminal()

+ Terminal(string)

- Symbol_Initialized(object, EventArgs): void

«property»

+ Text(): string

Figure J.11: Symbol User Controls Classes

119

class FlowLines

«enumerati...

ArrowEnds

 None = 0

 Start = 1

 End = 2

 Both = 3

ArrowLine

+ ArrowLine()

+ ArrowLine(Branch)

«property»

DefiningGeometry(): Geometry

Shape

ArrowLineBase

pathgeo: PathGeometry

pathfigLine: PathFigure

polysegLine: PolyLineSegment

- pathfigHead1: PathFigure

- polysegHead1: PolyLineSegment

- pathfigHead2: PathFigure

- polysegHead2: PolyLineSegment

+ X1Property: DependencyProperty = DependencyPrope... {readOnly}

+ Y1Property: DependencyProperty = DependencyPrope... {readOnly}

+ X2Property: DependencyProperty = DependencyPrope... {readOnly}

+ Y2Property: DependencyProperty = DependencyPrope... {readOnly}

+ ArrowAngleProperty: DependencyProperty = DependencyPrope... {readOnly}

+ ArrowLengthProperty: DependencyProperty = DependencyPrope... {readOnly}

+ ArrowEndsProperty: DependencyProperty = DependencyPrope... {readOnly}

+ IsArrowClosedProperty: DependencyProperty = DependencyPrope... {readOnly}

- CLASS_FULL_NAMESPACE: string = "DesignWithoutM...

+ ArrowLineBase()

- CalculateArrow(PathFigure, Point, Point): PathFigure

- ArrowLineBase_Drop(object, DragEventArgs): void

- InsertSymbol(Symbol): void

- CreateSymbol(IDataObject): Symbol

- ArrowLineBase_DragEnter(object, DragEventArgs): void

- ArrowLineBase_DragOver(object, DragEventArgs): void

- DetermineDragDropEffects(DragEventArgs): void

«property»

+ X1(): double

+ Y1(): double

+ X2(): double

+ Y2(): double

+ ArrowAngle(): double

+ ArrowLength(): double

+ ArrowEnds(): ArrowEnds

+ IsArrowClosed(): bool

+ Branch(): Branch

DefiningGeometry(): Geometry

ArrowPolyline

+ ArrowPolyline()

+ ArrowPolyline(bool, Branch)

OnRender(DrawingContext): void

- AddIntermediatePoints(): void

«property»

+ IsTrueBranch(): bool

DefiningGeometry(): Geometry

Figure J.12: Arrow Classes

120

APPENDIX K: Unit Tests

Table K.1: Project Management Unit Tests

Unit Test Pass Fail

TestCreateNewProject

TestSaveProjectWithEmptyString

TestSaveProjectWithFileName

TestLoadProjectWithEmptyString

TestLoadInexistentProject

TestLoadProjectWithExistingFile

Table K.2: Variable Management Unit Tests

Unit Test Pass Fail

TestCreateBoolVariable

TestCreateCharVariable

TestCreateFloatVariable

TestCreateIntegerVariable

TestCreateStringVariable

TestAddVariable

TestRetrieveVariableExist

TestRetrieveVariableNotExist

TestEditVariablePass

TestEditVariableFail

TestRemoveVariableByName

TestRemoveVariableByInstance

121

Table K.3: Flowchart Execution Unit Tests

Unit Test Pass Fail

TestExecuteAllWithAssignmentWithoutVariableDeclared

TestExecuteAllWithValidAssignment

TestExecuteAllWithInvalidAssignment

TestExecuteAllWithDisplay

Table K.4: Statement Management Unit Tests

Unit Test Pass Fail

TestAddAssignmentStatement

TestAddInputOutputStatement

TestAddConditionStatement

TestAddForLoopStatement

TestAddWhileLoopStatement

TestAddDoWhileLoopStatement

TestInsertAssignmentStatement

TestInsertInputOutputStatement

TestInsertConditonStatement

TestInsertForLoopStatement

TestInsertWhileLoopStatement

TestInsertDoWhileLoopStatement

TestRemoveAssignmentStatement

TestRemoveInputOutputStatement

TestRemoveConditionStatement

TestRemoveForLoopStatement

TestRemoveWhileLoopStatement

TestRemoveDoWhileLoopStatement

Table K.5: Source Code Generation Unit Tests

Unit Test Pass Fail

TestGenerateCCodeVariableDeclaration

122

TestGenerateCppCodeVariableDeclaration

TestGenerateCSharpCodeVariableDeclaration

TestGenerateCCodeAssignmentStatement

TestGenerateCppCodeAssignmentStatement

TestGenerateCSharpCodeAssignmentStatement

TestGenerateCCodeInputStatement

TestGenerateCppCodeInputStatement

TestGenerateCSharpCodeInputStatement

TestGenerateCCodeOutputStatement

TestGenerateCppCodeOutputStatement

TestGenerateCSharpCodeOutputStatement

TestGenerateCCodeConditionStatement

TestGenerateCppCodeConditionStatement

TestGenerateCSharpCodeConditionStatement

TestGenerateCCodeForLoop

TestGenerateCppCodeForLoop

TestGenerateCSharpCodeForLoop

TestGenerateCCodeWhileLoop

TestGenerateCppCodeWhileLoop

TestGenerateCSharpCodeWhileLoop

TestGenerateCCodeDoWhileLoop

TestGenerateCppCodeDoWhileLoop

TestGenerateCSharpCodeDoWhileLoop

Table K.6: Undo Redo Action Unit Tests

Unit Test Pass Fail

TestUndoAddAssignmentStatement

TestRedoAddAssignmentStatement

TestUndoAddInputOutputStatement

TestRedoAddInputOutputStatement

TestUndoAddConditionStatement

TestRedoAddConditionStatement

123

TestUndoAddForLoopStatement

TestRedoAddForLoopStatement

TestUndoAddWhileLoopStatement

TestRedoAddWhileLoopStatement

TestUndoAddDoWhileLoopStatement

TestRedoAddDoWhileLoopStatement

TestUndoRemoveAssignmentStatement

TestRedoRemoveAssignmentStatement

TestUndoRemoveInputOutputStatement

TestRedoRemoveInputOutputStatement

TestUndoRemoveConditionStatement

TestRedoRemoveConditionStatement

TestUndoRemoveForLoopStatement

TestRedoRemoveForLoopStatement

TestUndoRemoveWhileLoopStatement

TestRedoRemoveWhileLoopStatement

TestUndoRemoveDoWhileLoopStatement

TestRedoRemoveDoWhileLoopStatement

TestUndoAddVariable

TestRedoAddVariable

TestUndoDeleteVariable

TestRedoDeleteVariable

