
SOFTWARE REQUIREMENT SPECIFICATION TOOL

KONG MENG YEOW

A project report submitted in partial fulfilment

of the requirements for the award of

Bachelor of Science (Hons) Software Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

May 2016

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it has

not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature :

Name : Kong Meng Yeow

ID No. : 13UEB00709

Date : 15/09/2016

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “SOFTWARE REQUIREMENT

SPECIFICATION TOOL” was prepared by Kong Meng Yeow has met the required

standard for submission in partial fulfilment of the requirements for the award of

Bachelor of Science (Hons) Software Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Too Chian Wen

Date : 15/09/2016

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2016, Kong Meng Yeow. All right reserved.

v

ACKNOWLEDGEMENT

I would like to thank everyone who had contributed to the successful

completion of this project. I would like to express my gratitude to my research

supervisor, Miss Too Chian Wen for her invaluable advice, guidance and her enormous

patience throughout the development of the project.

In addition, I would also like to express my gratitude to my loving parent who

had supported and given me encouragement throughout the period of preparing this

report.

Furthermore, I would like to extend my gratitude to all my friends who given

me advices, feedbacks, technical assistance and being supportive in making this

project a success.

vi

SOFTWARE REQUIREMENT SPECIFICATION TOOL

ABSTRACT

Statistics has shown that requirement phase held great responsibility for software

projects that exceeded their cost and time or even failed. The main factor is because

requirements were frequently written ambiguously, inconsistently, and insufficiently.

Most of the time, non-functional requirements were neglected and not specified as

much as functional requirements although they were both equally important. The main

objective of this project was to propose and develop a software requirement

specification tool to rectify the above mentioned issues. Our tool was focused on

assisting user to specify both functional and non-functional requirements in a

structured and consistent manner. We conducted literature review to study in depth

about problems in requirement specification with natural language. The approach used

to solve this problem was to use a structured natural language or requirement

boilerplate to generate unambiguous and consistent requirements. Using this approach,

user inputs were gathered, reformatted and represented as structured requirements.

ISO 25010 quality model was referred as a guideline to support requirement

specification of non-functional requirements. As an outcome of this project, we

produced and deployed a web application on the Internet for users to specify their

project’s requirements. Last but not least, evaluation was done on the tool by

requesting user to specify an existing project’s requirements and then to complete a

survey. In conclusion, our tool was able to help our participants to specify

requirements effectively and efficiently.

vii

TABLE OF CONTENT

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENT v

ABSTRACT vi

TABLE OF CONTENT vii

LIST OF TABLES xi

LIST OF FIGURES xii

TABLE OF APPENDICES xiv

CHAPTER

1 INTRODUCTION 1

1.1 Background 1

1.2 Problem Statement 2

1.3 Proposed Solution 2

1.4 Proposed Approach 3

1.5 Project Goal 4

1.6 Project Objectives 4

1.7 Project Scope 4

1.7.1 Target Users 5

1.7.2 Modules Covered 5

1.7.3 Modules Not Covered 6

2 LITERATURE REVIEW 7

2.1 Software Requirements 7

2.1.1 Functional Requirement 8

viii

2.1.2 Non-Functional Requirement 9

2.2 Requirement Engineering 10

2.2.1 Definition of Requirement Engineering 10

2.2.2 Requirement Engineering Activities 11

2.2.3 Problems in Requirement Elicitation and

Specification 13

2.3 Natural Language 15

2.3.1 Natural Language in Requirement Specification15

2.3.2 Problems of Natural Language in Requirement

Specification 16

2.4 Requirement Boilerplate 17

2.4.1 Background 17

2.4.2 Usage of Requirement Boilerplate 18

2.5 Software Quality Models 19

2.5.1 Background 20

2.5.2 Basic Quality Model Reviews 21

2.5.3 ISO 25010 Quality Model 25

2.6 Similar Tool Review 26

2.6.1 Enterprise Architect 27

2.6.2 IBM Rational DOORS 27

2.6.3 ElicitO Framework 28

2.6.4 Comparison and Discussion 29

2.7 Project Approach Review 31

2.7.1 Rational Unified Process 31

2.7.2 MongoDB NoSQL Database 33

2.7.3 ExpressJS and NodeJS RESTful API 34

2.7.4 AngularJS 35

3 METHODOLOGY 36

3.1 Chosen Development Methodology 36

3.2 Chosen Development Tool 39

3.2.1 JetBrains WebStorm IDE 39

3.2.2 NodeJS packages 39

ix

3.2.3 CSS framework 40

3.3 Requirement Specification Strategy 41

3.4 User Interface Design 43

3.5 Project Plan 46

4 REQUIREMENT SPECIFICATION 47

4.1 Software Requirements Specification 47

4.1.1 Functional Requirements 47

4.1.2 Non Functional Requirements 49

4.2 Use Case Modelling 49

5 DESIGN 51

5.1 Software Architecture Design 51

5.2 Software Component Design 52

5.2.1 Client Component Diagram 52

5.2.2 Server Component Diagram 54

5.3 Database Design 56

5.4 RESTful Route Design 58

5.5 Activity Diagrams 61

5.6 Sequence Diagrams 65

6 CODING AND IMPLEMENTATION 69

6.1 Requirement Specification Strategy Implementation 69

6.2 Version Control System 72

6.3 Automated Deployment 73

7 TESTING AND EVALUATION 75

7.1 Testing and Evaluation Strategy 75

7.2 Testing and Evaluation Result 76

8 CONCLUSION AND DISCUSSIONS 81

8.1 Conclusion 81

8.2 Limitations 82

x

8.3 Future Improvement Roadmap 83

BIBLIOGRAPHY 84

APPENDICES 88

xi

LIST OF TABLES

TABLE TITLE PAGE

2.1 Comparison of Tools 29

2.2 Comparison of Waterfall and Agile development model 31

3.1 Dynamic Perspective – Project Phases 37

3.2 Practice Perspective – Project Phases 38

5.1 Route Design for Domain 59

5.2 Route Design for User 59

5.3 Route Design for Project 60

7.1 Feedback Summary 77

7.2 Evaluation Summary 80

xii

LIST OF FIGURES

FIGURE TITLE PAGE

2.1 Linear Requirement Engineering Process Model 11

2.2 Spiral Requirement Engineering Process Model 12

2.3 Quality models developed before 2011 20

2.4 McCall’s Quality Model 22

2.5 Boehm’s Quality Model 23

2.6 ISO 9126 Quality Model 24

2.7 ISO 25010 Quality Model 26

2.8 Dynamic and static perspective of RUP 32

3.1 Rational Unified Process Cycle 36

3.2 UI – Show all project and create project 43

3.3 UI – Show project requirements 43

3.4 UI – Specify requirements 44

3.5 UI – Generate requirements 45

3.6 UI – Export requirements 46

4.1 Use Case Diagram 50

5.1 Deployment Diagram 51

5.2 Client Component Diagram 52

5.3 Server Component Diagram 54

xiii

5.4 NoSQL Document Design Diagram 57

5.5 Activity Diagram – Login 61

5.6 Activity Diagram – Create Project 61

5.7 Activity Diagram – Open Project 62

5.8 Activity Diagram – Remove Project 62

5.9 Activity Diagram – Specify Functional Requirement 63

5.10 Activity Diagram – Specify Non-Functional Requirement 63

5.11 Activity Diagram – Generate Requirements 64

5.12 Activity Diagram – Export SRS 64

5.13 Sequence Diagram – Login 65

5.14 Sequence Diagram – Create Project 65

5.15 Sequence Diagram – Open Project 66

5.16 Sequence Diagram – Remove Project 66

5.17 Sequence Diagram – Specify Functional Requirement 67

5.18 Sequence Diagram – Specify Non-Functional Requirement 67

5.19 Sequence Diagram – Generate Requirements 68

5.20 Sequence Diagram – Export SRS 68

6.1 Boilerplate for Compatibility Module 69

6.2 Input Form for Compatibility Module 70

6.3 JSON data for Compatibility Module 71

6.4 JSON data for Compatibility Module boilerplate 71

6.5 Generated requirement for Compatibility Module 72

6.6 Example of Git commits and merges 73

6.7 Deployment configuration in Heroku 74

6.8 Example of Deployment activities 74

xiv

TABLE OF APPENDICES

APPENDIX TITLE PAGE

A Work breakdown structure and Gantt chart 88

B Use Case Descriptions 93

C Feedback Survey Form 102

D Feedback Survey Result 108

1

CHAPTER 1

INTRODUCTION

1.1 Background

In the process of creating a software product, there are a set of related activities that

will be performed. According to (Hull et al. 2011), in the field of Software Engineering,

there are four fundamental activities that cannot be excluded. These activities are

software specification, software design and implementation, software validation and

software evolution.

The first fundamental activity that will be conducted in every software process

is software specification. Software specification refers to the definition of functionality

and constraints on operations of the software. As an outcome of software specification,

a software requirement document or software requirement specification (SRS) will be

produced. SRS is an agreed statement for both system customer and software

developer for the software product that will be delivered. However, many software

project failed due to the problems in the process of software specification.

It was reported that incomplete or changing requirements and specifications

were the main reasons that software projects went over schedule and budget. The main

factor that causes projects to be cancelled was also due to incomplete requirements of

product (Clancy 1995). In another report from Project Management Institute (PMI),

inaccurate requirement gathering is the root cause of 38% of failed projects (Anon

2015). It is estimated that $81 billion was wasted on cancelled project and $59 billion

was incurred for project extensions (Clancy 1995)

2

1.2 Problem Statement

When software requirements are gathered correctly, requirements will be specified in

an understandable and consistent manner. When a complete set of software

requirement specification (SRS) are produced, a software project is already considered

a partially successful project. This is the ideal situation each project manager wished

to have in their projects.

However in reality, requirements were frequently written in ambiguous

sentences and inconsistent manner which confuses reader, and incomplete which fails

to specify all the important and core requirements (Bures et al. 2012). In addition, non-

functional requirements were often left out from requirement specification although

they are as important as functional requirements (Azuma 2004).

Hence, our proposed solution to overcoming the above mentioned problems is

to develop a software requirement specification (SRS) tool. Our proposed tool will

emphasize in specifying a clear and consistent requirement, and produce a complete

set of SRS. The proposed tool will also emphasize the elicitation and specification of

non-functional requirements, which is not supported by other tools.

1.3 Proposed Solution

Our proposed solution is to provide a tool that gathers information provided by user

and convert them into requirements using boilerplate. We propose to use natural

language requirement boilerplates as the templates of requirements. Then, we will

request required information from user and add into boilerplate in order to generate

requirements. All elicited requirements will be saved and listed as a software

requirement specification (SRS).

The usage of natural language requirement boilerplate will effectively resolve

the problem of inconsistency and ambiguity of requirement. The reason is because

requirement boilerplates are structured natural language patterns. Requirement

3

generated from requirement boilerplate will always be in certain sentence structure,

making it consistent. When expressing requirements in a structured and consistent

manner, it is also less likely to misinterpret the real meaning of requirement.

To support non-functional requirement elicitation, ISO 25010 quality model

(International Organization For Standardization ISO 2011) will be referred as

guidance to generate non-functional or quality requirements. We will provide user

interfaces that is designed to collect information from user in order to generate non-

functional requirements.

1.4 Proposed Approach

In conducting this project, the software development approach that will be used is

Rational Unified Process (RUP). RUP is an iterative and incremental software

development process and it encourages following certain best practices. The product

of this project will be a Software Requirement Specification Tool, which is a web

application that can be deployed to cloud and accessible from any major browsers.

The tool will be built based on client-server architecture. The server side will

provide a RESTful API built on top of NodeJS and ExpressJS. The REST API will

serve as intermediary between database and the frontend of the website. MongoDB, a

NoSQL database will be used to store all project information of the tool. On the client

side, AngularJS along with Materialize CSS framework will be used as the frontend

of the tool. AngularJS will provide transition between user interfaces, handling

program logics and updating server when saving project, while Materialize CSS will

provide a material design themed user interface and experience for user.

For the approach of specifying software requirements, we will be utilizing

requirement boilerplate, which is a structured natural language template. User inputs

will be gathered and mapped into boilerplate to generate both functional and non-

functional requirements. We will also integrate ISO 25010 model to guide non-

functional requirement elicitation and specification process in our tool.

4

1.5 Project Goal

The goal of this project is to assists user in requirement elicitation and specification

phases and improve the quality of requirements that produced in requirement

specification phase.

1.6 Project Objectives

The objectives of this project are:

1. To prepare a complete project proposal to conduct this project

2. To conduct literature reviews on every aspect of this project

3. To plan and decide the methodology to be used to conduct this project

4. To specify and model requirements that shall be fulfilled in this project

5. To analyse and design each aspect of the tool of the project

6. To code and implement the project and produce our proposed tool

7. To test and evaluate the effectiveness and efficiency of our produced tool

1.7 Project Scope

The following sections will describe the target users of this tool, modules that are

covered and those which are not covered.

5

1.7.1. Target Users

The target users of the proposed tools are requirement engineers of software project.

The users will be able to use this tool to assist them to elicit requirements and specify

requirements in structured natural language format.

1.7.2. Modules Covered

The following modules shall be provided by the proposed tool in order to achieve the

project objective.

The following modules are covered in this project:

1. Boilerplate maintenance

The system will provide boilerplate that can be used and modified by user.

Boilerplate templates are structured natural language patterns which will be

used to generate consistent and unambiguous requirements.

2. Requirement generation

The user shall be able to generate requirements from boilerplates by providing

required information. For each required field, the system will suggest

appropriate keywords extracted from knowledge base of the system. This will

allow more completed set of requirement to be generated.

6

3. Pre-defined requirement types

The system shall provide both functional and non-functional predefined

boilerplates for the user. Non-functional requirement boilerplate provided will

developed based on quality characteristics of ISO 25010 Quality Model

(International Organization For Standardization ISO 2011). Non-functional

requirement boilerplates will support requirement engineer in the elicitation of

non-functional requirement.

4. Project Maintenance

The system shall allow user to save or load their software requirement

specification projects from server. There are two types of projects that can be

created by user, which are private projects that only editable by themselves and

public projects that can be edited by any user.

5. Export

The system shall be allow user to export all of their specified requirements as

plain HTML document (.html) or Microsoft Word Document (.doc) file.

1.7.3. Modules Not Covered

Unless explicitly mentioned, the proposed tool will not cover any modules or

functionality that are not mentioned in Section 1.7.2. The following are some key

functionality that will not be covered in this proposed project:

1. The system will not provide traceability matrix, requirement prioritization and

related functionality. The reason is because our proposed tool will only focus

to support requirement elicitation and specification.

2. The system will only cover the elicitation and specification of system

requirements. This is due to the limited amount of time available that is

insufficient to apply boilerplate to all types of requirement that may be

specified in a software requirement specification (SRS).

7

CHAPTER 2

LITERATURE REVIEW

2.1 Software Requirements

In this section, few definitions from different sources are presented and summarized.

There are multiple definitions for a software requirements. The following are three

main definitions referred:

1. IEEE-STD-1220-1998 (IEEE 1998) defined requirement as “a statement that

identifies a product or process operational, functional, or design characteristic

or constraint, which is unambiguous, testable or measurable, and necessary for

product or process acceptability (by consumers or internal quality assurance

guidelines)”

2. In SWEBOK v3.0 (Bourque & Fairley 2014), the author describes requirement

as a property that must be exhibited by something in order to solve some

problem in the real world.

3. In Software Engineering (Sommerville 2011), the author classified

requirements into two main categories: (1) user requirements which are high

level abstraction of expected service provided with constraints, (2) system

requirements which are detailed description of system’s functionality, service,

and operational constraint.

8

In this project, the definition from IEEE-STD-1200-1998 were chosen as main

reference. The definition stated that requirements are statement which identifies

functional and design characteristics. These inferred that in this project, both

functional and non-functional requirements should be included. Then, a requirement

should be unambiguous, which is one of the main problems in requirement we

intended to tackle. Lastly, a requirement should be measurable, which also hinted that

we should develop certain metrics to measure requirements.

The following subsections will clarify on what are functional and non-

functional requirements.

2.1.1. Functional Requirement

Functional requirements are software requirements that describes functions,

capabilities or features that the software is to execute. Functional requirements can be

expressed in terms of steps or procedures that user can take to achieve result (Bourque

& Fairley 2014).

 (Sommerville 2011) defined functional requirements as “statements of services

the system should provide, how system should react to particular input, and how

system should behave in particular situations”. There are also cases where functional

requirement states what a system should not do instead.

(Dorfman & Thayer 1990) also have their own definition for functional

requirement, which it is “a statement that identifies what a product or process must

accomplish to produce required behaviour and/or results”.

In this project, the definition from Sommerville will be referred. The

information about functional requirement that we can extract from his definition is that

functional statements should state what should and what should not be done by the

system, and how should system react to different situations. Hence, in eliciting

functional requirement, we should take into consideration of the above three aspects.

9

2.1.2. Non-Functional Requirement

(Sommerville 2011) also defined non-functional requirements as “constraints on

services or functions provided by system, inclusive of timing constraint, development

constraint and constraints imposed by standards”. Non-functional requirement usually

applies to the system as a whole rather than individually.

 Non-functional requirements are also referred as quality requirements

(Bourque & Fairley 2014). Non-functional requirement can be further classified as

performance requirements, maintainability requirements, safety requirements,

reliability requirements, security requirements, interoperability requirements, and etc.

In “Systems and software engineering – Vocabulary” (ISO/IEC & IEEE 2010),

non-functional requirement was referred as “a software requirement that describes not

what the software will do but how the software will do it”.

 From the definition of Sommerville, non-functional requirements could be

constraints that imposed by standards. This hinted that quality models are good

source of non-functional requirement. Hence in this project, we will be adopting ISO

25010 quality model into non-requirement elicitation process.

 To go further into the aspect of software requirements, in the next section, the

field of requirement engineering which concerns about the engineer practices for the

whole life cycle of requirement will be discussed.

10

2.2 Requirement Engineering

2.2.1. Definition of Requirement Engineering

In “Classification of research efforts in requirements engineering” from (Zave 1995),

the author presented a clear definition of requirement engineering – “Requirements

engineering is the branch of software engineering concerned with the real-world goals

for functions of and constraints on software systems. It is also concerned with the

relationship of these factors to precise specifications of software behaviour, and to

their evolution over time and across software families”.

In “Requirements engineering: A Roadmap” (Nuseibeh & Easterbrook 2000),

the authors added their opinions in the above definition. They mentioned that

requirement engineering is a motivation of developing a software system and

represents reasons and what a system wants. They also added that in order to produce

precise requirement specification, the basis of requirement analysis, requirement

validation with stakeholder, design specification, and correctness verification are

essential. Lastly, the authors also stated that there is a need of specification reusability

in requirement engineering.

At the same time, the authors described requirement engineering as a process

of discovering purpose and intention of stakeholders for the developed software

system. Requirement engineering is a process that identifies the need of stakeholder

and document them in the form which is “amendable to analysis, communication, and

subsequent implementation”.

In “Requirement Engineering” (Hull et al. 2011), the author presented a clear

definition where requirements engineering is “the subset of systems engineering

concerned with discovering, developing, tracing, analysing, qualifying,

communicating and managing requirements that define the system at successive levels

of abstraction.”.

11

In essence, requirement engineering concerns about process and activities

regarding to “requirements” in order to produce a precise SRS. Requirement

engineering also looks into the area of “specification reusability”. Requirement

engineering is the field of knowledge which this project’s goal aligned to – to reduce

the problem in requirement elicitation and specification.

In our project, the idea of reusability is adopted in our deliverable, which we

will strive to increase reusability of requirement by breaking down keywords of

requirement and save them into database. This will allow the saved knowledge to be

reused in future.

2.2.2. Requirement Engineering Activities

There are many models that could visualize the main activities in requirement

engineering. Two of the main process model will be presented in this section.

Figure 2.1: Linear Requirement Engineering Process Model

(Kotonya & Sommerville 1998)

12

Figure 2.2: Spiral Requirement Engineering Process Model (Sommerville 2011)

There are 4 major activities in requirement engineering, which are requirement

elicitation, requirement specification, requirement validation, and requirement

management.

Requirement elicitation is the phase where requirements are identified, listed

and classified. The sources of requirements are mainly from the stakeholder of the

system. There are mainly three classes of stakeholders, which are clients (who pay for

the system), developer (who design, code and maintain), and end users (who uses

system) (Nuseibeh & Easterbrook 2000).

13

There are many elicitation techniques that can be used. For instance, the most

traditional methods are survey, questionnaires, interviews and analysis of existing

documents. There are also other techniques such as group elicitation, prototyping,

cognitive techniques and ethnography.

Requirement specification is the process of writing down user and system

requirements in a requirements document (Sommerville 2011). There are few ways to

write a requirement specification. The most frequent used methods are by using natural

language sentences or structured natural language, which the latter ones refers to

natural language in standard form or template. The others are design description

language which uses language like programming language, graphical notation such as

use case and sequence diagrams, and mathematical specifications such as notations.

Requirement validation is the process of checking and verifying requirements.

The frequent used techniques includes requirement reviews, prototyping and test-case

generation. Lastly, requirement management is the process that keep track of

requirements and managing the changes to requirement, which is relatively important

for large projects.

In the following section, the problems which lies in both requirement elicitation

and requirement specification will be discussed.

2.2.3. Problems in Requirement Elicitation and Specification

The most common requirement gathering and elicitation technique is by interviews

(Christel & Kang 1992). Interview are very useful to address organizational factors

and contextual factors of a system. If done well, interview is very efficient as

information gathered are representable as multiple stakeholder’s opinion, which saves

time and money.

14

However, interview outcomes are lacking of organization and expression

methods. There are no standardized procedures available to structure questions and

collected data, lack of tool support, time consuming, and requires manual work. The

requirement elicited are mainly dependent on requirement analyst who conduct and

analyse the interview result. Integration of information from different sources with

different interpretation and terminology is a very troublesome and error-prone work.

Lastly, analyst also need to make decision whether a collected piece of information is

a requirement or simply design information.

To resolve this, our proposed tool is a great add-on for requirement engineers

to elicit and specify requirement when conducting an interview. This is because with

help from the tool, they can directly record down requirements elicited or use the tool

to guide their interview.

Another mainly used requirement elicitation technique is use case modelling.

Use case modelling is one of the best approach to express functional requirements.

However, there are criticism on the over emphasis of using use case modelling due to

its simplicity. (Firesmith 2007). Lastly, use case modelling only emphasis on

functional requirement and are not suitable for non-functional requirements.

To overcome this, our proposed tool will focus more on supporting the

elicitation of non-functional requirement. This will make our proposed tool a good

complement to use case modelling in requirement elicitation and specification.

In another report (Christel & Kang 1992), there are 3 major problems

highlighted in the phase of requirement elicitation, which are:

1. Problems of Scope, where requirements are either overly or insufficiently

addressed. For instance, design information should be added only if necessary.

Ideally, requirement elicitation should begin by determining boundary and

objectives of the system.

15

2. Problem of Understanding, which both users and analyst might not clear and

understand about requirements and need for system. This is mainly due to

difference in background, experience, language used, and messy information.

The usage of natural language introduces ambiguity to requirement elicited,

making it prone to misinterpretation and difficulty to understand.

3. Problem of Volatility, which is mainly due to the every changing needs of the

user. Secondarily, it is caused by the revision of overemphasized requirements

elicited in earlier stage.

The goal of this project is to reduce the above mentioned problems. For our

proposed solution, we will be using requirement boilerplates, which is a type of

structured natural language. In the next section, we will be discussing about natural

language and problems in requirement specification.

2.3 Natural Language

2.3.1. Natural Language in Requirement Specification

Requirement specification can be done in 3 different formalities: (1) formal, such as

notations, (2) semi-formal, which are graphical representations like use case modelling,

and (3) informal, which is natural language that is mostly used.

Natural language is the native usage of communication language. In most of

the time, natural language is used as medium of documentation. As most of the

stakeholders are not from IT domain, natural language is frequently used by

stakeholders to express their requirements. Although there are other methods of

requirement specification, natural language does not affect professionalism and quality

of requirement (Ibrahim et al. 2015).

16

From a survey conducted by Neill and Laplante (Neill & Laplante 2003), 51%

of the respondents are using informal representation, which proofs that even the

professionals in the industries are still using natural language despite many other

methods available for requirement specification.

According to Pohl and Rupp (Pohl & Rupp 2015), there are three perspectives

which a requirement can be specified: (1) Data perspective, referring to structure of

input or output data and dependencies or system context, (2) Functional perspective,

which process input data and output data to system context, and (3) Behavioural

perspective, referring to states transitions and effect of system to its environment. And

according to them, natural language is very suitable to document all of these three

perspective.

Hence, it can be seen that natural language is the prominent method in

requirement specification. However, there lies many problems in the usage of natural

language, which will be discussed in the next section.

2.3.2. Problems of Natural Language in Requirement Specification

Requirements are usually expressed in natural language as it easily understood by

different parties. However, the challenge in natural language in requirement

engineering is to completely capture the need of stakeholder and express it

unambiguously (Hull et al. 2011).

On the other hand, although being advantageous method in requirement

specification, Pohl and Rupp (Pohl & Rupp 2015) also warned that natural language

requirements of different types and perspectives could be easily mixed up during

documentation. They also added that isolation of information according to perspective

is also difficult although requirements are specified in natural language. In essence,

natural language requirements can be ambiguous.

17

As a result of having ambiguous requirement, the issue of volatility of

requirement will arise (Yang et al. 2011). In order to reduce the negative impact of

using natural language, one of the method we can attempt to look into the usage of

boilerplate, which will be discussed further in next section.

2.4 Requirement Boilerplate

2.4.1. Background

In order to reduce problems of natural language especially the ambiguity and

inconsistency of requirement, we need to introduce certain structure which restricts the

structure of requirement in order to improve the quality of it. In consequence, the idea

of creating template of requirement is brought in and formed the natural language

requirement boilerplate or simply known as requirement boilerplate.

The idea of boilerplate was first introduced in Requirement Engineering (Hull

et al. 2011) in Section 4.8. They described boilerplate as a language of requirement

which comes in a format of sentence, but with angle bracket surrounded placeholders.

They stated that using boilerplate is a good way to standardize language used for

requirement and boilerplate could be collected and reused from project to project.

Other than that, they also added that using boilerplate has three main advantages:

1. Allow global change in style of requirement which means by changing

boilerplate solely, all requirement based on the boilerplate will be able to be

updated to latest format.

2. Allow system information to be processed easily by extracting information

from placeholders

3. Protecting confidential information by filtering out confidential information

based on placeholders.

18

 Boilerplate is considered a type of structured natural language and semi-formal

representation of requirement. Hence, boilerplate is capable of increasing the quality

of requirements by using simple sentence structure which reduces the ambiguity of

requirement and expressing requirements in consistent manner (Arora et al. 2014).

Boilerplate appears to be solution to the problems incurred due to usage of

natural language in requirement specification. Boilerplate acts as a template to express

requirement, which makes them consistent. It limits the structure of the sentence,

giving requirement a simple yet descriptive expression. Requirement’s ambiguity can

be avoided as each of the elements are structured accordingly to the template, making

it impossible to misinterpret the original meaning implied.

In the next section, we will look into practical perspective of requirement

boilerplate and how it could be used to standardize requirements.

2.4.2. Usage of Requirement Boilerplate

Requirement boilerplate are like normal sentences but consisting of placeholders that

are wrapped with angle brackets (‘<’ and ‘>’). These placeholders can be replaced with

other words to become a requirement. It works like a mound or template for sentences.

For example, given a requirement boilerplate as below:

 The <actor> shall be able to <action><target>

By filling the placeholder of <actor>, <action> and <target>, different requirements

can be generated.

For instance, the following requirement are generated from above boilerplate:

 The <user> shall be able to <save><document>

 The <firewall system> shall be able to <detect><intruder>

 The <student> shall be able to <register><subject>

19

In another case, boilerplate can also be used to express existing requirement in

consistent manner, given that the correct type of boilerplate are chosen.

For example, given requirements as below:

 User can login

 User will need to register an account

 If the password is correct, user can login to the system

And some requirement boilerplates as below:

 The <actor> shall be able to <action>

 The <actor> shall be able to <action><target>

 The <actor> shall be able to <action><target>given that <condition>

The usage of boilerplate can formalize and express the above requirements in a

structured and consistent manner:

 The <user> shall be able to <login>

The <user> shall be able to <register><account>

The <user> shall be able to <login><to the system>given that <password is

correct>

In our proposed tool, pre-defined requirement boilerplates will be provided for

user to perform the actions as shown above in order to specify requirements in a

consistent manner. In the next section, we would also like to share some related works

that had been done by others using boilerplate.

2.5 Software Quality Models

In our tool, we will be using a software quality model as reference to design and

develop non-functional requirement specification modules and boilerplates. In order

to do so, we had done some research and review on existing software quality models.

In the following sections, the background of quality model and examples will be shown.

20

2.5.1. Background

Software quality model was defined as “a set of characteristics and relationships

between them, which provides a framework for specifying quality requirement and

evaluating quality” in (International Organization For Standardization ISO 2011).

Quality model usually consists of few quality characteristic, which each of them may

be refined into multiple levels of sub-characteristics (ISO/IEC & IEEE 2010). For each

sub-characteristics, quality metrics may be assigned to evaluate and measure the

quality requirement.

According to (Miguel et al. 2014), software quality models are acceptable

methodology that can be used to support the quality management of a software product.

This leads to the question whether which quality model should we choose and use.

From a research done by (Thapar et al. 2012), they studied 24 quality models and

categorized quality models into two types: (1) Basic quality models, which produced

from research in the direction of quality improvement and software evaluation, (2)

Tailored quality models, which are improved forms of basic quality models as result

of adjustment to the needs of underlying application domain.

Figure 2.3: Quality models developed before 2011 (Thapar et al. 2012)

21

The list of major quality models that was introduced before 2011 was shown

in Figure 2.3. Among all of these quality models, there are 3 quality models will be

discussed in the next section, namely McCall’s, Boehm’s and ISO 9126 Quality Model.

2.5.2. Basic Quality Model Reviews

To compare between quality models, 3 main quality models will be reviewed and

discussed in this section. The reason that these 3 quality models was chosen is because:

(1) Both McCall’s and Boehm’s quality model was the earliest widely recognized

quality mode, (2) ISO quality model is latest basic quality models and also recognized

globally, (3) There are good comparison that can be made between these models.

First of all, McCall’s quality model was introduced earliest back in 1977.

McCall identified 3 main perspective to characterize the quality attributes of a software

product (McCall et al. 1977), which are: (1) Product revision which based on factor of

maintainability, flexibility and testability, (2) Product transition which based on factor

of portability, reusability and interoperability, (3) Product operations, which based on

correctness, reliability, efficiency, integrity and usability.

In addition, McCall also introduced metrics by measuring quality subjectively.

He used the format of yes/no, 1/0 or range of values to consider whether a quality

factor is present. McCall covered both viewpoints of developer and user to bridge the

gap between them.

22

Figure 2.4: McCall’s Quality Model

On the other hand, Boehm had introduced a quality model to evaluate quality

of software in 1978. As compared to subjective measurement introduced by McCall,

Boehm preferred quantitative measurements. Boehm’s quality model was based on 3

primary uses at top hierarchy, which are (1) As-is utility, (2) Maintainability, (3)

Portability. At the next level, Boehm identified 7 quality factors which are (1)

Portability, (2) Reliability, (3) Efficiency, (4) Usability, (5) Testability, (6)

Understandability, and (7) Flexibility (Please refer to Figure 2.5).

23

Figure 2.5: Boehm’s Quality Model

In 2001, ISO 9126 was introduced to standardize the evaluation of software

quality (International Organization For Standardization Iso 2001). The standard

address 4 subjects of software quality, which are (1) Quality model, (2) External

metrics, (3) Internal metrics and (4) Quality in use metrics. ISO 9126 Part One (ISO

9126-1) extends work done by McCall, Boehm and others in defining quality

characteristics.

ISO 9126 focuses on 6 main quality characteristics, which are (1) Functionality,

(2) Reliability, (3) Usability, (4) Efficiency, (5) Maintainability, and (6) Portability.

Each of these main quality characteristics are further elaborated as sub-characteristics

(Please refer to Figure 2.6).

24

Figure 2.6: ISO 9126 Quality Model

As a comparison, it can be noticed that all of the above 3 quality models has

similar quality characteristics or sub-characteristics, which mainly includes the aspect

of portability, reliability, efficiency, maintainability and testability. McCall’s and ISO

model are similar in terms of their coverage as compared to Boehm’s model. In term

of structure, McCall’s model grouped their main characteristics into 3 different group,

which is very good to distinguish whether a requirement is related to operation of the

product, the review of the product or the transition of product from one release to

another.

However, ISO model is well-structured as it grouped quality characteristics

based on their focus aspects and has clear distinguish between each quality

characteristics. McCall’s quality factor was inclusive of many criteria which has no

clear boundary make it harder to group requirements.

25

 Furthermore, ISO 9126 was compiled at later time than McCall’s Quality

Model (1978 vs 2001). This may hint that some elements in McCall’s quality model

may be outdated, and that ISO may introduced some important characteristics which

overlooked by McCall’s model. For example, security aspect was introduced in ISO

model but wasn’t mentioned in McCall’s model. This may be related to the fact that

everyone is now connected to Internet, as compared to the time when McCall’s was

introduced, Internet is non-existence. This makes ISO model more suitable to be used

than McCall’s model.

Later in 2011, ISO 9126 was superseded by a refined version of ISO quality

model, which is ISO 25010 that will be further discussed in the next section.

2.5.3. ISO 25010 Quality Model

In a rapid changing environment like IT domain, the wants of user are changing from

time to time. Hence, ISO replaced their ISO 9126 model to become ISO 25010 Quality

Model which is more extensive. Compared to ISO 9126, ISO 25010 was developed as

a part of SQuaRE (Software Product Quality Requirement and Evaluation) ISO

standards. The purpose of SQuaRE is to assist in developing and acquiring software

products with specification of quality requirements and evaluation.

The quality characteristics of ISO 25010 are shown in Figure 2.7. As compared

to ISO 9126, ISO 25010 are more complete. Changes from ISO 9126 to ISO 25010

includes the more emphasizing of “Security” and “Compatibility” aspect where it

became new main quality characteristics. The other changes includes renaming certain

characteristics to make the term more accurate, such as “Functionality” to “Functional

Suitability” and “Efficiency” to “Performance Efficiency”.

26

Figure 2.7: ISO 25010 Quality Model

As a summary, ISO 25010 improved ISO 9126 model to tally with the move

of trend in industry. In our project, we would refer to ISO 25010 as guideline for non-

functional requirement specification.

2.6 Similar Tool Review

In order to compare our proposed tool with other existing tool, we also reviewed and

summarized a few existing requirement engineering field related tools. The discussion

and comparison are mainly focused on the aspect of requirement elicitation or

specification but not requirement prioritization and management due to the scope of

our project. However, due to the fact that majority of tool that supports requirement

specification are requirement management tools, we cannot avoid the comparison

between requirement management tools.

In the following subsections, 3 different tools will be presented, discussed and

compared along with our proposed tool.

27

2.6.1. Enterprise Architect

Enterprise Architect (EA) is an UML modelling tool first released by Sparx Systems

in 2000. Despite supporting UML modelling, EA also included some requirement

specification and requirement management features (Sparx Systems 2010).

EA allows user to specify both functional and non-functional requirements.

These requirements are added manually and user may also specify the status (whether

requirements is at proposal stage or implemented), difficulty and priority. The user

also may import requirements from CSV file. In addition, user may declare certain

terms with their definitions or descriptions in glossary which can be cross referenced

within the project.

The main advantages of using EA is the completeness of design models that

user can create and the capability of linking between requirement and design models,

which allows user to view each related items for a specific requirement. However, EA

do have a learning curve where new users will easily get overloaded with significant

numbers of functionalities offered.

2.6.2. IBM Rational DOORS

IBM Rational DOORS (Dynamic Object Oriented Requirement Management System)

(will be referenced as DOORS in the following) is a requirement management tool

offered by IBM. DOORS was first released by Quality Systems and Software (QSS),

which then bought over by Telelogic in 2000. Later, Telelogic was acquired by IBM

and development of DOORS was continued by IBM Rational in 2008.

DOORS supports importing or exporting between lists of most frequently used

software such as Microsoft Word, Microsoft Excel, Microsoft Project and Adobe

FrameMaker. DOORS also stores documents in an internal database environment and

provide traceability for every changes. DOORS allow tracing from initial requirement

till detailed requirements, then to design and test cases. Other than that, DOORS also

28

allows linking between documents and baselining (store current state of document).

Last but not least, DOORS allow viewing, filtering, searching and sorting on

documents.

DOORS is a multi-user, version controlled, and highly traceable requirement

management tool. DOORS requires manual work to specify requirements or can

simply import existing requirement from documents and saved into DOORS’ database

system. The integrated document system provided by DOORS ensures all files are

documented, versioned and all changes were traced.

2.6.3. ElicitO Framework

ElicitO is a quality ontology driven non-functional requirement elicitation tool created

by (Hazeem et al. 2007) from University of Manchester. ElicitO uses functional

ontology as domain model and quality ontology derived from quality models to

support the requirement elicitation process (Al Balushi et al. 2013).

ElicitO uses database to store sessions and requirements specified in each

sessions. Requirements are added by (1) Selecting a functionality defined in functional

ontology, (2) Selecting a quality metrics defined in quality ontology, and (3)

Specifying the measurement and value of the metric. For example, user may select

“Frequently Asked Question (FAQ)” as functionality, then select “Page download

speed” as quality metric, then specifies “15 seconds” as measurement value. This

indicates a non-functional requirement which requires “page download speed” of

“FAQ” to be “less than 15 seconds”.

ElicitO also comes with feature to identify conflicting requirements based on

relation defined in ontology and allows discussion on the conflict. All requirements

are stored in tabular format in the database and information can be easily extracted

from this format. ElicitO provides non-functional requirement elicitation which is

quite lacking in many others tools, as well as requirement prioritization based on

discussions. The side product of ElicitO, which is functional ontology and non-

29

functional ontology can be reused in other tools, which promotes reusability of

knowledge.

2.6.4. Comparison and Discussion

After reviewing these 3 tools, we made a simple comparison between them as well as

our proposed tool (please refer to Table 2.1).

Table 2.1 Comparison of Tools

Aspect Tool

 EA DOORS ElicitO SrsTool

Supports requirement

elicitation (FR)
No No

Yes

(Functional

ontology)

Yes

(Domain

model)

Supports requirement

elicitation (NFR)
No No

Yes

(Quality

ontology)

Yes

(Quality

model)

Supports requirement

specification (FR)
Yes Yes Yes Yes

Supports requirement

specification (NFR)
Yes Yes Yes Yes

Requirement

specification approach

Natural

language

Natural

language
Tabular Boilerplate

Supports requirement

prioritization
Yes Yes Yes No

Supports requirement

management
Yes Yes No No

Data storage type File based Database Database Database

Collaborative No Yes No Yes

Web based accessibility No Yes No Yes

30

Import requirements Yes Yes No Yes

Export requirements Yes Yes No Yes

Special feature UML Traceability Ontology Boilerplate

From the above comparison, we could easily noticed that almost all

requirement engineering tools supports requirement specification but in different

approach. Requirement management focused tool such as EA and DOORS do not

support requirement elicitation and mainly uses natural language for requirement

specification. However, they provided complete features to prioritize and manage

requirements as well as good traceability for requirements.

In contrast, ElicitO focused more on requirement elicitation and specification

using ontology and even offered prioritization using discussion approach. ElicitO also

allows user to identify possibly conflicting requirements based on relation defined in

ontology. ElicitO constraints all requirements must be based on defined functional and

quality ontologies, which produces correct and complete requirement if their

ontologies were validated.

Meanwhile, our tool (SrsTool) focused to implement boilerplate in requirement

elicitation and specification phases. Our tool supports both functional and non-

functional requirement specification but do not support prioritization and management

of requirements.

Since requirement phases are more likely to be handle by more than solely a

requirement engineer, the aspect of web based accessibility and collaborative features

were also looked into comparison. As a result, we noticed that EA and ElicitO is less

appealing than DOORS and our tool in this aspect. EA requires user to share project

file, while ElicitO depends on the setup of database, whether it is local or web based

database server. Other than that, features to import or export requirements is almost a

must for a requirement engineering tool.

In summary, our tool being a web application elevated the collaborative and

web based accessibility aspect of the tool. Our tool allows user to export requirements

31

which is an added advantage for our tool. As future improvement, our tool may opt to

include requirement prioritization or management functionalities as how other tools

provided.

2.7 Project Approach Review

2.7.1. Rational Unified Process

To identify which software process model to be implemented in this project, we made

a brief comparison between the traditional waterfall and agile development

methodology. The following table will summarized some criteria of both methodology.

Table 2.2 Comparison of Waterfall and Agile development model

Waterfall Model Agile Model

Linear/sequential flow, where there is

no return to previous phase

Iterative, where it will go back to

previous phase every iteration

One shot, which product are delivered

directly as a whole

Incremental, which product features

are delivered module by module

Poor visibility, as product is only visible

at end of development

Good visibility, as prototype are visible

at early stage of development

High risk, as only at the end of testing

phase problems are surfaced

Lower risk, as during each iteration

problems are found

Well documented and recorded Dependent on type, mostly less

documented

High cost of requirement changing Lower cost of requirement changing

but requires requirement management

Suitable for complex and reliable

system such as embedded system and

banking system

Suitable for light and fast changing

requirement project such as web

application and mobile application

32

As our project is a relative small project and prone to requirement changes, it

is best to employ an agile model that is iterative. This will allow more room for

requirement changes and allow early prototype to recognize problems. In our project,

we chose to employ RUP as reference for the flow of our software process.

Rational Unified Process (RUP) is a software process introduced by Philip

Kruchten (Kruchten 2004). RUP is an iterative software development process that

derived from Unified Process (UP), where UP itself is derived from the usage of

Unified Modelling Language (UML). RUP attempts to employ best features and

characteristics of traditional waterfall mode and implement them in an iterative and

incremental approach (Pressman 2009).

In RUP, there are three perspective views (Sommerville 2011), which are

dynamic perspective which shows phases of model, static perspective which shows

process activities, and practice perspective which suggests best practises.

Figure 2.8: Dynamic and static perspective of RUP

33

In Figure 2.8., both dynamic and static perspective was presented together. The

phases (inception, elaboration, construction and transition) refers to the dynamic

perspective, while the static perspective refers to activities or workflows in RUP

(business modelling, requirement, analysis and design, implementation, testing,

deployment, change management, project management, environment). All phases are

iterative and not bind to all workflows in RUP, which makes each workflow iterative

in nature and thus allow changes and flow back to previous phases.

Lastly, the practice perspective of RUP introduces 6 best practises in software

development:

1. Develop software iteratively by incrementally delivering software

components

2. Manage requirements to keep track of changes and improve traceability

3. Use component-based architecture to structure the system

4. Visually model software by using UML models

5. Continuously verify software quality to reduce bug and risk

6. Control changes to software using change management system and

configuration management tool

2.7.2. MongoDB NoSQL Database

In considering the type of database we will be using in this project, there are mainly

two types of database we can use:

1. SQL database, which mainly stores normalized data in rows and columns

called tables

2. NoSQL database, which supports storing de-normalized data in form of key-

value pairs, documents, and many other forms

In our project, the form of data we would be using are JavaScript Objects (as

we are using JavaScript mainly). Considering this aspect, using SQL database would

34

be tedious as we need to normalize data into their own tables. In contrast, NoSQL

database format such as document oriented database could easily store the JavaScript

Object directly into database.

MongoDB is a free, open source, cross platform NoSQL database. MongoDB

uses JSON-like document which is called BSON and it is a document oriented

database. MongoDB is the most widely supported NoSQL database as compared to

other NoSQL databases. MongoDB is also well known as core component for the

trending MEAN (MongoDB, ExpressJS, AngularJS, NodeJS) website and web

application development stack.

2.7.3. ExpressJS and NodeJS RESTful API

Since we are developing a website, we need to consider both client (frontend) and

server (backend) side of the website. For the development of backend, we had looked

into either using PHP frameworks or JavaScript based on technical skills available.

When deciding on the software architecture of our backend side, we decided

to develop a REpresentation State Transfer (REST) based web service which also

known as RESTful service. RESTful service utilizes Hypertext Transfer Protocol

(HTTP) headers and verbs such as GET, POST, PUT and DELETE to represent the

“state” of the HTTP packet. RESTful service provides a simple and uniform interface

for web clients to consume. In considering our server side language to be used, we

analyse mainly on the speed and effort required for the particular language to develop

a RESTful web service.

Excluding ASP.NET and other language which we are not proficient in, we left

with PHP and JavaScript (NodeJS). PHP is a server side object-oriented scripting

language. To develop a RESTful server, we had looked into few PHP frameworks

which could support easier development of RESTful API such as Yii2 and Slim.

35

On the other hand, NodeJS is a JavaScript runtime environment that

implements an event-driven architecture. NodeJS supports concurrency better than

PHP as it runs by looping cycles to wait and handle requests by user. NodeJS also

comes with a package manager, which is called NPM (Node Package Manager). NPM

allows user to automatically install dependencies by specifying them, and NPM

registry hosts a lot of useful JavaScript packages shared by other programmer.

After our considerations, we decided to go with NodeJS which has better

community support, documentation and had a lot of community developed packages.

ExpressJS is one of the most popular packages that hosted in NPM, which frequently

used to build RESTful API. ExpressJS provides a framework for our NodeJS server

side to serve the RESTful API for user easily. The combination of ExpressJS and

NodeJS allows us to do backend development quickly with some help by using

packages provided in NPM.

2.7.4. AngularJS

On the frontend side, there are far more choices that we have. With the technical skills

we have, we left to pick between two JavaScript frameworks, which is jQuery and

AngularJS. AngularJS is an open source JavaScript framework for web application

development. AngularJS is powerful for single page app development, which refers to

web application that provides similar experience as desktop app. Since our tool is a

web application rather than a website, AngularJS is very suitable to be used for

frontend development of our web application.

In addition, AngularJS do not have conflict with jQuery library, which means

that it could be used together with jQuery. AngularJS supports client-side routing and

two-way binding with HTML components, which could swift up the development of

our website. Other than that, AngularJS is also built with Model-View-Controller

architecture. This allow separation of business logic and user interface, such that we

can easily change to frontend views without altering the logic of the website. Hence,

AngularJS was chosen to be build the frontend of our website.

36

CHAPTER 3

METHODOLOGY

3.1. Chosen Development Methodology

With references from Section 2.7.1, the development methodology we will be

implementing is the rational unified process (RUP). Figure 3.1 shows a basic iterative

lifecycle of RUP process.

Figure 3.1: Rational Unified Process Cycle

37

We chose RUP because the concept and workflow of RUP are tally with our

project. For instance, we will be implementing 8 requirement specification modules.

As such, the implementation process of the modules are likely to be iterative as each

module can be considered an iteration from planning, modelling till implementation.

Based on RUP’s model (Please refer to Figure 2.8 in Section 2.7.1), the

implementation of dynamic perspective of RUP in our project is as following:

Table 3.1 Dynamic Perspective – Project Phases

Phase Main Activities

Inception - Project proposal

- Literature review

- Project methodology review and proposal

- Requirement specification

- Project plan

Elaboration - Project methodology finalization

- Software architecture design

- Software component design

- Database design

- RESTful route design

- Activity diagrams

- Sequence diagrams

Construction - Product development

- REST API development

- Version control management

- Deployment

- User acceptance test

Transition - User feedback survey

- Report finalization

38

 As of the practice perspective of RUP, we will implement most of the best

practices emphasized by the model (Please refer to Table 3.2).

Table 3.2 Practice Perspective – Best practices

Practice Implementation

1 Develop software

iteratively

Yes. We will implement the software using 3

iterations which will be described later.

2 Manage requirements No. Because the requirement is very unlikely to

change.

3 Use component-based

architecture

Yes. We will design the software using component

based client-server architecture

4 Visually model

software

Yes. We will model our software using use case

models, activity diagrams and sequence diagrams

5 Continuously verify

software quality

Yes. We will test our software with user periodically

throughout the development and get user to give

feedback to our tool

6 Control changes to

software

Yes. We will be using GitHub to host our source code

repository so that we can revert any unwanted

modification at any time and keep track of our

changes.

In our case, we propose to perform 3 iterations of implementation according to

the process cycle presented in Figure 3.1. Each of iterations will perform the following

implementations:

Iteration 1: User Interface Constructs and Backend Setup

1. Convert User Interface Design into HTML and CSS

2. Setup backend RESTful API and convert document schema into Mongoose

schema

3. Link up backend and frontend so that they can communicate via HTTP

4. Setup basic routes for each UI

39

Iteration 2: Requirement Specification with Boilerplate

1. Implement each requirement specification modules (total of 8 modules)

2. Implement the usage of boilerplate to generate requirement

3. Implement the functionality of save and load project requirements

4. Continuous development of backend REST API

Iteration 3: User Authentication and Feature development

1. Implement the functionality of modifying boilerplates

2. Implement user authentication modules such as Facebook Login

3. Implement the export feature of the tool to export requirements

4. Clean up code

3.2. Chosen Development Tools

3.2.1. JetBrains WebStorm IDE

JetBrains WebStorm is a smart IDE which provides functionality such as code

completion and able to interpret and link up between HTML and JavaScript.

WebStorm also allows installation of plugins, such as NodeJS and AngularJS plugin

which supports the development of our website.

3.2.2. NodeJS packages

To speed up our development, we will be integrating few packages from NPM so that

we do not need to code for those packages which already created by other user. The

following are main packages will be used in our project:

40

1. ExpressJS, a package which configured to route user requests according to

HTTP request method and URL. This package will be used to build RESTful

API on our server side.

2. UnderscoreJS, a package which defined many functional programming

methods such as array manipulation methods, map-reduce methods and etc.

This package will be used to assist both client and server side.

3. Mongoose, a package which allows MongoDB schema definition, validation

and query. This package will be used to defined the database schema and

perform database related operations on server side.

4. Browserify, a package which allows NodeJS server side code (backend) to be

compiled into browser code (frontend). Browserify allows us to do frontend

code with NodeJS and AngularJS before compiling them into one final file in

frontend.

5. Passport, a package which automatically serialize or deserialize user from

cookie data to store the user ID that indicates whether user is logged in.

Passport will be used with Facebook-passport plugin to support OAuth 2.0

provided by Facebook to log in to the system.

3.2.3. CSS framework

In order to develop our user interface, we decided to use CSS framework to speed up

and make development easier. We started with Bootstrap CSS for early stage of

development. Bootstrap CSS provides skeleton CSS of user interface and uses grid

system to build user interface. This allows user to build responsive websites easily.

41

However, after considering that Bootstrap CSS are quite boring and not

aesthetic, we decided to change to Materialize CSS. Materialize CSS is a CSS theme

developed based on material design concept. Materialize CSS also uses grid system

and comes with even more functionality such as light box to show images and

accordion which act like expandable list.

Since AngularJS is MVC architecture based, we moved our user interface

design from Bootstrap to Materialize without changing any logic in the code, solely

changes on HTML and CSS.

3.3. Requirement Specification Strategy

In order to capture requirements from our user, we need to provide a platform for user

to state what they want. In contrast to normal approach of asking user to pick

requirement boilerplate and fill in the details, we are attempting another approach:

filling forms.

To do so, we first try to list down possible requirements that user may specify.

This process is guided by ISO 25010 Quality Model where we attempt to group

requirements based on each quality characteristic. Then, we extract the requirement

boilerplate from the requirement by looking at the common sentence structure.

For example, for “Compatibility” quality characteristic, we may want to

specify the following requirements:

1. The system shall be able to run in <Microsoft Windows> <7> and above with

<some unsupported colour scheme>

2. The system shall be able to run in <Microsoft Windows> <8.1> and above

with no compatibility issue

3. The system shall be able to run in <Linux Ubuntu > <12.0> and above with

no compatibility issue

42

4. The system shall be able to run in <Apple MacOS > <10> and above with no

compatibility issue

From the above requirements, we can observe a similar sentence structure and

extract a requirement boilerplate like the following:

1. The system shall be able to run in <Operating System> <Version> and above

with <Compatibility Issue>

2. The system shall be able to run in <Operating System> <Version> and above

with no compatibility issue

Based on above approach, we identified the requirement boilerplate for

compatibility of operating system. The next step is to create a form to request user to

fill in values for <Operating System>, <Version> and <Compatibility Issue>. By using

this method, we can let user have more interactive usage with the tool.

Later in Section 6.3 Requirement Specification Strategy Implementation, the

real implementation based on this strategy will be shown.

43

3.4. User Interface Design

In order to implement our tool, we sketched the user interface design using Draw.IO

tool before mapping it into real website.

Figure 3.2: UI – Show all project and create project

Figure 3.2 shows the UI where all projects of the user are shown. User may

also create new projects in this UI. After creating project, user may open the project to

specify requirement or delete the project if no longer needed.

Figure 3.3: UI – Show project requirements

44

Figure 3.3 shows the user interface where all the specified requirements of the

project are listed. User may delete any specified requirement and save them to server.

Other than that, user may click on “Edit” button which they can choose to “Edit

Project”, “Edit Domain” or “Edit Boilerplate”. These modules will allow user to

modify project related data. User may also want to click on “Specify Requirement”

which allows them to specify functional requirements or non-functional requirements,

and generate requirements accordingly. Lastly, user can click on “Export Requirement”

to export all specified requirements to their desired format.

Figure 3.4: UI – Specify Requirements

Figure 3.4 shows the UI which user specify their requirements. For instance,

the UI shown was the form for user to specify non-functional requirement. The module

being used is “Compatibility” module and the user specified that the system will be

able to run in Windows 7 but colour may be missing. User can choose to add or delete

any specified operating system data.

45

Figure 3.5: UI – Generate Requirements

Figure 3.5 shows the UI where user adds generated requirements into their

project. These requirements are generated based on user’s input in each module and

defined boilerplates for the module accordingly.

46

Figure 3.6: UI – Export Requirements

Lastly in Figure 3.6, the UI for user to export requirements was shown. All

requirements specified, generated and added to the project will be gathered and shown

in document-like format. User may export the document to other formats that provided

by the system to do further refinement or to be used in their project.

3.5. Project Plan

Please refer to “Appendix A: Work breakdown structure and Gantt chart”.

47

CHAPTER 4

REQUIREMENT SPECIFICATION

4.1. Software Requirements Specification

The following section will describe the initial software requirements specifications

that will be achieved by our proposed tool.

4.1.1. Functional Requirements

The term “user” refers to user of our proposed tool, while the term “system” refers to

our proposed tool. The term “requirement” refers to both functional and non-functional

requirements if not specified.

1. Boilerplate template maintenance

a. The user shall be able to modify boilerplate templates

b. The user shall be able to restore boilerplate templates to pre-defined

boilerplate templates

c. The user shall not be able to remove pre-defined boilerplate templates

48

2. Requirement generation

a. The user shall be able to specify functional requirements using defined

module.

b. The user shall be able to specify non-functional requirements using

defined module.

c. The user shall be able to generate requirements using pre-defined

boilerplate templates

d. The user shall be able to generate requirements using user-defined

boilerplate templates

e. The user shall be able to remove generated requirements

3. Pre-defined requirement boilerplate

a. The system shall provide pre-defined functional requirement boilerplates

b. The system shall provide pre-defined non-functional boilerplate

templates grouped by quality characteristics in accordance to ISO 25010

Quality Model (International Organization For Standardization ISO 2011)

4. Project maintenance

a. The user shall be able to create project

b. The user shall be able to open project

c. The user shall be able to remove project

5. Export

a. The system shall be able to export software requirement specification

(SRS) as plain HTML file (.html)

b. The system shall be able to export software requirement specification

(SRS) as Microsoft Word Document file (.doc)

49

4.1.2. Non Functional Requirements

1. The total file size of the website shall not exceed 5MB.

2. The system shall provide REST API.

3. The private project shall only be accessible by owner if owner is logged in.

4. The public project shall be accessible by any user.

5. The system shall use OAuth 2.0 with Facebook as provider to login to the

system.

6. The user interface of the system shall use material design.

7. The user interface of the system shall consistent through all modules so that

will not confuse user.

8. The system shall validate user input for required input to prevent empty data.

9. The system shall prevent user from opening other people's private project.

10. The system shall prevent user from modifying other people's private project.

11. The system shall prevent user from deleting other people's private project.

12. The deletion time of project shall be less than 2 seconds.

13. The time taken to generate requirement shall be less than 5 seconds.

14. The time take to export requirements shall be less than 2 seconds.

4.2. Use Case Modelling

In order to describe the functionalities of our proposed tool, we performed a use case

modelling with our proposed tool.

50

Figure 4.1: Use Case Diagram

Figure 4.1 describes what actions can be done by requirement engineer when

using our proposed tool. These actions are directly related to the functional

requirement of our proposed tool.

Please refer to Appendix B: Use Case Descriptions for the description of each

use cases stated in Figure 4.1

51

CHAPTER 5

DESIGN

5.1. Software Architecture Design

The software architecture we implemented is a client-server architecture design. In

this case, we refer the browser web application built on top of AngularJS as client, and

the server built on top of NodeJS as server. The distribution of software components

shown in Figure 5.1.

Figure 5.1: Deployment Diagram

Figure 5.1 contains two components from component diagrams, which are

SrsTool Controller from Figure 5.2 and SrsTool Routes from Figure 5.3. The reason

is because only these two components are actually communicating to each other using

HTTP request and response. SrsTool Controllers will perform HTTP request from

52

client side, which will be routed accordingly by SrsTool Routes in server and returns

HTTP responses. For further description of each components, please refer to section

5.2.

5.2. Software Component Design

There are two component diagram that we constructed to model the components of

both client and server side. The two diagrams will be shown in the following two

sections.

5.2.1. Client Component Diagram

Figure 5.2: Client Component Diagram

53

Figure 5.2 shows the component diagram of client side. The components with prefix

“Angular” are provided by AngularJS itself, while those with prefix “SrsTool” refers

to user defined components. The description of each component is as below:

1. Angular Dependency Injector

Angular Dependency Injector provides an interface for all dependency to be

declared before usage, and injected into required components when needed.

For instance, from the diagram shown, SrsTool controllers and services are the

main consumer, while all of the other components are supplier of services. This

allows a uniform interface to inject dependencies and reduce the

interdependency between components.

2. Angular Route Provider

Angular Route Provider is used to route within different HTML pages on the

browser without needing to refresh the page. This is done internally by Angular

where it fetches the HTML file via Asynchronous JavaScript and XML request

(AJAX) and updates the user interface. This gives user experience as if the web

application is loading instantaneously and behaves like a desktop application.

3. Angular Location Provider

Angular Location Provider encapsulates the location path (URL) of web page

and converts location into Angular routes accordingly. This will allow us to

switch between routes and load different pages without needing to refresh to

page.

4. Angular HTTP Provider

Angular HTTP Provider provides HTTP services by encapsulating all HTTP

request header type into functions. This allow us to do HTTP request easily

without needing to construct AJAX objects as in JavaScript.

5. SrsTool Directives

SrsTool Directives binds custom HTML tags with their associated controllers.

This allow our web application to be broken down into subcomponents and

54

allow us to develop modules independently. SrsTool Directives will be

compiled and provided as directive for controllers and user interface.

6. SrsTool Services

SrsTool Services provides services such as user authentication service on the

client side. SrsTool Services can be used in all other component and controllers,

which they will provide functionalities that are commonly used by all other

components.

7. SrsTool Controllers

SrsTool Controllers are controllers for each user interface that we defined. The

controller contains all the logic of the application and will perform actions such

as saving, loading, routing and generating requirements. SrsTool Controllers

are linked to HTML files according to how it was defined in SrsTool Directives.

5.2.2. Server Component Diagram

Figure 5.3: Server Component Diagram

55

Figure 5.3 shows the component diagram of server side. The description of each

component is as below:

1. Wagner Dependency Injector

Wagner Dependency Injector provides the similar functionality of Angular

Dependency Injector.

2. Mongoose Database Model

Mongoose Database Model allows user to define database schema for

MongoDB and provides functionalities such as validating, and basic CRUD

(Create, Read, Update, and Delete) actions. Mongoose Database Model also

allow user to directly make queries on the collection directly and provides

creates Database Access Object for user to do directly data manipulation and

save changes.

3. Facebook Passport

Facebook Passport provides OAuth 2.0 features using Facebook as

authentication provider. This allows user to sign in to the system using their

Facebook account. This allows us to trace private projects based on user’s

Facebook account and has better and secured login platform.

4. SrsTool Configuration

SrsTool Configuration stores some configuration data which may be used

globally.

5. Express Router

Express Router is a module that provided by ExpressJS that encapsulate routing

functionalities and allow us to just define the name and method of the route.

The routing actions will be done internally and the developer will only need to

concern about the logic of each route.

56

6. SrsTool Routes

SrsTool Routes are route endpoints defined by developer that will handle

HTTP request accordingly. SrsTool routes are built on top of Express Router

and will be the only consumer for dependencies such as using Mongoose

Database Models to store or retrieve data from MongoDB.

5.3. Database Design

For the database design of our tool, we will be using a modelling technique of

embedding document as described by (Vera et al. 2015) in their journal “Data

modelling for NoSQL document-oriented databases”. This technique de-normalizes

the data and store them in a document to allow data manipulation in a single database

transaction.

57

Figure 5.4: NoSQL Document Design Diagram

58

In our database there are 3 collections, which are:

1. Domain

Stores each domain along with all existing modules, actors and actions. New

domain attributes will be added to its existing domain document and suggested

back to user.

2. User

Stores user’s Facebook ID and names. This collection will be used to trace

private project’s owner by Facebook ID.

3. Project

Stores data of each project. The projects are identified uniquely by ID which is

generated by MongoDB upon insertion. The userID field refers to the user of

project and which empty user ID refers to public project. The domainData field

stores a sub-document which is de-normalized from Domain collection. The

document only contains a subset of all modules, actors and action. The rest of

the fields are embedded documents for each modules of the system. For

instance, boilerplateData stores the boilerplate of each module, and

accessControlData stores the data for Access Control Module. These

embedded documents structure are dynamic and complex, and hence are not

described in the ERD.

5.4. RESTful Route Design

Based on the collections that we have in database, routes will be created for related

actions for each route. The prefix of route is “HOST_URL/api/v1/”. For instance, the

route “domain” will be mapped to become “HOST_URL/api/v1/domain”, where

HOST_URL refers to the URL of the server, like “www.srs-tool.com/api/v1/domain”.

The route part with colon (:) in front (route/:id) refers to the query parameter (route/123

means ID is 123).

59

1. Domain

Table 5.1: Route Design for Domain

Route Method Description

domains/names GET Returns a list of domain names

domains/:id GET Returns Domain document based on ID, or null if

not found

2. User

Table 5.2: Route Design for User

Route Method Description

me GET Returns current logged in user’s data, or null if

not logged in

auth/facebook GET Redirects user to login with Facebook

auth/facebook/callback GET Redirects user to login with Facebook, then

redirects user to their Projects page

auth/logout GET Log out user and redirect them to homepage

60

3. Project

Table 5.3: Route Design for Project

Route Method Description

projects/public GET Returns a list of public projects with project

names and project ID

projects/private GET Returns a list of private projects with project

names and project ID. Returns empty array if

user is not logged in

projects/ POST Creates new project and return result to indicate

whether creation of project is successful

projects/:id GET Returns Project document based on ID of the

project, or null if not found

projects/:id DELETE Returns result to indicate whether deletion of

project is successful

projects/:id/:subroute GET Returns Project document with only certain

selected fields indicated in server, or null if

project is not found or sub-route doesn’t exist

projects/:id/:subroute PATCH Returns result to indicate whether updating

project’s data is successful

projects/:id/project-

data

PATCH Returns result to indicate whether updating

project’s data is successful

projects/:id/domain-

data

PATCH Returns result to indicate whether updating

project’s data is successful

61

5.5. Activity Diagram

To illustrate the interaction between components and process flow in our tool, we

prepared activity diagram for each use case in our project.

Figure 5.5: Activity Diagram – Login

Figure 5.6: Activity Diagram – Create Project

62

Figure 5.7: Activity Diagram – Open Project

Figure 5.8 Activity Diagram – Remove Project

63

Figure 5.9: Activity Diagram – Specify Functional Requirement

Figure 5.10: Activity Diagram – Specify Non-Functional Requirement

64

Figure 5.11: Activity Diagram – Generate Requirements

Figure 5.12: Activity Diagram – Export Software Requirement Specification

65

5.6. Sequence Diagrams

To further clarify the process flow, we also prepared sequence diagrams for each use

cases in our project. See Appendix D: Sequence Diagrams for all the diagrams.

Figure 5.13: Sequence Diagram – Login

Figure 5.14: Sequence Diagram – Create Project

66

Figure 5.15: Sequence Diagram – Open Project

Figure 5.16: Sequence Diagram – Remove Project

67

Figure 5.17: Sequence Diagram – Specify Functional Requirement

Figure 5.18: Sequence Diagram – Specify Non-Functional Requirement

68

Figure 5.19: Sequence Diagram – Generate Requirements

Figure 5.20: Sequence Diagram – Export Software Requirement Specification

69

CHAPTER 6

CODING AND IMPLEMENTATION

6.1. Requirement Specification Strategy Implementation

As per discussed in Section 3.3 Requirement Specification Strategy, we implemented

the requirement specification strategy into our tool. In this section, the coding aspect

of the implementation will be discussed. We will use the “Reliability” module as

example.

Based on the discussion, we extracted the boilerplate and saved them in the

system so that it can be used to generate requirement later on. However, we also gave

the user option to modify the boilerplate to their desired format. As a backup, we also

prepared the option for user to restore predefined boilerplate (Please refer to Figure

6.1).

Figure 6.1: Boilerplate for Compatibility Module

70

In order to gather inputs from user for placeholder’s values, such as

<operatingSystem>, <version> and <issue> as shown in Figure 6.1, we designed an

interactive user interface which involves user filling up input textboxes and add them

to the module’s data (Please refer to Figure 6.2).

The form will request user to enter all the required inputs (in this case,

<operatingSystem>) and optional inputs (<version> and <issue>). Based on user’s

input, the system will determine which boilerplate to use, such as using boilerplate

without <version> if user did not specify version of the operating system.

Figure 6.2: Input Form for Compatibility Module

After specifying the operating system’s compatibility of their system, the user

can now generate requirement based on defined boilerplate and data for “Compatibility”

module.

71

Figure 6.3: JSON data for Compatibility Module

In Figure 6.3, the extracted JSON data “Compatibility” module are shown. The

data indicates that there are 3 specified operating system, which are “Microsoft

Windows”, “Linux” and “MacOS” and each of them does not have any version or

issues specified.

Figure 6.4: JSON data for Compatibility Module boilerplate

In Figure 6.4, the boilerplate data for Compatibility module is shown. These

boilerplate will be used along with JSON data from Figure 6.3 to generate

requirements for user.

72

As a result, the requirement generated based on boilerplate and module data

are shown in Figure 6.5.

Figure 6.5: Generated requirement for Compatibility Module

6.2. Version Control System

In order to keep trace of changes made to source code, we used Git version control

system. We created a private repository which only accessible by ourselves and pushed

any changes to the repository. This will ensure that we always have a backup on the

server and can freely to make any changes as long as we committed latest code to the

server.

 In our repository there are two branches, which are master branch and deploy

branch. As the name suggests, master branch contains the master copy of our source

code. Any latest change will uploaded instantly to master branch. In contrast, deploy

branch is only updated when changes made in master branch is stabled. Deploy

branch’s source code must be ensured of minimum bug free and stable as it will be

uploaded to the web hosting server.

73

Figure 6.6: Example of Git commits and merges

 As shown in Figure 6.6, the line on the left represents Deploy branch, while

the branch on the right represents Master branch. The first few top commits shows that

development of usability, security and reliability module was done in Master branch

before merged into Deploy branch.

6.3. Automated Deployment

In addition to version control system, we also utilized cloud platform and services and

to perform automated deployment of our website. This is done by connecting our

GitHub repository to Heroku, a cloud application platform.

74

Figure 6.7: Deployment configuration in Heroku

 As shown in Figure 6.7, we configured Heroku to automatically update and

deploy from Deploy branch of our repository every time we made changes to it. For

example, Figure 6.8 shows some activities that triggered by changes in deploy branch.

Figure 6.8: Example of Deployment activities

75

CHAPTER 7

TESTING AND EVALUATION

7.1. Testing and Evaluation Strategy

To evaluate our completed tool, we conducted survey on some undergraduates and

graduates. In order to collect the most representative result from undergraduate, we

restrict that the participant must be conducting or had conducted at least one project,

in which the project includes a proper requirement phase. This will ensure that our

participant has experience of specifying requirement in order to make a contrast

between requirement specification with or without a tool.

Before conducting the survey, the participant is required to use our tool to

specify one of their project’s requirements. Guidance and instructions will be provided

when necessary to the participant so that they can understand how to use the tool within

limited allocated time. Lastly, the participant will fill in a survey form which evaluates

the tool from 5 aspects:

1. User’s personal experience in conducting software projects

2. User’s feedback on the functionality aspect of the tool

3. User’s feedback on the usability and user interface aspect of the tool

4. Measurements based on user’s project’s requirement specification

5. User’s personal opinion regarding the tool

76

From the result of this survey, we will expect to be able to answer the following

questions:

1. What are the popular methods used by user to specify requirements?

2. Do user know generally knows what is requirement boilerplate?

3. How do user feel about using requirement boilerplate to specify requirements?

4. Are the functionalities of the tool complete and suitable?

5. Are the requirement boilerplates of the tool appropriate?

6. Does the tool provide good user interface and experience?

7. What are the approximate figure for new functional and non-functional

requirements specified using the tool?

8. How much coverage does the tool provided to specify existing requirements?

9. How efficient is the tool as compared to original method of requirement

specification?

10. Does the tool triggers user to specify more non-functional requirement?

Please refer to Appendix C: Feedback Survey Form for the printed copy of the

survey.

7.2. Testing and Evaluation Result

Over a period of 18 days, we had conducted our evaluation on our tool on 14

participants, consisting of 13 undergraduates and 1 graduate. In this section, we will

be discussing and analysing the result of the survey.

For all data presented in this section, a summary of all data can be referred

from Appendix D: Feedback Survey Result. In Section D: Measurement, we requested

participant to deduce the number of requirements based on the ratio of how many

requirement they specified and how many requirements actually is in the project.

77

For example, if the participant has 100 requirements in their project and they

used the tool to specify only 20, and they successfully specified 15 out of the 20

requirements, they will deduce that they will successfully specify 75 requirements and

fail to specify 25 requirements.

On average, each participant took 30 minutes to attempt to specify part of the

requirements of one of their project using our tool and another 10 minute to complete

the survey. Participant will attempt to specify approximately 20% of their project’s

requirement due to time constraint. Final year project participants were more

enthusiastic when specifying their requirements as compared to other participants.

 Table 7.1 shows the actual figure from the collected feedbacks. Experienced

user are participants who conducted at least 5 projects while normal user are those who

conducted between 1 to 5 projects. All participants had at least conducted 1 project.

The value of Table 7.1 are represented in few formats: (1) Plain numbers,

representing actual figure, (2) Percentage, representing percentage of user, (3)

[Number/Number], representing [Score/Maximum score].

Table 7.1: Feedback Summary

Aspect
User

Normal Experienced

Section A: Experience

Number of participants 10 4

Mainly uses natural language sentences to specify

requirements

100% 75%

Mainly uses Microsoft Word to specify

requirements

100% 50%

Uses collaborative tool to specify requirements 0% 50%

Have prior knowledge about boilerplate 0% 25%

78

Section B: Functionality

The tool provides sufficient feature 8.1/10.0 7.5/10.0

The tool provides sufficient module to specify

requirements

9.0/10.0 7.5/10.0

The modules are appropriate and suitable 7.8/10.0 7.8/10.0

The predefined boilerplates are appropriate 7.5/10.0 6.3/10.0

Section C: User Interface and Experience

The UI is consistent 4.1/5.0 4.3/5.0

The UI is well designed 3.2/5.0 3.8/5.0

The UI shows overall process flow of using the

tool

3.7/5.0 3.8/5.0

The tool is easy to learn 3.1/5.0 3.3/5.0

The tool is interactive and fun 6.9/10.0 6.8/10.0

Section D: Measurements

Average number of FR before using tool 18 10

Average number of NFR before using tool 8 10

Average number of FR after using tool 25 10

Average number of NFR after using tool 16 11

Average number of requirement failed to specify

with tool

2 1

Average number of new requirement specified 14 2

Average time used to specify requirement without

tool

57 minutes 33 minutes

Average time used to specify requirement with

tool

28 minutes 16 minutes

The tool helps speed up the requirement

specification process

8.4/10.0 7.5/10.0

Section E: Personal Opinion

The description and instruction is sufficient 7.7/10.0 5.5/10.0

The tool helps to specify more NFR 8.9/10.0 8.0/10.0

Boilerplate helps user in requirement specification 7.7/10.0 6.8/10.0

Will use this tool to specify requirement in future 90% 100%

79

 As a comparison, we found that most participants are normal users. Normal

users mainly uses natural language sentences to specify requirements. They do not use

collaborative tools such as Google Docs or Trello to specify requirements but only

uses Microsoft Words to do so. Normal users do not know the existence of requirement

boilerplate.

In contrast, experienced user are exposed to some other requirement

specification techniques such as formal notation and use cases. Some of them uses

collaborative tool due to working environment in a team and some had experience

dealing with requirement boilerplate.

On average, both types of user think that the functionality of the tool is quite

appropriate and sufficient. Normal users rates the functionality of the tool slightly

better than experienced user, while experienced user liked more on the user interface

and user experience of the tool. However, both types of user remains neutral about the

learnability of the tool. In general, they think the tool is quite interactive and fun than

their current method of requirement specification but not easy to learn.

In terms of measurement, normal users specifies about 2 times of the number

of requirements than an experienced user. Only about 10% of existing requirements

were failed to be specified using the tool. Users specifies up to 50% more new

requirements when using the tool and only used about half of the original amount of

time needed to specify requirements. All users agreed that the tool speeds up the

requirement specification process.

Lastly, experienced user thinks that the description and instructions given by

the tool are just enough as compared to normal user who thinks that they are quite

sufficient. All users agreed that the tool helps them to specify non-functional

requirements and boilerplate are quite useful to assist requirement specification phases.

Almost all users are keen to reuse the tool to specify requirement in future.

To summarize the whole evaluation result, we constructed Table 7.2 and

calculated the average score of each section to represent user’s satisfaction. We also

80

evaluated the effectiveness and efficiency of our tool by using measurements given by

users in their feedback. The term “݂ሺݔሻ” refers to the formula of calculation.

Table 7.2: Evaluation Summary

Aspect
User

Normal Experienced

User satisfaction level on Functionality of the

system

݂ሺݔሻ ൌ .݃ݒܣ	 %100	ݔ	ܤ	݊݋݅ݐܿ݁ܵ	݂݋	݁ݎ݋ܿݏ

81% 73%

User satisfaction level on User Interface Design

and Experience of the system

݂ሺݔሻ ൌ .݃ݒܣ	 %100	ݔ	ܥ	݊݋݅ݐܿ݁ܵ	݂݋	݁ݎ݋ܿݏ

70% 74%

Overall user satisfaction level

݂ሺݔሻ ൌ ܥ	݀݊ܽ	ܤ	݊݋݅ݐܿ݁ܵ	݂݋	݁݃ܽݎ݁ݒܣ	

76% 74%

Effectiveness of the tool (% of improvement)

݂ሺݔሻ ൌ ൬
.݃ݒܣ ݈݋݋ݐ	݄ݐ݅ݓ.ݍܴ݁

.݃ݒܣ ݈݋݋ݐ	ݐݑ݋݄ݐ݅ݓ.ݍܴ݁
െ 1൰ %100	ݔ

+58% +5%

Efficiency of the tool (% of improvement)

݂ሺݔሻ ൌ ሺ	
.݃ݒܣ ݈݋݋ݐ	݄ݐ݅ݓ	݁݉݅ܶ

.݃ݒܣ ݈݋݋ݐ	ݐݑ݋݄ݐ݅ݓ	݁݉݅ܶ
െ 1ሻ	ݔ	100%

+104% +106%

81

CHAPTER 8

CONCLUSION AND DISCUSSIONS

8.1. Conclusion

As a conclusion, throughout the period of 7 months from 18th January 2016 till 19th

August 2016, we had completed a software project titled “Software Requirement

Specification Tool”. We had fulfilled each of our project objectives in accordance to

each chapter in this report:

1. Proposing to conduct this project by preparing project proposal

(Please refer to Chapter 1: Introduction)

2. Reviewing every aspect of this project through literature studies

(Please refer to Chapter 2: Literature Review)

3. Planning and deciding the methodology to be used to conduct the project

(Please refer to Chapter 3: Methodology)

4. Specifying and modelling requirements that shall be fulfilled in this project

(Please refer to Chapter 4: Requirement Specification)

5. Analysing and designing each aspect of the tool of the project

(Please refer to Chapter 5: Design)

6. Coding and implementing the project to produce our proposed tool

(Please refer to Chapter 6: Coding and Implementation)

7. Testing and evaluating the effectiveness and other aspect of our produced tool

(Please refer to Chapter 7: Testing and Evaluation)

82

8.2. Limitations

Despite successfully fulfilling all our objectives in this project, there are some

limitation to the tool that we had completed due to other factors such as time and scope.

The following is the list of limitations that our tool have after researching and

comparing:

1. We only focused on developing functionalities to assist user in requirement

specification and do not include other aspect of requirement engineering, such

as requirement prioritization and management

2. Due to constraint of time, we had limited our project scope to support only

requirement specification for user requirements or system requirements and

focused more to improve quality of requirements by specifying non-

functional requirements based on ISO 25010 model. However, a complete

software requirement specification (SRS) actually includes more than solely

functional and non-functional user requirements and system requirements

3. When proposing the development of this project, we researched and found

out that ontology and domain model could enhance and support requirement

specification. However, in order to generate a correct and validated ontology,

a lot of research, time and effort will need to be done. Within our timeframe,

we did not manage to include ontology as the semantic aspect for our tool and

we only can rely on the user to validate the requirements and ensure the

completeness of requirement based on their own specification and as per

defined in ISO model.

83

8.3. Future Improvement Roadmap

As a closure for this project, we had planned a roadmap for future improvement of this

tool. The following features are not included in our project, but it will be very helpful

to be added to overcome the limitations of this tool.

1. To improve this tool, we may add in other functionalities such as allow user

to prioritize requirements after specifying it, providing requirement

traceability matrix for user and etc. This will make our tool a full-stack

requirement engineering tool which supports all generic workflow of

requirement engineering phases.

2. In our tool, we mainly focused on elicitation and specification of user

requirement and system requirement in our tool. However in real life projects,

there are much more other types of requirement to be considered in order to

produce a complete software requirement specification. Hence, it is suggested

to support the specification of other types of requirement in order to make this

tool complete.

3. We propose to integrate ontology validated by experts to help user to specify

requirements. This will generate a correct and complete software requirement

specification.

4. From our survey, we found that experienced user tend to use collaborative

tool in their requirement specification process. This suggested that in the

industry, requirement specification process are most likely conducted by few

persons. Hence, we propose to enhance the collaborative aspect of our tool.

84

BIBLIOGRAPHY

Anon, 2015. The Pulse of Profession - Capturing the Value of Project Management,

Pennsylvania. Available at: http://www.pmi.org/~/media/PDF/learning/pulse-of-

the-profession-2015.ashx.

Arora, C. et al., 2014. Requirement boilerplates: Transition from manually-enforced

to automatically-verifiable natural language patterns. 2014 IEEE 4th

International Workshop on Requirements Patterns, RePa 2014 - Proceedings,

pp.1–8.

Azuma, M., 2004. Applying ISO/IEC 9126-1 Quality Model to quality requirements

engineering on critical software. Proceedings of the 3rd IEEE Int. Workshop on

Requirements for High Assurance Systems (RHAS).

Al Balushi, T.H., Sampaio, P.R.F. & Loucopoulos, P., 2013. Eliciting and prioritizing

quality requirements supported by ontologies: A case study using the ElicitO

framework and tool. Expert Systems, 30(2), pp.129–151.

Bourque, P. & Fairley, R.E., 2014. Guide to the Software Engineering - Body of

Knowledge., Available at: www.swebok.org.

Bures, T. et al., 2012. Requirement Specifications Using Natural Languages. ,

(December). Available at: http://d3s.mff.cuni.cz/publications/download/D3S-

TR-2012-05.pdf.

Christel, M.G. & Kang, K.C., 1992. Issues in Requirements Elicitation, Pennsylvania.

Clancy, T., 1995. The Standish group: the chaos report,

85

Dorfman, M. & Thayer, R.H., 1990. Standards, guidelines, and examples on system

and software requirements engineering, IEEE Computer Society Press. Available

at: https://books.google.com.my/books?id=qbNQAAAAMAAJ.

Firesmith, D., 2007. Common requirements problems, their negative consequences,

and the industry best practices to help solve them. Journal of Object Technology,

6(1), pp.17–33.

Hazeem, T. et al., 2007. ElicitO : A Quality Ontology-Guided NFR Elicitation Tool. ,

(1), pp.306–319.

Hull, E., Jackson, K. & Dick, J., 2011. Requirements Engineering Third., London:

Springer London. Available at: http://link.springer.com/10.1007/978-1-84996-

405-0.

Ibrahim, N. et al., 2015. Applicability and Usablity of Predefined Natural Language

Boilerplates in Documenting Requirements. , pp.127–137.

IEEE, 1998. IEEE Recommended Practice for Software Requirements Specifications.

IEEE Std 830-1998, pp.1–40.

International Organization For Standardization ISO, 2011. ISO/IEC 25010: 2011,

Available at: http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.

htm?csnumber=35733.

International Organization For Standardization Iso, 2001. ISO/IEC 9126-1. Software

Process: Improvement and Practice, 2(1), pp.1–25. Available at:

http://ebookbrowse.com/iso-iec-9126-1-2001-pdf-d72715451.

ISO/IEC & IEEE, 2010. ISO/IEC/IEEE 24765:2010 - Systems and software

engineering - Vocabulary. Iso/Iec Ieee, 2010, p.410. Available at:

http://www.iso.org/iso/catalogue_detail.htm?csnumber=50518.

86

Kotonya, G. & Sommerville, I., 1998. Requirements Engineering: Processes and

Techniques, J. Wiley. Available at: https://books.google.com.my/books?id=Up1

QAAAAMAAJ.

Kruchten, P., 2004. The Rational Unified Process: An Introduction, Addison-Wesley.

Available at: https://books.google.com.my/books?id=RYCMx6o47pMC.

McCall, J.A., Richards, P.K. & Walters, G.F., 1977. Factors in Software Quality -

Volume 1 - Concept and Definitions of Software Quality. Defense Technical

Information Center, 1, 2 and 3(ADA049014), p.168. Available at:

http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=A

DA049014.

Miguel, J.P., Mauricio, D. & Rodríguez, G., 2014. A Review of Software Quality

Models for the Evaluation of Software Products. International Journal of

Software Engineering & Applications (IJSEA), 5(6), pp.31–53.

Neill, C.J. & Laplante, P. a., 2003. Requirements engineering: The state of the practice.

IEEE Software, 20(6), pp.40–45. Available at: http://ieeexplore.ieee.org/xpls/abs

_all.jsp?arnumber=1241365.

Nuseibeh, B. & Easterbrook, S., 2000. Requirements engineering: a roadmap.

Proceedings of the conference on The future of Software engineering - ICSE ’00,

1, pp.35–46. Available at: http://portal.acm.org/citation.cfm?doid=336512.33652

3.

Pohl, K. & Rupp, C., 2015. Requirements Engineering Fundamentals A Study Guide

for the Certified Professional for Requirements Engineering Exam,

Pressman, R.S., 2009. Software Engineering A Practitioner’s Approach 7th Ed - Roger

S. Pressman, Available at: http://www.amazon.com/s/ref=nb_sb_noss?url=searc

h-alias%3Daps&field-keywords=9780073375977.

87

Sommerville, I., 2011. Software Engineering Ninth Edit., Pearson. Available at:

https://books.google.com.my/books?id=l0egcQAACAAJ.

Sparx Systems, 2010. Requirements Management with Enterprise Architect. , pp.1–

50. Available at: http://www.sparxsystems.com/uml_tool_guide/modeling_tool_

features/requirements_model_pattern.htm\npapers2://publication/uuid/DAB1BC

3A-BB0B-4BD8-87C4-864921842E1A.

Thapar, S., Singh, P. & Rani, S., 2012. Challenges to the Development of Standard

Software Quality Model. International Journal of Computer Applications, 49(10),

pp.1–7. Available at: http://www.ijcaonline.org/archives/volume49/number10/7

660-0765.

Vera, H. et al., 2015. Data modeling for NoSQL document-oriented databases. CEUR

Workshop Proceedings, 1478, pp.129–135.

Yang, H. et al., 2011. Analysing anaphoric ambiguity in natural language requirements,

in: Requirement Engineering. , pp.163–189.

Zave, P., 1995. Classification of research efforts in requirements engineering.

Proceedings of 1995 IEEE International Symposium on Requirements

Engineering (RE’95), 29(4), pp.315–321.

88

APPENDICES

Appendix A: Work breakdown structure and Gantt chart

ID Task Name Duration Start Finish

1 Project 1 59 days Mon 18/1/16 Fri 8/4/16
2 Project 1 start date 0 days Mon 18/1/16 Mon 18/1/16
3 Title selection 5 days Mon 18/1/16 Fri 22/1/16
4 Proposal preparation 9 days Mon 25/1/16 Thu 4/2/16
5 Problem statement 2 days Mon 25/1/16 Tue 26/1/16
6 Project goal 1 day Wed 27/1/16 Wed 27/1/16
7 Project objectives 1 day Thu 28/1/16 Thu 28/1/16
8 Proposed solution 1 day Fri 29/1/16 Fri 29/1/16
9 Project scope 3 days Mon 1/2/16 Wed 3/2/16
10 Project approach 1 day Thu 4/2/16 Thu 4/2/16
11 Project 1 preliminary report

submission
0 days Fri 18/3/16 Fri 18/3/16

12 Literature review 44 days Mon 25/1/16 Thu 24/3/16
13 Background review 42 days Mon 25/1/16 Tue 22/3/16
14 Methodology review 2 days Wed 23/3/16 Thu 24/3/16
15 Approach review 2 days Wed 23/3/16 Thu 24/3/16
16 Methodology 5 days Fri 25/3/16 Thu 31/3/16
17 Chosen methodology 2 days Fri 25/3/16 Mon 28/3/16
18 Chosen tool 2 days Fri 25/3/16 Mon 28/3/16
19 Project plan 5 days Fri 25/3/16 Thu 31/3/16
20 Project Specification 5 days Fri 1/4/16 Thu 7/4/16
21 Software requirement

specification
3 days Fri 1/4/16 Tue 5/4/16

22 Use case modelling 2 days Wed 6/4/16 Thu 7/4/16
23 Preliminary UI design 2 days Wed 6/4/16 Thu 7/4/16
24 Project 1 report submission 0 days Fri 8/4/16 Fri 8/4/16

18/1

18/3

8/4

Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct
Qtr 4, 2015 Qtr 1, 2016 Qtr 2, 2016 Qtr 3, 2016

Task

Split

Milestone

Summary

Project Summary

Inactive Task

Inactive Milestone

Inactive Summary

Manual Task

Duration-only

Manual Summary Rollup

Manual Summary

Start-only

Finish-only

External Tasks

External Milestone

Deadline

Progress

Manual Progress

Page 1

Project: Project Plan

Date: Sun 31/7/16

ID Task Name Duration Start Finish

25 Self exploration 37 days Fri 8/4/16 Mon 30/5/16
26 Tool exploraration 36 days Fri 8/4/16 Fri 27/5/16
27 API exploration 36 days Fri 8/4/16 Fri 27/5/16
28 Project 2 59 days? Mon 30/5/16 Fri 19/8/16
29 Project 2 start date 0 days Mon 30/5/16 Mon 30/5/16
30 Project 1 review 5 days Tue 31/5/16 Mon 6/6/16
31 Proposal review 1 day Tue 31/5/16 Tue 31/5/16
32 Literature review 2 days Wed 1/6/16 Thu 2/6/16
33 Methodology review 1 day Fri 3/6/16 Fri 3/6/16
34 Requirement specification

finalization
1 day Mon 6/6/16 Mon 6/6/16

35 Iteration 1 15 days Tue 7/6/16 Mon 27/6/16
36 Design 5 days Tue 7/6/16 Mon 13/6/16
37 Architecture Diagram 1 day Tue 7/6/16 Tue 7/6/16
38 Component diagram 1 day Wed 8/6/16 Wed 8/6/16
39 Activity Diagram 1 day Thu 9/6/16 Thu 9/6/16
40 Sequence diagram 2 days Fri 10/6/16 Mon 13/6/16
41 Coding and Implementation 7 days Tue 14/6/16 Wed 22/6/16
42 UI design and

implementation
2 days Tue 14/6/16 Wed 15/6/16

43 Logic implementation 5 days Thu 16/6/16 Wed 22/6/16
44 Deployment 3 days Thu 23/6/16 Mon 27/6/16
45 Deployment method

selection
2 days Thu 23/6/16 Fri 24/6/16

46 Website Deployment 1 day Mon 27/6/16 Mon 27/6/16
47 Review for Iteration 1 2 days Tue 28/6/16 Wed 29/6/16

30/5

Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct
Qtr 4, 2015 Qtr 1, 2016 Qtr 2, 2016 Qtr 3, 2016

Task

Split

Milestone

Summary

Project Summary

Inactive Task

Inactive Milestone

Inactive Summary

Manual Task

Duration-only

Manual Summary Rollup

Manual Summary

Start-only

Finish-only

External Tasks

External Milestone

Deadline

Progress

Manual Progress

Page 2

Project: Project Plan

Date: Sun 31/7/16

ID Task Name Duration Start Finish

48 Report compilation 3 days Thu 30/6/16 Mon 4/7/16
49 Prepare Chapter 5 - Design 2 days Thu 30/6/16 Fri 1/7/16
50 Prepare Chapter 6 - Coding and

Implementation
3 days Thu 30/6/16 Mon 4/7/16

51 Iteration 2 13 days Thu 30/6/16 Mon 18/7/16
52 Design 4 days Thu 30/6/16 Tue 5/7/16
53 Component diagram 1 day Thu 30/6/16 Thu 30/6/16
54 Activity Diagram 1 day Fri 1/7/16 Fri 1/7/16
55 Sequence diagram 2 days Mon 4/7/16 Tue 5/7/16
56 Coding and Implementation 7 days Wed 6/7/16 Thu 14/7/16
57 UI design and

implementation
2 days Wed 6/7/16 Thu 7/7/16

58 Logic implementation 5 days Fri 8/7/16 Thu 14/7/16
59 Testing 1.5 days Fri 15/7/16 Mon 18/7/16
60 Preliminary User Acceptance

Test
0.5 days Fri 15/7/16 Fri 15/7/16

61 Testing feedback integration 1 day Fri 15/7/16 Mon 18/7/16

62 Deployment 0.5 days Mon 18/7/16 Mon 18/7/16
63 Update deployed website 0.5 days Mon 18/7/16 Mon 18/7/16

64 Review for Iteration 2 2 days Tue 19/7/16 Wed 20/7/16
65 Report compilation 3 days Thu 21/7/16 Mon 25/7/16
66 Prepare Chapter 5 - Design 2 days Thu 21/7/16 Fri 22/7/16
67 Prepare Chapter 6 - Coding and

Implementation
3 days Thu 21/7/16 Mon 25/7/16

Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct
Qtr 4, 2015 Qtr 1, 2016 Qtr 2, 2016 Qtr 3, 2016

Task

Split

Milestone

Summary

Project Summary

Inactive Task

Inactive Milestone

Inactive Summary

Manual Task

Duration-only

Manual Summary Rollup

Manual Summary

Start-only

Finish-only

External Tasks

External Milestone

Deadline

Progress

Manual Progress

Page 3

Project: Project Plan

Date: Sun 31/7/16

ID Task Name Duration Start Finish

68 Iteration 3 8 days Thu 21/7/16 Mon 1/8/16
69 Design 3 days Thu 21/7/16 Mon 25/7/16
70 Component diagram 1 day Thu 21/7/16 Thu 21/7/16
71 Activity Diagram 1 day Fri 22/7/16 Fri 22/7/16
72 Sequence diagram 1 day Mon 25/7/16 Mon 25/7/16
73 Coding and Implementation 3 days Tue 26/7/16 Thu 28/7/16
74 UI design and

implementation
1 day Tue 26/7/16 Tue 26/7/16

75 Logic implementation 2 days Wed 27/7/16 Thu 28/7/16
76 Testing 1.5 days Fri 29/7/16 Mon 1/8/16
77 Final User Acceptance Test 0.5 days Fri 29/7/16 Fri 29/7/16
78 Testing feedback integration 1 day Fri 29/7/16 Mon 1/8/16
79 Deployment 0.5 days Mon 1/8/16 Mon 1/8/16
80 Update deployed website 0.5 days Mon 1/8/16 Mon 1/8/16
81 Review for Iteration 3 2 days Tue 2/8/16 Wed 3/8/16
82 Product Evaluation 8 days Thu 4/8/16 Mon 15/8/16
83 Survey form preparation 1 day Thu 4/8/16 Thu 4/8/16
84 Conduct survey 5 days Fri 5/8/16 Thu 11/8/16
85 Survey result analysis 2 days Fri 12/8/16 Mon 15/8/16
86 Report compilation 17 days Tue 26/7/16 Wed 17/8/16
87 Complete Chapter 5 - Design 2 days Tue 26/7/16 Wed 27/7/16
88 Complete Chapter 6 - Coding

and Implementation
2 days Tue 26/7/16 Wed 27/7/16

89 Complete Chapter 7 - Testing
and Evaluation

2 days Tue 16/8/16 Wed 17/8/16

90 Project 2 submission 0 days Fri 19/8/16 Fri 19/8/16 19/8

Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct
Qtr 4, 2015 Qtr 1, 2016 Qtr 2, 2016 Qtr 3, 2016

Task

Split

Milestone

Summary

Project Summary

Inactive Task

Inactive Milestone

Inactive Summary

Manual Task

Duration-only

Manual Summary Rollup

Manual Summary

Start-only

Finish-only

External Tasks

External Milestone

Deadline

Progress

Manual Progress

Page 4

Project: Project Plan

Date: Sun 31/7/16

93

Appendix B: Use Case Descriptions

94

Use Case Description – Login

Use Case Name: Login

ID: 001 Importance Level: High

Primary Actor: Requirement engineer

Use Case Type: Detail, Essential

Stakeholders and Interests:

- Requirement engineer: wants to login to the system to use the system

Brief Description: This use case describes how requirement engineer login to the system

Trigger: Requirement engineer clicks on Login button.

Type: -

Relationships:

 Association: Requirement Engineer

 Include:

 Extend:

 Generalization:

Normal Flow of Events:

User System

1. User clicks on Login button 2. System shows dialog to enter

required information to login

3. User enters required information

4. System validates the user

information and logs user into the

system

Alternate/Exceptional Flows:

User System

3.1.1 User entered wrong

information.

3.1.2 System prompt user that

information was incorrect and

request user to try again.

95

Use Case Description – Create Project

Use Case Name: Create Project

ID: 002 Importance Level: High

Primary Actor: Requirement engineer

Use Case Type: Detail, Essential

Stakeholders and Interests:

- Requirement engineer: wants to create a project to specify their requirements

Brief Description: This use case describes how requirement engineer create a project

Trigger: Requirement engineer clicks on “Create Project” button

Relationships:

 Association: Requirement engineer

 Include:

 Extend:

 Generalization:

Normal Flow of Events:

User System

1. User clicks on “Create Project”

button

2. System shows dialog to prompt

user for project name

3. User enters the project name

4. System creates the project and

opens the project for user

Alternate/Exceptional Flows:

User System

96

Use Case Description – Open Project

Use Case Name: Open Project

ID: 003 Importance Level: High

Primary Actor: Requirement engineer

Use Case Type: Detail, Essential

Stakeholders and Interests:

- Requirement engineer: wants to open their project

Brief Description: This use case describes how requirement engineer open their project

Trigger: Requirement engineer clicks on the “Open Project” button of one of their

project from their list of project

Relationships:

 Association: Requirement engineer

 Include:

 Extend:

 Generalization:

Normal Flow of Events:

User System

1. User clicks on “Open Project”

button

2. System verifies that the user is

logged in and opens the project

Alternate/Exceptional Flows:

User System

 2.1.1 User is not logged in.

System requests user to log in

97

Use Case Description – Remove Project

Use Case Name: Remove Project

ID: 004 Importance Level: High

Primary Actor: Requirement engineer

Use Case Type: Detail, Essential

Stakeholders and Interests:

- Requirement engineer: wants to remove project that is no longer needed

Brief Description: This use case describes how requirement engineer remove project

Trigger: Requirement engineer clicks on the “Remove Project” button of one of their

project from their list of project

Relationships:

 Association: Requirement engineer

 Include:

 Extend:

 Generalization:

Normal Flow of Events:

User System

1. User clicks on “Remove Project”

button

2. System prompts user for

confirmation

3. User clicks “Yes” to confirm

deletion

4. System verifies that user is logged

in and removes the project from

database

Alternate/Exceptional Flows:

User System

3.1.1 User presses “Cancel” button 3.1.2 System closes the dialog

 3.2.1 User is not logged in. System

requests user to log in

98

Use Case Description – Specify Functional Requirements

Use Case Name: Specify Functional Requirement

ID: 005 Importance Level: High

Primary Actor: Requirement engineer

Use Case Type: Detail, Essential

Stakeholders and Interests:

- Requirement engineer: wants to specify functional requirement of their project

Brief Description: This use case describes how requirement engineer specify functional

requirement

Trigger: Requirement engineer clicks on “Specify Requirements” menu tab, and then

clicks on “Specify Functional Requirements” button

Relationships:

 Association: Requirement engineer

 Include:

 Extend:

 Generalization:

Normal Flow of Events:

User System

1. User clicks on “Specify Functional

Requirements” button

2. System shows user list of modules

that can be used to specify

functional requirement

3. User chooses a module and click on

the module

4. System opens the module and

request required information from

user

5. User enters required information

and press “Save” button

6. System saves the information to be

used to generate requirement

7. User clicks “Back” button 8. System closes the module and

return to previous UI

Alternate/Exceptional Flows:

User System

5.1.1 User presses “Cancel” button 5.1.2 System closes the dialog and

return to previous UI without

saving the entered information

99

Use Case Description – Specify Non-Functional Requirements

Use Case Name: Specify Non-Functional

Requirements

ID: 006 Importance Level: High

Primary Actor: Requirement engineer

Use Case Type: Detail, Essential

Stakeholders and Interests:

- Requirement engineer: wants to specify non-functional requirement of their

project

Brief Description: This use case describes how requirement engineer specify non-

functional requirement

Trigger: Requirement engineer clicks on “Specify Requirements” menu tab, and then

clicks on “Specify Non-Functional Requirements” button

Relationships:

 Association: Requirement engineer

 Include:

 Extend:

 Generalization:

Normal Flow of Events:

User System

1. User clicks on “Specify Non-

Functional Requirements” button

2. System shows user list of modules

that can be used to specify non-

functional requirement

3. User chooses a module and click on

the module

4. System opens the module and

request required information from

user

5. User enters required information

and press “Save” button

6. System saves the information to be

used to generate requirement

7. User clicks “Back” button 8. System closes the module and

return to previous UI

Alternate/Exceptional Flows:

User System

5.1.1 User presses “Cancel” button 5.1.2 System closes the dialog and

return to previous UI without

saving the entered information

100

Use Case Description – Generate Requirements

Use Case Name: Generate Requirements

ID: 007 Importance Level: High

Primary Actor: Requirement engineer

Use Case Type: Detail, Essential

Stakeholders and Interests:

- Requirement engineer: wants to generate requirements from the information

they specified and saved in the system

Brief Description: This use case describes how requirement engineer generate

requirements

Trigger: Requirement engineer clicks on “Specify Requirements” menu tab, and then

clicks on “Generate Requirements” button

Relationships:

 Association: Requirement engineer

 Include:

 Extend:

 Generalization:

Normal Flow of Events:

User System

1. User clicks on “Generate

Requirements” button

2. System fetches information that

user entered in requirement

specification modules from the

server.

3. System uses defined boilerplates to

generate requirement based on the

information

4. System shows all generated

requirements to user

5. User selects the requirement that

they wanted to add to the Software

Requirement Specification and

clicks “Save” button

6. System adds the selected

requirement to the database and

return to previous UI

Alternate/Exceptional Flows:

User System

5.1.1 User presses “Cancel” button 5.1.2 System closes the dialog and

return to previous UI

101

Use Case Description – Export Software Requirement Specification

Use Case Name: Export Software Requirement

Specification

ID: 008 Importance Level: High

Primary Actor: Requirement engineer

Use Case Type: Detail, Essential

Stakeholders and Interests:

- Requirement engineer: wants to export current project’s Software

Requirement Specification to other file format

Brief Description: This use case describes how requirement engineer export current

project’s Software Requirement Specification to other file format

Trigger: Requirement clicks on “Export Requirements” button

Relationships:

 Association: Requirement engineer

 Include:

 Extend:

 Generalization:

Normal Flow of Events:

User System

1. User clicks on “Export

Requirements” button

2. System shows dialog to choose file

format to be exported

3. User chooses a format and clicks

“Export”

4. System exports the SRS into

selected file format and saves the

file to user’s PC

Alternate/Exceptional Flows:

User System

3.1.1 User presses “Back” button 3.1.2 System closes the dialog and

return to previous UI

102

Appendix C: Feedback Survey Form

7/31/2016 Software Requirement Specification Tool ­ Feedback Survey

https://docs.google.com/forms/d/1TgMtlXhBUO1yuTbHRGPQO9MHMZ4T2svnlHSE05ufkwM/edit 1/5

Software Requirement Specification Tool ­ Feedback
Survey
Hi.
First of all, thank you for participating in this quick survey to evaluate my final year project product ­
Software Requirement Specification Tool.

The purpose of this survey is to gather feedback for my product which will be used to evaluate and
improve this tool. All respondents must had attempted to specify one of their project's requirement
using the tool before completing this survey.

The scope of evaluation includes the following 5 sections:
1. Your experience on conducting software projects
2. Your feedback on the functionality aspect of the tool
3. Your feedback on the usability and user interface aspect of the tool
4. Measurement based on the project's requirement specification
5. Your personal opinion regarding the tool

Your response will be kept confidential and used only to evaluate and to improve this tool. However,
the feedback may be used for project submission. Hence, you may optionally disclose your name
depending on your preference.

*Required

Section A: Your experience
In this section, we will be gathering information regarding to your experience in software projects and
some other technical knowledge.

1. Your name (Optional)
Nickname would do, too

2. How many software projects you had conducted? *
Inclusive of partial completed projects, final year projects, and any assignment that includes
requirement phase
Mark only one oval.

 None

 1 ­ 5 software projects

 > 5 software projects

 Other:

3. What are the methods that you currently applied to specify requirements? *
Excluding elicitation or gathering stage (which usually involves questionnaire, interview,
observation and etc)
Tick all that apply.

 Use cases

 Formal user requirement notation

 Natural language (normal sentence)

 Structured natural language (boilerplate, template)

 Other:

7/31/2016 Software Requirement Specification Tool ­ Feedback Survey

https://docs.google.com/forms/d/1TgMtlXhBUO1yuTbHRGPQO9MHMZ4T2svnlHSE05ufkwM/edit 2/5

4. Please list down any tool that you used to
specify your requirements for any of the
software projects *
Microsoft Word is also considered as a "tool"
although it doesn't provide any feature to assist
you

5. Do you have any prior knowledge about "boilerplate" before using this tool? *
Mark only one oval.

 Yes

 No

Section B: Functionality
In this section, we will would like to know what you think about the functionality aspect of the tool

6. Does the tool provide sufficient feature for requirement specification *
Feature refers to keyword suggestion, requirement specification modules, boilerplate
modification, export modules
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

The
tool is
very

lacking
of

feature

The
tool
covers
most
of
things I
could
thought
of

7. Does the provide requirement specification modules sufficient to specify all of your
requirements *
Modules refers to action control, access control, and etc
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Insufficient,
I can't
specify
much

requirement

Sufficient, I
can specify
many
different
requirements

8. Does the provided modules appropriate and suitable to specify requirement *
Modules refers to action control, access control, and etc
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

The
modules
are not

appropriate
and should

be
redesigned

The
modules
are
appropriate
and well
designed

7/31/2016 Software Requirement Specification Tool ­ Feedback Survey

https://docs.google.com/forms/d/1TgMtlXhBUO1yuTbHRGPQO9MHMZ4T2svnlHSE05ufkwM/edit 3/5

9. Are the predefined boilerplates provided appropriate *
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

The
boilerplates

are not
appropriate

and not
suitable

The
boilerplates
are
appropriate
and very
suitable to
specify
requirement

Section C: User Interface and Experience
In this section, we would like to know how do you feel when using our tool

10. What do you think about the following statements? *
Mark only one oval per row.

Strongly
Disagree Disagree Neutral Agree Strongly

Agree
The user interface of tool is
consistent
The user interface of the tool is
well designed
The user interface of the tool
shows the overall process flow
of using the tool
The tool is very easy to learn

11. How do you feel when using this tool *
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Boring Interactive/Fun

Section D: Measurements
In this section, we would like to have some measurable figures from the project you specified using
the tool

12. How many functional requirement you had
specified BEFORE using this tool? *

13. How many non­functional requirement you
had specified BEFORE using this tool? *

14. How many functional requirement you had
specified AFTER using this tool? *

7/31/2016 Software Requirement Specification Tool ­ Feedback Survey

https://docs.google.com/forms/d/1TgMtlXhBUO1yuTbHRGPQO9MHMZ4T2svnlHSE05ufkwM/edit 4/5

15. How many non­functional requirement you
had specified AFTER using this tool? *

16. How many existing requirements that you
failed to specify using this tool? *
Those you had originally but fail to be specified
or transferred into this tool

17. How many new requirements that you had
specified using this tool? *
Those you didn't specified originally but added
after using this tool

18. How many time you spent to specified your
original requirement? (In number of minutes)
*
Approximate figure should be sufficient

19. How many time you spent in this tool to
specify your requirement? (In number of
minutes) *
Approximate figure should be sufficient

20. How fast do you specify your requirement with this tool compared to your original method
of requirement specification? *
Approximate figure should be sufficient
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Slower
than

original

Faster
than
original

Section E: Personal Opinion
In this section. we would like to have your personal opinion about this tool

21. Does the description and instruction provided sufficiently teach you how to use this tool?
*
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Very
insufficient

Very
sufficient

7/31/2016 Software Requirement Specification Tool ­ Feedback Survey

https://docs.google.com/forms/d/1TgMtlXhBUO1yuTbHRGPQO9MHMZ4T2svnlHSE05ufkwM/edit 5/5

Powered by

22. Does this tool trigger or help you to specify more non­functional requirement? *
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Not at
all

Very
much

23. Do you think boilerplate helps or limits user in requirement specification? *
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Limits
user

Helps
user

24. Will you use this tool to specify requirement in future? *
Mark only one oval.

 Yes

 No

 Other:

25. Last but not least, do you have any suggestions or improvement areas that we could look
on?

https://www.google.com/forms/about/?utm_source=product&utm_medium=forms_logo&utm_campaign=forms

108

Appendix D: Feedback Survey Result

8/9/2016 Software Requirement Specification Tool ­ Feedback Survey ­ Google Forms

https://docs.google.com/forms/d/1TgMtlXhBUO1yuTbHRGPQO9MHMZ4T2svnlHSE05ufkwM/viewanalytics 1/11

None 0 0%
1 ­ 5 software projects 10 71.4%
> 5 software projects 4 28.6%

Other 0 0%

Use cases 12 85.7%

Summary

Section A: Your experience

Your name (Optional)

Anders Cheow

Ang Zi Xun

Law Teck Chuan

KS

Wai Kei

Yin

Jekkie

yihui

How many software projects you had conducted?

What are the methods that you currently applied to specify requirements?

28.6%

71.4%

0.0 2.5 5.0 7.5 10.0

Use cases

Formal user…

Natural langu…

Structured n…

Other

8/9/2016 Software Requirement Specification Tool ­ Feedback Survey ­ Google Forms

https://docs.google.com/forms/d/1TgMtlXhBUO1yuTbHRGPQO9MHMZ4T2svnlHSE05ufkwM/viewanalytics 2/11

Formal user requirement notation 6 42.9%

Natural language (normal sentence) 12 85.7%
Structured natural language (boilerplate, template) 1 7.1%

Other 0 0%

Yes 1 7.1%
No 13 92.9%

The tool is very lacking of feature: 1 0 0%
2 0 0%
3 0 0%
4 0 0%
5 0 0%
6 1 7.1%

Please list down any tool that you used to specify your requirements for any of the
software projects

Microsoft Word

Microsoft word

Microsoft Word, Enterprise Architect

Google Doc, Use Case

word editing tool such as microsoft word

trello

Do you have any prior knowledge about "boilerplate" before using this tool?

Section B: Functionality

Does the tool provide sufficient feature for requirement specification

92.9%

1 2 3 4 5 6 7 8 9 10
0.0

1.5

3.0

4.5

6.0

8/9/2016 Software Requirement Specification Tool ­ Feedback Survey ­ Google Forms

https://docs.google.com/forms/d/1TgMtlXhBUO1yuTbHRGPQO9MHMZ4T2svnlHSE05ufkwM/viewanalytics 3/11

7 3 21.4%

8 7 50%
9 2 14.3%

The tool covers most of things I could thought of: 10 1 7.1%

Insufficient, I can't specify much requirement: 1 0 0%
2 0 0%
3 0 0%
4 0 0%
5 0 0%
6 1 7.1%
7 0 0%
8 5 35.7%
9 6 42.9%

Sufficient, I can specify many different requirements: 10 2 14.3%

The modules are not appropriate and should be redesigned: 1 0 0%
2 0 0%
3 0 0%
4 1 7.1%
5 0 0%

Does the provide requirement specification modules sufficient to specify all of
your requirements

Does the provided modules appropriate and suitable to specify requirement

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

8/9/2016 Software Requirement Specification Tool ­ Feedback Survey ­ Google Forms

https://docs.google.com/forms/d/1TgMtlXhBUO1yuTbHRGPQO9MHMZ4T2svnlHSE05ufkwM/viewanalytics 4/11

6 0 0%

7 3 21.4%
8 6 42.9%
9 4 28.6%

The modules are appropriate and well designed: 10 0 0%

The boilerplates are not appropriate and not suitable: 1 0 0%
2 0 0%
3 0 0%
4 0 0%
5 3 21.4%
6 0 0%
7 4 28.6%
8 6 42.9%
9 1 7.1%

The boilerplates are appropriate and very suitable to specify requirement: 10 0 0%

Strongly Disagree 0 0%
Disagree 1 7.1%

Are the predefined boilerplates provided appropriate

Section C: User Interface and Experience

The user interface of tool is consistent [What do you think about the following
statements?]

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

0 2 4 6 8

Strongly Disa…

Disagree

Neutral

Agree

Strongly Agree

8/9/2016 Software Requirement Specification Tool ­ Feedback Survey ­ Google Forms

https://docs.google.com/forms/d/1TgMtlXhBUO1yuTbHRGPQO9MHMZ4T2svnlHSE05ufkwM/viewanalytics 5/11

Neutral 0 0%
Agree 9 64.3%

Strongly Agree 4 28.6%

Strongly Disagree 1 7.1%
Disagree 0 0%
Neutral 6 42.9%
Agree 7 50%

Strongly Agree 0 0%

Strongly Disagree 0 0%
Disagree 1 7.1%
Neutral 4 28.6%
Agree 7 50%

Strongly Agree 2 14.3%

The user interface of the tool is well designed [What do you think about the
following statements?]

The user interface of the tool shows the overall process flow of using the tool
[What do you think about the following statements?]

The tool is very easy to learn [What do you think about the following statements?]

0.0 1.5 3.0 4.5 6.0

Strongly Disa…

Disagree

Neutral

Agree

Strongly Agree

0.0 1.5 3.0 4.5 6.0

Strongly Disa…

Disagree

Neutral

Agree

Strongly Agree

8/9/2016 Software Requirement Specification Tool ­ Feedback Survey ­ Google Forms

https://docs.google.com/forms/d/1TgMtlXhBUO1yuTbHRGPQO9MHMZ4T2svnlHSE05ufkwM/viewanalytics 6/11

Strongly Disagree 0 0%
Disagree 3 21.4%
Neutral 6 42.9%
Agree 5 35.7%

Strongly Agree 0 0%

Boring: 1 0 0%
2 0 0%
3 0 0%
4 1 7.1%
5 0 0%
6 1 7.1%
7 10 71.4%
8 2 14.3%
9 0 0%

Interactive/Fun: 10 0 0%

How do you feel when using this tool

Section D: Measurements

How many functional requirement you had specified BEFORE using this tool?

35

8

10

5

9

0 1 2 3 4 5

Strongly Disa…

Disagree

Neutral

Agree

Strongly Agree

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

8/9/2016 Software Requirement Specification Tool ­ Feedback Survey ­ Google Forms

https://docs.google.com/forms/d/1TgMtlXhBUO1yuTbHRGPQO9MHMZ4T2svnlHSE05ufkwM/viewanalytics 7/11

53

20

3

6

15

How many non­functional requirement you had specified BEFORE using this tool?

5

0

20

10

7

15

4

11

6

How many functional requirement you had specified AFTER using this tool?

3

35

12

25

10

18

92

7

How many non­functional requirement you had specified AFTER using this tool?

21

10

9

35

11

33

25

0

7

5

2

How many existing requirements that you failed to specify using this tool?

8/9/2016 Software Requirement Specification Tool ­ Feedback Survey ­ Google Forms

https://docs.google.com/forms/d/1TgMtlXhBUO1yuTbHRGPQO9MHMZ4T2svnlHSE05ufkwM/viewanalytics 8/11

0

2

1

10

3

4

How many new requirements that you had specified using this tool?

0

5

21

15

6

57

10

20

3

4

How many time you spent to specified your original requirement? (In number of
minutes)

60

10

180

1

90

20

2

30

How many time you spent in this tool to specify your requirement? (In number of
minutes)

30

20

10

35

60

0.2

5

45

8/9/2016 Software Requirement Specification Tool ­ Feedback Survey ­ Google Forms

https://docs.google.com/forms/d/1TgMtlXhBUO1yuTbHRGPQO9MHMZ4T2svnlHSE05ufkwM/viewanalytics 9/11

Slower than original: 1 0 0%
2 0 0%
3 0 0%
4 1 7.1%
5 0 0%
6 1 7.1%
7 1 7.1%
8 5 35.7%
9 3 21.4%

Faster than original: 10 3 21.4%

Very insufficient: 1 0 0%
2 0 0%
3 0 0%
4 1 7.1%
5 0 0%
6 4 28.6%
7 4 28.6%

How fast do you specify your requirement with this tool compared to your original
method of requirement specification?

Section E: Personal Opinion

Does the description and instruction provided sufficiently teach you how to use
this tool?

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

8/9/2016 Software Requirement Specification Tool ­ Feedback Survey ­ Google Forms

https://docs.google.com/forms/d/1TgMtlXhBUO1yuTbHRGPQO9MHMZ4T2svnlHSE05ufkwM/viewanalytics 10/11

8 3 21.4%
9 1 7.1%

Very sufficient: 10 1 7.1%

Not at all: 1 0 0%
2 0 0%
3 0 0%
4 0 0%
5 0 0%
6 1 7.1%
7 0 0%
8 6 42.9%
9 3 21.4%

Very much: 10 4 28.6%

Limits user: 1 0 0%
2 0 0%
3 0 0%
4 2 14.3%
5 0 0%
6 1 7.1%
7 3 21.4%

Does this tool trigger or help you to specify more non­functional requirement?

Do you think boilerplate helps or limits user in requirement specification?

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

8/9/2016 Software Requirement Specification Tool ­ Feedback Survey ­ Google Forms

https://docs.google.com/forms/d/1TgMtlXhBUO1yuTbHRGPQO9MHMZ4T2svnlHSE05ufkwM/viewanalytics 11/11

8 4 28.6%
9 3 21.4%

Helps user: 10 1 7.1%

Yes 13 92.9%
No 0 0%

Other 1 7.1%

Will you use this tool to specify requirement in future?

Last but not least, do you have any suggestions or improvement areas that we
could look on?

Provide examples for each attributes

provide more appropriate examples for requirement.

Back to original page after successful save. Provide more details toast. Consider various
type of input such as DateTime and so on.

redirect after submit ,use correct icon , provide easy access navigation

The user interface can be improved with better error checking and interaction.

1.need some improvement on interface designs, the interface should let user know what it
should do at the first glance rather than trials and errors. 1.1 the tab contains "Instructions,
Functional Requirements, Non­Functional Requirements" is hardly to be recognize. can
change color on 'Active' tab. 1.2 may add some tool­tips. 1.3 can consider adding some
animations. 2. the tutorials can be shown in 'Modal'. 3. the application of Material Design is
good especially the cards view.

Provide the function of use enter to add the field in every module

Number of daily responses

92.9%

0.0

0.5

1.0

1.5

2.0

120

